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Preface

The ninth International Conference on Information and Communications Secu-
rity, ICICS 2007, was held in Zhengzhou, Henan Province, China, December
12–15, 2007. The ICICS conference series is an established forum that brings
together people working in different fields of information and communications
security from universities, research institutes, industry and government institu-
tions, and gives the attendees the opportunity to exchange new ideas and inves-
tigate state-of-the-art developments. Among the preceding conferences, ICICS
1997 took place in Beijing, China; ICICS 1999 in Sydney, Australia; ICICS 2001
in Xi’an, China; ICICS 2002 in Singapore; ICICS 2003 in Huhehaote city, China;
ICICS 2004 in Malaga, Spain; ICICS 2005 in Beijing, China; and ICICS 2006 in
Raleigh, NC, USA. The proceedings were released as Volumes 1334, 1726, 2229,
2513, 2836, 3269, 3783, and 4307 of the Springer LNCS series, respectively.

ICICS 2007 was sponsored by the Chinese Academy of Sciences (CAS), the
Beijing Natural Science Foundation of China under Grant No. 4052016 and
the National Natural Science Foundation of China under Grant No. 60573042.
The conference was organized and hosted by the Institute of Software, Chinese
Academy of Sciences, Institute of Software and Microelectronics, Peking Uni-
versity, and ZhongAn Scientific and Technological Group in co-operation with
the Informatization Office of Provincial Government of Henan, China and the
International Communications and Information Security Association (ICISA).

In total, 222 papers from 19 countries and districts were submitted to ICICS
2007, and 38 were accepted covering multiple disciplines of information security
and applied cryptography. From those papers accepted, 13 were from China,
five from USA, four from Australia, three from Singapore, two each from Hong
Kong, Iran, Japan and Taiwan, and one each from Belgium, Canada, Germany,
Korea, and UK.

All submissions to ICICS 2007 were anonymously reviewed by at least two
PC members, while the majority were commented on by three or more reviewers.
The reviewing process took six weeks. We are grateful to the Program Commit-
tee, which was composed of 56 members from 19 countries and districts; we
thank them as well as all external referees for their precious time and valued
contributions to the tough and time-consuming reviewing process.

We thank Guilin Wang for his great work in arranging the publishing of
the proceedings, Jiayong Cai for his great contribution to the pre-conference
arrangements, and Dadong Li, Jianbo He, Qi Guo and others from the Organiz-
ing Committee for helping with many local details.

Finally, we would like to thank all the authors who submitted their papers
to ICICS 2007, and all the attendees from all over the world.

October 2007 Sihan Qing
Hideki Imai
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Raphael C.-W. Phan EPFL, Switzerland
Radha Poovendran University of Washington, USA
Jean-Jacques Quisquater UCL Crypto Group, Belgium
Kai Rannenberg Goethe University Frankfurt, Germany
Indrajit Ray University of Birmingham, UK
Bimal Roy Indian Statistical Institute, India
Mark Ryan University of Birmingham, UK
Kouichi Sakurai Kyushu University, Japan
Ryoichi Sasaki Tokyo Denki University, Japan
Miguel Soriano Technical University of Catalonia, Spain
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Future University Hakodate, Japan
Wade Trappe Rutgers University, USA
Guilin Wang I2R, Singapore and University of Birmingham,

UK
Andreas Wespi IBM Zurich, Switzerland
Duncan S. Wong City University of Hong Kong, China



Organization IX

S. Felix Wu University of California at Davis, USA
Yongdong Wu Institute for Infocomm Research, Singapore
Alec Yasinsac Florida State University, USA
Lisa Yiqun Yin Independent Security Consultant, USA
Moti Yung Columbia University & RSA Labs, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Sencun Zhu Pennsylvania State University, USA

Publication Chair

Guilin Wang I2R, Singapore and University of Birmingham,
UK

Organizing Committee Chair

Dadong Li Zhongan Technology Group Co., Ltd., China

External Reviewers

Andreas Albers Man Ho Au Jean-Philippe Aumasson
Joonsang Baek Matthias Berg Abhilasha Bhargav-Spantzel
Colin Boyd Chiara Braghin Sherman S.M. Chow
Cas Cremers Marco Cremonini S. Delaune
Yi Deng André Deuker Jintai Ding
Anh Dinh Oscar Esparza Chun-I Fan
Gerardo Fernandez Carmen Fernandez-Gago Annalisa Ferrara
Ernest Foo Lothar Fritsch Liang Gu
Keisuke Hakuta Matt Henricksen Juan Hernández-Serrano
Yoshiaki Hori Lei Hu Qiong Huang
Xinyi Huang Kitae Jeong Qingguang Ji
Jianchun Jiang Haimin Jin Audun Josang
Jorge Nakahara Jr Christian Kahl Ashish Kamra
Khoongming Khoo Jongsung Kim Tae Hyun Kim
Steve Kremer Jin Kwak Fagen Li
Tieyan Li Zhuowei Li Phen-Lan Lin
Joseph K. Liu Liang Low Luke McAven
Shiho Moriai Aybek Mukhamedov José L. Muñoz-Tapia
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Time and Space Efficient Algorithms for

Two-Party Authenticated Data Structures�

Charalampos Papamanthou and Roberto Tamassia

Department of Computer Science, Brown University

Abstract. Authentication is increasingly relevant to data management.
Data is being outsourced to untrusted servers and clients want to securely
update and query their data. For example, in database outsourcing, a
client’s database is stored and maintained by an untrusted server. Also,
in simple storage systems, clients can store very large amounts of data
but at the same time, they want to assure their integrity when they
retrieve them. In this paper, we present a model and protocol for two-
party authentication of data structures. Namely, a client outsources its
data structure and verifies that the answers to the queries have not been
tampered with. We provide efficient algorithms to securely outsource a
skip list with logarithmic time overhead at the server and client and log-
arithmic communication cost, thus providing an efficient authentication
primitive for outsourced data, both structured (e.g., relational databases)
and semi-structured (e.g., XML documents). In our technique, the client
stores only a constant amount of space, which is optimal. Our two-party
authentication framework can be deployed on top of existing storage
applications, thus providing an efficient authentication service. Finally,
we present experimental results that demonstrate the practical efficiency
and scalability of our scheme.

1 Introduction

Data authentication has lately been very important due to the expansion of the
Internet and the continuing use of it in daily transactions. Data authentication
provides assurance for integrity of data, namely that data have not been cor-
rupted (for example modified or deleted) by an adversary. Imagine for example
the following scenario. There a lot of internet companies that provide cheap
storage space. Clients that use this service are assigned a special account which
they can use to store, query and update their data. They basically outsource
their data in the storage servers provided by the companies. This is an amazing
service but raises the following security issue. How can the client be assured that
the data it is putting in the storage servers have not been tampered with? Each
time the client issues a query, it would like to be assured that the data it re-
ceives is consistent with the previous state and nobody has changed something.
Hence the server (the entity where data have been outsourced) and the client

� This work was supported in part by IAM Technology, Inc. and by the National
Science Foundation under grants IIS–0713403 and OCI–0724806.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 C. Papamanthou and R. Tamassia

(the entity that outsources the data) have to engage in an efficient two-party
authentication protocol during which the client can send updates and queries to
the server and be able to verify the answers it is receiving. Ideally, we would like
this protocol not only to be secure (the security definition will be given later)
but also to involve low computational overhead at the client’s side, low commu-
nication cost between the server and the client and possible low computational
overhead at the server’s side.

One application of this model is database outsourcing [9]. In database out-
sourcing, a third party database service provider offers software, hardware and
network resources to host its clients’ data. Since the clients outsource their
databases in an environment which is susceptible to attacks, the security of
the hosted data is a big issue. These attacks can be caused by malicious out-
siders or by the service provider itself. In any case, the client should be able
to verify the integrity of its data. Yet another important problem in database
outsourcing, orthogonal to what we investigate in this paper (data integrity), is
ensuring data secrecy and privacy [8, 10]. Another application of this model is
converting the widely known authenticated data structures model [12, 19], which
is a three-party model, to a two-party model, where we want to maintain the
efficiency of the corresponding authenticated data structure and have the client
execute both updates and queries.

In this paper, we develop and analyze time- and space-efficient algorithms
for outsourcing an authenticated skip list [5]. We aim at providing integrity
checking of answers received from the data structure (privacy is orthogonal to our
approach). Our technique is further applicable to other hash-based authenticated
data structures [1, 7, 13] (for example, Merkle trees or dynamic trees), given
that we can develop the respective algorithms for the operations defined on the
specific data structure. We present algorithms for outsourcing a skip list [18] that
run (both on the client and on the server side) in logarithmic time (in the size
of the outsourced data) and incur logarithmic communication cost. Our method
requires constant space (a single hash value) at the client side, which is optimal.

1.1 Related Work

There is considerable previous work on authenticated data structures in the
three-party model, where a data owner outsources the data to a server, which
answers queries issued by clients on behalf of the data owner. See [19] for a
survey. In particular, the authentication of outsourced databases in the three-
party model, using an authenticated B-tree for the indices, is presented in [11].
Client storage bounds in the three-party model are discussed in [21].

In [4], data integrity in the two-party model and solutions for multi-authored
dictionaries are explored, where users can efficiently validate a sequence of up-
dates. The authentication of outsourced databases using signature schemes ap-
pears in [15, 16], where it is mentioned that this approach is inefficient due to
the high cost of the client’s computation and the fact that the client has to en-
gage in multi-round protocol in order the perform an update. In [2], a method for
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outsourcing a dictionary is presented, where a skip list is stored by the server into
a table of a relational database management system (DBMS) and the client issues
SQL queries to the DBMS to retrieve authentication information. A related
solution is presented in [14]. This DBMS-based approach relies on external-
memory storage of authentication information. Thus, it scales to large data sets
but incurs a significant computational overhead.

1.2 Our Contributions

In this paper we provide a model and protocol for two-party authentication of
data structures. Namely, a client outsources its data structure and verifies that
the answers to queries are valid. Our framework is fairly general and can be
extended to outsourcing a variety of authenticated data structures [1, 7, 13]. We
focus on efficient algorithms to outsource a dictionary by using a skip list, which
is a well known efficient randomized realization of a dictionary. Our authentica-
tion protocol is simple, and efficient. It is based on cryptographic hashing and
requires the client to store only a single hash value. The computational overhead
for the server and the client and the communication cost are logarithmic, which
is optimal for hash-based authentication structures. We have fully implemented
our scheme and we provide experimental results that confirm its efficiency and
scalability in practice. Our protocol can be deployed on top of existing storage
applications to provide a transparent authentication service.

1.3 Preliminaries

We briefly introduce some useful terminology for the authenticated skip list (the
non-authenticated skip list was proposed by Pugh [18] and provides a dictionary
functionality), since it will be the underlying data structure for our authentica-
tion protocol. In an authenticated skip list, every node of the skip list is asso-
ciated with a hash value that is computed as a function of neighboring nodes
according to a special DAG scheme [5]. The importance of the authenticated
skip list comes in the verification of the result. When the client queries about
the membership of an element x in the dictionary, the server returns a collection
of hash values that allows the client to verify the result. For more details on
authenticated data structures see [1, 5, 12].

2 Two-Party Authentication Model

In the two-party authentication model, there are two entities participating, an
untrusted server S and a client C. The server stores a data collection, which
is owned (and has been outsourced) by the client C, in a data structure (for
example a dictionary) and the client issues updates (insertions, deletions) to
its data. Also the client can issue queries (for example membership queries in
a dictionary, connectivity queries in a graph) to the data structure. Since the
server is untrusted, we want to make sure that if the server returns a wrong
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answer to a client’s query (namely if the server tampers with the data of the
client), then the client rejects the answer w.h.p.

An obvious solution to this, which has been adopted in practice (see for exam-
ple [17]), is to have the client store and update hash values of the data objects
it wants to outsource. In this way the client can always tell if the answers that
it gets back from the untrusted server are correct or not. However, this solution
is very space inefficient. Ideally, we would like the client to hold a constant size
state (digest of the data) and to execute very simple algorithms in order to up-
date this state, whenever it issues an update. We will assume that initially the
server and the client share the same digest that correspond to the data. This
digest (which later we will be calling s) can be computed and updated using
any existing hashing scheme [21]. Then we are going to present protocols and
algorithms that securely update this digest whenever updates occur, for the case
of the skip list data structure.

2.1 The Protocol and Its Security

In the following we describe the protocol that ensures authentication of op-
erations (insertions, deletions, queries) issued by the client. Then we give the
definition of security and also prove that it is satisfied by the presented protocol.
Before presenting the protocol, we give some necessary definitions:

Definition 1 (Sequential Hashing). Given an ordered sequence of hash val-
ues Λ = λ1 ◦ λ2 ◦ . . . ◦ λm and a collision-resistant hash function h(., .), then the
sequential hashing S(Λ) maps Λ to a hash value such that S(λ1 ◦λ2 ◦ . . .◦λm) =
h(S(λ1 ◦ λ2 ◦ . . . ◦ λm−1) ◦ λm) for m ≥ 2. For m = 1, we define S(λ1) = λ1.

The complexity of sequential cryptographic hashing S(Λ) is a function of its
input size, namely a function of |Λ| (if we assume that λi is of fixed length, then
|Λ| = O(m)). Moreover, it can be proved [20] that the time needed to perform
a sequential hashing of Λ is O(|Λ|). This means that the hashing complexity is
proportional to the size of the data being hashed. Based now on the definition
of collision resistance of the function h, we can prove the following:

Lemma 1. Given an ordered sequence of hash values Λ = λ1◦λ2◦ . . .◦λm, there
is no probabilistic polynomial-time adversary than can compute another sequence
of hash values Λ′ = λ′1 ◦ λ′2 ◦ . . . ◦ λ′m such that S(Λ) = S(Λ′) with more than
negligible probability.

In the following we present one execution of the authentication protocol (for
either an update or a query), which we call Auth2Party. The protocol uses three
main procedures, namely certify, verify and update:

– Let s be the state (digest) that corresponds to the current data at the server’s
side. We assume that the client stores s (for the case of the skip list the digest
is the hash of the top-left node with key −∞).
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– The client issues an operation o ∈ {I(x), D(x), Q(x)} with respect to an
element x that can be either an insertion (I), a deletion (D) or a query (Q).

– The server runs an algorithm (π, a(o)) ← certify(o) that returns a proof π
and an answer (with reference to the specific operation o) a(o). Then it sends
the proof and the answer to the client. If the operation is an update, the
server executes afterward the update in its local data and a(o) = null.

– The client runs an algorithm ({0, 1}, s′) ← verify(o, a(o), π, s) and we have
the following cases:
1. If o ∈ {I(x), D(x)} (if the operation issued by the client is either an

insertion or a deletion) then we distinguish the following cases for the
output of verify:
a. If the sequential hashing (which is the main body of verify)1 of the

proof π hashes to s, i.e., if S(π) = s, then the output is (1, s′). In
this case the client accepts the update, it runs an algorithm update
on input π and computes the new digest s′.

b. If the sequential hashing of the proof π does not hash to s, i.e., if
S(π) �= s, then the output is (0, ⊥). In this case the client rejects
and the protocol terminates.

2. If o = Q(x) (if the operation issued by the client is a query) then if
the sequential hashing of the proof π hashes to s, i.e., if S(π) = s, then
verify outputs (1, ⊥) and the client accepts. Otherwise it outputs (0, ⊥)
and the client rejects. Note that in this case the state of the client is
maintained, since there are no structural changes in the data.

To distinguish between the proof returned when the client issues a query or
when the client issues an update, we define as verification proof to be the proof
returned to a query and as consistency proof to be the proof returned to an
update. In the following we present the security definition for our protocol.

Definition 2 (Security of Two Party Authentication Protocol). Suppose
we have a two-party authentication protocol D with server S, client C and se-
curity parameter k. We say that D is secure if no probabilistic polynomial-time
adversary A with oracle access to algorithm certify, given any query Q(x), can
output an answer a′(Q(x)) and a verification proof π′, such that a′(Q(x)) is an
incorrect answer that passes the verification test. That is, there exists negligible2

function ν(k), such that for every probabilistic polynomial-time adversary A and
every query Q(x)

Pr [(π′, a′(Q(x))) ← A(Q(x)) ∧ (1, s′) ← verify(Q(x), a′(Q(x)), π′, s)] = ν(k).

1 In [5], it is described how one can use sequential hashing on a carefully constructed
proof in order to compute the digest of the skip list. We use this scheme without loss
of generality for the description of the protocol but we note that the computation
of the digest depends on the data structure and the algorithms used.

2 Formally, ν : N → � is negligible if for any nonzero polynomial p, there exists m
such that ∀n > m |ν(n)| < 1

p(n) .
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We can now state the result for the security of our scheme (its proof is deferred
to the full version of the paper):

Theorem 1. If algorithm update correctly computes the new digest (i.e., the
new digest is consistent with the issued update) and algorithm verify is correct,
then protocol Auth2Party is secure.

3 Operations

In this section, we describe our authentication protocol for a skip list. We de-
scribe how to use the proof returned by a contains() query in order to compute
the digest of the skip list resulting from the insertion of a new element x. For
more details on authenticated skip lists, see Section 1.3.

3.1 Search Path and Proof Path

For every node v of a skip list (if level(v) > 0 we consider as node every node that
“makes” a difference in hashing, i.e., nodes with both right and down pointers
not null) we denote with key(v) the key of the tower that this node belongs to,
with level(v) the respective level of this node, with f(v) the hash of the node of
the skip list and with right(v) and down(v) the right and down pointers of the
v. We finally write u ← v3 if there is an actual link in the skip list from v to u
(either a right or a down pointer). We also write u ←↩ v if there is no actual link
between u and v but level(v) = level(u) = 0 and u is a successor of v (this means
that u belongs to a tower of height > 0).

Definition 3 (Search Path). Given a skip list SL and an element x, then the
search path Π(x) = v1 ←↩ v2 ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm is an
ordered sequence of nodes in SL satisfying the following properties:

– vm is the top-leftmost node of the skip list.
– v2 ← v3 ← . . . ← vm is a path in the skip list consisting of the zero-level path

v2 ← v3 ← . . . ← vj and the path vj+1 ← vj+2 ← . . . ← vm which contains
nodes of level > 0.

– There is 2 ≤ t ≤ j such that key(vt) < key(x) ≤ key(vt−1).
– Index j is defined as the ”boundary” index.
– Index t is defined as the ”insertion” index.

Definition 4 (Proof Path). Given an authenticated skip list SL, an element x
and the respective search path Π(x) = v1 ←↩ v2 ← . . . ← vm with boundary index
j and insertion index t, we define the proof path Λ(x) = λ(v1)◦λ(v2)◦ . . .◦λ(vm)
to be the following ordered sequence of values with the following properties:

– For all i ≤ j λ(vi) = key(vi).
– For all i > j, λ(vi)=f(right(vi)) if right(vi) �=vi−1 else λ(vi)=f(down(vi)).

3 Although it is more intuitive to write v → u, we use this notation because the
hashing proceeds from the last to the first element of the proof. This means that
there are no actual pointers from v to u in the skip list and this notation is only
used for indicating the hashing procedure.
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Lemma 2. Given an authenticated skip list SL and an element x (x ∈ SL or
x /∈ SL), then there exist unique search and proof paths Π(x) and Λ(x) for x.

Proof. By contradiction. Suppose there is another search or proof path for x.
Then there would be a cycle of links in SL. This is a contradiction since pointers
in SL define a tree structure.

Definition 5 (Node Removal). Given a search path Π(x) = v1 ←↩ v2 ←
. . . ← vm and the respective proof path Λ(x) = λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vm), then,
for every 1 < i ≤ m, we denote with rem(Π(x), vi) and rem(Λ(x), λ(vi)) the
search path v1 ←↩ v2 ← . . . vi−1 ← vi+1 ← . . . ← vm and the proof path λ(v1) ◦
λ(v2) ◦ . . . ◦ λ(vi−1) ◦ λ(vi+1) ◦ . . . ◦ λ(vm) respectively.

Theorem 2. Given an authenticated skip list SL and an element x, then
S(Λ(x)) (the sequential hashing of the proof path of x) is equal to the digest
of SL.

Suppose now we are given a search path Π(x). For each element vi of the search
path we define Dx(vi) to be 1, if key(vi) ≥ x, else 0. Also, we define Lx(vi)
to be 0, if i ≤ j (j is the boundary index) else it is defined as the level of vi.
An example of an authenticated skip list implemented with pointers is shown
in Figure 1. In the following, we describe algorithms for the computation of the
new digest from the client side after operations insert(x) and delete(x). From the
definition now of the search path we have:

Lemma 3. Every search path Π(x) is sorted in increasing Lx order. Moreover,
any elements u and v such that Lx(v) = Lx(u) are sorted in decreasing key
order.

- oo 

39 + oo 

v1v8

0

4

- oo 

- oo 

25

25

25

31

31 38 44 55

v3v4v5

v7

v6 v9

w 3
w 4

w 5
w 6

w 7

3 55

55

58 67

67

80

67

81

Fig. 1. An authenticated skip list implemented with pointers. For the non-existing
element 41 (and also for the existing element 44), we have that the search paths are
Π(41) = Π(44) = v1 ←↩ v3 ← v4 ← v5 ← w3 ← w4 ← w5 ← w6 ← w7 while the
respective proof paths are Λ(41) = 44 ◦ 39 ◦ 38 ◦ 31 ◦ f(v1) ◦ f(v6) ◦ f(v7) ◦ f(v8) ◦ f(v9).
Also note that L41 = (0◦0◦0◦0◦2◦2◦3◦3◦4) and D41 = (1◦0◦0◦0◦1◦0◦1◦0◦1).
Note that the insertion index is 2 while the boundary index is 4.
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3.2 Insertion and Deletion

Suppose now that x /∈ S. The client wants to insert x in the skip list at level �.
The client gets the proof path Λ(x) (non-membership proof) together with the
vectors Lx and Dx. We show how it can compute the new proof path (the proof
returned to a contains() query after the insertion of x). Suppose

Π(x) = v1 ←↩ v2 ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm

where j is the boundary index. Also

Λ(x) = λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vj−1) ◦ λ(vj) ◦ λ(vj+1) ◦ . . . ◦ λ(vm)

is the initial proof path as defined in 4. Let 2 ≤ t ≤ j be the insertion index.
In the following we give an algorithm for the computation of the new search

path Π ′(x) and the new proof path Λ′(x) on input Π(x), Λ(x), Dx, Lx (and t).
We have the following cases for insert(x, �).

1. if � = 0 we output the final paths

Π ′(x) = v1 ←↩ . . . ← vt−1 ← x ← vt ← . . . ← vm (1)
Λ′(x) = λ(v1) ◦ . . . ◦ λ(vt−1) ◦ λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vm) (2)

2. if � > 0 we set

Π(x) = x ←↩ vt ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm (3)
Λ(x) = λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vj−1) ◦ λ(vj) ◦ λ(vj+1) ◦ . . . λ(vm) (4)
temp = S(λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vt−1) ◦ λ(x)) (5)

Then we sequentially process the hash values λ(vi) for i = j + 1, . . . , m of
the proof path and at each iteration we distinguish the following cases:
– If λ(vi) is such that � < Lx(vi) or (� = Lx(vi) and Dx(vi) = 0) then we

create a new node r at level � and we output the final paths (nodes vi−1

and vi are linked through the newly created node r in the search path)

Π ′(x) = x ←↩ vt ← . . . ← vj ← . . . ← vi−1 ← r ← vi ← . . . ← vm (6)
Λ′(x) = λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vj) ◦ . . . ◦ λ(vi−1) ◦ temp ◦ λ(vi) ◦ . . . ◦ λ(vm )(7)

– If λ(vi) is such that � ≥ Lx(vi) and Dx(vi) = 1 then we set

Π(x) = rem(Π(x), vi) (8)
Λ(x) = rem(Λ(x), λ(vi)) (9)
temp = h(temp ◦ λ(vi)) (10)

Definition 6. Let x be any element in a skip list at height �. We define as
guard(x) the first tower on the left of x of height ≥ �.

We can now have the following main results (their proofs are deferred to the full
version of the paper):

Lemma 4. Let x be an element in a skip list at height �. Then there is always
a node s(x) called spy of x that belongs to guard(x) such that right(s(x)) points
to a node of the tower defined by x. Moreover, s(x) always belongs to Π(x).
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Lemma 5. The sequence Π ′(x) is the correct search path after the insertion of
element x at level � and it can be computed in expected O(log n) time w.h.p..

Lemma 6. The sequence Λ′(x) is the correct proof path after the insertion of
element x at level � and it can be computed in expected O(log n) time w.h.p.,
incurring expected O(log n) hashing complexity w.h.p..

As we are going to show later, the proof path Λ(x) should be extended to include
information about the levels of the elements of the proof so that we could ensure
security. Consider for example the following scenario. Suppose, the server in the
beginning contains only the sentinel values +∞ and −∞. The client issues the
command insert(x, �). Suppose the server chooses another level �′ and inserts x
at �′. Obviously, the digest of the data structure will be exactly the same since
the level of the element does not matter at all. However, the efficiency of the
data structure is not assured, since the level was not chosen by flipping a coin.
Therefore, the server could insert elements at arbitrary levels while the client
would not notice anything.

Definition 7 (Extended Proof Path). Let Λ(x) be a proof path with respect to
an element x. Let Lx and Dx be the vectors as defined before. We define as extended
proof path Q(x) the ordered sequence of triples Qi = (λ(vi), Lx(vi), Dx(vi)) for
i = 1, . . . , |Λ(x)|.

The client, however, does not need to compute the new proof and search paths.
All it needs to do is to update the digest. In the following we give a very simple
algorithm that updates the digest. Algorithm update, shown in Figure 2, takes
as input the extended proof path Q = Q(x) as defined in 7 (in the case that the
client wants to insert x in the data structure), the desired level of insertion � and
the element x the client wants to insert. Note that the levels of the nodes are also
taken into consideration in the hash computations, since we use the extended
proof path. In the following we outline the algorithm used for verification at the
client’s side, verify(Q(x)): On input Q(x), it sequentially hashes Q(x) to see if
the computed digest matches the existing one. If not, it rejects, else it replaces
the current digest by the one returned by calling update (if the operation is
an update) and finally accepts. We now reduce an authenticated deletion to
an authenticated insertion as follows. Suppose at some point the client and the
server share the common digest s. The client then executes delete(x), where
element x is at level � in the skip list. The server deletes x and then constructs
a proof π′ by issuing a contains(x) query. Next, the server sends π′ and the level �
to the client. The client runs the update algorithm on input π′, x, �. If the output
digest is s, then the deletion is accepted and the new digest is s′ = S(π′).

3.3 Analysis

In the data authentication model through hashing, where a three-party model is
used, any hashing scheme with k digest nodes that implements an authenticated
dictionary of size n has Ω(log(n

k )) update, verification and communication cost
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Algorithm update(Q, �, x, t)

1: if � == 0
2: return S(Q1 ◦ . . . ◦ Qt−1 ◦ (key(x), 0, 1) ◦ Qt ◦ . . . ◦ Qm);
3: else
4: let r be the smallest index ≥ t such that � < Lx(vr) or � = Lx(vr) and Dx(vr) = 0;
5: if � == Lx(vr)
6: set U = Qr+1 ◦ . . . ◦ Qm;
7: else
8: set U = Qr ◦ . . . ◦ Qm;
9: L = (key(x), �, 1);

10: R = S(Q1 ◦ . . . ◦ Qt−1) ◦ (key(x), �, 1);
11: for i = t, . . . , r
12: if � ≥ Lx(vi) and Dx(vi) = 1
13: R = R ◦ Qi;
14: else
15: L = L ◦ Qi;
16: return S(L ◦ S(R) ◦ U);

Fig. 2. Algorithm executed by the client to update the digest after the insertion of an
element x. The inputs to the algorithm are the extended proof path Q, the insertion
level �, the inserted element x, and the insertion index t. Variable m denotes the length
of the extended proof sequence Q.

(see [21]). Using this result, we can prove that our protocol is optimal. To see
this, suppose there exists a two-party authentication scheme that uses hashing
and achieves better performance than O(log n) (update, verification, communi-
cation). Then we can use these algorithms and implement a three party protocol
in the data authentication model through hashing with the same bounds, vio-
lating the existing lower bounds [21]. In addition, by using Theorem 1, the proof
of correctness of the insertion algorithm and the results on the complexity of
authenticated skip list operations [5], we obtain the main result of our paper:

Theorem 3. Assume the existence of a collision-resistant hash function. Our two-
party authentication protocol for outsourcing a dictionary of n elements supports
authenticated updates insert() and delete() and authenticated query contains() and
has the following properties:

1. The protocol is secure;
2. The expected running time of updates/queries is O(log n) at the server and

at the client w.h.p.;
3. The expected communication complexity of updates/queries is O(log n) w.h.p.;
4. The expected hashing complexity of updates/queries is O(log n) w.h.p.;
5. The client uses space O(1);
6. The server uses expected space O(n) w.h.p.;
7. The protocol has optimal time, space, and communication complexity, up to

a constant factor, over all hash-based authentication protocols.

Taking into account constant factors (see the definitions in [21]), the communi-
cation and hashing complexity can be shown to be at most 1.5 logn with high
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probability. Moreover, the client keeps a single hash value (e.g., a 128-bit or
256-bit digest, using standard hash functions).

4 Experimental Results

We have conducted experiments on the performance of the presented authen-
tication protocol. The time needed for querying the server (construction of the
proof) and for query verification have been reported extensively in [3]. Here we
report times concerning the time needed for the client to securely update the di-
gest (after doing a verification of the proof it receives) when it does an insertion
or a deletion and also for the server to perform the respective update on the skip
list. Concerning the client’s side, insertion times include an initial verification
of the proof and then the processing of the proof in order to update the digest.
Also we give plots that indicate the size of the consistency and verification proof
(bytes). From the plots we will see that the actual communication overhead of
our protocol is very small; Only at most 1KB of information (for 1,000,000 el-
ements) needs to be communicated from the server to the client so that the
client can update the digest. For each operation, the average running time (or
the average size in the case of proofs) was computed over 10,000 executions. The
experiments were conducted on a 64-bit, 2.8GHz Intel based, dual-core, dual
processor machine with 8GB main memory and 2MB cache, running Debian
Linux 3.1 with Linux kernel 2.6.15 and using the Sun Java JDK 1.5. The Java
Virtual Machine (JVM) was most of the times launched with a 7GB maximum
heap size. Cryptographic hashing was performed using the standard Java im-
plementation of the MD5 algorithm. We report the running times obtained in
our experiments excluding the time consumed by the garbage collector. Our ex-
perimental results provide a measure of the computational and communication
overhead. The results of the experiments concerning insertions and deletions are
summarized in Figure 3. One can see that insertion/deletion at the client’s side
takes more than insertion/deletion at the server’s side (Figures 3(a) and 3(b)).
This is because for client insertions we count exactly the following time: The
time needed for verifying that the consistency proof π hashes to the current
digest and the time needed to run update on the current consistency proof in
order to update the digest. For client-side deletions (see Figure 3(b)) we firstly
have to run update and then do a verification. On the other hand, server side
insertions and deletions do not have to do any verification at all. They are just
a usual insertion/deletion in a skip list. This is enough to justify that differ-
ence in the execution times, since verification is a costly operation as it involves
O(log n) hash computations. Finally, as we can see the times needed for insertion
and deletion follow a logarithmic increase, verifying in this way our theoretical
findings. Also, the actual time needed at the client’s side is roughly 80μs which
shows the efficiency of the method. The results of the experiments concerning
the size of the proof are summarized in Figure 4. The size of the proof in bytes
is computed as follows. First of all we compute the size of the structure Λ which
is the input in update(). Let N be that size. It is easy to see that the maximum
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(a) Client/Server Insertion at the client’s and server’s side.
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(b) Deletion at the client’s and server’s side.

Fig. 3. Insertion and deletion times. The times shown are the average of 10,000 exe-
cutions on data structure sizes varying from 0 to 106 elements.

size (the size of vector Λ) of the proof in our experiments (for 106 elements) is 30
and it validates the theory since 1.5 log(106) � 30. Since now for each element
of Λ, Λi, it is Λi = (λ(vi), �x(λ(vi)), kx(λ(vi))), we have that each element of the
extended proof needs exactly (128 + log(maxlevel) + 1) bits. Here maxlevel is the
maximum level of the skip list towers and for our experiments is 20. Hence for a
consistency proof of size N we need exactly N

8 ×134 bytes. This holds for the case
of the dictionary. If we want to use the map functionality (i.e., to bind a key with
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(a) Size of the consistency proof for a dictionary and a map.
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(b) Size of the verification proof for a dictionary and a map.

Fig. 4. Communication overhead (proof size). The sizes shown are the average of 10,000
executions on data structure sizes varying from 0 to 106 elements.

a value), which is something that has more applications, then the size of the proof is
N
8 (2×128+log(maxlevel)+1) bytes, since we also need to hold a digest for the value.
The plot for the size of the consistency proof is shown in Figure 4(a). One can ob-
serve the logarithmic increase. Also, for the case of the dictionary the average size
of the proof is 0.5KB. The plot for the verification proof is shown in Figure 4(b).
Finally the communication overhead of a consistency versus a verification proof is
only a few bits (namely 6 per element).
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5 Conclusions and Future Work

In this paper, we have presented an efficient protocol for two-party authenti-
cation based on cryptographic hash functions. Namely, we have given efficient,
lightweight and provably secure algorithms that ensure the validity of the answers
returned by an outsourced dictionary. We have implemented our protocol and we
have provided experimental results that confirm the scalability of our approach.
As future work, we envision developing a general authentication framework that
can be applied to other data structures, such as dynamic trees [7]. Additionally,
we could investigate realizations of two-party authenticated protocols based on
other cryptographic primitives, (for example cryptographic accumulators [6]).
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Abstract. In a secret handshake protocol, an honest member in the
group will never reveal his group affiliation unless the other party is a
valid member of the same group. However, most prior work of secret
handshake are for 2-party secret handshakes. Tsudik and Xu extended
the notion of secret handshake to a multi-party setting in 2005. Unfor-
tunately, this seminal work is rather inefficient, since they consider a
generic construction of such a scheme. Following this work, Jarecki et al.
proposed an efficient solution to multi-party secret handshake. The aim
of this paper is twofold. Firstly, we show that Jarecki et al.’s scheme has
some drawbacks and therefore the scheme does not fulfill the security
requirements of secret handshake. Secondly, we present a new construc-
tion of the group secret handshake scheme. In a group secret handshake
protocol, a valid member in the group should never reveals his group affil-
iation unless all the other parties are valid members of the same group.
In other words, if a handshake among this group of parties fails, the
identities of every involved parties will not be disclosed. We then show
that our scheme is secure under the bilinear Diffie-Hellman assumption
and decisional bilinear Diffie-Hellman assumption in the random oracle
model.

Keywords: Secret Handshake, Credential System, pairings, random
oracle.

1 Introduction

The secret handshake (SH), introduced recently by Balfanz et al. [1], is a protocol
whereby participants establish a secure, anonymous and unobservable commu-
nication channel only if they are valid members of the same group. In an SH
protocol, two members of the same group can identify each other secretly. If one
party does not belong to the group, he will learn nothing about the group affilia-
tion of the other party. In other words, if the handshake protocol fails, the group
affiliation of the participant will not be revealed. Another important property of
the SH is that even if a third party observes the exchange in the protocol, he can
learn nothing about the process including whether two participants belong to

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 16–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



New Construction of Group Secret Handshakes Based on Pairings 17

the same group or not. Nonetheless, the original motivation of SH only captures
the two-party setting.

Recently, Tsudik and Xu extended the notion of SH to a multi-party setting,
called Group Secret Handshake (GSH), which allows two or more members of
the same group authenticate each other secretly. In a GSH protocol, an honest
member in the group will never reveal his group affiliation unless all the other
parties are valid members of the same group. If the handshake protocol fails, a
valid party will never leak his group affiliation, even to other valid parties. The
GSH also requires that it is indistinguishable to an invalid user who does not par-
ticipate in a handshake protocol that a handshake is successful or unsuccessful.
Jarecki, Kim and Tsudik [10] then proposed an efficient multi-party SH scheme
based on an un-authenticated group key agreement protocol. However, we found
a problem in their scheme. Following the definition of SH in [1], a valid party will
never leak his group affiliation to other parties, if the group handshake protocol
fails. In contrast to this requirement, in Jarecki et al.’s scheme, an invalid mem-
ber has the ability to make other honest parties share a common group session
key in a failed protocol. Hence he can learn that these parties belong to a same
group, which violates the security requirements of SH defined in [1]. We shall
show this problem in Appendix A. In addition to this drawback, their scheme
does not include a key comparison stage. Therefore, before participants can de-
cide whether the protocol is completed successfully or not, the scheme may need
additional rounds to compare the common key among every participants.

Our Contributions
In this paper, we propose a two-round group secret handshake scheme by using
pairing. We also prove that our scheme is secure under the bilinear Diffie-Hellman
assumption and decisional bilinear Diffie-Hellman assumption in the Random
Oracle Model (ROM). Our scheme is motivated by the multi-receiver identity-
based encryption scheme in [12], which suits the situation that a single party
encrypts messages and sends to multi-parties who cannot decrypt the messages
unless they have the credential based on their identities. However, their scheme
cannot ensure the validity of the senders.

2 Related Work

The seminal work on SH was proposed in [1] which uses pairings, and several SH
schemes have been proposed following this work. These schemes use different dig-
ital signatures as credentials of the member in the group. Firstly, an SH scheme
based on CA-Oblivious Encryption was introduced in [3], where it combines
ElGamal encryption and Schnorr signature to construct a CA-oblivious PKI-
enabled encryption scheme which is secure under the CDH assumption. Based
on this primitive, they proposed a new SH scheme. The term “CA-Oblivious”
implies that a credential which is not issued by a Certification Authority (CA)
will not enable a user to guess whether another user he/she interacts with has
the credential issued by the CA or not. Xu and Yung [14] also presented an SH
scheme with reusable credentials, and the security does not rely on the random
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oracle model. Their scheme achieves unlinkability, and an invalid user can only
infer that a participant is one out of a certain number k users in the worst
case, so called k-anonymity. Another RSA-based SH scheme [5] was proposed
by Vergnaud, which uses RSA signature as the credential and is proven secure
against active impersonator and detector adversaries that rely on the difficulty of
solving the RSA problem. Finally, two SH schemes based on ElGamal signature
and DSA signature were proposed in [6].

We note that all the above solutions are only able to support 2-party secret
handshakes. Recently, a framework of multi-party secret handshakes has been
introduced by Tsudik and Xu [8], which is essentially a compiler that transforms
three main ingredients, including a group signature scheme, a centralized group
key distribution scheme, and a distributed group key agreement scheme, into a
secure secret handshake scheme. They also constructed two instantiations based
on the framework. However, the authors mentioned that they only aimed to
construct a framework of multi-party secret handshake, and never optimize the
efficiency of the framework. Subsequently, Jarecki, Kim and Tsudik [10] provided
an efficient solution to multi-party SH, which is constructed based on an un-
authenticated group key agreement protocol.

3 Background and Preliminaries

In this section, we first review some cryptographic assumptions that will be used
throughout the paper.

3.1 The Bilinear Maps and Complexity Assumption

Let G1 be a cyclic additive group of prime order q. Let G2 be a cyclic multi-
plicative group of same order q. We assume that the discrete logarithm problem
(DLP) in both G1 and G2 are hard to solve.

BDH Parameter Generator: Let Bilinear Diffie-Hellman (BDH) parameter
generator IGDBH be a probabilistic polynomial time (PPT) algorithm. When
running in polynomial time, IGDBH outputs two groups G1 and G2 of the same
order q and a bilinear map ê : G1 × G1 → G2 which satisfies the following
properties:

– Bilinear: for all P, Q ∈ G1 and a, b ∈ Z∗q we have ê(aP, bQ) = ê(P, Q)ab.
– Non-degenerate: if for P ∈ G1 we have ê(P, Q) = 1 for all Q ∈ G1, then

Q = O.
– Computable: for all P, Q ∈ G1, the pairing ê(P, Q) is computable in polyno-

mial time.

3.2 The Bilinear Assumptions

Bilinear Diffie − Hellman (BDH) Problem
The BDH problem is as follows: Given a cyclic group G1, G2 of the order q
together with a bilinear map ê : G1 × G1 → G2 , P is a generator of group G1,
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the Bilinear Diffie-Hellman problem is (t, ε)-hard if for all t-time adversaries A
we have

AdvBDH
A = |Pr[A(P, aP, bP, cP) = ê(P, P)abc]| < ε

BDH Assumption: We say that if there exists a polynomial time algorithm
which can solve BDH problem, the probability is negligible. In other words, no
efficient algorithm can solve BDH problem with non-negligible advantage.

Decisional Bilinear Diffie − Hellman (DBDH) Problem
The decisional BDH problem is to distinguish between tuples of the form (P, aP,
bP, cP, ê(P, P )abc) and (P, aP, bP, cP, γ) for random P ∈ G1, and a, b, c ∈ Z∗q .
the Decisional Bilinear Diffie-Hellman problem is (t, ε)-hard if for all t-time ad-
versaries A we have

AdvDBDH
A = |Pr[A(P , aP, bP, cP, ê(P, P )abc) = 1]

− Pr[A(P, aP, bP, cP, ê(P, P )d) = 1]| < ε

DBDH Assumption: We assume that the probability of a polynomial time
algorithm to solve DBDH problem is negligible.

The above mentioned assumptions are widely believed to be computational
hard. The BDH is used in [2,11], and the DBDH is needed for construction in
[13,12].

4 Model and Security Requirements of GSH

4.1 Definition

The GSH model consists of a set U of possible users, and a set G of groups,
where each group is a set of members managed by a group administrator GA.
We define a group secret handshake scheme GSH by the following algorithms:

– GSH.CreateGroup: a key generation algorithm executed by the group admin-
istrator GA to establish a group G. It takes as input security parameters,
and outputs the group public key pG, the GA’s private key sG, and a revoked
user list RUL, which is originally set to empty. The RUL is made known
only to current group members.

– GSH.AddUser: an algorithm executed between GA and a group member on
GA’s private key sG and shared inputs: params, pG, and the identity of the
group member which is bit string ID of size regulated by params. After
performing the algorithm, the group member will be issued a secret credential
produced by GA for the member’s identity ID.

– GSH.HandShake: an authentication protocol, executed by a set Δ of n users
purporting to be members of a group G, where Δ = {U1, . . . , Un} and n ≥ 2.
The protocol takes as public input the identities IDU1 , . . . , IDUn of all the
users in Δ, and params, and the private input is their secret credentials. The
output of the protocol for each party is either reject or accept.

– GSH.RemoveUser: an algorithm executed by GA on input an identity of the
user U and the RUL, inserts U into the RUL and sends the updated RUL to
the existing group members through the authenticated anonymous channel.
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4.2 Security Properties

A GSH scheme must satisfy the properties of completeness, impersonation resis-
tant, and detection resistant. In our security model, an adversary A is allowed to
run the protocols several times and be able to make additional queries after each
attempt, before he announces that he is ready for the true challenges. A can see
all exchanged messages, delete, modify, inject and redirect messages, communi-
cate with other party, and even reuse messages from past communications.

We denote the set of users involved in the GSH as Δ. {U1, . . . , Un} each
denotes a user U ∈ Δ. Consider that an adversary A may join the set Δ, and
perform a GSH protocol with the valid users in G. G denotes the group of all
the valid users.

Completeness. If all the participants {U1, . . . , Un} involved in the group secret
handshakes are honest members of the same group with valid certificates
from the group administrator. Then both parties output “accept”, otherwise
output “reject”.

Impersonation Resistance. If an adversary A /∈ G does not corrupt any
member of its target group G, it has only a negligible probability in imper-
sonating as an honest member of G.
Let B denote a challenger. Consider the following game in which A interacts
with B:
Phase 1: A outputs target multiple identities Δ = (ID∗1, . . . , ID

∗
n), where

IDA = ID∗i and i ∈ [1, n].
Phase 2: B runs a key generation algorithm to generate the group public

key pG, the GA’s private key sG, and sends pG to A while keeping sG

secret from A.
Phase 3: A makes a number of credential extraction queries. To answer each

query made by A, B runs the GSH.AddUser algorithm, and outputs SID

which is the group credential for identity ID, where ID /∈ Δ.
Phase 4: A triggers a handshake protocol. B acts as honest parties in the

protocol, who have valid credentials for their identities.
Phase 5: B answers A’s credential extraction / random oracle queries as in

Phase 2 and 3.
Phase 6: A returns the messages 〈XA, YA〉, which can make other parties

output “accept” after running the protocol.
We define the probability that attacker A impersonates successfully in the
handshake protocol as AdvImpersonate

A , which is identical to the probability
that A outputs the valid pair 〈XA, YA〉.

Detection Resistance. If an adversary A /∈ G, who does not corrupt any
member of its target group G, is involved in the group secret handshakes,
each participant in handshakes has only a negligible probability in distin-
guishing an interaction with an honest user Uv ∈ G from the one with a
simulator.

Let A denote an attacker, and B denote a challenger. Phases 2, 3, 5 of
the attack game are identical to those for impersonation resistant. We only
describe Phase 1, 4, 6 in the following:
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Phase 1: A outputs two target multiple identities Δ = (ID∗1, . . . , ID
∗
i−1,

ID∗i+1, ID
∗
n) and ID0

i , ID
1
i , where IDA �= ID∗i , i ∈ [1, n]. ID0

i = IDv is a
member, who holds an valid credential. ID1

i is a unqualified member,
who does not have the valid group credential.

Phase 4: A triggers a handshake protocol. B randomly chooses a β ∈ {0, 1},
and set ID∗i = IDβ

i . Then B simulates the handshake protocol with A.
Phase 6: A outputs its guess β′.

We denote the probability that the attacker A can distinguish an interaction
with an honest user Uv ∈ G from the one with a simulator in the handshake
protocol as AdvDetect

A = |Pr[β′ = β]− 1
2 |. In other words, an attacker involved

in the handshake protocol has a probability of AdvDetect
A to know the group

affiliation of other participants.
Indistinguishability to eavesdropper. An adversary A, who does not par-

ticipate in a handshake protocol, has only a negligible probability in learn-
ing any knowledge about whether the handshake is successful or not, even if
A ∈ G.

Let A denote an attacker, and B denote a challenger. Phases 2, 3, 5 of
the attack game are identical to those for impersonation resistant. We only
describe Phase 1, 4, 6 in the following:
Phase 1: A outputs two target multiple identities Δ0 = (ID∗1, . . . , ID

∗
n) and

Δ1 = (ID1, . . . , IDn), where IDA �= ID∗i and IDA �= IDi, i ∈ [1, n]. Δ0 is
a group, in which each user holds an valid credential. Δ1 is a group, in
which one or some users do not have the valid group credential.

Phase 4: B randomly chooses a β ∈ {0, 1}, and simulates a handshake
protocol among the group Δβ . An additional copy will be sent to A
every time B simulates an interaction in GSH protocol.

Phase 6: A outputs its guess β′ ∈ {0, 1}.
We denote the probability that the attacker A can distinguish an successful
protocol from an unsuccessful one as AdvDistinguish

A = |Pr[β′ = β]− 1
2 |. If an

attacker does not take part in a handshake protocol, he has a probability of
AdvDistinguish

A to know whether the handshake protocol is successful or not.
Unlinkability. No adversary A is able to associate two handshakes involving

a same honest user or a same set of honest users, even if A ∈ G and A
participated in both executions.

5 Group Secret-Handshake Scheme from Pairings

In this section, we present our group secret handshake scheme called GSH. The
protocol involves a group administrator GA. In the following description H1 :
{0, 1}∗ → G1 and H2 : G2 → {0, 1}n are cryptographic hash functions. H1 and
H2 are considered as random oracles in the security analysis.

GSH.CreateGroup. GA runs BDH parameter generator to generate a prime q,
two groups G1, G2 of order q, and an bilinear map ê : G1 ×G1 → G2. Choose
three random generators P, Q, N ∈ G1. Then GA picks a random s ∈ Z∗q ,
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sets Ppub = sP and Qpub = sQ. GA keeps s secret as the master secret key
and publishes system parameters

params = {G1, G2, ê, q, Ppub, P, Qpub, Q, N, H1, H2}

GSH.AddUser. When a user Ui with identity IDi wishes to obtain a secret cre-
dential for his identity, GA computes the corresponding credential SIDi =
sH1(IDi), and returns SIDi

to the user Ui.
GSH.HandShake Let U1, . . . , Un be the n users who want to conduct a group

secret handshake. The protocol runs as follows:

– Each user Ui picks ki
R← G2 and ri

R← Z∗q . Then Ui computes T j
i =

riH1(IDj) + riN , where 1 ≤ j ≤ n and j �= i. Ui then computes

Ci = 〈riH1(IDi), T 1
i , . . . , T n

i , riP, riQ, L〉,

where L is a label that contains information about how “T j
i ” is associated

with each receiver. Then Ui broadcasts Ci to all others.
– Let Cj = 〈Rj , T

1
j , . . . , T n

j , Vj , Wj , L〉. Upon receiving Cj , each responder
Ui computes Ki = ki · ê(SIDi

, −H1(ID1) − · · · − H1(IDi−1)+ H1(IDi+1)+
· · ·+H1(IDn)) and K ′i = ki · ê(riSIDi

, −R1−· · ·−Ri−1 +Ri+1+ · · ·+Rn).
Ui then computes

Di = 〈ê(N, Ppub)ri · Ki, ê(N, Qpub)ri · K ′i〉,

and broadcasts Di to all others.
Let Dj = 〈Xj , Yj〉. Now each user Ui, using L, finds appropriate T i

j and
computes

K1K2 · · · Kn =
ê(SIDi

, V1 + · · · + Vn)
ê(T i

1 + · · · + T i
n, Ppub)

· (X1X2 · · · Xn)

K ′1K
′
2 · · ·K ′n =

ê(SIDi
, W1 + · · · + Wn)

ê(T i
1 + · · · + T i

n, Qpub)
· (Y1Y2 · · · Yn)

It is easy to see that the above equations are consistent. If Ci, Di are valid
messages,

ê(SIDi
,
∑n

j=1 Vj) ·
∏n

j=1 Xj

ê(
∑n

j=1 T i
j , Ppub)

=
ê(sH1(IDi),

∑n
j=1 rjP ) ·

∏n
j=1 Xj

ê(
∑n

j=1(rjH1(IDi) + rjN), sP )

=
ê(

∑n
j=1 rjH1(IDi), sP ) ·

∏n
j=1 Xj

ê(
∑n

j=1(rjH1(IDi) + rjN), sP )
=

∏n
i=1 ê(N, Ppub)ri · Ki

ê(
∑n

i=1 riN, sP )
=

n∏

i=1

Ki

The same as above, we can also obtain

ê(SIDi
,
∑n

j=1 Wj) ·
∏n

j=1 Yj

ê(
∑n

j=1 T i
j , Qpub)

=
n∏

i=1

K ′i
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Then each user Ui verifies and accepts only if the following equation holds

K1K2 · · · Kn
?= K ′1K

′
2 · · · K ′n (1)

If the above verification succeed, then U1, . . . , Un finish all the steps of the
GSH, and the handshake has been successful.
Each Ui can also create a shared secret key for future communication as
follows:

K = H2(K1K2 · · ·Kn)

GSH.RemoveUser. To remove a user U from the group G, the administrator can
simply add the identity of the user to the RUL, and encrypts the update
information by using an Identity-Based Encryption scheme. Then GA dis-
tributes the information to the members of the group, alerting them to abort
any handshake should they find themselves performing the handshake with
a user using any identity on the RUL.

The correctness of the scheme is obvious and therefore it is omitted.

6 Security Proof

Theorem 1. The above GSH scheme is impersonation resistant under the Bi-
linear Diffie-Hellman assumption in the Random Oracle Model.

Proof. Assume that an adversary A violates the impersonation resistant property.
Now we show how to construct an attacker B for solving the BDH problem.
Suppose that B is given (q, G1, G2, P, aP, bP, cP ) as an instance of the BDH
problem. Attacker B interacts with A as follows:

Phase 1: Suppose that A outputs target multiple identities Δ = (ID∗1, . . . , ID
∗
n),

where IDA = ID∗i and i ∈ [1, n].
Phase 2: B sets Ppub = cP , and gives {G1, G2, ê, q, Ppub, P, Qpub, Q, N, H1} to

A as the system parameters, where H1 is a random oracle controlled by B
as follows:
Upon receiving a random oracle query IDj to H1:

- If there exists (IDj , lj, Lj) in H1List, return Lj. Otherwise, do the follow-
ing:

* If IDj = IDA, where IDA is the identity of the adversary A, set
Lj = aP .

* Else if IDj �= ID∗n, choose lj ∈ Z∗q uniformly at random and compute
Lj = ljP .

* If IDj = ID∗n, search H1List to get lj that corresponds to ID∗i for
i ∈ [1, n), and compute Lj = (

∑i−1
j=1 lj −

∑n−1
j=i+1 lj)P + bP .

* Put (IDj , lj , Lj) in H1List and return Lj as answer.
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Phase 3: B answers A’s private key extraction queries as follows: Upon receiving
a private key extraction query on IDj :

- If there exists (IDj , lj, Lj) in H1List, compute SIDj
= ljPpub. Otherwise,

do the following:
* Choose lj ∈ Z∗q uniformly at random and compute SIDj

= ljPpub.
* Put (IDj , lj , Lj) in H1List and return SIDj

as answer.
Phase 4: B acts as honest parties and broadcasts messages as follows:

- Choose rj ∈ Z∗q , where j ∈ [1, n).
- Compute Rj = rjP , and Rn = (

∑i−1
j=1 rj −

∑n−1
j=i+1 rj)P .

- Randomly choose T 1
j , . . . , T n

j , Vj , Wj for j ∈ [1, n] and j �= i.
- Return Cj = (Rj , T

1
j , . . . , T n

j , Vj , Wj) to A.
Phase 5: B answers A’s random oracle/private key extraction queries as in

Phase 2 and 3.
Phase 6: A returns the messages 〈XA, YA〉.
Analysis: Note that if 〈XA, YA〉 is the valid response, ID∗j , where j ∈ [1, n),

can extract the (KA, K ′A). Then KA · K ′−1
A should be identical to (kA ·

ê(SIDA , −
∑i−1

j=1 H1(ID∗j ) +
∑n−1

j=i+1 H1(ID∗j ) + H1(ID∗n)) · (kA · ê(rASIDA ,

−
∑i−1

j=1 Rj +
∑n−1

j=i+1 Rj + Rn))−1 = ê(SIDA , bP ). Since SIDA = caP , B now
gets ê(P, P )abc = ê(caP, bP ). Consequently, we obtain

AdvImpersonate
A < |Pr[B(P, aP, bP, cP ) = ê(P, P )abc]| = AdvBDH

A 
�

Theorem 2. The above GSH scheme is Detection Resistant under the Deci-
sional Bilinear Diffie-Hellman assumption in the Random Oracle Model.

Proof. Assume that one party Uv identified by IDv is involved in a failure hand-
shake protocol. An attacker A, who also participates the handshake, can know
whether Uv is an honest party or not.

Now we show how to construct an attacker B for solving the DBDH problem.
Suppose that B is given (q, G1, G2, P, aP, bP, cP, γ) as an instance of the DBDH
problem. Attacker B interacts with A as follows:

Phase 1: Suppose that A outputs two target multiple identities Δ = (ID∗1, . . . ,
ID∗i−1, ID∗i+1, ID

∗
n) and ID0

i , ID
1
i , where IDA �= ID∗i , i ∈ [1, n]. ID0

i is a member,
who holds an valid credential. ID1

i is a unqualified member, who does not
have the valid group credential.

Phase 2: B sets Ppub = cP , and gives {G1, G2, ê, q, Ppub, P, Qpub, Q, N, H1} to
A as the system parameters, where H1 is a random oracle controlled by B
as follows:
Upon receiving a random oracle query IDj to H1:

- If there exists (IDj , lj, Lj) in H1List, return Lj. Otherwise, do the follow-
ing:

* If IDj = IDv, set Lj = aP .
* Else if IDj �= ID∗n, choose lj ∈ Z∗q uniformly at random and compute

Lj = ljP .
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* If IDj = ID∗n, search H1List to get lj that corresponds to ID∗j for
j ∈ [1, n), and compute Lj = (

∑i−1
j=1 lj −

∑n−1
j=i+1 lj)P + bP .

* Put (IDj , lj , Lj) in H1List and return Lj as answer.
Phase 3: B answers A’s private key extraction queries as follows: Upon receiving

a private key extraction query on IDj :
- If there exists (IDj , lj, Lj) in H1List, compute SIDj

= ljPpub. Otherwise,
do the following:

* Choose lj ∈ Z
∗
q uniformly at random and compute SIDj = ljPpub.

* Put (IDj , lj , Lj) in H1List and return SIDj
as answer.

Phase 4: B now simulates the handshake protocol as follows: B choose (k0
v , k1

v, kv),
where k0

v = kv and k1
v �= kv.

- Choose β ∈ {0, 1} at random.
- Choose tj , rj ∈ Z∗q , where j ∈ [1, n), j �= i.

- Compute Rj = tjP , and Rn = (
∑i−1

j=1 tj −
∑n−1

j=i+1 tj)P .
- Compute T k

j = rj lkP + rjN, Vj = rjP, Wj = rjQ, for j, k ∈ [1, n].
- Return Cj = (Rj , T

1
j , . . . , T n

j , Vj , Wj) to A.
- Return Dj following the valid scheme for j �= i.
- Return Di = (ê(N, Ppub)rv · γkβ

v , ê(N, Qpub)rv · kv).
Phase 5: B answers A’s random oracle/private key extraction queries as in

Phase 2 and 3.
Phase 6: A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.
Analysis: Let ε denote the probability AdvDetect

A . We note that if γ = ê(P, P )abc,

γkβ
v = ê(acP, bP )kβ

v = ê(SIDv , bP )kβ
v

= kβ
v · ê(SIDv

, −
i−1∑

j=1

H1(ID∗j ) +
n∑

j=i+1

H1(ID∗j )) ·

ê(rvSIDv
, −

i−1∑

j=1

Rj +
n∑

j=i+1

Rj)−1

It is clear that from the construction above, B simulates the random ora-
cle H1 and the private key extraction in Phase 3 and 5. Hence, we obtain
Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] = Pr[β = β′], where |Pr[β′ = β] − 1

2 | >
ε, and then Pr[B(P, aP, bP, cP, γ) = 1] = Pr[β = β′] = 1

2 , where γ is
uniform. Consequently, we get

AdvDBDH
A = |Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] −

Pr[B(P, aP, bP, cP, γ) = 1]|

> |(1
2

± ε) − 1
2
| = AdvDetect

A 
�

Theorem 3. The above GSH scheme is Indistinguishable to eavesdropper under
the Decisional Bilinear Diffie-Hellman assumption in the Random Oracle Model.
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Proof. Assume that if an adversary A is able to eavesdrop all the transcripts in
a secret handshake protocol, A can distinguish between a successful handshake
and an unsuccessful one.

Now we show how to construct an attacker B for solving the DBDH problem.
Suppose that B is given (q, G1, G2, P, aP, bP, cP, γ) as an instance of the DBDH
problem. Attacker B interacts with A as follows:

Phase 1: Suppose that A outputs two target multiple identities Δ0 = (ID∗1, . . . ,
ID∗n) and Δ1 =(ID1, . . . , IDn), where IDA �= ID∗i and IDA �= IDi, i ∈ [1, n]. Δ0

is a group, in which each user holds an valid credential. Δ1 is a group, in which
one or some users does not have the valid group credential.

Phase 2: B sets N = bP, Ppub = cP + Qpub, and gives {G1, G2, ê, q, Ppub, P,
Qpub, Q, N, H1} to A as the system parameters, where H1 is a random oracle
controlled by B as follows:
Upon receiving a random oracle query IDj to H1:

- If there exists (IDj , lj , rj , Lj) in H1List, return Lj . Otherwise, do the
following:

* If IDj = ID∗i for some i ∈ [1, n], compute Lj = ljP − N .
* Else choose lj , rj ∈ Z∗q uniformly at random and compute Lj = ljP .
* Put (IDj , lj , rj , Lj) in H1List and return Lj as answer.

Phase 3: B answers A’s private key extraction queries as follows: Upon receiving
a private key extraction query on IDj :

- If there exists (IDj , lj , rj , Lj) in H1List, compute SIDj = ljPpub. Other-
wise, do the following:

* Choose lj , rj ∈ Z∗q uniformly at random and compute SIDj = ljPpub.
* Put (IDj , lj , rj , Lj) in H1List and return SIDj

as answer.
Phase 4: B now simulates the handshake protocol as follows: B constructs three

sequences (K0
1 , K0

2 , . . . , K0
n), (K1

1 , K1
2 , . . . , K1

n) and (K1, K2, . . . , Kn), where
K0

1K0
2 · · · K0

n = K1K2 · · ·Kn, K1
1K1

2 · · · K1
n �= K1 K2 · · · Kn and K0

i �= K1
i �=

Ki.
- Choose β ∈ {0, 1} at random.
- Search H1List to get lj, rj that corresponds to ID∗j for j ∈ [1, n].
- Compute ljriP for i ∈ [1, n), j ∈ [1, n].
- Compute lj(aP −

∑n−1
i=1 riP ), γKβ

i for i = n, j ∈ [1, n], and choose
e ∈ Z∗q at random.

- Return Ci = (liriP, l1riP, . . . , lnriP, aP +eP, eP ) and Di = (Kβ
i , Ki) for

i ∈ [1, n) as transcripts in handshake protocol.
- Return Cn = (lnrnP, l1(aP −

∑n−1
i=1 riP ), . . . , ln(aP −

∑n−1
i=1 riP ), aP +

eP, eP ) and Dn = (γKβ
n , Kn) as transcripts in handshake protocol.

Phase 5: B answers A’s random oracle/private key extraction queries as in
Phase 2/3.

Phase 6: A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.
Analysis: Let ε denote the probability AdvDistinguish

A . We note that if γ =
ê(P, P )abc,

γ

n∏

i=1

Kβ
i = ê(bP, cP )a

n∏

i=1

Kβ
i = ê(

n∑

i=1

riN, Ppub − Qpub)
n∏

i=1

Kβ
i
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Note also that

liriP = liriP − riN + riN = ri(liP − N) + riN = riH1(ID∗i ) + riN

for i ∈ [1, n) and

ln(aP −
n−1∑

i=1

riP )

= ln(aP −
n−1∑

i=1

riP ) − (aN −
n−1∑

i=1

riN) + (aN −
n−1∑

i=1

riN)

= (a −
n−1∑

i=1

ri)(lnP − N) + (a −
n−1∑

i=1

ri)N

= (a −
n−1∑

i=1

ri)H1(ID∗n) + (a −
n−1∑

i=1

ri)N

Hence Ci, Di are valid messages. It is clear that from the construction above,
B simulates the random oracle H1 and the private key extraction in Phase
3 and 5. Hence, we get Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] = Pr[β = β′],
where |Pr[β′ = β] − 1

2 | > ε, and Pr[B(P, aP, bP, cP, γ) = 1] = Pr[β = β′] =
1
2 , where γ is uniform. Consequently, we obtain

AdvDBDH
A = |Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] −

Pr[B(P, aP, bP, cP, γ) = 1]|

> |(1
2

± ε) − 1
2
| = AdvDistinguish

A 
�

7 Conclusion

A group secret handshake is an extension of the secret handshake model which
allows members of the same group to authenticate each other secretly, and the
group affiliation of each member will never be disclosed if the handshake pro-
tocol fails. In this paper, we defined the security requirements of group secret
handshake scheme, and proposed an efficient group secret handshake scheme.
We also proved that our scheme is secure under the bilinear Diffie-Hellman and
decisional bilinear Diffie-Hellman assumption in the Random Oracle Model.
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A Security Drawbacks of Jarecki-Kim-Tsudik’s Group
Secret Handshakes Scheme

A construction of group secret handshake scheme was proposed by Jarecki, Kim
and Tsudik [10], which extends the secret handshake protocol to a multi-party
setting based on an un-authenticated group key agreement scheme. The defi-
nition of secret handshake requires that if a handshake among all participants
fails, the group affiliation of each party will not be disclosed. In this section, we
show an attack to the scheme in [10], which makes the honest parties involved
in the protocol share a same session key, even if there is an adversary in the
protocol.

http://eprint.iacr.org/
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Firstly, we review the group secret handshake scheme in [10].

CreateGroup. The administrator GA runs key generation algorithm, which takes
as input a security parameter k, to generate the discrete logarithm parame-
ters (p, q, g). g is a generator of a subgroup in Zp of order q. Then GA picks

a random s
R← Z∗q , sets it the group secret, and computes the public key

y = gs mod p.
AddUser. To add a user U to the group, the administrator GA first allocates a list

of random “pseudonyms” IDU1 , . . . , IDUt ∈ {0, 1}∗ for U , where t is chosen to
be larger than the number of handshakes U will execute before receiving new
user secret. The GA then computes a corresponding list of Schnorr signature
(α1, β1), . . . , (αt, βt), where αk = grk (mod p), and βk = rk + sH(αk, IDUk

)

(mod p), for random rk
R← Zq.

Handshake. Let Δ = {U1, . . . , Un) be n users who would like to conduct an secret
handshake. Each user Ui chooses an unused pseudonym IDi ∈ {ID1, . . . , IDt},
together with the corresponding secret 〈αi, βi〉. Then the group of users run
the handshake protocol as follows:
Round 1: Each user Ui broadcasts (IDi, αi)

– When a user Ui finds a collision in the group of IDs, or finds a ID
in the revoked user list, the protocol terminates.

– If there are no collision or revoked ID, Ui determines the order of
each user based on their identities. Assume that the order of users
in the group is (U1, U2, . . . , Un), and Un+1 = U1.

Round 2: Ui computes
zi+1 = αi+1y

H(αi+1, IDi+1) = gβi+1 (mod p)
zi−1 = αi−1y

H(αi−1, IDi−1) = gβi−1 (mod p)
Xi = H ′(zβi

i+1)/H ′(zβi

i−1) (mod p)
Each Ui broadcasts Xi. Ui computes Ki = H ′(zβi

i−1)
n ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2

(mod p).
Then each user Ui in the group outputs “accept” if they hold a common
shared key. All the steps of the SH are finished, and the handshake has been
successful.

To see that this scheme is sound, let:

Ci−1 = H ′(zβi

i−1) = H ′(gβi−1βi) (mod p)

Ci = H ′(zβi

i−1) · Xi = H ′(gβiβi+1) (mod p)

Ci+1 = H ′(zβi

i−1) · Xi · Xi+1 = H ′(gβi+1βi+2) (mod p)
· · ·

Ci−2 = H ′(zβi

i−1) · Xi · Xi+1 · · · Xi−2 = H ′(gβi−2βi−1) (mod p)

It is obvious that

Ki = Ci−1CiCi+1 · · ·Ci−2 = H ′(zβi

i−1)
n · Xn−1

i · Xn−2
i+1 · · · Xi−2

= H ′(gβ1β2) · H ′(gβ2β3) · · ·H ′(gβnβ1) (mod p)
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Then if all the users involved in the protocol are valid, they will share the
same symmetric key.

RemoveUser. To remove a user U from the group G, the administrator GA looks
up the user pseudonyms (IDU1 , . . . , IDUt) it has issued to U and publishes
them on the revoked user list.

Note that if Ui is not a valid member of the group, the group secret handshake
will not succeed, because Ui cannot produce a valid Xi without having the
knowledge of βi, which corresponds to the αi broadcasted at the beginning of
the protocol.

However, we observe that Ui can wait till he receives all the Xj , where j �= i,
before he broadcasts Xi in Round 2. Then Ui computes

X ′i = (
j �=i∏

j∈[1,n]

Xj)−1 = (
j �=i∏

j∈[1,n]

(H ′(zβj

j+1)/H ′(zβj

j−1)))
−1

= (
j �=i∏

j∈[1,n]

(H ′(gβj+1βj )/H ′(gβj−1βj )))−1 = (H ′(gβi−1βi)/H ′(gβi+1βi))−1

= H ′(gβi+1βi)/H ′(gβi−1βi) = H ′(zβi

i+1)/H ′(zβi

i−1)

From the discussion above, we can see that Ui computes the valid value X ′i
and broadcasts it to other parties. Without knowing βi, Ui cannot calculate the
common group key Ki, but we note that other valid members still can share the
same symmetric key. Then Ui may know that these parties belong to a same
group, which makes the honest parties leak their group affiliation even if the
handshake fails. 
�
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Abstract. Although two-party password-authenticated key exchange
(PAKE) protocols have been intensively studied in recent years, group
PAKE protocols have received little attention. In this paper, we propose
a hierarchical group PAKE protocol nPAKE+ protocol under the set-
ting where each party shares an independent password with a trusted
server. The nPAKE+ protocol is a novel combination of the hierarchical
key tree structure and the password-based Diffie-Hellman exchange, and
hence it achieves substantial gain in computation efficiency. In particu-
lar, the computation cost for each client in our protocol is only O(log n).
Additionally, the hierarchical feature of nPAKE+ enables every subgroup
obtains their own subgroup key in the end. We also prove the security of
our protocol under the random oracle model and the ideal cipher model.

1 Introduction

Low-entropy and human-memorable passwords are widely used for user authen-
tication and secure communications in real applications, e.g. internet banking
and remote user access, due to their user friendliness and low deployment cost.
The problem of strong authentication and key exchange between two parties
sharing a password, referred to as the two-party password-authenticated key ex-
change (2PAKE) problem, has been well studied and many solutions have been
proposed in the literature. With proliferation of group-oriented applications, e.g.
teleconferencing, collaborative workspaces, there is an increasing need for group
PAKE protocols to protect communications for a group of users.

In group-oriented communications, either the group shares a single password,
or each client in the group shares an independent password with a trusted server.
The single-password setting is not preferable in real applications for several rea-
sons. First, if a client in the group leaves or the password of a client is compromised,
the shared password has to be updated, which could be a very expensive process.
Moreover, compromise of any client leads to breakdown of the entire system. Sec-
ondly, individual client identification is impossible in this setting. As a result, no
one is able to distinguish one client from another, and it is impossible for a subset
of the group to securely establish a session key and hence have secure communi-
cations. It is easy to see that the independent-password setting avoids the above
problems and reflects more accurately what is happening in the real world.
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Group PAKE protocols in the independent-password setting need more careful
treatment since they suffer from attacks which are not present in the single
password setting, such as attacks initiated by legitimate clients against other
clients’ passwords (e.g. [35]). Not only group PAKE protocols should be resistant
to outsider attacks, but they should also be secure against insider attacks.

In this paper, we propose an efficient group PAKE protocol, referred to as
nPAKE+ protocol, for the independent-password setting. By employing a Diffie-
Hellman key tree in group key establishment, the protocol achieves group key
establishment and mutual authentication with only three message flows, and
every client needs only to perform 5 + �log n� exponentiations.

The remainder of the paper is organized as follows. In the next section, we
discuss related work on PAKE protocols. Then we present our nPAKE+ protocol,
followed by the security proof. We analyze the performance of the proposed
protocol and draw our concluding remarks at the end.

2 Related Work

Two-party PAKE (2PAKE) protocols were first studied by Bellovin and Merritt
[5,6]. Since then, 2PAKE has been intensively investigated in the literature, see
for examples [3,4,7,17,18,19,20,16,15,26,27,39]. Among them, the proposals in
[4,7,16,19] are proven to be secure with formal treatment.

Some efforts were spent to extend 2PAKE protocols to the three party setting
[31,25,13] where two clients each share an independent password with a trusted
server. These protocols, referred to as the 2PAKE+ protocols, establish a session
key between two clients with the help of a trusted server. However, straightfor-
ward extension from 2PAKE protocols to 2PAKE+ ones often leads to insecure
designs since the latter are susceptible to more attacks, such as insider attacks.
The 2PAKE+ protocol presented in [31] was shown to suffer from a dictionary
attack [24].

Though group PAKE protocols have important applications, they only re-
ceived limited attention. Under the single-password setting, Asokan and Ginz-
boorg [2] proposed a group PAKE protocol for ad hoc networks, but its security
is not formally proved. Bresson et al. [8] proposed a password-based group Diffie-
Hellman PAKE protocol and proved its security formally. Schemes proposed in
[23,36,14] are actually password-based version of the famous BD protocol [10].
By means of broadcast (or multicast), these protocols can achieve group key
establishment in 3 rounds using a single password, just like the BD protocol.

As discussed earlier, group PAKE protocols in the single password setting are
too restrictive and are expected to have limited applications in practice. To our
best knowledge, there are only two schemes in the independent-password setting
by Byun et al. [11,12]. However, the protocols EKE-U and EKE-M in [11] have
been showed to be insecure against off-line dictionary attacks and undetectable
on-line password guessing attacks [35]. The scheme in [12] is also insecure against
undetectable on-line guessing attacks.
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3 Model

In this section, we prove security of the proposed group password-authenticated
key agreement protocol. We first define a model of nPAKE+ based on the ran-
dom oracle and ideal cipher model. and it is based on that of [8,9]. In this model,
entities are modeled as oracles and attacks against the protocol is modeled as
queries to these oracles. We prove that the protocol is secure under the random
oracle model and ideal-cipher model, assuming intractability of the computa-
tional Diffie-Hellman problem.

3.1 Security Model

Players. Players in the model includes a server S and a set of clients C compris-
ing clients C1, C2, ..., Cn. Each player participates in some distinct and possibly
concurrent executions of the protocol, and each instance of their participation is
modeled as an oracle. The j-th instance of the server is modeled as Sj , and the
ti-th instance of Ci is modeled as Cti

i , where 1 � i � n and j, ti ∈ N.
Each client obtains its distinct password pi from a dictionary D containing N

low-entropy passwords, and shares it with the server. The password is randomly
chosen from the dictionary D with a uniform distribution.

The protocol nPAKE+ comprises two algorithms:

– PwdChoose(D): a probabilistic password choosing algorithm which chooses
a different password pi uniformly distributed in the dictionary D for each
client Ci.

– GrpKeyAgrmt(S, C): the group key agreement algorithm which involves
the server S and clients from C produces a group session key for each client.

Queries. The adversary A can attack the protocol by making the following
queries to the participants:

– Execute(Sj, Ct1
1 , ..., Ctn

n ): this query models passive attacks, in which the
adversary A makes clients and the server to execute the protocol. The ad-
versary can eavesdrop messages exchanged between all participants.

– Send(Cti

i , m): this query models the adversary A sends a message m to the
ti-th instance of a client Ci. A then gets the output of oracle Cti

i after it
processes m according to the protocol nPAKE+.

– Send(Sj, m): this query models the adversary A sends a message m to an
instance of the server S. A then gets the output of oracle Sj after it processes
m according to the protocol nPAKE+.

– Reveal(Cti

i ), Reveal(Sj): These two queries model compromise of the ses-
sion key derived by clients and the server. This query is only valid when the
clients and the server hold a session key or are able to compute the session
key.

– Corrupt(Cti

i ), Corrupt(Sj): These two queries model compromise of the
long-term passwords pi. The adversary A gets pi by asking such a query, but
he does not get any internal data of the instance being queried.
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– Test(Cti

i ): This query models the semantic security of the group session
key. This query can be asked only once and only if the queried oracle is
fresh. This query is answered as follows: one flips a coin b and responses
with Reveal(Cti

i ) if b = 1 or a random value if b = 0.

During the execution of the protocol, the adversary A tries to defeat the protocol
nPAKE+ by invoking the above queries. This execution is referred to as a game
Gameake(nPAKE+, A). The game runs as follows:

– PwdChoose(D) is run to choose a password pi for the client Ci.
– Set each participant’s group session key as null.
– Run the adversary A and answer queries made by A.
– Adversary A outputs a guess b′ for the bit b in the Test query.

Security Notion

– Freshness. An instance of the participant (i.e. an oracle) is said to be fresh
if its session key is not corrupted, which means the oracle and its partners
are not asked of a Reveal query.

– AKE Security. Depend on whether Corrupt query is available to the adver-
sary,AKE security canbe defined into two types,AKEsecuritywith (AKE-FS)
and without (AKE) forward secrecy. The AKE(resp. AKE-FS) security is de-
fined as the advantage of an adversaryAwinning the gameGameake(nPAKE,
A)(resp. Gameake−fs(nPAKE, A)). We say that A wins if he correctly guess
the bit b in the Test query in the game Gameake(nPAKE+, A)
(resp. Gameake−fs(nPAKE, A)). The advantage of the adversarywinning the
game is Advake

nPAKE+(A)=2 · Pr[b = b′] − 1 (resp. Advake−fs
nPAKE+(A)=2 · Pr[b =

b′] − 1), where the probability space is over all random coin tosses.
TheprotocolnPAKE+ is said tobeAKE-Secure(resp.AKE-FS-Secure)

if the adversary’s advantage is negligible in the security parameter.
– Authentication. The probability of the adversary A successfully imper-

sonating a client or a server is denoted as Succauth
nPAKE+(A). The protocol

nPAKE+ is said to be Auth-Secure if Succauth
nPAKE+(A) is negligible in the

security parameter.

4 The nPAKE+ Protocol

In this section, we present a group PAKE protocol, referred to as nPAKE+

protocol, for the independent-password setting. They agree on two large primes p
and q with p = 2q+1, a subgroup G of Z∗p , a generator g of G and a cryptographic
secure keyed hash function H(·). Notations used in the description of the protocol
are given in Table 1.

4.1 The Diffie-Hellman Key Tree

Key graphs are extensively used in non-password based group key agreement
protocols to achieve great efficiency in both computation and communications.
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Table 1. Notations

Ci The i-th client, i = 1, 2, ..., n
S The trusted server
pi The password shared between Ci and S
p, q Two large primes with p = 2q + 1
G, g The subgroup of order q in Z∗

p and its generator, respectively

H(·) A secure hash function mapping {0, 1}∗ to {0, 1}len

Ki, BKi
1 The secret key and blinded key for client Ci, i = 1, 2, ..., n

〈l, v〉 The v-th node at the l-th level on the binary key tree (Fig. 1)
K〈l,v〉, BK〈l,v〉 The secret key and blinded key for node 〈l, v〉
SKi The session key shared between Ci and Ci+1, i = 1, 2, ..., n − 1

1 They are interchangeable with K〈l,v〉, BK〈l,v〉 if Ci is located at 〈l, v〉 on the key
tree.

Wong et al. [38] and Wallner et al. [37] are the first to introduce the concept of
key graph, called the Logical Key Hierarchy(LKH), to improve efficiency in group
key management. The One-way Function Tree(OFT) proposed by McGrew and
Sherman [28] improves the hierarchical tree approach further. In OFT, the key
of a parent is derived from the keys of its children, and hence it reduces the
size of the rekeying messages to half of that of LKH. Based on the key tree,
some group key agreement proposals [30,10,33,34,29,22] use the Diffie-Hellman
exchange technique in group key establishment.

The Diffie-Hellman key tree used in our protocol is a binary tree in which
each leaf represents a group member. Every interior node of the key tree has
exactly two children and is not associated with any group member. An example
of the key tree used in our protocol is shown in Fig. 1. The nodes are denoted
〈l, v〉, where 0 � v � 2l − 1 since each level l hosts at most 2l nodes (the
root is at the 0-th level). For any interior node 〈l, v〉, its left child and right
child are denoted 〈l + 1, 2v〉 and 〈l + 1, 2v + 1〉 respectively. Each node 〈l, v〉 on
the key tree is associated with a secret key K〈l,v〉 and a corresponding blinded
key BK〈l,v〉 computed as gK〈l,v〉 mod p. The secret key K〈l,v〉 at a leaf node
〈l, v〉, which is associated with a client Ci, is constructed between the client Ci

and the server S in our protocol. While the secret key of an interior node is
derived from the keys of the interior node’s two children by the Diffie-Hellman
computation. The corresponding blinded key is then computed following the
formula BK〈l,v〉 = gK〈l,v〉 mod p. Specifically, the secret key and the blinded
key of an interior node 〈l, v〉 are computed recursively as follows:

K〈l,v〉 = H(gK〈l+1,2v〉K〈l+1,2v+1〉 mod p)
= H((BK〈l+1,2v〉)K〈l+1,2v+1〉 mod p)
= H((BK〈l+1,2v+1〉)K〈l+1,2v〉 mod p),

BK〈l,v〉 = gK〈l,v〉 mod p.

(1)

Note that if a client Ci is located at the leaf node 〈l, v〉 on the key tree, then
its secret key and blinded key K〈l,v〉, BK〈l,v〉 are also denoted as Ki and BKi
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respectively. These two types of denotations (see Fig. 1) are interchangeable for
a client Ci at a leaf node 〈l, v〉.

Therefore, computing a secret key at 〈l, v〉 requires the knowledge of the key
of one child and the blinded key of the other child. The secret key K〈0,0〉 at the
root node is the group key which is known only to the group members.

In order to compute the group key, a client Ci needs to know a set of blinded
keys, which form a set called the co-path. With the blinded keys in the co-path,
the client Ci can compute a set of keys from itself to the root of the key tree and
these keys form another set called key-path. For the client Ci located at a leaf node
〈l, v〉, we denote its key-path as KPi or KP〈l,v〉, its co-path as CPi or CP〈l,v〉. On
the key tree, the key path KPi is a path from Ci itself to the root node (〈0, 0〉) of
the key tree. While the co-path CPi is formed from all the nodes that are directly
connected with the key-path KPi on the key tree. The key-path KPi splits the
co-path CPi into two halves: Ri on the right side and Li on the left side.

For example, in Fig. 1 the client C2’s key-path is KP2 = KP〈3,1〉 = {K〈3,1〉,
K〈2,0〉, K〈1,0〉, K〈0,0〉}, and its co-path is CP2 = CP〈3,1〉 = {BK〈3,0〉, BK〈2,1〉,
BK〈1,1〉}. The key-path KP2 is a path from C2 (or 〈3, 1〉) to the root of the key
tree. Each node from the co-path CP2 is directly connected with the key-path KP2

on the key tree. The co-path CP2 is split into two halves by the key-path KP2:
R2 = {BK〈2,1〉, BK〈1,1〉}, and L2 = {BK〈3,0〉}.

The following two properties of the key tree are important for group key
agreement in our protocol:

– For any binary Diffie-Hellman key tree with n leaves labeled from C1 to Cn,
client Ci can compute Li+1 using Li, Ki, and {BKj : 1 ≤ j ≤ n}. Similarly,
Ci can compute Ri−1 using Ri, Ki, and {BKj : 1 ≤ j ≤ n}.

– For any binary Diffie-Hellman key tree with n leaves labeled from C1 to Cn,
client Ci can compute the group key using Li, Ri, and Ki.

With all the blinded keys of its co-path, a client Ci can compute all the keys
along the key-path, including the group secret K〈0,0〉. For the example in Fig. 1,
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Fig. 1. An example of the key tree
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with its own key K〈3,1〉, C2 can compute K〈2,0〉, K〈1,0〉 and K〈0,0〉 using BK〈3,0〉,
BK〈2,1〉 and BK〈1,1〉, respectively.

4.2 Description of the Protocol

After introducing the Diffie-Hellman key tree, we describe our nPAKE+ protocol
in this section. Our protocol achieves group key establishment and authentication
with 3 message flows. The first flow starts from the client C1, traverses through
C2, C3, ..., Cn, and finally reaches the server S. The second flow initiated by the
server propagates in the reverse direction from S until C1. After the second flow
terminates at C1, C1 starts the third flow towards Cn and terminates at S.

– Flow 1: As the initiator, client C1 chooses r1 ∈R Z∗q and computes X1 = gr1

and X∗1 = Ep1(X1). Then it initiates the protocol by sending the request
{Ci}n

i=1|X∗1 to the next client. The request traverses all the clients from C1

to Cn until it reaches the server. Upon receiving the request, each client
Ci selects ri ∈R Z∗q , computes Xi = gri and the encrypted exponential
X∗i = Epi(Xi) = Epi(gri) and adds it to the request. When the request finally
reaches the server S, it consists of n identities and n encrypted exponentials
contributed by the n clients.

Ci −→ Ci+1 : {Cj}n
j=1|{X∗j }i

j=1, i = 1, 2, ..., n − 1,
Cn −→ S : {Cj}n

j=1|{X∗j }n
j=1.

(2)

– Flow 2: The second message flow runs in the reverse direction, from the
server S to C1. After receiving the request in the first message flow, the server
parses {Ci}n

i=1|{X∗
i }n

i=1 , and uses the corresponding passwords to decrypt
X∗i to obtain Xi = gri(i = 1, 2, ..., n). Then for each client Ci(i = 1, 2, ..., n),
S chooses si ∈R Z∗q and computes a session key Ki = (Xi)si = (gri)si . Then
the server computes Yi = gsi , Y ∗i = Epi(Yi), π = BK1|C1| · · · |BKn|Cn and
τi = H(π|Xi|Yi|Ki), and sends π|{Y ∗

j |τj}n
j=1 to Cn.

The reply originated from the server S passes through Cn to C1. Upon
receiving the reply, Ci(i = n, n − 1, ..., 1) parses it as π|{Y ∗

j |τj}i
j=1 |Ri|ξi,

(for i = n, Rn|ξn = nil). Ci decrypts Y ∗i to obtain Yi = gsi using its
password. Then the client computes the session key Ki = (Yi)ri = (gsi)ri and
the blinded BKi = gKi , and verifies whether the computed BKi equals to
BKi in π. Then Ci verifies the validity of π by checking H(π|Xi|Yi|Ki)

?= τi.
In the case where i 	= n, Ci also computes SKi = (BKi+1)Ki and verifies Ri

by checking whether H(Ri|SKi) equals ξi.
If the reply passes all verifications, Ci(i = n, n − 1, ..., 2) prepares an

outgoing message for the next client Ci−1. Ci computes Ri−1 with Ri,
Ki and π, and computes SKi−1 = (BKi−1)Ki . Then he computes ξi−1 =
H(Ri−1|SKi−1) and sends π|{Y ∗

j |τj}i−1
j=1|Ri−1|ξi−1 to Ci−1.

S −→ Cn : π|{Y ∗j |τj}n
j=1,

Ci −→ Ci−1 : π|{Y ∗j |τj}i−1
j=1|Ri−1|ξi−1, i = n, ..., 2.

(3)

where π = BK1|C1| · · · |BKn|Cn.
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– Flow 3: When the reply in the second message flow finally reaches C1,
C1 performs the verifications as specified in Flow 2. If the verifications are
successful, C1 computes the group key GK1 with R1 and K1 as well as π.
Then C1 computes L2, σ1 = H(L2|SK1), η1 = H(C1|C2| · · · |Cn|K1), and
starts the last message flow by sending out L2|σ1|η1 to C2.

Then each client Ci(i = 2, 3, ..., n) receives the message Li|σi−1|{ηj}i−1
j=1,

and verifies Li by checking σi−1
?= H(Li|SKi−1). If the verification is suc-

cessful, the client computes the group key GKi with Ki, Li, Ri and π. If
i 	= n, Ci computes σi = H(Li+1|SKi), computes Li+1 from Li, Ki and
π, computes ηi = H(C1|C2| · · · |Cn|Ki), and sends the outgoing message
Li+1|σi|{ηj}i

j=1 to Ci+1. Otherwise, Cn computes ηn and sends {ηj}n
j=1 to

the server S.

Ci −→ Ci+1 : Li+1|σi|{ηj}i
j=1, i = 1, ..., n − 1.

Cn −→ S : {ηj}n
j=1

(4)

After the third message flow finally reaches the server S, the server ver-
ifies each ηi from client Ci to authenticate each client. If any verification
is failed, then the server can identify which client(s) is(are) invalid and not
authenticated. This measure is intended to thwart on-line password guessing
attacks.

After the last flow reaches the server, each client has already computed its Li

and Ri, so each client obtains its co-path CPi = Li∪Ri, independently calculates
the same group key K〈0,0〉 and uses it for secure group communications.

5 Security Results

To prove the security of the proposed protocol nPAKE+, we incrementally define
a series of games starting from the real protocol nPAKE+ G0 until game G8.
The probability of the adversary A winning a game Gm is obtained according
to a negligible probability difference from the winning probability in the next
game Gm+1. Game G8 is a purely random game and the winning probability of
A is 1/2. Therefore, we prove security of the protocol by showing the advantage
of A in G0, i.e. the real protocol nPAKE+, is negligible.

Theorem 1. Let nPAKE+ be the password-based group key agreement protocol
with a password space D of size N . Let A be the adversary against AKE-Security
of nPAKE+ within a time bound t, with qs interactions with the protocol partici-
pants and qp passive eavesdroppings, qh hash queries, and qe encryption/decryption
queries. Let SuccCDH

G (T ) be the success probability against the CDH problem of an
adversary in time T . Then we have:

Advake
nPAKE+(A) � 24n ∗ qhSuccCDH

G (t′) +
6qs

N
+

4qs + q2
h

2len
+

(2qe + 3qs + 6nqp)2

q − 1
,

where t′ = t+(qs +(8n+n log n)∗ qp + qe +n)τG, with τG being the computation
time for an exponentiation in G, n being the maximum number of clients in all
protocol executions.
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Fig. 2. The nPAKE+ protocol with n clients and a server illustrated with a sample
5-leaf key tree: X∗

i = Epi(Xi) = Epi(g
ri); Y ∗

i = Epi(Yi) = Epi(g
si); where ri, si ∈R Z

∗
q .

π = BK1|C1|BK2|C2|...|BKn|Cn; Ki = grisi . τi = H(π|Xi|Yi|Ki); ξi = H(Ri|SKi);
ηi = H(C1|C2|...|Cn|Xi|Yi|Ki); σi = H(Li+1|SKi).

Proof. Due to lack of space, we can only sketch the proof process.We define a series
of games in which a simulator simulates the protocol nPAKE+ and provides oracle
queries to the attacker. The first game is the real protocol nPAKE+, while in the
last game each client obtains a random group session key so that the attacker’s
advantage against the last game is 0. By embedding a CDH instance into the game
and using random self-reducibility, we can calculate probability differences of the
attacker winning different games. Finally, we can obtain the attacker’s advantage
against the real protocolnPAKE+ under the randomoracle and ideal ciphermodel,
which is related to the attacker’s advantage against the CDH problem.

The theorem essentially shows that the nPAKE+ protocol is secure against the
dictionary attacks as the adversary’s advantage against the protocol is con-
strained by the number of Send-queries, which represents the number of interac-
tions with a client or a server. Normally the number of online guessing failures is
restricted in existing applications, which ensures security of the proposed proto-
col. On the other hand, the adversary’s advantage with offline dictionary attacks
is proportional to its capability in solving the CDH problem. Under the assump-
tion of hardness of the CDH problem, the protocol is secure. It is worth to note
that the security of nPAKE+ relies only on the CDH hardness assumption, while
other protocols requires also the TGCDH (Trigon Group CDH) assumption and
the MDDH (Multi-DDH) assumption [8,11].
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Theorem 2. Let A be the adversary againstAuth-Security ofnPAKE+ within a
time bound t, with qs interactions with the protocol participants and qp passive eaves-
droppings, qh hash queries, and qe encryption/decryption queries. Let SuccCDH

G (T )
be the success probability against the CDH problem of an adversary in time T . Then
we have:

Succauth
nPAKE+(A) � 11n ∗ qhSuccCDH

G (t′) +
3qs

N
+

4qs + q2
h

2len+1
+

(2qe + 3qs + 6nqp)2

2(q − 1)
,

where t′ = t+(qs +(8n+n log n)∗ qp + qe +n)τG, with τG being the computation
time for an exponentiation in G, n being the maximum number of clients in all
protocol executions.

This theorem states that the adversary’s advantage of breaking the authenti-
cation property is proportional to the number of Send queries, which is the
number of online attacking attempts of the adversary. Same as in Theorem 1,
the advantage of the adversary by offline dictionary attacks is negligible assum-
ing hardness of the CDH problem.

Theorem 3. Let A be the adversary against AKE-FS-Security of nPAKE+

within a time bound t, with qs interactions with the protocol participants and qp

passive eavesdroppings, qh hash queries, and qe encryption/decryption queries.
Let SuccCDH

G (T ) be the success probability against the CDH problem of an adver-
sary in time T . Then we have:

Advake−fs
nPAKE+(A) � 2(10 + (qs + qp)(n+1)) · nqhSuccCDH

G (t′) +
6qs

N

+
4qs + q2

h

2len
+

(2qe + 3qs + 6nqp)2

q − 1
,

where t′ = t+(qs +(8n+n log n)∗ qp + qe +n)τG, with τG being the computation
time for an exponentiation in G, n being the maximum number of clients in all
protocol executions.

With this theorem, we state that the protocol is secure with forward secrecy. In
case of password compromise, fresh session keys are still secure against dictionary
attacks. This makes the protocol secure against valid-but-curious clients inter-
ested in knowing other clients’ passwords. A valid-but-curious client is prevented
from knowing keys of a group of which he is not a member, and a compromised
password cannot be used to gain non-negligible advantage in breaking fresh keys.

6 Discussion

Under the independent password setting, our protocol is both flexible and efficient
in communications and computation. First, our protocol accommodates forma-
tions of secure subgroups. Any subgroup of the whole group can run the protocol
to establish a group key for the subgroup. Secondly, the protocol employs key tree
in group key construction to provide communication and computation efficiency.
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In the nPAKE+ protocol, the group key computation is closely related to
tree structure. By default, the key tree is formed to be a balanced binary tree
to reduce the computation cost to minimal. Alternatively, the first client (the
initiator) or the server can decide the tree structure. This key structure infor-
mation should be protected from manipulation. Either it is agreed upon via an
out-of-band channel, or it is authenticated during the protocol.

The hierarchical structure of the protocol has a good feature that a subgroup
of clients corresponding to a subtree of whole key tree. For each internal node
of the key tree, its key can be used to secure communications among the clients
that are its descendants. Therefore, a tree structure can be decided so that the
clients requiring a separate key is allocated to the same subtree of the key tree.

The protocol needs only three message flows to establish the group key, and
each client needs only 5 + �log n� exponentiations while the server needs 3n
exponentiations. A comparison on computation cost between the protocol by
Bresson et al. [8], EKE-U [11] and our protocol is given in Table 2. Both Bresson’s
protocol and EKE-U require O(n) exponentiations for each client on the average,
while our protocol requires only O(log n) for each client. And the total number
of exponentiations required in our protocol O(n log n) is also lower than O(n2)
in Bresson’s protocol and EKE-U.

Table 2. Computation Efficiency Comparison: Number of Exponentiations

Client (Avg.) Server Total

Bresson’s Protocol (n + 5)/2 - n(n + 5)/2
EKE-U Protocol (n + 3)/2 (n + 1)(n + 2)/2 n2 + 3n
nPAKE+ Protocol 5 + �log n� 3n n(8 + �log n�)

7 Conclusion

In this paper, we proposed a hierarchical group password-authenticated key ex-
change protocol where each client shares an independent password with a trusted
server. Under this independent-password setting, our protocol provides better
flexibility than those protocols under the single-password setting. Moreover, the
protocol employs a Diffie-Hellman key tree for group key agreement, and hence
achieves great efficiency in both computation and communications. Finally, we
prove its security under the random oracle and ideal cipher models, and compare
its performance with existing protocols.
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Abstract. One of the prominent advantages of password-only two-server
authenticated key exchange is that the user password will remain secure
against offline dictionary attacks even after one of the servers has been
compromised. The first system of this type was proposed by Yang, Deng
and Bao in 2006. The system is efficient with a total of eight communi-
cation rounds in one protocol run. However, the security assumptions are
strong. It assumes that one particular server cannot be compromised by
an active adversary. It also assumes that there exists a secure communica-
tion channel between the two servers. Recently, a new protocol has been
proposed by the same group of researchers. The new one removes these
assumptions, but in return pays a very high price on the communication
overhead. It takes altogether ten rounds to complete one protocol run and
requires more computation. Therefore, the question remains is whether it
is possible to build a protocol which can significantly reduce the number
of communication roundswithout introducing additional security assump-
tions or computational complexity. In this paper, we give an affirmative an-
swer by proposing a very efficient protocol with no additional assumption
introduced. The protocol requires only six communication rounds without
increasing the computational complexity.

1 Introduction

Password-only authenticated key exchange is a scheme which allows a user who
holds only a low-entropy password to conduct authentication and key exchange
with a server. Comparing with related types of authenticated key exchange
schemes, for example, schemes based on cryptographic keys, password-only au-
thenticated key exchange is very practical with high usability, because users only
need to memorize a short password which is already used commonly in existing
authentication systems.
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A Password-only Two-Server Authenticated Key Exchange (PTAKE)
scheme [18,17] is an extension of the conventional single-server setting [13]. Be-
sides a user and a server, PTAKE also has an additional server. The existing,
front-end, server that the user is communicating with is called the Service Server,
SS, and the additional, back-end, server which communicates only with SS is
called the Control Server, CS. In a conventional single-server scheme, the server
has a database of the users’ passwords or some verification data of the passwords.
If the server is compromised, an adversary can obtain the passwords of all the
users directly from the database, or be able to launch offline dictionary attacks
against all users’ passwords as the database provides enough information about
the passwords. This problem is generally referred to as single point of failure.

In a PTAKE scheme instead, the password of each user is split into two shares
and each server is given only one share, so that the password cannot be obtained
in an information theoretic sense if only one share is known. Currently, all the
concrete PTAKE schemes [18,17] use the same splitting mechanism: two random
shares π1 and π2 are generated such that the password π ≡ π1 + π2 (mod q)
for a large prime q. A secure PTAKE scheme is designed such that even if one
of the two servers is compromised, the scheme should still be able to thwart
offline dictionary attacks against π. This feature together with the architecture
of PTAKE yields a very desirable and practical system. As we can see, users
only interact with SS but will never interact directly with CS, while CS only
interacts with SS. This creates two networks, one external and one internal, with
SS acting as the bridge/firewall between these two. In practice, this makes an
outsider very difficult to compromise the internal network. The internal network
can also be totally hidden from the outsiders. It is even possible for us to make
outsiders totally unaware of the existence of CS. In addition, since CS only
interacts with SS, it is relatively easy to provide maximal security protection for
CS and make it much more difficult to compromise. To defend against insider
attacks, it is also much easier to do so than the conventional one-server scheme
as the administrative and operational tasks of SS and CS are separated and can
be carried out by two independent teams. They do not share any secret.

The first PTAKE was proposed by Yang, Deng and Bao [18] in 2006. In one
protocol run of their scheme, the user carries out four rounds of communications
with SS and the CS carries out another four rounds with SS. The total number of
communications rounds is therefore eight. Following the notion of external and
internal networks, they assume that the internal network is impossible for an
active adversary1 to compromise. This assumption makes certain sense for some
systems, but not in general. An insider who has full access to CS but not to SS
may collude with an outsider and launch a successful offline dictionary attack
against their scheme. Another issue of the scheme is that the communication
channel between the two servers needs to be secure against eavesdroppers in order
to ensure the security of the session key. This also introduces some additional
cost for actual implementation of the scheme.

1 An active adversary is considered to be an adversary which can do both eavesdrop-
ping and hijacking of messages.
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Recently, a new scheme has been proposed by the same group of researchers
[17]. The new one solves both of the problems mentioned above. In addition, it
further enhances the security with respect to the session key, namely, CS can no
longer compute the session key established between the user and SS. This is a
desirable feature in practice as SS (Service Server) is generally the one to provide
actual services while CS is simply called in for authenticating the user. There is
no need or it simply downgrades the user’s privacy if we let CS know the session
key. The tradeoff of this new scheme is that the number of communication rounds
for completing one protocol run is increased to ten.

1.1 Our Results

For the latest conventional password-only single-server schemes [13], the number
of communication rounds between the user and the server is usually only three.
In the two-server setting, there are three parties. The question we are asking is
whether we can build a secure PTAKE scheme which takes only three communi-
cation rounds for mutual authentication between the user and SS, another three
rounds for mutual authentication between CS and SS, and piggybacks some ad-
ditional messages along these rounds for mutual authentication between the user
and CS. As a result, the scheme only requires six rounds of communications to
complete one protocol run. It is also desirable if we can attain the same level of
security as in [17], namely

1. the scheme remains secure against offline dictionary attacks after one of CS
and SS has been compromised by an active adversary;

2. no secure channel is required between CS and SS;
3. at the end of a protocol run, for any of the three parties (the user, SS and

CS), the party can ensure that the other two parties have been involved; and
4. an honest-but-curious CS cannot compute the session key.

In this paper, we give an affirmative answer to this question. We propose a very
efficient protocolwhich requires only six communication rounds with no additional
assumption introduced, and satisfies all the security requirements above.

1.2 Related Work

Passwords chosen by users generally have very low entropy. Dictionary attacks
are feasible by efficiently enumerating all the possible passwords from a dictio-
nary, if enough information is given to an attacker. Dictionary attacks can be
launched online or offline. In an online attack, an attacker attempts to logon to
a server by trying all possible passwords until a correct one is found. Usually,
this can easily be defended against at the system level by designing a system
such that an unsuccessful online attack is detectable and limiting the number
of unsuccessful login attempts. In an offline attack, the attacker records several
successful login sessions and then tries all the possible passwords against the
login transcripts. This type of attacks is notoriously difficult to defend against
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and it is the main challenge for designing a secure password-based authenticated
key exchange scheme.

On the design of password-based authenticated key exchange schemes, most
of the schemes (e.g. most of the schemes in [13]) belong to the single-server cat-
egory. As explained, single-server setting has a serious drawback which is called
single point of failure. For enhancing the robustness, two-server and multi-server
models have been proposed [12,14,15,16]. For multi-server schemes, although
they alleviate the robustness problem, they usually require a user to commu-
nicate simultaneously with multiple servers or have the protocols become very
expensive, especially when too many servers are getting involved.

The two-server setting seems to facilitate a very good balance between robust-
ness and protocol complexity. Recently, a practical two-server architecture is pro-
posed by Yang, Deng and Bao [18,17]. This architecture is a password-only variant
of the one introduced by Brainard et al. [8]. As described in the Introduction sec-
tion of this paper, the user communicates only with the Service Server (SS) while
the Control Server (CS) communicates with SS only. In this paper, we propose
a scheme which achieves the same security level as that of [17] (summarized in
Sec. 1.1) but with much fewer number of communication rounds. Our scheme has
even fewer rounds than the weaker scheme proposed in [18].

Organization. In the next section, we describe the basic tools that are used
in our PTAKE scheme and then give the full details of the scheme. In Sec. 3,
we analyze its security in terms of off-line dictionary attacks, pairwise mutual
authentication and key privacy against Control Server. In Sec. 4, we provide the
performance analysis and compare our protocol with Yang, Deng and Bao’s in
[17]. In Sec. 5, we conclude and mention some of our future work.

2 A New Efficient PTAKE

As introduced in Sec. 1, a protocol run of PTAKE involves a user U, a Service
Server SS and a Control Server CS. There is a communication link between U
and SS, another link between SS and CS, but no direct link between U and CS.

We consider two types of adversaries: passive adversaries and active adver-
saries. A passive adversary can eavesdrop any of the channels and try to derive
user passwords from protocol transcripts. If a server is compromised by the pas-
sive adversary, all the internal states, which include the password share, of the
server will be accessible by the adversary, but the server will still behave accord-
ing to the protocol specification. An active adversary controls all the communi-
cation channels. If a server is compromised by an active adversary, all internal
states of the server will be known to the adversary and the adversary has full
control on how the server behaves.

Note that all literature [18,17] in this field assumes that the servers do not
support multiple simultaneous sessions for one single user. We believe that this
assumption is realistic as it usually indicates identity theft when multiple ses-
sions from the same user are initiating from different places, for example, in the
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e-banking applications. We leave the study of simultaneous multiple session set-
ting as our future work.

2.1 Registration and Initialization

To begin with, user U first needs to register to the servers through some out-of-
band channels. In this paper, we assume that U has already generated random
password shares π1 and π2 such that U’s password π is congruent to π1 + π2

(mod q) for some large prime q. We refer readers to [18] for details on how this
registration and initialization phase can be carried out.

In the following, we let g1 and g2 be distinct random generators of some
multiplicative group G of large prime order q. Assume that the discrete loga-
rithm problem in G is intractable, and also the discrete logarithm of g2 to g1 is
intractable.

2.2 Basic Techniques

Before describing our proposed PTAKE, in this section, we propose several prim-
itive techniques that we use repeatedly in our protocol. These techniques are
mainly for defending against offline dictionary attacks while carrying out key
exchange.

Since the password π ≡ π1 + π2 (mod q), our protocol has to prevent an
active adversary from obtaining any information related to π1 + π2 even under
the condition that the adversary has already known one of these two password
shares. There are two basic building blocks in our design.

The first building block is applying a blinding factor to the password or a
password share. This building block has the message form of M1 = gr

1g
x
2 . Here x

is the password or a password share (i.e. π, π1 or π2), and r is chosen uniformly
at random from Z

∗
q . From M1, the adversary cannot get anything useful for

launching offline dictionary attacks for getting x (from gx
2 ) as gr

1 is not known.
Table 1 shows some examples of this building block being used in our protocol
which will be described shortly.

Table 1. Examples of the First Building Block

U → SS: B = ga
1gπ

2 ga
1 is the blinding factor

SS → CS: B1 = B/(gb1
1 gπ1

2 ) gb1
1 is the blinding factor

CS → SS: B4 = gb4
1 gπ2

2 gb4
1 is the blinding factor

The second building block is the randomization of the messages received which
are in the form of M2 = (D/gx

2 )r, M3 = gr
1. Here r ∈R Z∗q , x is a password share

(but not the password), D is the message received.
Note that D can be generated by the adversary. This implies that the ad-

versary is able to compute (gx
2 )r from M2 and M3. To see this, suppose the

adversary sets D = gd
1 for some arbitrarily picked d. The adversary can compute
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(gx
2 )r = Md

3 /M2. Since r is chosen uniformly at random from Z∗q and is unknown
to the adversary, knowing gr

1 and grx
2 does not help the adversary compute x as

the adversary cannot determine the value of gr
2 under the assumption that DDH

problem is hard2. Table 2 lists some examples on how this building bock is used
in our protocol.

Table 2. Examples of the Second Building Block

CS → SS: B2, A1

B2 = (B1/gπ2
2 )b2 , A1 = gb2

1

SS → U: B5, A3

B5 = ((Bgb6
1 /B4)/gπ1

2 )b5 , A3 = gb5
1

2.3 The PTAKE Protocol

The protocol is described in Fig. 1.
To initiate a request for service, U selects a random a ∈R Z∗q and computes

B = ga
1gπ

2 , then sends request Req, identity U and B to SS in M1. Upon receiving
M1, SS selects a random b1 ∈R Z

∗
q , computes B1 = B/(gb1

1 gπ1
2 ) = ga−b1

1 gπ2
2 , then

sends U, SS and B1 to CS in M2. Upon receiving M2, CS selects b2, b4 ∈R Z∗q ,
computes B2 = (B1/gπ2

2 )b2 = (ga−b1
1 )b2 , A1 = gb2

1 and B4 = gb4
1 gπ2

2 , then sends
A1, B2 and B4 back to SS in M3. SS selects b3, b5, b6 ∈R Z∗q and computes
B3 = (B2A

b1 )b3 = gab2b3
1 , S1 = h(B3), A2 = Ab3

1 , B5 = (B/(B4g
π1
2 ))b5gb6b5

1 =
g
(a−b4+b6)b5
1 and A3 = gb5

1 , then sends S1, A2, B5, A3 to U in M4. Upon receiving
M4, U checks if S1

?= h(Aa
2): if true, U accepts and computes S2 = h(Aa

2 , 0). It
then selects a random a∗ ∈R Z∗q , computes A4 = Aa∗

3 , B6 = (Aa
3/B5)a∗

and sends
S2, B6, A4 to SS in M5. The session key Ku = h(Aa

2 , U, SS) is also computed.
Otherwise, U aborts. Upon receiving M5, SS checks whether S2

?= h(B3, 0): if
true, SS accepts, computes S3 = h(B6A

b6
4 ) and session key Kss = h(B3, U, SS),

and sends S3, A4 to CS in M6. Otherwise, SS aborts. Upon receiving M6, CS
checks whether S3

?= h(Ab4
4 ), if it does not hold, CS aborts. Otherwise, CS

accepts. In all the steps above, when an element of G is received, the party
should always check if the element is not equal to 1. If so, the protocol should
be aborted.

3 Security Analysis

Recall that one of the main goals of our proposed scheme is to resist off-line
dictionary attacks by an active adversary who has compromised one of the two
servers. In the following, we first examine the proposed scheme against a com-
promised CS and then a compromised SS. We do not need to consider the case
2 DDH assumption: given (g, gr, h, z) where g, h ∈R G, r ∈R Zq, determine if z = hr

or just an element chosen uniformly at random from G.
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U SS CS

Input :π Input :π1 Input :π2

a ∈R Z∗
q

B = ga
1gπ

2
M1 : U, Req, B−−−−−−−−−−→ b1 ∈R Z∗

q M2 : U, SS, B1−−−−−−−−−−→
B1 = B/(gb1

1 gπ1
2 ) b2 ∈R Z∗

q

B2 = (B1/gπ2
2 )b2

A1 = gb2
1

b4 ∈ Z∗
q

B4 = gb4
1 gπ2

2
M3 : A1, B2, B4←−−−−−−−−−−−

b3 ∈R Z∗
q

B3 = (B2Ab1
1 )b3

S1 = h(B3)

A2 = Ab3
1

b5, b6 ∈ Z∗
q

B5 = (B/(B4gπ1
2 ))b5gb6b5

1
A3 = gb5

1
M4 : A2, S1, B5, A3←−−−−−−−−−−−−−−

S1
?
= h(Aa

2)
S2 = h(Aa

2 , 0)
Ku = h(Aa

2 , U, SS)

a∗ ∈ Z∗
q , A4 = Aa∗

3
B6 = (Aa

3/B5)a∗

M5 : S2, B6, A4−−−−−−−−−−−→
S2

?
= h(B3, 0)

Kss = h(B3, U, SS)

S3 = h(B6Ab6
4 ) M6 : S3, A4−−−−−−−−→

S3
?
= h(Ab4

4 )

Fig. 1. Our Proposed Efficient PTAKE

that an active adversary does not have any server compromised, as this scenario
has already been considered in the first two scenarios. After evaluating the secu-
rity against off-line dictionary attacks, we will show that the scheme satisfies the
authentication requirement as well as the desirable session key privacy, especially
against the Honest-but-Curious CS.

3.1 Security Against Off-Line Dictionary Attacks

So far for PTAKE, there is no formal security model defined with comparable
formality to [2,9] for conventional single-server password-based authenticated key
exchange or [4,5,1,10] for cryptographic key based authenticated key exchange
schemes. We believe that it is important to propose a formal security model for
PTAKE and we consider this to be our next work. In this paper, our focus is on
the performance optimization while providing the proposed scheme with some
heuristic security evidence which is comparable to that in [17].
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Also note that we follow the current literature [18,17] in this field by assum-
ing that the servers do not support multiple simultaneous sessions from one
single user. If a user is attempting to make simultaneous logins, the servers
should consider this as some impersonation attacks. For conventional single-
server password-based authenticated key exchange, multiple sessions are gener-
ally considered in the corresponding models [2,9]. For preventing various kinds
of interleaving attacks [6,7], “binding” mechanisms of the identities of senders
and receivers as well as the session IDs are generally required. Under the cur-
rent single-session setting, the mechanisms may not be needed. Also because of
this weaker security requirement, our scheme can achieve such a great efficiency.
We believe that it is interesting to construct a provably secure PTAKE without
sacrificing its efficiency when compared with our proposed scheme in this paper.

Proposition 1. The proposed scheme can defend against offline dictionary at-
tacks launched by an active adversary which has compromised CS.

Through eavesdropping and hijacking the communication channels, we can see
that the honest parties, U and SS, are actually providing the following oracles
to the active adversary:

– Oracle1: It outputs B = ga
1gπ

2 , where a is chosen uniformly at random from
Z∗q and π is the password of U.

– Oracle2: On input B, X, Y, Z ∈ G, it outputs a quadruple: B/(gb1
1 gπ1

2 ), Xb3 ,
h((Y Xb1)b3), (B/(Zgπ1

2 ))b5gb5b6
1 , where b1, b3, b5, b6 ∈R Z∗q and π1 is SS’s

password share.
– Oracle3: On input U, V, W, B ∈ G and another finite binary string S1, it

outputs O1 = h(W a, 0), O2 = Ua∗
, O3 = (Ua/V )a∗

only if S1 = h(W a),
where a is the random number chosen by Oracle1 when outputting B. If
Oracle1 has never outputted B before, Oracle3 returns ⊥. Note that a∗ above
is chosen uniformly at random by Oracle3.

– Oracle4: On input S, T, S2, U, V, O1, O2, O3, it outputs h(ST b6) only if
h((V U b1)b3 , 0) = S2, where U , V , b1, b3 and b6 are corresponding to one
query of Oracle3. Note that O1, O2, O3 are needed to be in the query for
identifying which query of Oracle3 it is associated with.

Oracle1 outputs B in the form of first building block described in Sec. 2.2. As
explained, it gives no additional information about π. Oracle2’s output has forms
of both first and second building blocks described in Sec. 2.2. Again, as explained,
they give no additional information about π or π1 if DDH problem is hard. For
Oracle3 and Oracle4, no particular password related information is involved and
therefore do not provide additional information about π or π1.

Proposition 2. The proposed scheme can defend against offline dictionary at-
tacks launched by an active adversary which has compromised SS.

Similarly, we may consider the honest parties, U and CS, to provide the following
oracles to the active adversary:

– Oracle1′: It outputs B = ga
1gπ

2 , where a is chosen uniformly at random from
Z
∗
q and π is the password of U.
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– Oracle2′: On input X ∈ G, it outputs a triple: gb2
1 , (X/gπ2

2 )b2 , gb4
1 gπ2

2 , where
b2, b4 ∈R Z∗q and π2 is CS’s password share.

– Oracle3′: On input U, V, W, B ∈ G and S1, it outputs h(W a, 0), Ua∗
, (Ua/V )a∗

only if S1 = h(W a), where a is the random number chosen by Oracle1′ when
outputting B. If Oracle1′ has never outputted B before, Oracle3′ returns ⊥.
Note that a∗ above is chosen uniformly at random by Oracle3′.

Oracle1′ outputs B in the form of first building block described in Sec. 2.2. It
gives no additional information about π. The output of Oracle2′ has forms of both
first and second building blocks described in Sec. 2.2. As explained, they give no
additional information about π or π2 if DDH problem is hard. For Oracle3′, no
particular password related information is involved and therefore do not provide
any additional information about π or π2.

3.2 Authentication

Unlike one-way or mutual authentication in a two-party setting, a secure TPAKE
should ensure that for each of the three parties (i.e. U, SS, CS), the party is given
enough evidence of the involvement of the other two parties before the party can
complete a protocol run without early abortion.

U authenticates CS and SS: The authentication idea is to have U send a ‘masked’
commitment of π, in the form of B = ga

1gπ
2 , to servers and require the servers

to work jointly to remove the commitment gπ
2 of π from B. If the returned

value is ga
1 , the two servers are authenticated. However, it is not trivial to do so

because all the communication channels are open and susceptible to both passive
and active attacks. For making the authentication idea work, blinding factors
and randomization techniques are introduced. We can see that SS computes
B1 = g−b1

1 Bg−π1
2 and CS computes B2 = (B1g

−π2
2 )b2 , where the component

g−b1
1 in the computation of B1 is the blinding factor; and the power b2 for

computing B2 is the randomization. The authentication idea remains the same,
that is, Bg−π1

2 when computing B1 and B1g
−π2
2 when computing B2, in other

words, having SS and CS remove gπ
2 from B using their knowledge of π1 and π2.

Note that after adding the blinding factor and randomization, the value received
by U becomes h(B3) = h(ga

1
b2b3) where b3 is the randomization introduced by

SS. This is to prevent a malicious CS from launching off-line dictionary attack
against an honest SS.

Note that randomization is an important technique to defend against off-line
dictionary attack while allowing an initiator (in this case, it is U) to authenticate.
This can be seen by imagine that the two servers were one single party holding
π. Upon receiving B = ga

1gπ
2 , the combined server computes S1 = h((B/gπ

2 )b′
)

for a random b′ ∈ Z∗q , and sends S1 and A2 = gb′

1 back to U. U then checks

if S1
?= h(Aa

2). Suppose an adversary impersonates U and sets B as ga′

1 . The
received response from the combined server will become h(ga′b′

1 g−πb′

2 ). We can
see that the adversary is not able to determine gb′

2 from all the known values
and therefore, is not able to launch off-line dictionary attack.
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CS authenticates SS and U: The approach is similar to the above. The ‘masked’
commitment of π2 is B4 = gb4

1 gπ2
2 . SS and U then work jointly to remove the

commitment gπ2
2 from B4 using their knowledge of π1 and π, respectively. After

introducing blinding factors and randomization techniques, the value received
by CS becomes S3 = h(gb4a∗b5

1 ). With A4 = ga∗b5
1 , CS can check if S3

?= h(Ab4
4 ).

As mentioned, the role of CS is to assist SS in authenticating U . Therefore, it
some security model, it may be fine if we remove the components corresponding
to authenticating SS and U by CS, that is, those related to B4. However, in a
more general security model, SS may make use of CS as an oracle for launch-
ing an unlimited and undetectable online dictionary attack for compromising
CS’s password share π2. Specified in our protocol, [B4, B5, B6, A3, A4, S3] are
added to provide this authentication. If without checking S3

?= h(Ab4
4 ) by CS,

SS can arbitrarily choose a trial password πguess and send B1 = g
πguess−π1
2 to

CS, then check if the received value B2 from CS, which should be of the form
(gπguess−π1

2 /gπ2
2 )b2 is equal to 1. Without S3, we can see that CS has no way to

find out if SS is launching this kind of online dictionary attacks. Therefore, SS
can simply repeat the trial above until the value of π2 is found. Without B4 and
the associated components for authenticating SS and U , this type of online dic-
tionary attacks is undetectable and therefore cannot be defended against using
the conventional system-level method which is commonly applied to limit the
number of unsuccessful login attempts (Sec. 1.2).

SS authenticates CS and U: The authentication idea is similar but with a dif-
ferent order. SS obtains a ‘masked’ commitment of π from U first. SS asks CS to
work together for removing the commitment of π. If the ‘masked’ commitment
received from the claimed U is properly formatted and CS also performs accord-
ing to the protocol, the commitment of π will be removed, with the blinding
factors and randomization remained as S2 = h(gab2b3

1 , 0). SS knows the value of
b3. From B2 = g

(a−b1)b2
1 , A1 = gb2

1 and b1, SS can compute gab2
1 . Hence SS can

verify if S2
?= h(gab2b3

1 ).

3.3 Key Privacy Against an Honest-But-Curious CS

In the following, we focus on discussing the key privacy against an honest-but-
curious CS rather than an eavesdropper. This is because the key privacy against
the honest-but-curious CS implies the key privacy against an eavesdropper.

Our idea is based on the Diffie-Hellman key exchange between U and SS. At
the end of the protocol, we target to have each of U and SS generate a session
key which is essentially computed from the Diffie-Hellman contributions of these
two parties, while ensuring the CS is not able to get the discrete logarithm of
any of the two contributions.

The session key established between U and SS is h(gab2b3
1 , U, SS), where b2 is

picked by CS. Due to the idealness assumption of h as a random oracle [3], CS
has to know gab2b3

1 in order to obtain the session key. This implies that CS has
to know gab3

1 . However, the only available information related to gab3
1 is ga

1 and
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gb3 . Hence CS has to solve the Computational Diffie-Hellman problem in order
to obtain the session key.

4 Performance

We now compare the performance of our proposed scheme with the YDB scheme
proposed by Yang, Deng and Bao [17] as their scheme is the only one currently
known to also satisfy all the requirements stated in Sec. 1.1.

Let |p| and |h| denote the bit length of p and the output of hash function h(.),
respectively. The performance comparison is given in Table 3.

Table 3. Performance Comparison

U SS CS

Computation YDB scheme 5/2 6/1 3/1
(exponentiations) our scheme 4/1 6/2 4/2

Communication YDB scheme 4|p| + 2|h| 8|p| + 3|h| 4|p| + |h|
(bits) our scheme 6|p| + 2|h| 11|p| + 2|h| 5|p| + 1|h|

Communication YDB scheme 6 10 4
(rounds) our scheme 3 6 3

Computational Complexity: Since the complexity of exponentiation dominates
a party’s computational overhead, we count the number of exponentiations re-
quired for each party. The digits before ”/” in the table denote the total number
of exponentiations performed by the party, the digits followed denote the num-
ber of exponentiations that can be pre-computed. Note that by leveraging on the
techniques in [11], each of ga

1gπ
2 , gb1

1 gπ1
2 , (B2A

b1)b3 and (B1/gπ2
2 )b2 can be com-

puted by a single exponentiation operation. We can see that the computational
complexity of our proposed scheme is comparable to that of YDB scheme.

Communication Performance in terms of Effective Bits: As |Q| is only one bit
longer than |p|, we do not distinguish them when evaluating the YDB scheme.
The number of bits transmitted by each party is comparable to the YDB scheme.
Note that this measures the total number of effective bits transmitted that are
related to the protocol. It does not include the additional overhead of headers
and trailers required for transferring the data packets in each communication
round. We will see just in the next point that our proposed scheme has much
fewer number of rounds than that of YDB scheme. Therefore, our scheme in-
curs much less communication overhead due to headers and trailers in actual
implementation.

Communication Performance in terms of Rounds : One round is a one-way
transmission of messages. Our proposed scheme has a total of six rounds while
YDB scheme requires altogether 10 rounds to complete one protocol run. Also
note that the number of rounds made by U is significantly reduced to half from
the original number. This is desirable especially for low-power wireless users.
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5 Conclusion and Future Work

We proposed a new PTAKE which outperforms all previously proposed ones in
terms of the number of communications rounds, while maintaining almost the
same extent of computational complexity.

This proposed scheme is particularly suitable for implementation on resource-
constrained wireless devices. Transmitting radio signals on these devices usually
consumes much more power than computation does. Furthermore, if we use
appropriate elliptic curve groups in actual implementation, the computational
requirement of our scheme can further be reduced. Therefore, our scheme which
reduces the number of communication rounds by 40% helps reducing battery
power consumption as well as improving the performance of actual implementa-
tion significantly.

While we examined the security of the proposed protocol, a formal treatment
of the system is necessary. Currently, there is no formal security model proposed
for PTAKE. Therefore, our future work is to formally define and validate the
security of PTAKE and provide formal proofs with various desirable security
features captured. Examples of desirable features are security against known-
key attacks3, forward secrecy4, etc.
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Abstract. Since the introduction of nominative signature in 1996, there
are three problems that have still not been solved. First, there is no con-
vincing application proposed; second, there is no formal security model
available; and third, there is no proven secure scheme constructed, given
that all the previous schemes have already been found flawed. In this
paper, we give positive answers to these problems. First, we illustrate
that nominative signature is a better tool for building user certification
systems which were originally implemented using universal designated-
verifier signature. Second, we propose a formal definition and adversarial
model for nominative signature. Third, we show that Chaum’s undeni-
able signature can be transformed to an efficient nominative signature
by simply using a standard signature. The security of our transformation
can be proven under the standard number-theoretic assumption.

1 Introduction

A nominative signature (NS) involves three parties: nominator A, nominee B
and verifier C. The nominator A arbitrarily chooses a message m and works
jointly with the nominee B to produce a signature σ called nominative signature.
The validity of σ can only be verified by B and if σ is valid, B can convince
the verifier C the validity of σ using a confirmation protocol ; otherwise, B can
convince C the invalidity of σ using a disavowal protocol. Based on the previous
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literature [13,11,17,9], we consolidate the security requirements for a nominative
signature as follows.

1. (Joint Work of Nominator and Nominee) A or B alone is not able to produce
a valid σ;

2. (Only Nominee Can Determine the Validity of Signature) Only B can verify
σ;

3. (Can Only be Verified with Nominee’s Consent) The validity of σ is only
verifiable with the aid of B, by running a confirmation/disavowal protocol
with B;

4. (Nominee Cannot Repudiate) If σ is valid, B cannot mislead C to believe
that σ is invalid using the disavowal protocol. If σ is invalid, B cannot mislead
C to believe that σ is valid using the confirmation protocol;

Since the introduction of nominative signature (NS) [13], it has been considered
as a dual scheme of undeniable signature (US) [4,2,5]. For an undeniable sig-
nature, its validity can only be verified with the aid of the signer, while for a
nominative signature, its validity can only be verified with the aid of the nominee,
rather than the nominator. Nominative signature is also related to designated
verifier signature (DVS) [12], designated confirmer signature (DCS) [3] and uni-
versal designated-verifier signature (UDVS) [15]. We illustrate their similarities
and differences below.

Parties Creator(s) Playing the Role of Prover
Involved of Signature A B C

US A, C A
√

NA ×
DCS A, B, C A

√ √ ×
DVS A, C A

√
NA ×

UDVS A, B, C A and B1 √ √ ×
NS A, B, C A and B × √ ×

Legend : A – Signer or Nominator (for NS); B – Confirmer (for DCS) or Signature
Holder (for UDVS) or Nominee (for NS); C – Verifier or Designated Verifier (for DCS
or UDVS); NA – not applicable.

As we can see, only NS does not allow the signer to prove the validity of a
signature to a third party.

1.1 User Certification Systems

Since the introduction of NS in 1996 [13], there are only a few schemes [13,11]
proposed. Unfortunately, all of them have already been found flawed [17,9]. Even
worse, there is no convincing application described and NS still remains as of the-
oretical interest only. In the following, we show that NS is actually a much better
tool for building user certification systems than UDVS [15] which was originally
believed to be one of the most suitable ways of implementing this type of systems.
1 A first creates a standard publicly verifiable signature and sends it securely to B; B

then generates a UDVS signature based on the received standard signature.
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UDVS, introduced by Steinfeld et al. [15] in 2003, allows a signature holder
B to convince a designated verifier C that B holds a signer A’s signature s
on some message m, while C cannot further convince anybody of this fact. As
illustrated in [15], UDVS is useful for constructing user certification systems,
which concern about showing the validity of users’ birth certificates, driving
licences and academic transcripts, issued by an authority A. In such a system,
a user B does not want a designated verifier C to disseminate B’s certificate s
(issued by A), while B needs to convince C that the certificate s is authentic,
that is, signed by A.

NS can also be used for this purpose, but in a more natural way. For UDVS,
A (the signer or the authority) should be trusted by B (the signature holder
or the user of a certificate) in a very strong sense. If A is malicious, there are
two attacks which will compromise B’s interest on protecting his certificates.
First, A may maliciously reveal the pair (s, m) to the public, and since s is
a standard publicly verifiable signature, once s becomes public, everyone can
verify its validity. B cannot show whether s is released by A because B himself
can also make s public. Second, A can generate a UDVS signature all by himself
because the UDVS signature can readily be generated from the public keys of
A and C in addition to the pair (s, m). Hence, A can impersonate B arbitrarily.
In contrast, NS does not have these weaknesses.

For NS, A cannot confirm or disavow a nominative signature σ (which is a
user certificate in this type of applications) and σ is not publicly verifiable. Also,
B does not have a publicly verifiable signature issued by A. Note that A can
still issue standard signature on m or NS on m jointly with other nominees. But
these events will just show that A is dishonest.

1.2 Related Work

The notion and construction of nominative signature (NS) were first proposed by
Kim, Park and Won [13]. However, their construction was later found flawed [11]
as the nominator in their construction can always determine the validity of a nom-
inative signature, that is, violating Property 2 of NS described at the beginning of
Sec. 1. In [11], Huang and Wang proposed the notion of convertible nominative sig-
nature, which allows the nominee to convert a nominative signature to a publicly
verifiable one. They also proposed a new scheme. However, in [17,9], it was found
that the nominator in their scheme can generate valid signatures on his own and
show the validity of the signature to anyone without the consent of the nominee.
That is, their scheme does not satisfy Properties 1 to 3.

In [11], a definition and some requirements for nominative signature were
specified. However, their definition does not match with the scheme they pro-
posed and the set of security requirements is incomplete and does not seem to
be formal enough for provable security.

Our Results. We propose a formal definition and a rigorous set of adversarial
models for nominative signature. We also propose a provably secure construction,
which is based on Chaum’s undeniable signature [2] and a strongly unforgeable
signature scheme.
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Paper Organization. The definition of nominative signature and its security
models are specified in Sec. 2. The description and security analysis of our con-
struction are given in Sec. 3. The paper is concluded in Sec. 4.

2 Definitions and Security Models

A nominative signature (NS) consists of three probabilistic polynomial-time
(PPT) algorithms (SystemSetup, KeyGen, Vernominee) and three protocols (SigGen,
Confirmation, Disavowal).

1. SystemSetup (System Setup): On input 1k where k ∈ N is a security param-
eter, it generates a list of system parameters denoted by param.

2. KeyGen (User Key Generation): On input param, it generates a public/private
key pair (pk, sk).

3. Vernominee (Nominee-only Verification): On input a message m, a nominative
signature σ, a public key pkA and a private key skB, it returns valid or invalid.

An NS proceeds as follows. Given a security parameter k ∈ N, SystemSetup
is invoked and param is generated. KeyGen is then executed to initialize each
party that is to be involved in the subsequent part of the scheme. One party
called nominator is denoted by A. Let (pkA, skA) be the public/private key
pair of A. Let B be the nominee that A nominates, and (pkB, skB) be B’s
public/private key pair. In the rest of the paper, we assume that entities can be
uniquely identified from their public keys. To generate a nominative signature
σ, A chooses a message m ∈ {0, 1}∗, and carries out SigGen protocol with B.
The protocol is defined as follows.

SigGen Protocol: Common inputs of A and B are param and m. A’s additional
input is pkB, indicating that A nominates B as the nominee; and B’s addi-
tional input is pkA indicating that A is the nominator. At the end, either A
or B outputs σ. The party who outputs σ should be explicitly indicated in
the actual scheme specification.

The validity of a nominative signature σ on message m (with respect to pkA and
pkB) can be determined by B as Vernominee(m, σ, pkA, skB). To convince a third
party C on the validity or invalidity of (m, σ, pkA, pkB), B as a prover and C as
a verifier carry out the Confirmation or Disavowal protocol as follows.

Confirmation/Disavowal Protocol: On input (m, σ, pkA, pkB), B sets μ to 1
if valid ← Vernominee(m, σ, pkA, skB); otherwise, μ is set to 0. B first sends
μ to C. If μ = 1, Confirmation protocol is carried out; otherwise, Disavowal
protocol is carried out. At the end of the protocol, C outputs either accept
or reject while B has no output.

Correctness. Suppose that all the algorithms and protocols of a nominative
signature scheme are carried out accordingly by honest entities A, B and C, the
scheme is said to satisfy the correctness requirement if

1. valid ← Vernominee(m, σ, pkA, skB); and
2. C outputs accept at the end of the Confirmation protocol.



Formal Definition and Construction of Nominative Signature 61

Validity of a Nominative Signature. A nominative signature σ on message m
with respect to nominator A and nominee B is valid if Vernominee(m, σ, pkA, skB) =
valid. In this case, we say that quadruple (m, σ, pkA, pkB) is valid. Note that only
B can determine the validity of σ.

In the following, we propose and formalize a set of security notions for nomi-
native signature. They are (1) unforgeability, (2) invisibility, (3) security against
impersonation, and (4) non-repudiation.

2.1 Unforgeability

Intuitively, an adversary should not able to forge a valid nominative signature if
any of the private keys of A and B is not known. Our game below is based on the
notion of existential unforgeability against chosen message attack [8] with the
extension of allowing access to confirmation/disavowal oracle based on passive
attack or active/concurrent attack introduced by Kurosawa and Heng [14] in the
undeniable signature setting.

We also allow the adversary to access an oracle called SignTranscript which
simulates various interactions between the adversary and other honest entities.
In addition, the adversary may collude with other parties or claim that some
particular party is his nominee without the party’s consent. Hence we also allow
the adversary to adaptively access CreateUser oracle and Corrupt oracle as defined
below.

Game Unforgeability: Let S be the simulator and F be a forger.

1. (Initialization) Let k ∈ N be a security parameter. First, param ←
SystemSetup(1k) is executed and key pairs (pkA, skA) and (pkB, skB) for
nominator A and nominee B, respectively, are generated using KeyGen. Then
F is invoked with inputs 1k, pkA and pkB.

2. (Attacking Phase) F can make queries to the following oracles:
– CreateUser: On input an identity, say I, it generates a key pair (pkI , skI)

using KeyGen and returns pkI .
– Corrupt: On input a public key pk, if pk is generated by CreateUser or

in {pkA, pkB}, the corresponding private key is returned; otherwise, ⊥
is returned. pk is said to be corrupted.

– SignTranscript: On input a message m, two distinct public keys, pk1

(the nominator) and pk2 (the nominee) such that at least one of them is
uncorrupted, and one parameter called role ∈ {nil, nominator, nominee},

• if role = nil, S simulates a run of SigGen and returns a valid quadru-
ple (m, σ, pk1, pk2) and transσ which is the transcript of the execu-
tion of SigGen;

• if role = nominator, S (as nominee with public key pk2) simulates a
run of SigGen with F (as nominator with pk1);

• if role = nominee, S (as nominator with pk1) simulates a run of
SigGen with F (as nominee with public key pk2).
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– Confirmation/disavowal: On input a message m, a nominative signature
σ and two public keys pk1 (the nominator), pk2 (the nominee), let sk2

be the corresponding private key of pk2, the oracle responds based on
whether a passive attack or an active/concurrent attack is mounted.

• In a passive attack, if Vernominee(m, σ, pk1, sk2) = valid, the oracle
returns a bit μ = 1 and a transcript of the Confirmation protocol.
Otherwise, μ = 0 and a transcript of the Disavowal protocol are
returned.

• In an active/concurrent attack, if Vernominee(m, σ, pk1, sk2) = valid,
the oracle returns μ = 1 and then proceeds to execute the Confir-
mation protocol with F (acting as a verifier). Otherwise, the oracle
returns μ = 0 and executes the Disavowal protocol with F . The differ-
ence between active and concurrent attack is that F interacts serially
with the oracle in the active attack while F interacts with different
instances of the oracle concurrently in the concurrent attack.

3. (Output Phase) F outputs a pair (m∗, σ∗) as a forgery of A’s nominative
signature on message m∗ with B as the nominee.

The forger F wins the game if Vernominee(m∗, σ∗, pkA, skB) = valid and (1) F does
not corrupt both skA and skB using oracle Corrupt; (2) (m∗, pkA, pkB, role) has
never been queried to SignTranscript for any valid value of role; (3) (m∗, σ′, pkA,
pkB) has never been queried to Confirmation/disavowal for any nominative sig-
nature σ′ with respect to pkA and pkB. F ’s advantage is defined to be the
probability that F wins.

Definition 1. A nominative signature scheme is said to be unforgeable if no
PPT forger F has a non-negligible advantage in Game Unforgeability.

Note that he second restriction above does not disallow F to query SignTranscript
with (m∗, pkA, pk′, role) provided that any pk′ �= pkB.

2.2 Invisibility

We now formalize the requirement that only nominee B can determine whether a
nominative signature is valid. We adopt the formalization idea given by Galbraith
and Mao [7]. The formalization is indistinguishability based and is defined to
distinguish between a valid signature σ on message m or just some value chosen
uniformly at random from the corresponding signature space. Note that if the
scheme is unforgeable in the sense of Def. 1, then it is negligible that a uniformly
chosen value from the signature space is a valid signature on m.

Game Invisibility: The initialization phase is the same as that of Game Unforge-
ability and the distinguisher D is permitted to issue queries to all the oracles
described in the attacking phase of Game Unforgeability.

1. At some point in the attacking phase, D outputs a message m∗ and requests
a challenge nominative signature σ∗ on m∗. The challenge σ∗ is generated
based on the outcome of a hidden coin toss b.
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– If b = 1, σ∗ is generated by running SigGen.
– If b = 0, σ∗ is chosen randomly from the signature space of the nomina-

tive signature scheme with respect to pkA and pkB.
2. At the end of the game, D outputs a guess b′.

D wins the game if b′ = b and (1) D does not corrupt skB; (2) the quadru-
ple (m∗, pkA, pkB, role), for any valid value of role, has never been queried
to SignTranscript; (3) (m∗, σ∗, pkA, pkB) has never been queried to Confirma-
tion/disavowal.

D’s advantage in this game is defined as |Pr[b′ = b] − 1
2 |.

Definition 2. A nominative signature scheme is said to have the property of
invisibility if no PPT distinguisher D has a non-negligible advantage in Game
Invisibility.

2.3 Security Against Impersonation

The notion of impersonation was first proposed by Kurosawa and Heng [14] in the
context of undeniable signature. Instead of achieving zero-knowledgeness, it is
noticed that the actual security requirement is to prevent the proving capability
of the validity of a signature from being given away to any illegitimate party. This
requirement is also commonly referred to as non-transferability. We consider the
following game against an impersonator I.

Game Impersonation: The initialization phase is the same as that of Game
Unforgeability. The game has two phases as follows.

– (Preparation Phase) Impersonator I is invoked on input 1k, pkA, pkB, skA.
In this phase, I may query any of the oracles defined in Game Unforgeability.
I prepares a triple (m∗, σ∗, μ) where m∗ is some message, σ∗ is a nominative
signature (i.e. σ∗ is in the signature space with respect to pkA and pkB) and
μ is a bit.

– (Impersonation Phase) If μ = 1, I (as nominee) executes Confirmation pro-
tocol with the simulator (as a verifier) on common inputs (m∗, σ∗, pkA, pkB).
If μ = 0, I executes Disavowal protocol with the same set of inputs.

I wins if the simulator outputs accept at the Impersonation Phase while I has
never corrupted skB in the game. I’s advantage is defined to be the probability
that I wins.

Definition 3. A nominative signature scheme is said to be secure against im-
personation if no PPT impersonator I has a non-negligible advantage in Game
Impersonation.

2.4 Non-repudiation

Due to the property of invisibility, no one except the nominee can determine
the validity of a signature. In addition, even the nominator A and the nominee



64 D.Y.W. Liu et al.

B jointly generate a valid quadruple (m, σ, pkA, pkB), this only indicates that
Vernominee(m, σ, pkA, skB) outputs valid. It does not imply that nominee B cannot
cheat by executing Disavowal protocol successfully on (m, σ, pkA, pkB) with a
verifier. Therefore, for ensuring that B cannot repudiate, we require this security
notion. We consider the game below against a cheating nominee B.

Game Non-repudiation: The initialization phase is the same as that of Game
Unforgeability and the cheating nominee B can query any of the oracles defined
in Game Unforgeability. skB is also given to B.

– (Preparation Phase) B prepares (m∗, σ∗, μ) where m∗ is some message and
σ∗ is a nominative signature. μ = 1 if Vernominee(m∗, σ∗, pkA, skB) = valid;
otherwise, μ = 0.

– (Repudiation Phase) If μ = 1, B executes Disavowal protocol with the simu-
lator (acting as a verifier) on (m∗, σ∗, pkA, pkB) but the first bit sent to the
simulator is 0. If μ = 0, B executes Confirmation protocol but the first bit
sent to the simulator is 1.

B wins the game if the simulator acting as the verifier outputs accept. B’s ad-
vantage is defined to be the probability that B wins.

Definition 4. A nominative signature scheme is said to be secure against repu-
diation by nominee if no PPT cheating nominee B has a non-negligible advantage
in Game Non-repudiation.

3 Our Construction

In this section, we propose an efficient and provably secure construction of nom-
inative signature. Our construction is based on Chaum’s undeniable signature
[2,14] and a strongly unforgeable signature scheme [1,16,10]. One desirable prop-
erty of our construction is that one may generalize it to a generic scheme or in-
stantiate it with some other undeniable signature schemes. We leave this as our
further investigation. In the following, let σundeni be Chaum’s undeniable signa-
ture and σstandard a strongly unforgeable standard signature. Also let k ∈ N be
a system parameter.

SystemSetup: The algorithm generates a cyclic group G of prime order q ≥
2k, a generator g, and a hash function H : {0, 1}∗ → G. Let param =
(k, G, q, g, H). We say that (g, gu, gv, gw) is a DH-tuple [14] if w = uv mod q;
otherwise, it is a non-DH-tuple.

KeyGen: On input param, (pk, sk) is generated where sk = (x, Sig) for some
random x ∈R Zq and standard signature generation algorithm Sig, and
pk = (y, V er) for y = gx and standard signature verification algorithm V er.
We use pkA = (yA, V erA) and skA = (xA, SigA) to denote nominator A’s
public and private key, respectively. Similarly, let (pkB, skB) be nominee B’s
public/private key pair.
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SigGen Protocol: Let m ∈ {0, 1}∗ be a message. On input param and m, and
specific input pkB for A and pkA for B, the protocol is carried out as follows.
1. B sends σundeni = H(m‖pkA)xB to A.
2. B then proves to A that (g, yB, H(m‖pkA), σundeni) is a DH-tuple using

a Witness Indistinguishable (WI) protocol [6,14]2.
3. If A accepts, A outputs σ = (σundeni, σstandard) where σstandard =

SigA(σundeni) which is A’s standard signature on σundeni.

We say that σ = (σ1, σ2) is a nominative signature (i.e. σ is in the signature space
with respect to pkA and pkB) if σ1 ∈ G and σ2 is in the set of A’s signature
on “message” σ1, that is, V erA(σ1, σ2) = 1 meaning that σ2 is a valid standard
signature of “message” σ1.

Vernominee: On input (m, σ, pkA, skB), where σ = (σundeni, σstandard) is a nomi-
native signature (i.e. σ is in the signature space defined as above), if σundeni =
H(m‖pkA)xB , output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: On input (m, σ, pkA, pkB) where σ is a
nominative signature, if Vernominee(m, σ, pkA, skB) = valid, B sends μ = 1
to C; otherwise, μ = 0 is sent to C. B then proves/disproves to C the DH-
tuple/non-DH-tuple (g, yB, H(m‖pkA), σundeni) using WI protocols [6,14].

3.1 Discussions

Although each party’s public or private key has two components, for nominator,
only the component of standard signature (i.e. SigA, V erA) is used; while for
nominee, only the component of undeniable signature (i.e. xB, yB) is used. In
practice, the nominee of one message can be the nominator of another message.
So we make the description above general enough for this practical scenario.
Also, and more important, it abides by the definition (Sec. 2). In some settings,
the two components of each key can be combined. For example, if both A and
B are using discrete-log based keys for generating standard signatures, then one
private key x is enough for each of them. Namely, each user can use the same
private key for generating both standard signatures (e.g. Schnorr’s signature
scheme) and Chaum’s undeniable signatures.

The standard signature σstandard generated by A only authenticates the “mes-
sage” σundeni rather than the actual message m. There is still no proof on
whether (σundeni, σstandard) corresponds to m. Someone can replace m with
another message, say m′, and claim that (σundeni, σstandard) corresponds to m′.
No one can prove this claim, only nominee can.

Different from Chaum’s original scheme [2] (precisely, we use the hash vari-
ant of Chaum’s scheme [14]), the undeniable signature σundeni is computed as
H(m‖pkA)xB rather than H(m)xB as in the original scheme. It is important to

2 First observed by Kurosawa and Heng [14], Chaum’s undeniable signature (i.e.
σundeni) can be confirmed/disavowed if the prover knows one of the two witnesses,
that is, xB or discrete logarithm of H(m‖pkA). This allows us to use the WI protocol.
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include A’s public key. Otherwise, the scheme will be insecure against unforge-
ability (Sec. 2.1) and invisibility (Sec. 2.2) due to the capture of multi-party
environment in our security models. For example, under the model of unforge-
ability (Sec. 2.1), suppose pkA is not included, forger F in the model can cor-
rupt A’s private key skA, then query SignTranscript on (m, pkI , pkB , nil) where
pkI is some public key returned by CreateUser. As defined, the game simulator
will return a valid quadruple (m, σ, pkI , pkB) where pkB indicates the nomi-
nee. Note that σ = (H(m)xB , SigI(H(m)xB )). Finally, F outputs (m∗, σ∗ =
(σundeni∗, σstandard∗), pkA, pkB) where m∗ = m, σundeni∗ = H(m)xB and
σstandard∗ = SignA(H(m)xB ). This attack shows that a malicious party A can
set a party B up and claim that B is A’s nominee even B is not.

3.2 Security Analysis

We now analyze the security of the construction proposed above with respect to
the security notions formalized in Sec. 2.

Lemma 1. Let k ∈ N be a security parameter. For the nominative signature
scheme proposed above, suppose a (t, ε, Q)-forger has obtained the nominee B’s
private key skB and is able to forge a valid nominative signature with probability
at least ε, there exists a (t′, ε′)-adversary which can existentially forge a standard
signature under the model of chosen message attack [8] with probability at least
ε′ = (1 − 2−kQ)ε after running at most time t′ = t + Qtq + c where tq is the
maximum time for simulating one oracle query and c is some constant.

Lemma 2. Let k ∈ N be a security parameter. For the nominative signature
scheme proposed above, suppose a (t, ε, Q)-forger has obtained the nominator
A’s private key skA and is able to forge a valid nominative signature, there
exists a (t′, ε′)-adversary which can solve a CDH (Computational Diffie-Hellman)
problem instance with probability at least ε′ = (1 − 2−k)(1 − 2−kQ)Q−1ε after
running at most time t′ = t+Qtq+c where tq is the maximum time for simulating
one oracle query and c is some constant.

Theorem 1 (Unforgeability). The nominative signature scheme proposed
above is unforgeable (Def. 1) if there exists a standard signature scheme which
is existentially unforgeable against chosen message attack [8] and CDH problem
in G is hard.

The theorem follows directly from Lemma 1 and 2.

Theorem 2 (Invisibility). The nominative signature scheme proposed above
has the property of invisibility (Def. 2) under the Decisional Diffie-Hellman
(DDH) assumption, if the underlying standard signature scheme is strongly ex-
istentially unforgeable against chosen message attack (strong euf-cma [1,16,10]).

Due to page limitation, we leave all the security proofs in the full version of this
paper. We remark that our proof requires a stronger sense of secure signature
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scheme (namely, strong euf-cma secure) for invisibility, rather than a conven-
tional euf-cma secure signature scheme as required for achieving unforgeability.
It prevents the distinguisher in Game Invisibility from querying the Confirma-
tion/disavowal oracle on an existentially forged value of the challenge signature
σ∗. In practice, strong euf-cma secure signature schemes can be constructed ef-
ficiently. We refer readers to [1,16,10] for examples of efficient generic construc-
tions of strong euf-cma secure signature schemes. Other methods in place of a
strong euf-cma secure signature scheme may be feasible. For example, we may
define an equivalence class of all valid signatures of σ∗ and restrict the Confir-
mation/disavowal oracle from responding to any of the values in the class. We
leave this as our further investigation.

Theorem 3 (Security Against Impersonation). The nominative signature
scheme proposed above is secure against impersonation (Def. 3) under the dis-
crete logarithm (DLOG) assumption.

Both confirmation and disavowal protocols use the WI protocols of [14], that
have been proven to satisfy the requirement of security against impersonation
in a similar model (Theorem 3 of [14]).

Theorem 4 (Non-repudiation). The nominative signature scheme proposed
above is secure against repudiation by nominee (Def. 4).

This follows directly the soundness property of the WI proofs in [14].

4 Conclusion

In this paper, we proposed a rigorous set of security models for capturing the
security notions of nominative signature. We also proposed a provably secure con-
struction which efficiently converts Chaum’s undeniable signature to a nomina-
tive signature using a strongly unforgeable signature scheme. We hope that with
this formal security model, more provably secure nominative signature schemes
can be proposed in the near future. We also believe that the security model is of
independent interest and further enhancement of the security model is feasible.
We consider this to be our future work.
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Abstract. We construct a short group signature which is proven secure
without random oracles. By making certain reasonable assumptions and
applying the technique of non-interactive proof system, we prove that
our scheme is full anonymity and full traceability. Compared with other
related works, such as BW06 [9], BW07 [10], ours is more practical due
to the short size of both public key and group signature.

Keywords: Group signature, standard model, short signature, non-
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1 Introduction

Group signature is a useful cryptographical tool, which is widely discussed in the
literature and also has many potential applications, such as network meeting, on-
line business, and software trading. The similar requirement of these applications
is to allow a member to sign a message on behalf of the group, and still remain
anonymous within the group. Group signature schemes meet this requirement by
providing anonymity and traceability at the same time, that is, a group signature
can be related with its signer’s identity only by a party who possesses an open
authority. In such environment, there exists a group manager to distribute certifi-
cates, open authority and other group settings. If one group member generates a
group signature, anyone can only verify the signature by using group public pa-
rameters. When some dissention happens, an opener finds out the real signer’s
identity. In this way, group members could protect their privacy.

In 1991, Chaum and van Heyst [13] firstly proposed group signature. Then,
many papers on this subject proposed various of approaches to give a secure
and practical group signature scheme. There exist a lot of practical schemes
secure in the random oracle model [2,7,19,20,21]. However, Canetti, Goldreich
and Halevi [11,12,14] have shown that security in the random oracle model does
not imply the security in the real world in that a signature scheme can be secure
in the random oracle model and yet be broken without violating any particular
intractability assumption, and without breaking the underlying hash functions.
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Therefore, to design a secure group signature scheme in the standard model
becomes an open and interesting research problem. Bellare et. al. introduced se-
curity definitions for group signatures and proposed a scheme based on trapdoor
permutation in [6]. Furthermore, Bellare et. [8] strengthened the security model
to include dynamic enrollment of members. After that, Groth [15] also gave a
group signature scheme based on bilinear groups which is proven CCA secure
in the standard model under the decisional-linear assumption. Their scheme
was constructed in the BSZ-model [8], but still the size of group signature is
enormous.

Ateniese, Camenisch, Hohenberger and de Medeiros [1] designed a practical
group signature with high efficiency which is also secure in the standard model.
The drawback of their scheme was that if the user’s private key is exposed, it
can be used to trace the identity of the user’s past signatures. Unfortunately,
this is not according with BSZ-models, and needs to be prevented.

Boyen and Waters [9] suggested group signature schemes that are secure in a
restricted version of the BMW-model [6], where the anonymity of the members
relies on the adversary can not make any query on the tracing of group signature.
The size of both public parameter and group signature are both logarithm of
identity and message. Afterwards, they [10] proposed a group signature scheme
the signature of which is of constant size (only 6 group elements) of signature.
However, the size of public parameter is still logarithm of identity. Groth also
presented a group signature scheme [16] based on non-interactive witness indis-
tinguishable proof of knowledge and other existing tools, which enhances the
security notion of BW [9,10]. We will compare our scheme with theirs in Section
7, specifically.

Our Contribution
We propose a new group signature scheme secure in the standard model. We
use short signature [3] and non-interactive proof system [17] as the foundation
to construct ours. Then we prove our scheme is secure in a restricted BMW-
model. Furthermore, the sizes of both public parameter and group signature are
reduced to two constants, and are shorter than that of both schemes in [10,16].
To the best of our knowledge, our group signature is the shortest one secure in
the standard model. Besides, the overall computational cost of our scheme is
low. Therefore, our scheme is more practical compared with the others.

Roadmap
The rest of this paper is arranged as follows. In next section, we provide the
preliminaries of our scheme including bilinear groups of composite order and
complexity assumptions. In Section 3, we describe the formal model of group
signature scheme. Then we propose the two-level signature and group signature
schemes in Section 4 & 5, respectively. We give the details of security proofs in
Section 6. Finally, we draw comparisons between ours and other related works
in Section 7 and summarize our paper in Section 8.
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2 Preliminaries

2.1 Bilinear Groups of Composite Order

Recently, a lot of cryptographical schemes are based on bilinear groups of com-
posite order. We briefly review some notions about it from other related works
[5,18,17,9,10].

Consider two finite cyclic groups G and GT having the same order n, where
n = pq, p, q are large primes and p �= q. It is clear that the respective group
operation is efficiently computable. Assume that there exists an efficiently com-
putable mapping e : G × G → GT , called a bilinear map or pairing, with the
following properties.

– Bilinear: For any g, h ∈ G, and a, b ∈ Zn, we have e(ga, hb) = e(g, h)ab,
where the product in the exponent is defined modulo n.

– Non-degenerate: ∃ g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

– Computable: There is an efficient algorithm to compute e(g, h) for all g, h ∈ G.

2.2 Complexity Assumptions

Before describing our new group signature, we firstly introduce the complexity
assumptions from other related works [5,18,17] and then propose new ones.

Subgroup Decision Problem. The subgroup decision problem in G of com-
posite order n = pq is defined as follows: given a tuple (n, G, GT , e) and an
element h selected at random either from G or from Gq as input, output 1 if
h ∈ Gq; else output 0.

Definition 1. We say that the subgroup decision assumption holds for generator
GBGN if any non-uniform polynomial time adversary A we have

Pr[(p, q, G, GT , e, g) ← GBGN (1k); n = pq; r ← Z∗n;
h = gr : A(n, G, GT , e, g, h) = 1]

= Pr[(p, q, G, GT , e, g) ← GBGN (1k); n = pq; r ← Z∗n;
h = gpr : A(n, G, GT , e, g, h) = 1]

l-Strong Diffie-Hellman Problem. [3] The l-SDH problem in G is defined as
follows: given a (l+1)-tuple (g, gx, g(x2), ..., g(xl)) as input, output a pair (c, g

1
x+c )

where c ∈ Z∗p . An algorithm A has advantage ε in solving l-SDH in G if

Pr[A(g, gx, g(x2), ..., g(xl)) = (c, g
1

x+c )] ≥ ε

Definition 2. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the l-SDH problem in G.
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Now, we give some new assumptions and observe the relationship between them.

l-One More Strong Diffie-Hellman Problem. (l-OMSDH) The l-one more
strong Diffie-Hellman problem in the prime-order bilinear group G is defined as
follows: on input three generator g, gx ∈ G, and l distinct tuples (ci, g

1
x+ci ),

where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tuple (c, g
1

x+c ) distinct of all the
others. An algorithm A has advantage ε in solving l-OMSDH in G if

Pr[A(g, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (c, g
1

x+c )] ≥ ε,

where c �= ci, for i = 1, 2, ..., l

Definition 3. We say that the (l, t, ε)-OMSDH assumption holds in G if no
t-time algorithm has advantage at least ε in solving the l-OMSDH problem in G.

l-Modified One More Strong Diffie-Hellman Problem. (l-MOMSDH)
The l-modified one more strong Diffie-Hellman problem in the prime-order bi-
linear group G is defined as follows: on input three generator g, gx ∈ G, and
l distinct tuples (ci, g

1
x+ci ), where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tu-

ple (gc, g
1

x+c , g
1

c+m , m) where c /∈ {c1, ..., ci} and m ∈R Z. An algorithm A has
advantage ε in solving l-SDH in G if

Pr[A(g, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (gc, g
1

x+c , g
1

c+m , m)] ≥ ε,

where c �= ci, for i = 1, 2, ..., l

Definition 4. We say that the (l, t, ε)-MOMSDH assumption holds in G if no t-
time algorithm has advantage at least ε in solving the l-MOMSDH problem in G.

It is easy to see that for any l ≥ 1, hardness of the l-SDH problem implies
hardness of the l-OMSDH problem in the same group. Meanwhile, hardness of
the l-MOMSDH problem implies hardness of the l-OMSDH problem in the same
group. To be more convincing, we claim all of these problems are hard to solve,
and the proof of them will appear in the full paper.

3 Formal Model of Group Signatures

In this section, we introduce some basic models and security issues which have
been defined in the papers [9,10]. A group signature scheme consists of the
following algorithms: Setup, Join, Sign, Verify and Trace.

1. Setup: Taking as input the system security parameter λ, this algorithm
outputs group’s public parameter PP for verifying signatures, a master key
MK for enrolling group members, and a tracing key TK for identifying signers.

2. Join: Taking as input the master key MK and an identity id, and outputs a
unique identifier sid and a private signing key Kid which is to be given to
the user. That is: Kid ← Join(PP, MK, id).



Short Group Signature Without Random Oracles 73

3. Sign: Taking as input a user’s private key Kid and a message M , and outputs
a group signature σ. That is σ ← Sign(PP, Kid, M).

4. Verify: Taking as input a message M , a signature σ, and the group’s public
parameter PP, and outputs valid or invalid. That is ”Valid” or ”Invalid” ←
Verify(PP, σ, M).

5. Trace: Taking as input a group signature σ, and a tracing key TK, and
outputs an identity sid or ⊥. That is sid or ⊥ ← Trace(PP, σ, TK)

Consistency. We require that the following equations hold.

Verify(PP, Sign(PP, Kid, M), M) = Valid

Trace(PP, Sign(PP, Kid, M), TK) = sid

Security.
Bellare, Micciancio, and Warinschi [6] presented the fundamental properties of
group signatures, which are considered to be restrictions in the following designs.
The most two important properties are:

Full Anonymity which requires that no PPT adversary is able to find the
identity of a group signature. The game could be described as follows: the adver-
sary A could firstly query some private keys and some valid signatures from the
simulator B, then A outputs id1, id2, m and sends them to B. B random choose
b ∈ {0, 1} and generate σb corresponding with (idb, m). If A has negligible advan-
tage to guess the correct b, our group signature scheme is full anonymity (CPA).
We notice that if we give the trace oracle to the adversary, the full anonymity
is enhanced, which is similar with the CCA-secure notion. In this paper, we
following [10] and using non-interactive proof system to design a simple group
signature in the CPA-full anonymity notion.

Full Traceability which requires that no forged signatures, even if there
exists a coalition of users. The game could be described as follows: the adversary
A is given group public parameters PP and the tracing key TK. Then A could
query some private keys and some valid signatures from the simulator B. The
validity of signature and identity tracing could be checked by A. At some point,
A outputs a forged group signature σ∗ with its tracing identity id∗ and message
m∗. The restrictions are that the private key of id∗ and (id∗, m∗) should not be
queried before. If A has only negligible advantage to forge a valid signature, our
group signature scheme is full traceability.

We refer the reader to [6] for more details of these and related notion.

4 Hierarchical Signatures

We build a hierarchical signature scheme based on the short signature proposed
by BB04 [3]. To implement a group signature scheme, we construct a short
two-level hierarchical signature with existential unforgeability against adaptive
chosen message attacks based on l-MOMSDH assumption. The first level can be
seen as a certificate that signed by the group manage, while the second level is
a short signature on message m.
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4.1 Two-Level Signature Scheme

Let λ be the security parameter. Suppose the user’s identity id and the message
M are chosen from {0, 1}λ. We build a group G with order n = pq and record g
as a generator of Gp, where Gp is a subgroup of G with order p. There exists a
bilinear map e from G × G to GT .

Setup(1λ): It firstly generates the master key MK = z ∈ Zp and calculates
the public parameter PP = {Z = gz} ∈ Gp. Moreover, it generates the public
collision-resistant hash function H : {0, 1}λ → Zp.
Extract(PP,MK, id): To create a private key for an user, it chooses a secret
value sid ∈ Zp and return:

Kid = (K1, K2) = (sid, g
1

z+sid ) ∈ Zp × Gp

Note that the value z + sid must lie in Z∗p

Sign(PP, Kid, M): To sign a message M ∈ {0, 1}λ, the algorithm generates and
outputs:

σ = (σ1, σ2, σ3) = (gsid , g
1

z+sid , g
1

sid+H(M) )
Note that the probability of sid + H(M) ≡ 0 (mod p) is negligible.

Verify(PP, M, σ): To verify whether the signature σ is valid for a message M ,
the algorithm checks:

e(Zσ1, σ2)
?= e(g, g)

e(gH(M)σ1, σ3)
?= e(g, g)

If the above two equations both hold, the verifier outputs valid; else outputs
invalid.

Notice that this signature scheme doesn’t reveal the user’s identity, the private
key generator could record the mapping from id to sid. However, the signatures
signed by one user can be easily linked with invariant values σ1, σ2. We mod-
ified two-level hierarchical signature scheme to group signature which achieves
unlinkability and anonymity by using non-interactive proof system mentioned in
G07 [16].

4.2 Existential Unforgeability

The two-level signature scheme proposed above is existential unforgeable against
adaptive chosen message attacks. We review the short group signature in BB04,
and prove the security issues based on the hardness of q-SDH and l-MOMSDH
problems.

Theorem 1. Our two-level signature scheme is (t, qe, qs, ε)-secure against ex-
istential forgery under a chosen message attack provided that (t′, q, εOMSDH)-
OMSDH assumption and (t′′, l, εMOMSDH)-MOMSDH assumption hold in Gp,
where

ε ≤ 2qsεOMSDH + 2εMOMSDH and t ≈ max(t′, t′′), q ≥ qs + 1 and l ≥ qe + qs

The proofs are detailed in the full paper.
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5 Proposed Group Signature

We now present the group signature scheme in details.

5.1 Schemes

The group signature scheme is described as the following algorithms. Figure 1.
presents the scheme executed by three parties: group manager, user and verifier.

Setup(1λ): The input is a security parameter 1λ. Suppose the maximum group
members 2k and the signing message in {0, 1}m, where k = O(λ), m = O(λ). It
firstly chooses n = pq where p, q are random primes of bit size �log2p, �log2q =
Θ(λ) > k. We builds a cyclic bilinear group G and its subgroup Gp and Gq of
respective order p and q. Denote g a generator of G and h a generator of Gq.
Next, The algorithm picks a random exponents z ∈ Z∗n, and defines Z = gz ∈ G.
Additionally, a public collision-resistant hash function H is from {0, 1}m to Zn.

The public parameters consist,

PP = (g, h, Z) ∈ G × Gq × Gp

The master key MK and the tracing key TK are

MK = z ∈ Z
∗
n, TK = q ∈ Z

Join(PP, MK, id): The input is a user’s identity id. The algorithm assigns a secret
unique value sid ∈ Zn for tracing purpose. Then the secret key is constructed
as:

Kid = (K1, K2) = (sid, g
1

z+sid )

The user may verify that the key is well formed by checking

e(ZgK1 , K2)
?= e(g, g)

Sign(PP, id, Kid, M): To sign a message M ∈ {0, 1}m, a user parse Kid =
(K1, K2) and computes a two-level signature:

ρ = (ρ1, ρ2, ρ3) = (gK1 , K2, g
1

K1+H(M) )

Notice that, ρ does not satisfy the anonymity and unlinkability to anyone,
since ρ1, ρ2 are unchangeable for each signature. So, by adopting the same ap-
proach from BW07 [10] and G07 [16], we let the signers choose t1, t2, t3 ∈ Zn

and computes:
σ1 = ρ1 · ht1 , σ2 = ρ2 · ht2 , σ3 = ρ3 · ht3

Additionally, it computes a proof:

π1 = ρt1
2 (Zρ1)t2ht1t2 , π2 = ρt1

3 (gH(M)ρ1)t3ht1t3

The output signature is:

σ = (σ1, σ2, σ3, π1, π2) ∈ G5
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Verify(PP, M , σ): To check the validity of signature σ, the verifier calculates:

T1 = e(σ1Z, σ2) · e(g, g)−1, T2 = e(σ1g
H(M), σ3)e(g, g)−1

Then verifies:
T1

?= e(h, π1), T2
?= e(h, π2)

If the above equations hold, the verifier outputs valid; else outputs invalid.

Trace(PP, TK, σ): Let σ be a valid signature, the opener parses it and finds the
element σ1. Then, to trace the identity of signer, it calculates σq

1 and tests:

(σ1)q ?= (gsid · ht1)q = (gsid)q

Since all the (gsid)q can be pre-calculated firstly and recorded in a list by
opener, the time to find the identity id is linearly dependent on the number of
initial users.

Group Manager User Verifier

generate secret

value K1 = sid

K2 = g
1

z+sid

K1,K2−−−−→ Verifies

e(ZgK1 , K2)
?
= e(g, g)

random chooses t1, t2, t3 ∈ Z∗
q

σ1 = gK1 · ht1 Verifies

σ2 = K2 · ht2 T1 = e(σ1Z, σ2) · e(g, g)−1

σ3 = g
1

K1+H(M) · ht3 T2 = e(σ1g
H(M), σ3) · e(g, g)−1

π1 = Kt1
2 (ZgK1)t2ht1t2 T1

?
= e(π1, h)

π2 = g
t1

K1+H(M) gt3(K1+H(M))ht1t3 T2
?
= e(π2, h)

σ1,σ2,σ3,π1,π2−−−−−−−−−−→ if all pass, the signature is valid

Fig. 1. Short Group Signature Scheme

6 Security Analysis

We now analyze the security of our group signature scheme.

6.1 Full Anonymity

Since our scheme adopts the same approach from BW06 [9] and BW07 [10], we
only prove the security of our group signature scheme in the anonymity game
against chosen plaintext attacks. The proof sketch borrows from G07 [16]. That
is, if h is chosen from G, we achieve perfect hiding property. Meanwhile, if h
is chosen from Gq, we achieve perfect biding property. However, the adversary
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A can not distinguish these two different environment, since subgroup deci-
sion problem is unsolvable in polynomial time. Therefore, we give the following
theorem.

Theorem 2. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least ε. Then for every t′-time adversary A to break the
full anonymity, we have that AdvA < 2εsub, where t ≈ t′.

To prove the above theorem, the two lemmas are necessary.

Lemma 1. For all t′-time adversaries A, the probability to distinguish the true
environment and the simulated environment is negligible. That is AdvA−AdvA,S <
2εsub

Proof. Suppose there is a simulator B trying to solve subgroup problem. Upon
receiving a tuple (e, G, GT , n, h), he wants to find out whether h ∈ Gq or not.
Firstly, he setups the group signature scheme by choosing the public parameters
exactly as in the group signature scheme. Then B publishes them to the adversary
A. Whether h is chosen from Gq or not, B can always answer all queries, since it
knows the master key. If h ∈R Gq, then the simulated environment is identical
to the actual one.

At some point, the adversary A chooses a message M and two identities id
and id′. The constraints are the secret keys of id and id′, and (M, id), (M, id′)
should not be queried before. Then, B outputs the challenge signature with
(M, id∗), where id∗ ∈ {id, id′}. After that, A outputs its guess. If it is correct,
B outputs 1; else outputs 0. Denote by AdvB the advantage of the simulator B
in the subgroup decision game. As we know that

Pr[h ∈ G] = Pr[h ∈ Gq] =
1
2

we obtain that,
AdvA − AdvA,S = Pr[b = 1|h ∈ Gq] − Pr[b = 1|h ∈ G]

= 2Pr[b = 1, h ∈ Gq] − 2Pr[b = 1, h ∈ G]
= 2AdvB
< 2εsub

Thus, under our subgroup decision assumption in Section 2.2, the probability
to distinguish the actual environment and the simulated one is negligible. �

Lemma 2. For any adversary A, we have AdvA,S = 0

Proof. The proof sketch is similar to that of BW07 [10] and G07 [16]. We prove
that when h is chosen uniformly from G at random, instead of Gq, the adversary
A can not sense the identity from the challenge signature. Although the tracing
value sid may have been used to answer previous signing queries on (id, M) and
(id′, M), the challenge signature is statistically independent of the real identity.

To proceed, we write the challenge ciphertext is σ = (σ1, σ2, σ3, π1, π2).
Since the signature σ1, σ2, σ3 is blinded with random number h1, h2, h3 ∈ G,

respectively, they reveal nothing about the identity. Then, we give two signatures:
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σ with (id, M) and σ′ with (id′, M) and analyze two tuples π = (π1, π2), π′ =
(π′1, π

′
2).

If σ1 = σ′1, σ2 = σ′2 and σ3 = σ′3, we show that π and π′ do not reveal the
identity either.

gsidht1 = gsid′ ht′
1

g
1

z+sid ht2 = g
1

z+s
id′ ht′

2

g
1

sid+H(M) ht3 = g
1

s
id′+H(M) ht′

3

Suppose h = gη, ε = z+sid

z+sid′
, τ = sid+H(M)

sid′+H(M) , we obtain that

t′1 = t1 + sid−sid′
η

t′2 = t2 + 1
η ( 1

z+sid
− 1

z+sid′
) = t2 + 1−ε

η(z+sid)

t′3 = t3 + 1
η ( 1

sid+H(M) − 1
sid′+H(M) ) = t3 + 1−τ

η(sid+H(M))

Now, we need to show that π1, π2 do not reveal any information about the
user’s identity. Taking the adversary’s view, we see that π1, π2, π

′
1, π
′
2 satisfy,

π′1 =g
t′
1

z+s
id′ g(z+sid′ )t′

2ht′
1t′

2

loggπ
′
1 =

t1+
sid−s

id′
η

z+sid′
+ (z + sid′)(t2 + 1−ε

η(z+sid) ) + η(t1 + sid−sid′
η )(t2 + 1−ε

η(z+sid) )

= t1
z+sid′

+ sid−sid′
η(z+sid′ )

+zt2 + sid′t2 + (1−ε)(z+sid′ )
η(z+sid) + ηt1t2 + sidt2 − sid′t2+

t1(1−ε)
z+sid

+ (1−ε)(sid−sid′ )
η(z+sid)

= t1
z+sid

+ (z + sid)t2 + ηt1t2

π′1 =g
t1

z+sid
+(z+sid)t2+ηt1t2

=g
t1

z+sid g(z+sid)t2ht1t2

=π1

π′2 = g
t′
1

s
id′+H(M) g(sid′+H(M))t′

3ht′
1t′

3

loggπ
′
2 =

t1+
sid−s

id′
η

sid′+H(M) + (sid′ + H(M))(t3 + 1−τ
η(sid+H(M)) )

+η(t1 + sid−sid′
η )(t3 + 1−τ

η(sid+H(M)) )

= t1
sid′+H(M) + sid−sid′

η(sid′ +H(M)) + H(M)t3 + sid′t3 + (1−τ)(sid′+H(M))
η(sid+H(M))

+ηt1t3 + sidt3 − sid′t3 + t1(1−τ)
sid+H(M) + (1−τ)(sid−sid′ )

η(sid+H(M))

= t1
sid+H(M) + (sid + H(M))t3 + ηt1t3

π′2 = g
t1

sid+H(M) +(sid+H(M))t3+ηt1t3

= g
t1

sid+H(M) g(sid+H(M))t3ht1t3

= π2

Therefore, π1, π2 is identical to π′1, π′2. The challenge signature σ does not re-
veal the identity id, though the simulator uses sid to generate it. Hence, we claim
that the adversary A in the anonymity game under the simulated environment
has negligible advantage to guess the correct identity. �
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6.2 Full Traceability

We prove that our group signature is existential unforgeability based on the
security of two-level signature scheme proposed in Section 4.1.

Theorem 3. If there exists a (t, ε) adversary for the full traceability game against
the group signature scheme, then there exists a (t′, ε) adaptive chosen message
existential unforgeability adversary against the two-level signature scheme, where
t ≈ t′.

Proof. We note that our group signature scheme is an extension form of our two-
level signature scheme by adding some random number on the signing and veri-
fying equations. Intuitively, we prove that our group signature is secure against
adaptive chosen message attack by using two-level signature’s unforgeability.

Suppose there exists a simulator B, who interacts with the adversary A and
wants to break two-level signature scheme. Then, B executes the following algo-
rithms and plays a game with A.

In Setup algorithm, B runs two-level signature Setup, generates public pa-
rameters and publishes them. Furthermore, B deliveries TK = q to A, and A is
entitled the authority to tracing authority.

A queries a secret key on id to B. To answer this request, B queries the key
extract oracle of two-level signature scheme and obtains the user’s secret key
Kid. Then B sends Kid to A.

A queries a signature on (id, M) to B. B directly queries the signing oracle
of two-level signature scheme and obtains σ = (σ�

1 , σ�
2 , σ�

3) corresponding with
(id, M). Then, B randomly choose t1, t2, t3, and generates the group signature,

σ = (σ�
1 · ht1 , σ�

2 · ht2 , σ�
3 · ht3 , (σ�

2)t1(Zσ�
1)t2ht1t2 , (σ�

3)t1(gH(M)σ�
1)t3ht1t3) (1)

We could see that this is a valid group signature. After receiving the responding
signature. A could check its validity by using PP and trace its identity by using
TK = q. These verification equations are correct.

At some point, A outputs its forgery signature σ∗ = (σ∗1 , σ∗2 , σ∗3 , π∗1 , π∗2) with
(id∗, M∗). According to the game’s constraints, id∗ should be excluded from key
extract queries and (id∗, M∗) should not be queried from signing oracle before.

Then, B generates λ which satisfies λ ≡ 1 (mod p) and λ ≡ 0 (mod q). Then,
from π∗1 , π∗2 and the verification equations, we obtain:

e(σ∗1Z, σ∗2) · e(g, g)−1 = e(π∗1 , h)
e(σ∗1gH(M∗), σ∗3)e(g, g)−1 = e(π∗2 , h)

And we use λ to obtain:

e(σ∗1
λZ, σ∗2

λ) = e(g, g)
e(σ∗1

λgH(M∗), σ∗3
λ) = e(g, g)

Since (σ∗1
λ, σ∗2

λ, σ∗3
λ) pass the verification equations of two-level signature

scheme in Section 4.1, they are a forged two-level signature, which means B suc-
cessfully breaks the unforgeability of two-level signature scheme. Thus, Theorem
3 has been proved. �
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By combining with Theorem 2 and Theorem 3, we prove our scheme to have full
anonymity and full traceability in the standard model.

7 Comparison

In this section, we compare our group signature with others. Boyen and Waters
[9] proposed a nice group signature based on the Waters’s identity-based signa-
ture [22]. However, the hierachical identity-based signature in that scheme leads
logarithmic size of both group public key and group signature. Then, Boyen and
Waters [10] improved the signature to be constant size. Furthermore, we propose
a new group signature to achieve constant size of both public key and signature.
We could see the details in table 1. (M ∈ {0, 1}m, id ∈ {0, 1}k):

Table 1. Comparisons on size in Group Signatures

BW06 [9] BW07 [10] Our Scheme

Public Key (k + m + 3)|G| (m + 4)|G| 2|G| + |Gq|
+|Gq | + |GT | +|Gq | + |GT |

Master Key |G| |G| + |Zn| |Zn|
User Key 3|G| 3|G| |G| + |Zn|
Signature (2k + 3)|G| 6|G| 5|G|

More than that, we continue to compare the computational cost on every par-
ticipant in these group signature schemes. In Table 2, we note that TExp,TPair,
TMul to represent the time for one modular exponentiation, one bilinear pairing
computation, and one group multiplication, respectively. Certainly, our approach
largely reduces the computational cost and enhances the whole efficiency, that
means, our scheme is more applicable in real environment.

Recently, Groth [16] proposed a group signature scheme with full anonymity
(CCA) in the standard model. His scheme adopts the existing tools, including
certisignature scheme, strong one-time signature scheme, non-interactive proofs

Table 2. Comparisons on computational cost in Group Signatures

BW06 [9] BW07 [10] Our Scheme

Join 3TExp + (k + 2)TMul 3TExp TExp

Sign (2k+5)TExp+(3k+m+
6)TMul

12TExp + (m +
10)TMul

11TExp + 8TMul

Verify (2k+3)TPair+(2k+m+
4)TMul

6TPair + 3TExp +
(m + 5)TMul

6TPair+3TExp+4TMul

Open kTExp TExp TExp

Exhaustively
Search

No Yes Yes
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system for bilinear groups, selective-tag weakly CCA-secure encryption, but it
increases the size and computational cost. The total size of a group signature is
50 group elements in G. In case full anonymity (CPA) is sufficient, the signature
is reduced to 30 group elements. Thus, taking efficiency into consideration, our
scheme is better.

8 Conclusion

In this paper, we proposed a practical group signature scheme, which has shorter
sizes of both public key and signature than that of the other existing schemes.
Since we adopted the approach of short signature proposed by BB04 [3] and
non-interactive proof system [17], we proved the security of ours without random
oracles, including full anonymity and full traceability. Furthermore, our scheme
reduces the computational cost on both user and verifier sides. In the future
work, we should improve ours on the full anonymity security in the CCA notion
without random oracles and develop other practical group signature schemes
based on weaker assumptions.
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Abstract. We propose a convertible undeniable signature scheme with-
out random oracles. Our construction is based on Waters’ and Kurosawa
and Heng’s schemes that were proposed in Eurocrypt 2005. The security
of our scheme is based on the CDH and the decision linear assumption.
Comparing only the part of undeniable signatures, our scheme uses more
standard assumptions than the existing undeniable signatures without
random oracles due to Laguillamie and Vergnaud.

Keywords: Convertible undeniable signature, random oracle model,
pairings.

1 Introduction

Standard digital signatures allow universal verification. However in some real
world scenarios, privacy is an important issue. In this situation, we may require
that the verification of signatures is restricted by the signer. Then, the verifi-
cation of a signature requires an interaction with the signer. A signer can deny
generating a signature that he never signs, but cannot deny one that he signs.
The proof by the signer cannot be transferred to convince other verifiers. This
concept is known as the “Undeniable Signatures” that was proposed by Chaum
and van Antwerpen [11]. Later, Boyar, Chaum, Damg̊ard and Pedersen [6] pro-
posed an extension called “Convertible Undeniable Signatures”, that allows the
possibility to transform an undeniable signature into a self-authenticating sig-
nature. This transformation can be restricted to a particular signature only, or
can be applied to all signatures of a signer.

There are many different undeniable signatures with variable features and
security levels. These features include convertibility [6,13,23,24], designated ver-
ifier technique [16], designated confirmer technique [10,25], identity based scheme

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 83–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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[22], time-selective scheme [21], etc. The security for undeniable signatures is
said to be secure if it is unforgeable, invisible and the confirmation and dis-
avowal protocols are zero-knowledge. It is believed that the zero-knowledgeness
is required to make undeniable signatures non-transferable. However, Kurosawa
and Heng [18] suggested that zero-knowledgeness and non-transferability can be
separated; and the concept of witness indistinguishability can be incorporated.
They proposed another security notion called impersonation attack.

The random oracle model [3] is a popular technique in provable security.
However several papers proved that some cryptosystems secure in the random
oracle were actually provably insecure when the random oracle was instanti-
ated by any real-world hashing functions [9,2]. As a result, recently there are
many new signature schemes which prove their security without random ora-
cles, such as group signatures [1,8], ring signatures [12,4], blind signatures [17],
group-oriented signatures [26], undeniable signatures [20], universal designated
verifier signatures [28], etc. Nonetheless, some of them introduce new security
assumptions that are not well studied, which are the main drawback of some
schemes.

Our Contribution. We propose the first convertible undeniable signatures
without random oracles in pairings. Most of the existing convertible undeni-
able signatures are proven secure in the random oracle model only [6,23,24,21]1,
except the recent construction in RSA [19].

Most efficient undeniable signatures are proven secure in the random ora-
cle model only. [14] is secure in the random oracle model currently.2 Recently,
Languillaumie and Vergnaud proposed the first efficient undeniable signatures
without random oracles [20]. However, their anonymity relies on their new as-
sumption DSDH, while their unforgeability relies on the GSDH assumption with
the access of a DSDH oracle, which seems to be contradictory. Our proposed
variant of undeniable signature is proven unforgeable by the CDH assumption
and anonymous by the decision linear assumption. Therefore by removing the
protocol for convertible parts, our undeniable signature scheme is the first proven
secure scheme without using random oracles and without using a new assumption
in discrete logarithm settings.

We extend the security model of [18] to convertible undeniable signatures. We
also use the 3-move witness indistinguishable (WI) protocol in [18]. Therefore
we incorporate the concept of WI into the convertible undeniable signatures and
propose the first 3-move convertible undeniable signatures.

Organization. The next section briefly explains the pairings and some related
intractability problems. Section 3 gives the security model and some basic build-
ing blocks are given in Section 4. Section 5 gives our construction and security
proofs. The paper ends with some concluding remarks.

1 [13] does not prove the invisibility property. The authors only conjecture the security
in section 5.1 and 5.2.

2 Refer to section 1.1 in [19] for details.
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2 Preliminaries

2.1 Pairings and Intractability Problem

Our scheme uses bilinear pairings on elliptic curves. We now give a brief revision
on the property of pairings and candidate hard problem from pairings that will
be used later.

Let G, GT be cyclic groups of prime order p, writing the group action multi-
plicatively. Let g be a generator of G.

Definition 1. A map ê : G × G → GT is called a bilinear pairing if, for all
x, y ∈ G and a, b ∈ Zp, we have ê(xa, yb) = ê(x, y)ab, and ê(g, g) �= 1.

Definition 2 (CDH). The Computational Diffie-Hellman (CDH) problem is
that, given g, gx, gy ∈ G for unknown x, y ∈ Z∗p, to compute gxy.

We say that the (ε, t)-CDH assumption holds in G if no t-time algorithm has the
non-negligible probability ε in solving the CDH problem.

Definition 3 (Decision Linear [5]). The Decision Linear problem is that,
given u, ua, v, vb, h, hc ∈ G for unknown a, b, c ∈ Z∗p, to output 1 if c = a + b
and output 0 otherwise.

We say that the (ε, t)-Decision Linear assumption holds in G if no t-time al-
gorithm has probability over half ε in solving the Decision Linear problem in
G. The decision linear assumption is proposed in [5] to prove the security of
short group signatures. It is also used in [7] and [15] for proving the security of
anonymous hierarchical identity-based encryption and obfuscating re-encryption
respectively.

3 Undeniable Signature Security Models

In this section we review the security notions and model of (convertible) undeni-
able signatures. Unforgeability and invisibility are popular security requirement
for undeniable signatures. Kurosawa and Heng [18] proposed another security
notion called impersonation. We will use the security model of [18], and extend
it to convertible undeniable signatures. The changes for convertible undeniable
signatures will be given in brackets.

3.1 Security Notions

An (convertible) undeniable signature scheme has the following algorithms:

– Setup. On input security parameter 1λ, outputs public parameters param.
– Key Generation. On input public parameters param, outputs a public key

pk and a secret key sk.
– Sign. On input public parameters param, a secret key sk and a message m,

outputs an undeniable signature σ.
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– Confirm/Deny. This is an interactive protocol between a prover and a ver-
ifier. Their common inputs are public parameters param, a public key pk, a
message m and a signature σ. The prover’s private input is a secret key sk.
At the end of the protocol, the verifier outputs 1 if σ is a valid signature of
m and outputs 0 otherwise.

(The following algorithms are for convertible schemes only.)

– Individual Conversion. On input public parameters param, a secret key
sk, a message m and a signature σ, outputs an individual receipt r which
makes it possible to universally verify σ.

– Individual Verification. On input public parameters param, a public key
pk, a message m, a signature σ and an individual receipt r, outputs ⊥ if r
is an invalid receipt. Otherwise, outputs 1 if σ is a valid signature of m and
outputs 0 otherwise.

– Universal Conversion On input public parameters param and a secret key
sk, outputs an universal receipt R which makes it possible to universally
verify all signatures for pk.

– Universal Verification. On input public parameters param, a public key
pk, a message m, a signature σ and an universal receipt R, outputs ⊥ if R
is an invalid receipt. Otherwise, outputs 1 if σ is a valid signature of m and
outputs 0 otherwise.

3.2 Unforgeability

Existential unforgeability against chosen message attack is defined as in the
following game involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A. (For convertible schemes, S
also gives A the universal receipt R.)

2. A can query the following oracles:
– Signing queries: A adaptively queries qs times with input message mi,

and obtains a signature σi.
– Confirmation/disavowal queries: A adaptively queries qc times with in-

put message-signature pair (mi, σi). If it is a valid pair, the oracle returns
a bit μ = 1 and proceeds with the execution of the confirmation protocol
with A. Otherwise, the oracle returns a bit μ = 0 and proceeds with the
execution of the disavowal protocol with A.
(For convertible scheme, this oracle is not necessary as the universal
receipt is given.)

3. Finally A outputs a message-signature pair (m∗, σ∗) where m∗ has never
been queried to the signing oracle.

A wins the game if σ∗ is a valid signature for m∗.

Definition 4. An (convertible) undeniable signature scheme is (ε, t, qc, qs)-
unforgeable against chosen message attack if there is no t time adversary winning
the above game with probability greater than ε.



(Convertible) Undeniable Signatures Without Random Oracles 87

3.3 Invisibility

Invisibility against chosen message attack is defined as in the following game
involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A.
2. A can query the following oracles:

– Signing queries, Confirmation/disavowal queries: same as unforgeability.
– (For convertible schemes only.) Receipt generating oracle: A adaptively

queries qr times with input message-signature pair (mi, σi), and obtains
an individual receipt r.

3. A outputs a message m∗ which has never been queried to the signing oracle,
and requests a challenge signature σ∗ on m∗. σ∗ is generated based on a
hidden bit b. If b = 1, then σ∗ is generated as usual using the signing oracle,
otherwise σ∗ is chosen uniformly at random from the signature space.

4. A can adaptively query the signing oracle and confirmation/disavowal ora-
cle, where no signing query (and receipt generating query) for m∗ and no
confirmation/disavowal query for (m∗, σ∗) is allowed.

5. Finally A outputs a guessing bit b′

A wins the game if b = b′. A’s advantage is Adv(A) = | Pr[b′ = b] − 1
2 |.

Definition 5. An (convertible) undeniable signature scheme is (ε, t, qc, qr, qs)-
invisible if there is no t time adversary winning the above game with advantage
greater than ε.

3.4 Impersonation

Impersonation against chosen message attack is defined as in the following game
involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A.
2. A can query the Signing oracle and Confirmation/disavowal oracle, which

are the same as the one in unforgeability.
3. Finally A outputs a message-signature pair (m∗, σ∗) and a bit b. If b = 1,

A executes the confirmation protocol with S. Otherwise A executes the
disavowal protocol with S.

A wins the game if S is convinced that σ∗ is a valid signature for m∗ if b = 1,
or is an invalid signature for m∗ if b = 0.

Definition 6. An (convertible) undeniable signature scheme is (ε, t, qc, qs)-
secure against impersonation if there is no t time adversary winning the above
game with probability at least ε.

Remark: For convertible schemes, if an adversary can forge an individual or
universal receipt, he can always convince a verifier in the interactive protocol, by
directly giving the receipt to him. Therefore the model of impersonation attack
already includes the security notion regarding receipts in convertible schemes.
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4 Basic Building Blocks

4.1 Waters Signature Scheme

Waters [27] presented a secure signature scheme based on CDH problem without
random oracles. The scheme is summarized as follows:

1. Gen. Randomly choose α ∈ Zp and let g1 = gα. Additionally, choose two
random values g2, u

′ ∈ G and a random n-length vector U = (ui), whose
elements are chosen at random from G. The public key is pk = (g1, g2, u

′, U)
and the secret key is gα

2 .
2. Sign. To generate a signature on message M = (μ1, . . . , μn) ∈ {0, 1}n, pick

s ∈R Z∗p and output the signature as σ=(gα
2 · (u′

∏n
j=1 u

μj

j )s, gs) with his
secret key gα

2 .
3. Verify. Given a signature σ = (σ1, σ2) on message M = (μ1, . . . , μn) ∈

{0, 1}n, it outputs 1 if ê(g, σ1) = ê(g1, g2) · ê(u′
∏n

i=1 uμi

i , σ2). Otherwise, it
outputs 0.

4.2 WI Protocol

We review the witness indistinguishable (WI) protocol for Diffie-Hellman (DH)
tuple and non-DH tuple from [18]. Let G be an Abelian group with prime order
p. Let L be a generator of G. We say that (L, Lα, Lβ, Lγ) is a DH tuple if γ = αβ
mod p. Kurosawa and Heng [18] proposed a WI protocol to prove if (L, M, N, O)
is a DH tuple or non-DH tuple using the knowledge of α (= logLM). For the
details of the definition and security model of WI protocol, please refer to [18]
for details. We summarize the protocols in table 1 and 2.

Table 1. WI protocol for DH tuple (L, M, N, O)

Prover Verifier

c2, d2, r
R← Zp

z′
1 = Ld2/Nc2

z′
2 = Md2/Oc2

z1 = Lr

1 z2 = Nr z1,z2,z′
1,z′

2−→
2

c←− c
R← Zp

c1 = c − c2 mod p

3 d1 = r + c1α mod p
c1,c2,d1,d2−→

c
?
= c1 + c2 mod p

Ld1 ?
= z1M

c1

Ld2 ?
= z′

1N
c2

Nd1 ?
= z2O

c1

Md2 ?
= z′

2O
c2
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Table 2. WI protocol for non-DH tuple (L, M, N, O)

Prover Verifier

c2, d
′
1, d

′
2, r, a, b

R← Zp

A′ R← G with A′ �= 1

z′
1 = Md′

1/(Od′
2A′c2)

z′
2 = Ld′

1/Nd′
2

A = (Nα/O)r

z1 = Na/Ob

1 z2 = La/Mb A,A′,z1,z2,z′
1,z′

2−→ A
?
�= 1, A′ ?

�= 1

2
c←− c

R← Zp

c1 = c − c2 mod p
d1 = a + c1αr mod p

3 d2 = b + c1r mod p
c1,c2,d1,d2,d′

1,d′
2−→

c
?
= c1 + c2 mod p

Nd1/Od2 ?
= z1A

c1

Md′
1/Od′

2
?
= z′

1A
′c2

Ld1/Md2 ?
= z2

Ld′
1/Nd′

2
?
= z′

2

5 Convertible Undeniable Signature Scheme

5.1 Scheme Construction

In this section, we present our convertible undeniable signature scheme. The
scheme consists of the following algorithms.

Setup. Let G, GT be groups of prime order p. Given a pairing: ê : G×G → GT .
Select generators g, g2 ∈ G. Generator u′ ∈ G is selected in random, and a
random n-length vector U = (ui), whose elements are chosen at random from G.

Select an integer d as a system parameter. Denote � = 2d and k = n/d. Let
Hj : {0, 1}n → Z∗� be collision resistant hash functions, where 1 ≤ j ≤ k.

Key Generation. Randomly select α, β′, βi ∈ Z
∗
p for 1 ≤ i ≤ �. Set g1 = gα,

v′ = gβ′
and vi = gβi . The public keys are (g1, v

′, v1, . . . , v�). The secret keys are
(α, β′, β1, . . . , β�).

Sign. To sign a message m = (m1, . . . , mn) ∈ {0, 1}n, denote m̄j = Hj(m) for
1 ≤ j ≤ k. The signer picks r ∈R Z∗p and computes the signature:

S1 = gα
2 (u′

n∏

i=1

umi

i )r S2,j = (v′
�∏

i=1

v
m̄i

j

i )r

The output signature is (S1, S2,1, . . . , S2,k).
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Confirm/Deny. On input (S1, S2,1, . . . , S2,k), the signer computes for 1 ≤ j ≤ k

L = ê(g, g2)
M = ê(g1, g2)

Nj = ê(v′
�∏

i=1

v
m̄i

j

i , g2)

Oj = ê(v′
�∏

i=1

v
m̄i

j

i , S1)/ê(S2,j , u
′

n∏

i=1

umi

i ). (1)

We have the 3-move WI protocols of the equality or the inequality of discrete
logarithm α = logLM and logNjOj in GT shown in table 1 and 2.

Individual Conversion. Upon input the signature (S1, S2,1, . . . , S2,k) on the
message m, the signer computes m̄1 = H1(m) and:

S′2 = S
1/(β′+

∑ �
i=1 βim̄

i
1)

2,1

Output the individual receipt S′2 for message m.

Individual Verification. Upon input the signature (S1, S2,1, . . . , S2,k) for the
message m and the individual receipt S′2, compute m̄j = Hj(m) for 1 ≤ j ≤ k
and check if:

ê(g, S2,j)
?= ê(S′2, v

′
�∏

i=1

v
m̄i

j

i )

If they are not equal, output ⊥. Otherwise compare if:

ê(g, S1)
?= ê(g1, g2) · ê(S′2, u

′
n∏

i=1

umi

i )

Output 1 if the above holds. Otherwise output 0.

UniversalConversion.The signer publishes his universal receipt (β′,β1, . . .,β�).

Universal Verification. Upon input the signature (S1, S2,1, . . . , S2,k) on the
message m and the universal receipt (β′, β1, . . . , β�), check if:

v′ ?= gβ′
vi

?= gβi for 1 ≤ i ≤ �

If they are not equal, output ⊥. Otherwise compute m̄j = Hj(m) for 1 ≤ j ≤ k
and compare if:

ê(g, S1)
?= ê(g1, g2) · ê(S1/(β′+

∑ �
i=1 βim̄

i
j)

2,j , u′
n∏

i=1

umi

i )

Output 1 if the above holds. Otherwise output 0.
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5.2 Security Result

Theorem 1. The scheme is (ε, t, qs)-unforgeable if the (ε′, t′)-CDH assumption
holds in G, where

ε′ ≥ ε

4qs(n + 1)

t′ = t + O
(
qsρ + (n + �)qsω

)

and Hj : {0, 1}n → Z∗� , where 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, ω are the time for an exponentiation in G and an addition in
Zp respectively.

Proof. Assume there is a (ε, t, qs)-adversary A. We are going to construct another
PPT B that makes use of A to solve the CDH problem with probability at least
ε′ and in time at most t′.

B is given a CDH problem instance (g, ga, gb). In order to use A to solve for
the problem, B needs to simulates a challenger and the oracles for A. B does it
in the following way.

Setup. Let lp = 2qs. B randomly selects integer κ such that 0 ≤ κ ≤ n. Also
assume that lp(n + 1) < p for the given values of qs, and n. It randomly selects
the following integers:

– x′ ∈R Zlp ; y′ ∈R Zp

– xi ∈R Zlp , for i = 1, . . . , n. Let X̂ = {xi}.
– yi ∈R Zp, for i = 1, . . . , n. Let Ŷ = {yi}.

We further define the following functions for binary strings m = (m1, . . . , mn)
as follow:

F (m) = x′ +
n∑

i=1

ximi − lpκ and J(m) = y′ +
n∑

i=1

yimi

B randomly picks β′, βi ∈ Z∗p for 1 ≤ i ≤ �. Set v′ = gβ′
and vi = gβi . B

constructs a set of public parameters as follow:

g, g2 = gb, u′ = g
−lpκ+x′

2 gy′
, ui = gxi

2 gyi for 1 ≤ i ≤ n

The signer’s public key is (g1 = ga, v′, v1, . . . , v�).
Denote G(m) = β′ +

∑�
i=1 βim

i. Note that we have the following equation:

u′
n∏

i=1

umi

i = g
F (m)
2 gJ(m), v′

�∏

i=1

v
m̄i

j

i = gG(m̄j) for 1 ≤ j ≤ k

where m̄j = Hj(m) for 1 ≤ j ≤ k. All public parameters and universal receipt
(β′, β1, . . . , β�) are passed to A.
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Oracles Simulation. B simulates the oracles as follow:

(Signing oracle.) Upon receiving query for message mi = {m1, . . . , mn}, although
B does not know the secret key, it still can construct the signature by assuming
F (mi) �= 0 mod p. It randomly chooses ri ∈R Zp and computes the signature as

S1 = g
− J(mi)

F (mi)

1

(
g

F (mi)
2 gJ(mi)

)ri
, S2,j = (g

− 1
F (mi)

1 gri)G(m̄i,j)

where m̄i,j = Hj(mi) for 1 ≤ j ≤ k.
By letting r̃i = ri − a

F (mi)
, it can be verified that (S1, S2,1, . . . , S2,k) is a

signature, shown as follow:

S1 = g
− J(mi)

F (mi)

1 (gF (mi)
2 gJ(mi))ri

= g
−aJ(mi)

F (mi) (gF (mi)
2 gJ(mi))

a
F (mi) (gF (mi)

2 gJ(mi))−
a

F (mi) (gF (mi)
2 gJ(mi))ri

= g
−aJ(mi)

F (mi) ga
2g

aJ(mi)
F (mi) (gF (mi)

2 gJ(mi))r̃i

= ga
2 (u′

n∏

j=1

u
mj

j )r̃i

S2,j = (g
− 1

F (mi)

1 gri)G(m̄i,j) = (gri− a
F (mi) )G(m̄i,j) = gG(m̄i)r̃i = (v′

�∏

w=1

v
m̄w

i,j
w )r̃i

B outputs the signature (S1, S2,1, . . . , S2,k). To the adversary, all signatures given
by B are indistinguishable from the signatures generated by the signer.

If F (mi) = 0 mod p, since the above computation cannot be performed (di-
vision by 0), the simulator aborts. To make it simple, the simulator will abort
if F (mi) = 0 mod lp. The equivalence can be observed as follow. From the as-
sumption lp(n + 1) < p, it implies 0 ≤ lpκ < p and 0 ≤ x′ +

∑n
i=1 ximi < p

(∵ x′, xi < lp). We have −p < F (mi) < p which implies if F (mi) = 0 mod p then
F (mi) = 0 mod lp. Hence, F (mi) �= 0 mod lp implies F (mi) �= 0 mod p. Thus the
former condition will be sufficient to ensure that a signature can be computed
without abort.

Output. Finally A outputs a signature (S∗1 , S∗2,1, . . . , S
∗
2,k) for message m∗. B

checks if F (m∗) = 0 mod p. If not, B aborts. Otherwise B computes m̄∗1 = H1(m∗)
and outputs

S∗1
S∗2,1

J(m∗)/G(m̄∗
1)

=
ga
2

(
u′

∏n
i=1 u

m∗
i

i

)r

(
v′

∏�
i=1 v

m̄∗i
1

i

)rJ(m∗)/G(m̄∗
1)

=
ga
2

(
gJ(m∗)

)r

grJ(m∗)
= gab

which is the solution to the CDH problem instance.

Probability Analysis and Time Complexity Analysis. They are given in
the full version of the paper. �	
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Theorem 2. The scheme is (ε, t, qc, qr, qs)-invisible if the (ε′, t′)-decision linear
assumption holds in G, where

ε′ ≥ ε · 1
4(qs + 1)(n + 1)(qs + qr)k

·
(
1 − 1

qs + qr

)(qs+qr)k

t′ = t + O
(
(qs + qr)ρ + qcτ +

(
nqs + �

)
ω
)

where Hj : {0, 1}n → Z∗� , where 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, τ , ω are the time for an exponentiation in G, an exponentiation
in GT and an addition in Zp respectively, under the assumption that � > qs + qr.

Proof. Assume there is a (ε, t, qc, qr, qs)-adversary A. We are going to construct
another PPT B that makes use of A to solve the decisional linear problem with
probability at least ε′ and in time at most t′.

B is given a decisional linear problem instance (u, v, h, ua, vb, hc). In order to
use A to solve for the problem, B needs to simulates the oracles for A. B does
it in the following way.

Setup. Let lp = 2(qs+1). B randomly selects integer κ such that 0 ≤ κ ≤ n. Also
assume that lp(n + 1) < p for the given values of qc, qr, qs, and n. It randomly
selects the following integers:

– x′ ∈R Zlp ; y′ ∈R Zp

– xi ∈R Zlp , for i = 1, . . . , n. Let X̂ = {xi}.
– yi ∈R Zp, for i = 1, . . . , n. Let Ŷ = {yi}.

We further define the following functions for binary strings m = (m1, . . . , mn)
as follow:

F (m) = x′ +
n∑

i=1

ximi − lpκ and J(m) = y′ +
n∑

i=1

yimi − lpκ

Then B randomly picks a set of distinct numbers S = {c∗1, . . . , c
∗
s} ∈ (Z∗� )

s.
We further define the following functions for any integer m̄ ∈ Z∗�

G(m̄) =
∏

i∈S
(m̄ − i) =

s∑

i=0

γim̄
i and K(m̄) =

�∏

i=1,i/∈S
(m̄ − i) =

�−s∑

i=0

αim̄
i

for some γi, αi ∈ Z∗p.
B constructs a set of public parameters as follow:

g = u, g2 = h, u′ = g−lk+x′

2 g−lk+y′
, ui = gxi

2 gyi for 1 ≤ i ≤ n

The signer’s public key is:

g1 = ua, v′ = vα0gγ0 , vi = vαigγi for 1 ≤ i ≤ s, vj = vαi
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for s + 1 ≤ i ≤ �. Note that we have the following equation:

u′
n∏

i=1

umi

i = g
F (m)
2 gJ(m), v′

�−1∏

i=1

v
m̄i

j

i = gG(m̄j)vK(m̄j) for 1 ≤ j ≤ k

where m̄j = Hj(m) for 1 ≤ j ≤ k. All public parameters are passed to A. B also
maintains an empty list L.

Oracles Simulation. B simulates the oracles as follow:

(Signing oracle.) Upon receiving query for message mi = {m1, . . . , mn}, although
B does not know the secret key, it still can construct the signature by assuming
F (mi) �= 0 mod p and K(m̄i,j) = 0 mod p, where m̄i,j = Hj(mi) for all 1 ≤ j ≤ k.
It randomly chooses ri ∈R Zp and computes the signature as

S1 = g
− J(mi)

F (mi)

1

(
g

F (mi)
2 gJ(mi)

)ri
, S2,j = (g

− 1
F (mi)

1 gri)G(m̄i,j) for 1 ≤ j ≤ k

Same as the above proof, (S1, S2,1, . . . , S2,k) is a valid signature. B puts (mi, S1,
S2,1, . . ., S2,k) into the list L and then outputs the signature (S1, S2,1, . . . , S2,k).
To the adversary, all signatures given by B are indistinguishable from the signa-
tures generated by the signer.

(Confirmation/Disavowal oracle.) Upon receiving a signature (S1, S2,1, . . . , S2,k)
for message m, B checks whether (m, S1, S2,1, . . . , S2,k) is in L. If so, B outputs
Valid and runs the confirmation protocol with A, to show that (L, M, Nj , Oj) in
equation (1) are DH tuples, for 1 ≤ j ≤ k. Notice that since B knows discrete
logarithm of Nj with base L ( = 1/G(m̄i,j)), it can simulate the interactive proof
perfectly.

If the signature is not in L, B outputs Invalid and runs the disavowal protocol
with A. By theorem 1, the signature is unforgeable if the CDH assumption holds.
B runs the oracle incorrectly only if A can forge a signature. However if one can
solve the CDH problem, he can also solve the decision linear problem.

(Receipt generating oracle.) Upon receive a signature (S1, S2,1, . . . , S2,k) for mes-
sage m, B computes m̄j = Hj(m) for 1 ≤ j ≤ k. If K(m̄j) �= 0 mod p for any j, B
aborts. Otherwise B outputs S′2 = S

1/G(m̄1)
2,1 , which is a valid individual receipt

for the signature.

Challenge. A gives m∗ = (m∗1, . . . , m
∗
n) to B as the challenge message. Denote

m̄∗j = Hj(m∗) for 1 ≤ j ≤ k. If F (m∗i ) = 0 mod p, J(m∗i ) �= 0 mod p or G(m̄∗j ) �=
0 mod p for any j, B aborts.

Otherwise, B computes:

S∗1 = hc, S∗2,j = vbK(m̄∗
j )/F (m∗

i ) for 1 ≤ j ≤ k

and returns (S∗1 , S∗2,1, . . . , S
∗
2,k) to A.
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Output. Finally A outputs a bit b′. B returns b′ as the solution to the decision
linear problem. Notice that if c = a + b, then:

S∗1 = ga+b
2 = ga

2(gF (m∗
i )

2 )b/F (m∗
i ) = ga

2 (u′
n∏

i=1

u
m∗

i

i )b/F (m∗
i ),

S∗2,j = vbK(m̄j
∗)/F (m∗

i ) = (v′
�∏

i=1

v
m̄j

i

i )b/F (m∗
i ) for 1 ≤ j ≤ k

Probability Analysis and Time Complexity Analysis. They are given in
the full version of the paper. �	
Theorem 3. The scheme is (ε, t, qc, qs)-secure against impersonation if the (ε′,
t′)-discrete logarithm assumption holds in G, where

ε′ ≥ 1
2
(1 − qs

2p
)(ε − 1

p
)2

t′ = t + O
(
qsρ + qcτ + (n + �)qsω

)

where Hj : {0, 1}n → Z∗� , for 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, ω are the time for an exponentiation in G and an addition in
Zp respectively.

Proof. (Sketch) Assume there is a (ε, t, qc, qs)-adversary A. We are going to
construct another PPT B that makes use of A to solve the discrete logarithm
problem with probability at least ε′ and in time at most t′. B is given a discrete
logarithm problem instance (g, ga). The remaining proof is very similar to the
proof of theorem 1 and also the proof in [18], so we sketch the proof here.

With 1/2 probability, B sets g1 = ga and hence the user secret key is a. The
oracle simulation is the same as the proof in theorem 1, except that B now knows
b = loggg2. At the end of the game, A outputs a message-signature pair (m∗, σ∗)
and a bit b. For either b = 0/1, B can extract a with probability 1/2, as shown
in [18].

With 1/2 probability, B sets v′ = ga and hence B knows the signing key α. B
can simulate the oracles perfectly with α. At the end of the game, A outputs a
message-signature pair (m∗, σ∗) and a bit b. For either b = 0/1, B can extract
a +

∑�
i=1 βim̄∗1

i with probability 1/2, as shown in [18]. Hence B can find a.

Probability Analysis and Time Complexity Analysis. They are given in
the full version of the paper. �	

Remarks. The security of our scheme is related to the length of our signature,
as shown in the security theorem. For example, the number of qs + qr query and
the value of k (the number of blocks) cannot be very large, in order to claim
an acceptable security. The number of qs + qr query allowed maybe set to 128
and the suitable value of k maybe set to be around 7, to gain a balance between
efficiency and security.
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6 Conclusion

In this paper, we propose the first convertible undeniable signatures without
random oracles in pairings. Comparing with the part of undeniable signatures,
our scheme is better than the existing undeniable signatures without random
oracles [20] by using more standard assumption in the security proofs. Further-
more, our scheme is particularly suitable for applications that do not require a
large number of signing queries.
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Abstract. A dynamic accumulator is an algorithm, which gathers to-
gether a large set of elements into a constant-size value such that for
a given element accumulated, there is a witness confirming that the el-
ement was indeed included into the value, with a property that accu-
mulated elements can be dynamically added and deleted into/from the
original set such that the cost of an addition or deletion operation is
independent of the number of accumulated elements. Although the first
accumulator was presented ten years ago, there is still no standard formal
definition of accumulators. In this paper, we generalize formal definitions
for accumulators, formulate a security game for dynamic accumulators
so-called Chosen Element Attack (CEA), and propose a new dynamic
accumulator for batch updates based on the Paillier cryptosystem. Our
construction makes a batch of update operations at unit cost. We prove
its security under the extended strong RSA (es-RSA) assumption.

Keywords: Dynamic accumulator, Paillier cryptosystem.

1 Introduction

An accumulator is an algorithm that merges a large set of elements into a
constant-size value such that for a given element there is a witness confirm-
ing that the element was indeed accumulated into the value. It was originated
by Benaloh and de Mare [3] as a decentralized alternative for digital signatures
and was used in the design of secure distributed protocols. Baric and Pfitzmann
[2] refined the concept of accumulators asking from them to be collision-free.
The collision freeness requires that it is computationally hard to compute a
witness for an element that is not accumulated. However, in many practical ap-
plications, the set of elements changes with the time. A naive way of handling
such situations would be to re-run the accumulator. Obviously, this is highly
impractical, especially when the element set is very large. To solve this problem,
Camenisch and Lysyanskaya [4] developed more practical schemes – accumula-
tors with dynamic addition and deletion of elements to or from the original set
of accumulated elements. The cost of adding or deleting elements and updating
individual witnesses is independent from the number of elements accumulated.
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Accumulators are useful in a number of privacy-enhancing applications, such
as time-stamping [3], fail-stop signatures [2], identity escrow and group signature
schemes with membership revocation [4], authenticated dictionary [9], ad-hoc
anonymous identification and ring signatures [6], and broadcast encryption [8].
However, they are still a relatively new tool in Cryptography, and there are only
a handful of papers on the topic and they do not constitute a systematic and
organized effort. In particular, there is still no standard formal definition for
them, and the definitions used so far are driven by specific applications rather
than a systematic study of underlying properties of the accumulator.

In the existing dynamic accumulators, usually the witnesses must be updated
immediately whenever old elements leave or new elements join. In some applica-
tions, the updates of the witnesses for some elements cannot be done immediately
after the changes. When the witnesses of elements need to be updated after a
batch of N addition and deletion operations occurred, they have to be computed
N times – one by one in the time sequence, that means, the time to bring a wit-
ness up-to-date after a batch of N operations is proportional to N . Clearly, these
schemes are inefficient for batch update. In these circumstances, it is reasonable
to cluster the updates into one single operation. In this paper we address an
open question formulated by Fazio and Nicolosi in [7]. The question asks about
how to design an efficient dynamic accumulator whose witnesses can be updated
in one go independently from the number of changes. We answer this question
by proposing a new dynamic accumulator that allows batch updates.

Related Work. In general, there exist two different types of accumulators, namely
RSA-based [2,3,4,9,14,15] and combinatorial hash-based accumulators [11].

The basic RSA accumulator [3] is constructed as follows. Given a set of ele-
ments X = {x1, . . . , xm} that can be accumulated, the accumulator function is
yi = f(yi−1, xi), where f is a one-way function defined as f(u, x) = ux mod n for
suitably-chosen values of the seed u and RSA modulus n. The accumulated value
is v = ux1...xm mod n and the witness for the element xi is wi = ux1...xi−1xi+1...xm

mod n. This basic RSA accumulator has many different variants depending on
the intended application. Baric and Pfitzmann [2] used the accumulator for ele-
ments that must be primes and they proved that it is collision-resistant provided
factoring is intractable. Camenisch and Lysyanskaya studied in [4] dynamic RSA
accumulators for which the domain of accumulated elements consists of primes
in a particular range. The seed u is a random quadratic residue and the modu-
lus is a safe number. Tsudik and Xu [15] relaxed the constraint and allowed the
accumulated elements to be composite numbers that are products of two primes
chosen from a specific interval. Goodrich et al. in [9] constructed dynamic RSA
accumulators in which the seed u needs to be coprime to the modulus n only.
This constraint is very easy to satisfy.

The collision resistance of RSA accumulators relies on the secrecy of factor-
ization of the modulus n. Normally, the designers of accumulators are going to
know the factors of n and therefore able to forge membership proofs and break
the collision resistance. A solution to this problem has been provided by Sander
[14] who constructed accumulators whose designers do not know the factors of
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the modulus. Security of all existing RSA accumulators is based on the strong
RSA assumption.

In order to remove need for trapdoor information, Nyberg [11] came up with
a combinatorial accumulator based on hashing. In the scheme, a one-way hash
function is used to map bit strings of arbitrary length to bit strings of fixed
length, and then each resulting output string is divided into small blocks of
a fixed length. Next every block is replaced by 0 if it consists of all 0 bits,
otherwise by 1. In such way, each accumulated element is mapped to a bit string
of a fixed short length. Finally, the accumulated value is computed as a bitwise
product of the bit strings of all elements. To verify whether an element has
been accumulated, one first hashes the element, partitions the hash output into
blocks and then converts the blocks into bits (as discussed above). The element
is accumulated with a high probability if the 0 bits of the element coincide with
the 0 bits of the accumulated value. The accumulator does not need witnesses
and is provably secure in the random oracle model. However, it is not dynamic,
and not space and time efficient.

Nguyen [10] constructed a dynamic accumulator from bilinear pairings, which,
however, gives away the secret of the accumulator on a particular input. It has
been proved that the scheme is not secure [16]. To make Nguyen scheme secure,
Au et al. [1] constrained the number of accumulated elements and introduced a
notion of bounded accumulator.

Our Contributions. Our technical contributions can be divided into the following:

Formal Definitions. We generalize formal definitions for dynamic accumula-
tors, provide a definition of their security. Despite the fact that first ac-
cumulators were introduced more than 10 years ago, there is no standard
definition of them. The definitions used so far are all application specific. In
this paper we are going to rectify this by proposing generic definitions.

Security Game. We formulate a security game for dynamic accumulators that
is based on the so-called Chosen Element Attack (CEA). The security game
provides an environment for interaction between an accumulator algorithm
and an adversary. The adversary can access the accumulator via an oracle,
i.e. he provides inputs to the oracle and is able to collect outputs gener-
ated by the oracle. The game consists of two stages. In the first stage, the
adversary chooses adaptively a set of elements L and then queries the accu-
mulator oracle. Each time the oracle is queried, it provides the accumulated
value and the witnesses to the adversary. Clearly, the next query depends
on the reply obtained from the oracle. In the second stage, the adversary
adaptively adds/deletes some elements and queries the oracle for the corre-
sponding accumulated values and witnesses. In both stages, the adversary
is allowed to issue a polynomial number of queries. The adversary wins the
game if the adversary can forge another legitimate element and its witness
such that the witness proves that the forged element is also included in the
accumulated value corresponding to the set.

New Dynamic Accumulator. We construct a new dynamic accumulator from
the Paillier cryptosystem, and prove its security under a new complexity
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assumption – extended strong RSA (es-RSA) assumption. Existing accumu-
lators apply elements that are either primes or products of primes. We remove
the restrictions on the selection of elements and allow them to be chosen from
Z∗n2 . Our scheme permits also for an efficient batch update of witnesses inde-
pendently from the number of changes.

Affirmative Answer to an Open Problem. Existing accumulators have to
update witnesses after each single addition/deletion operation. Fazio and
Nicolosi posed the following question [7]: is it possible to construct dynamic
accumulators in which the time to update a witness can be made independent
from the number of changes that need to be done to the accumulated value?
We answer this question in the affirmative, and have constructed a scheme
in which, the time necessary to bring a witness up-to-date for a batch with
an arbitrary number of additions and deletions is done at the unit cost.

Organization. Section 2 introduces notation and provides a cryptographic back-
ground necessary to understand our presentation. In Section 3 we give a few
related definitions for accumulators. In Section 4 we construct a new dynamic
accumulator. Section 5 describes a batch update. Section 6 shows the correctness
of the construction. In Section 7 the security of the proposed scheme is proved.
Finally Section 8 concludes our paper and discusses a possible future research.

2 Preliminaries

2.1 Notation

Throughout this paper, we use the following notation.

PPT denotes probabilistic polynomial time. For any positive integer m, [m] de-
notes the set of integers {1, . . . , m}. Let a

R←− A denote that an element a is
chosen uniformly at random from the set A. Let M be the upper bound on the
number of elements that can be securely accumulated and C be an efficiently-
samplable domain where all accumulated elements are coming from.

2.2 Complexity Assumption

Let us state without proof some basic number-theoretic facts, and make a com-
plexity assumption that will be used in our work.

Fact 1: For a safe number n = pq, i.e. p, q, p−1
2 , q−1

2 are prime, Euler’s Totient
function φ(n) = (p−1)(q−1), φ(n2) = nφ(n), and Carmichael’s function λ(n) =
lcm(p − 1, q − 1), λ(n2) = lcm((p − 1)p, (q − 1)q).

Catalano et al in [5] introduced a variant of the RSA problem in Z∗n2 – Com-
putational Small s-Roots (CSR) problem.

Definition 1 (CSR Problem). Given a safe number n, an integer s ∈ Z∗n2 \
{2} and a random number x ∈ Z∗n2 , the s-th roots problem is the task of finding
y ∈ Z∗n2 such that x = ys mod n2.
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Catalano et al [5] gave evidence to that the CSR problem is intractable, even for
every s > 2 such that gcd(s, λ(n2)) = 1, when the factorization of n is unknown.
However, they recommended s = 216 + 1 for practical applications.

Fact 2: There exists a PPT algorithm that, given integers x, s, n, and the fac-
torization of n, outputs x’s s-th roots mod n2.

We describe a variant of the Discrete Logarithm (DL) problem in Z∗n2 , which
we call the extended Discrete Logarithm (e-DL) problem.

Definition 2 (e-DL Problem). Given a safe number n without integer factor-
ization and two random numbers x, y ∈ Z∗n2 , the discrete logarithm of x under
the base y is an integer s such that x = ys mod n2.

The general DL problem is defined as follows. Let g be a generator of a finite
cyclic group G = 〈g〉 of order N . For a random number x ∈ G, we wish to
find an integer s (0 ≤ s < N) such that gs = x. If N is composite, i.e., N =
pk1
1 pk2

2 · · · pkj

j , one first computes s mod pki

i (1 ≤ i ≤ j) in the subgroup of order
pki

i for each prime power pki

i , and then, one applies the Chinese Remainder
Theorem to compute s. According to [13], calculating the discrete logarithm in
the subgroup of order pki

i can be reduced to finding the discrete logarithm in
the group of prime order pi. Therefore, the e-DL problem is related to the DL
problem in the subgroup of prime order max(p1, · · · , pj). If the DL problem is
hard, then the e-DL problem is also intractable.

Now we introduce a new complexity assumption called the extended strongRSA
(es-RSA) assumption, which is a variant of the strong RSA problem [2] in Z∗n2 .

Assumption 1 (es-RSA). There exists no PPT algorithm that, given a safe
number n whose factors are secret and a number x ∈ Z∗n2 , outputs a pair of
integers (s, y) such that x = ys mod n2, n2 > s > 2 and y ∈ Z∗n2 .

We are neither aware of any corroboration that it should be hard, nor can we
break it. However, we can design an algorithm for solving the es-RSA problem
if we know algorithms that solve the CSR or e-DL problems.

1. The first algorithm selects at random the exponent s and then calls, as a
subroutine, the algorithm for solving the CSR problem.

2. The second algorithm chooses at random the value of y and then calls, as a
subroutine, the algorithm for solving the e-DL problem.

This also means that the complexity of es-RSA has to be lower bounded by the
complexities of CSR and e-DL problems. Note that the algorithm solving es-RSA
is able to manipulate the pair (y, s) by using variants of the baby-step giant-step
algorithms or the birthday paradox. Although the es-RSA assumption appears to
be valid even for s = 3, we still recommend that one uses s ≥ 216 + 1 in practice.

2.3 Paillier Cryptosystem

We now briefly review the Paillier cryptosystem. For the detail, refer to [12].
Let n be a safe number. Bα ⊂ Z∗n2 denotes the set of elements of order nα, and
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B denotes their disjoint union for α = 1, . . . , λ, where λ is adopted instead of
λ(n) for visual comfort. Randomly select a base g from B, and define a function
F (x) = x−1

n .
The Paillier cryptosystem defines an integer-valued bijective function:

Eg: Zn × Z∗n → Z∗n2 , (x, r) → gx · rn mod n2,

where (n, g) are public parameters whilst the pair (p, q) (or equivalently λ) re-
mains private. The encryption and decryption algorithms are as follows:

Encryption:
plaintext x < n, randomly select r < n, ciphertext y = gx · rn mod n2.

Decryption:
ciphertext y < n2, plaintext x = D(y) = F (yλ mod n2)

F (gλ mod n2)
mod n.

The cryptosystem has the following additive homomorphic properties:

∀σ ∈ Z+, D(yσ mod n2) = σx mod n, and
∀y1, y2 ∈ Zn2 , D(y1y2 mod n2) = x1 + x2 mod n

3 Accumulator and Security Definitions

In this section we give a few related definitions for accumulators. Firstly we
generalize definitions of accumulators given in [2,3,4,7], and then we describe
the security definition for dynamic accumulators and our security game.

Definition 3 (Accumulator)
An accumulator consists of the following four algorithms:

KeyGen(k, M): is a probabilistic algorithm that is executed in order to instanti-
ate the scheme. It takes as input a security parameter 1k and the upper bound
M on the number of accumulated elements, and returns an accumulator pa-
rameter P = (Pu, Pr) where Pu is a public key and Pr is a private key.

AccVal(L, P): is a probabilistic algorithm that computes an accumulated value.
It takes as input a set of elements L = {c1, . . . , cm} (1 < m ≤ M) from a do-
main C and the parameter P, and returns an accumulated value v, along with
some auxiliary information ac and Al that will be used by other algorithms.

WitGen(ac, Al, P): is a probabilistic algorithm that creates the witness for ev-
ery element. It takes as input the auxiliary information ac and Al, and the
parameter P, and returns a witness Wi for ci (i = 1, . . . , m).

Verify(c, W, v, Pu): is a deterministic algorithm that checks if a given element
is accumulated in the value v or is not. It takes as input an element c, its
witness W , the accumulated value v and the public key Pu, and returns Yes
if the witness W constitutes a valid proof that c has been accumulated in v,
or No otherwise.

Definition 4 (Dynamic Accumulator). A dynamic accumulator consists of
the following seven algorithms:

KeyGen, AccVal, WitGen, Verify are the same as in the Definition 3.
AddEle(L⊕, ac, v, P): is a probabilistic algorithm that adds some new elements

to the accumulated value. It takes as input a set of new elements L⊕ =
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{c⊕1 , . . . , c⊕k } (L⊕ ⊂ C, 1 ≤ k ≤ M − m) that are to be added, the aux-
iliary information ac, the accumulated value v and the parameter P, and
returns a new accumulated value v′ corresponding to the set L⊕ ∪ L, wit-
nesses {W⊕

1 , . . . , W⊕
k } for the newly inserted elements {c⊕1 , . . . , c⊕k }, along

with new auxiliary information ac and au that will be used for future update
operations.

DelEle(L�, ac, v, P): is a probabilistic algorithm that deletes some elements from
the accumulated value. It takes as input a set of elements L� = {c�1 , . . . , c�k }
(L� ⊂ L, 1 ≤ k < m) that are to be deleted, the auxiliary information ac,
the accumulated value v and the parameter P, and returns a new accumulated
value v′ corresponding to the set L \L�, along with new auxiliary information
ac and au that will be used for future update operations.

UpdWit(Wi, au, Pu): is a deterministic algorithm that updates witnesses for
the elements that have been accumulated in v and also are accumulated in
v′. It takes as input the witness Wi, the auxiliary information au and the
public key Pu, and returns an updated witness W ′

i proving that the element
ci is accumulated in the new value v′.

Definition 5 (Security for Dynamic Accumulator). An dynamic accumu-
lator is secure if the adversary has only a negligible probability of finding a set
of elements L = {c1, . . . , cm} ⊆ C (1 < m ≤ M), an element c′ ∈ C \ L and
a witness w′ which can prove that c′ has been accumulated in the accumulated
value corresponding to the set L, where the probability is taken over the random
strings generated by the adversary and the accumulator.

There exist other two weak security definitions used in the literature as follows.

Definition 6 (Security for Accumulator [3]). Given a set of elements L =
{c1, . . . , cm} (1 < m ≤ M), their accumulated value v and an element c′ ∈
C \ L. Then an accumulator is weakly secure if an adversary has a negligible
probability of finding a witness w′ which can prove that c′ has been accumulated
in v, where the probability is taken over the random coins of the adversary and
of the accumulator.

Definition 7 (Security for Accumulator [2]). Given a set of elements L =
{c1, . . . , cm} (1 < m ≤ M), their accumulated value v. Then an accumulator is
weakly secure if an adversary has a negligible probability of finding an element
c′ ∈ C \ L and a witness w′ which can prove that c′ has been accumulated in v,
where the probability is taken over the random coins of the adversary and of the
accumulator.

Note that the difference among these two security definitions and our definition is
that, in the definition 6 the adversary tries to forge a witness for a given element
c′, in the definition 7 the adversary can choose a forged element c′ himself, and
in the definition 5 the adversary might be able to choose both a set of elements
L that are to be accumulated and a forged element c′ himself.

To capture the notion of security for a dynamic accumulator, we define a
security model – Chosen Element Attack (CEA) against Dynamic Accumulator:
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Definition 8 (CEA Game). CEA is a security game between a PPT adversary
ADV and a challenger CHA:

Setup. CHA runs the KeyGen algorithm to set up the parameters of the ac-
cumulator. ADV chooses a family of sets L∗ ⊂ C and returns them to CHA.
CHA runs the algorithm AccVal to compute their corresponding accumu-
lated values and WitGen to make witnesses for the elements in each set,
and sends them to ADV.

Queries. ADV is allowed to adaptively modify the sets L∗ and ask CHA to add
a set of elements L⊕ (L⊕ ⊂ C) to some accumulated values and/or remove a
set of elements L� (L� ⊂ L∗) from some accumulated values as he wishes.
CHA runs the AddEle and/or DelEle algorithm, and sends back the new
accumulated values, the auxiliary information for updating witnesses, along
with witnesses for the newly inserted elements in the case of an AddEle
operation. Then ADV runs the UpdWit algorithm to update the witness
for each element, which has been accumulated in the old accumulated value
and is currently accumulated in the new value, in the corresponding set.

Challenge. After making a number of queries, ADV decides on challenge by
picking a set of elements L = {c1, . . . , cm} (1 < m ≤ M) from C and sends L
to CHA who invokes AccVal to obtain the corresponding accumulated value
v and WitGen to make witnesses {W1, . . . , Wm} for the m elements and
returns them to ADV . On receiving v and {W1, . . . , Wm}, ADV produces
an element c′ (c′ ∈ C \L) with a witness W ′, and sends them to CHA. Then
CHA runs the Verify algorithm to test if c′ with W ′ is accumulated in v.

Response. Eventually the Verify algorithm outputs a result. We say ADV
wins in this game, if it, with non-negligible advantage, manages to produce
the legitimate pair (W ′, c′) such that the output of Verify is Yes.

4 New Dynamic Accumulator

We construct a new dynamic accumulator as follows.

KeyGen(k, M): Given a security parameter 1k and the upper bound M on the
number of accumulated elements, generate a suitable safe modulus n that
is k-bit long and an empty set V . Let C = Z∗n2 \ {1} and T ′ = {3, · · · , n2}.
Select adaptively a number σ ∈ Zn2 and compute β = σλ mod φ(n2) such
that β ∈ T ′. Choose γ

R←− Zφ(n2) such that γ /∈ {β, σ}. Set the public key
Pu = (n, β) and the private key Pr = (σ, λ, γ), then output the parameter
P = (Pu, Pr).

AccVal(L, P): Given a set of m distinct elements L = {c1, . . . , cm} (L ⊂ C,
1 < m ≤ M) and the parameter P , choose cm+1

R←− C, and compute

xi = F (cγσ−1

i mod n2) mod n (i = 1, . . . , m + 1),

v = σ

m+1∑

i=1

xi mod n,



106 P. Wang, H. Wang, and J. Pieprzyk

yi = cγβ−1

i mod n2 (i = 1, . . . , m + 1), and

ac =
m+1∏

i=1

yi mod n2.

Then output the accumulated value v and the auxiliary information ac and
Al = {y1, . . . , ym}.

WitGen(ac, Al, P): Given the auxiliary information ac and Al, and the param-
eter P , choose randomly a set of m numbers T = {t1, . . . , tm} ⊂ T ′ \ {β, γ}
(i = 1, . . . , m), and compute

wi = acy
−ti

γ

i mod n2 (i = 1, . . . , m).

Then output the witness Wi = (wi, ti) for ci (i = 1, . . . , m).
Verify(c, W, v, Pu): Given an element c, its witness W = (w, t), the accumu-

lated value v and the public key Pu, test whether {c, w} ⊂ C, t ∈ T ′ and
F (wβct mod n2) ≡ v (mod n). If so, output Yes; otherwise, output No.

AddEle(L⊕, ac, v, P): Given a set of elements L⊕ = {c⊕1 , . . . , c⊕k } (L⊕ ⊂ C \
L, 1 ≤ k ≤ M − m) to be inserted, the auxiliary information ac, the accu-
mulated value v and the parameter P , choose c⊕k+1

R←− C and a set of k

numbers T⊕ = {t⊕1 , . . . , t⊕k } R←− T ′ \ {T ∪ {β, γ}}, and compute

x⊕i = F ((c⊕i )γσ−1
mod n2) mod n (i = 1, . . . , k + 1),

v′ = v + σ

k+1∑

i=1

x⊕i mod n,

y⊕i = (c⊕i )γβ−1
mod n2, (i = 1, . . . , k + 1),

au =
k+1∏

i=1

y⊕i mod n2, and

w⊕i = acau(y⊕i )
−t

⊕
i

γ mod n2 (i = 1, . . . , k).

Set ac = acau mod n2, T = T ∪ T⊕ and V = V ∪ {au}.
Then output the new accumulated value v′ corresponding to the set L ∪

L⊕, the witnesses W⊕
i = (w⊕i , t⊕i ) for the new added elements c⊕i (i =

1, . . . , k) and the auxiliary information au and ac.
DelEle(L�, ac, v, P): Given a set of elements L� = {c�1 , . . . , c�k } (L� ⊂ L, 1 ≤

k < m) to be deleted, the auxiliary information ac, the accumulated value v

and the parameter P , choose c�k+1
R←− C, and compute

x�i = F ((c�i )γσ−1
mod n2) mod n (i = 1, . . . , k + 1),

v′ = v − σ

k∑

i=1

x�i + σx�k+1 mod n,

y�i = (c�i )γβ−1
mod n2 (i = 1, . . . , k + 1), and
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au = y�k+1

k∏

j=1

(y�j )−1 mod n2.

Set ac = acau mod n2 and V = V ∪ {au}.
Then output the new accumulated value v′ corresponding to the set L\L�

and the auxiliary information au and ac.
UpdWit(Wi, au, Pu): Given the witness Wi, the auxiliary information au and

the public key Pu, compute w′i = wiau mod n2, then output the new witness
W ′

i = (w′i, ti) for the element ci.

Notice that the second part ti of the element ci’s witness Wi is generated in the
first execution of the algorithm WitGen or AddEle, after that, no matter how
many times the algorithms AddEle and DelEle are run, the value of ti never
changes, only the first part wi does. So, ti can also be treated as an alternative
identifier of ci in the accumulator. In addition, as we mentioned in Section 2.2,
it is recommended for practical applications that T ′ = {216 + 1, · · · , n2}.

5 Batch Update

Each element in the set V created by the algorithm KeyGen and updated by the
algorithms AddEle and DelEle is related to a time when the element was added
to V , and all element are arranged chronologically. When an element wants to
use the accumulator after he missed N times update of witness, he can contact
the accumulator and tell her the time of his last update, then the accumulator
checks the set V , collects all data items {vi1 , . . . , viN } ⊂ V that the element did
not use, computes the update information au = vi1 . . . viN mod n2, and returns
au to the element. On receiving au, the element computes w′i = wiau mod n2 to
obtain the new witness W ′ = (w′i, ti).

Observe that, the element does not know the number of changes and the types
of the changes, and makes batch update at unit cost (1 multiplication) without
requiring knowledge of any sensitive information, and the accumulator takes N
modular multiplications for the batch update. As mentioned above, the existing
accumulators do not allow for batch updates so any collection of updates must be
done sequentially. The sequential update is very inefficient if it is compared with
our batch update. Consider the update operations for the dynamic accumulator
from [4]. If one addition operation happens, then the witness wi is updated as
follows: w′i = (wi)

vij mod n, where vij (j ∈ [N ]) is the update information
for the addition. If one deletion operation happens, on receiving the update
information vij for the deletion, an element computes a pair (a, b) of integers
such that aci + bvij = 1, and then updates her witness w′i = (wi)b(v′)a mod n,
where v′ is the new accumulated value. Therefore, to make a batch update, an
element first needs to know the type of every change (addition or deletion),
chooses different algorithms for different types of the change, and then, updates
her witness one change by one change in the time sequence. In particular, for a
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deleting operation, an element must use the new accumulated value to update
her witness.

To the best of our knowledge, our scheme is the first one to do batch update
efficiently and give an answer in the affirmative to Fazio and Nicolosi’s open
problem [7].

6 Correctness

First we show the output of the algorithm Verify is correct for a regular accu-
mulator. According to the properties of the Paillier cryptosystem, for ciphertexts
{cγβ−1

1 , . . . , cγβ−1

m+1 } and their plaintexts {z1, . . . , zm+1}, we have

σ(z1 + . . . + zm+1) ≡ F ((cγβ−1
1 ...cγβ−1

m+1 )σλ mod n2)

F (gλ mod n2)
(mod n).

It follows that,

σ
∑m+1

j=1 zjF (gλ mod n2) ≡ F (
∏m+1

j=1 (cγβ−1

j )β mod n2) (mod n).

Since zjF (gλ mod n2) ≡ F ((cγβ−1

j )λ mod n2) (mod n), i.e.,

zjF (gλ mod n2) ≡ F (cγσ−1

j mod n2) (mod n),

and yj = cγβ−1

j mod n2, i.e., cγ
j = (y

γ−tj
γ

j )β(y
tj
γ

j )β mod n2,
for any i ∈ [m], we have

σ
∑m+1

j=1 F (cγσ−1

j mod n2) ≡ F ((y
γ−ti

γ

i

∏
j∈[m+1]\{i} yj)β(y

ti
γ

i )β mod n2) (mod n).

From the construction of accumulator, we know that

xj = F (cγσ−1

j mod n2) mod n, (y
ti
γ

i )β = cti

i mod n2 and

wi = y
γ−ti

γ

i

∏
j∈[m+1]\{i} yj mod n2.

Therefore,

σ
∑m+1

j=1 xj ≡ F (wβ
i cti

i mod n2) (mod n).

That is,

F (wβ
i cti

i mod n2) ≡ v (mod n).

The congruence shows that, in a regular accumulator, if an element ci (i ∈ [m])
is accumulated in the value v, the witness Wi = (wi, ti) can give ci a valid proof.

When some elements are added, for the new added elements c⊕i (i = 1, . . . , k),
it is easy to verify the correctness in the same way; for the old elements (previously
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accumulated) ci (i = 1, . . . , m) whose witness Wi = (wi, ti) is updated to be W ′
i =

(w′i, ti), we show the correctness as follows.

F ((w′i)
βcti

i mod n2)

≡ F ((wiau)βcti

i mod n2) (mod n)

≡ F (((y
γ−tj

γ

j )β
∏

j∈[m+1]\{i} yβ
j )(

∏
i∈[k+1](y

⊕
i )β(y

ti
γ )β) mod n2) (mod n)

≡ F ((
∏

j∈[m+1]\{i} cγ
i )cγ

i (
∏

i∈[k+1]((c
⊕
i )γβ−1

)β) mod n2) (mod n)

≡ F ((
∏

j∈[m+1] c
γβ−1

i )σλ(
∏

i∈[k+1]((c
⊕
i )γβ−1

)σλ) mod n2) (mod n)

≡ σ(
∑m+1

i=1 F (cγσ−1

i mod n2) +
∑k+1

i=1 F ((c⊕i )γσ−1
mod n2)) (mod n)

≡ σ(
∑m+1

i=1 xi +
∑k+1

i=1 x⊕i ) (mod n)
≡ v + σ

∑k+1
i=1 x⊕i (mod n)

≡ v′ (mod n)

When some elements are deleted, for the left elements (which has been ac-
cumulated and is still accumulated currently) ci with updated witnesses W ′

i =
(w′i, ti), the correctness can be verified in the same way.

It is also easy to verify the correctness for batch update in the same way.

7 Security

The following theorem states that any PPT adversary can not find membership
proofs for those elements that are not in the accumulated set.

Theorem 1. If the es-RSA Assumption holds, then the proposed dynamic ac-
cumulator is secure under CEA.

Proof. Suppose that there exists a PPT adversary ADV who wins in the CEA
game with non-negligible advantage, that means, on input (n, β), ADV finds
with non-negligible advantage m elements {c1, . . . , cm} ⊂ C with their witnesses
{W1, . . . , Wm} and an element c′ ∈ C \ {c1, . . . , cm} with W ′ = (w′, t′) such
that F (w′βc′t

′
mod n2) ≡ v (mod n), where v is the accumulation value of

(c1, . . . , cm). We construct an algorithm B that breaks es-RSA Assumption with
non-negligible advantage. B simulates CHA as follows:

Setup. B runs the algorithm KeyGen(k, M) to get the element domain C =
Z∗n2 \ {1} and setup the system parameters. ADV requests the accumulated
values and corresponding witnesses for a polynomial number of sets L∗ ⊂ C
from B.

Queries. ADV adaptively modifies the sets L∗ and asks B to add a set of
elements L⊕ (L⊕ ⊂ C) to some accumulated values and/or remove a set of
elements L� (L� ⊂ L∗) from some accumulated values as he wishes; B runs
the algorithm AddEle(L⊕, ac, v, P) and/or DelEle(L�, ac, v, P) to reply
ADV . Then ADV runs the algorithm UpdWit(Wi, au, Pu) to update the
witness for related elements.



110 P. Wang, H. Wang, and J. Pieprzyk

Challenge. After making a polynomial number of queries, ADV decides on
challenge by picking a set of elements L = {c1, . . . , cm} (1 < m ≤ M) from
C and querying B for the corresponding accumulated values v and witnesses
{W1, . . . , Wm}. On receiving them, ADV produces an element c′ (c′ ∈ C \L)
with a witness W ′ = (w′, t′), and sends them to B.

Response. B runs the Verify algorithm to test if c′ is accumulated in v. If
Verify outputs Yes with non-negligible advantage, then we say B, without
n’s integer factorization, has non-negligible advantage to breaks the es-RSA
assumption; otherwise, nothing.

Let’s analyze that how B breaks the es-RSA assumption.
Because the scheme appends a random element to compute the accumulated

value v every time in running the algorithm AccVal, AddEle and DelEle,
and ti is chosen at random, the probability distributions of v, wi, ti and au are
uniform. Observing the outputs of queries for the keyword lists in the stage of
Queries and their changes cannot help ADV to forge anything. So, let’s only
consider the challenge set L = {c1, . . . , cm}.

With n’s integer factorization, B computes the v and {W1, . . . , Wm} for the
set L = {c1, . . . , cm}, so B has m congruences F (wβ

i cti

i mod n2) ≡ v (mod n)
(i = 1, . . . , m), which means that ∃k ∈ Z such that

wβ
i c

ti
i mod n2 −1

n = kn + v.

It follows that,

wβ
i cti

i ≡ vn + 1 (mod n2).

This congruence can also be expressed in the following two ways:

wβ
i ≡ (vn + 1)c−ti

i (mod n2).

cti

i ≡ (vn + 1)w−β
i (mod n2).

Therefore, B has m triples (ci, wi, ti) such that ci, wi and ti are the ti-th
root of (vn + 1)w−β

i (mod n2), the β-th root of (vn + 1)c−ti

i (mod n2) and the
logarithmic value of (vn + 1)w−β

i (mod n2) based on ci, respectively.
If ADV wins in the CEA game with non-negligible advantage, the Verify

outputs Yes with non-negligible advantage. That means, without n’s integer
factorization, B has non-negligible advantage to get a congruence

F (w′βc′t
′
mod n2) ≡ v (mod n),

thus, B has non-negligible advantage to get a distinct triple (c′, w′, t′) such that
c′, w′ and t′ are the t′-th root of (vn + 1)w′−β (mod n2), the β-th root of
(vn+1)c′−t′

(mod n2) and the logarithmic value of (vn+1)w′−β (mod n2) based
on c′, respectively.

We know that c′ /∈ L, that means c′ �= ci for any i ∈ 1, . . . , m, so let’s identify
four cases, depending on whether w′ = wi or t′ = ti (or not) for some i ∈ [m].
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Case 1: w′ �= wi for any i ∈ [m].
We have w′β �= wβ

i (mod n2), so (vn + 1)w′−β �= (vn + 1)w−β
i (mod n2).

That means, (vn + 1)w′−β (mod n2) is a distinct number from {(vn +
1)w−β

i (mod n2)}i=1,...,m, and B has its t′-th root c′ or the logarithmic value
t′ based on c′. Thus, B breaks the es-RSA assumption.

Case 2: w′ = wi for some i ∈ [m].
We have c′t

′
= (vn + 1)w′−β = (vn + 1)w−β

i = cti

i (mod n2), so t′ �= ti. That
means, B has c′ as the t′-th root of (vn + 1)w′−β (mod n2) and t′ as the
logarithmic value of (vn + 1)w′−β (mod n2) based on c′. Thus, B breaks the
es-RSA assumption.

Case 3: t′ = ti for some i ∈ [m].
We have c′t

′ �= cti

i (mod n2). It is convenient to split this case into two
subcases:
Case 3a: c′t

′
= c

tj

j (mod n2) for some j ∈ [m] \ {i}. This case is the same
as in Case 2.

Case 3b: c′t
′ �= c

tj

j (mod n2) for any j ∈ [m]\{i}. So, (vn+1)c′−t′
(mod n2)

is a distinct number from {(vn+1)c−ti

i (mod n2)}i=1,...,m, and B has its
β-th root w′. This means, B breaks the es-RSA assumption.

Case 4: When t′ �= ti for any i ∈ [m].
We also split this case into two subcases:
Case 4a: c′t

′
= c

tj

j (mod n2) for some j ∈ [m]. This case is the same as in
Case 2.

Case 4b: c′t
′ �= c

tj

j (mod n2) for any j ∈ [m]. This case is the same as in
Case 3b.

Consequently, the theorem is proved.

8 Conclusions and Future Direction

We have considered the problem of design of the dynamic accumulators, and
introduced formal generic definitions of accumulators and a new security model
called CEA. We constructed a new dynamic accumulator that allows an efficient
batch update. The scheme is based on the Paillier public-key cryptosystem, and
is sound and secure under the es-RSA assumption.

The computation complexity of our approach is reasonable, but the length of
witnesses is 4 logn bits and the scheme needs to compute at least (216 + 1)-th
roots. So designing more space-efficient and time-efficient accumulators remains
a challenging open problem.
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Abstract. Digital copies are susceptible to theft and vulnerable to leak-
age, copying, or manipulation. When someone (or some group), who
has stolen, leaked, copied, or manipulated digital documents propagates
the documents over the Internet and/or distributes those through phys-
ical distribution channels many challenges arise which document holders
must overcome in order to mitigate the impact to their privacy or busi-
ness. This paper focuses on the propagation problem of digital creden-
tials, which may contain sensitive information about a credential holder.
Existing work such as access control policies and the Platform for Privacy
Preferences (P3P) assumes that qualified or certified credential viewers
are honest and reliable. The proposed approach in this paper uses short-
lived credentials based on reverse forward secure signatures to remove
this assumption and mitigate the damage caused by a dishonest or hon-
est but compromised viewer.

1 Introduction

Digital credentials are widely used in the Internet, and the issue of privacy
related to release of credentials is attracting increasing attention. Digital cre-
dentials may be used with various security services, including access control,
data origin authentication, and trust negotiation. They are issued and signed
by Certificate Authorities (CAs) or Attribute Authorities (AAs) and often con-
tain sensitive information about credential holders, since like the drivers licenses
and other multi-purpose documents they may replace, they often bundle private
information of different types together. Whether in the real world or online, it
is preferable that private information should only be accessible by authorized
parties: for example, a bar patron providing a drivers license as an age verifica-
tion document may reasonably object to having their address and other details
recorded, and a newly admitted graduate student may only want to show her
history of previous grades to the graduate advisor of the department, and not all
department staff and faculty. However, after you reveal your credential to other
parties, your information is exposed to potential leakage.

There are two specific situations of information leakage we wish to prevent
from happening: first, that others get more information from credentials than
they are intended to, and second, that after others view and verify the infor-
mation in credentials, they pass them to others (or their computers are com-
promised) and information is exposed to attackers. Existing work, such as on
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privacy preserving credentials [6], has addressed the first problem by altering an
original certificate to cover private information and still maintain its usage. How-
ever, as soon as sensitive information is revealed, neither the credential holder
nor the issuer can prevent others from propagating this information. This pa-
per focuses on this problem. The current solutions are access policies and the
Platform for Privacy Preferences (P3P). Access policies can prevent unqualified
parties from viewing protected credentials; they cannot help with information
leakage intentionally or unintentionally by qualified parties, as for example in
the cases described in [21]. P3P provides a technical mechanism for ensuring
that users can be informed about privacy policies before they release sensitive
information [2]. It does not provide a technical mechanism for making sure sites
act according to their policies.

This paper addresses this problem from another angle. We clearly cannot pre-
vent the propagation of information that others have already obtained. However,
we can take steps to make credential contents they propagate unofficial, in the
sense that they lose the credential’s basic ability to prove the correctness of its
contents. For example, suppose A knows B’s annual income because B showed
A a credential with this information in it. If A wants to leak the information
of B’s annual income and prove to C she does have the correct information,
A can show C the credential of B or send C a copy of the credential; once C
verifies the credential, C knows B’s annual income for sure. We can prevent this
sequence of events by revoking the credential; in other words, if the credential
is time-limited, then after an interval A cannot prove to C that her copy of B’s
credential is authentic. If the interval is dependent on the action of B, and B
can, after using the credential once, invalidate it, then B’s information liability
will be more limited than before. Thus, whether A distributes B’s actual or past
salary information or any arbitrary made-up figure, A will be unable to prove
that whatever number she has is or ever was valid.

However, if traditional public/private key pairs are used to implement the time-
limited credential, a CA could be overwhelmed with generating key pairs, issuing
public keys, signing credentials, and revoking. This paper approaches this prob-
lem with two schemes—interactive and non-interactive.The basis of our schemes is
Forward Secure Signature (FSS) crytosystems. In FSS, there are a series of private
keys with consecutive indexes and a single, fixed public key. Private keys evolve
with a one-way function. Once the current private key is exposed, future private
keys are exposed too. In the context of our problem, the FSS fixed public key can
improve efficiency considerably since it avoids repeatedly issuing public/private
key pairs, but forward private key updating will invalidate future credentials when
private key exposure happens. Thus, in our schemes, a CA signs credentials with
FSS private keys and invalidates each in reverse order when requested (interactive)
or at regular intervals of time (non-interactive) so that even though the past pri-
vate keys and corresponding signatures are invalid, its public key does not need to
be re-signed and its future signatures are still valid. Moreover, since these creden-
tials are time-limited, this eliminates the need for a revocation mechanismt, such
as OCSP and CRLs, which is typically costly in PKI systems. This idea, while
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simple, does not seem to have appeared previously. Yet, the result is a direct im-
provement in both the overall computational complexity, as well as the revocation
efficiency, over previous traditional approaches.

A variety of electronic transactions, such as online pharmacy prescriptions,
medicaid/medicare applications, and digital library browsing, run a risk of in-
formation propagation. Our schemes can establish credentials to help with this
problem. Users can assure friends, business associates, and online services that
the electronic information they receive is authentic and after a short system-
defined time, the information is not official any longer.

The rest of the paper is organised as follows. Section 2 surveys related work.
Section 3 describes two approaches that follow the outline given above. Section 4
discusses practical issues related to underlying cryptosystems and revocation.
Some applications are suggested in Section 5. Section 6 compares performance
against RSA. Section 7 presents conclusions and describes future work.

2 Related Work

2.1 Credentials

Trust negotiation is an important application of digital credentials. Winsborough
et al. first introduced the notion of Automated Trust Negotiation (ATN) and an
architecture for managing the exchange of credentials between two strangers for
the purpose of determining bilateral trustworthiness [21]. As an example, suppose
an AIDS patient is interested in a free online service and treatment. He sends a re-
quest to the server.The server checks its access policies and sends a counter request
for required credentials, such as a signed prescription and citizenship. The patient
reads the counter request and checks his local credential release policies, which say
his citizenship is not sensitive but the disease information is and his diagnosis can
be released only to HIPAA1certified hospitals. Then, he sents his citizen creden-
tial and a request for a HIPAA certificate to the server. If the server’s policy says
its HIPAA certificate is publicly accessble, the server will send it to the patient.
After the patient successfully verified the certificate, he will send the diagnosis to
the server and the trust negotiation succeeds. In this way, ATN involves digital
credentials and uses access policies to allow only qualified parties to view sensitive
credentials in a step-wise manner to build trust.

However, how to prevent the illegal propagation of released credentials has
been one of the open problems in the ATN research. Researchers have de-
signed ATN systems [7,22,23] and addressed related privacy and security issues
in [6,19,20,24]. In order to work against unnecessary information leakage in trust
negotiation, the authors proposed privacy preserving credentials to release mini-
mal information [6]. The idea is that sensitive attributes in protected credentials
are selectively disclosed. A sensitive attribute “A” is replaced with “H(A|R)”,

1 The Health Insurance Portability and Accountability Act (HIPAA) was enacted by
the U.S. Congress in 1996. Its Privacy Rule took effect on April 14, 2003. http://
www.HIPAA.org

http://www.HIPAA.org
http://www.HIPAA.org
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in which R is a random number, “H” is a hash function, and “|” means con-
catenation. The new credential is signed by a CA. To verify it, “R” and “H”
should be disclosed to the other party. This can prevent credential viewers from
obtaining additional information. However, once the “R” and “H” are revealed
to aother party, he can show them to someone else to prove the authenticity of
the information he obtained.

Another approach, the Platform for Privacy Preferences Project (P3P) [2],
defines the syntax and semantics of privacy policies, and the mechanisms for
associating policies with Web resources. So, the privacy terms and conditions
of web sites can be expressed in a standard format and users can retrieve and
interpret this information automatically and then make a decision to release
their personal information or not. However, whether and how the sites comply
with the policies is outside the scope of the P3P specification.

2.2 Forward Security

The first Forward Secure Signature (FSS) scheme was designed by Bellare and
Miner [4]. Their idea is based on dividing time into periods: 0, 1, 2, . . . , T . The
public key PK is fixed, and the corresponding private key evolves every period
through a one-way function: SK0, SK1, SK2,..., SKT . In period i, (0 ≤ i ≤ T ), a
message M is signed by the current private key SKi and the current time period
index i. To verify the signature SIG of M , a receiver needs to use the fixed PK
and the time period index i in which the message was signed. In case a private
key, SKi, is compromised, the previous signatures signed by SKj(0 ≤ j < i)
are still valid (see Figure 1) though the future signatures are disabled. This
is because the key evolving algorithm is one-way and public, so that once an
attacker successfully compromises SKi he can easily derive the future keys but
it is computationally hard to reverse the process to obtain the previous keys. So,
this scheme mitigates the damage caused by the private key exposure. Following
that work, many improvements and similar forward secure schemes have been
published (e.g., [3,13,15,16,8,5]).

Here we give an overview of a general FSS that is the basis of our proposed
schemes. FSS is a 4-tuple of poly-time algorithms (Gen, Upd, Sgn, V rf):

– Gen: the key generation algorithm.

Gen(k, l) → (PK, SK0),

where k and l are two security parameters, PK is the fixed public key, and
SK0 is the initial private key.

– Upd: the user private key update algorithm.

Upd(SKi) → SKi+1.

The user uses his current private key for period i to generate a new private
key for the next period.

– Sgn: the signing algorithm.

Sgn(M, i, SKi) → 〈i, SIG〉,
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Fig. 1. Forward Secure Signature Scheme

where SIG is the signature, and i indicates the time period in which M is
signed.

– V rf : the verification algorithm.

V rf(PK, M, 〈i, SIG〉) → true/false.

If verification succeeds, V rf outputs true. Otherwise, false.

In addition, key-insulated cryptosystems, such as [9] and [14], can provide
both forward and backward security. The idea is similar to FSS, but it uses a
physically secure device to store a master key to help with evolving the private
key. When a user sends a request to the device to update his private key, the
device generates a partial secret from its master key and then sends the partial
secret to the user. The user generates the next private key from the partial secret
and his current private key. Thus, the key update cannot be performed without
the interaction of the secure device. However, this technology is not ready for
practical use because of its efficiency.

3 Preventing Unofficial Information Propagation

Even though access policies and P3P can prevent unqualified or uncertified par-
ties from viewing sensitive credentials, qualified or certified parties might be-
come corrupt or be compromised by attackers so that the sensitive credentials
they have viewed are at risk of being exposed. The challenge is how to disallow
credential propagation by viewers. However, digital documents are well-known
for being susceptible to copying, so our approach is to make credentials invalid
shortly after being viewed. This mitigates the impact caused by corrupted parties
or attackers. If a viewer becomes corrupt or attackers succeed after an invalida-
tion, they will have an authentic but invalid copy of a credential. They cannot
prove to other parties that the content in that credential is true since the signing
key has been disabled and the signature can be forged by anyone.

There are two näıve ways to prevent this kind of unofficial information propa-
gation: CAs can make credential expiration dates occur very soon, or credential
holders can request the revocation of a credential after each usage. However,
when we step further into these näıve solutions, problems arise. In the first
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method, if the credential owner wants to show a credential to someone else after
the expiration date, he needs to ask the CA to issue a new credential. In the
second method, the CA needs to put the credential on the revocation list (or
list it through OCSP responders) on request and issue a new credential for each
usage. In addition, in either method, as long as the CA’s signing key is still
valid after the expiration date or the revocation, the invalid credential cannot
be forged. This is a problem because it creates a special status for obsolete
credentials that makes them distinguishable from arbitrary information. So, the
problem of information leakage still occurs. In order to avoid this, the CA must
change its signing key frequently. If so, either its parent CA needs to be involved
in signing new public keys for the CA or the CA needs to adopt a primary key
pair which is used to sign a series ephemeral key pairs for itself. When the CA
uses a new key to sign a credential, PKI clients will search for a new certificate
for that key pair in known repositories such as LDAP directories. This introduces
a tremendous cost.

This paper gives two schemes to achieve the same goal but avoid the problems
caused by these two methods. The first is an interactive approach. Credential
holders request of a CA that it invalidate the credentials after each usage. The
second is a non-interactive one designed for credential holders who prefer to
invalidate the credentials at regular intervals of time. In this approach, the CA
invalidates credentials periodically on its own. Both of them use FSS in reverse
order as the cryptosystem for the CA to sign the credentials. In this way, the

Fig. 2. Interactive Scheme
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CA only has its FSS public key issued once, and each private key is invalidated
before a revocation becomes necessary, so there is no need to revoke and re-issue
its key pairs frequently. Further details about revocation are in Section 4.2.

The interactive scheme is given in Figure 2 and Table 1. In Figure 2, the time-
line of each entity is represented by a vertical line. The communication responses
and messages between each entity are represented by arrows and ellipses. Each
action is defined by a rectangle. It works as follows. A user sends a request to a
CA for a credential. After they agree to the type of the service, the user sends
the CA the document to be signed. Then the CA verifies the contents through
some online or offline methods. If they are correct, the CA signs it with multiple
FSS private keys and sends the multiple FSS signatures back to the user. When
the user wants to show his credential to someone else, he presents his docu-
ment and the signature signed with the last FSS private key of the CA. After a
grace period, he notifies the CA to disable the last FSS private key. When the
CA receives the notification, it just posts the last FSS private key in a public
repository. Then the key and the released signature is disabled and nobody is
liable to visit or download anything from that public repository. When the user
want to show his credential to another party, he sends the document and the
next to last signature. Afterwards the CA disables the next to last private key.

Table 1. Interactive Scheme

CA:

C1: Answer the request for credential issuance with “YES” or “NO”.
C2: If the on-request service is available and T is acceptable, send back “OK”

to the credential holder. Otherwise send “DENY”.
C3: Verify the content sent by the credential requester by on-line or off-line

methods. If successful, use SK1, . . . , SKT to generate SIG1, . . . , SIGT on
the document M .

C4: Send SIG1, . . . , SIGT to the credential requester.
C5: Release SKT−i when requested for i times.

Credential Holder:

H1: Send the request for credential insurance to CA.
H2: Check with CA whether the on-request service with T is available.
H3: If accepted, send M , the content to be signed, to CA.
H4: Receive the credentials and review them.
H5: If there are local policies to protect its credentials, ask the viewer to provide

documents to satisfy the policies.
H6: Send the credential and SIGT−i to a viewer when he is qualified.
H7: Wait for a grace period of time.
H8: Send invalidation request to CA.

Viewer:

V 1: Ask for the credential before providing some services or releasing sensitive
credentials.

V 2: If required, send a qualification proof.
V 3: Receive the credential, check its validity and verify it.
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Table 2. Non-Interactive Scheme

C2′: If the on-period service is available and 〈t, T 〉 is available, send back “OK”
to the credential holder. Otherwise send “DENY”.

C5′: Release the signing keys at regular intervals of time.
H2′: Check with CA whether the on-period service with 〈t, T 〉 is available.

In this way, the user consumes the FSS signatures in reverse order. For exam-
ple, in C3, the CA runs Gen(k, l) → (PK, SK0) to generate the fixed public
key and the initial private key, and Upd(SKj−1) → SKj n times to generate
SK1, . . . , SKn. Then the CA runs Sign(M, i, SKi) → 〈i, SIGi〉 to generate n
signatures, SIG1, . . . , SIGn, for M , the contents to be certified. T is a mutually
agreed on total number of FSS signatures when the user requests this kind of
service from the CA.

In the non-interactive scheme, the CA automatically releases a private key
periodically as agreed. So, there is no step H7 or H8 to notify the CA, and H2,
C2, and C5 are replaced by H2′, C2′ and C5′ in Table 2. T becomes the total
number of time periods and t is the interval length.

Note that in either scheme, when the CA is ready to release a private key,
it just posts it in a public repository and no seperate revocation mechanisms
are needed. The private key is disabled even though nobody is required to visit
or download that public repository. This is because making past private keys
publicly accessible already invalidates the proof of its creator. Thus, verifiers do
not need to be involved with any credential status checking procedures. So, this
rules out the bandwidth and scability issue of PKI revocation.

4 Practical Issues

Here, we discuss practical issues that arise when applying our schemes. We will
explain why we chose FSS instead of other new public key algorithms (see also
Section 6, where we show that FSS is more practical than an RSA-based solution
with respect to performance). Then the benefits of the time-limited certificates
over traditional CRLs and OCSP will follow.

4.1 Underlying Cryptosystems

FSS was motivated by the key exposure problem, and they addressed this prob-
lem by mitigating the damage caused by key exposure. The first practical FSS
scheme was constructed by Bellare and Miner and it is based on the ideas un-
derlying the Fiat-Shamir [11] and Ong-Schnorr [18] identification and signature
schemes. In order to solve our problem, frequently changing the CA’s public key
is not desired. So, directly applying the Fiat-Shamir scheme or the related GQ
scheme [12] does not help ease the CA of its burden. However, FSS has a fixed
public key, which meets our requirement. In our schemes, a CA releases FSS
private keys in reverse order on purpose to make past credentials unofficial. Our
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experiments in Section 6 also show that FSS with reasonable T is practical and
efficient with regard to solving our problem.

Generally speaking, most FSS algorithms require the input of the total time
periods, T , during the key generation phase. So, once the T is fixed, the credential
holder cannot ask for more than T credentials without changing the public key
when needs increase (changing the public key necessarily involves the CA). In
contrast to typical FSS algorithms, KIS has no such limitation — it supports an
unbounded number of periods. We therefore considered KIS as the basis for our
approach. However, its computational time for a single signature is more than
hours when k is greater than 16 on a representative IntelR© PentiumR© 4 machine
with CPU 2.00GHz and 512KB cache, where 1024-bit RSA takes microseconds.

In addition, since there are variants of FSS, such as [3,13,15], we limit our-
selves to general methods based on FSS so as to make our work independent of
FSS progress. This should ensure that any improvement to the underlying FSS
cryptography will benefit our scheme.

4.2 Revocation and Expiration

In PKI, certificate revocation is one of the hardest problems and consequently
one of the major costs. Muñoz et al. evaluated the main revocation policies:
OCSP and Overissued-CRL in their paper [17]. In general, for a high request
rate, a high bandwidth is needed. Certificate Revocation Lists (CRL) ask users to
download the entire list but almost 99% of revoked certificates may be irrelavant
to users. In practice, many applications do not use CRLs at all since downloading
a large CRL takes too much time and makes users uncomfortable when opening
a file. In addition, in order to conserve bandwidth, it is common that CRLs have
a validity period of one week. Such a delay can be critical.

In contrast, the Online Certificate Status Protocol (OCSP) requires verifiers
to request an online responder certificate status only for specific certificates. This
solves the scalability problem of CRLs. However, the responses provided by many
OCSP responders are based on CRLs. OCSP itself does not provide a timely up-
date so that the OCSP responses is as outdated as the underlying CRLs.

Short-lived certificates are proposed in order to avoid revocation issues [1,10].
In the former paper, the idea is to make certificates expire, in weeks to hours,
before a revocation becomes necessary, thereby ruling out the need for a seperate
revocation mechanism. The resulting increased cost of renewing certificates by
a CA is not negligible. In the latter paper, in order to decrease the expense
of updating short-lived certificates, the idea is that a batch of certificates can
be stored in a Certificate Verification Tree (CVT) and signed ahead of time
with a single CA signature. However, it is problematic when the CA uses one
signing key for all subsequent short-lived certificates in the scenario of unofficial
propagation. Assuming that a previous certificate was signed by the same and
currently valid signing key, this certificate will remain unforgeable even when
it is expired. In order to work against this unintended information leaking, the
CA has to change its signing key very frequently. This requires the involvement
of its parent CA or that it adopt a long-term key pair and use them to issue
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ephemeral key pairs (sign public keys) for the CA itself. In contrast, in our
schemes both credentials and the CA’s signing keys are short-lived but there is
one fixed public key for the CA and it needs to be signed only once. This releases
the CA completely from the burden of signing ephemeral public keys frequently.
So it solves the problem when short-lived certificates are introduced to work
against unofficial information propagation. In addition, according to the results
of our experiments in Section 6, our approach can also benefit the CVT-based
micropayment scheme in [10] with improved efficiency.

5 Applications

Our schemes can be applied wherever digital credentials are used. As an exam-
ple from the research domain, digital credentials play a key role in Automated
Trust Negotiation (ATN) and the issue of how to protect privacy and deal with
sensitive credentials has called for technical solutions since ATN was introduced.
In industry, on-line prescription and drug purchasing systems may have stronger
requirements for privacy issues. As mentioned in the previous section, a qualified
credential viewer may leak the information by saving a copy of the credential
he viewed and showing it to others — the viewer becomes malicious later in
this case, or he remains honest but is compromised by an attacker. In either
case, the effect is that locally stored copies of credentials are no longer secret.
If our schemes are adapted, this kind of information leakage can be prevented:
the corrupted viewer cannot prove the authenticity of the copy to others after
a specified amount of time has passed; and the attacker cannot get a valid copy
of the credential unless he hacks the viewer’s system in time. The trade-off is
that CAs and credential holders need to pay extra computational and communi-
cation costs for it. The following section will compare the performance between
our schemes and the traditional approach.

6 Experiments and Performance

From Section 3 and 4, we have shown that using traditional public/private key
pairs need more CA involvement to issue and invalidate short-lived certificates.
This section focuses on the comparison of the computational cost: the run time
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of generating keys, signing documents, and verifying signatures (Figures 3 – 5 ).
The first practical forward secure signature algorithm [4] is used for comparison.
Other FSS improvements, such as [3,13,15,16], may have better performance.

The experiments are running on the same Pentium 4 platform described in
Section 4.1. We set k = 1024 in both RSA and FSS. The performance of RSA
depends not only on the length of its module but also on it length of its public
key. So, we test two settings of RSA with 1024-bit module: the first is that the
public key is always set to 65537, which is the default setting in OpenSSL since a
common public key greater than 3 is generally considered safe; the second is that
the public key is a 512-bit random prime (in the legend these cases are referred
to as RSA-65537 and RSA-512b). Assuming one private key for one day, in the
largest case of our experiments, the life time of FSS public key is around 3 years.

The data show RSA-65537 takes 241.84 seconds to generate 1000 public/private
key pairs and RSA-512b takes 359.77 seconds while FSS takes only 2.47 seconds
to generate a fixed public key and 1000 private keys. So, FSS is around 100 times
faster in key generation. Figure 4 shows FSS is 1.54 times faster than RSA when
signing a document. Note that RSA-65535 and RSA-512b merge together in this
figure. This is because even though their public keys have different lengh, their
private keys remain 1024 bits long. In Figure 5, FSS is 28.93 times slower than
RSA-55537 when verifying a signature, but is not significantly different from
RSA-512b. This is because verification involves a public exponent, and 65537
(=216 + 1, 17 bits) and a 512-bit prime as an exponent have a significant impact.
Another effect of this is that RSA verification is much faster than its signature.
If we manually set public keys longer than 512 bits, the RSA key generation and
verification will be slower.

In addition, FSS takes 12.58 seconds to sign 1000 documents on a Pentium
4 machine. Thus, signing is practical for a CA (who may have a faster machine
than the Pentium 4 used in our experiments). One thousand FSS verifications
take 12.73 seconds, but they are calculated by different verifiers. A single FSS
verification takes only 12.73 microseconds on a Pentium 4 on average. This is
also practical for common users.

7 Conclusion and Future Work

Unofficial information propagation has been a prominent concern with the grow-
ing use of digital credentials. This paper presents two schemes to address this
problem: an interactive scheme and a non-interactive one. In our schemes, for-
ward secure signature cryptosystems are used in reverse order for the purpose
of validating signatures so that a credential will lose its ability to prove its au-
thenticity in a short time after it is viewed. This new approach to short-lived
certificates avoids significant costs caused by traditional pair-wise signature al-
gorithms, which are not practical because of their performance and public key
issuance considerations. In order to compare, we use the first FSS algorithm
for experiments and note that further performance improvements benefit our



124 Z. Le et al.

schemes when using newer FSS versions. Our experiments show that this version
of FSS is practical with a reasonable number of keys and comparable security
parameters.

However, even though the proposed schemes can help with unofficial infor-
mation propagation, the cooperation of the CA is required to generate multiple
signatures as needed and send them to users. We are interested in the possibility
of a better solution, ideally one where the CA is only required to sign once, and
users can evolve a signature by themselves but cannot change the signed content.
In this way, users could disable signatures as needed exclusively by themselves.
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Abstract. We1 consider the problem of micro-aggregation in secure sta-
tistical databases, by enhancing the primitive Micro-Aggregation
Technique (MAT ), which incorporates proximity information. The state-
of-the-art MAT recursively reduces the size of the data set by excluding
points which are farthest from the centroid, and those which are closest
to these farthest points, while it ignores the mutual Interaction between
the records. In this paper, we argue that inter-record relationships can
be quantified in terms of two entities, namely their “Association” and
“Interaction”. Based on the theoretically sound principles of the neural
networks (NN), we believe that the proximity information can be quan-
tified using the mutual Association, and their mutual Interaction can be
quantified by invoking transitive-closure like operations on the latter. By
repeatedly invoking the inter-record Associations and Interactions, the
records are grouped into sizes of cardinality “k”, where k is the security
parameter in the algorithm. Our experimental results, which are done on
artificial data and on the benchmark data sets for real-life data, demon-
strate that the newly proposed method is superior to the state-of-the-art
by as much as 13%.

Keywords: Information loss (IL),Micro-AggregationTechnique (MAT ),
Inter-record association, Interaction between micro-units.

1 Introduction

A lot of attention has recently been dedicated to the problem of maintaining the
confidentiality of statistical databases through the application of statistical tools,
so as to limit the identification of information on individuals and enterprises. Sta-
tistical Disclosure Control (SDC) seeks to balance between the confidentiality
and the data utility criteria. For example, federal agencies and their contractors
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who release statistical tables or micro-data files are often required by law or by
established policies to protect the confidentiality of released information. How-
ever, this restriction should not affect public policy decisions which are made by
only accessing non-confidential summary statistics [1]. SDC can be applied to
information in several formats: Tables, responses to dynamic database queries
and micro-data [2,3]. The protection provided by SDC results from either gen-
erating a set of synthetic data from a model fitted to the real data, or modifying
the original data in a special way [3].

Micro-aggregation is one of the most recent techniques that has been used to
mask micro-individuals in view of protecting them against the re-identification
in secure statistical databases [2, 4, 5]. Moreover, it is modeled as a clustering
mechanism with group size constraints, where the primitive goal is to group a set
of records into clusters of size at least k, based on a proximity measure involving
the variables of interest [6, 7, 8, 9, 10].

The Micro-Aggregation Problem (MAP ), as formulated in [4, 5, 8, 9], can be
stated as follows: A micro-data set U = {U1, U2, . . . , Un} is specified in terms of
the n “micro-records”, namely the U ′is, each representing a data vector whose
components are d continuous variables. Each data vector can be viewed as Ui =
[ui1, ui2, . . . , uid]T , where uij specifies the value of the jth variable in the ith

data vector. Micro-aggregation involves partitioning the n data vectors into m
mutually exclusive and exhaustive groups so as to obtain a k-partition Pk =
{Gi | 1 ≤ i ≤ m}, such that each group, Gi, of size, ni, contains either k data
vectors, or between k and 2k − 1 data vectors.

The optimal k-partition, P
∗

k, is defined to be the one that maximizes the
within-group similarity, which is defined as the Sum of Squares Error, SSE =∑m

i=1

∑ni

j=1(Xij −X̄i)T (Xij −X̄i). This quantity is computed on the basis of the
Euclidean distance of each data vector Xij to the centroid X̄i of the group to
which it belongs. The Information Loss is measured as IL = SSE

SST , where SST is
the squared error that would result if all records were included in a single group
and is given SST =

∑m
i=1

∑ni

j=1(Xij − X̄)T (Xij − X̄), where X̄ = 1
n

∑n
i=1 Xi.

As mentioned in the literature, this problem in its multi-variate setting is
known to be NP -hard [11], and has been tackled using different approaches
such as hierarchical clustering [4, 5], genetic algorithms [4, 5, 12], graph theory
[8,9], fuzzy clustering [13,14] and machine learning [15]. All the heuristic Micro-
aggregation Techniques (MATs), seek to minimize the value of the IL. However,
minimizing the loss in the data utility is an important issue that is difficult to
enforce, primarily because this strategy was intended to enhance the security in
an SDC technique. Indeed, the definition of optimality for an SDC is defined in
the literature as being equivalent to offer the best trade-off between the IL and
disclosure risk [16, 17]. In spite of this, the recent development of MATs [18]
leaves the researcher no excuse to circumvent the problem of trying to reduce
the value of the IL as much as possible [19].

In general, minimizing the IL directly follows maximizing the similarity be-
tween records in each group. The state-of-art MATs depend on utilizing the “Eu-
clidean” distance, which serves as the criterion playing a central role in estimating
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the similarity between the records. However, this distance function does not com-
pletely capture the appropriate notion of similarity for any data set. Our position
is that the notion of similarity should be measured by using a metric that also
unravels the relationship between the inter-records. We believe that this can be
quantified in terms of two quantities, namely the mutual “Association” between
the individual records and their mutual “Interaction”. We propose to measure
these quantities using Association Similarity Rules2 (ASRs). In this context, we
mention that the concepts of Association and Interaction are derived from the
Associative Cluster Neural Network (ACNN) [26].

The main contribution of this paper is to integrate the foundational concepts
of ASRs with MATs so as to devise a new strategy for estimating the simi-
larity. This new method demonstrates that the IL can be reduced taking two
measurements into consideration. First of all, we consider the mutual Associa-
tion between the records. Secondly, and more importantly, we also consider the
mutual Interaction between the records by using a transitive-closure like oper-
ation when k ≥ 3. This, in turn, is achieved by invoking our newly proposed
Interactive-Associative Micro-Aggregation Technique (IAMAT ). The effect of
these considerations can be seen to minimize the IL by up to 13% when com-
pared to the state-of-the-art.

The structure of this paper is as follows: In the following section 2 we start
with a concise survey about the reported MATs. Subsequently, we summarize
the Associative Cluster Neural Network algorithm. In Section 3, the Interactive-
Associative Micro-Aggregation Technique is presented informally and algorith-
mically. Then, in Section 4, we present the results of experiments we have carried
out for synthetic and real data sets. The paper finishes in Section 5 with some
conclusions.

2 Micro-Aggregation

As mentioned in Section 1, the MAP has been tackled using different techniques.
Basically, a MAT relies on a clustering technique and an aggregation technique.
MATs were originally used for numerical data [10], and they can be further
classified as below.

– Uni-variate vs. Multi-variate
The difference between the uni-variate and the multi-variate MATs depends
on the number of random variables used in the micro-aggregation process.
Uni-variate MATs deal with multi-variate data sets by micro-aggregating
one variable at a time, such as Individual ranking [27, 28]). Multi-variate
MATs either rank multi-variate data by projecting them onto a single axis3,
or dealing directly with the unprojected data. Working on unprojected multi-
variate data allows simultaneous micro-aggregation of several variables so

2 Association Similarity Rules are well-known data mining techniques used to discover
the relationshipsbetweenpatterns indifferent applicationdomains [20,21,22,23,24,25].

3 The multi-variate data is projected onto a single axis by using either a particular vari-
able, the sum-z-scores or a principle component analysis prior to micro-aggregation [5].
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that a single k-partition for the entire data set is obtained. Since there is
no straightforward formal algorithm to sort multi-variate data without pro-
jection [4, 29, 30], many heuristic methods have been proposed such as the
Maximum Distance to Average Vector (MDAV ) [4,18], the Minimum Span-
ning Tree (MST ) [9] and the Object Migrating Micro-aggregated Automaton
(OMMA) [15].

– Fixed-size vs. Data-oriented
The difference between the fixed-size and the data-oriented MATs depends
on the number of records in each group. Fixed-size MATs require all groups
to be of size k except for a single group whose cardinality is greater than k
when the total number of records, n, is not a multiple of k. The last group is
used to contain more than k records [30], but as pointed out in [4], assigning the
additional records to the group containing the modal value of the data, reduces
the value of the IL [29]. Data-oriented MATs allow groups to be of size greater
than k and less than 2k − 1 depending on the structure of the data. These
methods yield more homogenous groups, which help to further minimize the
IL [2, 4, 5]. Although these methods are marginally more complex than those
involving fixed-size MATs, they are less likely to compromise the “privacy”
of the micro-file as shown in [31]. Examples of data-oriented MATs are those
whichuse a genetic algorithm [4,5], thek-WardMAT [4,32,5] and theVariable-
size Maximum Distance to Average Vector scheme (V − MDAV ) [33].

– Optimal vs. Heuristic
The first reported optimal uni-variate MAT with a polynomial complexity
is given in [8], which solves the MAP as a shortest path problem on a graph.
Unfortunately, the optimal MAP for multi-variate micro-aggregation is an
NP -hard problem [11]. Therefore, researchers seek heuristic MATs that
provide a good solution - close to the optimal.

2.1 Associative Clustering Neural Network (ACNN)

The Associative Cluster Neural Network (ACNN), was proposed [26] as a re-
current NN model that dynamically evaluates the Association of any pair of
patterns through the Interaction between them and the group of patterns. The
ACNN possesses many attractive features, such as its simple structure, its re-
spective learning mechanism, and its efficient clustering strategy, which uses the
Association as a new similarity measure. Its superiority in clustering and analyz-
ing gene expression data has also been demonstrated [34]. The rationale behind
this superiority probably lies in the inherent advantages of ASRs, which possess
the potential to ensure that the similarities between patterns within the same
cluster increase, whereas the similarities between different clusters decrease.

The ACNN initializes the Association between any two neurons by evaluating
the relationship between them and by setting the learning ratio, α, to the most
suitable value. The learning ratio should guarantee that the initial Association is
large when the distance between the patterns is small. The ACNN studies the In-
teraction level of each pair of patterns based on the Association made by the other
patterns, and defines the similarity threshold which ensures a robust performance.
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The association value between any two patterns has to be updated based on the
result of the Interaction level, and this is, in turn, scaled by using the well-known
sigmoidal function. This procedure has to be iteratively executed until there is no
noticeable change in the successive associations. Subsequently, the ACNN con-
structs the cluster characteristic matrix to describe the cluster property at the
end of the learning phase, after which it determines the number of clusters and
labels the patterns with the index of the cluster that they belong to. We refer the
interested reader to [26] for a complete explanation of this clustering strategy.

3 Interactive-Associative Micro-Aggregation Technique
(IAMAT )

The state-of-the-art MATs use a proximity function, and in particular, the
Euclidean distance, to measure the similarity between records. To the best of
our knowledge, the combination of the Association and the Interaction between
individual records has not been taken into consideration while micro-aggregating
the data file. We now discuss how these two criteria are applicable to micro-
aggregate the data file so as to further minimize the IL.

3.1 Inadequacy of Using the ACNN Directly

Although the basic ACNN dynamically evaluates the Association and the In-
teraction between the patterns, it is not directly applicable to the MAP in its
virgin form for the following reasons:

– Feature Values
In a neural setting, the weights of the neurons are updated based on the
relative relationship between them. These weights are usually updated by
gradient-like considerations, so that a change in the weights leads to a bet-
ter classifications. Consequently, in the ACNN the weights could be both
positive or negative, quite simply because increasing the values of certain
features may have a negative impact on the optimization problem.

As opposed to this, it is meaningless to have weights that are negative in
the MAP . This is because the fundamental reason for tackling the problem is
to determine how the records are associated with each other, and clearly, the
concept of the records being negatively associated is irrelevant. Thus, if we
are to use the principles of the ACNN to solve the MAP , it is imperative
that the weights are never allowed to become negative. Rather, we would
prefer that they stay within the interval [0, 1].

– Ineffectiveness of Sigmoidal Mappings
When Minsky suggested the weakness of the Perceptron, he showed that it
was incapable of resolving the basic XOR problem. However, the field of
NNs received a huge “boost” when it was discovered that if these primi-
tive neural units were cascaded and interconnected, the discriminant could
be arbitrarily complex. To effectively model the switching and clipping ef-
fects in such complex domains, researchers introduced functions such as the
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sigmoidal function whose purpose was to transform the input space using
highly non-linear mappings.

It is our position that such switching and clipping effects are not per-
tinent to the study of the MAP . The reason for this is: The Associations
and the Interactions between the records are, in one sense, related to their
relative proximity, and we have no reason to believe that these quantities fall
off or change abruptly. Rather, our experience is that these quantities vary
smoothly with the relative proximity of the records.

– Transitive-Closure-like Properties
Obtaining the set of shortest paths on a graph can be achieved by using a
transitive-closure algorithm that traverses all the edges of the graph. In this
case, the shortest paths are obtained by using the operation of “Addition” on
the weights of the edges along any given path, and invoking the “Minimum”
operation over all the possible paths. However, the underlying algorithm has
been proven to be more powerful if it is mapped using the properties of a
semi-ring (S,

⊕
,
⊗

), where (i) S is the set of weights associated with an
edge, (ii)

⊕
represents an abstract “Addition” operation over the elements

of S, and (iii)
⊗

represents an abstract “Multiplication” operation over the
elements of S. In particular, if S is the set of reals, and

⊕
and

⊗
represent

the arithmetic addition and product operations respectively, the transitive-
closure algorithm would lead to a matrix multiplication scheme, which is
central in determining the multi-step Markov matrix for a Markov chain.

The basic ACNN computes the Interaction between the neurons using
the product involving aip and apj . The total two-step Interaction is thus,
effectively, the contribution of the transitive-closure operation of the path
from Xi to Xj via all the possible intermediate nodes, Xp. In our case, the
issue of interest is not the total Interaction between the relevant nodes, but
rather the node X∗ which contributes to the maximal Interaction between
Xi and Xj . Thus, unlike the ACNN , in our solution, we do not compute
the sum of all the Interactions between the nodes. Rather, we report the one
which is maximally interacting with the nodes already in the same cluster,
say Xi and Xj . This is a fundamental difference between our present scheme
and the ACNN , because it renders the computations both easier and faster,
and is yet able to coalesce the nodes based on the inferred interactions.

– One-shot Training
The final difference between our present scheme and the ACNN is the fact
that we have resorted to a one-shot “training” mechanism. This is atypical
for most NNs. Indeed, most NNs repeatedly run the NN over the data set
till their respective weights converge. Some families of NNs (for example,
the Adachi’s network [35]) have been reported, which actually yield the final
weights using a single pass over the data set.

In our case, we argue that repeatedly running the updating algorithm over
the data set is superfluous. Rather, by initially computing the Associations,
we are able to arrive at the best Interactions. The ACNN requires that
the set of associations are then re-computed. But, since these associations
are computed based on the relative proximities of the records, and since
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the Interactions are computed based on the latter, it is meaningless, in the
case of the MAP, to re-compute the Associations. Indeed, if we resorted
to doing this, it would lead to weights that are negative and which again,
as argued above, is unacceptable. It would also lead to the “rejection” of
many records- which is inappropriate for the MAP . Thus, in the IAMAT ,
the corresponding matrices are computed in a one-shot manner. Subsequent
computations are required only after the learned groups of size k are removed
in each learning cycle.

Based on the above principles, we now present the design of our newly-proposed
scheme, the Interactive-Associative Micro-Aggregation Technique (IAMAT ).

3.2 Design of the IAMAT

We propose IAMAT to micro-aggregate the records in the data set by using a new
methodology to evaluate the similarity between them. This similarity is intuitively
expressed by their inter-record relationships, and is estimated by measuring the
“Association” and “Interaction” as modeled in the ACNN . The resulting mea-
surements are similar to the ones that cluster the records based on the distance
between them. Consequently, instead of merely assigning relatively “close” records
to be in the same group, we choose to “estimate” the Association and the Interac-
tion between them, and if the combination of these indexes is relatively high, we
assign them to be in the same group. Otherwise, we determine that they should
be in two different groups. We believe that using this pair of measurements will
help to achieve a more robust performance than other existing measures, which is
a claim that we have verified. From a top level, we can describe it as below.

The IAMAT is a consequence of incorporating the above considerations into
the elegant MDAV strategy. Consider the IAMAT for any specific value of
k. The IAMAT uses the centroid of the data set to relatively determine the
farthest record, say Xr. Subsequently, we achieve a quick search to obtain the
record that is most associated to Xr, say Xs. After this, we propose to choose
k − 2 records based on the mutual Interaction between each record inside the
group and the remaining unassigned records. Consequently, the next step consists
of creating a cluster that comprises the associated pair 〈Xr, Xs〉 and the most
interactive k−2 records. At the end of this stage, the cluster is micro-aggregated
and removed from the original data set. The above steps are iteratively repeated
until no more that k − 1 records remain in the original data set. The IAMAT
terminates by assigning the remaining unassigned records to the last group. The
scheme is algorithmically described below in Algorithm 1, after which each step
is explained in greater detail.

Unlike the MDAV , instead of measuring the distance between the records,
the IAMAT utilizes the Association as per the ACNN . The ACNN classifies
the records as being associated if the value of the association index, aij , is pos-
itive. Otherwise the neurons will be classified as being unrelated, leading to its
“rejection”. Clearly, rejecting records will not comply with the spirit and goal
of the MAP whose aim is to minimize the IL. We believe that an Association
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Algorithm 1. Interactive-Associative Micro-Aggregation Technique (IAMAT )
Input: The original micro-data file, D, that contians n unassigned records, and the
parameter,k.
Output: The micro-aggregated micro-data file, D′.
Method:
1: Compute the centroid of D as μ = 1

n

∑n
i=1 Xi.

2: Compute the scaling factor α as related to the mean square distance as α =√
n

1
n

(
∑n

i=1 ||Xi−μ||2)
.

3: Compute the association values between μ and each record, Xi, in D as aμi =

e− ||Xi−μ||2
α .

4: Initialize the number of groups to zero.
5: while there are more than (k − 1) Unassigned records in D do
6: Increment the number of groups by unity.
7: Initialize the number of records inside the group to zero.
8: Select the least associated Unassigned record, Xr, to the centroid μ as follows

Xr = Min aμi.
9: Mark Xr as Assigned record.

10: Compute the association values between Xr and each Unassigned record, Xi, in
D.

11: Select the most associated Unassigned record, Xs, to Xr as follows Xs =
Max ari.

12: Mark Xs as an Assigned record.
13: Compute the association values between Xs and each Unassigned record, Xi, in

D.
14: Add Xr and Xs to the group and increment the number of records inside the

group by two units.
15: while the number of records inside the group is less than k do
16: for all Unassigned records, Xp, in D do
17: Initialize the Interaction of Xp, ηp, to 1.
18: for all Assigned records inside the group, Xi do
19: Update the value of Interaction as follows ηp = ηp ∗ aip.
20: end for
21: end for
22: Let X∗ be the record which has the highest value for ηp.
23: Mark X∗ as an Assigned record.
24: Add X∗ into this group and increment the number of records inside the group

by unity.
25: Compute the association values between the most interactive record, X∗ and

each Unassigned record, Xi, in D.
26: end while
27: Remove the present cluster from the set D.
28: end while
29: Assign the remaining Unassigned records to the last group.
30: Build the micro-aggregated data file, D′.
31: return D′.
32: End Algorithm Interactive-Associative Micro-Aggregation Technique (IAMAT )
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between any pair of records exists regardless of its value, and this could be very
small when it is close to zero, or very large when is close to unity. Therefore,
the IAMAT quantifies the value of the Association between two records, say Xi

and Xj , to belong to the interval [0, 1], and this is computed as follows:

aij = aji = r(Xi, Xj) = e−
||Xi−Xj ||2

α .

where r() is the identical function used in the definition of the ACNN , which
evaluates the relationship between any two records, and which also involves α.
The value of α is assigned so as to guarantee that the initial Association is large
when the distance between Xi and Xj is small and vice versa. It is given as:

α =
√

n
1
n (

∑n
i=1 ||Xi − 1

n (
∑n

i=1 Xi)||2)
.

The rationale for incorporating the Association with the Interaction between
the records inside a group, is that it leads to more homogeneous groups. The
concept of the Interaction turns out to be crucial in forming the cluster, because
we believe that merely being close to the farthest records is not a reason that is
sufficiently important for any record to be grouped with the most distant one.
Rather, we propose that the Interaction with respect to all the records inside the
group has to be taken into consideration while clustering the records. As men-
tioned earlier, the latter is computed by invoking transitive-closure like opera-
tions. Finding the most interactive record with the associated pair is achieved by
searching for the maximum product of the Association between the unassigned
records, say Xp, and each record in the associated pair, 〈Xi, Xj〉, as follows:

ηij =
{

aip(t − 1) × apj(t − 1) p �= i, j and i �= j
0 i = j.

The equation above is valid when k = 3. By increasing the value of k, the
transitive-closure is applied by adding one unassigned record at a time. The de-
cision of grouping the unassigned record with other records in the group depends
on the Interaction of that record with respect to other records inside the group.
Logically, the most interactive unassigned record has been chosen as follows:

Index Maximum1≤p≤n ηp,

where η is computed as follows:

ηp =
∏ni

i=1 aip

where Xi represents the record inside the group, Gj , of size nj and Xp represents
the unassigned record.

4 Experimental Result

4.1 Data Sets

The IAMAT has been rigorously tested and the results obtained seem to be
very good, where the “goodness” of a scheme refers to the combination of its



A Novel Method for Micro-Aggregation 135

being efficiently computed, and its leading to a minimum value for the IL. We
have tested it using the two real-life benchmark reference data sets used in
previous studies: (i) The Tarragona data set which contains 834 records with
13 variables [4]. (ii) The Census data set which contains 1080 records with 13
variables [36].

To further investigate the performance of the new scheme, many experiments
have been carried out using various simulated data sets involving vectors with
dimensions ranging from 10 up to 80, and sets of cardinality from 10, 000 up to
100, 000. The simulated multi-variate data sets were generated using Matlab’s
built-in-functions: (i) Uniform distribution (min=0; max=1000). (ii) Normal dis-
tribution (μ=0;σ=0.05).

The experiments were also used to investigate the scalability of the IAMAT
with respect to the size of the data, its dimensionality, and the group size.

4.2 Results

For a given value of the security parameter k, which represents the minimum
number of records per group, we compared the percentage value of the IL =
(SSE/SST ) times 100 (as defined in Section 1) resulting from the IAMAT
and the MDAV strategies. It is important to mention that the MDAV was
implemented based on the centroid concept and not a diameter concept.4 All
the programs were written in the C ++ language, and the tests were performed
on an Intel(R) Pentium (R)M. Processor 1.73 GHz., with 512 MB of RAM .

Table 1 shows the improvement of the solution obtained by using the IAMAT
as opposed to the MDAV on the multi-variate real data sets, where all the 13
variables are used simultaneously during the micro-aggregation process. The re-
duction in the value of the IL attains up to 8% on the Tarragona data set, and
5.12% on the Census data set when the group size is equal to 3. It is clearly evi-
dent that the impact of the group size on the solution is minimized by increasing
the number of records per group. To be fair, we also mention that computational
time required to execute the IAMAT is almost double the computational time
required for the MDAV , although, in every case, the time was less than 0.5 sec-
ond. In term of comparison, we believe that minimizing the loss in the data utility
is more important than minimizing the extremely small computational time, es-
pecially because the micro-aggregation is usually performed off-line where the
additional time requirement is less crucial. However, the question of how the
decrease of IL is related to the increase in the computational time is still open.

We undertook a comprehensive evaluation of the performance of the IAMAT
scheme so as to investigate the it scalability with respect to the size of the data
set, its dimensionality and the group size as shown in Table 2 in Appendix A.

– The scalability of the IAMAT with respect to the data set size
We tested both the IAMAT and the MDAV schemes using data based on
the uniform and the normal distributions with cardinalities ranging from

4 We did not program the MDAV scheme. We are extremely thankful to Dr.Francesc
Sebé for giving us his source code.
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Table 1. Comparison of the percentage of the IL and the computational time between
the MDAV and the IAMAT on the Tarragona and Census data sets

Data k MDAV IAMAT Improv.
Set value IL Time IL Time (%)

3 16.9593 0.17 15.6023 0.31 8.00

Tarragona 4 19.7482 0.12 19.2872 0.22 2.33

5 22.8850 0.12 22.7164 0.23 0.74

3 5.6535 0.22 5.3639 0.41 5.12

4 7.4414 0.19 7.2170 0.44 3.02

Census 5 8.8840 0.17 8.8428 0.42 0.46

6 10.1941 0.17 9.9871 0.42 2.03

10, 000 records up to 100, 000 with 10 variables. The percentage of the
improvement achieved by invoking the IAMAT in the IL, (when k = 4)
reached as high as 13.73% for the normal distribution and 13.67% for the
uniform distribution. It is fair to state that the IAMAT requires almost
triple the computational time needed to execute the MDAV scheme. In
general, increasing the size of the data set tends to minimize the IL value.

– The scalability of the IAMAT with respect to dimensionality
We also tested the IAMAT and the MDAV on the uniform and the nor-
mal distributions for various dimensions ranging from 10 to 80, when the
data size was set to 10, 000 records, and the value of k was set to 3. The
highest percentage of the improvement in the IL was about 10% for both
the uniform and normal distributions. The computational time required to
micro-aggregate all the individual records was directly proportional to the
dimensionality in both schemes, and the required computational time in
the IAMAT was almost double the required time for the MDAV . As ex-
pected, increasing the dimensionality implies increasing the IL. This is in-
tuitively appealing because increasing the dimensionality tends to minimize
the similarity between the individual records and, at the same time, re-
duce the Association and the Interaction between the different multi-variate
records.

– The scalability of the IAMAT with respect to the group size
The scalability of the IAMAT and the MDAV with regard to the group
size was studied for both the uniform and the normal distributions, where
the group size ranged from 3 to 10, and for the cardinality of the data
set being 10, 000 records, with a dimensionality of 10 variables. The per-
centage of improvement in reducing the value of the IL. This reduction
reached 12.74% for the normal distribution when the group size was 5, and
reached 12.31% for the uniform distribution when the group size was 4.
This is, again, a fair observation, because having many records in the group
tends to minimize the within-group similarity, and to simultaneously max-
imize the similarity between the groups. This also tends to increase the IL
value.
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5 Conclusions

In this paper, we have considered the problem of achieving micro-aggregation in
secure statistical databases. The novelty of our method involves enhancing the
primitive MAT that merely incorporates proximity information. The state-of-
the-art MAT recursively reduced the size of the data set by excluding points
which were farthest from the centroid and those which were closest to these
farthest points. Thus, although the state-of-the-art method was extremely effec-
tive, we have argued that it uses only the proximity information, and ignores
the mutual Interaction between the records. In this paper, we have proved that
inter-record relationships can be quantified in terms of two entities, namely their
“Association” and “Interaction” that can be measured by invoking transitive-
closure like operations, and by mapping the problem into a neural setting using
the ACNN . By repeatedly invoking the inter-record Associations and Interac-
tions, we have shown that the records can be grouped into sizes of cardinality
“k”. Our experimental results, which were done on artificial data and on the
benchmark data sets for real life data, demonstrate that the newly proposed
method is superior to the state-of-the-art by as much as 13%. Thus, we believe
that our strategy leads to a very promising tool for solving the MAP .

We foresee two avenues for future work. The first avenue is to extend the
IAMAT towards data-oriented micro-aggregation, where the group size, ni,
satisfies k ≤ ni < 2k. The second involves investigating the effect of having
a dynamic α5 on the compactness of each group and on the value of the IL.
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Appendix A

Table 2. Comparison of the percentage of the IL and the computation time between
the MDAV and the IAMAT on simulated data. The results demonstrate the scala-
bility of the IAMAT with respect to the size of the data set, dimensionality and the
group size.

Investigate scalability with respect to the size of the data set
Normal Distribution Uniform Distribution

Data MDAV IAMAT improv. MDAV IAMAT improv.
size IL Time IL Time (%) IL Time IL Time (%)

10 13.9376 12.05 12.2106 29.37 12.39 13.9202 12.24 12.2069 29.96 12.31

20 11.9354 48.90 10.3653 120.37 13.15 11.9617 63.15 10.4275 145.09 12.83

30 10.8849 111.84 9.4488 277.20 13.19 10.9228 143.17 9.4976 328.02 13.05

40 10.2238 200.42 8.8732 494.94 13.21 10.2733 222.74 8.9063 526.37 13.31

50 9.7234 315.04 8.4382 773.92 13.22 9.7694 389.45 8.4574 903.39 13.43

60 9.3513 457.50 8.1119 1,115.69 13.25 9.3707 644.32 8.1338 1386.01 13.20

70 9.0358 623.89 7.8243 1,520.94 13.41 9.0776 629.73 7.8523 1500.12 13.50

80 8.7898 809.397 7.6063 1,981.06 13.46 8.8183 1002.77 7.6247 1959.25 13.54

90 8.5584 1,044.77 7.4010 2,505.86 13.52 8.5885 1252.61 7.4140 2485.42 13.68

100 8.3799 1,512.68 7.2293 3,413.98 13.73 8.3933 1656.90 7.2456 3546.72 13.67

Investigate scalability with respect to the dimensionality of the data set
Number Normal Distribution Uniform Distribution

of MDAV IAMAT improv. MDAV IAMAT improv.
variables IL Time IL Time (%) IL Time IL Time (%)

10 10.5383 13.53 9.4821 30.14 10.02 10.5437 13.75 9.4400 33.87 10.47

20 24.3766 24.30 22.3577 41.26 8.28 24.4692 25.03 22.2454 46.40 9.09

30 32.6044 35.50 29.9938 69.79 8.01 32.5113 36.67 29.9711 60.00 7.81

40 37.5679 47.00 34.8732 64.98 7.17 37.4627 47.18 34.8052 72.68 7.09

50 40.8705 40.87 38.2173 67.87 6.49 40.8427 58.78 38.2470 85.98 6.36

60 43.3104 70.01 40.7761 89.88 5.85 43.3912 69.48 40.8478 98.81 5.86

70 45.3212 82.78 42.7483 104.6 5.68 45.3778 81.45 42.8263 112.48 5.62

80 46.8119 93.78 44.3459 113.17 5.27 46.8533 97.10 44.4367 132.42 5.16

Investigate scalability with respect to the group size
Normal Distribution Uniform Distribution

k MDAV IAMAT improv. MDAV IAMAT improv.
value IL Time IL Time (%) IL Time IL Time (%)

3 10.5383 13.53 9.4821 32.96 10.02 10.5437 13.75 9.4400 33.87 10.47

4 13.9376 11.93 12.2106 28.79 12.39 13.9202 12.24 12.2069 29.96 12.31

5 16.5221 11.17 14.4167 26.67 12.74 16.4020 11.45 14.4091 29.32 12.15

6 18.7797 10.68 16.4650 26.86 12.33 18.5484 10.96 16.4152 28.78 11.50

7 20.3782 10.32 18.0344 25.48 11.50 20.2887 10.56 18.0431 28.28 11.07

8 21.6869 10.12 19.1562 26.67 11.67 21.5464 10.31 19.1668 26.32 11.04

9 22.8931 9.87 20.4255 24.92 10.78 22.7587 10.07 20.3952 26.02 10.39

10 23.8439 9.07 21.4969 26.06 9.84 23.6922 9.92 21.4520 25.92 9.46
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Abstract. In recent years, a privacy model called k-anonymity has
gained popularity in the microdata releasing. As the microdata may con-
tain multiple sensitive attributes about an individual, the protection of
multiple sensitive attributes has become an important problem. Different
from the existing models of single sensitive attribute, extra associations
among multiple sensitive attributes should be invested. Two kinds of dis-
closure scenarios may happen because of logical associations. The Q&S
Diversity is checked to prevent the foregoing disclosure risks, with an
α Requirement definition used to ensure the diversity requirement. At
last, a two-step greedy generalization algorithm is used to carry out the
multiple sensitive attributes processing which deal with quasi-identifiers
and sensitive attributes respectively. We reduce the overall distortion by
the measure of Masking SA.

1 Introduction

In this information growing society, there has been a tremendous growth in the
amount of personal data that will be collected and analyzed. In many scenar-
ios, access to large amounts of personal data is essential for accurate inferences
to be drawn. As a original form of information, microdata is a valuable source
of data for the allocation of public funds, medical research, and trend anal-
ysis. For example, a hospital may release patient’s diagnosis records so that
researchers can analyze the characteristics of various diseases or use them to
produce various statistical reports. The data providers must be careful when
providing outside users access to such data, because they have obligations to-
wards the individuals to which the data refer to make sure that it is (almost)
impossible for a user to use the data to disclose confidential information about
these individuals[11,14]. In order to use personal data without disclose confiden-
tial information, efficient anonymization techniques should be adopted. First,
some uniquely identifying attributes like names and social security numbers are
removed from the table. However, sets of other attributes (like age, gender,
and zipcode) can be linked with external data to uniquely identify individuals.
These attributes are called quasi-identifier [1]. To prevent linking attacks using
quasi-identifiers, Samarati and Sweeney proposed a model of privacy called k-
anonymity[9]. A release of microdata is said to adhere to k -anonymity if each
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record in the released dataset has at least (k -1) other records with respect to
the set of quasi-identifier attributes[2,7,12]. However, the k -anonymity model has
drawbacks itself, because lack of diversity in sensitive attributes and adversaries’
background knowledge may lead to additional disclosure risks. Two improved k -
anonymity model l-diversity[8] and (α, k)-anonymity[16] are proposed to solve
this problem. However, both models only focus on dealing with microdata with
single sensitive attribute (single-SA). When there comes the situation that at-
tackers can do some inference disclosures based on multiple sensitive attributes,
data providers should consider all the possible conditions that may happen be-
fore releasing the microdata with multiple sensitive attributes (multi-SA).

The existing methods concerning about multi-SA microdata publishing are
discussed on[8]. The idea is described as follows: Suppose S and V are two
sensitive attributes of one microdata set. Only if we treated S as part of the
quasi-identifier when checking for diversity in V (and vice versa), we can ensure
the diversity principle held for the entire dataset. Effectively protect the privacy
of microdata with multi-SA, and at the same time with considerable utilities of
the data. This is the original intention of this paper. The main contributions of
this paper include:

(1) We set out by analyzing the problems of multiple sensitive publishing and
the disclosure scenarios which may happen because of logical associations
existing between multiple sensitive attributes. Then a Q&S Diversity re-
quirement is proposed to prevent attacks in the foregoing disclosure scenar-
ios. And finally, an α Requirement definition is given to ensure the diversity
requirement.

(2) We propose an effective multiple sensitive attributes processing framework
integrating different generalization algorithms on quasi-identifiers and sen-
sitive attributes respectively. In order to evaluate the performance of our
framework, the corresponding information loss metrics are subsequently de-
fined. And we experimentally show the effectness of overall distortion reduc-
tion based on our proposed measure implemented in the framework.

The rest of the paper is organized as follows. We start by discussing related work
(Section 2). Section 3 analyzes the problems existing in the multiple sensitive at-
tributes publishing, and takes measures to prevent the disclosure risk caused by
logical associations. Section 4 explains the whole generalization framework for the
multiple sensitive attributes processing. Section 5 experimentally evaluates the ef-
fectiveness of our solutions, and we conclude finally in Section 6 our future work.

2 Related Work

At present, many k -anonymity models have been proposed in the literature to pre-
vent re-identification risks caused by external information linking with quasi-
identifiers [3,6]. However, these k -anonymity models have drawbacks themselves,
because they do not consider problems existing in the diversity of sensitive at-
tributes.Two improved k -anonymitymodel l -diversity[8] and (α,k)-anonymity[16]
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are proposed to solve this problem. The parameter l should be “well-represented”.
We should ensure the l -diversity requirement on sensitive attribute at the
same time with k -anonymity requirement on quasi-identifiers. A more practical
approach is not to consider every value in the sensitive attribute as sensitive. If we
only have a small number of sensitive vales, a reasonable protection is that the infer-
ence confidence from a group of k -anonymous records to a sensitive value is below
a threshold. This is the basic idea of the (α,k)-anonymity model. Most of the ex-
isting k -anonymity methods focus only on dealing with single sensitive attribute.
However, as inference disclosure may be deduced on multiple attributes, the mul-
tiple sensitive attributes privacy protection should be supported in k -anonymity.
This is the motivation of this work.

3 Multiple Sensitive Attributes

3.1 Basic Definitions

Definition 1( Equivalence Class). Let T be a dataset with quasi-identifier
attributes Q1, . . . , Qd. An equivalence class for T is the set of all tuples in T
containing identical values (q1, . . . , qd) for the quasi-identifiers.

Definition 2(K-Anonymity Property). T is said to satisfy the k-anonymity
propertywith respect to the quasi-identifiers if each tuple (q1, . . . , qd) on Q1, . . . , Qd

occurs at least k times.

To prevent the re-identification risk, if we make sure that each record is in an
equivalence class containing at least k members, we can guarantee that each
record relates to at least k individuals even if the released records are linked to
external information. This is the basic idea of k -anonymity.

Definition 3(α Requirement). Given an equivalence class E and a value s in
the domain of sensitive attribute S from dataset T. Let (E, s) be the set of tuples
in equivalence class E containing s for S and α be a user-specified threshold,
where 0<α<1. T satisfies α Requirement if for each sensitive value s in S, the
relative frequency of s in every equivalence class is less than or equal to α.

This definition presents another way to ensure diversity of sensitive values. The
basic idea is similar with[16]. If this α Requirement is satisfied, we would have
at least 1/α diversity ensured, because if each frequency of s does not exceed
the threshold 1/α, there will be at least 1/α different values in an equivalence
class. Beacause frequency of s in every equivalence class is less than or equal to
α, by setting α,individuals can control the frequency of s. This is heavily needed
beacause if one sensitive value s appears too frequently, intruders may disclose
s with high confidence.

3.2 Disclosure Risks on Multi-SA

If the microdata is treated only as one sensitive attribute, we just need to consider
this attribute’s diversity in each equivalence class. This is called single diversity
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(SD). But for the microdata with multi-SA consideration, associations among
sensitive attributes should also be considered. Because these associations can
lead to additional disclosure scenarios. Most of the time, one sensitive attribute
do play a part in the statistical analyzing as the identifiers of other ones. For
example,Disease and Household Disease are two sensitive attributes of Medical
microdata. As shown in Table1, if users want to stat. “the probability of Disease
coming from Household Disease”, data providers have to publish multi-SA at
the same time. In this situation, in addition to satisfy the requirement of single
sensitive attribute disclosure controlled, associations existing between multiple
sensitive attributes should also be considered. Otherwise, some disclosure scenar-
ios may happen because of these associations. There are two types of association.
One can be regarded as the semantic association, the other one the logical associ-
ation. The semantic association is just another say of dependency. Dependencies
in the microdata can be of a logical nature or of a statistical nature[13]. Ignoring
such dependencies may lead to underestimation of the disclosure risk. However,
current disclosure risk measures we adopt do not take into account them which
might exist between variables or records, because they might complicate the
analysis considerably. A proper treatment of such data may require tailor-made
models[13], which can be time-consuming and complicated. Therefore, they are
not taken into account when assessing the disclosure risk or when modifying the
data in an attempt to increase their safety. By now, we just come across one
work which considers hiding strong associations between some attributes and
sensitive classes and combines k -anonymity with association hiding. This model
is called the template-based model [13]. This model is good for users who know
exactly what inferences are damaging, but is not suitable for users who do not
know. So it can not gain most of the popularity. Another type of association is
the logical association which will be mostly considered in the following.

Definition 4(Logical Association). Suppose S1, . . . , Sm are m sensitive at-
tributes of dataset T, t denoted a tuple of T. For the publishing of microdata
with multi-SA, in each tuple t, the values t.S1, . . . , t.Sm should not be disordered
in order to keep statistics property. Each time a disclosure or elimination of t.Si

(1≤i≤m) means the disclosure or elimination of the other t.Sj(1≤j≤m,i �=j).
This is caused by the logical association among multi-SA.

As the above definition shows, the logical association happens because of the
position corresponding, i.e. all the sensitive values of each record are in the same
line and the sensitive values of each column should not be disordered in order
to keep the original statistical characteristic.

If the logical association exists among multi-SA and disclosure happens on
one attribute, the other ones will be disclosed correspondingly. Two kinds of
disclosure risks will happen on each single attribute, positive disclosure and neg-
ative disclosure. After ensuring the single l -diversity of each sensitive attribute,
intruders need to eliminate at least l -1 possible values of S in order to infer
a positive disclosure. If the positive disclosure of one attribute successes, the
corresponding values of other sensitive attributes will be disclosed at the same
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time. Another kind of disclosure is the negative disclosure. If intruders can elim-
inate one sensitive value with high confidence, the logical corresponding values
of the other sensitive attributes can also be eliminated. If the left values in each
sensitive attribute lack diversity, disclosure risk happens. This disclosure risk
happens on one sensitive attribute because of negative disclosure on another
attribute. For example, as Table 1 shows, Disease and Household Disease are
two sensitive attributes, and consider the set of quasi-identifier attributes in the
first equivalence class. This equivalence class is 3-diverse for attribute Disease,
and also the same with attribute Household Disease. However, if intruders have
the background knowledge that the value for Disease is not Albinism, they can
make sure that the value for attribute Household Disease cannot be Albinism or
No, and therefore must be Asthma. Thus we see that an equivalence class with
diversity in each sensitive attribute separately in a multi-SA microdata may still
violate the principle of diversity.

For multiple sensitive attributes, besides the requirement of single l -diversity
on each attribute, additional measures should be taken in order to prevent the
attacks happened by the lack of diversity between sensitive attributes.

Table 1. Medical database with sensitive attribute Disease &Household Disease

Age Sex Zipcode Disease Household Disease

[10,30] M [15001,20000] Albinism Albinism

[10,30] M [15001,20000] Albinism No

[10,30] M [15001,20000] Albinism No

[10,30] M [15001,20000] Asthma Asthma

[10,30] M [15001,20000] Pneumonia Asthma

[10,30] M [15001,20000] Pneumonia Asthma

[30,60] F [30000,60000] Haemophilia Hepatitis

[30,60] F [30000,60000] Cold No

[30,60] F [30000,60000] Liver cancer Pneumonia

[30,60] F [30000,60000] Liver cancer Hepatitis

[30,60] F [30000,60000] Liver cancer Hepatitis

[30,60] F [30000,60000] Cold No

Definition 5 (Q&S Diversity). Let T be a dataset with non-sensitive attributes
Q1, . . . , Qd and sensitive attributes S1, . . . , Sm. Si is treated as the sole sensitive
attribute and Q1, . . . , Qd, S1, . . . , Si−1, Si+1, . . . , Sm is treated as the quasi-
identifier. If the value of Si is diverse according to Q1, . . . , Qd, S1, . . . , Si−1,
Si+1, . . . , Sm, We say Si is Q&S Diverse.

Definition 6 (Multi-Diversity (MD)). Let T be a dataset with non-sensitive
attributes Q1, . . . , Qd and sensitive attributes S1, . . . , Sm. If for each sensitive
attribute Si (i = 1,. . . ,m), the Q&S Diversity is satisfied, we say T is satisfied
Multi-Diversity.

Only the released dataset which satisfies MD requirement can be regarded as
the proper result of multiple sensitive attribute processing. See the example in
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Table 1 again, the MD is satisfied only if the Q&S Diversity are satisfied in both
following situations: regarding Age,Sex,Zipcode,Disease as quasi-identifiers with
Household Disease sensitive and regarding Age,Sex,Zipcode,Household Disease
as quasi-identifiers with Disease sensitive. However, this requirement is a little
too strict which may lead to over-distortion of quasi-identifiers and correspond-
ingly cause too much information loss. The masking of sensitive attribute values
with more general patterns may help to alleviate this problem.

Definition 7 (Masking SA). Suppose schild is one sensitive value in relation T,
sparent is the parent node of schild in the more general domain with N leaf nodes
in the sensitive attribute tree. If we replace schild with sparent, the possibility
of disclosing schild is reduced to 1/N. This measure which can reduce disclosure
risks is called Masking SA.

Fig. 1. Taxonomy tree for the attribute Education

For example, as in Fig. 1 shows, Local Government is one leaf node of Gov-
ernment. If we mask Local Government with Government, the possibility of
disclosing Local Government is reduced to 1/3. The implementing of Masking
SA and an effective generalization algorithm framework will be proposed in the
following.

4 The Generalization Framework

4.1 Two-Step Generalization Algorithm

As the number of sensitive attributes grows, it is not hard to see that we will
inevitably need larger and larger equivalence class to ensure the diversity of
sensitive attributes[10,17]. To avoid over-distortion of quasi-identifiers, we im-
plement Masking SA on sensitive attributes in company with the quasi-identifiers
generalization. Although making sensitive values more general may result in less
accurate values on sensitive attributes, it retains more information on the quasi-
identifiers. Generally, the diversity requirement of sensitive attribute according
to each quasi-identifier equivalence class and each sensitive equivalence class
should not be the same. This can be proved by the experiments in the next sec-
tion. We define α-QI and α-SA with respect to QI and SA to show this different
diversity requirement.
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Our generalization scheme is composed by a two-step generalization [18] as
shown in Fig.2. The first phase applies quasi-identifiers generalization on mi-
crodata, and we choose the top-down specialization greedy algorithm for it [5].
Then, the second step produces the final microdata by performing Masking SA
on the foregoing result quasi-identifiers equivalence class, employing a bottom-up
local recoding algorithm for each equivalence class [13]. The execution proceeds
in rounds. In each iteration,

- The top-down specialization greedy algorithm slightly refines one of f1, . . . , fd

and lead to a new T ∗ with lower information loss. We choose the “best” at-
tribute for the refining function. The “best” attribute means that the refine
of that can involve the largest number’s tuples. The core of the greedy algo-
rithm is to make the largest extent specialization in each round, so as to find
the anonymity result with the least information loss quickly.

- For each equivalence class, the bottom-up local recoding algorithm finds the
corresponding value of sensitive equivalence class, in which the α-SA require-
ment is not satisfied. Then, we carry on the local recoding which also adopt
the greedy algorithm, i.e. finding the value with the least number’s tuples
from the same generalization hierarchy with the former value. Afterwards,
we impose the generalization function on the tuples which contains these
two values. The generalization is only done in this special equivalence class,
therefore, this is a local recoding algorithm.

The current round finishes after executing the two-step generalization algo-
rithm. As our generalization framework is devoting itself into finding the op-
timum result with the least information loss, we should measure the amount
of information gain by implying the top-down specialization on quasi-identifiers
and the information loss by implying the bottom-up local recoding on sensitive
attributes. If we get more information gain than the information loss, we will
carry on the next iteration. Or else, the current result is regarded as the optimum
one and we finish the iteration.

4.2 Information Loss Metrics

In order to evaluate the effectiveness of our two-generalization algorithm, the
corresponding information loss metrics are subsequently defined. Based on the
general loss metric (LM)[6], information in all the potentially identifying at-
tributes will be assumed to be described equally important in LM. So the total
information loss due to generalizations will be computed by summing up a nor-
malization information loss for each of these attributes.

Definition 8 (Distortion Ratio). Given a microdata set T, after the process-
ing of generalization, a T ∗ is obtained. We compute all the tuple’s information
loss of T ∗, compared with the overall tuple’s absolute information loss by mak-
ing all the attribute values to the most generalized domain. The result is called
Distortion Ratio.
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The Greedy Two-step Generalization Algorithm
Input: microdata T, generalization hierarchies of all attributes, value of

α-QI and α-SA
Output: publishable relation T ∗

Body:
for each QI attribute Qi(1≤i≤d)

initialize a generalization function fi with a single
partition covering the entire domain of Qi

T ∗= the relation after applying QI -generalization on T
according to F=f1, . . . , fd

While(true)
T ∗

best= T ∗

for each QI -group
check whether the α-QI and α-SA are satisfied;

if(true)
finding the best F’=f ′

1, . . . , f ′
d obtain from F with “single

partition”(specialization)
T ∗’=the relation after applying F’ on the

quasi-identifiers equivalence class of T ∗

else if(α-QI is not satisfied )
withdraw the last “single partition” on quasi-identifiers

else if(α-SA is not satisfied )
s= the value of corresponding sensitive equivalence class
s-company= the value with the least number tuples in the same

generalization hierarchy with s
do the Masking SA on s and s-Company of this quasi-identifiers
equivalence class

end if
if (Distortion Ratio(T ∗’)< Distortion Ratio (T ∗

best))
T ∗

best= T ∗

else
return T ∗

best

End While

Fig. 2. Algorithm for the Greedy Two-step Generalization

Let v be a value in the domain of attribute A. We use InfoLoss(v∗) to capture
the amount of information loss in generalizing v to v∗. The number of values in
v∗ is expressed by value.number(v∗) and the number of values in the domain of
A by value.number(domain A). Formally,

InfoLoss(v∗) =
value.number(v∗) − 1

value.number(domainA)
(1)

For instance, in Fig. 1, the taxonomy of Work-class has 8 leaves, general-
izing Local Government to Government results in InfoLoss(Government)=(3-
1)/8=1/4, where 3 is the number of leaves under Government. Obviously, if
v is not generalized, InfoLoss(v∗) equals 0, i.e., no information is lost. The
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overall information loss InfoLosstuple(t∗qi) and InfoLosstuple(t∗sa) of a general-
ized tuple t∗ respectively equals the follows,

InfoLosstuple(t∗qi) =
d∑

i=1

InfoLoss(t∗.Aqi
i ) (2)

InfoLosstuple(t∗sa) =
m∑

i=1

InfoLoss(t∗.Asa
i ) (3)

The total information loss of the entire relation T* is computed following the
definition 3, given out respectively for quasi-identifiers and sensitive attributes
as the QI Distortion Ratio and SA Distortion Ratio,

QI.DistortionRatio(T ∗) =

∑
∀t∗inT ∗ InfoLosstuple(t∗qi)

∑
∀t∗inT ∗

∑d
i=1 1

(4)

SA.DistortionRatio(T ∗) =
∑
∀t∗inT ∗ InfoLosstuple(t∗sa)

∑
∀t∗inT ∗

∑m
i=1 1

(5)

The overall Distortion Ratio is the sum of QI Distortion Ratio and SA Dis-
tortion Ratio.

5 Experiments

This section experimentally evaluates the effectiveness of our approach using
the Adult Database from the UCI Machine Learning Repository[4]. We select
about 48000 tuples from the Adult Database. The microdata has 8 attributes:
Salary, Marital-status, Family-status, Race, Gender, Education, Occupation and
Employment. All the columns are categorical. In our experiments, we used Oc-
cupation and Employment as two sensitive attributes, Education, Occupation
and Employment for three-sensitive attributes, Family-status, Education, Occu-
pation and Employment for four-sensitive attributes. The left columns are quasi-
identifiers. All experiments were run on a Celeron(R) PC with CPU 2.40GHz
and RAM 512MB.

Intuitively, the dataset Distortion Ratio with MD is higher than that with
SD, because the MD requirement is much stricter than the SD requirement.
In fact, as illustrated in Fig. 3, the contrast is not so far. We regard the sen-
sitive attribute Education as quasi-identifier, obtaining the curse “1-attribute”,
and ensure the MD on both Education and Occupation, obtaining the curse
“2-attribute”, showing in Fig. 3(a). This result perfectly proves the good perfor-
mance of Masking SA. The conclusion is same with Fig. 3(b). It is this Masking
SA which prevents quasi-identifiers from over-distortion.

Fig. 4 shows the QI Distortion Ratio and SA Distortion Ratio and Execution
Time. As we see, in Fig. 4(a), the QI Distortion Ratio decreases when α increases,
opposite for the curse of SA Distortion Ratio. We can also see that the extent of SA
Distortion Ratio is not large, however, decreasing the QI Distortion Ratio all the
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Fig. 3. Distortion Ratio Comparison between SD and MD

Fig. 4. QI and SA Distortion Ratio and Execution Time Versus α-QI andα-SA

same. The higher diversity requirement, the more information loss. Therefore, we
should choose α between 0.3 and 0.5. The execution time in Fig. 4(b) displays the
computation cost of different α-SA parameter. Fig. 4(c) and Fig. 4(d) respectively
shows the QI Distortion Ratio and SA Distortion Ratio according to different di-
versity requirement of (α-SA). As we see, the requirement should not be too strict.
Otherwise, we would get the terrible result with both QI Distortion Ratio and SA
Distortion Ratio so high, e.g., when α-SA =0.2.

Fig. 5 shows the performance of different number’s sensitive attributes. As
the number increases, both the QI Distortion Ratio and SA Distortion Ratio
become higher. This result illustrates that the more sensitive attributes, the
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Fig. 5. Distortion Ratio and Execution Time of Different Number Sensitive Attributes

heavier information loss we get and the more Execution time it costs. We should
reduce the diversity requirement of MD as the number of sensitive attributes
increases, otherwise, the released dataset will be useless. Moreover, in the view
of statistics analysis, if the number of sensitive attributes is large enough, we
should not impose MD on them again, because attackers impossibly has so
much background knowledge as to reduce identifying possibility by detecting
association between sensitive attributes. In conclusion, experiments have proved
the feasibility and advantage of our processing method for microdata anonymity
with multiple sensitive attributes and illustrated the effectiveness of Masking SA.
Through these experiments, we also obtain the principle of how to set proper
parameters so as to make good performance. Moreover, we have discovered one
important principle that whether imposing MD requirement on a dataset should
be according to the number of sensitive attributes of the releasing microdata.

6 Conclusion

Most of the existing k -anonymity methods focus only on dealing with single-SA.
For microdata with multi-SA publishing, the disclosure scenarios may happen
because of logical associations existing between multi-SA. A Q&S Diversity re-
quirement is proposed to prevent inference attacks in the foregoing disclosure
scenarios. The MD definition is proposed to ensure the diversity among multi-
SA. We make sure the diversity by ensuring the frequency of each sensitive value
below the threshold α in each equivalence class. Additionally, we reduce the over-
all distortion by the measure of Masking SA. We propose a multiple sensitive
attributes processing framework implementing top-down specialization on quasi-
identifiers and local recoding bottom-up generalization on sensitive attributes.
The experiment proves the feasibility and advantage of our method, and we also
get additional knowledge from the experiment results. For future work, in or-
der to retain more information of a released dataset, we will consider the local
suppression as the supplement of our generalization techniques to integrate with
this framework and validate our solution by more real experiments.
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Abstract. Experimental testing shows that the relative relation in the number of 
samples among the neighboring bins and the audio frequency centroid are two 
robust features to the Time Scale Modification (TSM) attacks. Accordingly, an 
audio watermark algorithm based on frequency centroid and histogram is 
proposed by modifying the frequency coefficients. The audio histogram with 
equal-sized bins is extracted from a selected frequency coefficient range 
referred to the audio centroid. The watermarked audio signal is perceptibly 
similar to the original one. The experimental results show that the algorithm is 
very robust to resample TSM and a variety of common attacks. Subjective 
quality evaluation of the algorithm shows that embedded watermark introduces 
low, inaudible distortion of host audio signal. 

Keywords: Audio watermarking, FFT, Centroid, Histogram, TSM. 

1   Introduction 

Audio watermarking plays an important role in ownership protection. According to IFPI 
(International Federation of the Phonographic Industry), audio watermarking should be 
robust to temporal scaling of %10± and be able to resist most of common signal 
processing manipulations and attacks, such as cropping, re-sampling and etc [1]. 

The algorithms for audio watermarking can be classified into two categories: 
algorithms in time domain and algorithms in transform domain, including those in 
compressed domain. Data hiding in the least significant bits of audio samples in the 
time domain is one of the simplest algorithms with very high data rate of additional 
information. In [2], the authors presented an audio watermarking algorithm in discrete 
wavelet transform domain. The watermark is embedded in the frequency point of 
discrete wavelet transform by replacing least significant bit. The capacity of algorithm 
is high and is robust to resample and cropping. In [3], a blind audio information bit 
hiding algorithm with effective synchronization is proposed. The algorithm embedded 
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synchronization signals in the time domain to resist the attacks such as cropping while 
keeping the computation for resynchronization being lower. The watermark is placed 
in block DCT coefficients of the original audio exploiting the human auditory system 
(HAS) features. 

The algorithm in [4] is very robust against de-synchronization attacks such as time 
scale modification (TSM), cropping. However, this watermarking algorithm is 
sensitive somewhat to additive noise attacks such as MP3 audio compression and 
low-pass filter. Of course, many audio watermarking algorithms (algorithm in 
literature [5]) are robust against additive noise attacks, but these algorithms cannot 
effectively resist TSM attacks. 

In the existing literature, several algorithms have been proposed aiming at solving 
this problem by using exhaustive search, synchronization pattern, invariant 
watermark, and implicit synchronization. In [6], an audio watermarking method is 
presented by using music content analysis. The watermark is embedded into the edges 
of audio signal by viewing pitch-invariant TSM as a special form of random cropping, 
removing and adding some portions of audio signal while preserving the pitch. The 
watermark is robust to %9± pitch-invariant TSM but vulnerable to other stretching 
modes such as solving playback speed modifications, which change the edges in the 
signal. In [7], side information is exploited to improve the searching of the watermark 
aiming at solving playback speed modifications. One weakness of this scheme is that 
the detection procedure is not blind. The histogram specification is first introduced for 
image watermarking in [8]. By using the robustness of image color histogram to 
rotations and geometric transformations, the authors in [9] proposed a general method 
is very robust to image geometric distortions. In [10], a watermarking algorithm to 
geometric distortion in DWT domain is proposed. In the algorithm, a watermark was 
embedded adaptively in low band of DWT domain, according to the conceal quality 
of Human Visual System; Especially, the geometric transformation could be corrected 
before the watermarking detection, owing to embedding a template in a circle of 
middle frequency in DFT and extracting a invariant centroid from a restricted area 
inside the image. Moreover, an improvement on centroid detection method was 
presented in [11]. The improved method constructs a centroid series which were 
convergent in probability to centroid of initial text line using both initial profile and 
reproduced profile of text line, and the watermark capacity is increased.  

In this paper, the invariance of histogram and centroid in the frequency domain to 
TSM is presented. This is followed by a description of our proposed watermark 
method. Then, analyze the watermark performance and test the watermark robustness 
on resynchronization distortions, as well as some common signal processing and 
some attacks in Stirmark Benchmark for Audio. Finally, the conclusion is drawn. 

2   Invariant Features in Frequency Domain 

Since the bits embedded in the frequency domain can provide a stronger robustness 
against additional noises than in the time domain, in this section, we investigate the 
invariance of the histogram and centroid in the frequency domain by experimental 
testing as follows. 
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2.1   Centroid in Frequency Domain 

For audio signal sequence ( sW bits/sample sf /sample frequency), we first consider 

20ms audio signal as a frame (80ms audio signal before compression). Then, a frame 
is divided into 32 sub-bands. Each sub-band contains K 
( )32*8000/(20*** dds WSfK = ) samples, each frame contains K*32 samples, 

])32...1[)(( ∈jjsi denotes the audio samples in j sub-band of i frame. 

])32...1[))((( ∈jjsfft i Denotes the audio samples in j sub-band of i frame is FFT 

transformed. The centroid in the frequency domain is calculated by formula (1) and 
formula (2): 
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2.2   Histogram 

A histogram is often used to describe the data distribution. The style of histogram 
may be described by: 

},...,1|)({ LiihH MM == , (3) 

where MH is vector, and denotes the volume-level a histogram of audio signal F, and 

)(ihM  denotes the number of samples in the ith bin. Suppose that the resolution the 

audio signal is R bits, for a signed signal, the number of bins are calculated as: 
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where M is the size of bins, )(ihM includes all samples the range of sample value 

from MiR *)1(2 1 −+− − to 1*2 1 −+− − MiR , and ⎣ ⎦. is the floor function. 

2.3   Experimental Testing 

We choose an audio signal (16-bit signed mono audio file sampled at 44.1 kHz with 
the length of 20s) to test the effects of the TSM on the histogram and centroid in the 
FFT domain. As to other kinds of audio signals, such as pop music, piano music and 
speech, etc, the simulation results are almost similar. 



156 X. Zhang and X. Yin 

The histogram of original signal             Relation among three bits 

 
The histogram of 115% scaling              Relation in 115% scaling signal 

 
The histogram of 85% scaling               Relation in 85% scaling signal 

 

Fig. 1. The invariance of histogram to the pitch-invariant TSM: the sub-plots in left side is the 
histogram of original audio and scaled one with 85% and 115%, while the sub-plots in right 
side demonstrate the relative relation among three neighboring bins 

 



 Audio Watermarking Algorithm Based on Centroid and Statistical Features 157 

The histogram of original signal               Relation among three bits 

 
 
The histogram of 85% scaling               Relation in 85% scaling signal 

 
 
The histogram of 115% scaling             Relation in 115% scaling signal 

 

Fig. 2. The invariance of histogram to the resample TSM. The sub-plots in left side is the 
histogram of original audio and scaled one with 85% and 115%, while the sub-plots in right 
side demonstrate the relative relation among three neighboring bins. 

 
The histograms are extracted from audio file after FFT transformed. The size of the 

bins M=0.5. Fig.1 and Fig.2 show the effects of the TSM attacks with the two 
different modes, respectively. Fig.3 plots the centroid values of the original and its 
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scaled versions under 85%~115% TSM (pitch-invariant and resample) with the step 
size of 1%. Referenced to [4], the relative relations in the number of samples among 

three neighboring bins calculated and denoted by kβ :  

)1()1(
)(*2

++−
=

khkh

kh

MM

M
kβ     for  LkhM >>)(  (5) 

2.4   Comments 

Based on the extensive testing, we have the following observations: 

(1) In the FFT domain, the audio histogram is very robust to TSM. The relative 
relation among three neighboring bins is from 0.9 to 1.1. Refer to Figure.1 and 
Figure.2. 

(2) The audio centroid in the FFT domain is robust enough to TSM. From 85% to 
115% TSM, the error ratio of centroid is limited in %3±  (see Figure.3). 

Overall, in the watermark design, if we incorporate the invariance of the histogram 
and centroid to TSM and the watermark in the FFT domain, the watermark will be 
robust.  

 
Invariant centroid in pitch-invariant mode      Invariant centroid in resample mode 

 

Fig. 3. The centroid of the example audio and scaled ones under the TSM of 85%~115% with 
resample (right) and pitch-invariant (left) stretching modes, respectively 

3   Watermark Algorithm Design 

The watermark embedding and extracting are described by the histogram 
specification. The robustness of the audio centroid and relative relation in the number 
of sample among different bins to the TSM attacks presented in the previous section 
are used in the design. First, the FFT transform is applied. And, the watermark is 
embedded into the coefficients of FFT instead of into the time domain signal itself. 
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3.1   Watermark Embedding Approach 

The basic idea of the proposed embedding is to extract the histogram from a selected 
coefficient of FFT. Divide the bins into many groups, each group including three 
consecutive bins. For each group, one bit watermark is embedded by reassigning the 
number of samples in the three bins. The watermarked audio is obtained by modifying 
the coefficient of FFT according to the watermarking rule. The embedding approach 
is shown in Figure 4. 

The detail embedding process is described as follows.  

Suppose that there is a binary sequence },...,1|{ wi LiwW ==  to be hidden into a 

digital audio },...,1|)({ NiifF == . The centroid of audio, denoted by A, is 

calculated as formula (1) and (2).  
Then, select the amplitude range ]/1,[ AAB λλ=  from audio coefficient of FFT to 

extract the histogram },...,1|)({ LiihH == , where
wLL *3= . ]9.0,6.0[∈λ , is a 

suggested range in which the bins extracted from B often hold enough samples.  

 

Fig. 4. Watermark embedding framework 

After extracting the histogram, suppose that three consecutive bins, Bin_1, Bin_2 
and Bin_3, their samples in the number are denoted as a, b and c. apply the follow 
equation to embed one bit of information, described as [4]: 

Tbca

Tcab
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≥+
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if

if
 

0)(

1)(

=
=

iw

iw
, (6) 

where T is a selected threshold used to control the watermark robustness performance 
and the embedding distortion. T should be not less than 1.1, in order to resist TSM. 

If the embedded bit )(iw is ‘1’ and Tcab ≥+ )/(2 , no operation is needed. 

Otherwise, the number of samples in three different bins, a, b, c, will be adjusted until 
satisfying Tcab ≥+ )/(2 . Some selected samples from Bin_1 and Bin_3 in the 
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number denoted by I1 and I3, will be modified to fall into Bin_2. The modification 
rule is described as Equation (7): 
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where )(1 iff and )(3 iff  denote the ith modified sample in Bin_1 and Bin_3, 

)('1 iff and )(3 iff are the modified samples belong to Bin_2. 

If the embedded bit )(iw is ‘0’ and Tbca <+ 2/)( , I1 and I3, some selected 

samples from Bin_2 will be modified to fall into Bin_1 and Bin_3, respectively. The 
rule is described as Equation (8): 

⎪⎩

⎪
⎨
⎧

+=

−=

Miffiff

Miffiff

)()(

)()(

2
'

2

2
'

2
      

31

11

Ii

Ii

≤≤
≤≤

, (8) 

where )(2 iff denotes the ith modified sample in Bin_2, )('2 iff are the corresponding 

modified.  
This process is repeated to embed all watermark bits. In our proposed embedding, 

the watermark is embedded by modifying the values of some selected coefficients of 
FFT samples from the audio. Hence, the re-construction of the watermarked audio 
will be formed by the IFFToperation. 

3.2   Watermark Extracting Approach 

In the extracting, a predefined searching space, B is designed to de-scale the effects of 
various attacks on the centroid.  

)]21(),11([ '' Δ−Δ−= AAB  (9) 

Where 'A denotes the centroid of watermarked audio signal. 1Δ And 2Δ denote the 
down and up error ratios of centroid in the FFT domain caused by various attacks. 
The hidden message is synchronization bits, followed by the hidden multi-bit 
watermark. 

The histogram is extracted with L bins as in the process of watermark embedding. 
The hidden bit is extracted by comparing the number of coefficients in three 

consecutive bins, denoted by ''a , ''b and ''c , formulated as: 

⎩
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cab 1)/(2 '''''' ≥+
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The process is repeated until all hidden bits are extracted. Once synchronization 
sequence is matched with extracted synchronization bits or the searching process is 
finished, according to the best matching, extract the hidden watermark following the 



 Audio Watermarking Algorithm Based on Centroid and Statistical Features 161 

synchronization. In the extraction phase, the parameters, wL , λ and synchronization 

sequence are known, so the detection process is blind. 

4   Experimental Results 

The parameter values are given as follows: 8.0=λ and 5.1=T . And, 183 bins 
extracted from a 20s light music is watermarked with 61bits of information composed 
of a 31-bit m sequence and the 30-bit watermark. In the embedding, the probability of 
the watermarked samples their values added or reduced is approximately equivalent, 
hence the watermark hardly make any affection on the audio centroid, 137.9813 and 
137.9517 before and after embedding respectively. The relative relation in the number 
of samples among three neighboring bins is calculated by Equation (5) and plot in 
Figure 5. 

 

Fig. 5. The relative relation in the number of samples before and after watermarking 

The SNR is 40.83dB. The higher SNR is that only a small part of samples is 
modified for watermarking. We test the robustness of the proposed algorithm 
according to IFPI with BER. The audio editing and attacking tools adopted in our 
experiments are Cool EditPro v2.1 and Stirmark Benchmark for Audio v0.2. The test 
results under common audio signal processing, time-scale modification and Stirmark 
for Audio are listed in Tables 1-3. 
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Table 1. Robustness performance to common attacks 

Attack Type  Error Number of Bits Attack Type Error Number of Bits 
Normalize 3 Low Pass (11025Hz) 0 
Resample (kHz) 
44.1->16->44.1 

0 Low Pass (7kHz) 6 

Re-quantization (bit) 
16->32->16 

0 Low Pass (4kHz) 10 

Re-quantization (bit) 
16->8->16 

0   

Table 2. Robustness Performance to TSM with two different stretching modes 

Pitch-Invariant TSM Error Number of Bits Resample TSM Error Number of Bits 
TSM –10% Failed TSM –10% 3 
TSM –8% 15 TSM –8% 2 
TSM –6% 12 TSM –6% 2 
TSM –4% 8 TSM –4% 0 
TSM –2% 6 TSM –2% 0 
TSM +2% 6 TSM +2% 0 
TSM +4% 8 TSM +4% 0 
TSM +6% 11 TSM +6% 0 
TSM +8% 14 TSM +8% 0 
TSM +10% Failed TSM +10% 1 

Table 3. Robustness Performance to some common attacks in Stirmark Benchmark for Audio 

Attack Type Error Number of Bits Attack Type Error Number of 
Bits 

Addbrumm_100 0 Addnoise_100.wav 3 
Addbrumm_1100 0 Addnoise_300.wav 5 
Addbrumm_10100 0 Addnoise_500.wav 9 
Addsinus 0 Compressor 0 
Invert 0 Original 0 
Stat2 3 Rc_lowpass 3 
Zerocross 10 Zeroremove Failed 
Cutsamples 10 FFT_RealReverse 0 

 
From Table 1, we can see that our algorithm is robust enough to some common 

audio signal processing manipulations such as resample, re-quantization and low pass 
of 11025Hz. 

The test results of a light music under TSM form -10% to +10% with two different 
stretching modes are tabulated in Table 2. The algorithm shows strong robustness to 
this kind of attacks up to 10% for resample TSM.  

Stirmark Benchmark for Audio is a common robustness evaluation tool for audio 
watermarking techniques. From Table 3, it is found that the watermark shows 
stronger resistance to those common attacks. In the cases of failure (‘Failed’ mean the 
number of error bits is over 20), the audio centroid is changed severely or audio 
quality is distorted largely. 
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5   Conclusions 

A multi-bit audio watermarking method based on the centroid and statistical features 
in FFT domain is proposed and implemented by histogram specifications. 

Extensive experiments shows that the superiority of statistical features, the relative 
relations in the number of samples among different bins and the frequency centroid of 
audio signal. The two features are very robust to the TSM. Accordingly, by applying 
the two features, audio watermarking scheme is designed.  

The extensive experimental have shown that the watermark scheme is robust 
against some common signal processing, attack in Stirmark Benchmark for Audio and 
attack in resample TSM. However, it is still weak to resist pitch-invariant TSM attack. 
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Abstract. This paper proposed a robust watermarking scheme based
on discrete wavelet transform to hide a grayscale watermark in a digital
image for image authentication. The proposed scheme employed toral
automorphism to scramble the host image and the watermark so as to
enhance the security and fidelity of the embedded watermark. Later, the
permuted watermark and the permuted host image were transformed by
discrete wavelet transform. Next, the transformed watermark was con-
cealed in the low frequency coefficient of the transformed image by using
the concept of codebook matching. Simulation results showed that the
required extra storage of the proposed scheme for extracting the water-
mark was lower than that of Lu et al.’s scheme. In addition, the extracted
watermark image quality of the proposed methods was better than that
of Shieh et al.’s scheme. According to the experimental results, the pro-
posed scheme indeed outperformed Shieh et al.’s and Lu et al.’s schemes.
Moreover, the proposed scheme was robust to various attacks, such as
JPEG compression, Gaussian blurred, sharpening, cropping, brightness,
contrast enhancement, rotation, and so on.

Keywords: Digital Watermark, discrete wavelet transformation, semi-
blind watermarking, toral automorphism.

1 Introduction

With the recent growth of the information techniques, digital images are easy to
create, edit, adjust, and share. The digital image can be accurately copied and ar-
bitrarily distributed via the Internet, Intranet or other types of networks within
seconds. However, these convenient techniques also bring forth several challeng-
ing problems that need to be resolved, such as illegal copying, non-authenticated
invasion or tampering. For this reason, many image protection mechanisms such
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as cryptography, watermarking, or data hiding have been proposed to estab-
lish the authenticity and integrity of a digital image. Watermarking is one of
the popular digital image protection mechanisms that have been widely used
in various applications such as intellectual property right, copyright protection,
forgery detection, authorship inference, content identification, or image authen-
tication and so on. In a watermarking scheme, a digital signal, called watermark,
is embedded in a host image to generate a watermarked image. The watermark
is extracted from the watermarked image to prove the ownership of the image
when necessary.

Cox et al. [4] classified watermarking techniques as robust watermarking, frag-
ile watermarking [1, 3], and semi-fragile watermarking. In a robust watermarking
scheme [5], the watermark is invisibly embedded in the host image. The embed-
ded watermark must be robust enough to resist any regular image processing or
malicious attacks [2]. A robust watermarking scheme must satisfy the following
requirements: imperceptibility, robustness, unambiguousness, capacity, security,
and multiple watermarks. The robust watermarking schemes are used to protect
copyright or to verify the ownership.

Different from the robust watermarking, a fragile watermarking scheme con-
cerns the completeness of image content. Any slightest alternation may destroy
the embedded watermark. The fragile watermarking schemes are used to ensure
the received image is exactly the authorized one, and to verify the image content
is selfsame to the original. The semi-fragile watermarking schemes, like fragile
watermarking schemes, concern the integrity of the image content. Moreover,
the semi-fragile watermarking schemes allow regular image processing such as
transmission error, image compression, noise, and so on.

The watermarking schemes can also be divided into three categories: non-blind
watermarking scheme, semi-blind watermarking, and blind watermarking. If the
original host image is required to reliably extract the embedded watermark, the
scheme is non-blind. The practicality of the non-blind watermarking scheme is
limited, since it needs extra storage to maintain the source image. Semi-blind
watermarking scheme uses the watermark or side information instead of the host
image to extract the embedded watermark. In contrast, the blind watermark
scheme does not need the host image or extra information.

In this paper, we shall propose a robustness semi-blind watermark scheme for
image authentication and copyright protection. The proposed scheme is based
on discrete wavelet transformation. In order to increase the security of the wa-
termarked image, the proposed scheme adopts toral automorphism to permute
the host image and the digital watermark. Further, the permuted host image
and the permuted watermark are transformed by using discrete wavelet trans-
formation. The lower coefficients of the transformed host image are used to train
a codebook. The transformed watermark is concealed into the lower coefficients
of the transformed host image by using the concept of codebook matching. In
order to reliably extract the embedded watermark, the proposed scheme needs
some extra information. However, the amount of the required extra information
is less than that required by other semi-blind schemes.
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The rest of this paper is organized as follows. In Section 2, we briefly review
related literatures. Section 3 details the proposed scheme, and Section 4 presents
the experimental results. Finally, the conclusions are proposed in Section 5.

2 Literature Review

In the past decade, many semi-blind watermarking techniques have been pro-
posed in various literatures. For example, Voyatzis and Pitas [14] proposed a
watermarking scheme in 1996, in which toral automorphisms was applied to
scramble the digital watermark. Then, the permuted watermark was inserted
into the host image. The toral automorphism was a permutation function that
transformed two dimensional data into irregular data. Let us consider an im-
age of size h × w. The value of the coordinates (x, y) of the image is denoted
as P =

[
x
y

]

. Then, the image is iteratively transformed by toral automorphism
t times. Let Pt =

[
xt
yt

]

be the value of coordinates (x, y) in t period, where
Pt =

[
xt
yt

]

=
[
1 1
K K + 1

] [
xt−1
yt−1

]

mod

[
h
w

]

. The image after K iterations, each pixel will be
back to its original position.

Lu et al. [9] proposed a cocktail watermarking scheme in 2000. Two comple-
mentary watermarks, positively modulated watermark and negatively modulated
watermark, were embedded in the wavelet coefficients of the host image. In their
scheme, the positions of the watermarks were needed for watermarking extrac-
tion. A random mapping function was used to distinguish the positions of the
watermarks. Then, the extracted watermark was compared with the original em-
bedded watermark for image authentication. Afterwards, Lu et al. [8] proposed
a semi-blind watermarking scheme based on the human visual system for im-
age protection. In their scheme, the host image and a grayscale watermark were
transformed by discrete wavelet transform. Next, the host image and the water-
mark were permuted by using toral automorphism. Then, they used one-to-one
mapping function to embed the watermark into larger coefficients of the host
image. The mapping function was used to indicate the location of the embedded
watermark.

In 2001, Solachidis et al. [11] embedded a circularly symmetric watermark
in a host image by using discrete Fourier transformation. In 2001, Lin et al. [6]
concealed the watermark in the frequency domain by using Fourier-Mellin trans-
formation. Stankovic et al. [12] embedded a two dimensions watermark with a
variable spatial frequency in the host image. The watermark was extracted by us-
ing 2-D space/spatial-frequency Radon-Wigner distributions. All these schemes
required the original watermark for watermark detection.

In 2005, Shieh et al. [10] proposed a semi-blind watermarking scheme based
on singular value decomposition. In their scheme, a grayscale watermark was
concealed into a digital image. The first step of their scheme was to divide the
watermark and the host image into several blocks. In the second step, each block
was transformed by using singular value decomposition (SVD). Next, they found
a similar block for each block of the watermark from the host image. The singular
value of the block was used to replace that of the similar block of the host image.
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However, the image quality of the extracted watermark image of Shieh et al.’s
scheme was low. In addition, the computation complexity of their scheme was too
heavy, since the scheme used SVD to compute the singular value for each block.
In order to solve these problems, this paper will propose a low computation
watermarking scheme based on discrete wavelet transformation (DWT). The
image quality of the extracted watermark of the proposed scheme is better than
that of Shieh et al.’s scheme.

3 Proposed Method

The main idea of our proposed method is to generate the relationship between
the host image and watermark to be the right ownership information. Thus, the
proposed method uses DWT to transform the host image and watermark from
the spatial domain into frequency domain, respectively. After the relationship is
constructed, we register the information to a trustworthy third party for further
usage. Briefly, this watermarking method can be divided to watermark embed-
ding phase and watermark extraction phase. The details of the proposed method
are described as follows.

3.1 Watermark Embedding

Fig. 1 shows the watermark embedding procedure of the proposed scheme. In
the figure, the symbol H is a host image and W is a watermark. Both of H and
W contain H ×W pixels. The scheme first uses toral automorphism with a secret
key [13] to permute H and W into two noise-like images H ′ and W ′, respectively.
The permutation operation makes the embedded watermark robust for malicious
cropping operations.

After that, the scheme applies DWT to transform H ′ and W ′ from the spa-
tial domain into frequency domain. DWT decomposes an image into high and
low frequency components. The low frequency components compose the base
of an image, and the high frequency components refine the outline of the im-
age. The human eye is relatively insensitive to the high-frequency components.
Hence, many researchers conceal information in the high-frequency components.
However, most perceptual coding techniques, such as JPEG, affect the high-
frequency components during image compression. In order to avoid the embed-
ded information from being filtered out, the scheme conceals the information in
low-frequency components.

In DWT, each level of decomposition creates four sub-bands of an image,
LL, LH, HL, and HH . The LL sub-band can be continually decomposed to
obtain another level of decomposition. The scheme performs the DWT twice
to obtain two levels of decomposition. The obtained sub-bands are LL2, HL2,
LH2, HH2, HL1, LH1, and HH1. Let H∗ and W ∗ be the transformed images of
H ′ and W ′, respectively. Next, the scheme consults the sub-band LL2 of H∗ to
generate a codebook for embedding the watermark. In the embedding process,
the sub-band LL2 of W ∗ is divided into several non-overlapping blocks. For each
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Fig. 1. The diagram of the watermark embedding procedure

block, the scheme searches a similar pattern from the codebook by using the
concept of vector quantization. Next, the indices of the patterns are stored for
further verification. In the following subsection, we will describe how to generate
the codebook as well as how to construct the indices for image authentication.

3.2 Codebook Generation

Before generating a codebook, the scheme uses a normalization function to nor-
malize the coefficients of the sub-band LL2 of H∗ and W ∗ to ensure that the
coefficients are ranging in the same scale. In the other words, all coefficients in
LL2 are ranging from 0 to 255. The normalization function is defined as follows:

c′ = (c − min(LL2)) × r, (1)

where c is the coefficient, c′ is the normalized coefficient, and r is the normalized
ratio computed by

r =
255

max(LL2) − min(LL2)
. (2)

The symbols max(LL2) and min(LL2) are the maximum function and the min-
imum function used to find the maximum and minimum values from sub-band
LL2.

Next, the scheme uses a sliding window to move over the normalized LL2 of
H∗ one coefficient at a time and generate a set of patterns. The size of the sliding
window is k × k, and the set of patterns is called a training pool (denoted as
TP ). Let TP = {tpi|i = 1, 2, ..., NTP } be the training pool, where tpi is the i-th
pattern and NTP is the number of patterns in TP .

Fig. 2 illustrates an example for constructing a training pool. Fig. 2(a) shows
a part of the normalized LL2 coefficients of an image, and Fig. 2(b) is a diagram
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Fig. 2. An example for constructing a training pool

for the training pool. In Fig. 2(a), the sliding window is sized two by two. For
instance, first pattern is tp0 = {71, 114, 97, 101}, and the second pattern is tp1 =
{114, 115, 101, 124}.

After the training pool is constructed, we employ the LBG algorithm [7] to
train a coefficient codebook. The first step of the LBG algorithm is to randomly
choose NB patterns from the training pool and set them as the initial coefficient
codebook. Further, the classification operation classifies the patterns into NB

classes according to the initial coefficient codebook. After the classification, a
new coefficient codebook will be constructed by computing the central value of
each class. The training of the codebook is terminated when the change between
the newly trained codebook and previous iteratively trained codebook is smaller
than a pre-defined threshold.

Next, the scheme constructs an indices table to indicate the relationship be-
tween H∗ and W ∗’s LL2 coefficients. In this stage, the scheme divides the sub-
band LL2 of W ∗ into several blocks, and matches a most similar pattern from
the codebook for each block. The indices of the most similar pattern are collected
to form an indices table. The indices table and the permuted watermark W ′ are
stored for further watermark verification.

3.3 Watermark Extracting

The watermark extracting procedure is used to prove the ownership of an image.
Fig. 3 shows the diagram of the watermarking extracting procedure. In the figure,
the symbol V denotes a controversial image. The scheme permutes V by using
toral automorphism with the secret key, and uses the DWT to transform the
permuted image from the spatial domain into frequency domain. The normalized
coefficients are used to generate a codebook. Further, the corresponding indices
table of V and the permuted watermark W ′ are retrieved from the trustworthy
third party to reconstruct the watermark. The inverse DWT (IDWT) is used to
transform the watermark from the frequency domain into spatial domain. Then,
the scheme de-permutes the transformed watermark to construct an extracted
watermark image.
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Fig. 3. A diagram of the watermark extracting procedure

4 Experiments and Experimental Results

This section demonstrates the performance of the proposed scheme. In addition,
Shieh et al.’s method [10] and Lu et al.’s method [8] are employed to be the
benchmarks. Fig. 4 shows six commonly used test images. The size of each image
is 256 × 256 pixels. We use the test images to be watermarks and the host images
for our experiments.

This paper adopts the peak-signal-to-noise ratio (PSNR) to measure the image
quality of the extracted watermark. The PSNR in decibels (dB) is computed by

PSNR = 10 log
2552

MSE
(dB), where MSE =

1
H × W

H∑

i=1

W∑

i=1

(Iij − I ′ij)
2, (3)

where MSE is the mean square error between the extracted watermark and the
original watermark.

The PSNR is not meaningful, but it is a useful measurement for comparing
the differences between the extracted watermark and the original one. The high
PSNR value means that the extracted watermark has less distortion from original
watermark. On the contrary, low PSNR means that the extracted watermark has
more distortion from the original watermark.

4.1 Experimental Results

Tables 1 and 2 show the PSNR of the extracted watermark. The size of the sliding
window is a critical factor that influences the performance of image quality.
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(a) Baboon (b) Barbara (c) Goldhill

(d) Lena (e) Sailboat (f) Zelda

Fig. 4. The testing images of size 256 × 256

Table 1. The visual quality of the extracted watermark by using the proposed method
(size of sliding window = 4 × 4)

Host images

Watermarks Baboon Barbara Goldhill Lena Sailboat Zelda

Baboon - 26.3294 27.4068 27.6417 24.7498 29.6612

Barbara 29.7243 - 27.47 27.6137 24.7539 29.6618

Goldhill 26.158 29.6332 - 27.437 24.637 29.5769

Lena 26.3497 29.7531 27.3282 - 24.7412 29.6427

Sailboat 26.3081 29.7163 27.4058 27.6096 - 29.6241

Zelda 26.3391 29.7603 27.4717 27.6377 24.7578 -

According to the experimental results shown in Table 1 and Table 2, we can
see that larger sliding window size has lower visual quality results. For example,
the sliding window in Table 1 is sized four by four, and that in Table 2 is two
by two. The average PSNR in Table 1 is 27.5633 dB while that in Table 2 is
29.6022 dB. The different sliding window sizes have different benefits. We will
discuss the effects of different sliding window size in next sub-section. In this
paper, the sliding window is sized four by four to test the performance of the
proposed method.
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Table 2. The visual quality of the extracted watermark by using the proposed method
(size of sliding window = 2 × 2)

Host images

Watermarks Baboon Barbara Goldhill Lena Sailboat Zelda

Baboon - 28.3201 29.5233 29.7928 26.6956 31.5927

Barbara 31.7595 - 29.5151 29.7909 26.6945 31.594

Goldhill 31.7169 28.2465 - 29.7161 26.6629 31.5657

Lena 31.7539 28.3174 29.4524 - 26.6894 31.581

Sailboat 31.7612 28.3178 29.5197 29.791 - 31.5928

Zelda 31.7696 28.319 29.5265 29.7922 26.696 -

(a) Original watermark (b) Extracted watermark

Fig. 5. The original watermark and the extracted watermark

In the experimental results, the worst case is to embed the watermark “Sail-
boat” into the host image “Goldhill”. In Table 1, the PSNR value of the extracted
watermark is 24.637 dB. The original watermark is shown in Fig. 5(a) and the
extracted watermark is shown in Fig. 5(b). Obviously, Fig. 5(b) is meaningful
and recognizable.

For the robustness evaluation, we apply the lossy image compression and
commonly used image processing to evaluate the integrity and recognizability of
the extracted watermark. In this experiment, JPEG and JPEG2000 are used to
compress the host image “Goldhill” with compression ratios of 41:1 and 62:1,
respectively. The extracted watermarks are shown in Figs. 7(a) and Fig. 7 (b).

Figs. 6(c)-(i) are the modified images which use the Gaussian blurring with 5 as
the radius, sharpening, Gaussian noise with 10%, cropping, brightness adjustment
with 50%, contrast enhancement with 50%, and rotating the image with degree =
40◦. The extracted watermarks corresponding to the modified images are shown
in Figs. 7(c)-(i). All the extracted watermarks are meaningful and recognizable.
Even though the watermarked image had been cropped into a quarter of original
image, the PSNR value of the extracted watermark is 20.6521 dB.
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(a) PSNR=13.0006 (b) PSNR=27.97 (c) PSNR=22.7060

(d) PSNR=23.6514 (e) PSNR=19.9094 (f) PSNR=7.4419

(g) PSNR=14.3207 (h) PSNR=17.4783 (i) PSNR=10.6752

Fig. 6. The attacked images; (a) JPEG compression, (b) JPEG2000 compression, (c)
Gaussian blurred (radius=5), (d) Sharpening, (e) Gaussian noise (10%), (f) Cropping,
(g) Brightness, (h) Contrast enhancement, (i) Rotation

Table 3 shows the comparing results of the extracted watermark between
the proposed method and Shieh et al.’s method. Generally speaking, the visual
quality of the watermark extracted by using the proposed method is higher
than that by Shieh et al.’s method. Lu et al. proposed a semi-blind water-
marking method in 2001 [8]. Lu et al.’s method transforms both host image
and watermark into the frequency domain by DWT. They applied the just
noticeable distortion (JND) to decide how watermark’s coefficients are embed-
ded to host image’s coefficients. The comparisons are summarized in
Table 4.
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(a) PSNR=21.5204 (b) PSNR=21.475 (c) PSNR=20.7827

(d) PSNR=20.5033 (e) PSNR=20.4593 (f) PSNR=20.6521

(g) PSNR=21.1743 (h) PSNR=21.4077 (i) PSNR=21.2435

Fig. 7. Extracted watermark from modified images; (a) JPEG compression, (b)
JPEG2000 compression, (c) Gaussian blurred (radius=5), (d) Sharpening, (e) Gaussian
noise (10%), (f) Cropping, (g) Brightness, (h) Contrast enhancement, (i) Rotation

Table 3. The results (PSNR) for comparing to Shieh et al.’s method (watermark =
“Sailboat”)

Host images

Methods Baboon Barbara Goldhill Lena Zelda

Proposed method 29.7163 26.3081 27.4058 27.6096 29.6241

Shieh et al.’s method 19.3061 28.3829 22.5033 23.7203 15.4935
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Table 4. The comparison of the proposed method and existing method

Items Lu et al. [5] Shieh et al. [7] Proposed

Original image size (byte) 256 × 256 256 × 256 256 × 256

Watermark size (byte) 256 × 256 256 × 256 256 × 256

Required extra storage (byte) 524,288 65,792 65,792

Retrieval strategy Semi-blind Semi-blind Semi-blind

Domain (host/watermark) DWT/DWT SVD/SVD DWT/DWT

Multiple watermarking No Yes Yes

4.2 Discussions

The size of the sliding window is corresponding to that of a pattern used to train a
codebook. Different size of pattern will affect the visual quality of the extracted
watermark and the extra storage of extracting information. The pattern with
large size leads worse visual quality of extracted watermark and little storage
needed for storing the extra information. On the contrary, the pattern with small
size can obtain better visual quality of the extracted watermark. However, it
requires more storage to keep the extra information. This is a trade-off problem.

In the proposed method, two-level DWT transform was performed to embed
and extract watermarks. In level one DWT transform, the number of lower
frequency coefficients is a quarter of the number of pixels of the host image
so that it will result in a large number of patterns in the training pool. A large
training pool affects the computation cost of training a suitable codebook. On
the other hand, more than two levels of DWT transform can not provide enough
patterns for constructing the training pool. Thus, based on our experimental
experiences, it is suggested that the two-level DWT transform be suitable for
the proposed method. However, the number of transformation level is not fixed
because it corresponds to the size of images. In other words, an image can be
transformed by more than two levels when the particular coefficients of the
transformed image produce enough training patterns.

A user may bring up an un-registered image and apply the watermark re-
trieving procedure to exploit an image that belongs to a certain company. In our
proposed watermark retrieving procedure, a verifier will request the correspond-
ing secret watermark W ∗ and index table data from the trusted unit. Thus, only
the righteous owner of the image can ask to verify the watermark.

5 Conclusions

In this paper, we have demonstrated a semi-blind watermark technology based
on discrete wavelet transformation. In the embedding process, the host image
and the watermark were permuted by toral automorphism to increase the se-
curity, and fidelity of the embedded watermark and to resist the counterfeiting
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attack. The proposed scheme embedded the watermark in the frequency domain
that could provide a greater control in terms of the robustness and fragility of
the watermark. The benefits have been demonstrated in our experiments which
indicated that our proposed scheme outperformed Lu et al.’s and Shieh et al.’s
schemes in terms of the quality of extracted watermarks and the amount of the
required storage.
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Abstract. Traffic traces are generally anonymized before used in analy-
sis. Prefix-preserving anonymization is often used to avoid privacy issues
as well as preserve prefix relationship after anonymization. To facilitate
research on real time high speed network traffic, address anonymization
algorithm should be fast and consistent. In this paper, the bit string based
algorithm and the embedded bit string algorithm will be introduced. Bit
string based algorithm uses precomputed bit string to improve the
anonymization performance. Instead of only using the LSB of each Rijn-
dael output, the embedded bit string algorithm will take advantage of the
full size Rijndael output to anonymize several bits at the same time. The
implementation can be downloaded from https://sourceforge.net/
projects/ipanon.

1 Introduction

There has been a growing interest in internet traffic research. However, real-world
internet traffic traces are still very rare, only a few organizations would share their
traffic traces (NLANR/MOAT Network Analysis Infrastructure (NAI) project [2],
WIDE project [9], and ACM ITA project [3]). Even with these traces, there still
lack of the most recent traces of high speed network. To make the research on
most recent traffic traces possible, DragonLab (Distributed Research Academic
Gigabit Optical Network Lab) [1] began to establish the real-time traffic analysis
environment.

In DragonLab, network traffic is collected from Tsinghua university campus
network border router. Tsinghua University campus network is the first and
the largest campus network in China, it is connected to China Education and
Research Network with two gigabit links. Experimenters can assign incoming or
outgoing traffic from one of these two links, and then this traffic will be replayed
to the experimenter’s measurement point.

To avoid the leak of users’ privacy information, traffic traces are subject to
an anonymization process [4] [5] [6] before being studied: payload will be erased,
the source IP address and destination IP address of packets will be anonymized.
IP address anonymization is one of the major steps in this process.

There have been many anonymization schemes available. A straightforward
approach is to map each distinct IP address appearing in the trace to a ran-
dom 32-bit address. The only requirement is that this mapping be one-to-one.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 177–188, 2007.
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However, the loss of the prefix relationships among the IP addresses renders the
trace unusable in situations where such relationship is important (e.g., routing
performance analysis, or clustering of end systems [7]). It is, therefore, highly
desirable for the address anonymization to be prefix-preserving. That is, if two
original IP addresses share a k-bit prefix, their anonymized mappings will also
share a k-bit prefix.

Inconsistent mapping is also undesirable. For inconsistent mappings, same
original address may be mapped into different anonymized addresses when ap-
plied independently on more than one traces. Consistent mapping is important
because of the following reasons. First, if the traffic anonymization process stops
and restarts after a while, the previous and current anonymized traffic traces will
take different mappings, thus make the consistent research impossible; secondly,
there is a real need for simultaneous (yet consistent) anonymization of traffic
traces in different sites, e.g., for taking a snapshot of the Internet. It would
be very cumbersome if hundreds of traces have to be gathered first and then
anonymized in sequence.

Speed of IP address anonymization is also worth a serious consideration in
research on real time traffic. Even for off-line anonymization, speed is important
since slow anonymization algorithm may require traffic to be stored to disk
beforehand, which is time consuming and inconvenient.

In this paper, we will propose a group of novel prefix-preserving IP address
anonymization algorithms; they are all based on the precomputation of random
bits. The rest of this paper is organized as follows. In section 2 we briefly in-
troduce related works, including the operation of TCPdpriv and Crypto-pan. In
section 3 we describe our schemes in details, section 4 will discuss some concerns
in implementation and its performance. The paper is concluded in section 5.

2 Related Works

2.1 TCPdpriv

One possible prefix-preserving approach is adopted in TCPdpriv developed by
Greg Minshall [8] and further modified by K. Cho [9]. TCPdpriv can be viewed
as a table based approach. It stores a set of < raw, anonymized > binding pairs
of IP addresses to maintain the consistency of the anonymization. When a new
raw IP address a needs to be anonymized, it will try to find the longest prefix
match and anonymize the rest in random. The new generated pair will be added
to the binding table. Since only the memory lookup and random generation are
required in this algorithm, it may operate very fast.

However, this algorithm is not consistent: the mappings are determined by the
raw IP addresses and the relative order in which they appear in a trace. There-
fore, a raw address appearing in different traces may be mapped into different
anonymized addresses by TCPdpriv, hence the inconsistency. Also, to store all
the binding pairs a large amount of memory will be consumed.
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2.2 Crypto-pan

Crypto-pan [10] [11] is a deterministic mapping function from raw addresses to
anonymized addresses based on the Canonical Form Theorem [11]. With the
same key, it can anonymize traffic traces consistently. In this algorithm, fi, i =
1 . . . n are defined as follows: fi(a1a2 . . . ai) := L(R(P (a1a2 . . . ai); K)), i =
0, 1, . . . , n − 1, where L returns the least significant bit, R is a pseudo-random
function or a pseudo-random permutation (i.e., a block cipher) such as Rijn-
dael [12], and P is a padding function that expands a1a2 . . . ai into a longer
string that matches the block size of R. K is the cryptographic key used in the
pseudo-random function R. Since the cryptography based anonymization func-
tion is uniquely determined by K, same address appearing in two different traces
will be mapped to the same anonymized address if the same key is used.

However, to anonymize an IP address, Crypto-pan needs 32 rounds of Rijndael
encryption, thus makes it unsuitable for real time anonymization without special
hardware. It can only anonymize 10000 IP addresses per second with a PIII
machine [11]. Consider the overhead of packet capture, the Crypto-pan is not
practical for anonymization in wire speed. Thus, unlike Tcpdpriv, Crypto-pan
can only be used off-line.

3 Bit String Based Schemes

3.1 Methodology

Assume S is a random bit string of length LS , and Pi is a function from {0, 1}i

to {0, LS −1}, for i = 1, 2, . . . , n−1 and P0 ≡ 0. Let B(S, n) be the n′th bit of S,
define fi(a1a2 . . . ai) = B(S, Pi(a1a2 . . . ai)), The anonymization process would
be:

Given an IP address a = a1a2 . . . an, let F (a) = a′1a
′
2 . . . a′n where a′i =

ai

⊕
fi−1(a1, a2, . . . , ai−1), and

⊕
stand for the exclusive-or operation, for i =

1, 2, . . . n.
According to Canonical Form Theorem [11], the map is prefix-preserving. This

is also straightforward since given a = a1a2 . . . an, the anonymized IP address
a′1a
′
2 . . . a′n is generated with a′i = ai

⊕
B(S, Pi−1(a1a2 . . . ai−1)), which only

depends on a1a2 . . . ai−1.
The length of bit string S is crucial for the security of anonymization. We

have the following results:

Lemma 1. If for any a1a2 . . . ai �= b1b2 . . . bj, Pi(a1a2 . . . ai) �= Pj(b1b2 . . . bj),
0 ≤ i, j ≤ n − 1, string S is at least 2n − 1 bits size.

Proof. For any a1a2 . . . ai �= b1b2 . . . bj , Pi(a1a2 . . . ai) �= Pj(b1b2 . . . bj), imply:

1. If i �= j, 1 ≤ i, j ≤ n − 1, Pi(a1a2 . . . ai) �= Pj(b1b2 . . . bj).
2. If i = j, a1a2 . . . ai �= b1b2 . . . bi, 1 ≤ i ≤ n−1, Pi(a1a2 . . . ai) �= Pi(b1b2 . . . bi)
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Consider 2, since the number of all possible i bits prefix is 2i, Pi(a1a2 . . . ai) has
at least 2i different return values. Now consider 1 and P0 = 0, string S has at
least 1 + 2 + 4 + . . . + 2n−1 = 2n − 1 different positions, thus the length of S is
at least 2n − 1 bits.

To prefix-preserving anonymize the complete 32 bits IPv4 address, a string of
232 − 1 bits (or about 512M bytes) long is required for the maximum security
level. The bit string S could be precomputed and preloaded to accelerate the
anonymization process. Since memory is rather cheap now, this algorithm can
operate very fast with commodity hardware. In situations where anonymizing
the first 24 bits is enough, a shorter string with 224 −1 bits (or about 2M bytes)
long is required.

3.2 Construction of Pi Function

Now the problem is how to construct bit string S and find the proper position
mapping function Pi. An ideal group of Pi, i = 1, 2, . . . , n − 1 should be easy to
present and fast to calculate. We propose the binary tree traversal based method
to find such mapping functions. The tree is formed as:

– the root node of the tree is P0 = 0;
– the left child node of Pi(a1a2 . . . ai) is Pi+1(a1a2 . . . ai0) and the right child

node is Pi+1(a1a2 . . . ai1).

Thus the problem becomes to assign values of 1 to LS −1 to all nodes (except
the root node) of this binary tree. We can think of this problem to assign a
traversal sequence number to each node. Though the assignment scheme may be
arbitrary, to be simple in implementation, we only consider two typical schemes
in this paper: the breadth first scheme and the depth first scheme(Fig. 1).

Fig. 1. Breadth first (left) scheme and depth first (right) scheme

For the breadth first scheme, the Pi function is: Pi(a1a2 . . . ai) = 2i − 1 +
V AL(a1a2 . . . ai), i = 1, 2, . . . , n − 1. V AL(a1a2 . . . ai) is the value of a1a2 . . . ai.
Consider

Pi(a1a2 . . . ai) = 2i − 1 + V AL(a1a2 . . . ai)
= 2(2i−1 − 1 + V AL(a1a2 . . . ai−1))

+1 + ai

= 2Pi−1(a1a2 . . . ai−1) + ai + 1

(1)
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Thus, Pi function can also be presented as:

Pi(a1a2 . . . ai) = 2Pi−1(a1a2 . . . ai−1) + 1
if ai = 0

Pi(a1a2 . . . ai) = 2Pi−1(a1a2 . . . ai−1) + 2
if ai = 1
i = 1, 2, . . . , n − 1

(2)

For the depth first scheme, the Pi function is:

Pi(a1a2 . . . ai) = Pi−1(a1a2 . . . ai−1) + 1
if ai = 0

Pi(a1a2 . . . ai) = Pi−1(a1a2 . . . ai−1) + 2n−i

if ai = 1
i = 1, 2, . . . , n − 1

(3)

In both schemes P0 = 0.

3.3 Reuse Distance Based Data Locality Analysis

Access to large memory often incurs many cache misses and thus seriously af-
fects the performance. Since the cache policy is often complicated and highly
dependent on the specific CPU’s architecture, we will use the reuse distance [13]
to measure the cache behavior. The reuse distance of a reference is defined as
the number of distinct memory references between itself and its reuse. For bit
string base algorithms, to anonymize the first k bits prefix, a total of k mem-
ory accesses (the address of each access is S[0], . . . , S[Pi−1(a0a1 . . . ak−1)/8]) are
required. Since each anonymization round starts from the access to S[0], we
will evaluate the reuse distance to anonymize one IP address. Note the fact that
Pi(a1a2 . . . aiai+1) > Pi(a1a2 . . . ai) always holds for depth first and breadth first
schemes, only consecutive accesses may result in accesses to the same cache line.
We have the following results.

Lemma 2. For a cache line size of c = 2m bits, LS = 2k − 1 bits and k ≤ c �
LS, To anonymize k bits, for breadth first scheme, the reuse distance N for each
address’ anonymization satisfy

k − 1 − m ≤ N≤k − m (4)

For depth first scheme, N satisfy

1 ≤ N ≤ k − m (5)

Proof. Defined Diff(i) = Pi+1(a1a2 . . . ai+1) − Pi(a1a2 . . . ai). For breadth first
scheme, since

Diff(i) = Pi+1(a1a2 . . . ai+1) − Pi(a1a2 . . . ai)
= Pi(a1a2 . . . ai) + 1 + ai+1

(6)
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For i ≥ m, Diff(i) ≥ 2m, and Diff(i) = 2m only when i = m, a1 = a2 =
. . . = ai+1 = 0. Thus if i > m + 1, each access is in a different cache line.
Since i ≤ k − 1, it is easy to see N ≥ k − 1 − (m + 1) + 1 = k − 1 − m and
N ≤ k − 1 − (m + 1) + 2 = k − m.

For depth first scheme, since Diff(i) = 1 if ai+1 = 0, and Diff(i) = 2k−1−i

if ai+1 = 1. For i ≤ k − 1 − m, if and only if ai = 1, Diff(i) ≥ 2m, an access is
in a different cache line. When IP address is 0, only one memory read is required
(k ≤ c). The worst case happens when all bits are 1, in which case k − m cache
misses. If for each bit 1 and 0 have the same possibility, the expectation of reuse
distance is (k − m)/2.

It looks like that depth first algorithm will be faster than breadth first algorithm
in average for single IP address anonymization given that the cache miss num-
ber is the only affecting factor. When anonymizing a number of IP addresses, the
scenario will be a little different. For breadth first algorithm, the most frequently
used bits are all located in the beginning of the bit string S. It is generally easier to
cache the most frequently used memory. In contrast, the most frequently used bits
in depth first algorithm are relatively sparsely located in the bit string. For random
generated IP addresses, suppose the size of cache is C bits and the size of of cache
line is CL bits, in situation where half of the cache size is used to cache the most
frequently used C/2 bit string, for breadth first algorithm, the first log2(C/2) bits’
anonymization will not incur a cache miss, while for depth first algorithm, since
half of the most frequently used bit (the 1 branch) are sparsely located across the
bit string, thus only the first log2(C/2/CL) + 1 bits will be anonymized without
cache miss. In experiment, we find that depth first algorithm is generally slower
when k < 31. This indicates that to anonymize single IP address and to anonymize
a large number IP address consecutively are quite different.

3.4 Block Tree Based Prefix Preserving Algorithms

From the above analysis, it can be inferred that if the bit string can be completely
loaded into cache, the algorithm would be greatly accelerated. Thus a group of
block tree based algorithms are designed. Block tree algorithm is constructed
based on the depth first or breadth first bit string algorithms. The basic idea
behind this is to divide one IP address into several parts, for each part, there is
a correspondent bit string block. These blocks are also organized as a tree. The
algorithm is defined by each part’s bit number, the position mapping function
among blocks and the position mapping function inside each block.

Assume to anonymize the first k bits of IP address, there are n parts and the
i’th part has Li, i = 0, . . . n − 1 bits,

∑n−1
i=0 Li = k, the part i of IP address IP

is part(i, ip), and the bit string is Si, the algorithm is:

for i = 0 : n − 1
anonymize(part(i, ip), Li, S(Pi(ip)))

end for
(7)

Pi(ip) determines which block of the string S should be used to anonymize the
i’th part of IP address ip. P can be breadth first position function or depth first
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position function. The anonymization function can also be depth first or breadth
first algorithms. About the length of bit string S, it can be proved that string S
also requires at lease 2k − 1 bits long.

It is because, to anonymize the Li bits of IP address, about 2Li − 1 bits are
required. Assume there are Bi blocks for the i’th part of the IP address. For the
part(i, ip) anonymization, the total number of bits required is Bi(2Li − 1) bits.
After anonymization, each block has 2Li branches. Thus:

B0 = 1
Bi = Bi−12Li−1

(8)

Thus the total number of bits required is

N =
∑n−1

i=0 Bi(2Li − 1)
=

∑n−1
i=0 (Bi2Li − Bi)

=
∑n−1

i=0 (Bi+1 − Bi)
= Bn − B0

=
∏n−1

i=0 2Li − B0

= 2k − 1

(9)

If Li = 1, i = 0, . . . , n − 1, it becomes the depth first or breadth first algorithm.
Comparing to the simple depth first or breadth first algorithms, with proper

parameters, block tree based algorithms may further minimize cache misses. For
example, for CPU with 512K cache and 128 bytes size cache line, to anonymize
29 bits prefix,split the 29 bits into two parts: 21, 8, in the optimal situation, the
first bit string (256K bytes) is loaded into cache and only one cache miss will
be incurred to anonymize one address.

3.5 Embedded Bit String Based Prefix Preserving Algorithms

Embedded bit string based approach is another variant that aims to reduce the
memory required. As described before, to anonymize 32 bits IPv4 addresses, about
512M bytes memory is required. It makes the algorithm infeasible for memory-
limited devices like network processors. Also, it is impossible to anonymize IPv6
addresses with this algorithm, even if only anonymize the first 64 bits prefix (sub-
net prefix). Embedded bit string based algorithm can be thought as to divide one
IP address into several parts, for each part, there is a correspondent bit string
block. Unlike block tree based approach, these blocks are generated dynamically
with cryptographical secure method.

Assume to anonymize the first k bits of IP address, there are n parts and the
i’th part has Li, i = 0, . . . n − 1 bits,

∑n−1
i=0 Li = k, the part i of IP address IP

is part(i, ip), and the bit string is Si, offi is the first bit offset of the i’th parts’
in IP address, the algorithm is:

for i = 0 : n − 1
Si = encrypt((ip >> (32 − offi)) << (32 − offi))
anonymize(part(i, ip), Li, Si)

end for

(10)
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For example, if the encrypt function is 128 bits block cipher, each time 7
bits can be anonymized. For an IPv4 address, about 5 rounds are needed. To
anonymize the first 64 bits prefix of IPv6 addresses, about 10 rounds are neces-
sary, comparing to 64 rounds of Rijindael encryption of Crypto-Pan. Obviously,
in this algorithm, cache misses are not the deciding factor for performance. It is
welcome since a widening gap between processor and memory speeds has been
witnessed in recent years.

4 Implementation and Experiment Results

4.1 Implementation

The bit string S is generated with some pseudo-random number generator. The
selection of such PRNG is arbitrary, in this paper, we use the ISAAC [14] algo-
rithm. ISAAC (Indirection, Shift, Accumulate, Add, and Count) generates 32-bit
random numbers. Averaged out, it requires 18.75 machine cycles to generate each
32-bit value. The results are uniformly distributed, unbiased, and unpredictable.
ISAAC is a secure pseudo random number generator for practical applications
and hasn’t been broken since it was published 5 years ago. No bias has been
detected either. Recent research indicates an estimated known plain text attack
on ISAAC may require a time of 4.67× 101240 [15]. The initial seed of ISAAC is
generated from secret key K via a cryptographic secure pseudo-random number
generator. For example, HMAC [16] algorithm or some block cipher.

The anonymization process will load the large bit string S in advance, then
for each input IP address, calculate the fi(a1a2 . . . ai) = B(S, Pi(a1a2 . . . ai), i =
1, 2, . . . , n, f0 = B(S, 0)

Now consider the B and P function. B(S, bit) function is defined as:

((S[bit >> 3]&(0x80>>(bit & 0x07)))!= 0)

We implement two P (ip, i) functions corresponding to the breadth first scheme
and the depth first scheme. P (ip, i) for breadth first scheme and depth first are:

(ip&(0x80000000>>i))?
((P(ip,i-1)<<1)+1)
:((P(ip,i-1)<<1)+2)

(ip&(0x80000000>>i))?
(P(ip,i-1)+(1<<(32-i))
:(P(ip,i-1)+1)

For block tree based algorithm, we use the breadth-breadth approach, that is,
the construction inside the blocks or among blocks are all breadth first based.
The selection of number of parts and each part’s bit number often depend on
the specific CPU’s cache size. In this paper, we use the two level approach: the
first bit string is 64K bytes and will anonymize the first 19 bits, the rest bits
will be anonymized by another bit string.

For embedded bit string algorithm, we use Rijindael/128 algorithm, thus each
round will anonymize 7 bits.
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The implementation can be downloaded from https://sourceforge.net/
projects/ipanon.

4.2 Experiment Results

We evaluate the these implementations in two systems: one is PIV 2.8G intel
CPU with 1G memory(machine A) and the other is PIV 1.8G intel CPU with
1G memory (machine B). Both of them have a L2 cache size of 512K bytes and
a cache line size of 128 bytes. We also modify Crypto-pan for a comparison. For
each scheme, we generate 16,777,216 (16M) sequential or random IP addresses,
and measure the elapsed time in anonymization. The input IP addresses are in
32 bits integer format. We measure the elapsed time after the initialization (for
bit string based scheme, after the bit string is generated and loaded). The results
are shown in table 1 and table 2. The first row is from machine A and the second
row is from machine B.

Table 1. Experiment results for anonymization(random input)

depth breadth cpan block tree embedded bit string

Time(us) 1.91 1.98 7.75 1.12 1.45

Time(us) 2.32 2.77 11.34 1.60 2.26

Table 2. Experiment results for anonymization (sequential input)

depth breadth cpan block tree embedded bit string

Time(us) 0.24 0.24 7.24 0.37 1.20

Time(us) 0.37 0.37 11.05 0.58 1.84

Experiment result shows that bit string based schemes(depth first, breadth
first, block tree, embedded bit string) are 3 to 6 times faster than Crypto-pan in
the worst case. For 32 bits random input anonymization, depth first scheme is
a little faster than breadth first scheme, while embedded bit string algorithm is
faster than both. Block tree algorithm is considerably faster than all the other
schemes. A comparison of the machine A and machine B is also interesting. For
CPU sensitive algorithms like crypto-pan and embedded bit string, a perfor-
mance increase of 40% is gained from slower machine B to A; while for memory
access sensitive algorithms like breadth first or depth first algorithm, only about
20% is gained. Although the performance of CPU has increased a lot, the speed
of memory access is roughly the same. Previous experiments in a PIV 1.4G
machine indicate that depth first algorithm is more than 10 times faster than
Crypto-pan. For 1.8G machine this ratio is 4.89 and for 2.8G machine this ratio
is 4.06.

We evaluate the time required vs. number of bits to be processed, the re-
sults are shown in Fig.2. For algorithms like depth first algorithm, breadth first
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algorithm and block tree algorithm, the property of input can affect the perfor-
mance dramatically. For example, sequential input may be more than 6 times
faster than random input for depth first algorithm. The reason is that 16,777,216
sequential IP addresses share a common 8 bits prefix, thus has far less cache
misses and the deciding factor is the computation overhead. For schemes that
are not cache miss sensitive like Crypto pan and embedded bit string algorithm,
there is little difference between sequential and random scenarios.

For random input, the computation time of breadth first and depth first
anonymization algorithms are roughly linear before 22 bits with a fixed slope
of computation overhead per bit. The time is roughly linear after 22 bits with
the increasing cache misses, though the slope is a lot steeper. The embedded bit
string based algorithm, is a staircase function since there is little overhead inside
each 7 bits block. For block tree based approach, it can be separated into 3 lines,
for the first line (1-22), since the complete bit string can be loaded into cache,
there is little cache misses. Because Intel CPU’s cache line size is 128 bytes, from
22 to 29, there is only one cache misses. From 30 to 32 bits, there will be one
cache misses added per bit increased.
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Fig. 2. Processing time per address (averaged from 16,777,216 IP addresses anonymiza-
tion), sequential input (left) and random input (right). Depth first algorithm is short-
ened as depth, breadth first algorithm as breadth, Crypto-pan as cpan, block tree
algorithm as btree and the embedded bit string algorithm as fcpan.

The IP addresses in real traces are often more complex: addresses inside ISP
are heavily clustered while addresses outside ISP may be very random. To eval-
uate the performance of these anonymization scheme in real environment, we
anonymize a public 24 hours traffic trace provided by WIDE [9]. The trace is
captured on Feb 27, 2003 and is stored in pcap format. It contains a total of
364,483,718 packets. After gzip compression, the traffic trace occupies about 10G
disk space. The proposed schemes are applied on it. Traces after anonymization
are also stored in disk in pcap format. As shown in table 3, bit string based
schemes are much faster than Crypto-pan.
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Table 3. Experiment results for anonymization of real traces

Time PPS

Depth first 3437.3447s 105,566

Breadth first 3544.4881s 102,357

Crypto-pan 20338.0471 17,841

Depth first 24 2607.2846s 139,175

Breadth first 24 2570.0872s 141,189

Crypto-pan 24 15757.2146s 23,028

Block tree 3195.3225s 113,562

No anonymization 1923.2942s 188, 670

5 Conclusion

In this paper, we propose a group of novel prefix-preserving IP address anonymiza-
tion algorithms which all base on the bit string based algorithm. Experiment re-
sults indicate that these algorithms are all much faster than Crypto-pan.

More research is still going on to accelerate the anonymization speed so that
anonymization of IPv6 addresses in gigabit wire speed is possible.
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Abstract. GCD algorithm is a well known algorithm for computing modular 
division and inversion which is widely used in Elliptic Curve Cryptography 
(ECC). Also division is the most time-consuming operation in Elliptic and 
Hyperelliptic Curve Cryptography. The conventional radix-2 GCD algorithm, is 
performed modular division over GF(2m) in approximately 2m iterations (or 
clock cycles). These algorithms consist of at least four comparisons at each 
iteration. In this paper the conventional algorithm is extended to radix-4. To 
increase the efficiency of algorithm the number of comparisons is reduced. So 
the algorithm enables very fast computation of division over GF(2m). The 
proposed algorithm described in such a way that its hardware realization is 
straightforward. The implemented results show reducing the division time to m 
clock cycles. Also the proposed architecture is compared with other reported 
dividers and it has been shown that the proposed architecture only occupies 
%14 more LUT (over GF(2163)) while the computation time is decreased to half. 

Keywords: GCD algorithm, Radix four, ECC, Finite Field. 

1   Introduction 

Arithmetic operations (i.e. addition, multiplication and inversion or division) over 
finite fields are widely used in data communication systems, coding and particularly 
in cryptography. By developing Elliptic Curve Cryptography, which requires division, 
many attempts have been made to increase the efficiency of this operation [1-18]. 

Different approaches and architectures have been proposed for division. These 
approaches are usually listed as three categories. 1) Dividers which are based on 
Fermat’s theorem; 2) Divider which are based on binary GCD (greatest common 
divisor) algorithm and 3) Dividers which include solving a system of linear equations 
and the almost inverse algorithm. Among them, GCD based dividers offer most 
efficient approaches in terms of time and area [19]. In this paper we propose a new 
high speed algorithm and architecture for division which is based on GCD algorithm. 
We called the proposed algorithm as extended radix-4 GCD algorithm. The Extended 
radix-4 GCD algorithm is twice faster than conventional GCD algorithms. 

The rest of this paper is organized as follow: in section 2 a brief introduction to 
GCD algorithm and a review to previous works are presented. In section 3 the 
extended radix 4 GCD algorithm is proposed. In section 4 the proposed architecture 
and its implementation is presented and compared with the former reported 
implementations. Section 5 concludes the paper. 
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2   Preliminaries  

2.1   GCD Algorithm 

The GCD algorithm is an efficient way of calculating modular division and inversion 
which can be used over both GF(P) and GF(2m). Consider the residue class field of 
integers with an odd prime modules P(x). Let A and B( ≠ 0) be elements of the field 
and S(x)=P(x).  
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The coefficients of each polynomial are binary digits 0 or 1.  
The algorithm calculates V, where V=A/B mod P(x). The algorithm performs 

modular division by intertwining the procedure for finding the modular quotient with 
that for calculating GCD(S,A). The following properties are applied iteratively to 
calculate GCD(A,S).  

1- if A and S both are even then  ( ) =SAGCD ,  ( )2,22 SAGCD×  

2- if A is even and P is odd then  ( ) =SAGCD ,  ( )SAGCD ,2
 

3- if A and P both are odd   then ( ) =SAGCD ,  ( ) ⎟
⎠
⎞⎜

⎝
⎛ + SSAGCD ,2

 

Let 0a  and 0s be the least significant bit (LSB) of A and S respectively then these 

properties could be listed as table1. 
The GCD divider algorithm reduces the problem of finding the greatest common 

divisor (GCD) by repeatedly applying these identities. 

Table 1. Assumptions of Radix 2 GCD algorithm 

0a
 0s  GCD(A,S) is equal to 

0 0 ( )2,22 SAGCD×  

1 0 ( )SAGCD ,2
 

1 1 ( ) ⎟
⎠
⎞⎜

⎝
⎛ + SSAGCD ,2

 

2.2   Previous Works 

The classical algorithm which is based on GCD algorithm, computes inversion i.e. 

)(1 xB −  mod P(x) where P(x) is the irreducible polynomial of polynomial 
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representation over GF(2m). Thus to do division i.e. A(x)/B(x) mod P(x), an extra 
multiplication was required. Based on classical GCD algorithm N.Takagi proposed an 
algorithm to compute division )()( xBxA  mod P(x) [14-15]. The proposed algorithm 

in [14-15] employed a while loop where while loop is not appropriate for hardware 
realization [4,5,7]. Also unfixed (and unknown) number of iterations or computation 
time makes the use of this algorithm difficult in crypto-processors. 

To solve this problem a new algorithm has been proposed in [4,5] which was based 
on extended Euclid’s algorithm. Replacing while loop by for loop, lets the algorithm 
to be more efficient for hardware implementing. This algorithm needs exactly 2m 
iterations to perform the division [5]. Wu et.al [17] and Brunner et.al [18] proposed 
similar serial binary shift-right algorithms exploring the counter idea for division [7]. 

A faster algorithm has been proposed in [7] to compute division. The proposed 
algorithm in [7] was extended of N.Takagi algorithm which performs division with 
while loop. This algorithm performs division serially in radix-4. Although it had a 
higher speed but it still suffered from a while loop and unfixed number of iterations.  

Another high speed algorithm has been used and implemented for inversion which 
executes in m clock cycles in [20]. The implemented algorithm in [20] is based on 
serial implementation exist which is based on conventional GCD algorithm. The 
drawback of this implementation is that this architecture required an extra 
multiplication time and unit to convert inversion results to division.  

3   High Speed Rdix-4 GCD Algorithm  

The proposed algorithm in [5] to compute modular division, using for loop, is shown  
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Algorithm 1. GCD based algorithm proposed in [5] in which replacing  while with for in 
algorithm1. As shown in Eq.3 S is m+1 bit length and other variables are m bit length.  
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In algorithm1, by keeping S odd, some comparisons of classical N.Takagi 
algorithm has been omitted. To accelerate the proposed GCD algorithm two iterations 
of this algorithm should be performed in one clock cycle. This method has been used 
in [21].  

Table 2. Assumptions of GCD algorithm in radix 4 
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Since each iteration of algorithm1 includes 4 comparisons, employed algorithm in 
[21] has 16 comparisons at each iteration. The great number of comparisons makes 
implement difficult. To decrease the number of comparisons algorithm2 is presented in 
this paper. This algorithm is extended of GCD algorithm proposed in [5], in which the 
 



 High Speed Modular Divider Based on GCD Algorithm 193 

;0);();();(

)(  mod  )()( :output

)(),(),( :input

==== VxAUxSSxBR

xSxBxA

xSxBxA  

mtoifor        1   .1 =  

;cnt;  cnt    state                             

;X)UV,(U)      (U,V                           

);RS,(R     (R,S))         r  elsif(r  

;cnt    cnt)         r   if(r  

)if(state

11            .6

2            .5

2210     .4

1     00    .3

0   2.

01

01

+==
+=
+==

+==
=

;3            .12

;3            .11

;            .10

;0        .9

1                          8.

01       .7

1

01

U,U)V( (U,V)                               

R,R)S(     (R,S)else                    

V,U)(U  (U,V)                              

S,R)(R)    (R,S)if(s                 

;state

)relsif(r    

+=
+=
+=

+==
=

=

;3                   .18

;3                                    17.

;                16.

;1            .15

1                             14.

}11{  //                    .13

1

01

V,U)U((U,V)                             

S,R)R( (R,S)   else 

V,U)(U (U,V)                              

S,R)(R)    (R,S)if(s                 

;state

rr   else 

+=
+=

+=
+==

=
=

;cnt    cnt                             

;V,V(U)      (U,V                           

S,S);(R     (R,S))         r  elsif(r 

;cnt    cnt)         r    if(r 

stateelse

1               .23

)2                 .22

210          .21

1     00        .20

}1{//                          19.

01

01

−=
+=

+==
−==

=

);,3(),(                                                      

);,3(),(                .126

);,(),(                                                      

 );,(),()0(               25.

1          01            .24

1

01

VUVVU  

SRSSRe               els          

VVUVU

  SSRSR    s       if          

;cntcnt)relsif(r    

+=
+=−

+=
+==

−==
 

);,3(),(                                                    

);,3(),(                129

),(),(                                                   

  );,(),(   )1(             .28

1                                     

 }11{ //                                  .27

1

01

VVUVU

 SSRSR          else           

VVUVU

SSRSR s    if             

;cntcnt

rr else   

+=
+=−

+=
+==

−=
=

 

);(  .33

;    .33

);( mod     32.

 );( mod     31.

;0         )0(                30.

2

2

Vreturn

loopend

xPxRR

xPxUU

statecntif

=
=

==
 

Algorithm 2. Radix 4 GCD algorithm with 12 comparisons 

comparisons and operations performed in radix-4. To extend the GCD algorithm to 
radix 4, the applied properties should be extended to radix 4. The extended properties 
are listed in table2. In table2 01aa and 01ss are denoted as two LSB bits of A(x) and S(x). 
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In algorithm2 the required iterations to execute division are m (for GF(2m)) while 
each iteration includes 12 comparisons. As it can be seen, the number of iterations has 
break to half in compare to algorithm1 and the number of comparisons are also 
reduced from 16 to 12 compare to employed algorithm in [21].  

Similar to algorithm1 in algorithm2, two variables state and cnt are provided. The 
variable cnt is used for tracking the difference of degree between R and S, and the 
variable state is used for identifying which one has the larger degree. Due to the 
values of state, R and S, 12 different conditions may be applied to find the GCD(R,S). 
Since the initial value of S is equaled to P(x) (irreducible polynomial), the LSB of S is 

always remained at 1. Hence we have just to check the two last bits of R and 1s (i.e. 

second LSB bit of S). 
Increasing the value of cnt, decreases the degree of S and R by two in algorithm2 

and by one in algorithm1. At the end of algorithm, state and cnt will be zero and R 
and S will be equal to 1. The final value of V will be as the division’s result. 

In algorithm2 U ,V , R  and S  are variables which are initialized at the beginning of 
the algorithm by A(x), zero, B(x) and P(x) respectively; where P(x) is the irreducible 
polynomial used to generate the field.  

In the algorithm2 at each iteration (before U and R  divided 4 or 2x ), the variable R 
is replaced by one of the R , S , SR + , SR 2+ , SR 3+  or SR +3  terms (i.e. one of these 
terms should be stored back into the R). The corresponding U  which is another 
internal variable of the algorithm2 is replaced by one of 
theU ,V , VU + , VU 3+ , VU 2+ or UV 3+  terms. Table3 lists the extension of R , S 
and U, V in the algorithm2. 

Table 3. Replacements table for R, S and U, V 

variable Possible 
conversions 

variable Possible 
conversions 

R  U  

S  V  

2/R  2/U  

SR +  VU +  

SR 3+  VU 3+  

SR +3  VU +3  

 
 
 
 

SR,  

SR 2+  

 
 
 
 

VU ,  

VU 2+  

 
The valid term to store back into the R, among the possible terms (shown in table3 

as possible conversions), depends on the last two bits of the terms. Two LSB of the 
term which should be stored back into R is always zero.  

Using table3 a new algorithm is proposed to compute modular division in m clock 
cycles. In the new algorithm which is shown in algorithm3, the number of 
comparisons is reduced to 10. In proposed algorithm the structure and format of  
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Algorithm 3. The proposed Extended GCD  radix 4 algorithm whit 10 conditions at each 
iteration 

comparisons are changed in such a way that its hardware realization is more 
straightforward. Fewer comparisons make the algorithm more efficient and simple for 
hardware implementation while the great number of comparisons makes the algorithm 
complex for hardware implementation. 

In algorithm3 the LSB of possible terms to assign R and U (which are mentioned in 
table3) are considered to choose the valid term for replacing them. The role of cnt, 
state, and other variables in algorithm3 are same as algorithm2 and algorithm1.  
As seen in algorithm3 (line 2-1), the new value for R is selected according to the 
values of R (current value) , S, R+S, R+S+2S, or R+S+2R which were mentioned in 
table3. The value which has two zero LSB is candidate to assign R. The last bit of 
S is always one. So among all cases of S and R which were mentioned in table3, at 
least one term in has two zero bit in LSB. In one case, two specific terms of table3 

have two zero in LSB, at the same time. When 0101 =rr  and 1101 =ss both U+3V 
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and 3U+V are zero in two LSB. To identify the valid one to assign to R, state bit 
should be used. U+3V should be assigned if state is equal to1 and 3U+V should be 
assigned if state is equal to 0. So in algorithm3, state and cnt should be considered as 
variables which are contributed in comparisons. 

Furthermore the denoted lines in algorithm3 by 2-1 and 2-2 are completely 
independent; so they could be executed simultaneously and in parallel.  

The novelty of the proposed algorithm (i.e. algorithm3) is in fewer number of 
comparisons which leads to implement division more efficiently in less area. Table4 
is presented to compare the number of conditions and comparisons for each iterations 
in different algorithms.  

Table 4. Number of conditions for different GCD algorithms 

Algorithm Number 
of iterations 

Number 
of conditions 

in each 
iteration 

Radix-2 GCD algorithm in [5] 
(Algorithm1) 

m2  4 

Algorithm[21] m  16 
Algorithm2 m  12 
Algorithm3 m  10 

4   Implementation of Extended Radix-4 GCD Algorithm 

In this section an architecture is presented to implement algorithm3. In algorithm3, R 
and S should be filled by the values of R, S, R/2, R+3S, 3R+S or R+2S. Also U and V 
should be filled by U, V, U/2, U+V, U+3V, 3U+V or U+2V, depends on the 
algorithms conditions. To fill R and S registers with their new values (at the end of 
each iteration or clock) a component which called as RS_adder is implemented. 
Another similar component is implemented to compute the possible values of U and V 
which is called as UV_adder. The inputs of RS_adder component are old values of R 
and S and UV_adder is U and V and their outputs are possible values for R, S, U and V 
respectively. 

The two last bits of RS_adder that should be assigned to R, are always zero. Thus 
division of the valid output of RS_adder to x or 2 can be performed by one bit shift to 
right so implementing the other term 2R  can be ignored and approached by wiring. 

But because the last bit of the valid output of UV_adder component that should be 
assigned to U is not always zero then U/2 can not be approached from U by wiring 
and should be computed. 

Then implementation of U/x is not so costly (as shown in [5]) and depends on 
irreducible polynomial of the finite field. The whole proposed architecture for 
extended radix-4 GCD is shown in figure1. 

RR, SS, UU, and VV registers are temporary registers to store the final values at the 
end of each iteration for R, S, U and V respectively. In the proposed architecture, four 
multiplexers are implemented to choose the valid output for RR, SS, UU and VV  
 



 High Speed Modular Divider Based on GCD Algorithm 197 

 

Fig. 1. Full architecture for Extended radix 4 GCD algorithm 

registers (MUX1, MUX2, MUX3 and MUX4). By each iteration the values of RR and 
UU registers (after dividing to 4 and x2) are stored in R and U registers. Also the 
values of SS and VV registers are stored in S and V registers. 

Because last two bits (LSB) of RR are always equal to zero, the division of RR to 
x2 can be performed by shifting two bits to the right (equal to 4R ). Since the last two 

bits of UU are not always zero this technique can not be used for U and UU. Then a 
simple component to divide to x2 is required before UU register connected to U 
register. 

By first clock cycle initialization will be done. During the initialization, VV should 
be filled with zero and SS filled with S(x). But RR and UU should be filled with 
4×B(x) and 4×A(x). Because at the first iteration they are divided to x2, thus they 
should be multiplied by four. To avoid losing the data, 2 extra bits should be 
implemented for all registers so after the division by x2 at the first iteration, the R, S, V 
and U registers filled with exact values of B, S, A and zero. So for the GCD divider 
over GF(2m), registers should be implemented with the length of m+2 bits. 

A counter as cnt and a register for the state bit are required which is not shown in 
figure1. Also a clock counter which called clkcounter is employed to determine the 
finishing time (or last clock) of division. When the clkcounter is set to zero, RR, SS, 
UU and VV will be initialized by primary values (B(x), S(x), A(x) and zero). 

The above architecture is implemented on FPGA Xilinx series Vertex2 XC2V250-5 
using Xilinx ISE software. The chosen fields for implementation are which 
recommended by NIST for Elliptic Curve Cryptography (ECC). Table5 summarized 
implementation in terms of slices, 4 input LUTs and flip flops to evaluate the required 
area on chip besides the maximum allowed frequency for comparing the required time 
of computation. 

A GCD radix-2 divider over GF(2163) for an ECC core has been implemented in 
[22,23]. Other inversion architectures has been proposed in [11,13]; It notes that in 
order to divide two operands, after inversion a multiplication should be performed so 
the multiplication time should be added to the time of inversion to find comparable  
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Table 5. Number of conditions for different GCD algorithms 

 Slice Flip 
Flop 

4 
input 
LUT 

Max 
frequency 

(MHz) 
GF(2163) 2240 684 3039 171 
GF(2233) 3206 962 4337 165 

 
values for division based on inversion of [11,13]. The results of proposed 
architectures are summarized in table6. As it can be seen the proposed architecture 
when implemented over GF(2163) reduces computation time by half but requires %14 
more LUT  implementation compare to the radix-2 architecture which employed in 
[22,23]. 

Table 6. Implementation result for GCD radix -2 divider implemented 

 Device Area Cycles GF  
Division
[22,23]

XCV2000E 1316 FF 
2678 LUT 

2m GF(2163) Employed the algorithm 
proposed in [5] 

Inversion [13] XCV3200E 
12 BRAMs 

10065 CLB 27(1.33us) GF(2193)  (Multiplicative inversion) 

Inversion [11] XC2VP125 14800 CLB 586 256 bit Classical and Montgomery   

5   Conclusion 

In this paper a new algorithm, based on GCD algorithm for modular division over 
finite fields was proposed. This algorithm executes modular division in radix-4. It is 
two times faster than the conventional radix-2 GCD dividers. In the proposed 
algorithm the number of conditions has been reduced so it has lower implementation 
complexity. For the proposed algorithm an architecture has been suggested. The 
proposed architecture has been implemented on FPGA over GF(2163), GF(2233). The 
frequency and required resources has been reported for the implementations. It was 
shown that the time performance is improved by %50 while its occupied area 
increased just %14, compare to the former reported algorithm in radix-2. So it can be 
used to accelerate the cryptography particularly in high speed ECC crypto-processors.  
Future work can be concentrated on extending the algorithm to radix 2n and 
discussing about speed and area according to n. The other area for future study could 
be employing the proposed divider in an ECC crypto-processor and evaluating its 
performance. 
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Abstract. String matching algorithm is one of the key technologies in 
numerous network security applications and systems. Nowadays, the increasing 
network bandwidth and pattern set size both calls for high speed string 
matching algorithm for large-scale pattern set. This paper proposes a novel 
algorithm called Multi-phase Dynamic Hash (MDH), which cut down the 
memory requirement by multi-phase hash and explore valuable pattern set 
information to speed up searching procedure by dynamic-cut heuristics. The 
experimental results demonstrate that MDH can improve matching performance 
by 100% to 300% comparing with other popular algorithms, whereas the 
memory requirement stays in a comparatively low level.  

Keywords: Network Security, String Matching Algorithm, Multi-Phases Hash, 
Dynamic-Cut Heuristics. 

1   Introduction 

Along with the rapid development of modern network technology, demands for anti-
attack and security protection are now facing a drastic increase in almost all network 
applications and systems. String matching is one of the key technologies of them. For 
example, widely deployed network intrusion detection and prevention systems 
(NIDS/IPS) often use signature-based method to detect possible malicious attacks, so 
string matching algorithm is their basic operation. It has been demonstrated that string 
matching takes about 31% of the total processing time in Snort[1][5], the most 
famous open source NIDS system[8]. The other remarkable instance is content 
inspection network security systems. More and more such applications, including, but 
not limited to, anti-virus, anti-spam, instant message filtering, and information 
leakage prevention require payload inspection as a critical functionality. And, string 
matching is also the most widely used technology in payload scanning. 

However, string matching technology now encounters new challenges from two 
important facts, both of which indicate that more efficient and practical high speed 
string matching algorithms for large-scale pattern set are urgently needed. 

The first challenge is that large-scale pattern sets are becoming increasingly 
pervasive. In this paper, we define pattern set that has more than 10, 000 patterns as 
large-scale pattern set, in contrast to small or middle size pattern sets in typical 



202 Z. Zhou et al. 

network security systems. As more types of virus, worm, trojan and malware spread 
on the Internet, pattern set size in anti-virus applications keeps increasing. For 
example, the famous open source anti-virus software—Clam AntiVirus[2] now has 
more than 100,000 patterns, and daily update is still quickly enlarging it. From 
February 14th to March 18th, 2007, the pattern set size increase by about 10, 000. 
However, most existing string matching algorithms are designed and tested under 
small and moderate pattern set. They cannot be efficiently used in large-scale 
scenario.  

Secondly, network edge bandwidth is increasing from 100Mbps to 1Gbps or even 
more. Such development demands for high throughput of current inline network 
security applications. In newly emerging UTM (Unified Threat Management) 
systems, turning on real-time security functionalities like intrusion prevention, anti-
virus, and content filtering will greatly reduce the system overall throughput, because 
such functionalities all need extensive string matching operation. However, string 
matching algorithms now are still far from efficient enough to meet the needs driven 
by bandwidth upgrade.  

This paper proposes a novel high-speed string matching algorithm, Multi-Phase 
Dynamic Hash (MDH), for large-scale pattern sets. We introduce multi-phase hash to 
cut down the memory requirement and to deal with high hash collision rate under 
large-scale pattern set. And we also propose a novel idea, dynamic-cut heuristics, 
which can explore the independence and discriminability of the patterns to speed up 
the string matching procedure. Experimental results of both random pattern sets and 
some real-life pattern sets show that MDH increases the matching throughput by about 
100% to 300%, compared with some other popular string matching algorithms, 
whereas, maintain its memory requirement at a low level.  

The rest of this paper is structured as follows: Section 2 overviews pervious work 
on string matching algorithms. Section 3 describes in detail our MDH algorithm. The 
experimental results are given out in Section 4 to demonstrate high matching 
performance and low memory requirement of our algorithm. Conclusions and future 
work are in the last section. 

2   Related Work 

There are basically two categories of string matching algorithms—forward algorithm 
and backward algorithm. They both use a window in the text, which is of the same 
length as the pattern (the shortest pattern if there are multiple patterns). The window 
will slide from leftmost of the text to the rightmost. Forward algorithm examines the 
characters in the text window from left to right, while backward algorithm starts at 
the rightmost position of the window and read the characters backward.  

Among the forward algorithms, Aho-Corasick algorithm[6] is the most famous 
one. This algorithm preprocesses multiple patterns into a deterministic finite state 
automaton. AC examines the text one character at a time, so its searching time 
complexity is ( )O n  when n is the total length of the text. This means that AC 

algorithm is theoretically regardless of pattern numbers. However, in practical usage,  
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automaton size increases quickly when the pattern set size goes up, which would 
require too much memory. This limits the scalability of AC to large-scale string 
matching. 

It has been demonstrated that backward algorithm have higher average search 
speed than forward algorithm in practical usage, because it can skip unnecessary 
character comparisons in the text by certain heuristics[3]. Boyer-Moore algorithm [7] 
is the most well-known backward algorithm used in single pattern matching. There 
are two important heuristics in BM algorithm, bad character and good suffix, which is 
shown in Fig.1. BM calculates both of the shift values according to these two 
heuristics and then shifts the window according to the bigger one.  

       

Fig. 1. Bad character (left) and good suffix (right) heuristic, y denotes the text and x is the 
pattern. u is the match suffix of the text window. 

Wu-Manber algorithm[4] extended BM to concurrently search multiple strings. 
Instead of using bad character heuristic to compute the shift value, WM uses a 
character block including 2 or 3 characters. WM stores the shift values of these blocks 
in SHIFT table and builds HASH table to link the blocks and the related patterns. The 
SHIFT table and the HASH table are both hash tables which enable efficient search. 
Moreover, in order to further speed up the algorithm, WM also builds another hash 
table, the PREFIX table, with the two-byte prefixes of the patterns. This algorithm has 
excellent average time performance in practical usage. But, its performance is limited 
by minimum pattern length m since the maximum shift value in SHIFT table equals to 
m-1.  

However, when pattern set is comparatively large, the average shift value in WM 
algorithm will decrease and thus the searching performance will be compromised. B. 
Xu and J. Li proposed the Recursive Shift Indexing (RSI)[10] algorithm for this 
problem. RSI engages a heuristic with a combination of the two neighboring suffix 
character blocks in the window. It also uses bitmaps and recursive tables to enhance 
matching efficiency. These ideas are enlightening for large-scale string matching 
algorithms.  

J. Kytojoki, L. Salmela, and J. Tarhioin also presented a q-Grams based Boyer-
Moore-Horspool algorithm[11]. This algorithm cuts a pattern into several q-length 
blocks and builds q-Grams tables to calculate the shift value of the text window. This 
algorithm shows excellent performance on moderate size of pattern set. However, 
when coming into large-scale scope, it is not good enough both in searching time and 
memory requirement. 

C. Allauzen and M. Raffinot introduced Set Backward Oracle Matching Algorithm 
(SBOM)[12]. Its basic idea is to construct a more lightweight data structure called 
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factor oracle, which is built only on all reverse suffixes of minimum pattern length m 
window in every pattern. It consumes reasonable memory when pattern set is 
comparatively large. 

There are also some other popular Backward algorithms which combine the BM 
heuristic idea and AC automaton idea. C. Coit, S. Staniford, and J. McAlerney 
proposed AC_BM algorithm[8]. This algorithm constructs a prefix tree of all patterns 
in preprocessing stage, and then takes both BM bad character and good suffix 
heuristics in shift value computation. A similar algorithm called Setwise Boyer Moore 
Horspool (SBMH)[9] is proposed by M. Fisk and G. Varghese. It utilizes a trie 
structure according to suffixes of all patterns and compute shift value only using the 
bad character heuristic. However, these two algorithms are also limited by the 
memory consumption when the pattern set is large.  

3   MDH Algorithm 

We have reviewed some popular multiple string matching algorithms. They are the 
best algorithms under different circumstances. But, for large-scale pattern sets, all of 
them suffer drastic matching performance decline. Some of them, such as AC, 
AC_BM and SBMH, also face memory explosion. Moreover, as we have considered, 
there are few algorithms now solve the large-scale pattern set problem well. In this 
context, MDH is designed to both improve the matching performance and maintain 
moderate memory consumption. Based on WM algorithm, our new algorithm has two 
main improvements:  

First, when pattern sets become larger, WM algorithm has to increase the size of 
the SHIFT table and the HASH table to improve matching performance. This would 
consume lots of memory. MDH introduces multi-phase hash to cut down the high 
memory requirement.  

Second, WM algorithm considers only the first m characters of the patterns. It is 
simple and efficient, but overlooks helpful information in other characters. Therefore, 
MDH introduces dynamic-cut heuristics to select the optimum m consecutive 
characters for preprocessing. This mechanism will bring in higher matching 
performance. 

3.1   Key Ideas of MDH  

In the following description, we let B to be the block size used in WM and MDH, m 
to minimum pattern length, ∑  to be the alphebet set of both pattern and text, ∑  to 

be the alphebet set size, k to be the total pattern number, l to be the average length of 
all the patterns. 

3.1.1   Multi-phase Hash 
In WM algorithm, a certain SHIFT table entry stores the minimum shift value of all 
the character blocks hashed to it. As the pattern number increases, high hash collision 
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will reduce the average shift value ( )E shift  in SHIFT table and thus compromise the 

matching performance. 
Therefore, a better algorithm for large-scale pattern set always increases character 

block size B to deal with the high hash collision rate. But larger B will result in bigger 
SHIFT and HASH table, and thereby greatly increases the memory requirement. 
Considering the limited cache in modern computers, high memory consumption will 
decline the cache targeting rate and increase average memory access time. It will in 
turn decrease the matching performance. On the other hand, it is also difficult to load 
such large data structures into SRAM when the algorithm is implemented on current 
high speed appliance such as network processor, multi-thread processing chips and 
FPGA. This will limit its scalability to hardware implementations. 

Under such observations, we propose a novel technique called multi-phase hash. In 
WM algorithm, general hash function is used to build SHIFT table and HASH table, 
the character blocks and the hash table entries are one-to-one correspondent. But in 
MDH, we use two compressed hash table, the SHIFT table and the PMT table, to 
replace them. They are of the similar functionality, but consume less memory. MDH 

first choose a compressed hash function 1h , to reduce SHIFT table from 
B∑  entries 

to 
/ 8a∑  ( 8a B< ), which means that 1h  only uses a bits of the B-length character 

block. However, compressing the SHIFT table entries together will also reduce the 
average shift value, similar with increasing pattern set size. Some entries with non-
zero shift value would be hashed into zero shift value entry. This will bring in more 
character comparison time in matching procedure. So we then introduce another 
compressed hash table, PMT table, to separate the non-zero shift value entries away 
from zero shift value entry. When a certain character block with non-zero shift value 
is hashed into a zero shift value entry, MDH uses another hash function 2h  to rehash it 

and store their shift value as skip value in the PMT table. PMT table is of the size 
/ 8b∑  ( 8b a B< < ). Moreover, PMT table also linked by some possible matching 

patterns, similar with HASH table in WM. The number of these pattern linked to a 
certain PMT table entry is recorded as its num value.  

3.1.2   Dynamic-Cut Heuristics 
Following the common practice of some previous work[3], the average character 
comparison times ( )E comparison  is important for the matching performance of  WM 

algorithm. Large-scale pattern set can increase ( )E comparison  and compromise the 

matching performance. We handle it by introduce dynamic-cut heuristics. 
Mathematical analysis of ( )E comparison  decides the detail mechanisms used in 

dynamic-cut heuristics.  
Let ZR to be the ratio of the number of zero entries (entries with zero shift value) 

SHIFT entry to the total number of SHIFT table entries. Let 0T  to be the number of 

non-zero entries (entries linked with possible matching patterns) in PMT table, 
therefore 0/k T  is the average number of possible matching patterns (APM) in PMT 

table.  
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In the searching stage, MDH first checks the shift value in SHIFT table. If it is 
zero, the algorithm then checks the skip value in PMT table. Only if the skip value is 
also zero should the algorithm verify the possible matching patterns. So the 
probability of comparison times equals to x ( Pr( )comparison x= ) is calculated as 

follows: 

/ 8

0

/ 8

0

Pr( 1) 1

Pr( 2) *(1 / )

Pr( 2) * /

b

b

comparison ZR

comparison ZR T

comparison ZR T
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Thus, under average condition, ( )E comparison could be estimated as follows: 

( ) 1* Pr( 1) 2* Pr( 2)

                          (2 * ) * Pr( 2)

E comparison comparison comparison

l APM comparison

= = + =
+ + >

 (2) 

From (1) and (2), we get: 
/ 8

( ) 1 * * /
b

E comparison ZR l k ZR= + + ∑  (3) 

Moreover, the above analysis is only under the normal condition of network 
security application, when the pattern matches in the text are comparatively sparse. 
However, new denial-of-service attacks, such as sending text of extremely high 
matches and jamming the pattern matching modules, have emerge to compromise the 
network security application with BM-family string matching algorithms. Thus it is 
very necessary to consider the condition of heavy-load case or even worst-case, when 
there are lots of matches in the text. Under such circumstance, ( )E comparison  will 

be calculated as follows: 

( ) 2 *wE comparison l APM≈ +  (4) 

Therefore, after setting the SHIFT table size and PMT table size in multi-phase 
hash, there still remains two probabilities for improving the searching performance. 
First, from equation (3), smaller ZR results in smaller ( )E comparison  under normal 

condition and thereby brings in higher average searching performance. Secondly, as 
in equation (4), smaller APM results in smaller ( )wE comparison  and thus ensures 

high searching performance for worse-case condition. 
According to the above analysis, MDH uses dynamic-cut heuristics to cut every 

pattern into the optimum consecutive m characters and to reduce the ZR and APM in 
SHIFT table and PMT table. Theoretically, MDH could compute all the ZR and APM 
values under all the cutting conditions and then choose the optimum one. Apparently, 
such heuristic mechanism demands for high time and memory consumption in 
preprocessing when the pattern number k and average pattern length l are large. Note 
that in most network security application and systems with large-scale string 
matching, such as anti-virus and content inspection, pattern sets are changing very 
fast. It is improper to choose such complex preprocessing mechanism.  

Thus we implement the heuristics in a comparatively simple way, which is 
described detail in the following section.  
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3.2   Algorithmic Details of MDH 

3.2.1   Preprocessing Stage 
In the following description, we let the block length B=4, SHIFT table size a=20, 
PMT table size b=17. The pattern set is {opionrate, torrential, extension, 
cooperation}. So the minimum pattern length m=9. << denotes for the bit operator of 
left shift. Hash function 1h and 2h  are as follows: 

1h (block)=(*(block))&0x000FFFFF  (5) 

2h (block)=((*(block)<<12)+(*(block+1)<<8)

                +(*(block+2)<<4)+*(block+3))&0x0001FFFF
 (6) 

There are three steps in preprocessing stage: 

Step1: Initialize SHIFT table and PMT table, set all shift value and skip value to be 
m-B+1, all num value to be zero. Each pattern has its offset value, that is, the offset of 
optimum m window in the pattern. All offset value is initiated to zero. 
Step2: Process the patterns one by one, set their optimum m window position 
according to the dynamic-cut heuristics and note down the offset value. Meantime, all 
the suffix character blocks of these windows are added into the SHIFT table and the 
PMT table. Related shift value and num value are set. 
Step3: Process the patterns one by one again, add the other blocks (except the suffix 
block) in all the optimum m windows into the SHIFT table and the PMT table. 
Related shift value and skip value are set. 

3.2.1.1   Step2—Optimum m Window Position Setting. In this step, the algorithm 
processes the patterns one pattern by another and calculates their optimum m window 
position.  

“opionrate” is the one of the shortest patterns in the pattern set. So its optimum m 
window is “opionrate” itself. Its suffix block “rate” is added into SHIFT table and 
PMT table. The algorithm sets Shift value in the 1h (rate) SHIFT entry to 0, set num 

value in the 2h (rate)  PMT entry to 1, and link the pattern after 2h (rate)  PMT entry.  

For pattern “torrential”, it has two possible m window positions—“torrentia” and 
“orrential”. The algorithm check the 1h (ntia) SHIFT entry, the shift value is 4. Then 

we check the 1h (tial)  SHIFT entry, this shift value is still 4. So optimum m window is 

not found, the algorithm will manually set “torrentia” as the optimum m window and 
set related shift and num value. The procedure of adding the pattern “extension” is 
similar with that of adding “opionrate” because they are both the shortest patterns. 
Then here comes the last pattern “cooperation”. The procedure of adding this pattern 
reveals the effect of dynamic-cut heuristics. There are three possible m window 
positions—“cooperati”, “ooperatio” and “operation”. The algorithm first checks the 

1h (rati)  SHIFT entry and found its shift value is 4, then checks the 1h (atio)  SHIFT 

entry and gets the same result. So, the algorithm moves the window again and checks 
the 1h (tion)  SHIFT entry. Since 1 1h (tion)=h (sion) , its shift value will be zero. Note  
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Fig. 2. SHIFT table and PMT table before and after setting optimum minimum m window 
position for pattern set {opionrate, torrential, extension, cooperation} 

that the 2h (tion)  PMT entry has a zero num value. According to our heuristics, 

“operation” will be the optimum m window of pattern “cooperation” and the related 
offset value is 2. 

Figure 2 illustrates that, without dynamic-cut heuristics, the shift value of 1h (rati)  

SHIFT entry will be zero, there would be four SHIFT entries with zero shift value and 
therefore the ZR becomes bigger. And also “cooperation” and “opionrate” will both 
be linked to 2h (rate)  PMT entry and APM becomes larger, since 2 2h (rate)=h (rati) . 

Thus, it is demonstrated that Dynamic-cut heuristics helps to make both ZR and 
APM smaller, which will contribute to bring in higher searching performance. 
Comparison experiments between MDH without dynamic-cut heuristics and MDH 
full implementation will appear in Section 4 to further prove its effect. 

3.2.1.2   Step3—Adding Characters Blocks in the optimum m windows. In this step, 
we take processing pattern “opionrate” for example. The algorithm put a B-length 
block window (B window) at the leftmost position of the pattern and slide. Let j to be 
the offset of B window, the shift value of the character block in B window can be 
calculated by m-B-j. First compute the hash value of “opio” by hash function 
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Fig. 3. SHIFT table and PMT table before and after filling shift value and skip value of all B-
length character blocks in pattern “opionrate” 
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1h . The shift value in 1h (opio) SHIFT entry is 6, and the shift value of “opio” is 5. So 

the algorithm will note down the smaller value 5 as the new shift value of this entry. 
Then we will compute the hash value of “pion”, which is the same as 1h (tion/sion) . 

The shift value of 1h (tion/sion) entry is zero. Under this condition, the algorithm will 

compute 2h (pion)  and index to the related PMT entry. The skip value of 2h (pion)  

PMT entry is 6 and the shift value of “pion” is 4. So the algorithm will note down the 
smaller value 4 as the new skip value of this entry. Following this way, the algorithm 
then processes character block “ionr”, “onra”, “nrat”. 

Figure 3 shows the SHIFT table and the PMT table before and after the whole 
procedure above. Apparently, without multi-phase hash idea, character block “pion” 
will be hashed into 1h (tion/sion)  SHIFT entry with zero shift value. It will cause 

unnecessary pattern verification of “cooperation” with a suffix block “tion”. 
However, the algorithm will get its real shift value by checking the skip value of 

2h (pion)  PMT entry and unnecessary character comparison can be avoided. 

3.2.2   Scanning Stage 
The scanning procedure is comparatively simple and explicit. B-length text window 
slides from leftmost position of the text to right. Each time we examine B characters 
in the text window, calculates its hash value according to hash function 1h , check the 

relevant SHIFT table entry. If the shift value in this entry is not zero, move the text 
rightwards by the shift value and restart this procedure. Otherwise, hash this text 
block again using hash function 2h , use the new hash value to index to the 

corresponding PMT table entry.  Verify every possible matching pattern linked in this 
entry using naïve comparison method. After that, move the text rightwards by the skip 
value of this entry and restart the whole procedure. 

4   Experimental Results 

This section gives out a serial of experiments to demonstrate the performance of 
MDH algorithm. The test platform is a personal computer with one dual-core Intel 
Centrino Duo™ 1.83GHz processor and 1.5GB DDR2 667MHz memory. The CPU 
has 32KB L1 instruction cache and 32KB L1 data cache. The shared L2 cache is 
2048KB. 

The text and patterns are both randomly generated on alphabet set 256∑ = . And 

we then insert all the patterns into random position of the text for three times to 
guarantee a number of matches between random text and patterns. In the first 
experiment of searching time comparison, we also use a recent antivirus pattern set 
from Clam AntiVirus to demonstrate the practical performance of MDH algorithm. 
The text size in the following tests is 32MB. The pattern length of our large-scale 
pattern sets extends from 4 to 100 and 80% of patterns are of the length between 8 
and 16, which is comparatively close to content inspection based network security 
application such as instant message filtering and content inspection, recommend by 
CNCERT/CC [13]. 
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4.1   Searching Time and Memory Requirement Comparison  

To better evaluate the performance of MDH, we choose five typical multiple string 
matching algorithms which are widely deployed in recent practical applications. The 
source codes of AC, AC_BM, WM algorithms are adopted from Snort. Unnecessary 
codes about case sensitive related operations are eliminated to take off extra time and 
memory consuming. In WM algorithm, we set the block length B=2. The source 
codes of SBMH and SBOM are from [14].  

 

 

Fig. 4. The upper graph is the searching time comparison between MDH and some typical 
algorithms. Under the pattern sets larger than 30k, MDH is much better than any other 
algorithms in this experiment. And the scalability of MDH to even larger patter sets more than 
100k is promising since its performance decline is not so rapid as other algorithms when pattern 
set size increases from 10k to 100k. The lower graph is the memory comparison. Table-based 
algorithm like MDH and WM algorithm consume much less memory than other algorithms in 
the experiment. 

Figure 4 illustrates that the performance of all the five typical algorithms suffer 
drastic declines when pattern set size exceeds 30k. Their matching throughput is 
fewer than 96Mbps with 50k patterns. Algorithms like AC, AC_BM and SBMH can 
not support pattern sets larger than 60k under our test condition because of their high 
memory consumption. When there are 100k patterns, the matching throughput of 
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MDH algorithm is still more than 100Mbps. It exceeds SBOM by 169% and WM by 
231%. In addition, MDH algorithm possesses high stability as pattern set size 
increases and also excellent scalability to small and moderate pattern set size. The 
stable performance also indicates that it has better scalability to supper-large-scale 
pattern sets. In our further test, the matching throughput of MDH is abut 48.8 Mbps 
when pattern set size is 200k, still better than that of WM and SBOM under 100k 
pattern set. 

MDH algorithm is also superior in memory requirement. When pattern set size 
increases up to 50k, memory requirement of all algorithms except WM and MDH are 
more than 200MB. Table-based algorithms like WM and our solution only consume 
less than 20 MB memory even in 100k pattern sets. 

4.2   Experiments on Real-Life Pattern Set 

To demonstrate the practical performance of MDH algorithm, we choose the real-life 
pattern set used in Clam AntiVirus in this experiment. The total number of the current 
virus data base has 102, 540 patterns. We removed all the patterns that is either 
represented by regular expressions or of the length shorter than 4. After that, the 
pattern set size is 77, 607. We also form three different subset of the size 20k, 40k and 
60k. The minimum pattern length of all these four pattern sets is 4. SBOM and WM 
are chosen to be compared with MDH, because these two algorithms also have 
reasonable searching time performance and memory consumption in Section 4.1.  

Table 1. In this table, Mem represents the total memory consumption and Thr denotes the 
matching throughput, that is, size of the text that have been processed in a second  Under large-
scale pattern sets. Under Clam AntiVirus pattern set, MDH possesses both higher searching 
performance and lower memory consumption when comparing with WM and SBOM 
algorithm. 

20k 40k 60k 77k 
Algorithm Thr 

(Mbps) 
Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

MDH 250.56 3.82 203.28 5.2 174.24 8.08 150.16 10.41 
WM 329.52 3.33 126 5.2 66.88 8.53 43.36 11.27 

SBOM 69.68 81.87 56.16 162.5 43.76 244.7 36.48 316.84 

 
From Table 1, we can see, from 20k to 77k patterns, the searching throughput of 

MDH algorithm does not suffer drastic decline as WM and SBOM algorithm. This 
stable performance indicates that MDH has better scalability to even supper-large-
scale pattern sets in real-life applications. When there are 77k patterns, the matching 
throughput of MDH algorithm is more than 150Mbps, which exceeds SBOM by 
311% and WM by 246%. Meanwhile, MDH only consumes about 3 to 11 MB 
memory to process these pattern sets, no more than WM algorithm and much fewer 
than SBOM algorithm. It is fair to assert that MDH algorithm possesses excellent 
time and space performance under the large-scale pattern sets from real-life security 
applications. 
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4.3   Experiments on Multi-phase Hash 

Table 2 is the result of comparison test between WM algorithm (B=2), WM algorithm 
(B=3) and MDH with multi-phase hash. In this table, MEM stands for the total 
memory used in WM or MDH algorithm. When pattern number is more than 10k, ZR 
becomes very high in WM algorithm (B=2). According to equation (3) in Section 
3.1.2, higher ZR would bring in bigger ( )E comparison and greatly compromise the 

searching performance. If B=3, ZR becomes comparatively low to ensure good 
searching performance. However, under this condition, SHIFT table and HASH table 

will become bigger since these tables are both of the size
B∑ . So MEM in WM 

(B=3) increase to more than 80MB. With multi-phase hash, MDH is able to maintain 
moderate ZR. Its MEM is nearly in the same level with WM (B=2) and only about 
2%~7% of WM (B=3). 

Table 2. This table is a comparison of ZR and MEM between WM algorithm (B=2), WM 
algorithm (B=3) and MDH algorithm with multi-phase hash. ZR is high in WM algorithm 
(B=2) under large-scale pattern set. If B=3, WM algorithm possesses low ZR, but another 
problem is that it consumes too much MEM. MDH is both good in maintaining low ZR and 
resonable MEM. 

WM(B=2) WM(B=3) MDH 
Pattern 
number ZR 

(%) 
MEM 
(MB) 

ZR 
(%) 

MEM 
(MB) 

ZR 
(%) 

MEM 
(MB) 

10k 14.2 0.95 0.059 80.64 0.85 2.42 
25k 31.7 1.91 0.149 81.59 1.91 2.98 
50k 53.3 3.5 0.297 83.19 3.46 3.93 
75k 68.0 5.09 0.446 84.78 4.32 4.87 

100k 78.3 6.69 0.594 86.38 6.25 5.81 

4.4   Experiments on Dynamic-Cut Heuristics 

From Table 3, we can see that ZR has a drastic decline when dynamic-cut heuristics 
are applied. In 10k pattern set, dynamic-cut heuristics reduce the zero entry number 
by about 10%, and in 100k patter set, this number increases up to nearly 30%. The 
heuristics’ influence on ZR becomes more significant when pattern set size is larger. 
It also has been demonstrated that APM value becomes comparatively smaller owing 
to dynamic-cut heuristics. 

As for time performance, dynamic-cut heuristics save about 7.6% to 14% 
searching time when pattern number ranges from 10k to 100k. Noticeably, the bigger 
the pattern set is, the more significant the time-saving effect will be. It strongly 
testifies the excellent scalability of the dynamic-cut heuristics to even larger pattern 
set. However, the overhead in processing time is still reasonable since most of the 
network security applications do not have high frequency of pattern set changing and 
more attentions are focused on improving the searching time. 



 MDH: A High Speed Multi-phase Dynamic Hash String Matching Algorithm 213 

Table 3. ZR is the zero SHIFT entry radio, the same as in Table 2. APM indicates the average 
number of possible matching patterns in PMT table. MP denotes of the MDH implementation 
without dynamic-cut heuristics. We can see that dynamic-cut herurisitcs have greatly reduce the 
Znum and AN in PMT, which contributes to the searching time decrease. 

ZR APM Preprocessing 
Time(ms) 

Searching 
Time (ms) Pattern 

Number 
MP MDH MP MDH MP MDH MP MDH 

10k 9940 8878 1.04 1.03 18.8 20.1 1112 1028 
30k 29458 23391 1.12 1.08 26.4 37.4 1459 1312 
50k 48461 36262 1.2 1.12 36 62.8 1668 1512 
70k 67005 48198 1.29 1.16 49.9 84.4 2118 1877 

100k 93842 65494 1.43 1.22 68.3 105.9 3117 2680 
 

 

Fig. 5. In the upper graph, SHIFT table size is set to  202  (a=20) and the PMT table size is 

ranging from 152  (b=15) to 192  (b=19). MDH has less run time (or better performance) when 
using larger PMT table size. The experiment related with the lower graph is done under same 

PMT table size as 172  (b=17). SHIFT table size is ranging from 182  (a=18) to 222 (a=22). The 
optimum SHIFT table size is different under different pattern sets. 
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4.5   SHIFT and PMT Table Size Selection 

The selection of SHIFT and PMT table size is the critical part of MDH 
implementation. In the upper graph of Fig 5, we can conclude that bigger PMT table 
is more helpful in improving searching performance. It matches our previous analysis. 
When PMT table is larger, we are able to partition all character blocks with zero 
SHIFT value into more entries. So APM value could be smaller. This would highly 
reduce unnecessary verification time and benefit for final performance. Thus, within 
the memory limitation, it is better to choose as larger PMT table as possible. In MDH 

algorithm, we choose a moderate and acceptable PMT table size as 
172 (b=17). 

In the lower graph of Fig 5, we test the selection of SHIFT table size under the 

same PMT table size of 
172 (b=17). The optimum SHIFT table size is related to the 

pattern set size. From 10k to about 110k patters, MDH with SHIFT table size of 
192 and

202  are of higher searching speed than other ones. And for pattern set between 
110k and 190k, a=21 becomes the best choice. When pattern number increases to 
200k or even more, a=22 will perform better than others. Moreover, we can also 
conclude that the run times curve of larger SHIFT table size always possess smaller 
average slope. The reason is that in large SHIFT table, ZR is comparatively small. 
The pattern set increment can not significantly raise this ratio and compromise the 
matching performance. 

Thus, we may conclude that the selection of SHIFT table size depends on the 
pattern set size. The algorithm should choose larger SHIFT table size to meet the 
needs of larger patter set. In this paper, we focus on pattern sets ranging from 10k to 

100k and thus set the SHIFT table size to be
202  (a=20). 

5   Conclusion and Future Works 

This paper proposes a novel string matching algorithm named Multi-Phases Dynamic 
Hash algorithm (MDH) for large-scale pattern set. Owing to multi-phase hash and 
Dynamic-cut heuristics, MDH can improve matching performance under large-scale 
pattern set by about 100% to 300% compared with other typical algorithms, whereas 
the memory requirement remains at a comparatively low level. Low memory 
requirement will help to raise the cache targeting rate in practical usage and thereby 
improve the matching performance. It would also contribute to support accelerating 
hardware architectures based on MDH, like FPGA and new multi-core chips.  

However, several works will be considered in the future. We are in the progress of 
finding the relationships between character block B, SHIFT table size a, PMT table 
size b and pattern sets size k through more experimental and mathematic analysis. We 
can also study more complex and efficient alternatives for dynamic-cut heuristics. In 
addition, architecture design of network content filtering systems based on MDH and 
multi-thread models will also be within our scope. 
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Abstract. Composite field arithmetic is known as an alternative method
for lookup tables in implementation of S-box block of AES algorithm. The
idea is to breakdown the computations to lower order fields and compute
the inverse there. Recently this idea have been used both for reducing the
area in implementation of S-boxes and masking implementations of AES
algorithm. The most compact design using this technique is presented by
Canright using only 92 gates for an S-box block. In another approach,
IAIK laboratory has presented a masked implementation of AES algo-
rithm with higher security comparing common masking methods using
Composite field arithmetic. Our work in this paper is to use basic ideas
of the two approaches above to get a compact masked S-box. We shall use
the idea of masking inversion of IAIK’s masked S-box but we will rewrite
the equations using normal basis. We arrange the terms in these equations
in a way that the optimized functions in Canright’s compact S-box can be
used for our design. An implementation of IAIK’s masked S-box is also
presented using Canright’s polynomial functions to have a fair compari-
son between our design and IAIK’s design. Moreover, we show that this
design which uses two special normal basis for GF (16) and GF (4) is the
smallest. We shall also prove the security of this design using some lemmas.

Keywords: Composite field arithmetic, AES, Masking, Side-Channel
Attack.

1 Introduction

Although some of encryption algorithms are proven to be computationally se-
cure, but implementation of these algorithms may cause some deficiencies. In-
formation leakage which exists in various forms (power leakage, electro-magnetic
leakage, etc.) opens the way to access the secret values of the algorithm. Among
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them, power-analysis attacks are of great interest since they are proven to be
able to break any implementation [5]. Different approaches are made to solve
the vulnerability problem. Noise addition and toggle generators are examples of
such efforts but they are area consuming and not secure [16].

Masking is another approach in which the input data and all other compu-
tations are to be masked with a random number. The masking should be in a
way that the output data can be recovered easily and mask can be removed.
Different ways of masking are proposed until now. For example of previously
masked S-box designs see [1]. Multiplicative and additive masks are two main
techniques of masking. Though multiplicative masks are easier for computations
but they are vulnerable to attacks called zero-value attacks [3]. On the other
hand additive masks are harder to implement mostly because of the inversion
block of the S-box algorithm. In [11] a new way of implementation is presented
base on some previous approaches. Composite field arithmetic is the main idea
of this design, namely IAIK’s design, in which computation of inverse is bro-
ken into computation of inverse in lower order fields. All computations are done
securely so that no where in the design an unmasked data is generated.

Another parallel work is to minimize the implementation of the AES [10]
algorithm. [9] is an example of such efforts. In [2] Canright has presented a very
compact S-box using composite field arithmetic. The author there, has shown
that the design is the most compact one using field arithmetic. One might think
of mixing these two ideas to get the most compact masked S-box.

Our work in this paper is to use basic ideas of [2,11] to get the smallest
masked S-box. We shall use the idea of masking inversion of IAIK’s masked S-
box but we will rewrite the equations using normal basis. We arrange the terms
in these equations in a way that the optimized functions in Canright’s compact
S-box can be used for our design. An implementation of IAIK’s masked S-box is
also presented using Canright’s polynomial functions to have a fair comparison
between these two designs and we show that our design is better. Moreover, we
show that this design which uses two special normal basis for GF (16) and GF (4)
is the smallest using composite field arithmetic. We shall also prove the security
of this design using lemmas presented in [11].

The rest of the paper is as follows: in Section 2 the Canright’s design will
be described in detail. The mathematical background needed for the rest of
the paper will be presented in this section too. Section 3 illustrates the IAIK’s
design. In Section 4, our design is presented in detail. We prove that this design
is the smallest. The security is also discussed in this part and the synthesis
result is presented in the end comparing with the IAIK’s design. Section 5 is the
conclusions and future work discussion.

2 Compact S-Box Implementation Using Composite
Field Arithmetic

In [2] Canright has presented a compact S-box implementation using composite
field arithmetic. This is done using different strategies and tricks which will be
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discussed later in this section, but first we will have an overview of the steps
made for computing S-box using composite fields. The author has completely
described the mathematical background needed for understanding the paper.
It is best for reader to refer to that paper whenever needed. But due to new
approaches made in this paper, some new mathematical topics are introduced
and some topics which were discussed earlier in Canright’s paper are discussed
from another point of view.

2.1 Mapping from GF (28) to GF (22) × GF (22) × GF (22) × GF (22)

For mapping an element a from GF (28) to a pair of GF (24) elements such
as (a1, a2) there are different solutions. But the mapping should satisfy some
characteristics. For better description and understand of these characteristics
we first take a look to some field theory basics [4]. Some parts may seems hard
to understand or irrelevant to the reader but the authors thought they would be
necessary for a better underhand of the concept specially for those who want to
continue this work.

Any finite field GF (pn) has some subfields of the form GF (pm) for any m < n.
we say of the form, because the subfield does not exactly has the same elements
with same labels (the element {10101011} may represent an element of the sub-
field of GF (28) of the form GF (24) which can not be considered directly as an
element of GF (24)). Thus, one has to find a way to show the equivalency of two
fields. In Algebra this is done by a function called isomorphism. Isomorphism,
regardless of the structure it is defined for, is a one to one and onto mapping
from one structure to another which keeps the characteristics of the operators;
most of the time this means that the mapping is a liner mapping but some-
times more conditions are applied. The conditions for a field isomorphism are as
follows:

ϕ(x + y) = ϕ(x) + ϕ(y) (1) ϕ(x.y) = ϕ(x).ϕ(y) (2) ϕ(1) = 1 (3)

On the other hand, it is proven in finite field theory that the multiplicative
group of the GF (pn) is a cyclic one, which means that it is generated by a single
element. Such an element, namely g, is of order of m = pn − 1 (The order of
an element g in a finite field is an integer m for which gm = 1). We also know
that the order of an element x = gk is equal to m/(m, k) in which (m, k) is the
greatest common divisor of k and m. Thus we can easily find some elements
which are generators of such subfields. Any element of the order pk − 1 is a
generator for a subfield of order pk. For example, if we find g as an element in
GF (28) which is a generator of its cyclic group, then g17 and all other powers
of g have 17 as their gcd (great common devisor) with 255 can be assumed as
generators of subfields of the form GF (24).

The next step would be easy then; we find an element in GF (28) which is a
generator of its multiplicative group; we use its 17th power as a new generator
and we write down all elements generated by this new element; we add 0 to them
and the new set is a field of the form GF (24) with multiplication and addition
defined for GF (28) (the elements of subfield are also elements of the main field).
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This subfield is a starting point for us to define the mapping between elements
of GF (28) and pairs of elements of GF (24). Finding the element g can be done
by try and error but it is needed to be found once.

We call this subfield S and we use F for GF (28) for simplicity; also GF (24)
is denoted by F ′. We indicate the elements of F (and obviously S) by lower case
bold fonts and the elements of F ′ by lower case normal fonts. Up to now we have
S as a subfield of F which we know that S is isomorphic to F ′. The next step
is defining addition and multiplication on F ′× F ′. Since any element in F ′× F ′

is defined by a (a1, a2) then addition is defined in the natural way; any element
of the pair is added to the same in the other pair. Defining multiplication is
somehow different though and this is where S comes to use. Although F and S
are fields over GF (2) themselves, but F can be assumed as a vector space on
S and thus any element of F can be written in the form of xa + yb where x
and y are various elements of S and a and b are two fixed elements of F which
are called a basis for F . Obviously not every two elements can be used as basis
(for example a and b can not be elements of S itself, otherwise the generated
elements are all in S and do not cover the whole F ). Having this basis means
any element of F can be written in the form of xa + yb and knowing that a and
b are fixed elements gives the (x,y) representation of all elements of F . From
vector space mathematics we also know that this representation is unique. Now,
having any element of F in the form (x,y), multiplication is defined very easily.

(ax1 + by1)(ax2 + by2) = a2x1x2 + b2y1y2 + ab(x2y1 + x1y2) (4)

It is easy now to show that all the conditions for an isomorphism between F
and S × S hold. We omit these further computations for not loosing the main
concept.

Next, if there exists a polynomial in the form of x2 + x + ν for which a and
b are roots of the polynomial, then we have ab = ν and a + b = 1 which means
a2 + b2 = 1 then this multiplication can be written again of the form x′a + y′b.
Note that the assumption of the coefficient of x to be 1 does not have any effect
on the choices we have for the roots. In fact if the coefficient is not equal to
1 the mapping can be changed in a way that a different polynomial with the
coefficient 1 has the same roots. The reason we insist on a + b = 1 is that it
helps so much in the next computations.

It can be shown that the multiplication defined above is “good” enough as a
field multiplication; which means it satisfies the characteristics needed for field
multiplication. More, It can be shown that polynomial x2 + x + ν which is irre-
ducible in S (and thus its roots are in F ) can be used for making a new basis. The
new basis is then can be defined in different ways. Three choices are available;
(a,1), (b,1) and (a,b) can all be considered as bases. The first two are named
polynomial basis for the fact that computations can be done in this case easily
considering any element of F in the form s1x + s2 and s1x2 + s2, and computing
addition and multiplication by polynomial addition and multiplication modula
the irreducible polynomial defined above. The last one is called normal basis for
the summation of the basis is equal to one.
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As for now, the following steps are made:

1. Find the generator element of the multiplicative group of F
2. Consider some special powers of that element and generate S
3. Find some irreducible polynomial of the form x2 + x + ν with ν in S and

find its roots a and b.
4. Choose either of the bases possible and write down all elements with the new

basis, all xa + yb for x and y elements of S for normal basis as an example,
and get the mapping of F to pairs of S elements.

What is remained is the mapping of the elements of S to the elements of
GF (24) for getting rid of the elements of the form of GF (28). After that we
have any element of F represented in the form of (a,b) and the computations
can be done choosing either basis type.

The element chosen as the generator of subfield and the irreducible polyno-
mial are the degrees of freedom for finding the mapping. One may think of the
mapping of S and GF (24) as another option, but normally this does not affect
the whole result and changing this gives one of the other existing mappings using
another S.

The same process can be done for GF (24) and GF (22). Altogether these
mappings can be considered as an 8∗8 matrix applied to any 8 bit element which
gives another 8 bit, which in fact in four 2-bit numbers. After computations done
in lower fields the inverse mapping should be applied to get back to GF (28). This
inverse mapping matrix can be mixed with the S-box affine transform matrix
for optimization. There exist 432 cases considering all possible cases for the
generator, polynomial and basis chosen and the one which gives the smallest
matrix is selected between them as the explained in [2].

2.2 Inverse Computation Using Composite Fields

For any element of the form (x, y) with x and y in GF (24) the inverse can be
computed using some computations in GF (24). What will be seen next shows
that the computation of such an element leads to a computation of inverse of
a GF (24) element and some additions and multiplications in GF (24) and this
is the idea of using composite fields for computation of the inverse. In [2] the
author has discussed this in detail. The general concept of such computations is
given below.

For normal basis we have:

(a1, a0)−1 = (d−1a0, d
−1a1) (5)

in which
d = (a2

1 + a2
0)ν + a1a0 (6)

And for polynomial basis:

(a1, a0)−1 = (d−1a1, d
−1(a1 + a0)) (7)
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in which
d = a2

1ν + a1a0 + a2
0 (8)

The author then has broken the computations in different parts and has used
some alternative computations for some blocks. The gates needed for each case
considering the basis and field (GF (24) or GF (22)) is discussed and some further
optimizations are applied at last. What is finally concluded is that, using normal
basis gives a better result. It is worth to mention that the final design is presented
using only 2 or 3 input AND, OR, XOR and XNOR gates.

3 Masked Inversion Using Composite Field Arithmetic

Masking methods are of great interest of cryptologists who work on Power Analy-
sis attacks. The idea of masking is combining the input A with a random number
M and do all the followed computations in a way that no part of unmasked data
is available anywhere in the process. The result should be the S-box of A mixed
with a function of M such that A can be obtained easily and the mask can be
removed.

Although S-box computation of a multiplicative masked data (AM) is easy
(the inverse which is the most difficult part of S-box to implement is easy to
compute for a multiplication) but these masks are vulnerable to attacks which
is so called zero-value attacks [3] as described before. The most natural way of
defining the mask is addition masks which are somehow difficult to compute.
The A + M input is given to the inverse and the A−1 + F (A, M) should be the
result. In [11] a new way for doing this using composite field arithmetic have
been presented. We now take a short look at what they have done.

First it is assumed that the mapping from GF (28) to GF (24) is done and the
input 8-bit value am = a + m is mapped to some ahmx + alm and the mask m
is mapped to mhx + ml. We are to find the a−1

h and a−1
l (the inverses of ah and

al having only ahm, alm, mh and ml). the computations comes as follows:

a−1
h = d−1ah = d−1(ahm + mh) (9)

dmh = d + mh = a2
hv + ahal + a2

l

= (ahm + mh)2v + (ahm + mh)(alm + ml) + (alm + ml)2

= a2
hmv + m2

hv + ahmalm + ahmml + almmh + mhml + a2
lm + m2

l

(10)

dmh = d + mh can be given to the next part and d−1 + mh is obtained using
GF (22) arithmetic. having d−1 + mh we have:

a−1
h + mh = d−1(ahm + mh) + mh

= (d−1 + mh)(ahm + mh) + mh + mhahm + m2
h

(11)

Some points are noticeable in these computations. First, as an optimization
point, some computations can be done more easily. For example there is no need
to compute a2

hm first and then scaling it by ν. Next point is security of these
computations. Authors of the paper have presented some lemmas which show
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Fig. 1. IAIK’s design for masked AES S-box block diagram [12] (i16 is corrected com-
paring to the original figure)

that each term computed above is secure. The problem shows where summation
of some terms leads to omission of the additive mask. For example almmh +
ahmml = almh +mlmh + ahml +mhml. If this term is added by the mhml then
what is remained has no additive mask and the terms remained are vulnerable to
zero-value attack. One may think of adding two other terms but this happens in
at least two additions regardless of the way terms are added. Thus authors have
suggested the addition of a 4 bit fresh mask which to be applied at the beginning
of these computations and to be removed before going to the next step. The block
diagram of their design is shown in Figure 1. In [12] an implementation of their
design added together with some other designs are presented. The comparison of
the results show that this design is the smallest secure design among the others.

4 Compact Masked S-Box

4.1 Design Idea

We first take a look to the weaknesses of the design presented in [11]. First
of all it uses polynomial basis which probably is not the best case for small
area designs. Although area usage is almost the same for most of the blocks
in a GF (28) inverter including multiplication and GF (24) inversion due to [2],
but there are some differences when different basis are used. In a simple design
without any masking as Canright has established in [2] the total amount of
gate used without mappings and inverse mappings is nearly the same for normal
basis and polynomial basis. But this is not necessarily true for our design because
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different equations are used and number of scalings and square-scalings are dif-
ferent comparing with Canright’s design. Next the mapping used in [11] is not
the most efficient mapping which probably would be. Considering the facts that
area usage varies a lot when mappings and inverse mappings are changed, and
the mappings presented in [2] are well optimized, this can play a great role in
the area usage reduction. As a next point to notice, the affine matrix is not
mixed with the inverse mapping matrix in the design of [11]. These two sepa-
rate matrixes surely waste area while in Canright’s design the two matrixes are
mixed and optimized. As another important point to mention, the mappings in
[11] is done in two steps: one from GF (28) to GF (24) at the beginning of the
process, and the other one from GF (24) to GF (22) at the beginning of every
GF (24) block and its inverse mapping. However the design idea on [2] is done
in a way that just one mapping and one inverse mapping is needed. Finally no
more optimizations in area have been done in [11].

The weaknesses discussed above, all gives the idea of implementing the masked
IAIK’s S-box by the strategies used in Canright’s compact S-box in hope of get-
ting a noticeable reduction in area. The first part of this section will explore this
idea. We shall rewrite the equations needed for computing the masked inversion
of a GF (28) element in normal basis. We try to do this in a way that there be no
need to have new functions defined for normal basis. This helps us in conclusion
part which we claim that our design is the smallest.

The main part of the design which should be replaced is the composite field
arithmetic which is done in polynomial basis in IAIK’s design. We shall change
the computation of masked inverse to normal basis in a way that the security
of calculations do not damage while using Canright’s normal basis optimized
functions. At very first, as described before, we have:

(ah, al) = (d−1al, d
−1ah) (12)

where
d = (a2

h + a2
l )v + ahal (13)

For a masked input we have:

ahm = ah + mh

alm = al + ml
(14)

The next equations comes as follows:

a−1
h + mh = (d−1al) + mh

= (d−1 + mh)(al + ml) + d−1ml + almh + mhml + mh

= dimhalm + (d−1 + mh)ml + mlmh + (al + ml)mh + mlmh

+mhml + mh = dpmhalm + dpmhml + almmh + mhml + mh

(15)

where
dpmh = d−1 + mh (16)
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also for d we have:

dmh = d + mh = (a2
h + a2

l )v + ahal + mh

= (a2
hm + m2

h + a2
lm + m2

l )v + ahmalm + mhml + ahmml + almmh + mh

= SQSC(ahm, alm) + ahmalm + SQSC(mh, ml) + mhml + ahmml + almmh + mh

(17)

where SQSC(x, y) is the square-scale of x and y.
Thus all equations is written by ahm, alm, mh and ml. also the function

SQSC(x, y) + xy is easily optimized in [2]. Since there are shared parts in
multiplication the shared factors can be computed and save the area for other
multiplications.

For al we have:
a−1

l + ml = d−1ah + ml (18)

So some changes should be made for computation of a−1
l + ml

Defining
diml = dimh + mh + ml = d−1 + ml (19)

we have
a−1

l + ml = dimlahm + dimlmh + ahmml + mhml + ml (20)

As described above a fresh mask is here needed too. Combining the above
results with the fresh mask leads to the following equations:

f = ahmml (21)

g = almmh (22)

c = SQSC(ahm, alm) + almahm + fm (23)

e = SQSC(mh, ml) + mlmhdmh (24)

dmh = (c + e) + (f + g + mh + fm) (25)

And
i = mhml (26)

i2 = ahmdml (27)

i3 = mhdml (28)

i4 = almdmh (29)

i5 = mldmh (30)

Which gives the final result as:

a−1
l + ml = (i2 + i3 + fm) + (f + i + ml + fm) (31)

a−1
h + mh = (i4 + i5 + fm) + (g + i + mh + fm) (32)

Similar equations exist for computing the masked inverse in GF (22) and their
reputation is not necessary anymore.
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Next we go through the mapping and inverse mapping functions. If we assume
the mapping function as the matrix X and the affine transformation as αA + β
then as suggested in [2], X−1 is combined with the matrix for optimization. For
a non-masked input we have:

(1) AX
(2) AX → (AX)−1 → X−1A−1

(3) αX(X−1A−1) + β = αA−1 + β = Sbox(A)

The calculations for a masked-data are changed as follows:

(1) (A + M)X = AX + MX
(2) AX + MX → (AX)−1 + MX → X−1A−1 + MX
(3) αX(X−1A−1 +MX)+β = αXX−1A−1 +β +αXMX = Sbox(A)+αXMX

As it can be seen, the final result consists of the S-box of input added by a
function of the random mask. This part can be removed by a separate mask
removal generator part which generates the XMX . Thus our method does not
disturb the process of computing the rest of the AES algorithm and our goal is
achieved.

4.2 Security Discussion

For security discussion we use the lemmas presented in [11]. These lemmas en-
sures that the design is resistant to simple DPA attacks without any need for
real world implementation of the design. The lemmas are listed below. For a
proof of each lemma one can refer to the main paper.

Lemma 1. Let a an element of GF (2n) be arbitrary. Let m uniformly be dis-
tributed in GF (2n) and independent of a. Then the distribution of a + m is
independent of a.

Lemma 2. Let a, b elements of GF (2n) be arbitraries. Let ma, mb be inde-
pendently and uniformly distributed in GF (2n). Then the distribution of (a +
ma)(b + mb) is independent of a and b.

Lemma 3. Let a be an element of GF (2n) be arbitrary. Let ma, mb be indepen-
dently and uniformly distributed in GF (2n). Then the distribution of (a+ma)mb

is independent of a.

Lemma 4. Let a an element of GF (2n) be arbitrary and p a constant. Let ma

be independently and uniformly distributed in GF (2n). Then, the distribution
of (a + ma)2 and (a + ma)2p is independent of a.

Lemma 5. Let ai elements of GF (2n) be arbitraries and M be independent of
all ai and uniformly distributed in GF (2n). Then the distribution of

∑
ai + M

is (pairwise) independent of ai.

Lemmas 1, 2 and 3 ensure the security of equations 21,22 and 26-30. 23 is secure
due to lemma 5. 25, 31 and 32 are secure due to their final result which is the
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masked output. Equation 24 is of no question because it combines some masks
with each other.

4.3 Comparing the Results

Figure 2 gives a block diagram of our design. The additions and multiplications
are all implemented in GF (4) as given in [2]. The big gray boxes are optimized
more as Canright has suggested in [2]. But at very first, as a comparison between
polynomial basis and normal basis we ignore these optimizations. Thus the mhml

computation needs not to be computed in the second part of the figure since
SQSC(mh, ml) + mhml box is omitted and thus mhml is available. We will use
Canright optimized polynomial functions in block diagram of IAIK’s design to
show that using normal basis leads to a better result and compactness of our
design in not just a result of good mapping and some further optimizations.
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Fig. 2. Our compact masked AES S-box block diagram

As it is clear of the figures, 5 two-input addition, 9 three-input additions,
8 multiplications and 2 square-scaling blocks are used in normal basis block
diagram. On the other hand it consumes 24 two-input additions, 8 two-input
multiplications, 2 square-scaling and 2 scaling blocks. For polynomial basis, as-
suming any three-input addition as two 2-input additions, we have 23 additions,
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8 multiplications and 2 square-scalings in normal basis while it is 24 additions,
8 multiplications, 2 square-scalings and 2 scalings for the polynomial basis. We
shall prove shortly that our design based on normal basis is better; moreover we
show this can be the most compact one using this technique. We use results of
gate counting of Canright to do so. One can study [2] for detailed discussion.

Multiplications in GF (16) use same amount of gates for either basis chosen in
GF (4); Square-scalings in GF (16) differ in at most 3 2XOR gates due to what
it is chosen for basis; Scalings in GF (16) use same amount of gates (2 + 2 = 4
2XOR gates) for either type of basis; Squaring is free in GF (4) for normal basis
while square-scaling is free for polynomial basis in the same field.

Thus if polynomial basis is chosen for GF (16) we have a minimum of 4+4−3 =
5 more gates (4 for addition, 4 for scalings and 3 for possible gate reduction using
normal basis for GF (16) SQSC box). Choosing polynomial basis in GF (4) also
causes 2 + 2 = 4 more gates at least ensuring us that normal basis in better for
masked inversion computation (note that this is not surely true if we were to
compute inversion itself without any mask computations). On the other hand
choosing different normal basis does not affect the number of gates so much.
Square-scaling is the most differing part which gives little variance (3 XOR
gates) in the number of the gates. So what can be seen is using different basis
doesn’t affect number of gates so much (However the little difference exist is
good for us!). So the mapping chosen can play a great role in the area used for
the total design. As it is illustrated in [2] the mapping presented is the best
mapping can be. From the above discussion we can say that our design is the
most compact one using this technique for masked s-box computation.

Table 1. Synthesis results of the design
presented in [11]

Cell Library References Total Area

IV1N0 scl05u 8 × 3 25 gates
IV1N1 scl05u 1 × 3 3 gates
ND2N0 scl05u 9 × 5 41 gates
NR2R0 scl05u 140 × 5 630 gates
NR2R1 scl05u 11 × 5 52 gates
XN2R0 scl05u 68 × 5 333 gates
XN2R1 scl05u 9 × 5 46 gates
XN2R2 scl05u 5 × 5 27 gates
XN3R0 scl05u 54 × 7 367 gates
XN3R1 scl05u 3 × 7 21 gates
XR2T0 scl05u 25 × 5 123 gates
XR2T1 scl05u 2 × 5 10 gates
XR2T2 scl05u 1 × 5 5 gates
XR3T0 scl05u 57 × 7 388 gates
XR3T1 scl05u 8 × 7 56 gates
XR3T2 scl05u 2 × 7 14 gates

Total no. of gates 2140
Total no. of instances 403

Table 2. Synthesis results of our com-
pact masked design

Cell Library References Total Area

IV1N0 scl05u 16 × 3 50 gates
ND2N0 scl05u 23 × 5 104 gates
NR2R0 scl05u 78 × 5 351 gates
NR2R1 scl05u 5 × 5 24 gates
XN2R0 scl05u 76 × 5 372 gates
XN2R1 scl05u 4 × 5 20 gates
XN3R0 scl05u 30 × 7 204 gates
XN3R1 scl05u 2 × 7 14 gates
XR2T0 scl05u 22 × 5 108 gates
XR2T1 scl05u 2 × 5 10 gates
XR3T0 scl05u 44 × 7 299 gates
XR3T1 scl05u 3 × 7 21 gates

Total no. of gates 1577
Total no. of instances 305
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Overall, we applied the further optimizations in [2] on our design and we
checked our design with the IAIK’s design using Leonardo Spectrum Synthesis
tool. The following two tables present the synthesis results of our design and
IAIK’s design using Leonardo Spectrum 2004’s ASIC library.

The better result is obvious. More the result is even comparable with the one
in [9] which is designed for non-masked s-box.

5 Conclusions and Future Works

In this paper we presented a masked S-box based on the composite field arith-
metic. We mixed the ideas of [11] which has presented a masked S-box with
composite field arithmetic and the design of [2] which is the smallest unmasked
S-box using composite fields. We rewrote the equations of [11] with the basis
and mapping presented in [2]. We checked this design with the one presented
in [11] and we showed our design is smaller. We also showed that this design
is smaller of any design using composite field arithmetic technique for masking.
Finally we proved our design to be secure against simple side channel attacks
using mathematical statements presented in [11].

There are some previous works done in designing compact masked S-box. In [15]
the authors have presented an ASIC implementation of AES algorithm. They have
used a method similar to Canright’s method with polynomial basis. Though the
design presented is smaller than our design (1556 gates comparing to 1577 in our
design), but they have used gate level masking as one of their major techniques.
As shown in [6] if the input arrival times of the gates of a masked gate be different,
then there would be information leakage and masking would be useless. Since there
is always delay between the input arrival times in real world implementation, thus
gate masking appears to be insecure. However, our design is only based on masking
at algorithm level and thus is safe. In fact, if our technique where used for the [15]
a very better result would be archived due to the basis used.

In [7] it has been shown that there is a correlation between the number of
transitions in the circuit and the unmasked input data for a chip designed using
the IAIK’s masking technique. They also have pinpointed the location of circuit
which causes this correlation and they have claimed that the XOR gates of
the masked multipliers produce the problem [8]. As a future work, we are to
implement this design and see how good it is against the toggle count attack
mentioned above. A new solution for implementing the design in a way that the
correlation does not exist anymore is needed.
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Abstract. Checking whether a committed integer lies in a specific in-
terval has many cryptographic applications. In Eurocrypt’98, Chan et
al. proposed an instantiation (CFT Proof). Based on CFT, Boudot pre-
sented a popular range-bounded commitment scheme in Eurocrypt’2000.
Both CFT Proof and Boudot Proof are based on the encryption E(x, r) =
gxhr mod n, where n is an RSA modulus whose factorization is unknown
by the prover. They did not use a single base as usual. Thus an increase
in cost occurs. In this paper, we show that it suffices to adopt a single
base. The cost of the modified Boudot Proof is about half of that of the
original scheme. Moreover, the key restriction in the original scheme, i.e.,
both the discrete logarithm of g in base h and the discrete logarithm of
h in base g are unknown by the prover, which is a potential menace to
the Boudot Proof, is definitely removed.

Keywords: range-bounded commitment, knowledge of a discrete loga-
rithm, zero-knowledge proof.

1 Introduction

Checking whether a committed integer lies in a specific interval was first devel-
oped by Brickell, et al. [2] in Crypto’87. Such kind of proofs have many applica-
tions: electronic cash systems [6], group signatures [8], publicly verifiable secret
sharing schemes [16,14,4], and other zero-knowledge protocols [9]. Informally, a
range-bounded commitment is a protocol between a prover, Alice, and a verifier,
Bob, with which Alice commits to a string, x, and proves to Bob that x is within
a predetermined range, H , with accuracy δ.

In the past decade, there are a few schemes investigating range-bounded com-
mitments. Mao [16] proposed a scheme for proof of bit-length based on DLP
(discrete logarithm problem) in PKC’98. In Eurocrypt’98, Chan et al. [6] pre-
sented an instantiation (CFT proof for short). It’s corrected soon [7] because
the authors did not notice that Alice can cheat Bob if the order of the crypto-
graphic group is known by her. Based on CFT proof, Boudot [3] constructed a
popular range-bounded commitment scheme in Eurocrypt’2000 (Boudot proof
for short). The basic idea of the scheme is to decompose a committed number
x as x = x2

1 + x2. It then uses Fujisaki-Okamoto commitment scheme [13] to
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show that the committed number x2
1 is a square. By CFT proof, it proves the

committed number x2 in a proper range.
Both CFT proof and Boudot proof are based on the encryption

E(x, r) = gxhr mod n

where x is the committed number, r is a random number selected by Alice, n
is an RSA modulus whose factorization is unknown to Alice, g is an element of
large order in Zn and h is an element of the group generated by g such that both
the discrete logarithm of g in base h and the discrete logarithm of h in base g
are unknown by Alice. We notice that they do not use a single base as usual.
Thus an increase in cost occurs.

Why not use a single base instead two bases? The reason, we think, is that they
directly followed the structures of Fujisaki-Okamoto commitment [13]. In 2002,
the authors [11] explained that a commitment with a single base to s of form
c = gs mod n does not satisfy the standard hiding property for commitments.
For instance, if a prover commits twice to the same value, this is immediately
visible. But we notice that they did not consider to permit Alice to update the
single base g. Actually, if Alice commits twice to the same value, she can pick
a random number θ and update the base g with ĝ = gθ mod n. Note that g
is still permitted to be a system-wide parameter since Alice can update it by
herself. But in Fujisaki-Okamoto commitment scheme (with two bases), Alice
is not permitted to update the bases. Otherwise, the discrete logarithm of ĝ in
base ĥ or the discrete logarithm of ĥ in base ĝ will be known to Alice.

In this paper, we show that it suffices to adopt a single base, i.e., E(x) = gx

mod n. The common encryption sufficiently guarantees the security of the mod-
ified Boudot commitment scheme. Thus the cost of the modified Boudot proof is
about half of that of the original scheme. Its security is immediately reduced to
RSA [18] and a variant of Schnorr signature [19] in RSA setting with hidden order.
Moreover, the key restriction in the original scheme, both the discrete logarithm
of g in base h and the discrete logarithm of h in base g are unknown by the prover,
which is a potential menace to the Boudot proof, is definitely removed.

2 Related Work

2.1 CFT Proof

The following description of CFT proof is due to [3].
Let t, l and s be three security parameters. This protocol (due to Chan, Frankel

and Tsiounis [6], and corrected in [7], and also due to [14] in another form) proves
that a committed number x ∈ I belongs to J , where the expansion rate #J/#I
is equal to 2t+l+1. Let n be a large composite number whose factorization is un-
known by Alice and Bob, g be an element of large order in Z∗n and h be an element
of the group generated by g such that both the discrete logarithm of g in base h
and the discrete logarithm of h in base g are unknown by Alice. Let H be a hash
function which outputs 2t-bit strings. We denote by E = E(x, r) = gxhr mod n a
commitment to x ∈ [0, b], where r is randomly selected over [−2sn + 1, 2sn − 1].
This commitment statistically reveals no information about x to Bob.
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Protocol. PK[CFT ](x, r : E = E(x, r) ∧ x ∈ [−2t+lb, 2t+lb])

1. Alice picks ω ∈R [0, 2t+lb−1] and η ∈R [−2t+l+sn+1, 2t+l+sn−1], and then
computes W = gωhη mod n.

2. Then, she computes C = H(W ) and c = C mod 2t.
3. Finally, she computes D1 = ω+xc and D2 = η+rc (in Z). If D1 ∈ [cb, 2t+lb−

1], she sends (C, D1, D2) to Bob, otherwise she starts again the protocol.
4. Bob checks that D1 ∈ [cb, 2t+lb − 1] and that C = H(gD1hD2E−c). This

convinces Bob that x ∈ [−2t+lb, 2t+lb].

2.2 Proof That Two Commitments Hide the Same Secret

Alice secretly holds x ∈ [0, b]. Let E = E1(x, r1) and F = E2(x, r2) be two
commitments to x. She wants to prove to Bob that she knows x, r1, r2 such that
E = E1(x, r1) and F = E2(x, r2), i.e. that E and F hide the same secret x. This
protocol is derived from proofs of equality of two discrete logarithms from [10,5,1],
combined with a proof of knowledge of a discrete logarithm modulo n [15].

Protocol. PK(x, r1, r2 : E = E1(x, r1) ∧ F = E2(x, r2))

1. Alice picks ω ∈R [1, 2l+tb−1], η1 ∈R [1, 2l+t+s1n−1], η2 ∈R [1, 2l+t+s2n−1].
Then, she computes W1 = gω

1 hη1
1 mod n and W2 = gω

2 hη2
2 mod n.

2. Alice computes c = H(W1||W2).
3. She computes D = ω + cx, D1 = η1 + cr1, D2 = η2 + cr2 (in Z) and sends

(c, D, D1, D2) to Bob.
4. Bob checks whether c = H(gD

1 hD1
1 E−c mod n||gD

2 hD2
2 F−c mod n).

2.3 Proof That a Committed Number Is a Square

Alice secretly holds x ∈ [0, b]. Let E = E(x2, r1) be a commitment to the square
of x (in Z). She wants to prove to Bob that she knows x and r1 such that
E = E(x2, r1), i.e. that E hides the square x2. The first proof that a committed
number is a square has appeared in [13].

Protocol. PK(x, r1 : E = E(x2, r1))

1. Alice picks r2 ∈R [−2sn + 1, 2sn − 1] and computes F = E(x, r2).
2. Then, Alice computes r3 = r1 −r2x (in Z). Note that r3 ∈ [−2sbn+1, 2sbn−

1]. Then, E = F xhr3 mod n.
3. As E is a commitment to x in base (F, h) and F is a commitment to x in base

(g, h), Alice can run PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n).
By the proof that two commitments hide the same secret described above,
she gets (c, D, D1, D2).

4. She sends (F, c, D, D1, D2) to Bob.
5. Bob checks that PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n) is

valid.

2.4 Boudot Proof

Let t, l and s be three security parameters. Let n be a large composite number
whose factorization is unknown by Alice and Bob, g be an element of large order
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in Z∗n and h be an element of the group generated by g such that both the
discrete logarithm of g in base h and the discrete logarithm of h in base g are
unknown by Alice. We denote by E(x, r) = gxhr mod n a commitment to x in
base (g, h) where r is randomly selected over [−2sn + 1, 2sn − 1].

Protocol. PK[WithTol](x, r : E = E(x, r) ∧ x ∈ [a − θ, b + θ])

1. [Knowledge of x] Alice executes with Bob: PK(x, r : E = E(x, r))
2. [Setting] Both Alice and Bob compute Ẽ = E/ga mod n and Ē = gb/E mod n.

Alice sets x̃ = x − a and x̄ = b − x. Now, Alice must prove to Bob that both
Ẽ and Ē hide secrets which are greater than −θ.

3. [Decomposition of x̃ and x̄] Alice computes:

x̃1 = �
√

x − a�, x̃2 = x̃ − x̃2
1,

x̄1 = �
√

b − x�, x̄2 = x̄ − x̄2
1

Then, x̃ = x̃2
1 + x̃2and x̄ = x̄2

1 + x̄2, where 0 ≤ x̃2 ≤ 2
√

b − a and 0 ≤ x̄2 ≤
2
√

b − a.
4. [Choice of random values for new commitments] Alice randomly selects r̃1

and r̃2 in [−2sn + 1, · · · , 2sn − 1] such that r̃1 + r̃2 = r, and r̄1 and r̄2 such
that r̄1 + r̄2 = −r.

5. [Computation of new commitments] Alice computes:

Ẽ1 = E(x̃2
1, r̃1), Ẽ2 = E(x̃2, r̃2)

Ē1 = E(x̄2
1, r̄1), Ē2 = E(x̄2, r̄2)

6. [Sending of the new commitments] Alice sends Ẽ1 and Ē1 to Bob. Bob com-
putes Ẽ2 = Ẽ/Ẽ1 and Ē2 = Ē/Ē1

7. [Validity of the commitments to a square] Alice executes with Bob

PK(x̃2
1, r̃1 : Ẽ1 = E(x̃2

1, r̃1))

PK(x̄2
1, r̄1 : Ē1 = E(x̄2

1, r̄1))

which prove that both Ẽ1 and Ē1 hide a square.
8. [Validity of the commitments to a small value] Let θ = 2t+l+1

√
b − a. Alice

executes with Bob the two following CFT proofs:

PK[CFT ](x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−θ, θ])

PK[CFT ](x̄2, r̄2 : Ē2 = E(x̄2, r̄2) ∧ x̄2 ∈ [−θ, θ])

which prove that both Ẽ2 and Ē2 hide numbers which belong to [−θ, θ],
where θ = 2t+l+1

√
b − a, instead of proving that they belong to [0, 2

√
b − a].

3 It Suffices to Adopt a Single Base

We remark that all above commitment schemes are based on the encryption

E(x, r) = gxhr mod n
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where x is the committed number, r is a random number selected by Alice, n
is an RSA modulus whose factorization is unknown by Alice, g is an element of
large order in Zn and h is an element of the group generated by g such that both
the discrete logarithm of g in base h and the discrete logarithm of h in base g
are unknown by Alice.

We notice that they do not use a single base as usual. Thus an increase in
cost occurs. In the next section, we show that it suffices to adopt a single base,
i.e.,

E(x) = gx mod n

The common encryption sufficiently guarantees the securities of those commit-
ment schemes. Thus the cost of the modified Boudot proof is about half of that
of the original scheme. Besides, its security is immediately reduced to RSA [18]
and a variant of Schnorr signature [19] in RSA setting with hidden order.

4 Modified CFT Proof and Its Security

4.1 Description

Let t, l and s be three security parameters, n be an RSA modulus whose factor-
ization is unknown by Alice, g be an element of large order in Z∗n. Let H be a
hash function which outputs 2t-bit strings. We denote by E = E(x) = gx mod n
a commitment to x ∈ [0, b].

Protocol. PK(x : E = E(x) ∧ x ∈ [−2t+lb, 2t+lb])

1. Alice picks ω ∈R [0, 2t+lb − 1], and computes W = gω mod n.
2. Compute C = H(W ) and c = C mod 2t.
3. Compute D = ω + xc (in Z). If D ∈ [cb, 2t+lb − 1], Alice sends (C, D) to

Bob, otherwise she starts again the protocol.
4. Bob checks that D ∈ [cb, 2t+lb − 1] and C = H(gDE−c mod n). This con-

vinces Bob that x ∈ [−2t+lb, 2t+lb].

4.2 Security

It’s not difficult to find that the modified scheme is almost as secure as the
original scheme. Informally, the security of the modified scheme is just based on
the following facts:

(F1) By the security of RSA [18], the single base encryption E = E(x) =
gx mod n effectively prevents Bob from getting x.

(F2) Alice knows the discrete logarithm of E in base g modulo n. Otherwise,
she cannot produce a proper pair (C, D) such that C = H(gDE−c mod n),
where c = C mod 2t, t is a public security parameter. Note that the above
challenge is just the variant of Schnorr signature [19] in RSA setting. Under
the circumstances, Alice cannot cheat Bob even she knows the order of g.
We refer to [17].
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(F3) D must be of the form α + xc, where x is the just discrete logarithm of E
in base g, α is selected by Alice before the challenge value C (≡ c mod 2t)
is generated. This is immediately derived from the fact (F2).

(F4) The factorization of the modulus n is unknown by Alice, which implies that
α+xc is just an integer (not a residue class). By checking D ∈ [cb, 2t+lb−1],
it ensures that Bob can be convinced that x ∈ [−2t+lb, 2t+lb].

Remark 1. The authors [6] gave the original presentation of CFT proof in
ElGamal setting [12]. It’s corrected soon [7] because Alice can cheat Bob if the
order of the cryptographic group is known by her.

5 Same-Secret Proof with Single Base

Let n be an RSA modulus whose factorization is unknown by Alice, g1 and g2 be
two element of large order in Z∗n. Let H be a hash function which outputs 2t-bit
strings. Alice secretly holds x. Let E = E1(x) = gx

1 mod n and F = E2(x) =
gx
2 mod n be two commitments to x. She wants to prove to Bob that she knows x

such that E = E1(x) and F = E2(x), i.e. that E and F hide the same secret x.

Protocol. PK(x : E = E1(x) ∧ F = E2(x))

1. Alice picks ω ∈R Z and computes W1 = gω
1 mod n and W2 = gω

2 mod n.
2. She computes C = H(W1||W2).
3. She computes D = ω + cx (in Z) and sends (C, D) to Bob.
4. Bob checks whether C = H(gD

1 E−C mod n||gD
2 F−C mod n).

Remark 2. One might argue a proof that two commitments hide the same
secret in ElGamal setting. Precisely, it only shows that two commitments hide
the same secret residue class (modulo the order of the cryptographic group)
instead of the same secret integer.

6 Square-Proof with Single Base

Let n be an RSA modulus whose factorization is unknown by Alice, g be an
element of large order in Z∗n. Let H be a hash function which outputs 2t-bit
strings. Alice secretly holds x. Let E = E(x2) = gx2

be a commitment to the
square of x (in Z). She wants to prove to Bob that she knows x such that
E = E(x2), i.e. that E hides the square x2.

Protocol. PK(x : E = E(x2))

1. Alice computes F = E(x), E = F x mod n.
2. As E is a commitment to x in base F and F is a commitment to x in base

g, Alice can run PK(x : F = gx mod n∧E = F x mod n). By the proof that
two commitments hide the same secret described above, she gets (C, D).

3. She sends (F, C, D) to Bob.
4. Bob checks that PK(x : F = gx mod n ∧ E = F x mod n) is valid.
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7 Boudot’s Proof Revisited

7.1 Description

Let t, l and s be three security parameters. Let n be an RSA modulus whose
factorization is unknown by Alice and Bob, g be an element of large order in Z∗n.
We denote by E(x) = gx mod n a commitment to x in base g.

Protocol. PK[WithTol](x : E = E(x) ∧ x ∈ [a − θ, b + θ])

1. [Knowledge of x] Alice executes with Bob: PK(x : E = E(x))
2. [Setting] Both Alice and Bob compute Ẽ = E/ga mod n and Ē = gb/E mod n.

Alice sets x̃ = x − a and x̄ = b − x.
3. [Decomposition of x̃ and x̄] Alice computes:

x̃1 = �
√

x − a�, x̃2 = x̃ − x̃2
1,

x̄1 = �
√

b − x�, x̄2 = x̄ − x̄2
1

Then, x̃ = x̃2
1 + x̃2 and x̄ = x̄2

1 + x̄2, where 0 ≤ x̃2 ≤ 2
√

b − a and 0 ≤ x̄2 ≤
2
√

b − a.
4. [Computation of new commitments] Alice computes:

Ẽ1 = E(x̃2
1), Ẽ2 = E(x̃2)

Ē1 = E(x̄2
1), Ē2 = E(x̄2)

5. [Sending of the new commitments] Alice sends Ẽ1 and Ē1 to Bob. Bob com-
putes Ẽ2 = Ẽ/Ẽ1 and Ē2 = Ē/Ē1

6. [Validity of the commitments to a square] Alice executes with Bob

PK(x̃2
1 : Ẽ1 = E(x̃2

1))

PK(x̄2
1 : Ē1 = E(x̄2

1))

which prove that both Ẽ1 and Ē1 hide a square. (Note that the protocols
PK(x : E = E1(x) ∧ F = E2(x)) and PK(x : E = E(x2)) are called in the
step.)

7. [Validity of the commitments to a small value] Let θ = 2t+l+1
√

b − a. Alice
executes with Bob the two following CFT proofs:

PK[CFT ](x̃2 : Ẽ2 = E(x̃2) ∧ x̃2 ∈ [−θ, θ])

PK[CFT ](x̄2 : Ē2 = E(x̄2) ∧ x̄2 ∈ [−θ, θ])

which prove that both Ẽ2 and Ē2 hide numbers which belong to [−θ, θ],
where θ = 2t+l+1

√
b − a.

The correctness arguments for the modified Boudot proof are the same as that
of the original scheme. We refer to [3]. But its security is immediately reduced
to RSA and a variant of Schnorr signature in RSA setting with hidden order.
We refer to §4.2. We remark that the reason of adopting two bases instead of a
single base in Boudot proof is that the protocol directly follows the structures
of [13].
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7.2 Further Discussion

1. Why not use a single base instead two bases. In 2002, the authors [11] explained
that:

A commitment with a single base to s of form c = gs mod n does not
satisfy the standard hiding property for commitments. For instance, if a
prover commits twice to the same value, this is immediately visible.

Obviously, they did not consider to permit the prover to update the single base.
Now we suggest a solution to this problem. If Alice commits twice to the same

value, she can pick a random θ and update the base g with ĝ = gθ mod n. Note
that g is still permitted to be a system-wide parameter since Alice can update it
by herself. But in Fujisaki-Okamoto commitment scheme (with two bases), Alice
is not permitted to update the bases. Otherwise, the discrete logarithm of ĝ in
base ĥ or the discrete logarithm of ĥ in base ĝ will be known to Alice.

2. Efficiency. Roughly speaking, the cost of the commitment with a single
base (excluding the cost of updating the base) is about half of that of Damg̊ard-
Fujisaki commitment [11]. But the key restriction, both the discrete logarithm of
g in base h and the discrete logarithm of h in base g are unknown by Alice, which
is a potential menace to Damg̊ard-Fujisaki commitment, is definitely removed.
We remark that the updating of g can be completed in the pre-computation.

8 Conclusion

In this paper, we investigate the two range-bounded commitment schemes, i.e.,
CFT proof and Boudot proof. Based on the latter, we present an efficient range-
bounded commitment. The cost of the modified scheme is about half of that
of the original scheme because we adopt a single base instead of two bases.
Moreover, its security is immediately reduced to RSA and a variant of Schnorr
signature in RSA setting with hidden order.
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Abstract. Replayable adaptively chosen ciphertext attack (RCCA) se-
curity is a relaxation of popular adaptively chosen ciphertext attack
(CCA) security for public key encryption system. Unlike CCA security,
RCCA security allows modifying a ciphertext into a new ciphertext of
the same message. One of the open questions is that if there exists a
perfectly rerandomizable RCCA secure encryption [4]. Prabhakaran and
Rosulek recently answered this question affirmatively [14]. The scheme
they proposed (PR scheme for short) is composed of a double-strands
Cramer-Shoup schemes that involves as many as 56 exponents in en-
cryption and 65 exponents in decryption, and 55 exponents operations
during rerandomization.

We present a practical perfectly rerandomizable RCCA secure en-
cryption system in this paper. The system constitutes of two layers of
encryptions. One layer carries message, the other layer carries a random
quantity used to hiding the message in previous layer. This random quan-
tity in the encryption also works as correlation between the two parts of
encryption such that they are formed in a prescribed way. The proposed
construction dramatically reduces the complexities, compared with PR
scheme, to 15 exponents in encryption, 6 exponents decryption as well
as 16 exponents operations in rerandomization.

Besides the practical feature, our scheme is also the first receiver
anonymous, perfectly rerandomizable RCCA secure encryption, which
settles an open question in [14]. The scheme is secure under DDH as-
sumption.

1 Introduction

The popular standard for public key encryption security is the security against
adaptive chosen ciphertext attack (CCA). Doleve, Dwork and Naor constructed
the first scheme secure against CCA based on standard primitive [9]. Cramer and
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Shoup gave the first practical CCA secure system based on ElGamal cryptosys-
tem [5]. It is then intensively investigated afterwards [15,6,13]. Although CCA
security is preferred in most of cryptographic applications, it is, however, also
viewed too strong in some scenarios. For example, rerandomizable encryption
is used in mixnets [10] with applications to voting anonymization. The nonmal-
leability of CCA secure system prevents such kind of system being adopted in
these applications. A relaxed but strong enough security in this case is desired.

The relaxed security definitions for encryption system appeared in Krawczyk
[12], Shoup [16] andAnet al. [1]. The notions are called, loose cipher-unforgeability,
benign malleability, and generalized CCA security respectively. Later, Canetti et
al. [4] systematically developed the relaxed notion about CCA security. All notions
mentioned above are proved being equivalent to the notion of publicly detectable
RCCA in [4]. Many properties and schemes are setting up or constructed in that pa-
per. One of the open questions remaining solved is the existence of so called “(per-
fectly) rerandomizable replayable CCA schemes”.

The replayable CCA (RCCA in short) security is the same as CCA security,
except no guarantees are given against adversaries that just try to modify a
ciphertext into a new one with the same plaintext. This relaxation allows modi-
fying a ciphertext into a new ciphertext provided that the later is decrypted into
the same plaintext as the former. The (perfectly) rerandomizable RCCA security
augments an encryption system with an algorithm to alter a ciphertext c of a
message m into a new ciphertext c′ that is computationally indistinguishable
from the fresh ciphertext of m.

Groth [11] investigated the rerandomization of RCCA secure cryptosystem.
Groth’s scheme is proved only to be generic RCCA secure. Prabhakaran and
Rosulek [14] constructed the first perfectly rerandomizable replayable CCA se-
cure encryption system (briefly, PR scheme). The PR scheme is an extension
of Cramer-Shoup encryption called Double-Strands Cramer-Shoup scheme. One
strand of a variant of Cramer-Shoup encryption is used for carrying the message,
the other one for helping rerandomization. The two strands of ciphertexts are
correlated with shared random masks. In order to prevent the two strands being
combined in abnormal ways, some perturbation of the exponents of the message-
carrying strand is performed. As a result, the encryption system needs as many
as 28 elements for the public key and 30 elements for the private key. The encryp-
tion alone involves more than 50 exponentiation operations (see Table1 in Section
3.3 for detailed complexity). The system is secure under the DDH assumption.
The notion of key-privacy [3] is modified to denote receiver anonymous property.
The PR scheme is not an anonymous rerandomizable RCCA secure scheme. The
existence of perfectly rerandomizable RCCA secure encryption is posed as an
open question.

Since rerandomizable RCCA security is weaker than CCA security in require-
ment, it is intuitively plausible and desirable to construct a rerandomizable
RCCA scheme that is at least as efficient as CCA secure one (if not more ef-
ficient). The main contribution in this paper is a practical receiver anonymous
rerandomizable RCCA secure encryption.
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The scheme in this paper bears some similarity with PR scheme in that it
constitutes of two layers of encryptions. However, ours is not double-strands
of Cramer-Shoup like encryptions. One layer is a variant of Cramer-Shoup en-
cryption. But the other is just an ElGamal encryption. The first layer has the
functionality of carrying the message like in PR scheme but in a completely
different way. The second layer instead is used only to carry a random quantity
that is used to hide the message in the other layer. The quantity is also the
correlation string between the two layers. The rerandomization of the ciphertext
makes use of the rerandomizability of ElGamal encryption. Since two layers in
our scheme are both ElGamal type of encryptions, the scheme is also receiver
anonymous according to the result by Bellare et al. in [3]. Thus, our construction
is not only a practically, perfectly rerandomizable but also receiver anonymous
RCCA secure encryption scheme, which settle an open question in [14].

The organization of the paper : After giving out notations and definitions in
Section 2, we present a publicly rerandomizable scheme and its secretly reran-
domizable version in Section 3. The receiver anonymity and perfectly rerandom-
ization of them are also indicated in Section 3. Section 4 is devoted to the proof
of RCCA security of the basic scheme. The last section is our conclusion and
future works.

2 Preliminaries

2.1 Some Notations

A function f(k) is a negligible function in k if it always holds that f(k) < 1/kc

for any 0 < c ∈ Z for sufficiently large k. We use negl(k) to denote a negligible
function in k, or just negl if k is obvious from contexts. If F is finite set, then
the notation “x

R← F” denotes the act of choosing x uniformly from F . Notation
“u ← f(x)” denotes the act of assigning the value f(x) to u. The notation
Pr[x1

R← S1; x2
R← S2; . . . ; xm

R← Sm : p(x1, . . . , xm)] denotes the probability
that p(x1, . . . , xm) will be true after the ordered execution of the probabilistic
assignments x1

R← S1; x2
R← S2; . . . ; xm

R← Sm.

2.2 Security of Public Key Encryption

We model all algorithms including adversaries as probabilistic polynomial time
(PPT) Turing machines. The public-key cryptosystem is defined as usual with
three algorithms (K, E, D). Where K is key generation algorithm, E the encryp-
tion algorithm, and D the decryption algorithm. The rerandomizable encryption
system is a public-key encryption system augmented with an additional reran-
domization algorithm Rand.

The security of a public key encryption system against CCA and its variants
is defined as follows.
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Definition 1. Let (K, E, D) be an encryption system. For any PPT algorithm
A if the following probability is negligibly close to 1/2:

Pr
[
(pk, sk) ← K(1k); (m0,m1) ← AO1 ; b R← {0, 1}; c∗ ← E(mb) : AO2(pk, c∗) = b

]
.

where O1 runs exactly as decryption algorithm D, and O2 run exactly as decryp-
tion algorithm D except in the following cases:

1. When a query to O2 is c∗, O2 will return ⊥. Then, the cryptosystem is said
secure against chosen ciphertext attack (CCA).

2. When a query to O2 has plaintext in {m0, m1}, O2 will return test. Then,
the cryptosystem is said secure against replayable chosen ciphertext attack
(RCCA).

3. When a query to O2 has plaintext in {m0, m1}, O2 will return ⊥. Then, the
cryptosystem is said secure against weak replayable chosen ciphertext attack
(WRCCA).

2.3 Rerandomizable Encryption

There are two kinds of randomization algorithms defined in [4]: a public reran-
domization algorithm PRand takes a ciphertext c and public key in system as
input and turns out a well-formed new ciphertext c′ with identical distribution
to that of c such that both are decrypted as the same plaintext. A secret random-
ization algorithm Srand is the same as public randomization algorithm except
taking only a ciphertext as input. A public-key encryption system augmented
with a public (secret) randomization algorithm is called a publicly (secretly)
rerandomizable encryption system. We some times call secretly rerandomizable
encryption just as rerandomizable encryption as in [14].

For a rerandomizable encryption scheme (K, E, D, Rand), any PPT adver-
sary A, following experiment is called perfect rerandomization attack experiment
(PRA) in [14].

Stage 1. Pick (pk, sk) ← K(1k). The public keys pk is given to A.
Stage 2. Adversary A gets access to decryption oracle and rerandomization

oracle Dsk(·), Rand(·).
Stage 3. Adversary submits a message m to encryption oracles. Challenger

picks b
R← {0, 1} at random and

If b = 0 then pick r1, r2 at random, c1 ← E(pk, r1) and c2 ← Rand(c1, r2)
else c1 ← E(pk, r1) and c2 ← E(m, r2)
return (c1, c2)
Where random strings r1, r2 are chosen uniformly from defined ranges in
encryption scheme, and E(m, r1) indicates the ciphertext of m encrypted
using random string r1.

Stage 4. Adversary A continues to get access to decryption and randomization
oracles Dsk(·), Rand(·).

Stage 5. Adversary A outputs a bit b′.

The advantage of adversary A in PRA experiment is Pr[b′ = b] − 1
2 .
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Definition 2 (Perfectly Rerandomizable Encryption). A rerandomizable
encryption system (K, E, D, Rand) is said perfectly rerandomizable if for any
PPT algorithm A, the advantage of any PPT algorithm A in PRA experiment
is negligible in security parameter k.

Loosely speaking, a (perfectly) rerandomizable encryption guarantees the reran-
domization to a ciphertext c will return a new ciphertext c′ of the same message
that is indistinguishable from any fresh encryption of original message.

Let E = (K, E, D, Rand) be a rerandomizable encryption system. Let R be the
range of random strings used in encryption. The following is a direct conclusion
from the definition above.

Lemma 1. If for any r1, r2 ∈ R, we have Rand(E(m, r1), r2) = E(m, f(r1, r2)),
where f(r1, r2) is a random variable in R. The cryptosystem E is a perfectly
rerandomizable encryption system, if for any two independent strings r1, r2 cho-
sen uniformly from R, f(r1, r2) is uniformly distributed on R.

2.4 Decisional Diffie-Hellman Assumption

The security of scheme in this paper depends on the hardness of Decisional Diffie-
Hellman (DDH) problem. For any group G of prime order q, a tuple (g1, g2, g3, g4)
in G4 is a Diffie-Hellman (DH) tuple if there is a r ∈ Zq such that (g1, g2, g3, g4) =
(g1, g2, g

r
1, g

r
2). The decisional Diffie-Hellman assumption holds in G if any PPT

algorithm cannot tell DH tuples from uniformly chosen tuples from G4 except
with negligible probability. Let Rand is the event that the tuple (g1, g2, g3, g4)
is chosen from distribution of random tuples, and DH the event that the tuple
is chosen from distribution of Diffie-Hellman tuples. The advantage AdvDDH

A of
PPT algorithm A telling the DH tuples from random tuples is

AdvDDH
A = |Pr[A(g1, g2, g3, g4) = 1 | DH] − Pr[A(g1, g2, g3, g4) = 1 | Rand]|

The probability is over the coin toss of A and the randomness of the chosen of
(g1, g2, g3, g4).

As in [14], the scheme in this paper employs two groups G, Ĝ with special
relationship: G is with order q, and Ĝ order p. Where group Ĝ is a subgroup in
Z∗q . This is exemplified by the following groups: Let p, 2p + 1, 4p + 3 (first kind
Cunningham chain of length 3 [2]) be a primes chain. Group QRp denotes the
quadratic residue modulo p. Then Ĝ = QR2p+1 and G = QR4p+3 are desired
groups. It is widely believed that DDH assumption holds in quadratic residue
modulo a safe prime. It is conjectured there are infinite many Cunningham chain
(see Prabhakaran and Mike Rosulek [14] for details).

3 Rerandomizable Encryption Schemes

We present three randomizable encryption schemes in this section. The first two
are publicly randomizable encryption systems, and the last one is a secretly
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randomizable. The first publicly rerandomizable system is our basic scheme. We
will only give out the security proof for the first scheme in next section. The
proof for the variants are essentially the same, which are omitted.

3.1 Publicly Rerandomizable Encryption System (PRE)

The publicly rerandomizable encryption system consists of four algorithms
(KeyGen, Enc, Dec, PRand):

Key Generation. Taking security parameter k as input, algorithm KeyGen
chooses a cyclic group G of prime order q and a subgroup Ĝ ⊆ Z∗q of order
p (see the last paragraph of Section 2.4) such that DDH problem is hard in G
and Ĝ. Where the length of p is k. It then chooses g1, g2 ← G, ĝ ← Ĝ and
x, y, a, b, a′, b′ ← Zq, λ ← Zp at random. To choose a collision resistant Hash
function H : Ĝ × G → Zq. The public key pk and secret key sk are defined as

pk := (ĝ, ê = ĝλ; g1, g2, h = gx
1gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2 , H),
sk := (λ; x, y, a, b, a′, b′)

Encryption. Given a message m ∈ G\{1G}, the encryption algorithm Enc runs
as follows. First it chooses r, s ← Zq, t ← Ĝ, γ ← Zp at random. It then
computes

u0 ← ĝγ , w0 ← êγt, α ← H(m),

u1 ← gr
1, v1 ← gr

2, w1 ← hrmt,

u2 ← gs
1, v2 ← gs

2, w2 ← (cαtdt)s.

The ciphertext is C = (u0, w0; u1, v1, w1, u2, v2, w2).
Decryption. Given a ciphertext C = (u0, w0; u1, v1, w1, u2, v2, w2) and sk , the

decryption algorithm Dec first computes

t ← w0/uλ
0 , m ← w1/(ux

1vy
1 ), m ← m1/t, α ← H(m)

To check if m �= 1G ∧ w2
?= u

(aα+a′)t
2 v

(bα+b′)t
2 . If it holds, then the algorithm

outputs m; otherwise it outputs ⊥.
Rerandomization. Given ciphertext C = (u0, w0; u1, v1, w1, u2, v2, w2) and

public key pk. The public rerandomization algorithm PRand selects
r′, s′, t′ R← Zq, γ

′ R← Zp at random and then computes

C′ = (u0ĝ
γ′

, w0ê
γ′

t′; ut′

1 gr′

1 , vt′

1 gr′

2 , wt′

1 hr′
, us′

2 , vs′

2 , ws′t′

2 )

It outputs C′ as replayed ciphertext.

This completes the description of the cryptosystem. We first verify that de-
cryption of honestly constructed ciphertext C will yield correct value. Since
u1 = gr

1 , v1 = gr
2, we have

v1 = uw
1 , ux

1vy
1 = grx

1 gry
2 = (gx

1gy
2 )r = hr and m = w1/hr = w1/(ux

1vy
1 ).
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Similarly, let t = w3/uλ
3 , m = m1/t and α = H(m),

u
(aα+a′)t
2 v

(bα+b′)t
2 = g

(aα+a′)ts
1 g

(bα+b′)ts
2 = (gaαts

1 gbαts
2 )(ga′ts

1 gb′ts
2 )

= ctsαdts = (cαtdt)s = w2.

If m �= 1G, the decryption test will pass, and the output will be m.
Next, the rerandomized ciphertext is

C′ = (u0ĝ
γ′

, w0ê
γ′

t′; ut′

1 gr′

1 , vt′

1 gr′

2 , wt′

1 hr′
, us′

2 , vs′

2 , ws′t′

2 )

= (ĝγ+γ′
, êγ+γ′

t t′; grt′+r′

1 , grt′+r′

2 , hrt′+r′
mt t′

, gss′

1 , gss′

2 , (cαtdt)ss′t′
)

= (ĝγ , êγt; gr
1, gr

2, hrmt, gs
1, gs

2, (cαtdt)s)

Where

γ ≡ γ + γ′ mod p r ≡ rt′ + r′ mod q (1)
s ≡ ss′ mod q t ≡ t t′ mod q

It is again a well formed ciphertext for message m that can be decrypted
successfully. Here is the right place to indicate the perfect rerandomizability and
anonymity of our scheme:

Proposition 1. The rerandomizable encryption (KeyGen, Enc, Dec, PRand) is a
perfectly reranzomizable encryption.

Proof. It is easy to see that for any given γ, random variable γ ≡ γ + γ′ mod p
is uniformly distributed on Zp if γ′ is uniformly distributed. Similarly to see from
(1) that r, s and t are all uniformly distributed in Zq, whenever r′, t′, s′ are inde-
pendently and uniformly chosen from Zq. This shows the perfect rerandomness
according to Lemma 1. ✦

Since the encryption constructed above is two layers of ElGamal type of encryp-
tion, it is a conclusion in [3] that ElGamal encryption is key-privacy and hence
receiver anonymity in our sense.

Proposition 2.The encryption (KeyGen, Enc, Dec, PRand) is receiver anonymous.

3.2 Secretly Rerandomizable Encryption System

Publicly rerandomizable encryption system in last subsection needs public key
for randomization algorithm to make a randomization to the purported cipher-
text. This is not desired in some applications like universal mixnets [10]. Where
each mixing server will permute many ciphertexts from different sources to differ-
ent receivers. The public keys are either unavailable to mix servers or unintended
to mix servers.

We expand the publicly rerandomizable encryption systems in last subsec-
tion to obtain a secretly rerandomizable encryption system (briefly SRE) (or
rerandomizable RCCA encryption system [14]). SRE system consists of four
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algorithms (SKeyGen, SEnc, SDec, SRand). The algorithms SKeyGen and SDec be-
have in the same way respectively as KeyGen and Dec in last subsection. The
other two are as follows.

Encryption. Given a message m ∈ G, the encryption algorithm SEnc runs
as follows. First it chooses r, s ← Zq, t ← Ĝ, γ ← Zp at random. It then
computes

u0 ← ĝγ′
, w0 ← êγ′

, u0 ← ĝγ , w0 ← êγt,

u1 ← gr′

1 , v1 ← gr′

2 , w1 ← hr′
, u1 ← gr

1 , v1 ← gr
2 , w1 ← hrmt,

α ← H(m), u2 ← gs
1, v2 ← gs

2, w2 ← (cαd)ts.

The ciphertext is C = (u0, w0, u0, w0; u1, v1, w1, u1, v1, w1, u2, v2, w2).
Rerandomization. Given ciphertext C denoted as above. The secretly reran-

domization algorithm SRand selects r1, r
′
1, s2, t

′ ← Zq, γ0, γ
′
0 ← Zp at random

and then computes C′ as

(uγ′
0

0 , w
γ′
0

0 , u0u
γ0
0 , w0w

γ0
0 t′; u

r′
1

1 , v
r′
1

1 , w
r′
1

1 , ut′

1 ur1
1 , vt′

1 vr1
1 , wt′

1 wr1
1 , us2

2 , vs2
2 , wt′s2

2 )

It outputs C′ as the replayed ciphertext.

The rerandomization of C does not take public key pk as input, rather, only the
information from C is used. This shows that it is indeed a secretly randomizable
encryption.

3.3 Complexity

There are two secretly rerandomizable schemes in the literature and they ap-
peared in [11] and [14] respectively. We compare the efficiency of our scheme in
Section 3.2 with them in the following:

Groth [11] proposed the first secretly rerandomizable encryption system with
weak RCCA security. The scheme there used O(k) group elements to encode a
k-bit message. The public key and secret key is of length O(k).

The scheme proposed by Prabhakaran and Rosulek in [14] as a first secretly
rerandomizable system with RCCA security used 40 elements from Ĝ and 14
elements from G in their ciphertext. Public key there uses 13 group elements,
and secret key uses 20 group elements.

The secretly rerandomizable encryption scheme in this paper uses 4 elements
from Ĝ and 9 elements from G in a ciphertext. The public key here uses 7 group
elements, and secret key uses 5 group elements.

The number of operations in the group performed by our scheme is summa-
rized and compared to Groth’s scheme and PR’s scheme in Table 1. It is easy to
see that ours is the most practical scheme and much more efficient in the length
of ciphertext and operations needed during encryption and decryption as well
as rerandomization.
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Table 1. The comparison of the number of group operations performed by our scheme
with those by existing RCCA schemes. Where k is the number of bits in plaintext.

Schemes Functions Exponentiations Multiplications

Enc O(k) O(k)

Groth’s Scheme Dec O(k) O(k)

Rand O(k) 0

Enc 56 18

PR’s Scheme Dec 65 62

Rand 55 47

Enc 15 4

Our Scheme Dec 6 4

Rand 16 6

4 Proof of RCCA Security

In this section we will prove the publicly rerandomizable RCCA security for
scheme in Section 3.1. The system is a combination of two cryptosystems: one is
an expansion of Cramer-Shoup encryption system, another is ElGamal encryp-
tion system with public key pk1 = (ĝ, ê) and secret key sk1 = λ. To denote it as
Γ . The RCCA attack to the system forms an attack to the ElGamal encryption
Γ . This attack is called indirect RCCA attack to Γ . We show that under indi-
rect RCCA attack, ElGamal system Γ remains secure. To be more faithful to
the proof of our main theorem, we formalize the following indirect attack game:

Stage 1. Adversary queries a key generation oracle. The key generation oracle
computes pk = (ĝ, ê = ĝλ), sk = λ and responds with pk.

Stage 2. The adversary makes a sequence of indirect decryption oracle.
For each indirect decryption query, the adversary will submits a pair of
messages (m, c). Where m ∈ G\{1G} and c a cipher encrypted with pk.
Here c could be any ill formed ciphertext without using pk. The decryption
oracle decrypt c to get t ∈ Ĝ and responds with m1/t.

Stage 3. The adversary submits a message m0 ∈ G\{1G}, and the encryption
oracle chooses t0 ∈ Ĝ and γ ← Zp at random, and responds with ψ∗ =
(mt0

0 , (ĝγ , êγt0))
Stage 4. The adversary continues to make calls to indirect decryption oracle,

subject only to the restriction that the submitted should not the same as
the target message ψ∗.

Stage 5. The adversary outputs a value t̂ ∈ Ĝ.

We say the adversary succeeded in indirect attack game if t̂ = t0.
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Lemma 2. Under the assumption of DDH problem is hard in G and Ĝ, the
encryption system Γ is secure with respect to the indirect attack. Specifically, for
any PPT algorithm A, adversary A’s has negligible success probability in indirect
attack game.

The proof is followed from definition and omitted due to lack of spaces.
We now show the RCCA security of the scheme.

Theorem 1 (RCCA security). Under the assumption of DDH problem is
hard in the group G and that the hash H is a collision resistant hash function,
the system is a rerandomized RCCA secure encryption system.

Proof. The rerandomization of the system is straightforward to see. The proof
for RCCA security share the similarity to that for original Cramer-Shoup cryp-
tosystem [5,7] but with different arguments in details. We reduce the security of
system to the security of DDH problem assuming the collision resistance of hash
function H .

For any PPT algorithm A with success probability PrA[Succ] during RCCA
attack to the real cryptosystem, we construct an algorithm Â to distinguish
DDH tuples from random tuples as follow.

The input for Â is a tuple (g1, g2, g3, g4) that is either a random tuple meaning
that each entry gi is independently chosen from G uniformly, or a DH tuple
meaning that there is a random r ∈ Zq such that g3 = gr

1 , g4 = gr
2. The algorithm

Â runs the following experiment

Â(g1, g2, g3, g4)

x, y, a, b, a′, b′ ← Zq, ĝ ← Ĝ, λ ← Zp

ê = ĝλ; h = gx
1gy

2 , c = ga
1gb

2, d = ga′

1 gb′

2

pk = (ĝ, ê; g1, g2, h, c, d, H), sk = (λ; x, y, a, b, a′, b′)

(m0, m1, σ) ← AO1(pk), where 1G �= m0 �= m1 �= 1G

b ← {0, 1}, s ← Zq, t∗ ← Ĝ, γ ← Zp, α∗ := H(mb)

C∗ = (ĝγ , êγt∗; g3, g4, g
x
3 gy

4mt∗

b , gs
3, g

s
4, (g

aα∗+a′

3 gbα∗+b′

4 )t∗s)

b′ ← AO2(pk, C, σ)
If b = b′ then output 1
otherwise output 0

Where H is the collision resistant hash function used in the cryptosystem and
the string σ is state information of A that will be transformed to the second
decryption enquiry phase.

The two oracles are decryption oracles. The oracle O1, whenever recieve a
query, behaves exactly the same as in the cryptosystem using knowledge of sk
to decrypt the query. The oracle O2 runs just same as the decryption algorithm
except when the query has plaintext in {m0, m1}. When the plain text for the
query to oracle O2 is in {m0, m1} then oracle O2 will outputs test.
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Firstly, we have the following result:

Lemma 3. If the adversary Â gets DH tuple, A’s view of the experiment is the
same as that in an attack execution to the real encryption scheme.

Proof of Lemma 3. When the input tuple (g1, g2, g3, g4) to Â is random DH tuple,
there exists a r ∈ Zq such that g2 = gδ

1, g3 = gr
1, g4 = gδr

1 = gr
2. The challenging

ciphertext in the experiment is

C∗ = (ĝγ , êγt∗; g3, g4, g
x
3gy

4mt∗

b , gs
3, g

s
4, (g

aα∗+a′

3 gbα∗+b′

4 )t∗s)

= (ĝγ , êγt∗; gr
1 , g

r
2, (g

x
1gy

2 )rmt
b, grs

1 , grs
2 , (gaα∗+a′

1 gbα∗+b′

2 )t∗rs).

Where α∗ = H(mb). Which is a well formed ciphertext for message mb en-
crypted with public key pk. The oracles in the experiment run exact in the same
way as in the real attacking executions. This shows the view of adversary A in
this case is the same as that in attacking in the real system. This ends the proof
of Lemma. ✧

Let Rand be the event that the tuple (g1, g2, g3, g4) is chosen from distribution
of random tuples, and DH the event that the tuple is chosen from distribution of
Diffie-Hellman tuples.

Lemma 3 implies that conditioned the input is DH tuples, the success proba-
bility PrA[Succ] of adversary A attacking the encryption system in RCCA game
is same as the probability of algorithm Â outputs 1. That is,

Pr
A

[Succ] = Pr[Â = 1 | DH] (2)

However, the DDH intractability assumption implies

| Pr[Â = 1 | DH] − Pr[Â | Rand]| = negl(k) (3)

where k is the security parameter. This is the case since algorithm Â is a PPT
algorithm as A is.

The advantage of adversary attacking real system is, using equation (2) and (3),
∣
∣
∣
∣Pr
A

[Succ] − 1
2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr[Â = 1 | DH] − 1

2

∣
∣
∣
∣

≤
∣
∣
∣Pr[Â = 1 | DH] − Pr[Â = 1 | Rand]

∣
∣
∣ +

∣
∣
∣
∣Pr[Â = 1 | Rand] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣Pr[Â = 1 | Rand] − 1

2

∣
∣
∣
∣ + negl(k) (4)

This, together with the conclusion (5) in following Lemma 4, will show that the
advantage of A attacking real system is negligible. Since A is any such adversary,
that will complete the proof of the theorem. It remains to prove the following:

Lemma 4. If algorithm Â gets random tuple as input, algorithm A has no in-
formation about the bit b chosen by Â except with negligible probability. That is,
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the probability that adversary A correctly guesses bit b chosen by Â is negligibly
close to 1/2. Hence,

∣
∣
∣
∣Pr[Â = 1 | Rand] − 1

2

∣
∣
∣
∣ = negl(k) (5)

Proof of Lemma4. For a random tuple (g1, g2, g3, g4) ∈ G4, there exists δ, r, γ
uniformly in Zq such that

(g1, g2, g3, g4) = (g1, g
δ
1, g

r
1, g

η
1 )

It is with overwhelming probability that η �= rδ (mod q) and δ �= 0 (mod q)
except with negligible probability. We suppose η �= rδ in the following proof. Let
r′ ∈ Zq satisfy g4 = gr′

2 , then r′ �= r.
We call a ciphertext C = (u0, w0; u1, v1, w1, u2, v2, w2) valid if and only if

logg1
u1 = logg2

v1. The following claim says, adversary A might be able to get
useful information about b only if A queries with invalid ciphertext.

Claim 1. If the oracles O1, O2 reject all the invalid queries by A, then the dis-
tribution of b independent on the view of adversary A during the attack.

Proof of the Claim 1. We show this by showing that any valid ciphertext query
will not be able to give A further information about (x, y).

Before attack, A’s view about x, y is from pk. To be exactly from h. Even A
might solve discrete logarithm, A can only know that

logg1
h = x + δy . (6)

A linear combination about x, y.
We will see that adversary cannot get any information about x, y from the

challenge ciphertext C∗ = (u∗0, w
∗
0 ; u∗1, v

∗
1 , w∗1 , u

∗
2, v
∗
2 , w∗2). From which A gets

logg1
(w∗1/mt∗

b ) = rx + r′δy (7)

Where δ = logg1
g2, u∗1 = gr

1 and v∗1 = gr′

2 . By Lemma 2 and randomness of
(g1, g2, g3, g4), w∗1/mt

b is uniformly distributed in G in the view of adversary.
Equation systems (6) and (7) will give out a uniformly distributed point (x, y)
on the line (6). Thus adversary A cannot obtain any further information about
(x, y).

If, however, adversary queries only valid ciphertext (u0, w0; u1, v1, w1, u2, v2,

w2). Then logg1
u1 = logg2

v1 = r, and ux
1vy

1 = grx
1 gry

2 = hr. Hence, r log h = rx+
rδy. This is a linear dependent relations of equation (6). No further information
about x, y can be obtained. This ends the proof of Claim 1. ✧

Claim 2. The oracles O1, O2 will output ⊥ for all invalid queries that is not a
rerandomization of challenge meassage C∗, except with negligible probability.

Proof of the Claim 2. Consider the first invalid query ciphertext

C = (u0, w0; u1, v1, w1, u2, v2, w2)
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to oracles. If it comes from the rerandomization of the challenge ciphertext C∗,
adversary will get reply test. We will only consider invalid queries that is not a
rerandomization of C∗ in the following.

Let m = w1/(ux
1vy

1 ), t = w0/uλ
0 . As the first invalid query, by the result shown

in the proof of last claim, adversary cannot get the value m except with negligible
possibility. This is because (x, y) is now a random point (on line (6)). This
further implies that A cannot generate correct value α′ such that α′ = H(m1/t)
except with negligible probability due to the collision resistance property of H .
If logg1

u2 = logg2
v2 = s′, the ciphertext C cannot pass the decryption test

w
(ts′)−1

2 = cH(m1/t)d except with negligible probability.
Now we are in the case that adversary queries C with r̂ = logg1

u2 �= logg2
v2 =

r̂′. Let m := m1/t and α = H(m). Lemma 2 ensures that adversary will choose
t such that mt �= mt∗

b with overwhelming probability (here comes the restriction
of mb �= 1G). This shows α∗ = H(mb) �= α except with negligible probability.

We investigate the probability of C passing the test

u
(aα+a′)t
2 v

(bα+b′)t
2 = w2. (8)

We consider the distribution of (a, b, a′, b′) conditioned the view of adversary
A. Before attacking, from public key pk, adversary knows at most (even if A can
solve discrete logarithms) that

logg1
c = a + δb (9)

logg1
d = a′ + δb′ (10)

The further information might be obtained from the challenge ciphertext C∗,
where

logg1
w∗2 = r1(α∗a + a′)t∗ + r′1δ(α

∗b + b′)t∗. (11)

Where r1 = rs (mod q) and r′1 = r′s (mod q). We have r1 �= r′1 since r �= r′.
Adversary queries the invalid ciphertext C and passes the test (8) if and only

if it satisfies

logg1
w2 = r̂(αa + a′)t + r̂′δ(αb + b′)t. (12)

Recall that we have now δ �= 0, α′ �= α∗, r1 �= r′1, and r̂ �= r̂′ except with
negligible probability. Rewriting of equations (9), (10), (11), and (12) gives

⎛

⎜
⎜
⎝

logg1
c

logg1
d

logg1
w∗2

logg1
w2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 δ 0 0
0 0 1 δ

r1t
∗α∗ r′1t

∗α∗δ r1t
∗ r′1t

∗δ
r̂tα r̂′tαδ r̂t r̂′tδ

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
:=M

⎛

⎜
⎜
⎝

a
b
a′

b′

⎞

⎟
⎟
⎠ (13)

The matrix M is with determinant det M = t t∗δ2(α−α∗)(r1 −r′1)(r̂− r̂′) �= 0
with all but negligible probability. For each guess value of w2, there will be a
unique tuple (a, b, a′, b′) satisfying the equations. Since w2 could be any element
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in group G, the first invalid query that is able to pass decryption test with
negligible probability.

The reject of an invalid decryption query will rule out one possibility of tuple
(a, b, a′, b′). The n’th invalid decryption query will pass the test with probability
only at most 1/(q − n − 1). Suppose there are totally n many invalid decryption
query, one of them will pass the test with probability at most n/(q − n − 1).
Since algorithm A is a PPT algorithm, the number of invalid queries n will be
bounded up by a polynomial, while |q| ≥ k and q is exponential in k. Therefore,
n/(q − n − 1) is negligible in k.

In other words, the decryption oracles will reject all invalid queries except with
negligible probability. This accomplishes the proof of Claim 2 and Lemma 4. ✧

This also finishes the proof of Theorem 1.

To combine the conclusions in Proposition 1, Proposition 2, and Theorem 1, we
have

Theorem 2. The encryption system in Section 3.1 is an anonymous, perfectly
rerandomizable RCCA secure system. And the encryption system in Section 3.2
is a secretly anonymous, perfectly rerandomizable RCCA secure system.

5 Conclusion

While the PR scheme is the first perfectly rerandomizable RCCA secure scheme,
their construction is not receiver anonymous as stated by its authors in [14]. We
present the first receiver anonymous, perfectly rerandomizable RCCA secure en-
cryptions. The constructions inherit the double-strands feature from PR scheme
in Prabhakaran and Rosulek [14]. It constitutes of two layers of encryptions: one
layer to carry message, the other layer to carry a random quantity to hiding the
message in previous layer. New constructions dramatically reduce the complexi-
ties compared with PR scheme. They are plausible to be applied in the scenarios
like mix-nets [10,8], where the rerandomization of encryption are required and
the encryption with weaker re-encryption are not enough.

Our final aim is to construct an efficient perfectly rerandomizable RCCA
secure encryption. Though the constructions in this paper are much efficient
than PR scheme, they are far from efficient than desired. Some other properties
like universal composability of proposed constructions need further investigation
and we plan to do it as a part of our future work.
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Secure Multiparty Computation of DNF

Kun Peng
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Abstract. Homomorphism based multiparty computation techniques
are studied in this paper as they have several advantages over the other
multiparty computation schemes. A new homomorphism based multi-
party computation technique is proposed to evaluate functions in DNF
form. The new technique exploits homomorphism of a certain sealing
function to evaluate a function in DNF. The new technique has two
advantages over the existing homomorphism based multiparty computa-
tion schemes. Firstly, it supports any input format. Secondly, a general
method to reduce any function to DNFs is proposed in this paper. With
this method, functions like the famous millionaire problem can be re-
duced to DNFs and efficiently evaluated. Security of the new scheme is
formally defined in the static active adversary model and proved in a
new simulation model.

1 Introduction

Secure multiparty computation [1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 23,
24, 25, 26, 27, 28] is a technique to evaluate a function without revealing any
information about the inputs except the output. The basic technique of multi-
party computation is to present the function in a circuit composed of a few logic
gates and reduce the computation to evaluation of each gate. The inputs to the
function must be sealed and output of each gate must be private so that privacy
of the multiparty computation is protected.

Most existing multiparty computation schemes garble the inputs and outputs
wires of the gates to achieve privacy and this mechanism has a few drawbacks.
Firstly, they do not provide any concrete method to design an evaluation circuit
for the evaluated function. Instead they usually assume that the circuit already
exists and is ready to be garbled. Without a concrete circuit, the consequent
operations and analysis are based on assumptions like “after the circuit is gen-
erated by a party...” or “if the number of levels of gates is a logarithm of the
length of all the inputs ...”. Secondly, they need either a single circuit generator
(who knows how each gate is garbled and thus can learn additional information
about the inputs by monitoring execution of function evaluation) or a complex
and inefficient distributed multiparty circuit generation algorithm. Thirdly, it is
complex and inefficient for them to publicly prove and verify correctness of the
circuit without compromising its privacy. Fourthly, it is complex and inefficient
to match all the input variables to the function with the garbled inputting wires

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 254–268, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of the circuit, especially when public verifiability of this matching is required.
Finally, efficiency is low when appropriate trust sharing, public verifiability and
provable security are required.

We are interested in another solution [1, 9, 11, 12, 16, 23, 24, 25, 26, 28],
which employs homomorphic sealing function to seal the inputs and exploit
homomorphism of the sealing function to implement multiparty computation.
Intermediate outputs of all the gate are sealed, so does not reveal any information
assuming the sealing function is difficult to break. So the circuit can be public
and no gate needs garbling. Therefore the drawbacks of the first solution are
overcome. However, this solution has its own drawbacks. Firstly, only several
certain kinds of gates are supported and thus the function must be in a special
format. [9, 11] require that the function only employs three kinds of gates: “+”,
“-” and multiplication. [1, 28] only support NOT and OR gates, which [12]
only supports XOR and AND gates. [16] requires a very special format for the
function: Standard low-degree polynomials over a finite field. Obviously, given a
random function it is possible that it cannot be reduced to a polynomial number
of gates in a special format. So each scheme in the second solution has its own
favourite functions, which can be reduced to a polynomial number of gates in the
special format in that scheme and thus can be efficiently evaluated. Moreover,
each of them requires that each input variable must be in a special format and
they fail if any input variable is invalid. In addition, some schemes [23, 24, 25, 26]
are only suitabe to handle some certain functions.

In this paper, a new homomorphism based secure multiparty computation
scheme is proposed. Any function in DNF (disjunctive normal form) form1 can
be efficiently evaluated in the new scheme. It has two main advantages over the
existing homomorphism based multiparty computation schemes. Firstly, it does
not require any special input format. Instead, any input format is supported
and an appropriate format can be flexibly chosen for the evaluated function.
Secondly, a general method to reduce any function to DNFs is proposed in this
paper. With this method, functions like the famous millionaire problem can be
reduced to simple DNFs and then efficiently evaluated. The new scheme employs
a flexible participant model. Like [10], it does not require all the input providers
to take part in the computation. Although there may be many inputs and in-
put providers to a function, a small number of computation performers can be
employed, such that communication between them is not a heavy overhead in
practice. This participant model is especially suitable for applications like e-
auction and e-voting. Static active adversary model is used in the new scheme,
which is strong enough for most practical applications. The UC (universal com-
posable) security model [4] is not employed in the new scheme. Correctness and
soundness of the new scheme are defined in a straightforward manner while its
privacy is defined in a new simulation model detailed in Section 2, which is
simpler and more practical than the UC model and other traditional simulation
models. Security of the new scheme is formally guaranteed when a majority of
the computation performers are honest.

1 Detailed definition of function in DNF will be given in Section 4.
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2 Security Model

There are usually three kinds of participants in multiparty computation: IPs
(input providers), CPs (computation performers) and result receivers. They re-
spectively provide inputs, carry out the computation and receive the result.
Although it is assumed in most multiparty computation schemes that all the
participants play all the three roles, that assumption is impractical in many ap-
plications like e-auction and e-voting. A typical application is inputs from many
IPs are evaluated by several CPs. So in this paper, the participant model in [10]
is adopted: the IPs and the CPs are not the same group of participants and the
number of CPs is small. However, our participant model is a general model and
the three sets of players need not be disjoint. In garbled circuit based secure
computation, more participants like circuit generator (called compiler or issuer
in some schemes) are often needed. In this paper, we design a homomorphism
based secure computation scheme, so only need the three kinds of participants.
When we say a CP is corrupted, we mean an adversary obtains its complete se-
cret information (including historical record) and controls it behaviour. In other
words, we adopt active adversary model. Moreover, we assume the adversaries
are static. Two kinds of synchronous communication channels are used in this
paper. A public broadcast channel also called bulletin board is set up for ex-
change of public information. In addition, there is an authenticated confidential
channel from each IP to each CP. The following security properties are required
in a multiparty computation protocol.

– Correctness: when given encryption (or commitment) of inputs x1, x2, . . . , xn

and asked to compute function f(), if a majority of CPs are not corrupted,
the protocol outputs f(x1, x2, . . . , xn).

– Public verifiability: there is a public verification procedure, by which any
one can publicly check whether the protocol outputs f(x1, x2, . . . , xn) when
inputs x1, x2, . . . , xn are given to function f().

– Soundness: if a majority of CPs pass the public verification procedure, the
protocol outputs f(x1, x2, . . . , xn) when given encryption (or commitment)
of input x1, x2, . . . , xn and f().

– Privacy: if a majority of CPs are not corrupted no information about the
input is revealed except what can be deduced from the result of the function.

In the security definition above, the complex UC model [4] is not used. Cor-
rectness and soundness are more straightforward defined. However, definition
of privacy is still intuitive and informal. So it is more formally defined in a
simulation model simpler than the UC model as follows.

Definition 1. There exists a polynomial algorithm for a party without any knowl-
edge about any input to simulate the transcript of the secure computation protocol
such that no polynomial algorithm can distinguish the simulated transcript and the
real transcript with a probability non-negligibly larger than 0.5.
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3 Parameters and Primitives

p, q, G, g, h are public parameters. p is a large prime such that p − 1 has a large
factor q with no small factor. G is the cyclic subgroup of Z∗p with order q. g and
h are generators of G such that logg h is unknown. A primitive to be used later,
the t-out-of-m secret sharing algorithm in [22], is described as follows.

– To share a secret s among m parties A1, A2, . . . , Am, a dealer builds two
polynomials F (x) =

∑t−1
l=0 flx

l mod q and H(x) =
∑t−1

l=0 hlx
l mod q where

f0 = s and fl for l = 1, 2, . . . , t − 1 and hl for l = 0, 1, . . . , t − 1 are random
integers in Zq.

– The dealer publishes sharing commitments El = gflhhl mod p for l = 0, 1, . . . ,
t − 1 on the bulletin board.

– The dealer sends Ak its share (sk, rk) = (F (k), H(k)) through the authenti-
cated confidential channel.

– Ak verifies gskhrk =
∏t−1

l=0 Ekl

l mod p. If the verification is passed, Ak can be
sure that (sk, rk) is the kth share of the secret committed in E0. As m and t
are usually small integers, each verification costs 2 exponentiations and O(t)
multiplications.

– If at least t correct shares are put together, the secret committed in E0 can
be recovered as s =

∑
k∈Φ skuk mod q where uk =

∏
l∈Φ,l �=k

l
l−k and Φ is a

set containing the indexes of t correct shares.

Note that definition of uk will be used throughout the paper. Pedersen [22]
proves that when logg h is unknown and discrete logarithm is a hard problem,
there is only one polynomial way to open commitment E0, which is denoted as
s ←− REC(E0) in this paper. Pedersen also illustrates that his secret sharing
scheme is homomorphic. Namely, REC(E0) + REC(E′0) = REC(E0E

′
0) mod q

where E0 and E′0 are the first components in two commitments.
Besides the general secret sharing algorithm described above, a special variant

of it is employed in this paper. In the special variant, a public known integer s
instead of a secret is shared. Its purpose is not to secretly hide the integer but to
publicly distribute it into a sharing format. Implementation of the special secret
sharing algorithm is simple: the commitment generation and sharing generation
function are the same as in the general secret sharing algorithm except that
F (x) = s, H(x) = 0 and the shares are public. So anyone can calculate com-
mitment gs, 1, 1, . . . , 1 and each Ak’s share is (s, 0). This special variant is called
simplified secret sharing, which only costs one exponentiation but has all the
properties of the original secret sharing algorithm except privacy of the shared
integer.

In this paper, ElGamal encryption is employed. Private key xk is chosen for
Ak from Zq. Ak’s public key yk is gxk mod p. Note that ElGamal encryption is
semantically secure. More precisely, given a ciphertext c and two messages m1

and m2, such that c = E(mi) where i = 1 or 2, there is no polynomial algorithm
to find out i with a probability non-negligibly larger than 0.5 when the private
key is unknown. In this paper, ZP [ x1, x2, . . . , xα | R1, R2, . . . , Rβ ] denotes a
ZK proof of knowledge of x1, x2, . . . , xα satisfying conditions R1, R2, . . . , Rβ . In
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this paper, there is a security parameter T such that T is a small integer and 2T

is no larger than the smallest factor of q.

4 Reduction to DNFs and Sealing the Inputs

A function with μ IPs IP1, IP2, . . . , IPμ and inputs m1, m2, . . . , mμ can be re-
duced to DNFs as follows where mι is the input of IPι for ι = 1, 2, . . . , μ.

1. Integer L is chosen such that 2L ≥ S and 2L−1 < S where S is the size
of the co-domain of the function. Sort all the variables in the co-domain in
a certain order and the kth variable is transformed into a new format: the
binary representation of k.

2. The function is divided into L sub-functions, each of which receives the input
of the function and outputs one bit of the result of the function in the new
output format.

3. Each sub-function is transformed into a DNF as follows.
(a) The truth table mapping m1, m2, . . . , mμ through the sub-function to

{0, 1} is established.
(b) Every row with an output 1 in the truth table is picked out. Each chosen

row is transformed into a clause, which tests whether mι equals to the
ιth input variable in the row for ι = 1, 2, . . . , μ. Each test in the clause
is a basic logic computations and they are linked with AND logic.

(c) Linking all the clauses with OR logic produces a DNF.
(d) Two methods can be employed to optimisation DNFs. The first method

adjusts the length and number of the inputs. A long input is divided into
multiple shorter inputs such that the the number of rows in the truth
table decreases. The second method is Karnaugh map, which simplifies a
DNF into least minterm form (See Pages 104–106 of [20]). Both methods
are tried until the simplest DNFs are obtained after multiple trials.

4. Outputs of all the DNFs form a L bit binary string, which can be transformed
back into the functions’ original co-domain (the bit string representing inte-
ger k is transformed to the kth output in the original co-domain).

Note that the algorithm above is not unique. For example, Karnaugh map
can be replaced by Quine-McCluskey technique (See Page 99 of [20]). After the
simplest DNF circuit is obtained, the function can be efficiently evaluated as
described later in this paper. An example will be given in Section 7 to illustrate
high efficiency of this method.

To protect privacy of secure multiparty computation, the inputs of any DNF
must be sealed when it is processed. The unsealing power is shared among the
CPs.In our solution, the secret sharing algorithm in Section 3 is employed to seal
the inputs where the CPs A1, A2, . . . , Am act as the share holders. The inputs
to the DNFs of the function are sealed as follows using the t-out-of-m verifiable
secret sharing scheme in [22] as described in Section 3 and we require m+1 = 2t.

1. For ι = 1, 2, . . . , μ each IPι seals mι in commitment Eι,l for l = 0, 1, . . . , t −
1 and shares it among the CPs. The commitments are published on the
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bulletin board and share (sι,k, rι,k) is sent to Ak through the authenticated
confidential channel for k = 1, 2, . . . , m. Thus all the inputs to all the DNFs
are sealed.

2. Every Ak verifies validity of each of his shares: gsι,khrι,k
?=

∏t−1
l=0 Ekl

ι,l mod p
for ι = 1, 2, . . . , μ. If an invalid share is found by a CP, it is published on the
bulletin board. As the communication channel used to distribute the shares
is authenticated, no IP can deny any invalid share it sends out. Therefore,
dishonest IPs can be detected and expelled.

3. All the DNFs are transformed into sealed format (composed of sealed inputs
and logic operation on them) one by one. A DNF in the form of (2) is
transformed to

∨n
i=1 (REC(Ei,1,0)=ai,1∧REC(Ei,2,0)=ai,2∧. . .∧REC(Ei,M(i),0)=ai,M(i))

(1)
where Ei,j,l = Eι,l for l = 0, 1, . . . , t − 1 if mi,j = mι. For k = 1, 2, . . . , m
each Ak holds (sι,k, rι,k) as his share of REC(Ei,j,0) if mi,j = mι.

In each DNF, only the inputs to the DNF are sealed while all the equations, all
the AND and OR logic relations and the way they are combined and linked are
public. So without any proof anyone can publicly and directly check that in our
new scheme that each DNF is correctly organised and all the DNFs cooperate
to evaluate the target function.

5 Evaluation of DNF

A DNF is in the form of

∨n
i=1 (mi,1 = ai,1 ∧ mi,2 = ai,2 ∧ . . . ∧ mi,M(i) = ai,M(i)) (2)

where M(i) is the number of inputs involved in the ith clause in that DNF and
mi,j ∈ {m1, m2, . . . , mμ}. In DNF (1) there are three levels of computation. The
bottom level is the equations; the middle level is AND logic and the top level is
OR logic. The three levels are computed one by one from the bottom to the top.

5.1 Computation on the Bottom Level

By simply exploiting homomorphism of the employed secret sharing algorithm,
(1) is simplified to

∨n
i=1 (REC(gai,1/Ei,1,0) = 0 ∧ REC(gai,2/Ei,2,0) = 0 ∧

. . . ∧ REC(gai,M(i)/Ei,M(i),0) = 0) (3)

Every commitment variable and share in the simplified DNF must be adjusted
as follows.

1. A set A =
⋃i<n,j<M(i)

i=1,j=1 {ai,j} is set up to include all the constant integers
involved in all the equations in the DNF in the form (1). Suppose A has a
size ν and A = {a1, a2, . . . , aν}.
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2. For ι = 1, 2, . . . , ν, commitment Êι,l for l = 0, 1, . . . , t − 1 and shares
(ŝι,k, r̂ι,k) for k = 1, 2, . . . , m are publicly available for aι using the sim-
plified secret sharing algorithm in Section 3.

3. For each ai,j , if ai,j = aι, then Êi,j,l = Êι,l for l = 0, 1, . . . , t − 1 and
ŝi,j,k = ŝι,k, r̂i,j,k = r̂ι,k for k = 1, 2, . . . , m.

4. (3) is presented in the form

∨n
i=1 (REC(E′i,1,0) = 0∧REC(E′i,2,0) = 0∧ . . .∧REC(E′i,M(i),0) = 0) (4)

where every commitment variable for (4), E′i,j,l, is publicly available as
Êi,j,l/Ei,j,l mod p for i = 1, 2, . . . , n, j = 1, 2, . . . , M(i) and l = 0, 1, . . . , t−1.
Ak calculates s′i,j,k = ŝi,j,k − si,j,k mod q and r′i,j,k = r̂i,j,k − ri,j,k mod q as
its share of REC(E′i,j,0) for i = 1, 2, . . . , n, j = 1, 2, . . . , M(i) and k =
0, 1, . . . , m.

5.2 Computation on the Middle Level

Homomorphism of the employed secret sharing algorithm is further exploited to
transform (4) into

∨n
i=1

∑M(i)
j=1 REC(E′i,j,0)tj = 0 (5)

where each tj is a random integer.

1. The CPs cooperate to choose T bit random integers tj for j = 1, 2, . . . , M
where M = max(M(1), M(2), . . . , M(n)). More precisely, each Ak secretly
chooses random integers tj,k from Zq for j = 1, 2, . . . , M and publishes hj,k =
h(tj,k) for j = 1, 2, . . . , M where h() is a collision resistant one-way function.
After each hj,k has been published, the CPs publish tj,k for j = 1, 2, . . . , M
and k = 1, 2, . . . , m. Finally, hj,k = h(tj,k) for j = 1, 2, . . . , M and k =
1, 2, . . . , m is verified and tj =

∑m
k=1 tj,k mod 2T for j = 1, 2, . . . , M are

calculated. For the sake of high efficiency, h() can be a hash function. If
there is any concern for collision resistance in hash functions, h(x) can be
gx mod p.

2. (5) is presented in the form of (6).

∨n
i=1 REC(E′i,0) = 0 (6)

where every commitment variable for (6), E′i,l, is publicly available as
∏M(i)

j=1 E′tj

i,j,l mod p for i = 1, 2, . . . , n and l = 0, 1, . . . , t − 1. Ak calculates

s′i,k =
∑M(i)

j=1 s′i,j,ktj mod q and r′j,k =
∑M(i)

j=1 r′i,j,ktj mod q as its share of
REC(E′i,0) for i = 1, 2, . . . , n and k = 0, 1, . . . , m.

5.3 Computation on the Top Level

(6) is equivalent to
∏n

i=1 REC(E′i,0) = 0,
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which according to homomorphism of the employed secret sharing scheme is
equivalent to

REC(E′
∏n

i=2 REC(E′
i,0)

1,0 ) = 0 or namely REC(E′
∏n

i=2
∑

k∈K si,kuk

1,0 ) = 0,

which is equivalent to

REC((
∏

k∈K E′
s′
2,kuk

1,0 )
∏n

i=3
∑

k∈K s′
i,kuk) = 0, (7)

where K is a set containing the indices of t honest CPs and uk =
∏

l∈K,l �=k
l

l−k .
∏

k∈K E′
s′
2,kuk

1,0 is denoted as E′′1,0. To evaluate (7), E′′1,0 has to be calculated
without revealing s′2,k for k ∈ K. Moreover, E′′1,l for l = 1, 2, . . . , t− 1 have to be
calculated to form a complete commitment. In addition, each Ak with k in K
should get its share necessary to reconstruct the secret in E′′1,0. The commitment
generation and shares distribution operations are as follows.

1. For k ∈ K each Ak calculates and publishes c′1,k = (gγ1,k mod p, y
γ1,k

k gs′
1,k

mod p) and e′1,k = (gδ1,k mod p, y
δ1,k

k hr′
1,k mod p) where γ1,k and δ1,k are

randomly chosen from Zq.

2. For k′ ∈ K each Ak′ calculates E′′1,l,k′ = E′
s′
2,k′ uk′

1,l mod p for l = 0, 1, . . . , t−1

and c′′1,k,k′ = c′
s′
2,k′ uk′

1,k mod p, e′′1,k,k′ = e′
s′
2,k′ uk′

1,k mod p for k ∈ K.
3. E′′1,l =

∏
k′∈K E′′1,l,k′ mod p for l = 0, 1, . . . , t − 1 and c′′1,k =

∏
k′∈K c′′1,k,k′

mod p, e′′1,k =
∏

k′∈K e′′1,k,k′ mod p for k ∈ K.

Note that in the algorithm above, two integers k′ and k are used for the indices
of the CPs. The reason is that each CP have two roles: share holder and evalua-
tor. So two integers are needed for each index: Ak stands for the kth CP holding
(s′1,k, r′1,k) while Ak′ stands for the k′th CP raising (c′1,k, e′1,k) and the commit-
ment variables to the power of its secret s′2,k′uk′ . Thus E′′1,0 and its subsidiary
commitment variables are generated and each honest CP gets a encrypted share
necessary to reconstruct the secret in E′′1,0. Therefore, (7) is transformed to

REC(E′′
∏n

i=3
∑

k∈K s′
i,kuk

1,0 ) = 0 (8)

with the corresponding commitment variables and shares publicly available. (8)
is equivalent to

REC((
∏

k∈K E′′
s′
3,kuk

1,0 )
∏n

i=4
∑

k∈K s′
i,kuk) = 0 (9)

(9) is then transformed to

REC((
∏

k∈K E′′
s′
4,kuk

2,0 )
∏n

i=5
∑

k∈K s′
i,kuk) = 0, (10)

where E′′2,l =
∏

k′∈K E′′
s′
3,k′ uk′

1,l mod p for l = 0, 1, . . . , t−1 and the correspond-

ing encrypted shares are c′′2,k =
∏

k′∈K c′′
s′
3,k′ uk′

1,k mod p, e′′2,k =
∏

k′∈K e′
s′
3,k′ uk′

1,k
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mod p for k ∈ K. (9) is transformed to (10) in the same way as (7) is transformed
to (8). More precisely, each Ak′ with k′ ∈ K raises the commitment variables and
encrypted shares of (9) to the power of his secret s3,k′uk′ and then the honest
CPs’ outputs are combined.

The transform continues until (6) is reduced to

REC(
∏

k∈K E′′
s′

n,kuk

n−2,0 ) = 0

(with supporting commitment variables E′′n−2,l for l = 1, 2, . . . , t − 1 and cor-
responding encrypted shares c′′n−2,k, e′′n−2,k for k ∈ K) and finally

REC(E′′n−1,0) = 0 (11)

with supporting commitment variables E′′n−1,l for l = 1, 2, . . . , t − 1 and corre-
sponding encrypted shares c′′n−1,k, e′′n−1,k for k ∈ K where E′′n−1,l =
∏

k′∈K E′′
s′

n,k′uk′

n−2,l mod p and c′′n−1,k =
∏

k′∈K c′′
s′

n,k′uk′

n−2,k mod p, e′′n−1,k =
∏

k′∈K e′
s′

n,k′ uk′

n−2,k mod p for k ∈ K.
All the operations described intuitively above in this subsection can be de-

scribed in an abstract manner as follows. For i = 2, 3, . . . , n:

1. for k′ ∈ K each Ak′ calculates

E′′i−1,l,k′ = E′′
s′

i,k′ uk′

i−2,l mod p for l = 0, 1, . . . , t − 1 (12)

c′′i−1,k,k′ = c′′
s′

i,k′ uk′

i−2,k mod p for k ∈ K (13)

e′′i−1,k,k′ = e′′
s′

i,k′ uk′

i−2,k mod p for k ∈ K (14)

2. E′′i−1,l =
∏

k′∈K E′′i−1,l,k′ for l = 0, 1, . . . , t − 1 and c′′i−1,k =
∏

k′∈K c′′i−1,k,k′ ,
e′′i−1,k =

∏
k′∈K e′′i−1,k,k′ for k ∈ K

where E′′0,l = E′1,l for l = 0, 1, . . . , t − 1 and c′′0,k = c′1,k for k ∈ K, e′′0,k = e′1,k for
k ∈ K.

5.4 Secret Reconstruction

(11) is solved as follows.

1. For k ∈ K each Ak decrypts his encrypted share e′′n−1,k using ElGamal
decryption function: rk = Dk(e′′n−1,k) and publishes rk.

2. A secret is reconstructed: r =
∏

k∈K ruk

k mod p.
3. If r = E′′n−1,0, then the DNF is 1. Otherwise, it is 0.

6 Implementation and Efficiency Optimisation

There is an efficiency concern in the operation in Section 5.1, which needs μ
inversions,

∑n
i=1 M(i) multiplications and ν simplified secret sharing operations.



Secure Multiparty Computation of DNF 263

m and t are small integers like 3 or 4. μ is usually not too large in practical
applications. The DNF optimisation mechanism guarantees that n is not large
if the function is suitable for DNF solution. So the only efficiency concern is
about ν, which may be large in some cases. Although each simplified secret
sharing operation only cost 1 exponentiation, a large cost is needed when ν is
large. An optimised function is proposed as follows to replace the corresponding
commitment and sharing functions in Section 5.1 to commit to and share publicly
known integers ai,j for i = 1, 2, . . . , n and j = 1, 2, . . . , M(i) in the simplified
sharing format when ν is large.

1. A set A =
⋃i<n,j<M(i)

i=1,j=1 {ai,j} is set up to include all the constant integers
involved in all the equations in the DNF in the form (1). Suppose A has a
size ν and A = {a1, a2, . . . , aν} and the largest integer in A is ρ bits long.

2. For τ =1, 2, . . . , ρ − 1, Gτ = G2
τ−1 are calculated where G0 = 1.

3. For ι=1, 2, . . . , ν, the commitment of aι is publicly available as (Êι,0, Êι,1, . . . ,

Êι,t−1) = (
∏ρ−1

τ=0 G
bι,τ+1
τ mod p, 1, 1, . . . , 1) and its share for every Ak is pub-

licly available as (ŝι,k, r̂ι,k) = (aι, 0) where bι,τ is the τ th bit of aι.
4. For each ai,j , if ai,j = aι, then Êi,j,l = Êι,l for l = 0, 1, . . . , t − 1 and

ŝi,j,k = ŝι,k, r̂i,j,k = r̂ι,k for k = 1, 2, . . . , m.

After this optimisation, cost for committing to and sharing the constant inte-
gers in the function is 2(ρ − 1) multiplications. Therefore, evaluation of DNFs is
efficient. However, until now public verification has not been taken into account.
A cautious method to achieve public verifiability called complete public verifi-
cation procedure is to publicly verify validity of any secret operation. Thus the
following proof and verification computations are needed.

1. Each Ak has to publicly prove that his share of REC(E′1,0) is encrypted in
c′1,k and e′1,k through ZK proof:

ZP [ γ1,k, δ1,k, s′1,k, t′1,k | c′1,k = (gγ1,k mod p, y
γ1,k

k gs′
1,k mod p), (15)

e′1,k = (gδ1,k mod p, y
δ1,k

k hr′
1,k mod p), gs′

1,kht′
1,k =

∏t−1
l=0 E′k

l

1,l mod p ],

Proof and verification of (15) for k ∈ K cost 13t full length exponentiations,
t(t + 5) short exponentiations and t(t + 15) multiplications.

2. Computation of (12), (13) and (14) must be publicly proved and verified for
i = 2, 3, . . . , n and k′ ∈ K through ZK proof:

ZP [ s′i,k′ , t′i,k′ | E′′i−1,l,k′ = E′′
s′

i,k′ uk′

i−2,l mod p for l = 0, 1, . . . , t − 1,

c′′i−1,k,k′ =c′′
s′

i,k′ uk′

i−2,k mod p for k ∈ K, e′′i−1,k,k′ =e′′
s′

i,k′ uk′

i−2,k mod p for k∈K,

gs′
i,k′ ht′

i,k′ =
∏t−1

l=0 E′k
′l

i,l mod p ], (16)

Proof and verification of (12), (13) and (14) for i = 2, 3, . . . , n and k′ ∈
K cost (n − 1)t(3t + 12) full length exponentiations, (n − 1)t(t + 5) short
exponentiations and (n − 1)t(4t + 16) multiplications.
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3. Decryption in Step 1 in Section 5.4 must be publicly proved and verified
through ZK proof:

ZP [ xk | gxk = yk, a′′xk

n−1,krk = b′′n−1,k ] (17)

for k ∈ K. (17) can be publicly proved and verified through ZK proof of equal-
ity of logarithms [7], which costs 6t exponentiations and 3t multiplications.

4. As mentioned in Section 4 sharing of the μ secret inputs must be verified,
which costs the CPs totally 2mμ exponentiations and O(mμt) multiplica-
tions. As illustrated in Section 4 if a CP finds an invalid share from an IP,
he can publish it and the IP cannot deny it as the communication channel
between them is authenticated.

There is a more efficient method to achieve public verifiability. It does not
require to publicly verify validity of every secret operation. Instead, it only pub-
licly proves and verifies that

∏n
i=1

∑M(i)
j=1 (ai,j −mi,j)tj is correctly committed in

E′′n−1,0 and correctly reconstructed. So only the following proof and verification
operations are needed.

1. A′k publicly proves for i = 2, 3, . . . , n and k′ ∈ K

ZP [ s′i,k′ , t′i,k′ | E′′i−1,0,k′ = E′′
s′

i,k′ uk′

i−2,0 mod p,

gs′
i,k′ ht′

i,k′ =
∏t−1

l=0 E′k
′l

i,l mod p ],

verification of which guarantees that E′′n−1,0 is correctly generated. The proof
and verification of (18) are implemented in Figure 1.

2. It is publicly proved and verified that correct shares are used to reconstruct
the secret committed in E′′n−1,0 in Section 5.4. More precisely, after each
Ak publishes sk = Dk(c′′n−1,k) and rk = Dk(e′′n−1,k), it is publicly verified

skrk =
∏t−1

l=0 E′′k
l

n−1,l mod p for k ∈ K.

This efficient public verification procedure (including proof and verification)
only costs 6 full length exponentiations, t2 + t + 2 short exponentiations and
t2 + t + 6 multiplications, and thus is much more efficient than the complete
verification procedure. If it is passed, it is guaranteed that g

∏n
i=1

∑M(i)
j=1 (ai,j−mi,j)tj

is correctly reconstructed to determine the result of the function. If it fails, the
complete verification procedure is run and every secret operation is verified until
an invalid secret operation is detected. Then the participant responsible for the
invalid secret operation is expelled. If a penalty is given to any detected dishonest
participant, the participants will usually be honest and in most cases only the
efficient verification procedure is needed. Therefore, the DNFs can be efficiently
evaluated while public verifiability is achieved.

Theorem 1, Theorem 2 and Theorem 3 illustrate correctness, soundness and
privacy of the new scheme respectively. Privacy of the new secure computation
protocol with the complete public verification procedure can be proved as well.
Due to space limitation, their proof is left to the readers.
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1. A′
k publishes z1,i,k′ and z2,i,k′ where

z1,i,k′ = (E′′uk′
i−2,0)

v1,i,k′ mod p

z2,i,k′ = gv1,i,k′ hv2,i,k′ mod p

and v1,i,k′ , v2,i,k′ are randomly chosen from Zq.
2. A verifier randomly chooses and publishes a 128 bit integer ui,k′ .
3. A′

k publishes w1,i,k′ and w2,i,k′ where

w1,i,k′ = v1,i,k′ − s′
i,k′ui,k′ mod q

w2,i,k′ = v2,i,k′ − t′
i,k′ui,k′ mod q

Anyone can verify

z1,i,k′ = (E′′uk′
i−2,0)

w1,i,k′ E′′ui,k′
i−1,0,k′ mod p

z2,i,k′ = gw1,i,k′ hw2,i,k′ (
∏t−1

l=0 E′k′l

i,l )ui,k′ mod p

Fig. 1. ZK proof and verification of (18)

Theorem 1. The new secure computation protocol is correct.

Theorem 2. The new secure computation scheme is sound with the efficient
public verification procedure.

Theorem 3. The new secure computation protocol is private with the efficient
public verification procedure.

7 A Typical Example and Comparison

Using the DNF generation algorithm in Section 4, the famous millionaire problem
(the most popular and typical example in secure computation) is reduced to a
simple DNF as follows.

1. m1 and m2 are L-bit messages to be compared where m1 = (m1,1, m1,2, . . . ,
m1,L), m2 = (m2,1, m2,2, . . . , m2,L) and mi,j is the jth most important bit
of mi.

2. The DNF to evaluate the function is

(m1,1 = 1 ∧ m2,1 = 0) ∨ (m1,1 = m2,1 ∧ m1,2 = 1 ∧ m2,2 = 0) ∨
. . . ∨ (m1,1 = m2,1 ∧ m1,2 = m2,2 ∧ . . . ∧ m1,L−1 = m2,L−1

∧m1,L = 1 ∧ m2,L = 0)

which is a simple DNF and can be efficiently evaluated.

In Table 1, the new secure computation scheme is compared with the existing
general purpose secure computation schemes. Secure computation techniques
only dealing with a special function (like [23, 24, 25, 26]) are not included. As
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Table 1. Comparison of properties

Scheme Sound- Privacy Flexibility Computation Communi-
-ness in format -cation

[21] No Yes No ≥ 15KLT ≥ 37LT + 2T
= 61440000 = 148080

[18] Yes Yes No ≥ 15KLT ≥ 37LT + 2T
= 61440000 = 148080

[17] Yes Yes No average ≥ 4665KL ≥ 1626L
= 477696000 = 162600

[3] Yes Yes No average ≥ 4039.5KL ≥ 1543L
= 413644800 = 154300

[28] No Incomplete No > L4 ≥ 343L3

= 100000000 = 343000000

1.5K(4L + 40n − 18)+ 10L + 30n
New Yes Yes Yes 6K′(n − 1) + 2L + 44n − 41 −20

= 1208663 = 1280

pointed out in Section 1 it is very difficult to precisely estimate the cost of secure
computation schemes employing an abstract circuit [8, 9, 10, 11, 17, 18, 21].
They only claimed that a certain evaluation circuit is established to evaluate a
function while the concrete algorithm to generate the circuit is not provided and
the concrete structure of the circuit is unknown. So there is not an instantiated
protocol to be analysed in regard to efficiency in these schemes. Fortunately the
concrete cost of [17, 18, 21] can be estimated according to [19], whose result is
then used in Table 1. Unfortunately, there is no hint available to the concrete
cost of [8, 9, 10, 11], which are thus not included in Table 1. The schemes in [9]
and [1] are similar to [17] and [28] respectively, so are not separately listed in
Table 1.

For fairness of the comparison, the circumstance of the existing schemes is
adopted in the new scheme. For the sake of simplicity and generality, t, the
sharing threshold, is set to be 2. As the cost of preliminary operations including
set-up of distributed system (distribution of private key2 or input), input en-
cryption, input validity check and all the public verification operations are not
counted in computation efficiency analysis of the existing schemes, their cost is
not counted in computation of the new protocols as well. In Table 1, n stands for
the number of clauses in the DNF; K is the bit length of a full length integer; K ′

is the length of challenges in ZK proof primitives and T is the cutting factor in
cut-and-choose mechanism. The number of full length multiplications is counted
in terms of computation while addition, multiplication of small integers and ex-
ponentiations with small base are ignored and exponentiations with full length
base are converted into multiplications with a rule: an exponentiation with a
x bit exponent is equivalent to 1.5x multiplications. In Table 1, transportation
of integers with significant length (e.g. 1024 bits long) is counted in regard to

2 In some secure computation schemes [1, 28], distributed generation of private key is
extremely inefficient.
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communication. In the example in Table 1, the evaluated function is the mil-
lionaire problem and K = 1024, K ′ = 128, L = 100, n = 10 and T = 40. It is
clearly illustrated in Table 1 that the new secure computation scheme is secure,
flexible and much more efficient than the existing secure computation schemes.

8 Conclusion

A new homomorphism based secure multiparty computation scheme with formal
security, strong flexibility and high efficiency is proposed. Compared to the other
homomorphism based multiparty computation schemes [1, 9, 11, 12, 16, 28], the
new scheme is more suitable for functions which can be reduced to polynomial-
size DNFs. The new scheme achieves flexibility in input format and supports
any input format. Privacy of the new scheme is formally proved in a novel se-
curity model, which has independent value. A typical example of evaluating the
millionaire problem is given to clearly illustrate advantage of the new scheme in
efficiency. The example also demonstrates practicality and applicability of the
new scheme.
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Abstract. In this paper, a square like attack on Camellia is presented,
by which 9-round 128-bit key Camellia without FL/FL−1 functions layer
and whitening is breakable with complexity of 286.9 encryptions and 266

data and 12-round 256-bit key Camellia without FL/FL−1 function layer
and whitening is breakable with the complexity of 2250.8 encryptions and
266 data. And we can also apply such method to block cipher having
XORing sBoxes in diffusion layer.

Keywords: Camellia, Block Cipher, Square attack.

1 Introduction

Camellia [1] is a symmetric key block cipher developed jointly in 2000 at NTT
and Mitsubishi Electric Corporation. It has the modified Feistel structure with
irregular rounds, which is called the FL/FL−1 functions layers. Camellia has
been accepted by ISO/IEC [11] as an international standard. It is also a winner
of NESSIE, CRYPTREC project and IETF [11].

Efficient methods analyzing Camellia include linear attack [13], differential
attack [13] truncated differential attack [6,8,14], impossible differential attack
[16,14], higher order differential attack [4,7], Collision attack [10,15] and square
attack [10,5,17]. The best attack on 128-bit key Camellia was linear attack
[13], which can attack 10-round Camellia without FL/FL−1 functions layer and
whitening with complexity of 2121. The best attack against 256-bit key Camellia
was impossible differential attack, which can attack 12-round Camellia without
FL/FL−1 functions layer and whitening with complexity of 2181.

In this paper, we improve the attacking results on Camellia. Our method
uses active set [2], which was first introduced in square attack [2,3], to build
the attack, however, the balanced byte is not core byte in our attack, special
properties on XORing of active sBoxes are applied to build the distinguisher, so
we call it square like attack. Such properties are first discovered and are in effect
on the ciphers with XORing in diffusion layer.

Brief description of Camellia is presented in section 2. In section 3, active
bytes transformations on Camellia are illustrated and some new properties are
demonstrated. Our basic attacking method is described in section 4. Section 5

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 269–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is its extension. The paper concludes with our most important results contrast
with other known results.

2 Description of the Camellia

Camellia has a 128-bit block size and supports 128-, 192- and 256-bit keys. Camel-
lia with a 128-bit key and 256-bit key is written as 128-Camellia, 256-Camellia.
The design of Camellia is based on the Feistel structure and its number of rounds
is 18 (128-bit key) or 24 (192-, 256-bit key). The FL/FL−1 functions layer is in-
serted in it every 6 rounds in order to thwart future unknown attacks. Before the
first round and after the last round, there are pre- and post-whitening layers.

We refer x(r), k(r) to the rth round output and rth round subkey, refer x
(r)
L

and x
(r)
R to the left, right half bytes of x(r), which implies x(r) = x

(r)
L ‖x

(r)
R . Let

PL‖PR and CL‖CR be the Plaintext and Ciphertext.
Let x(r,i) be the ith byte of x(r). The x

(r)
L is a 8-byte sequence, we have

x
(r)
L = (x(r,1)

L , . . . , x
(r,8)
L ). F function contains key-addition K-function, sBoxes

transformation S-function and diffusion function P -function, these functions are
described as follows. The figure illustration of F -function is Fig.1.

The key addition function is

K(x(r)
L , k(r+1))

def
= (x(r,1)

L ⊕ k(r+1,1), . . . , x
(r,8)
L ⊕ k(r+1,8)).

S-function contains 4 types of S-boxes s1, s2, s3, and s4. s2,s3,s4 are variations
of s1,

S(y1, . . . , y8)
def
= (s1(y1), s2(y2), s3(y3), s4(y4), s2(y5), s3(y6), s4(y7), s1(y8)).

The relation among the four sBoxes is that
s2(a) = s1(a) ≪1, s3(a) = s1(a) ≫1, s4(a) = s1(a ≪1).

Let P (z1, ..., z8)
def
= (z′1, ..., z

′
8). The P-function:{0, 1}64 �→ {0, 1}64 maps

(z1, ..., z8) to (z′1, ..., z
′
8). The P-function and its inverse function P−1 are

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8

z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8

z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8

z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8

z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

,

z1 = z′2 ⊕ z′3 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8
z2 = z′1 ⊕ z′3 ⊕ z′4 ⊕ z′5 ⊕ z′7 ⊕ z′8
z3 = z′1 ⊕ z′2 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′8
z4 = z′1 ⊕ z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′7
z5 = z′1 ⊕ z′2 ⊕ z′5 ⊕ z′7 ⊕ z′8
z6 = z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z7 = z′3 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7
z8 = z′1 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8

The R round Camellia without FL/FL−1 functions and pre-, post- whitening
function is written as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
(0)
L ‖x

(0)
R = PL‖PR

x
(r)
L = x

(r−1)
R ⊕ K(S(P (x(r−1)

l ))),
x

(r)
R = x

(r−1)
L ,

CL‖CR = x
(R)
L ‖x

(R)
R .
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The P -permutation, which is a linear transformation, can be move into pre-
vious round or post round. If pre-, post-whitening and FL/FL−1 are not taken
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Table 1. Round Keys.( We only give the first 14 rounds key.)

128bit key 192-,256-bit key
subkey value subkey value

Pre-whitening kw(1) (kL ≪0)L Pre-whitening kw(1) (kL ≪0)L

kw(2) (kL ≪0)R kw(2) (kL ≪0)R

F (Round1) k(1) (kA ≪0)L F (Round1) k(1) (kB ≪0)L

F (Round2) k(2) (kA ≪0)R F (Round2) k(2) (kB ≪0)R

F (Round3) k(3) (kL ≪15)L F (Round3) k(3) (kR ≪15)L

F (Round4) k(4) (kL ≪15)R F (Round4) k(4) (kR ≪15)R

F (Round5) k(5) (kA ≪15)L F (Round5) k(5) (kA ≪15)L

F (Round6) k(6) (kA ≪15)R F (Round6) k(6) (kA ≪15)R

FL k(l1) (kA ≪30)L FL k(l1) (kR ≪30)L

FL−1 k(l2) (kA ≪30)R FL−1 k(l2) (kR ≪30)R

F (Round7) k(7) (kL ≪45)L F (Round7) k(7) (kB ≪30)L

F (Round8) k(8) (kL ≪45)R F (Round8) k(8) (kB ≪30)R

F (Round9) k(9) (kA ≪45)L F (Round9) k(9) (kL ≪45)L

F (Round10) k(10) (kL ≪60)R F (Round10) k(10) (kL ≪45)R

F (Round11) k(11) (kA ≪60)L F (Round11) k(11) (kA ≪45)L

F (Round12) k(12) (kA ≪60)R F (Round12) k(12) (kA ≪45)R

FL k(l3) (kL ≪77)L FL k(l3) (kL ≪60)L

FL−1 k(l4) (kL ≪77)R FL−1 k(l4) (kL ≪60)R

F (Round13) k(13) (kL ≪94)L F (Round13) k(13) (kR ≪60)L

F (Round14) k(14) (kL ≪94)R F (Round14) k(14) (kR ≪60)R

Round15∼Round18 Round15∼Round18

Postwhitening kw(3) (kA ≪111)L FL kl(5) (kA ≪77)L

kw(4) (kA ≪111)R FL−1 kl(6) (kA ≪77)R

Round19∼Round24

Postwhitening kw(3) (kB ≪111)L

kw(4) (kB ≪111)R

into consideration, two equivalence structures of Camellia called Camellia-3 and
Camellia-4 [10] are given as follows.

The Camellia-3 is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̃
(0)
L ‖x̃

(0)
R = PL‖P−1(PR)

x̃
(r)
L = x̃

(r−1)
R ⊕ S(x̃(r−1)

l ⊕ k(r)), r is odd
x̃

(r)
L = P (x̃(r−1)

R ⊕ S(P (x̃(r−1)
l ) ⊕ k(r))), r is even

x̃
(r)
R = x̃

(r−1)
L ,

CL‖CR = x̃R
L‖P (x̃R

R).

The Camellia-4 is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂
(0)
L ‖x̂

(0)
R = P−1(PL)‖PR

x̂
(r)
L = P (x̂(r−1)

R ⊕ S(P (x̂(r−1)
l ) ⊕ k(r))), r is odd

x̂
(r)
L = x̂

(r−1)
R ⊕ S(x̂(r−1)

l ⊕ k(r)), r is even
x̂

(r)
R = x̂

(r−1)
L ,

CL‖CR = P (x̂R
L)‖x̂R

R.
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The FL/FL−1 functions are shown in Fig.2, which are defined as follows:
({0, 1}64 × {0, 1}64 → {0, 1}64), (xL‖xR, klL‖klR) → yL‖yR. The FL function is

yR = ((xL ∩ klL) ≪1) ⊕ xR,
yL = (yR ∪ klR) ⊕ xL.

Fig.3 shows the key schedule of Camellia. Two 128-bit variables kL and kR

are defined as follows. For 128-bit keys, the 128-bit key k is used as kL and kR

is 0. For 256-bit keys, the left 128-bit of the key k is used as kL and the right
128-bit of k is used as kR. Two 128-bit variables kA and kB are generated from
kL and kR as shown in Fig.3, in which Σi(i = 1, . . . , 6) are constants used as
Key. The round keys are rotation of kA,kB,kL and kR, which is shown in Table2.

3 Basic Attacks on Camellia

3.1 Preliminaries

The concepts of square attack and Λ-set were introduced by Daemen et. al [2].
Let Γ -set be a 256 collection of state bytes α(i) = (α(i,1), . . . , α(i,n)), i ∈

[0..255], where α(i,j) is the jth byte of α(i). If the jth byte of elements in Γ are
different from one another,

α(i,j) 	= α(i′,j), ∀i, i′ ∈ [0..255], i 	= i′

the jth byte is called active byte. The jth byte is called fixed byte, if the jth
bytes are unchanged in Γ -set.

α(i,j) = α(i′,j), ∀i, i′ ∈ [0..255], i 	= i′

And if
∑

i∈[0..255] α
(i,j) = 0, then the jth byte is called balanced byte. To make

thing simple, we use λ, θ, δ, and γ to signify a byte and active byte is denoted
λ, fixed byte is denoted θ and balanced byte is denoted δ, other is denoted γ. A
Γ -set is called Θ-set, if all its bytes are fixed bytes. A Γ -set is called Λ-set, if all
its bytes are active bytes or fixed bytes.

The following Theorem 1 is the most important properties of this paper and the
attack is based on which. Before that, let give some notions. Let Λ = {λ(i)} be a

one byte Λ-set , Θ = {θ(i)} be one byte Θ-set and θ(i) = θ. Let Countf(Λ,Θ)(γ)
def
=

#{γ|f(λ(i), θ(i)) = γ, λ(i) ∈ Λ, θ(i) ∈ Θ, i ∈ [0..255]}. The Countf(Λ,Θ)(γ) is the
count of γ, when the inputs changes trough the input sets Λ and Θ.

The S-box of Camellia has following properties.

Theorem 1. Let Λ = {λ(i)} be a Λ-set and Θ = {θ(i)} be Θ-set, in which
θ(i) = θ and λ(i), θ ∈ {0, 1}8. S-Boxes of Camellia have following properties

1. Countsι(Λ)(γ) = 1, ι ∈ {1, 2, 3, 4}, γ ∈ {0, 1}8;
2. Counts1(Λ)⊕s2(Λ)(γ) ∈ {0, 2}, γ ∈ {0, 1}8;
3. Counts1(Λ)⊕s3(Λ)(γ) ∈ {0, 2}, γ ∈ {0, 1}8;
4. Counts2(Λ)⊕s3(Λ)(γ) ∈ {0, 4}, γ ∈ {0, 1}8;
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5. Countsι(Λ)⊕sι(Λ⊕Θ)(γ) = {0, 2, 4}, ι ∈ {1, 2, 3, 4}, γ ∈ {0, 1}8;
6. Countsι(Λ)⊕sι(Λ⊕Θ1)⊕sκ(Λ)⊕sκ(Λ⊕Θ2)(γ) = {0, 2, 4, 6, 8, . . .}, ι, κ ∈

{1, 2, 3, 4}, ι 	= κ and γ ∈ {0, 1}8,

where Λ ⊕ Θ
def
= {λ(i) ⊕ θ(i)}.

The proof is omitted for we can check them directly. The item 1 is based on the
sBoxes are permutations and item 2,3,4 are based on the liner relation between
sBoxes s1, s2 and s3. Item 5 is ,in fact, the differential table of sBoxes.

3.2 5-Round Distinguishers

In this section, we build a 5-round distinguishers on Camellia-4. Let Θ
def
= {θ(i,1),

. . . , θ(i,8)} be a Θ-set. Let Λ0
def
= {λ

(i,1)
0 , θ

(i,2)
0 , . . . , θ

(i,8)
0 } be a Λ-set, in which the

first byte is a active byte. We select the plaintext set as {PL} = Θ and {PR} =

Λ0. Let F (Θ)
def
= {F (θ(i))}. Let Θ1 = {θ

(i,1)
1 , . . . , θ

(i,8)
1 } def

= P−1(Θ). Let Θ2 =

{θ
(i,1)
2 , . . . , θ

(i,8)
2 } def

= P (S(K(P (Θ1)))). Then, five round Camellia-4 has following
properties.

x̂
(0)
R = PR = (λ(i,1)

0 , θ
(i,2)
0 , . . . , θ

(i,8)
0 ),

x̂
(1)
R = P−1(PL) = (θ(i,1)

1 , . . . , θ
(i,8)
1 ),

x̂
(2)
R = P (S(K(P (x̂(1)

R )))) ⊕ x̂
(0)
R = (λ(i,1)

0 ⊕ θ
(i,1)
2 , θ

(i,2)
0 ⊕ θ

(i,2)
2 , . . . , θ

(i,8)
0 ⊕ θ

(i,8)
2 ),

x̂
(3)
R = S(K(x̂(2)

R )) ⊕ x̂
(1)
R

= (s1(λ
(i,1)
0 ⊕ θ

(i,1)
2 ⊕ k(2,1)) ⊕ θ

(i,1)
1 , s2(θ

(i,2)
0 ⊕ θ

(i,2)
2 ⊕ k(2,2)) ⊕ θ

(i,2)
1

, . . . , s1(θ
(i,8)
0 ⊕ θ

(i,8)
2 ⊕ k(2,8)) ⊕ θ

(i,8)
1 )

def
= (s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 , s2(θ

(i,2)
3 ) ⊕ θ

(i,2)
1 ), . . . , s1(θ

(i,8)
3 ) ⊕ θ

(i,8)
1 )

Let

λ̃
(i)
1

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{3,4,6,7,8}(s1(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

λ̃
(i)
2

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,4,5,7,8}(s2(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,2)

λ̃
(i)
3

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,3,5,6,8}(s3(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,3)

θ̃
(i)
4

def
= (⊕j∈{2,3,4,5,6,7}(s4(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,4)

λ̃
(i)
5

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,6,7,8}(s2(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

θ̃
(i)
6

def
= (⊕j∈{2,3,5,7,8}(s3(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,6)

θ̃
(i)
7

def
= (⊕j∈{3,4,5,6,8}(s4(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,7)

λ̃
(i)
8

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{4,5,6,7}(s1(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,8)

,

then,

x̂
(4,1)
R = s1(λ̃1) ⊕ s3(λ̃3) ⊕ s4(θ̃4) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,1)
2 ⊕ λ

(i,1)
2

x̂
(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,2)
2
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x̂
(4,3)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s3(λ̃3) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s1(λ̃8) ⊕ θ

(i,3)
2

x̂
(4,4)
R = s2(λ̃2) ⊕ s3(λ̃3) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(i,4)
2

x̂
(4,5)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,5)
2

x̂
(4,6)
R = s2(λ̃2) ⊕ s3(λ̃3) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,6)
2

x̂
(4,7)
R = s3(λ̃3) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s1(λ̃8) ⊕ θ

(i,7)
2

x̂
(4,8)
R = s1(λ̃1) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(i,8)
2 .

Let us consider some properties of x̂
(4)
R and x̂

(5)
R .

Since x̂
(4,8)
R = s1(λ̃1) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(2,8)
2 and x̂

(5,8)
R =

s1(x̂
(4,8)
R ⊕ k(5,8)), we have

Count{x̂(4,8)
R }(γ) ∈ {0, 2}, if λ̃1 = λ̃5, (1)

Count{x̂(5,8)
R }(γ) ∈ {0, 2}, if λ̃1 = λ̃5, (2)

To make λ̃1 = λ̃5, we have,

λ̃1 = λ̃5

⇔ s1(λ
(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{3,4,6,7,8}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

= s1(λ
(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,6,7,8}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

⇔ (⊕j∈{3,4,6,7,8}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

= (⊕j∈{2,6,7,8}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

⇔ (⊕j∈{3,4}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1) = (⊕j∈{2}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

So, λ̃1 = λ̃5 requires,

(⊕j∈{2,3,4}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1) ⊕ k(4,5) = 0 (3)

Let Θ‖Λ
def
= {θ(i)‖λ(i)}. Let 256 Λ-set be

(Θ‖Λ0)ι = ({θ(i,1), . . . , θ(i,8), λ
(i,1)
0 , θ

(i,2)
0 , . . . , θ

(i,8)
0 })ι, ι ∈ [0..255]

in which, λ
(i,1)
0 is active byte, other bytes are fixed bytes, θ

(i,2)
0 ( or θ

(i,3)
0 , θ

(i,4)
0 )

is different for different ι and other bytes are unchanged for all ι ∈ [0..255].
In five round Camellia-4, if we select plaintext set as ({PL‖PR})ι = (Θ‖Λ0)ι,

then existing one ι makes λ̃1 = λ̃5. For, when Θ is unchanged, the left part of
Eq.3 is only influenced by sι(θ

(i,j)
3 ), j ∈ {2, 3, 4}. And sι(θ

(i,j)
3 ) is only influenced

by θ
(i,j)
0 , where j ∈ {2, 3, 4}. Then we find a 5-round distinguisher on Camellia-4.

There are some more 5-round distinguishers as follows.
For, x̂

(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ(2,2),

Count{x̂(4,2)
R }(γ) ∈ {0, 2, 4}, if λ̃1 = λ̃8 or λ̃2 = λ̃5. (4)

Count{x̂(5,2)
R }(γ) ∈ {0, 2, 4}, if λ̃1 = λ̃8 or λ̃2 = λ̃5. (5)
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If λ̃2 = λ̃5, then we have

λ̃2 = λ̃5 ⇔ (⊕j∈{4,5,6}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,2) ⊕ k(4,5) = 0,

For λ̃1 = λ̃8, we have

λ̃1 = λ̃8 ⇔
⊕

j∈{3,5,8} sι(θ
(i,j)
2 ⊕ k(2,j)) ⊕ θ

(i,j)
1 ) ⊕ k(4,1) ⊕ k(4,5) = 0.

In five round Camellia-4, if we select plaintext set as ({PL‖PR})ι = (Θ‖Λ0)ι,
in which if θ

(i,4)
0 ( or θ

(i,5)
0 , θ

(i,6)
0 ) is different for different ι, then existing one

ι makes λ̃2 = λ̃5 and if θ
(i,3)
0 ( or θ

(i,5)
0 , θ

(i,8)
0 ) is different for different ι, then

existing one ι makes λ̃1 = λ̃8.
Now, let us reconsider,

x̂
(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ(2,2),

If we have λ̃1 = λ̃2 ∧ λ̃5 = λ̃8 or λ̃1 = λ̃5 ∧ λ̃2 = λ̃8, then we have

Count{x̂(4,2)
R }(γ) ∈ {0, 2, 4, 6, 8, . . .},

Count{x̂(5,2)
R }(γ) ∈ {0, 2, 4, 6, 8, . . .}.

Similarly, when the Λ-set Λ0 is selected as {θ
(0,1)
0 , λ

(0,2)
0 , θ

(0,3)
0 , . . . , θ

(0,8)
0 },

{θ
(0,1)
0 , θ

(0,2)
0 , λ

(0,3)
0 , θ

(0,4)
0 , . . . , θ

(0,8)
0 } or {θ

(0,1)
0 , θ

(0,2)
0 , θ

(0,3)
0 , λ

(0,4)
0 , θ

(0,5)
0 , . . . ,

θ
(0,8)
0 }, we can get similar properties, these properties are summarized in

Table 2.

4 The Square Like Attack

In this section, we construct the attacks on Camellia without pre-, post- whiten-
ing and FL/FL−1 functions.

The 6-round Square like attack uses the property of that, in Camellia-4 if the
1st byte of {PR} is active byte and (λ̃1 = λ̃5) then, Count{x̂(5,8)

R }(γ) ∈ {0, 2}.
This attack can be described by the following steps.

Step1. Select 256 Λ-set Λι = {λ
(i,1)
ι , θ

(i,2)
ι , . . . , θ

(i,8)
ι }, ι ∈ [0..255], in which

λ
(i,1)
ι = λ

(i,1)
ι′ , θ

(i,j)
ι = θ

(i,j)
ι′ , j ∈ {2, 3, 5, 6, 7, 8} and θ

(i,4)
ι 	= θ

(i,4)
ι′ , ∀ι 	= ι′,

and a Θ-set Θ. The 256 Plaintext sets are ({PL‖PR})ι = (Θ‖Λι). Then get
the ciphertext sets ({CL‖CR})ι and record them.

Step 2. For each ({CL‖CR})ι, Guess k(6,8), then check Count{x(5,8)
R }(γ) ∈ {0, 2}

being satisfied or not by Eq(6).

x̂
(5,8)
R = s1(x̂

(6,8)
R ⊕ k(5,8)) (6)

In this 6-round attack, the time that step 1 takes is 216 6-round encryptions
takeing. Since Eq.(6) has 1 additions, 1 substitutions, getting x̂

(6)
R from CR takes

5 addition, and 6-round Camellia has 44 × 6 additions, 8 × 6 substitutions, then
the time of each guessing key in step 2 takes almost 1

48 times 6 round encryption.
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Table 2. Relation between active byte and special properties on its fifth round outputs,
in which {PL} = {θ(i,1), . . . , θ(i,8)}

P laintext − set Count{Byte}(γ) ∈ Set if (Condition)
{PR} Byte Set Condition

x̂
(5,8)
R {0, 2} λ̃1 = λ̃5

{λ(i,1), θ(i,2), . . . , θ(i,8)} {0, 2, 4} λ̃1 = λ̃8 ∨ λ̃2 = λ̃5

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃1 = λ̃2 ∧ λ̃5 = λ̃8) or

(λ̃1 = λ̃5 ∧ λ̃2 = λ̃8)

x̂
(5,4)
R {1} λ̃2 = λ̃5

x̂
(5,5)
R {1} λ̃1 = λ̃8

x̂
(5,5)
R {0, 4} λ̃2 = λ̃3

{θ(i,1), λ(i,2), θ(i,3), . . . , θ(i,8)} {0, 2, 4} λ̃2 = λ̃5 ∨ λ̃3 = λ̃6

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃2 = λ̃3 ∧ λ̃5 = λ̃6) or

(λ̃2 = λ̃6 ∧ λ̃3 = λ̃5)

x̂
(5,1)
R {1} λ̃3 = λ̃6

x̂
(5,6)
R {1} λ̃2 = λ̃5

Pseudo Random Function

{θ(i,1), θ(i,2), λ(i,3), θ(i,4), . . . , θ(i,8)} {0, 2, 4} λ̃3 = λ̃6 ∨ λ̃4 = λ̃7

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃3 = λ̃4 ∧ λ̃6 = λ̃7) or

(λ̃3 = λ̃7 ∧ λ̃4 = λ̃6)

x̂
(5,2)
R {1} λ̃4 = λ̃7

x̂
(5,7)
R {1} λ̃3 = λ̃6

Pseudo Random Function

{θ(i,1), . . . , θ(i,3), λ(i,4), θ(i,5), . . . , θ(i,8)} {0, 2, 4} λ̃4 = λ̃7 ∨ λ̃1 = λ̃8

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃1 = λ̃4 ∧ λ̃7 = λ̃8) or

(λ̃1 = λ̃7 ∧ λ̃4 = λ̃8)

x̂
(5,3)
R {1} λ̃1 = λ̃8

x̂
(5,8)
R {1} λ̃4 = λ̃7

In step 2, Eq.(6) repeats 28 times for 28 guessed key. The probability of wrong key

passing the checking is 28 ×
(

256
128

)

×
(

256
2

)

×
(

254
2

)

× . . .×
(

2
2

)

×(128!)−1×

128! × 256−256 = 28 × 256!256!
2128256256128!128! ≈ 282π256256256256256e128e128

21282π128e256e256256256128128128128 =
2−119(2

e )256, so only right key can pass step 2, then the 6-round attack’s com-
plexity is 216(1 + 28 × 1

48 ) ≈ 218.4. The selected Plaintexts are 216.
7-round attack adds one round at the beginning, uses the structure of Camellia-

3 and selects the input sets to make ({x̃
(1)
L ‖x̃

(1)
R })ι = (Θ‖Λι). The selected 256

plaintext sets are

({PL})ι = Λι = {λ
(i,1)
ι , θ

(i,2)
ι , . . . , θ

(i,8)
ι },

({PR})ι ={P−1(s1(λ
(i,1)
ι ⊕k(1,1)), θ(i,2)

ι , θ
(i,3)
ι , s4(θ

(i,4)
ι ⊕k(1,4)), θ(i,5)

ι , . . . , θ
(i,8)
ι )}.

We have {x̃
(0)
R }i = {s1(λ

(i,1)
ι ⊕ k(1,1)), θ(i,2)

ι , θ
(i,3)
ι , s4(θ

(i,4)
ι ⊕ k(1,4)), θ(i,5)

ι , . . . ,

θ
(i,8)
ι }ι. Then, k(1,1), k(1,4) and k(7,8) are guessing key bytes.
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This 7-round attack selects 232 plaintext and the attacking complexity is 216×
216(1 + 28 × 1

56 ) ≈ 234.5. The chosen plaintext are 232.
The 8-round attack is similar to 7-round attack, just adds one round at the

end and guesses the 8th round key bytes to get the x̃
(7,8)
R . Getting x̃

(7,8)
R from

x̃
(8)
R needs five 8th round key bytes k(8,1), k(8,4), k(8,5), k(8,6), k(8,7) and needs

11 addition and 6 S-box transformation, which equals 1/8 8-round encryption.
Then, the complexity of this attack is 232 × (1 + 240 × (1

8 + 28 × 1
64 )) ≈ 274. The

chosen plaintexts are 232.
In 9-round attack, we add one round at the beginning and use the structure

of Camellia-4, where the selected special plaintexts should satisfy the properties
of that ({x̂

(2)
L ‖x̂

(2)
R })ι = (Θ‖Λι). So the plaintext are,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(1)
L

P
(2)
L

P
(3)
L

P
(4)
L

P
(5)
L

P
(6)
L

P
(7)
L

P
(8)
L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ι

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,1)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,1)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1))

s4(θ
(i,4)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1))

θ
(i,6)
ι

s4(θ
(i,4)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ι

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(1)
R

P
(2)
R

P
(3)
R

P
(4)
R

P
(5)
R

P
(6)
R

P
(7)
R

P
(8)
R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ι

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,1))

s2(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,2))

s3(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ k(1,3))

s4(s4(θ
(i,4)
ι ⊕ k(2,4)) ⊕ k(1,4))

s2(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ k(1,5))

θ
(i,6)
ι

s4(s4(θ
(i,4)
ι ⊕ k(2,4)) ⊕ k(1,7))

s1(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,8))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ι

,

The complexity of this attack is 288 × (1 + 240 × (1
9 + 28 × 1

72 )) ≈ 2129.8.
In 128-Camellia, part of the 9th round key bits are included in k(1) and k(2).

Then, in step 2, we check Count{x(7,4)
R }(γ) = 1 being hold or not, the guessing key

bytes are k(1,1), k(1,2), k(1,3), k(1,4), k(1,5), k(1,7), k(1,8), k(2,1), k(2,4), k(8,4), k(9,2),
k(9,3), k(9,4), k(9,5), k(9,6), k(9,7). The 28 bits of 9th round key are included in
first and second rounds guessing. The complexity of this 9-round attack becomes
288 × (1 + 212(1

8 + 28 × 1
72 )) ≈ 2102.2. The chosen plaintexts are 288.

In 256-Camellia, the chosen plaintexts are same as attack on 128-Camellia.
Since k(7)‖k(8) = k(1)‖k

(2)
≪30, the complexity of 7-round attack becomes 232 ×

(1 + 1 × 1
56 ) ≈ 232, in which the guessing key bytes are k(1,1), k(1,2), k(7,8). Key

bits of k(7,8) are included in key bits of k(1,1) and k(1,2).
In these basic attacks, we select 256 Λ-set Λι that requires θ

(i,4)
ι 	= θ

(i,4)
ι′

to guarantee the existence of λ̃1 = λ̃5. However, to guarantee the Θ-set Θ is
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Fig. 4. Basic Attack on 6,7,8, and 9 round Camellia

unchanged, 7-round attack requires guessing 1 more key byte and 9-round attack
requires guessing 3 more key bytes. In next section, we avert these key guessing.

5 Improvements on the Attack

5.1 Basic Improvement

In 6-round attack, if we select {PL}ι = Θι and {PR}ι = Λι, in which the first
byte of Λι is active byte and other bytes of Λι and Θι are random selected fixed
bytes, then, for each Θι and Λι, the probability of λ̃i = λ̃j , i 	= j is

∑255
i=0

1
256

1
256 =

1
256 . And the probability of non appearance of λ̃i = λ̃j is 255

256 , for given i, j ∈
{1, . . . , 8}. And when the attacker selects t plaintext sets, the non appearance
of λ̃i = λ̃j is (255

256 )t. We can improve the attack in following way.

Step1. Set ι = 1.
Step2. Select a Λ-set Λι and a Θ-set Θι, in which λ

(i,1)
ι is a active byte and other

bytes are random selected fixed bytes. Set the Plaintext sets as {PL‖PR}ι =
Θι‖Λι and get the ciphertext sets as {CL‖CR}ι.
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Step 3. Guess k(6,8), gets x̂
(5,8)
R by Eq(6), checks Count{x̂(5,8)

R }(γ) ∈ {0, 2} being
satisfied or not. If Count{x̂(5,8)

R }(γ) > 2 or #{Count{x(5,8)
R }(γ) = 1} > 128,

then selects a new key. If the exist a key k(6,8) pass the checking, then it is
a correct key. Or else ι = ι + 1 and goto step 2.

In this 6-round attack, the time that step 2 takes is 28 6-round encryptions
takeing. For each guessing key step 3 takes almost 1

48 times 6 round encryption.
In step 2, Eq.(6) repeats 28 times. The probability of wrong key passing the
checking is 2−119(2

e )256 ≈ 2−232, so only right key can pass step 2. And when
ι = 210, the probability appearance of λ̃1 = λ̃5 is 0.99. Then the 6-round attack’s
complexity is 218(1 + 28 × 1

48 ) ≈ 220.4. The selected Plaintexts are 218.
The 7,8,9-round128-bitCamellia attacks use same structure asprevious section.

In 7-roundattack, the guessing key bytes are k(1,1)andk(7,8). In 8-roundattack, the
guessing key bytes are k(1,1), k(7,8), k(8,1), k(8,4), k(8,5), k(8,6),k(8,7). In 9-round at-
tack, the guessing key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8), k(2,1), k(8,8), k(9,1),
k(9,4), k(9,5), k(9,6), k(9,7), in which the 13 bits of 9th round key is included in 1st
guess round key. The chosen plaintexts for 7,8 and 9 rounds are 226, 226 and 266,
respectively. The complexities are 226 × (1 + 28 × 1

56 ) = 228.5, 226 × (1 + 240(1
8 +

28 × 1
64 )) ≈ 268 and 266 × (1 + 227(1

9 + 28 × 1
72 )) ≈ 294.9, respectively.

In 9-round attack, if we select the ciphertext similar as previous discussion
on plaintext and check the Count{x̃(2,5)

R }(γ) = 1 being satisfied or not, then

the guessing round key bytes are k(9,1), k(9,2), k(9,4), k(9,7), k(9,8), k(8,4),k(2,5),
k(1,1), k(1,2), k(1,6), k(1,7), k(1,8). Then, the complexity of attack becomes 266 ×
(1 + 221(1

9 + 23 × 1
72 )) ≈ 284.8.

5.2 Improvement on 256-Bit Camellia

In 7,8,9 and 10-round attacks on 256-Camellia the chosen plaintext are same as
above section. However, the 7th round key is same as first round key and 8th
round key is same as 2nd round key, then in 7-round attack, the guessing round
key bytes are k(1,1) and k(7,5), in which 6 bits of k(7,5) are included in k(1,1). In
8-round attack, the guessing round key bytes are k(1,1), k(7,5), k(8,1), k(8,2), k(8,6),
k(8,7), and k(8,8). In 9-round attack, the guessing round key bytes are k(1,1), k(1,2),
k(1,3), k(1,5), k(1,8), k(2,1), k(8,5), k(9,1), k(9,2), k(9,6), k(9,7), and k(9,8). In 10-round
attack, the guessing round key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8), k(2,1),
k(8,5), k(9,1), k(9,2), k(9,6), k(9,7), k(9,8) and k(10). Since 6 bits of k(8,5) are included
in k(2,1), the selected plaintext for 7,8,9 and 10-round attacks are 226, 226, 266

and 266, respectively. The complexities are 226 × (1 + 22 × 1
56 ) ≈ 226, 226 ×

(1 + 240 × (1
8 + 22 × 1

64 ) ≈ 263, 266 × (1 + 240 × (1
9 + 22 × 1

72 ) ≈ 2103.4 and
266 × (1 + 264 × ( 1

10 + (240 × ( 1
10 + 22 × 1

80 )))) ≈ 2167.3, respectively.
In 11-round attack, we add one round at the end of 10-round and check the

output x
(7,8)
R . Then the attacking key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8),

k(2,1),k(8,8), k(9,1), k(9,4), k(9,5), k(9,6), k(9,7), k(10) and k(11).
In key schedule of Camellia, if kB is given, then kA ⊕ kR can be gotten by

direct computation. So if kB and (kR)L are given, then (kA)L is known and if kB
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Table 3. The Summary of known attacks on Camellia

Round FL/ Method Data Time Time Notes
FL−1 128-bit 256-bit

6 N/Y SLA 218 220.4 220.4 This Paper
6 N/Y SA 211.7 2112 2112 [5]

8 No TDC 283.6 255.6 263 [8]
8 No SLA 226 268 263 This Paper
8 Yes ISA 248 298 282 [10]
8 Yes SA 248 — 2116 [17]

9 No SLA 266 284.8 2103.4 This Paper
9 No VSA 288 290 2122 [10]
9 No DC 2105 2105 2105 [13]
9 No CA 2113.6 2121 2175.6 [15]
9 Yes ISA 248 2122 2146 [10]
9 No BA 2123.9 — 2169.9 [10]
9 No HODC 221 — 2188 [4]
9 Yes SA 260.5 — 2202 [17]

10 No LA 2120 2121 2121 [13]
10 No DC 2105 — 2165.7 [13]
10 No SLA 266 — 2167.3 This Paper
10 No ICA 214 — 2207.4 [10]
10 Yes ISA 248 — 2210 [10]
10 No CA 214 — 2239.9 [15]
10 No RA 2126.5 — 2240.9 [15]
10 No HODC 221 — 2254.7 [4]

11 No LA 2120 — 2181.5 [13]
11 No SLA 266 — 2211.6 This Paper
11 No DC 2105 — 2231.5 [13]
11 No VSA 288 — 2250 [10]
11 N/Y HODC 293 — 2255.6 [4]

12 No IPDC 2120 — 2181 [16]
12 No LA 2120 — 2245.4 [13]
12 No SLA 266 — 2249.6 This Paper

Note 1. BA: Boomerang Attack; CA: Collision Attack; DC: Differential Attack;
HODC: High Order Differential Attack; ICA: Improved Collision Attack; IPDC: Im-
possible Differential Attack; LA: Linear Attack; RA: Rectangle Attack; SA: Square
Attack; TDC: Truncated Differential Attack; VSA: Variant Square Attack;

and (kR)R are given, then (kA)R is known. In 192-and 256-Camellia, the third
round key is (kR)L and the 11th round key is (kA)L. The first two round keys
are (kB)L and (kB)R.

To improve the attack,we use chosen ciphertext attack, in which we select the ci-
phertext set {CL‖CR}ι same as the plaintext {PL‖PR}ι in 11-round chosen plain-
text attack. Then, the attacking key bytes become k(11,1), k(11,2), k(11,3), k(11,5),
k(11,8), k(10,1),k(4,8), k(3,1), k(3,4), k(3,5), k(3,6), k(3,7), k(2) and k(1). From k(2),k(1),
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k(11) and k12, we can get k(3) and k(4). In fact, 24 bits of k(3,1), k(3,4), k(3,5), k(3,6),
k(3,7) can be get from k(2),k(1) and key bytes k(11,1), k(11,2), k(11,3), k(11,5) and
k(11,8). Then the chosen ciphertext in 11-round attack is 266 and the complexity
is 266 × (1 + 264 × ( 1

11 + 264 × ( 1
11 + 216 × ( 1

11 + 28 × 1
88 )))) ≈ 2211.6.

12-round attack adds one round at the beginning of 11-round selected plain-
text attack and uses select ciphertext attack. So the selected ciphertext is same as
11-round chosen ciphertext attack and the guessing key bytes are k(12,1),k(12,2),
k(12,3), k(12,5),k(12,8), k(11,1),k(5,8), k(4,1), k(4,4), k(4,5),k(4,6), k(4,7),k(3), k(2) and
k(1). The k(5) is same as part of k(11) and k12. From k(2), k(1), k(12,1),k(12,2),
k(12,3), k(12,5),k(12,8) and k(11, 1), we can get 46 bits of k(4,1), k(4,4), k(4,5),k(4,6),
k(4,7) and k(3). k(5) can be get from k(1),k(2) and k(3). Then, the 12-round attack
requires 266 ciphertext and the complexity is 266 × (1 + 264 × ( 1

12 + 264 × ( 1
12 +

243 × ( 1
12 + 216 × ( 1

12 + 1 × 1
96 ))))) ≈ 2249.6.

5.3 The Influences of FL/FL−1 Function

If FL/FL−1 layer is included, the properties of XORing of sBoxes can not pass
the FL/FL−1 layer, so the attack is possible only by adding the rounds at the
end of 6-round basic attack and guessing more key bytes of FL/FL−1 layer. Then
the attack is only possible for 7-round 128-Camellia and 9-round 256-Camellia.

6 Conclusions

The Square like attack is possible for the XORing of active Sboxes has some
special properties. The rotation of key schedule of Camellia influence the security
of Camellia. Table.3 gives a summary of known attacks on Camellia.
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Abstract. CLEFIA is a new 128-bit block cipher proposed by SONY
corporation recently. The fundamental structure of CLEFIA is a gen-
eralized Feistel structure consisting of 4 data lines. In this paper, the
strength of CLEFIA against the differential fault attack is explored. Our
attack adopts the byte-oriented model of random faults. Through induc-
ing randomly one byte fault in one round, four bytes of faults can be
simultaneously obtained in the next round, which can efficiently reduce
the total induce times in the attack. After attacking the last several
rounds’ encryptions, the original secret key can be recovered based on
some analysis of the key schedule. The data complexity analysis and
experiments show that only about 18 faulty ciphertexts are needed to
recover the entire 128-bit secret key and about 54 faulty ciphertexts for
192/256-bit keys.

Keywords: Block Cipher, Generalized Feistel Structure, Differential
Fault Attack.

1 Introduction

The idea of fault attack was first suggested in 1997 by Boneh, DeMillo and
Lipton[1], which makes use of the faults during the execution of a cryptographic
algorithm. Under the idea, the attack was successfully exploited to break an
RSA CRT with both a correct and a faulty signature of the same message.
Shortly after, Biham and Shamir proposed an attack on secret key cryptosys-
tems called Differential Fault Analysis (DFA)[2], which combined the ideas of
fault attack and differential attack. Since the presentation of DFA, many re-
search papers have been published on using this cryptanalysis technique to suc-
cessfully attack various cryptosystems, including ECC, 3DES, AES, RC4, and
so on[3][4][5][6][7][8][9][10][11].

The block cipher CLEFIA was proposed by SONY corporation recently[12].
It is a 128-bit block cipher which supports 128-bit, 192-bit and 256-bit keys. The
fundamental structure of CLEFIA is a generalized Feistel structure consisting of
4 data lines. There are two 32-bit F-functions per one round, which respectively
use two different S-boxes and two different diffusion matrices. The key schedul-
ing part shares the generalized Feistel structure with the data processing part.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 284–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The number of rounds is 18, 22, and 26 for 128-bit, 192-bit, and 256-bit keys,
respectively.

In [12], the strength of CLEFIA against some well-known attacks were exam-
ined by the designers, including differential cryptanalysis, linear cryptanalysis,
impossible differential cryptanalysis, related-key cryptanalysis and so on. How-
ever, the differential fault attack was not mentioned.

In this paper, an efficient differential fault attack against CLEFIA is presented.
The attack adopts the byte-oriented model of random faults. In the attack,
four bytes of faults can be simultaneously obtained in one round by inducing
randomly one byte fault in the last round, which can efficiently reduce the total
induce times. After obtaining the subkeys in the last several rounds, and through
some analysis of the key schedule, the whole secret key can be determined with
only 18 faulty ciphertexts on average for 128-bit key and 54 faulty ciphertexts
on average for 192 or 256-bit key. The experimental results also verify the facts.

This paper is organized as follows. In Section 2, the basic description of CLE-
FIA is presented. Then the basic idea of our attack is given in Section 3. Section
4 provides the detailed attacking procedure for different key sizes, the data com-
plexity analysis of our attack and the experimental results through the computer
simulation. Finally, the conclusion remarks are presented in section 5.

2 Description of CLEFIA

In this section, the basic description of CLEFIA is presented. Due to the page
limitation, only GFNd,r, F-functions, encryption function and key scheduling
are introduced. The lacking of introducing the other parts of CLEFIA will not
affect the description of our attack.

In the following description of CLEFIA, let ab represent the bit length of a is
b, | represent concatenation and ta represent the transposition of a vector a.

Description of GFNd,r. CLEFIA uses a 4-branch and an 8-branch Type-2
generalized Feistel network[13]. Denote d-branch r-round generalized Feistel net-
work as GFNd,r. In CLEFIA, GFNd,r employs two different 32-bit F-functions
F0 and F1 whose input/output are defined as follows.

F0, F1 =
{

{0, 1}32, {0, 1}32 → {0, 1}32

RK(32), x(32) �→ y(32)

For d 32-bit input Xi and output Yi (0 ≤ i < d), and dr/2 32-bit round keys
RKi (0 ≤ i < dr/2), GFNd,r(d = 4, 8) are defined as follows.

GFN4,r =
{

{{0, 1}32}2r, {{0, 1}32}4 → {{0, 1}32}4

RK0(32), ..., RK2r−1(32), x0(32), ..., x3(32) �→ y0(32), ..., y3(32)

GFN8,r =
{

{{0, 1}32}4r, {{0, 1}32}8 → {{0, 1}32}8

RK0(32), ..., RK4r−1(32), x0(32), ..., x7(32) �→ y0(32), ..., y7(32)
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The detailed description of GFN4,r is as follows.

Step 1. T0|T1|T2|T3 ← X0|X1|X2|X3

Step 2. For i = 0 to r − 1 do the following:
Step 2.1 T1 = T1 ⊕ F0(RK2i, T0), T3 = T3 ⊕ F1(RK2i+1, T2)
Step 2.2 T0|T1|T2|T3 ← T1|T2|T3|T0

Step 3. Y0|Y1|Y2|Y3 ← T3|T0|T1|T2

The description of GFN8,r is similar to GFN4,r, and not introduced here.
The inverse function GFN−1

d,r are realized by changing the order of RKi and
the direction of word rotation at Step 2.2 and Step 3 of GFN4,r.

F-Functions. F-functions F0 : (RK(32), x(32)) �→ y(32) can be described as
follows:

Step 1. T ← RK ⊕ x
Step 2. Let T ← T0|T1|T2|T3, Ti ∈ {0, 1}8

T0 = S0(T0), T1 = S1(T1)
T2 = S0(T2), T3 = S1(T3)

Step 3. Let y ← y0|y1|y2|y3, yi ∈ {0, 1}8

t(y0, y1, y2, y3) = M0
t(T0, T1, T2, T3)

F0 uses two different 8×8 S-boxes S0 and S1. S0 is constructed by combining
4 × 4 small S-boxes. S1 is constructed with the inverse transform plus affine
operation in finite field. The diffusion matrix M0 is a 4 × 4 Hadamard-type
matrix. Figure 1 depicts the F-function F0.

S1

S0

S1

S0

k0 k1 k2 k3

x3

x2

x1

x0

M0

y3

y2

y1

y0

Fig. 1. F -function F0

F1 : (RK(32), x(32)) → y(32) is similar to F0 except that, the order of S-boxes
is S1, S0, S1, S0 and M0 is substituted by M1. M1 is also a 4× 4 Hadamard-type
matrix.

For both M0 and M1, the multiplications between matrices and vectors are
performed in GF (28) defined by the lexicographically first primitive polynomial
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z8 + z4 + z3 + z2 + 1. M−1
0 and M−1

1 respectively represents the inverse matrix
of M0 and M1.

2.1 Encryption Function

The encryption function of CLEFIA is denoted as ENCr. Let P, C ∈ {0, 1}128

be a plaintext and a ciphertext, which can be divided into P = P0|P1|P2|P3 and
C = C0|C1|C2|C3, Pi, Ci ∈ {0, 1}32, 0 ≤ i ≤ 3. Let WK0, WK1, WK2, WK3 ∈
{0, 1}32 be whitening keys and RKi ∈ {0, 1}32(0 ≤ i < 2r) be round keys
provided by the key scheduling. Then, r round encryption function ENCr can
be described as follows.

ENCr :

⎧
⎨

⎩

{{0, 1}32}4, {{0, 1}32}2r, {{0, 1}32}4 → {{0, 1}32}4

WK0(32), ..., WK3(32), RK0(32), ..., RK2r−1(32), P0(32), ..., P3(32)

�→ C0(32), ..., C3(32)

The detailed description is as follows.

Step 1. T0|T1|T2|T3 ← P0|(P1 ⊕ WK0)|P2|(P3 ⊕ WK1)
Step 2. T0|T1|T2|T3 ← GFN4,r(RK0, ..., RK2r−1, T0, ..., T3)
Step 3. C0|C1|C2|C3 ← T0|(T1 ⊕ WK2)|T2|(T3 ⊕ WK3)

Figure 2 depicts the encryption function ENCr.

2.2 Key Scheduling

The key scheduling generates whitening keys WKi(0 ≤ i < 4), and round keys
RKj(0 ≤ j < 2r).

Let K be a k-bit key, where k is 128, 192 or 256. The key scheduling is divided
into the following two sub-parts.

(1) Generating an intermediate key L from K.
(2) Expanding K and L to generate WKi and RKj .

The key scheduling is explained according to the sub-parts.
For the 128-bit key scheduling, the 128-bit intermediate key L is generated by

applying GFN4,12 which takes twenty-four 32-bit constant values CON128
i , 0 ≤

i < 24 as round keys and K = K0|K1|K2|K3 as an input. Then K and L are
used to generate WKi(0 ≤ i < 4) and RKj(0 ≤ j < 36) in the following steps.

Step 1. L ← GFN4,12(CON
(128)
0 , ..., CON

(128)
23 , K0, ..., K3)

Step 2. WK0|WK1|WK2|WK3 ← K
Step 3. For i = 0 to 8 do the following:

T ← L ⊕ (CON
(128)
24+4i|CON

(128)
24+4i+1|CON

(128)
24+4i+2|CON

(128)
24+4i+3)

L =
∑

(L)
if i is odd. T = T ⊕ K
RK4i|RK4i+1|RK4i+2|RK4i+3 ← T
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WK3

C0 C1 C2 C3

P0 P1 P2 P3

RK5

F1

RK4

F0

Fig. 2. ENCr

The DoubleSwap function
∑

: {0, 1}128 → {0, 1}128 is defined as follows:

X128 �→ Y128

Y = X [7 − 63]X [121 − 127]X [0 − 6]X [64 − 120]

Figure 3 depicts the
∑

function.
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7 57 57 7

757 577

Fig. 3. Function
∑

The following steps show the 192-bit/256-bit key scheduling and the value of
k is respectively set as 192 and 256.

Step 1. Set k = 192 or k = 256
Step 2. If k = 192 : KL ← K0|K1|K2|K3, KR ← K4|K5|K̄0|K̄1

else if k = 256 :KL ← K0|K1|K2|K3, KR ← K4|K5|K6|K7

Step 3. Let KL = KL0|KL1|KL2|KL3, KR = KR0|KR1|KR2|KR3

LL|LR ← GFN8,10(CON
(k)
0 , ..., CON

(k)
39 , KL0, ...KL3, KR0, ..., KR3)

Step 4. WK0|WK1|WK2|WK3 ← KL ⊕ KR

Step 5. For i = 0 to 10 (if k = 192) or 12 (if k = 256) do the following:

If (i mod 4) = 0 or 1:
T ← LL ⊕ (CON

(k)
40+4i|CON

(k)
40+4i+1|CON

(k)
40+4i+2|CON

(k)
40+4i+3)

LL =
∑

(LL)
if i is odd, T = T ⊕ KR

else:
T ← LR ⊕ (CON

(k)
40+4i|CON

(k)
40+4i+1|CON

(k)
40+4i+2|CON

(k)
40+4i+3)

LR =
∑

(LR)
if i is odd, T = T ⊕ KL

RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

3 Basic Idea of Our Attack

3.1 Fault Model and Basic Assumptions

The byte-oriented model of random faults is adopted in our attack and the basic
assumptions are as follows.

(1) Only one byte fault can be induced into the register storing the inter-
mediate results. The adversary knows neither the location of the fault nor its
concrete value.

(2) For one plaintext, two different ciphertexts under the control of the same
secret key are available to the attacker: the right ciphertext and the faulty one.
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3.2 Basic Idea of Our Attack

Let r be the round number of CLEFIA algorithm. The basic idea for our differ-
ential fault attack on CLEFIA is as follows:

(1) choose randomly a plaintext and obtain the corresponding right ciphertext.
(2) Disturb another encryption of the plaintext until one random byte fault

is successfully induced into T0 of the (r − 1)-th round, which causes four bytes
faults into T0 of the r-th round, and obtain the corresponding faulty cipher-
text. Calculate the candidate values of all the bytes of RK2r−2 using differential
analysis technique. Repeat the induce procedure until all the bytes of RK2r−2

are recovered; Similarly, RK2r−1 can be recovered by inducing fault into T2 of
(r − 1)-th round.

(3) Disturb another encryption of the plaintext until one random byte fault
is successfully induced into T0 of the (r − 2)-th round, which causes four bytes
faults into T0 of the (r − 1)-th round, and obtain the corresponding faulty ci-
phertext. Calculate the candidate values of all the bytes of RK2r−4⊕WK3 using
differential analysis technique. Repeat the induce procedure until all the bytes
of RK2r−4 ⊕ WK3 are recovered; Similarly, RK2r−3 ⊕ WK2 can be recovered
by inducing fault into T2 of (r − 2)-th round.

(4) Disturb another encryption of the plaintext until one random byte fault
is successfully induced into T0 of the (r − 3)-th round, which causes four bytes
faults into T0 of the (r−2)-th round, and obtain the corresponding faulty cipher-
text. Calculate the candidate values of all the bytes of RK2r−6 using differential
analysis technique. Repeat the induce procedure until all the bytes of RK2r−6

are recovered; Similarly, RK2r−5 can be recovered by inducing fault into T2 of
(r − 3)-th round.

(5) If the key size is 128, jump to step (6); else continue inducing faults according
to the similar procedures as step (2)-step (4) until RK2r−8 ⊕ WK2, RK2r−7 ⊕
WK3, RK2r−10, RK2r−9, RK2r−12⊕WK3, RK2r−11⊕WK2, RK2r−14, RK2r−13,
RK2r−16 ⊕ WK2, RK2r−15 ⊕ WK3, RK2r−18 and RK2r−17 are all recovered.

(6) Based on the recovered round keys, analyze the key scheduling of CLEFIA,
and deduce the whole secret key K.

4 DFA on CLEFIA

4.1 Notations and Symbols

In order to clearly illustrate the following attacking procedure, some notations
and symbols are to be defined.

Firstly, Xj
i = (xj

i,0, x
j
i,1, x

j
i,2, x

j
i,3) and Y j

i = (yj
i,0, y

j
i,1, y

j
i,2, y

j
i,3), j ∈ {0, 1},

are respectively defined as the input and output of the S-boxes in Fj of the i-th
round. Y j

i is also the input of Mj of the i-th round. Zj
i = (zj

i,0, z
j
i,1, z

j
i,2, z

j
i,3),

j ∈ {0, 1}, is defined as the output of Mj of the i-th round.
ΔXj

i = (Δxj
i,0, Δxj

i,1, Δxj
i,2, Δxj

i,3) and ΔY j
i = (Δyj

i,0, Δyj
i,1, Δyj

i,2, Δyj
i,3),

j ∈ {0, 1}, are respectively defined as the input and output differences of the
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S-boxes in Fj of the i-th round. ΔZj
i = (Δzj

i,0, Δzj
i,1, Δzj

i,2, Δzj
i,3), j ∈ {0, 1}, is

defined as the output difference of Mj of the i-th round.
Then define IN j(a, b) = {x ∈ GF (28)|Sj(x) ⊕ Sj(x ⊕ a) = b}, a �= 0, b ∈

GF (28), j ∈ {0, 1}.
For the 128-bit key scheduling, denote Li = (Li

0, L
i
1, L

i
2, L

i
3) as the initial

value of L and T i = (T i
0, T

i
1, T

i
2, T

i
3) as the final value of T in the i-th iteration

in Step 3. For the 192/256-bit key scheduling, denote Li
L = (Li

L0, L
i
L1, L

i
L2, L

i
L3)

as the initial value of LL, Li
R = (Li

R0, L
i
R1, L

i
R2, L

i
R3) as the initial value of LR

and T i = (T i
0, T

i
1, T

i
2, T

i
3) as the final value of T in the i-th iteration in Step 5.

Finally, let Ci,j(0 ≤ i, j ≤ 3) represent the j-th byte of Ci.

4.2 Attacking Procedure with 128-Bit Key

The attacking procedure with 128-bit key is as follows.

(1) Select randomly a plaintext P , and obtain the right ciphertext C under
the secret key K = (K0, K1, K2, K3).

(2) Attack the 18-th round encryption and recover RK34 and RK35.
a) Induce one byte random fault into T0 of the 17-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗0 , C∗1 , C∗2 , C∗3 ). So ΔX0
18 = (C0,0 ⊕

C∗0,0, C0,1 ⊕C∗0,1, C0,2 ⊕C∗0,2, C0,3 ⊕C∗0,3), ΔZ0
18 = (C1,0 ⊕C∗1,0, C1,1 ⊕C∗1,1, C1,2 ⊕

C∗1,2, C1,3 ⊕ C∗1,3), ΔY 0
18 = M−1

0 (ΔZ0
18).

b) Therefore, x0
18,i ∈ IN j(Δx0

18,i, Δy0
18,i), 0 ≤ i ≤ 3, j = i mod 2. Because

x0
18,i = C0,i ⊕ RK34,i, RK34,i ∈ (C0,i ⊕ IN j(Δx0

18,i, Δy0
18,i)).

c) Repeat the procedure of a) and b) until RK34 can be uniquely determined.
d) Through the similar procedure of a)-c), RK35 can be recovered by inducing

one byte random fault into T2 of the 17-th round.
(3) Attack the 17-th round encryption and recover RK32 ⊕WK3 and RK33 ⊕

WK2.
a) Induce one byte random fault into T0 of the 16-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗0 , C∗1 , C∗2 , C∗3 ). It is easy to deduce
ΔX0

17 = C3 ⊕ C∗3 ⊕ ΔZ1
18 = C3 ⊕ C∗3 ⊕ F1(C2 ⊕ RK35) ⊕ F1(C∗2 ⊕ RK35).

ΔZ0
17 = (C0,0 ⊕ C∗0,0, C0,1 ⊕ C∗0,1, C0,2 ⊕ C∗0,2, C0,3 ⊕ C∗0,3), ΔY 0

17 = M−1
0 (ΔZ0

17).
b) Therefore, x0

17,i ∈ IN j(Δx0
17,i, Δy0

17,i), 0 ≤ i ≤ 3, j = i mod 2. Be-
cause x0

17,i = C3,i ⊕ WK3 ⊕ z1
18,i ⊕ RK32,i, RK32,i ⊕ WK3,i ∈ (C3,i ⊕ z1

18,i ⊕
IN j(Δx0

17,i, Δy0
17,i)).

c) Repeat the procedure of a) and b) until RK32 ⊕ WK3 can be uniquely
determined.

d) Through the similar procedure of a)- c), RK33 ⊕ WK2 can be recovered
by inducing one byte random fault into T2 of the 16-th round.

(4) Attack the 16-th round encryption and recover RK30 and RK31.
a) Induce one byte random fault into T0 of the 15-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗0 , C∗1 , C∗2 , C∗3 ).
b) ΔX0

16 = C2 ⊕ C∗2 ⊕ ΔZ1
17 = C2 ⊕ C∗2 ⊕ F1(RK33, X

1
17 ⊕ RK33) ⊕ F1(RK33,

X1
17 ⊕RK33 ⊕ΔX1

17). To compute F1(RK33, X
1
17 ⊕RK33), it is no need to know

the value of RK33 because RK33 ⊕ (X1
17 ⊕ RK33) = X1

17. Since X1
17 has been
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known in step (3), F1(RK33, X
1
17 ⊕ RK33) can be calculated out. Similarly, to

compute F1(RK33, X
1
17⊕RK33⊕ΔX1

17), X1
17⊕ΔX1

17 should be known. It is easy
to deduce ΔX1

17 = C1 ⊕ C∗1 ⊕ ΔZ0
18 = C1 ⊕ C∗1 ⊕ F0(RK34, C0) ⊕ F0(RK34, C

∗
0 ),

so ΔX0
16 can be calculated out.

c) ΔZ0
16 = ΔX0

17 = C3⊕C∗3 ⊕ΔZ1
18 = C3⊕C∗3 ⊕F1(RK35, C2)⊕F1(RK35, C

∗
2 ).

So ΔY 0
16 = M−1

0 (ΔZ0
16).

d) Therefore, x0
16,i ∈ IN j(Δx0

16,i, Δy0
16,i), 0 ≤ i ≤ 3, j = imod2. Because

x0
16,i = C2,i ⊕F1(RK33, X

1
17 ⊕RK33)⊕RK30,i, RK30,i ∈ (C2,i ⊕F1(RK33, X

1
17 ⊕

RK33) ⊕ IN j(Δx0
16,i, Δy0

16,i)).
e) Repeat the procedure of a)- d) until RK30 can be uniquely determined.
f) Through the similar procedure of a)- e), RK31 can be recovered by inducing

one byte random fault into T2 of the 15-th round.
(5) Analyze the 128-bit key scheduling and recover K.
a) In step 3 of the 128-bit key scheduling, RK32, RK33, RK34 and RK35 are

generated when i = 8. As RK34 and RK35 have been recovered, T 8
2 = RK34

and T 8
3 = RK35 are also known. As i is not odd, L8

2 = T 8
2 ⊕ CON

(128)
58 , L8

3 =
T 8

3 ⊕ CON
(128)
59 .

b) Through the inverse transformation of
∑

and L7
2 can be calculated out.

As i = 7 is odd, T 7
2 = L7

2 ⊕ CON
(128)
54 ⊕ K2. Because T 7

2 = RK30 is known, K2

can also be calculated out. Therefore, WK2 = K2 is obtained. As RK33 ⊕ WK2

has been recovered, RK33 is also obtained. So T 8
1 = RK33 is also recovered.

c) Apply the inverse transformation of
∑

, L7
3 can be calculated out. As T 7

3 =
L7

3 ⊕ CON
(128)
55 ⊕ K3 and T 7

3 = RK31 has been known, K3 can be obtained.
Therefore, WK3 = K2 is obtained. As RK32 ⊕ WK3 has been recovered, RK32

is also obtained. So T 8
0 = RK32 is recovered.

d) As all the bytes of T 8 have been obtained, L8 can be easily calculated
out. Repeat the inverse transformation of

∑
until L0 is deduced. So K =

GFN−1
4,12(CON

(128)
0 , ..., CON

(128)
23 , L0) is recovered.

4.3 Attacking Procedure with 192/256-Bit Keys

The attacking procedure with 192-bit key and 256-bit key is very similar. Due to
the page limitation, only the attacking procedure with 192-bit key is presented
as follows.

(1) Attack respectively the 22-nd, 21-st, 20-th, 19-th, 18-th, 17-th, ...., and 14-
th round encryption, recover RK42, RK43, RK40 ⊕ WK3, RK41 ⊕ WK2, RK38,
RK39, RK36 ⊕WK2, RK37 ⊕WK3, RK34, RK35, RK32 ⊕WK3, RK33 ⊕WK2,
RK30, RK31, RK28 ⊕ WK2, RK29 ⊕ WK3, RK26 and RK27. Here, the similar
methods in the 128-bit attacking procedure are adopted to recover the above
subkey values.

(2) Analyze the 192-bit key scheduling and recover K.
a) In step 5 of the 192-bit key scheduling, RK26 and RK27 are generated when

i = 6. As RK26 and RK27 have been recovered, T 6
2 = RK26 and T 6

3 = RK27 are
also known. As i is not odd, L6

R2 = T 6
2 ⊕ CON

(192)
66 , L6

R3 = T 6
3 ⊕ CON

(192)
67 .
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b)Through the transformation of
∑

, L7
R3 can be calculated out. As i = 7 is

odd, T 7
3 = L7

R3 ⊕ CON
(192)
71 ⊕ KL3. Because T 7

3 = RK31 is recovered, KL3 can
be calculated out.

c) RK34 and RK35 are generated when i = 8. Since RK34 and RK35 have
been recovered, T 8

2 = RK34 and T 8
3 = RK35 are also known. As i is not odd,

L8
L2 = T 8

2 ⊕ CON
(192)
74 , L8

L3 = T 8
3 ⊕ CON

(192)
75 .

d) Through the transformation of
∑

, L9
L3 can be calculated out. As i = 9

is odd, T 9
3 = L9

L3 ⊕ CON
(192)
79 ⊕ KR3. Because T 9

3 = RK39 has been recovered,
KR3 can be calculated out. As WK3 = KL3 ⊕ KR3, WK3 is recovered. Since
RK40⊕WK3, RK37⊕WK3, RK32⊕WK3 and RK29⊕WK3 have been recovered,
RK40, RK37, RK32 and RK29 can be obtained.

e) RK42 and RK43 are generated when i = 10. As RK42 and RK43 have been
recovered, T 10

2 = RK42 and T 10
3 = RK43 are also known. L10

R2 = T 10
2 ⊕CON

(192)
82 ,

L10
R3 = T 10

3 ⊕ CON
(192)
83 . Through the inverse transformation of

∑
, L7

R2 can be
calculated out. T 7

2 = L7
R2 ⊕CON

(192)
70 ⊕KL2. As T 7

2 = RK30 has been recovered,
KL2 can be calculated out.

f) As RK32 is known, T 8
0 = RK32 is also obtained. L8

L0 = T 8
0 ⊕ CON

(192)
72 .

Through the transformation of
∑

, L9
L2 can be calculated out. T 9

2 = L9
L2 ⊕

CON
(192)
78 ⊕ KR2. Because T 9

2 = RK38 is recovered, KR2 can be calculated out.
g) As WK2 = KL2 ⊕ KR2, WK2 is recovered. Since RK41 ⊕ WK2, RK36 ⊕

WK2, RK33 ⊕WK2 and RK28 ⊕WK2 have been obtained, RK41, RK36, RK33

and RK28 can be recovered. Thus

L10
R = (RK40|RK41|RK42|RK43)⊕ (CON

(192)
80 |CON

(192)
81 |CON

(192)
82 |CON

(192)
83 ),

L8
L = (RK32|RK33|RK34|RK35) ⊕ (CON

(192)
72 |CON

(192)
73 |CON

(192)
74 |CON

(192)
75 )

can be obtained.
h) Repeat the inverse transformation of

∑
until L0

L and L0
R are deduced. So

KL|KR = GFN−1
8,10(CON

(192)
0 , ..., CON

(192)
39 , L0

L|L0
R) is recovered.

4.4 Data Complexity Analysis

In CLEFIA, two different S-boxes S0 and S1 are adopted. S0 is generated by
combining 4×4 small S-boxes. S1 is constructed with the inverse operation plus
affine transform in finite field. For the non-empty IN0(a, b)(a �= 0, b ∈ GF (28))
of S0, the propagation of (a, b)s satisfying |IN0(a, b)| ≤ 4 is 96.2%. For the case of
|IN0(a, b)| = 2, 2 faulty ciphertexts should be generated to recover the input of
S0. For the case of |IN0(a, b)| = 4, about 4 faulty ciphertexts should be generated
to recover the input of S0. So about 3 faulty ciphertexts on average are needed
to recover the input of S0. For the non-empty IN1(a, b)(a �= 0, b ∈ GF (28)) of
S1, the propagation of (a, b)s satisfying |IN1(a, b)| = 2 is 99.2%. So about 2
faulty ciphertexts on average are needed to recover the input of S1.

In the attacking procedure in section 4.2 and 4.3, if the i-th round is to be
attacked, the (i−1)-th round will be randomly induced one byte fault, which can
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cause four bytes faults to simultaneously happen in the i-th round. So in order
to recover a subkey or the sum of a subkey and a post-whitening subkey, only
about 3 faulty ciphertexts on average are needed. As one round encryption is
composed of two F function and two subkeys are used, about 6 faulty ciphertexts
on average should be obtained. For 128-bit key, three round encryptions are to be
attacked, so about 18 faulty ciphertexts on average are required. For 192/256-bit
keys, nine round encryptions are to be attacked, so about 54 faulty ciphertexts
on average are required.

4.5 Computer Simulation

Our attack method has been successfully implemented through the computer
simulation. The programming language is Visual C++ 6.0 and the operation
system is Windows XP. The attack experiments are repeated ten times on CLE-
FIA with 128-bit, 192-bit and 256-bit key respectively.

Table 1 gives the induce number of DFA on CLEFIA. Apparently, in most
cases, the induce number is 18 for 128-bit key and 54 for 192/256-bit keys, which
verify the former data complexity analysis results.

Table 1. Experimental Results of DFA on CLEFIA

the i-th experiment 128-bit 192-bit 256-bit

1 19 54 54

2 19 54 55

3 18 54 54

4 18 54 54

5 18 55 54

6 20 54 54

7 18 54 54

8 18 55 54

9 18 54 55

10 18 54 55

5 Conclusion

In this paper, the differential fault analysis on CLEFIA is explored. The byte-
oriented model of random faults is adopted in our attack. Four bytes of faults
can be simultaneously obtained in one round by inducing randomly one byte
fault in the last round, which can efficiently reduce the total induce times in the
attack. After obtaining the subkeys in the last several rounds, and through some
analysis of the key schedule, only 18 faulty ciphertexts on average are needed to
recover the whole value of secret key for 128-bit key and 54 faulty ciphertexts
on average for 192/256-bit keys. The experimental results through the computer
simulation also verify the theoretical complexity analysis results.
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Abstract. In a paper published in FSE 2007, a way of obtaining near-
collisions and in theory also collisions for the FORK-256 hash function
was presented [8]. The paper contained examples of near-collisions for the
compression function, but in practice the attack could not be extended
to the full function due to large memory requirements and computation
time. In this paper we improve the attack and show that it is possible to
find near-collisions in practice for any given value of IV. In particular, this
means that the full hash function with the prespecified IV is vulnerable
in practice, not just in theory. We exhibit an example near-collision for
the complete hash function.

1 Introduction

Recent spectacular attacks on many established hash functions endangered most
commonly used dedicated hash functions and cast some doubts on the remain-
ing ones. This rekindled the interest in designing more secure yet still efficient
alternatives. While most of the dedicated hash functions used source-heavy un-
balanced Feistel networks [11], some alternatives were proposed that utilise the
other option, target-heavy UFNs. One of the examples is the hash function
Tiger [1] and a recent design FORK-256, proposed by Hong et al. [5,6].

Soon after FORK-256 was presented, works [9,7] showed that the step trans-
formation has a particular weakness that may threaten the function. Indeed, soon
after those ideas were refined and the attack on the full compression function
was presented [8], including example near-collisions [3]. Section 8 of the paper [8]
briefly mentions how to extend the result to the full compression function, but
there is a mistake in the description (see Section 3 of this paper). Additionally, a
cost based analysis [2] was never considered and from this viewpoint the attack
suffers due to the large memory requirements. In fact, the combination of large
memory and long running time preclude the idea from being implemented to
find near-collisions in practice.

This paper. In this paper we correct our mistake from [8] and give an improved
method for finding near-collisions (and full collisions) for any given IV. Our
method modifies the algorithm from [8] in order to keep the memory usage low
and improve the efficiency of one phase of the attack. Consequently, we are
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able to actually implement the algorithm to produce near-collisions for the full
FORK-256 with the real IV. We give an example near-collision.

In Section 2 we define some notations and give a brief description of FORK-
256. In Section 3, we briefly recall the original attack from [8]. Section 4 contains
our main contribution in which we explain the new version of the algorithm
including a detailed analysis. Finally, we present an example of a near-collision
with the IV specified by the designers and then we conclude our work.

2 Brief Description of FORK-256

FORK-256 is a dedicated hash function based on the classical Merkle-Damg̊ard
iterative construction with the compression function that maps 256 bits of state
and 512 bits of message to 256 bits of a new state. Here we give a concise
description – more details can be found in [5].

The compression function consists of four parallel branches branchj , j =
1, 2, 3, 4, each one of them using a different permutation σj of 16 message words
Mi, i = 0, . . . , 15.

The same set of eight chaining variables

CV� = (A0, B0, C0, D0, E0, F0, G0, H0)

is input to the four branches. After computing outputs of parallel branches

hj = branchj(CV�, M), j = 1, . . . , 4,

the compression function updates the set of chaining variables according to the
formula

CV�+1 := CV� + [(h1 + h2) ⊕ (h3 + h4)] ,

where modular and XOR additions are performed word-wise. Before the first ap-
plication of the compression function registers CV0 = (A0,. . . ,H0) are initialised
by appropriate constants presented in Table 3.

Each branch function branchj , j = 1, 2, 3, 4 consists of eight steps. In each
step k = 1, . . . , 8 the branch function updates its own copy of eight chaining
variables using the step transformation depicted in Fig. 1.

We will denote the value of register R in j-th branch after step i as R
(j)
i .

Before the computation of j-th branch, all A
(j)
0 , . . . , H

(j)
0 are initialised with

corresponding values of eight chaining variables.
Note that the crucial role in the step transformation play two so-called Q-

structures, marked in the picture with grey.
Functions f and g mapping 32-bit words to 32-bit words are defined as

f(x) = x +
(
ROL7(x) ⊕ ROL22(x)

)
,

g(x) = x ⊕
(
ROL13(x) + ROL27(x)

)
.

Constants δ0, . . . , δ15 used in each step are defined as the first 32 bits of fractional
parts of binary expansions of cube roots of the first 16 primes and are presented
in Table 4. Finally, permutations σj of message words and permutations πj of
constants are shown in Table 1.
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Fig. 1. Step transformation of a single branch of FORK-256. Q-structures are greyed
out.

Table 1. Message and constant permutations used in four branches j = 1, . . . , 4 of
FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

3 Attack on the Compression Function of FORK-256

In this section we recall the main points of the attack on the compression function
of FORK-256 presented in [8] that our attack builds on.

The first essential fact is that it is possible to relatively easily find situa-
tions when non-zero differences in registers A and E do not spread to other
registers during the step transformation. In other words, it is possible to ob-
tain characteristics of the form (ΔA, 0, 0, 0, 0, 0, 0, 0) → (0, ΔB, 0, 0, 0, 0, 0, 0) and
(0, 0, 0, 0, ΔE, 0, 0, 0) → (0, 0, 0, 0, 0, ΔF, 0, 0) without resorting to cancelling the
difference by appropriate message word difference (cf. Fig. 1). Such character-
istics are called micro-collisions and they are possible if the right difference is
fed to the register A (or E) and appropriate corresponding “constants” B, C
and D (F , G, H correspondingly) are set. Details on how those differences and
constants can be found are presented in [8].

The second important ingredient is the possibility of using micro-collisions to
find differential paths spanning the whole function that can be used to obtain
collisions for the complete compression function. One such path, used in the
original FORK-256 attack utilises difference in message word M12 only and is
presented in Fig. 2.
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Fig. 2. High-level path used to find near-collisions in FORK-256. Thick lines show the
propagation of differences. Indices of the message words that are fed into each step
transformation are given in the left and right columns of each branch. Q-structures for
which micro-collisions have to be found are greyed out.

The original attack from [8] first shows how to find chosen-IV near-collisions
(or full collisions) and then briefly suggests a way of extending it to an attack
on the full FORK-256. For now, we only focus on the low-memory version of the
attack: The reason for this will be evident later.

The idea is to first choose an appropriate difference for M12, then make
branches 3 and 4 work (see Fig. 2) and then use free message words to get
branch 1 and 2 to work. Initially all message words can be anything. To get
branch 4 to work, one manipulates the values of registers F0, G0, H0 and mes-
sage words M5, M1, M8, M15, M0, M13, M11 in order to get the micro-collisions
in the two Q-structures. Then to get branch 3 to work, message words M6, M10,
M14, and M2 are manipulated along with register B0. The change in B0 upsets
the branch 4, but by manipulating M11 again, the characteristic through both
branches holds.

For the remaining part of the characteristic (branches 1 and 2), the main
observation is that message words M9 and M4 can be freely changed without
upsetting branches 3 and 4. This gives 264 possibilities for satisfying the full
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characteristic. In fact, there are no requirements for branch 2, and only a single
microcollision needs to happen for branch 1 at D

(1)
6 → E

(1)
7 (step 7). Satisfying

this microcollision can be left to chance. With a precomputation trick and a
good choice of difference in M12, [8] finds pairs of outputs that differ in at most
108-bits (differences in registers C, D, F and part of B only) in time equivalent
to 218.6 FORK-256 operations. Such outputs can be called near-collisions. For
2108 · 218.6 = 2126.6 work, full collisions are expected. The result is faster than
birthday attack.

However, it must be emphasised that these are chosen-IV near-collisions and
collisions. It requires choosing values for B0, F0, G0, and H0. In Section 7.2 of
the paper, a way to eliminate the need to choose B0 is suggested, though it uses
large precomputation tables – on the order of 273 words of memory. Assuming
the choice of B0 can be eliminated, [8] argues in Section 8 that real collisions
can be found by prepending a message block that yields the right values of F0,
G0, and H0 when that message block is sent through the compression function
with the real IV defined in FORK-256. But it claims that finding this message
block can be done after the execution of the algorithm that finds the chosen-
IV collision. This is not correct. The characteristic depends upon all chaining
variable regsisters. In other words, it is not only F0, G0, and H0 that have to
match the inputs to the chosen-IV collision, but also A0 through E0. This is
easy to see: if one has a near-collision such as any one given from [8], you cannot
change an input register value and still have the same near-collision because the
difference propagates rapidly.

There is a simple fix for the error in Section 8. The requirements for F0, G0 and
H0 are dictated by the predetermined difference in M12. Thus, one can process
the prepended message block first: simply try random first messages blocks until
allowable values for F0, G0, and H0 are found. Then, one can execute the search
algorithm to determine a second message block that yields a partial collision/full
collision for the chaining variables determined from the prepended block. More
details are in Section 4.2.

It would be nice to implement the attack to show that it works and can at least
produce near-collisions, thus showing that there are real problems with FORK-
256 (as opposed to attacks that are of theoretical interest only). Note that the
low-memory version cannot be implemented because of the requirement on B0,
which would amplify the running time significantly (beyond what can be done in
on a typical PC using a reasonable amount of CPU time). Neither can the large
memory version since computers with 273 of memory do not yet exist. Moreover
it is claimed in [8] that finding the right values of F0, G0, and H0 takes 296 steps.

Our new contribution is to present a simplified and improved near-collision
(and collision) search algorithm which does not use large memory and can be ran
on a typical PC to produce near-collisions on the full FORK-256 with specified
IV within a few days of run time. The simplified algorithm is a modification of
the low-memory attack from [8]. We ran our new algorithm and found several
near-collisions on the full FORK-256 with the real IV.
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4 Improving the Attack

The obstacle for extending the low-memory attack from [8] to the full hash
function is the requirement for particular values of four chaining values, B0

required by branch 3 and F0, G0, H0 required by branch 4. Nothing can be done
about constants necessary to achieve micro-collision in the first step of branch 4.
However, by careful modification of some steps of the procedure we can eliminate
the need for choosing the value of the constant B0.

4.1 The Algorithm

Instead of solving for branch 4, then branch 3, and later making a small adjust-
ment to branch 4 again, the idea is to go through the first step of branch 4 only,
then switch to branch 3, and finally return to solve for the rest of branch 4.

Let d denote the modular difference used in M12. Recall that an allowable
value x is a value fed to register A (or E) such that there exist constants B, C,
D (or F , G, H) that cause simultaneous micro-collisions to happen in all three
lines when x, x + d are the values of register A (or E). The modified algorithm
first precomputes for difference d all allowable values for step 5 of the left Q-
structure of branch 4. Then, the steps are as follows:

Branch 4, step 1. We find x1 such that x1, x1 + d give simultaneous g - δ15 - f
micro-collisions for step 1 of branch 4, compute corresponding constants τ1, τ2, τ3

and assign F0 := τ1, G0 := τ2, H0 := τ3. Set M12 to x1 − E0 and M ′
12 to

x1 − E0 + d.

Branch 3. We choose values of M7, M6, M10, M14, M13 and M2 appearing in
the first three steps of branch 3 randomly and compute the function up to the
beginning of step 4. We check if the value E

(3)
4 +M12 is an allowable value for the

g - δ6 - f micro-collision in step 4, i.e. we test if there exist constants μ0, μ1, μ2

such that the pair E
(3)
4 +M12, E

(3)
4 +M12 + d yields micro-collisions when those

constants are set in registers F
(3)
3 , G

(3)
3 , H

(3)
3 . If it is not, we pick fresh values

of the message words and repeat the process. Once we get the right values (this
needs around 223 trials using the difference from [8]) we modify values of M6,
M10, M14, M13 and M2 to adjust the values of F

(3)
3 , G

(3)
3 , H

(3)
3 to appropriate

constants μ0, μ1, μ2. This modification is similar to the original except here we
are required to modify M13, whereas the original algorithm avoided it because
it was set in branch 4 (instead the original algorithm modified B0). Now branch
3 is ready.

Branch 4, steps 2–4. We start with choosing random values for M5, M1, and
M15. Then values of M8, M0, and M11 are chosen to preserve the subtraction
difference d through the first 4 steps of the characteristic. This is easy to do, for
example, by setting the message blocks so that the input to the f function is zero
(the output of the f function is the only thing that can change the subtraction
difference). Then we compute up to the beginning of step 5. Next, we use our
precomputed table to loop through all choices of M3 that lead to allowable values
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and we test each one to see if any of them does not cause a difference propagation
to C

(4)
5 for the current value of B

(4)
4 that is there. In other words, we are looking

for a value of M3 that actually induces a single micro-collision in line B and
has the potential to cause simultaneous micro-collisions in the other two lines.
This is illustrated in Fig. 3. If no solution is found, then we go back to solve for
branch 3 again with new random values.1

pick
allowable M3

M3

M3 M3

try again

adjust constants
C

(4)
4 , D

(4)
4

difference in C
(4)
5 – bad

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

C
(4)
4 D

(4)
4B

(4)
4A

(4)
4

Fig. 3. Illustration of the procedure used in step 5 of branch 3. We want to get micro-
collisions in all three lines without the need for modifying the value of B

(4)
4 .

Once such a solution is found, we have to set the values of C
(4)
4 and D

(4)
4

to appropriate constants so that we obtain simultaneous micro-collisions for all
three lines. We do this by adjusting the values of M1, and M15 and appropriately
compensating for these changes by adjusting M0 and M11. After this is done,
branches 3 and 4 are ready.

Branches 1 and 2. The part of the algorithm that deals with branches 1 and
2 is identical to the one presented in [8] and it does not require any further
explanations.

In the original attack [8], the search complexity for a near-collision is domi-
nated by branches 1 and 2. The search through branches 1 and 2 involved 264

potential characteristics for the cost of 258 FORK-256 operations. Provided that
the cost of our modified algorithm for branches 3 and 4 is less than this, the
overall complexity is unchanged.

With the difference of d =0x22f80000 the probability of passing step 4 of
branch 3 is about 2−24 and the probability of passing step 5 in branch 4 is
about 2−19. The cost of a single check is about eight steps of FORK-256, so
2−3 full FORK-256 evaluations. Thus, passing branches 3 and 4 in our modified
algorithm requires about 240 FORK-256 evaluations. Hence, it does not influence
the final complexity of the attack.
1 We cannot repeat Branch 4 again since we will always end up with the same value

for B
(4)
4 .
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4.2 Fixing Appropriate Chaining Values

So far we have removed the need for the fourth initial chaining value to be fixed.
This leaves us with three 32-bit words, each one to be set to one of the possible con-
stants required by simultaneous micro-collisions in step 1 of branch 4. This means
that by prepending a random message block and computing the digest that in turn
becomes the chaining value for the main part of the attack we have the probability
of getting the right values of those registers at least 2−96, less than 2126.6 required
for the second phase. However, we can do much better when we use the fact that
any of the possible constants will suffice in each of the three initial registers.

Let A be the set of allowable values for g - δ15 - f micro-collision in step 1 of
branch 4 for a given difference d. For each allowable value a ∈ A we can compute
sets Fa, Ga, Ha of constants that yield a micro-collision in the corresponding line.
Then, the probability that a randomly selected triple constitute good constants
for some allowable value a is

P = 1 −
∏

a∈A

(

1 − |Fa| · |Ga| · |Ha|
296

)

This probability depends on the choice of the difference d. For both differences d =
0xdd080000 and d = 0x22f80000 used in [8] it is equal to P = 2−64.8, but there
are other differences with much higher values of P . Of course those differences may
give worse performance in the main part of the attack because they are not tuned
to yield optimal chance of passing requirements of branch 1. What really matters
though is that original differences are suitable for the improved attack.

4.3 Experimental Results

We implemented this modified strategy and tested it. As an example, we present
in Table 2 a pair of messages that give a near-collision of weight 42 of the full
hash function FORK-256. Here we used difference d =0x3f6bf009 since it has
P = 2−21.7 for the first phase of the attack.

Table 2. Example of a near-collision of weight 42 for the complete hash function
FORK-256. The first block is used to obtain the desired values of chaining registers
that enable the attack on the compression function.

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M
2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 4e84d457 5a6c49b6 ad1d9711 0f69afa2
2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M ′ 2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 8df0c460 5a6c49b6 ad1d9711 0f69afa2

diff 00000000 83480012 32b4070c 681a1279 648600ad 00000000 00000000 00000000
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5 Conclusions

In this paper we presented an attack that can find near-collisions and even
collisions for the full hash function of FORK-256. We improved on previous
results that used large memory and were too inefficient to implement in practice.
This in a sense completes the attack and adds another result relevant to the
analysis of FORK-256 and possibly also similar designs.

We remark that the authors of FORK-256 recently proposed a patched version
of their function [4], largely due to [8]. Because of a change in functions f and
g and a modified structure of the step transformation, the new FORK does not
allow for finding micro-collisions. Despite this, Saarinen found an attack on the
new FORK [10] faster than birthday paradox but requiring large memory. It
would be interesting to see if either the time or memory requirements can be
improved.

Acknowledgements. The authors were supported by Australian Research
Council grant DP0663452.
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A Constants

Table 3. Constants used to initialise chaining variables of FORK-256

A0 B0 C0 D0 E0 F0 G0 H0

6a09e667 bb67ae85 3c6ef372x a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

Table 4. Step constants δ0, . . . , δ15 used in FORK-256

δ 0 1 2 3 4 5 6 7

0 428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
8 d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
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Abstract. SMS4 is a 32-round block cipher with a 128-bit block size
and a 128-bit user key. It is used in WAPI, the Chinese WLAN national
standard. In this paper, we present a rectangle attack on 14-round SMS4,
and an impossible differential attack on 16-round SMS4. These are better
than any previously known cryptanalytic results on SMS4 in terms of the
numbers of attacked rounds.
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1 Introduction

The Chinese national standard for Wireless Local Area Networks (WLANs),
WLAN Authentication and Privacy Infrastructure (WAPI), has been the subject
of extensive international debate, especially between China and USA, since over
the last four years it has been a rival for IEEE802.11i [6] for adoption as an ISO (In-
ternational Organization for Standardization) international standard. WAPI and
IEEE 802.11i have both been proposed as security amendments to the ISO/IEC
8802-11 WLAN standard [7]. The two schemes use two different block ciphers for
encryption of data: IEEE 802.11i uses the AES [14] cipher, while WAPI uses the
SMS4 [1] cipher. In March 2006, IEEE 802.11i was approved as the standard, and
WAPI was rejected, partially because of uncertainties regarding the security of
the undisclosed SMS4 cipher. However, because it is a Chinese national standard,
WAPI continues to be used in the Chinese WLAN industry, and many interna-
tional corporations, such as SONY, support WAPI in relevant products.

The SMS4 cipher was released in a Chinese version only, in January 2006 [1];
it has a 128-bit block size, a 128-bit user key, and a total of 32 rounds. To the
best of our knowledge, the only previously published cryptanalytic result on the
SMS4 algorithm is an integral attack [9] on 13-round SMS4, presented recently
in [10]; moreover, a differential fault analysis on the SMS4 implementation was
presented in [16].

In this paper, we exploit certain 12-round rectangle distinguishers with proba-
bility 2−237.64, which can be used to mount a rectangle attack on SMS4 reduced
� This work as well as the author was supported by a British Chevening / Royal Hol-

loway Scholarship and the European Commission under contract IST-2002-507932
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to 14 rounds. We also exploit certain 12-round impossible differentials, which
enables us to mount an impossible differential attack on SMS4 reduced to 16
rounds. The attacks use the early abort technique described in [11,12,13].

The rest of this paper is organised as follows. In the next section, we describe
the notation used throughout this paper and the SMS4 cipher. In Section 3, we
introduce a number of properties of SMS4 and give some necessary definitions.
In Sections 4 and 5, we present our cryptanalytic results. Section 6 concludes
this paper.

2 Preliminaries

2.1 Notation

We use the following notation throughout this paper.

– ⊕ : bitwise logical exclusive OR (XOR)
– ≪ i : left rotation by i bits
– ej : a 32-bit word with zeros in all positions but bit j, (0 ≤ j ≤ 31)
– ei1,··· ,ij : ei1 ⊕ · · · ⊕ eij , (0 ≤ i1, · · · , ij ≤ 31)
– ? : an arbitrary 32-bit word, where two words represented by the ? symbol

may be different

The notion of difference used throughout this paper is with respect to the ⊕
operation. It is assumed that the least significant bit of a 32-bit word is referred
as the 0-th bit and the most significant bit is referred as the 31st bit.

2.2 The SMS4 Cipher

The SMS4 [1] block cipher takes as an input a 128-bit plaintext P , represented
as four 32-bit words P = (P0, P1, P2, P3), and has a total of 32 rounds. Let
X i+1 = (Xi+1,0, Xi+1,1, Xi+1,2, Xi+1,3) denote the four-word output of the i-th
round, (0 ≤ i ≤ 31)1. Then, the encryption procedure of SMS4 is as follows:

1. Set X0 = (X0,0, X0,1, X0,2, X0,3) = (P0, P1, P2, P3).
2. For i = 0 to 31:

– Xi+1,0 = Xi,1,
– Xi+1,1 = Xi,2,
– Xi+1,2 = Xi,3,
– Xi+1,3 = Xi,0 ⊕ L(S(Xi,1 ⊕ Xi,2 ⊕ Xi,3 ⊕ RK i)),

3. The ciphertext is X32 = (X32,0, X32,1, X32,2, X32,3),

where RK i is the 32-bit round subkey for the i-th round, the transformation L
is defined as L(x) = x ⊕ (x ≪ 2) ⊕ (x ≪ 10) ⊕ (x ≪ 18) ⊕ (x ≪ 24), for
x ∈ Z32

2 , and the transformation S applies the same 8 × 8 bijective S-Box (see
Table 1) four times in parallel to an input, and it is defined as follows.

input : A = (a0, a1, a2, a3) ∈ (Z8
2 )4, output : B = (b0, b1, b2, b3) ∈ (Z8

2 )4

substitution : B = S(A) ⇔ bj = S-Box(aj), for j = 0, 1, 2, 3.

1 Note that the first round is referred as Round 0.



308 J. Lu

Table 1. The S-Box table of SMS4

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05
0x1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99
0x2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62
0x3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6
0x4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8
0x5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35
0x6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87
0x7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e
0x8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1
0x9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3
0xa 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f
0xb d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51
0xc 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8
0xd 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0
0xe 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84
0xf 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

The composed transformation L ◦ S is called T in the specification docu-
ment [1]. Fig. 1 depicts one encryption round of SMS4. Decryption is identical
to encryption, except that the round keys are used in the reverse order.

S

Xi,3Xi,2Xi,1Xi,0

Xi+1,3Xi+1,2Xi+1,1Xi+1,0

⊕L

RKi

⊕
T

Fig. 1. The i-th encryption round of SMS4

The key schedule of SMS4 accepts a 128-bit user key MK , represented as four
32-bit words (MK 0,MK 1,MK 2,MK 3). The j-th round subkey RK j (0 ≤ j ≤
31) is generated as follows.

– Compute (K0, K1, K2, K3) = (MK 0⊕FK 0,MK 1⊕FK 1,MK 2⊕FK 2,MK 3⊕
FK 3), where FK 0 = 0xa3b1bac6,FK 1 = 0x56aa3350,FK2 = 0x677d9197,
and FK 3 = 0xb27022dc.

– Compute RK j = Kj+4 = Kj ⊕ L′(S(Kj+1 ⊕ Kj+2 ⊕ Kj+3 ⊕ CK j)), where
the transformation L′ is defined as L′(x) = x ⊕ (x ≪ 13) ⊕ (x ≪ 23),
for x ∈ Z32

2 , and the constant CK j = (ckj,0, ckj,1, ckj,2, ckj,3) ∈ (Z8
2 )4, with

ckj,k = 28j+7k mod 256 (k = 0, 1, 2, 3). The composed transformation L′◦S
is called T′ in the specification document.
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3 Properties of SMS4 and Definitions

We first introduce three properties of SMS4, which are important to our attacks.

Property 1. For the nonlinear transformation S, S(Δx) = 0 if, and only if,
x = 0 (x ∈ Z32

2 ).

Property 2. For the linear transformation L, L(x) = 0 if, and only if, x = 0
(x ∈ Z32

2 ).

Property 3. For the S-Box, there exist 127 possible output differences for any
nonzero input difference, of which 1 output difference occurs with probability 2−6,
and each of the other 126 output differences occurs with probability 2−7.

Property 1 is obvious; Properties 2 and 3 can be verified by two simple com-
puter programs.

We next give two definitions.

Definition 1. Let Λ be an arbitrary but nonempty subset of any of the four
sets {0, 1, · · · , 7}, {8, 9, · · · , 15}, {16, 17, · · · , 23} and {24, 25, · · · , 31}, then we
define the set Ω(eΛ) as follows:

Ω(eΛ) = {x|x = L(y), Pr(S(ΔeΛ) → Δy) = 2−6, x, y ∈ Z32
2 }.

Note that |Ω(eΛ)| = 1 holds for any nonempty Λ by Property 3.

Definition 2. Let Λ be an arbitrary but nonempty subset of the set {0, 1, · · · , 31};
then we define the three sets Θ(eΛ), Υ (eΛ, m ∈ Θ(eΛ)) and Π(eΛ, m ∈ Θ(eΛ), n ∈
Υ (eΛ, m)) as follows:

• Θ(eΛ) = {x|x = L(y), Pr(S(ΔeΛ) → Δy) > 0, x, y ∈ Z32
2 }.

• Υ (eΛ, m ∈ Θ(eΛ)) = {x|x = L(y) ⊕ eΛ, y ∈ {z| Pr(S(Δm) → Δz) > 0, z ∈
Z32

2 }, x, y ∈ Z32
2 }.

• Π(eΛ, m ∈ Θ(eΛ), n ∈ Υ (eΛ, m)) = {x|x = L(y) ⊕ eΛ, y ∈ {z| Pr(S(Δ(eΛ ⊕
m ⊕ n)) → Δz) > 0, z ∈ Z32

2 }, x, y ∈ Z32
2 }.

4 Rectangle Attack on 14-Round SMS4

Being a variant of the boomerang attack [15] and an improvement of the am-
plified boomerang attack [8], the rectangle attack [4] shares the same basic idea
of using two short differentials with larger probabilities instead of a long dif-
ferential with a smaller probability. A rectangle attack is based on a rectangle
distinguisher, which treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a
cascade of two sub-ciphers E = E1 ◦ E0.

In this section, we exploit certain 12-round rectangle distinguishers with prob-
ability 2−237.64, such that we can conduct a rectangle attack on SMS4 reduced
to that operates 14 rounds.
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4.1 12-Round Rectangle Distinguishers with Probability 2−237.64

Let E0 denote Rounds 0 to 7 of SMS4, and E1 denote Rounds 8 to 11 of SMS4.
The differentials for the 12-round distinguishers are as follows.

– The following 8-round differentials α → β′ are used for E0: (eΨ1 , eΨ , eΨ , eΨ ) →
(eΨ2 , eΨ3 , eΨ4 , eΨ5), where Ψ is an arbitrary but nonempty subset of any of the
four sets {0, 1, · · · , 7}, {8, 9, · · · , 15}, {16, 17, · · · , 23} and {24, 25, · · · , 31},
eΨ1 ∈ Ω(eΨ ), eΨ2 ∈ Θ(eΨ ), eΨ3 ∈ Υ (eΨ , eΨ2), eΨ4 ∈ Π(eΨ , eΨ2 , eΨ3), and
eΨ5 ∈ {x|x = L(y) ⊕ eΛ, y ∈ {z|Prob.(S(Δ(eΨ2 ⊕ eΨ3 ⊕ eΨ4)) → Δz) > 0, z ∈
Z32

2 }, x, y ∈ Z32
2 }.

– The following 4-round differentials γ → δ′ are used for E1: (eΦ, eΦ, eΦ, 0) →
(eΦ, eΦ, eΦ, eΦ2), where Φ is an arbitrary but nonempty subset of any of the
four sets {0, 1, · · · , 7}, {8, 9, · · · , 15}, {16, 17, · · · , 23} and {24, 25, · · · , 31},
eΦ2 ∈ Θ(eΦ).

See Table 2 for the details of these two groups of differentials, where the difference
in a round is the input difference to this round. The same meaning is used with
the differentials in the next section. Note that different Ψ and/or Φ correspond
to different rectangle distinguishers. In the following, we assume Ψ and Φ are
fixed.

Table 2. The two groups of differentials in the 12-round rectangle distinguisher, where
† means that the probability is addressed later

Round(i)ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3 Prob. Round(i)ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3 Prob.

0 eΨ1 eΨ eΨ eΨ 2−6 7 eΨ eΨ2 eΨ3 eΨ4 †
1 eΨ eΨ eΨ 0 1 output eΨ2 eΨ3 eΨ4 eΨ5 /

2 eΨ eΨ 0 eΨ 1 8 eΦ eΦ eΦ 0 1

3 eΨ 0 eΨ eΨ 1 9 eΦ eΦ 0 eΦ 1

4 0 eΨ eΨ eΨ 10 eΦ 0 eΦ eΦ 1
5 eΨ eΨ eΨ eΨ2 † 11 0 eΦ eΦ eΦ †
6 eΨ eΨ eΨ2 eΨ3 output eΦ eΦ eΦ eΦ2 /

In the following, we need to sum the square of the probabilities of all the
possible differentials α → β′. As there exist many more differential characteristics
than we can count, it is infeasible to compute the exact square sum; however,
we can compute a lower bound for it. By the Property 3 in Section 3, we can
learn that for a fixed Ψ , there exists one eΨ2 such that the probability that
L(S(ΔeΨ )) → ΔeΨ2 is 2−6, and exist 126 eΨ2 such that the probability that
L(S(ΔeΨ )) → ΔeΨ2 is 2−7. Due to the L transformation, the four 32-bit words in
any eΨ are all nonzero. Thus, for any eΨ2 , if we define the Event A: (L(S(ΔeΨ2))⊕
eΨ ) → ΔeΨ3 , then we can learn that there exists one possible eΨ3 with probability
2−24, and exist

(
4
3

)
· 126 possible eΨ3 with probability 2−25,

(
4
2

)
· 1262 possible

eΨ3 with probability 2−26,
(
4
1

)
· 1263 possible eΨ3 with probability 2−27 and

1264 possible eΨ3 with probability 2−28. Consequently, for any eΨ2 and eΨ3 , if we
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define the Event B: (L(S(Δ(eΨ ⊕eΨ2⊕eΨ3)))⊕eΨ ) → ΔeΨ4 , then there exists one
possible eΨ4 with probability 2−24, and exist

(
4
3

)
·126 possible eΨ4 with probability

2−25,
(
4
2

)
· 1262 possible eΨ4 with probability 2−26,

(
4
1

)
· 1263 possible eΨ4 with

probability 2−27 and 1264 possible eΨ4 with probability 2−28. Therefore, we can
compute a square sum of at least (2−6)2 · [(2−6)2 +126 · (2−7)2] · [1 · (2−24)2 +

(
4
3

)
·

126 · (2−25)2 +
(
4
2

)
·1262 · (2−26)2 +

(
4
1

)
·1263 · (2−27)2 +1264 · (2−28)2]3 ≈ 2−109.64.

For the 4-round differentials γ → δ′, as mentioned earlier, there are 127 possi-
ble eΦ2 , 1 possibility with probability 2−6 and each of the other 126 possibilities
with probability 2−7, thus, this 12-round rectangle distinguisher has a probabil-
ity of at least 2−109.64 · [(1 · 2−6 + 126 · 2−7)]2 · 2−128 ≈ 2−237.64 for the correct
key, while it has a probability of (2−128 · 127)2 ≈ 2−242.02 for a wrong key.

The 12-round distinguisher can be used to mount a rectangle attack on 14-
round SMS4. Without loss of generality, we assume the attacked 14 rounds
are the first 14 rounds from Rounds 0 to 13. Given the 127 input differences
(eΦ, eΦ, eΦ, eΦ2) to Round 12, there are at most 1275 possible output differ-
ences {(eΦ, eΦ, eΦ2 , eΦ3)|eΦ3 ∈ Υ (eΦ, eΦ2)} just after Round 12, and at most
1279 possible output differences {(eΦ, eΦ2, eΦ3 , eΦ4)| eΦ3 ∈ Υ (eΦ, eΦ2), eΦ4 ∈
Π(eΦ, eΦ2 , eΦ3)} just after Round 13.

As mentioned in the Introduction, our rectangle attack, as well as the im-
possible differential attack in the next section, uses the early abort technique
introduced in [11,12,13]; the main idea of the early abort technique is to par-
tially determine whether or not a candidate quartet in a rectangle attack (or a
candidate pair in an impossible differential attack) is valid earlier than usual,
by guessing only a small fraction of subkeys required; if not, we can discard it
immediately, which results in less computations in the left steps and may allow
us to break more rounds by guessing the subkeys involved, depending on how
many candidates are remaining.

The attack procedure is as follows.

4.2 Attack Procedure

1. Choose 2120.82 pairs of plaintexts (Pi, P̃i) with difference (eΨ1 , eΨ , eΨ , eΨ ),
i = 1, 2, · · · , 2120.82. In a chosen-plaintext attack scenario, obtain their cor-
responding ciphertext pairs; we denote them by (Ci, C̃i), respectively. These
ciphertext pairs generate about 2120.82×2/2 = 2240.64 candidate quartets
((Ci1 , C̃i1), (Ci2 , C̃i2)), for 1 ≤ i1 ≤ i2 ≤ 2120.82. We only choose those
such that both Ci1 ⊕ Ci2 and C̃i1 ⊕ C̃i2 belong to {(eΦ, eΦ2 , eΦ3, eΦ4)|eΦ3 ∈
Υ (eΦ, eΦ2), eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3)}.

2. For all the remaining quartets ((Ci1 , C̃i1), (Ci2 , C̃i2)), do as follows.
(a) For (Ci1 , Ci2), compute the four-byte difference of their intermediate val-

ues just before the L transformation in Round 13; we denote them by
(Δ13

i1,i2,0, Δ
13
i1,i2,1, Δ

13
i1,i2,2, Δ

13
i1,i2,3), respectively. For (C̃i1 , C̃i2), compute

the four-byte difference of their intermediate values just before the L trans-
formation in Round 13; we denote them by (Δ̃13

i1,i2,0, Δ̃
13
i1,i2,1, Δ̃

13
i1,i2,2,

Δ̃13
i1,i2,3), respectively.
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(b) For j = 0 to 3: Guess the j-th byte RK 13,j of the subkey RK 13 in Round
13, and partially decrypt every remaining quartet ((Ci1 , Ci2), (C̃i1 , C̃i2))
with RK 13,j to get the j-th bytes of their intermediate values just af-
ter the S transformation in Round 13; we denote them by ((Ti1,j, Ti2,j),
(T̃i1,j , T̃i2,j)), respectively. Finally, check if Ti1,j ⊕ Ti2,j = Δ13

i1,i2,j and
T̃i1,j ⊕ T̃i2,j = Δ̃13

i1,i2,j. If 6 or more quartets pass this test, execute next
with them, (otherwise, repeat this iteration with another key guess).
Finally, for every remaining ((Ci1 , C̃i1), (Ci2 , C̃i2 )) we get their intermedi-
ate values just after Round 12; we denote them by ((Ti1 , T̃i1), (Ti2 , T̃i2)),
respectively.

3. For all the quartets ((Ti1 , T̃i1), (Ti2 , T̃i2)), do as follows.
(a) For (Ti1 , Ti2), compute the four-byte difference of their intermediate val-

ues just before the L transformation in Round 12; we denote them by
(Δ12

i1,i2,0, Δ
12
i1,i2,1, Δ

12
i1,i2,2, Δ

12
i1,i2,3), respectively. For (T̃i1 , T̃i2), compute

the four-byte difference of their intermediate values just before the L trans-
formation in Round 12; we denote them by (Δ̃12

i1,i2,0, Δ̃
12
i1,i2,1, Δ̃

12
i1,i2,2,

Δ̃12
i1,i2,3), respectively.

(b) For j = 0 to 3: Guess the j-th byte RK 12,j of the subkey RK 12 in Round
12, partially decrypt every quartet ((Ti1 , Ti2), (T̃i1 , T̃i2)) with RK 12,j to
get the j-th bytes of their intermediate values just after the S transfor-
mation in Round 12; we denote them by ((Qi1,j , Qi2,j), (Q̃i1,j , Q̃i2,j)),
respectively. Finally, check if Qi1,j ⊕ Qi2,j = Δ12

i1,i2,j and Q̃i1,j ⊕ Q̃i2,j =
Δ̃12

i1,i2,j . If 6 or more quartets pass this test, execute next with them,
(otherwise, repeat this iteration with another key guess).

4. For every (RK 12,RK 13) passing Step 3, we can deduce that there are at
most 264 possible 128-bit user keys from these two 32-bit subkeys. Then, we
do a trial encryption with one known pair of plaintext and ciphertext. If a
128-bit key is suggested, output it as the user key of the 14-round SMS4;
otherwise, go to Step 2-(b).

To produce a difference (eΦ, eΦ, eΦ, eΦ2) just before Round 12, the two ci-
phertext pairs in a right quartet must have differences belonging to the set
{(eΦ, eΦ2 , eΦ3 , eΦ4)|eΦ3 ∈ Υ (eΦ, eΦ2), eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3)}, so a candidate quar-
tet that does not meet this filtering condition is an incorrect quartet. As a result,
only about 2240.64 · (1279

2128 )2 ≈ 2110.46 candidate quartets are chosen in Step 1.
In Steps 2-(b) and 3-(b), a candidate quartet passes every test with a prob-

ability of ( 1
127 )2 ≈ 2−13.98, and the number of the pairs passing every step

has a binomial distribution, so it is expected that almost all the 256 guesses
of (RK 12,0,RK 12,1,RK 12,2,RK 13,0,RK 13,1,RK 13,2,RK 13,3) will pass the test
with j = 2 in Step 3-(b), and for every guess about 2110.46 · 2−13.98×7 = 212.6

candidate quartets are expected to remain after the test with j = 2 in Step 3-
(b). In the test with j = 3 in Step 3-(b), the probability that 6 or more quartets
pass the tests for a wrong guess is approximately

∑212.6

i=6 [
(
212.6

i

)
· (2−13.98)i · (1 −

2−13.98)2
12.6−i] ≈ 2−17.77, thus it is expected that about 264 · 2−17.77 = 246.23
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Table 3. The two 6-round differentials in the 12-round impossible differentials, where
xi ∈ Θ(eΓ ), yi ∈ Υ (eΓ , xi), zi ∈ Π(eΓ , xi, yi), (i = 1, 2)

Round(i) ↓ ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3 Round(i) ↑ ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3

0 eΓ eΓ eΓ 0 6 z2 y2 x2 eΓ

1 eΓ eΓ 0 eΓ 7 y2 x2 eΓ eΓ

2 eΓ 0 eΓ eΓ 8 x2 eΓ eΓ eΓ

3 0 eΓ eΓ eΓ 9 eΓ eΓ eΓ 0

4 eΓ eΓ eΓ x1 10 eΓ eΓ 0 eΓ

5 eΓ eΓ x1 y1 11 eΓ 0 eΓ eΓ

output eΓ x1 y1 z1 output 0 eΓ eΓ eΓ

guesses of (RK 12,RK 13) are suggested after the test with j = 3 in Step 3-(b). In
Step 4, the expected number of wrong 128-bit keys is about 2−128 · 246.23+64 =
2−17.77, which is very low.

The attack requires 2121.82 chosen plaintexts. The required memory space is
dominated by the ciphertexts, which is about 2121.82 ·16 = 2125.82 memory bytes.
The time complexity of Steps 2–4 is dominated by the partial decryptions for
j = 0 in Step 2-(b), which is about 4 · 28 · 2110.46 · 1

14 ≈ 2116.66 14-round SMS4
computations.

As the probability of the distinguisher is 2−237.64, it is expect there are
8(= 2240.64 ·2−237.64) right quartets for the correct key in Step 3-(c). The proba-
bility that 6 or more quartets pass the test in Step 3-(c) for the correct subkeys is
approximately

∑2240.64

i=6 [
(
2240.64

i

)
· (2−237.64)i · (1 − 2−237.64)2

240.64−i] ≈ 0.8, there-
fore, with a success probability of 80%, this related-key rectangle attack can
break 14-round SMS4, faster than an exhaustive key search.

5 Impossible Differential Attack on 16-Round SMS4

An impossible differential [2] is a differential [5] with a zero probability; that is,
it would never happen under any situation.

In this section, we exploit certain 12-round impossible differentials in SMS4.
Finally, we show that impossible differential cryptanalysis can break SMS4 re-
duced to 16 rounds.

5.1 12-Round Impossible Differentials

The 12-round impossible differentials are (eΓ , eΓ , eΓ , 0) � (0, eΓ , eΓ , eΓ ), where
Γ is defined as an arbitrary but nonempty subset of the set {0, 1, · · · , 15}. These
12-round impossible differentials are built in a miss-in-the-middle manner [3]:
a 6-round differential with probability 1 is concatenated with another 6-round
differential with probability 1, but the intermediate differences of these two dif-
ferentials contradict one another. See Table 3.

The first 6-round differential with probability 1 is (eΓ , eΓ , eΓ , 0) → (eΓ , ?, ?,
?). The input difference (eΓ , eΓ , eΓ , 0) to Round 0 propagates with probability 1
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to the difference (eΓ , eΓ , 0, eΓ ) after one round, which then propagates with a 1
probability to the difference (0, eΓ , eΓ , eΓ ) after the following two rounds. Then,
the difference (0, eΓ , eΓ , eΓ ) definitely propagates to a difference belonging to
the set {(eΓ , eΓ , eΓ , x1)|x1 ∈ Θ(eΓ )} after Round 3, which finally propagates
with probability 1 to a difference belonging to {(eΓ , x1, y1, z1)|x1 ∈ Θ(eΓ ), y1 ∈
Υ (eΓ , x1), z1 ∈ Π(eΓ , x1, y1)} after Rounds 4 and 5. On the other hand, when
we roll back the output difference (0, eΓ , eΓ , eΓ ) of the second 6-round differen-
tial through the three consecutive rounds from Rounds 9 to 11 in the reverse
direction, we will get the difference (eΓ , eΓ , eΓ , 0) just before Round 9 with
probability 1. Then, when we roll back the difference (eΓ , eΓ , eΓ , 0) through
Round 8, we will definitely get a difference belonging to the set {(x2, eΓ , eΓ , eΓ )|
x2 ∈ Θ(eΓ )}. Finally, when we continue to go back for two more rounds, we can
definitely get a difference belonging to the set {(z2, y2, x2, eΓ )| x2 ∈ Θ(eΓ ), y2 ∈
Υ (eΓ , x2), z2 ∈ Π(eΓ , x2, y2)} just before Round 6. Now, a contradiction oc-
curs, for we never get the one-round output difference {(y2, x2, eΓ , eΓ )| x2 ∈
Θ(eΓ ), y2 ∈ Υ (eΓ , x2)} given an input difference belonging to {(eΓ , x1, y1, z1)|
x1 ∈ Θ(eΓ ), y1 ∈ Υ (eΓ , x1), z1 ∈ Π(eΓ , x1, y1)}. More specifically, to get a
one-round output difference belonging to {(y2, x2, eΓ , eΓ )| x2 ∈ Θ(eΓ ), y2 ∈
Υ (eΓ , x2)}, the input difference of the second 6-round differential should belong
to the set {(z2, y2, x2, eΓ )| x2 ∈ Θ(eΓ ), y2 ∈ Υ (eΓ , x2), z2 ∈ Π(eΓ , x2, y2)}, how-
ever, note that the output difference of the first 6-round differential is {(eΓ , x1,
y1, z1)| x1 ∈ Θ(eΓ ), y1 ∈ Υ (eΓ , x1), z1 ∈ Π(eΓ , x1, y1)}, so it is a necessary that
the following five conditions should hold for some sextuple (x1, y1, z1, x2, y2, z2),
where x1, x2 ∈ Θ(eΓ ), y1 ∈ Υ (eΓ , x1), y2 ∈ Υ (eΓ , x2), z1 ∈ Π(eΓ , x1, y1) and
z2 ∈ Π(eΓ , x2, y2):

x2 = y1, (1)
y2 = x1, (2)
z1 = eΓ , (3)
z2 = eΓ , (4)
L(S(x1 ⊕ y1 ⊕ eΓ )) ⊕ eΓ = eΓ . (5)

By Properties 1 and 2 in Section 3, we can learn that Eq. (5) is equivalent to
the following equation:

x1 ⊕ y1 ⊕ eΓ = 0. (6)

We perform a computer search over all the possibilities that may satisfy
Eqs. (1)–(4) and (6), but find that there does not exist such a qualified sex-
tuple (x1, y1, z1, x2, y2, z2) for any nonempty subset Γ of the set {0, 1, · · · , 15}.
Thus, these 12-round impossible differentials are impossible.

Before further proceeding, we would like to give the following two remarks: i)
We did not check whether there also exist similar 12-round impossible differen-
tials if Γ is defined as an arbitrary but nonempty subset of the set {0, 1, · · · , 31}
(excluding those described above), for this is much more time-consuming due
to a sharp increase on the number of the possible differences. It is reasonably
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thought that there also exist similar 12-round impossible differentials for them.
ii) We did not check whether one or more of the 12-round impossible differentials
can be extended to 13-round impossible differentials by appending one-round
differential (eΓ , x1, y1, z1) → (x1, y1, z1, ?) after the first 6-round differential or
one-round differential (?, z2, y2, x2) → (z2, y2, x2, eΓ ) before the second 6-round
differential; as there are so many possibilities (some may be identical) for any Γ
that we do not have an enough powerful computer/workstation on our hands to
check these possibilities with a bearable running time.

We can use a 12-round impossible differential to conduct an impossible differ-
ential attack on SMS4 reduced to 16 rounds, by taking advantage of the early
abort technique introduced in [13]. We assume the attacked 16 rounds are from
Rounds 0 to 15. To reduce the data and time complexities of the attack, we
choose Γ = {0, 1, · · · , 15}. We use the 12-round impossible differential from
Rounds 2 to 13. Given the output difference (e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15, 0) of
Round 1, there are 1272 possible input differences to Round 1, and at most 1276

possible input differences to Round 0; we denote them by the set Σ1. Given the
input difference (0, e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15) to Round 14, there are at most
1272 possible output differences just after Round 14, and at most 1276 possible
output differences just after Round 15; we denote them by the set Σ2. The attack
procedure is as follows.

5.2 Attack Procedure

1. Select 29 structures of 296 plaintexts each, where the most significant 16
bits of the rightmost two words of the plaintexts in a structure are fixed
to certain values, and all the other 96 bit positions take all the possible
values. Each structure generates (296/2)2 = 2190 plaintext pairs (Pi, Pj)
with difference (?, ?, e0,1,··· ,15, e0,1,··· ,15); thus, the 29 structures propose 2199

plaintext pairs with difference (?, ?, e0,1,··· ,15, e0,1,··· ,15). In a chosen-plaintext
attack scenario, obtain all the ciphertexts of Pi and Pj ; we denote them by
Ci and Cj , respectively. Choose only the ciphertext pairs (Ci, Cj) such that
Pi ⊕ Pj ∈ Σ1 and Ci ⊕ Cj ∈ Σ2.

2. For all the remaining pairs (Ci, Cj), compute the four-byte difference of their
intermediate values just before the L transformation in Round 15; we denote
them by (Δ15

i,j,0, Δ
15
i,j,1, Δ

15
i,j,2, Δ

15
i,j,3), respectively. Do as follows.

(a) For l = 0 to 3: Guess the l-th byte RK 15,l of the subkey RK 15 in Round
15, partially decrypt (Ci, Cj) with RK 15,l to get the l-th bytes of their
intermediate values just after the S transformation in Round 15; we
denote them by (Ti,l, Tj,l), respectively, and keep the pairs such that
Ti,l ⊕ Tj,l = Δ15

i,j,l.
Finally, for every remaining (Ci, Cj) we can get their intermediate

values just after Round 14 under the guess for RK 15; we denote them
by (Ti, Tj), respectively.
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(b) For all the remaining pairs (Ti, Tj), compute the four-byte difference of
their intermediate values just before the L transformation in Round 14;
we denote the first two bytes by (Δ14

i,j,0, Δ
14
i,j,1), respectively.

(c) For l = 0 to 1: Guess the l-th byte RK 14,l of the subkey RK 14 in Round
14, partially decrypt (Ti, Tj) with RK 14,l to get the l-th bytes of their
intermediate values just after the S transformation in Round 14; we
denote them by (Qi,l, Qj,l), respectively, and keep only the pairs such
that Qi,l ⊕ Qj,l = Δ14

i,j,l.
3. For all the plaintext pairs (Pi, Pj) corresponding to the remaining cipher-

text pairs (Ci, Cj) after Step 2-(c), compute the four-byte difference of their
intermediate values just before the L transformation in Round 0; we denote
them by (Δ0

i,j,0, Δ
0
i,j,1, Δ

0
i,j,2, Δ

0
i,j,3), respectively. Do as follows.

(a) For l = 0 to 3: Guess the l-th byte RK 0,l of the subkey RK 0 in Round
0, partially decrypt (Pi, Pj) with RK 0,l to get the l-th bytes of their
intermediate values just after the S transformation in Round 0; we denote
them by (Ri,l, Rj,l), respectively, and keep only the pairs such that Ri,l⊕
Rj,l = Δ0

i,j,l.
Finally, for every remaining (Pi, Pj) we can get their intermediate

values just after Round 0 under the guess for RK 0; we denote them by
(Ri, Rj), respectively.

(b) For all the remaining pairs (Ri, Rj), compute the four-byte difference of
their intermediate values just before the L transformation in Round 1;
we denote the first two bytes by (Δ1

i,j,0, Δ
1
i,j,1), respectively.

(c) Guess the first byte RK 1,0 of the subkey RK 1 in Round 1, and partially
decrypt (Ri, Rj) with RK 1,0 to get the first bytes of their intermediate
values just after the S transformation in Round 1; we denote them by
(Si,0, Sj,0), respectively. Keep only the pairs such that Si,0⊕Sj,0 = Δ1

i,j,0.
(d) Guess the second byte RK 1,1 of the subkey RK 1 in Round 1, partially

decrypt (Ri, Rj) with RK 1,1 to get the second bytes of their intermediate
values just after the S transformation in Round 1; we denote them by
(Si,1, Sj,1), respectively, and check if Si,1 ⊕ Sj,1 = Δ1

i,j,1. If there exists
a qualified pair, then discard the guess of the 96 subkey bits, and try
another; otherwise, record it, and execute Step 4.

4. For a recorded guess of the 96 subkey bits, we can deduce that there are at
most 296 possible 128-bit user keys from these two 32-bit subkeys. Then, we
do a trial encryption with one known pair of plaintext and ciphertext. If a
128-bit key is suggested, output it as the user key of the 16-round SMS4;
otherwise, go to Step 2-(a).

To get the difference (0, e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15) just before Round 14 a
ciphertext pair must have a difference belonging to Σ2, and its corresponding
plaintext pair must have a difference belonging to Σ1 to get the difference
(e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15, 0) just before Round 2, which poses a filtering con-
dition of 1276

264 · 1276

2128 ≈ 2−108.12 over all the ciphertext pairs. There is a filtering
condition of 1

127 in every test of Steps 2-(a), 2-(c), 3-(a) and 3-(c). There-
fore, it is expected that only 213.99 pairs pass Step 3-(c) for every guess of
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(RK 0,RK 1,0,RK 14,0,RK 14,1,RK 15), and all these remaining pairs have the dif-
ference (0, e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15) just before Round 14. In Step 3-(d), a
remaining pair propagates with a probability of 1

127 to a pair of intermediate
values with difference (e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15, 0) just after Round 1, thus,
we expect with a probability of 1

127 to get a pair (Si,1, Sj,1) such that Si,1⊕Sj,1 =
Δ1

i,j,1, which means the pair has a difference (e0,1,··· ,15, e0,1,··· ,15, e0,1,··· ,15, 0) just
after Round 1; however, a subkey guess for which there exists such a pair is im-
possible. Hence, after analysing all the 213.99 remaining ciphertext pairs, only
296 · (1 − 2−6.99)2

13.99 ≈ 2−88.32 possible guesses of the 96 subkey bits pass Step
3-(d). As a result, the expected number of wrong 128-bit keys in Step 4 is about
2−128 · 296 = 2−32, which is extremely low, so we can find the correct 128-bit
user key.

The attack requires 2105 chosen plaintexts. The time complexity of Steps 2–4
is dominated by the partial encryptions/decryptions in Steps 2-(a), 2-(c), 3-(a),
3-(c) and 3-(d), which is approximately

∑11
l=1(2 ·290.88 ·28·l · 1

127l−1 · 1
16 )+2 ·296 ·

[1+(1−2−6.99)+ · · ·+(1−2−6.99)2
13.99

] · 1
16 ≈ 2107 16-round SMS4 computations.

6 Concluding Remarks

In this paper, we analyse the security of the SMS4 block cipher used in WAPI,
a Chinese national standard. We present a rectangle attack on SMS4 reduced to
14 rounds and an impossible differential attack on SMS4 reduced to 16 rounds.
These are better than any previously known cryptanalytic results on SMS4 in
terms of the numbers of attacked rounds.

Like most cryptanalytic results on block ciphers, our attacks are theoretical
in the sense of the assumptions of differential cryptanalysis. We stress that our
cryptanalytic attacks do not endanger the full 32 round version of SMS4; the 32
rounds provide a sufficient safety margin against our attacks.
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A Framework for Game-Based Security Proofs
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Abstract. To be accepted, a cryptographic scheme must come with
a proof that it satisfies some standard security properties. However,
because cryptographic schemes are based on non-trivial mathematics,
proofs are error-prone and difficult to check. The main contributions
of this paper are a refinement of the game-based approach to security
proofs, and its implementation on top of the proof assistant Coq. The
proof assistant checks that the proof is correct and deals with the mun-
dane part of the proof. An interesting feature of our framework is that our
proofs are formal enough to be mechanically checked, but still readable
enough to be humanly checked. We illustrate the use of our framework
by proving in a systematic way the so-called semantic security of the
encryption scheme Elgamal and its hashed version.

Keywords: formal verification, game, proof assistant, security.

1 Introduction

Information security is nowadays an important issue. Its essential ingredient is
cryptography. To be accepted, a cryptographic scheme must come with a proof
that it satisfies some standard security properties. However, because crypto-
graphic schemes are based on non-trivial mathematics such as number theory,
group theory or probability theory, this makes the proofs error-prone and difficult
to check. Bellare and Rogaway even claim that “many proofs in cryptography
have become essentially unverifiable” [5]. In particular, proofs often rely on as-
sumptions that are not clearly stated. This is why they advocate the usage of
sequences of games (a.k.a. game-playing technique or game-hopping technique).

This methodology is explicitly presented in [5] and [20] but has been used in
various styles before in the literature. It is a way to structure proofs so as to make
them less error-prone, more easily verifiable, and, ideally, machine-checkable. A
proof starts with the initial game which comes from the definition of the security
property to be proved. This can be seen as a challenge involving the attacker
and oracles. Attacker and oracles are efficient probabilistic algorithms (usually
modeled as probabilistic polynomial-time algorithms). Oracles model services
provided by the environment. For example an oracle might provide signed mes-
sages in order to model the spying of signed messages circulating on a network.
A testing oracle checks whether an attack is successful of not. There are also
encryption and decryption oracles. From the initial game, one builds a sequence
of games such that the last one is simple enough to reason on directly. The result

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 319–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is then backtracked to the initial game. This is possible because transformations
result either in an equivalent game or introduce small enough and quantified
changes.

Our contributions. Recently, Halevi [15] has advocated the need for a software
which can deal with the mundane part of writing and checking game-based
proofs. In order to aim at such goal, we present a refinement of the game-based
approach to security proofs, and its implementation1 on top of the proof assistant
Coq2. A proof assistant can indeed check that a proof is correct and deal with its
mundane part. Of course, human interaction is still needed in order to deal with
the creative part of the proof. But, when using a proof assistant, two things
are necessary. First, all the intermediate lemmas must be explicited; some of
those lemmas are not stated by cryptographers in their proofs because they
are considered too obvious in the context of security proofs. Second, a precise
mathematical meaning must be given to games; in papers, this is usually either
left implicit or informally explained in English. This is why we need to refine the
game-based approach. We base our formalization on [20] where games are seen
as probability distributions. Our aim is to have a framework in which proofs are
formal enough to be mechanically checked, and readable enough to be humanly
checked.

The approach to game-based proofs by Shoup [20] differs from the one by
Bellare and Rogaway [5]: In the latter, games are seen as syntactic objects. An
interest in founding our formalization on this latter approach would be the pos-
sibility for more automation because game transformations would be syntactic.
But each syntactic transformation should then be proved correct with respect
to a precise semantics in terms of probability distributions. However in [5] the
semantics is left implicit. They provide arguments for their syntactic transfor-
mations, but they cannot be directly formalized in a proof assistant due to the
lack of semantics.

We illustrate the use of our framework by proving in a systematic way the so-
called semantic security of the encryption scheme ElGamal and its hashed version
[12]. It is a widely-used asymmetric key encryption algorithm. It is notably used
by GNU Privacy Guard software, recent versions of PGP and other cryptographic
software. Under the so-called Decisional Diffie-Hellman (DDH) assumption [10],
it can be proved semantically secure [21]. To the best of our knowledge, this is
the first time a cryptographic scheme is fully machine-checked. This is not the
case in related work (see Section 2).

Outline. We start with related work in Section 2. In Section 3, we introduce
our mathematical framework. In Section 4, we formalize some security notions.
In Section 5, we show how to prove semantic security for the encryption scheme
ElGamal and its hashed version. Implementation issues in Coq are addressed in
Section 6.

1 A link to the source code is provided on Cryptology ePrint Archive together with
the full version of this paper [18].

2 See http://coq.inria.fr/

http://coq.inria.fr/
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2 Related Work

A lot of work has been done in direction of automatic discovery of proofs. It
is essentially based on the Dolev-Yao model [11] which requires a high-level of
abstraction, and is thus far from the view usually adopted by cryptographers. In
this paper, we are not considering automatic discovery of proofs, but instead we
want to facilitate the writing and checking of actual proofs by cryptographers.

The so-called generic model and random oracle model have been formalized
in Coq and applied to ElGamal [3]. In contrast to our approach, it is not based
on sequences of games which had not yet been popularized by [5] and [20].

CryptoVerif is a software for automated security proofs with sequences of
games [6]. It is in particular illustrated with a proof of the Full-Domain Hash
(FDH) signature scheme [4]. However this proof relies on certain equivalences
that have to be introduced by the user. Those non-trivial equivalences are proved
manually in Appendix B of [7]. These are difficult parts of the proof that cannot
be handled by CryptoVerif. Moreover this tool consists of 14800 lines of non-
certified O’Caml codes. On the other hand, our tool is certified: all our game
transformations have been proved correct in the proof assistant Coq.

A probabilistic Hoare-style logic has been proposed (but not implemented)
in [9] to formalize game-based proofs. This logic allows for rigorous proofs but
those proofs differ from game-based proofs by cryptographers. Indeed, because
their language allows for while loops and state variables, they are led to use a
Hoare-style logic. They illustrate their logic by proving semantic security of the
non-hashed version of ElGamal. In our approach, logical reasoning is closer to
the one used by cryptographers: we avoid while loops and state variables, and
thus do not have to use a Hoare-style logic. It is possible because the variables
used in [20] are mathematical variables in the sense that they are defined once
and only once whereas the value of a state variable can change in the course
of execution. By the way, the property that a variable is defined once and only
once is also enforced in CryptoVerif. Moreover, while loops, if used, would have
to be restricted because their unrestricted use might break the hypothesis that
the attacker and the oracles are efficient algorithms. Our games are probability
distributions which are easily defined in our framework. In the case of ElGamal,
we finally obtain a more natural proof of semantic security than the one in [9].

In [16] a process calculus is defined (but not implemented) which allows to
reason about cryptographic protocols using bisimulation techniques. Contrary
to our approach it is not game-based and differs from usual proofs by cryptog-
raphers. It is illustrated by a proof of semantic security for ElGamal.

An encoding of game-based proofs in a proof assistant has been proposed very
recently in [1]. It is dedicated for proofs in the random oracle model while our
work focuses on the standard model. Up to now the implementation by [1] has
only been used to prove the PRP/PRF switching lemma, but not yet a full-
fledged cryptographic scheme. Compared to them, we have been very careful in
making our design choices such that our implementation remains light. This is an
important design issue in formal verification because formal proofs grow quickly
in size when one tackles real-world use-cases. For illustration, one can compare
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the size of our implementation with theirs: their complete implementation con-
sists of 7032 lines of code (compare with our 3381 lines) and their proof of the
switching lemma consists of 535 lines (compare with our 160 lines for proving
both correctness and semantic security of ElGamal).

3 Mathematical Framework

In this section we recall a few mathematical bases on which rely security proofs:
probabilities, cyclic groups and properties relating them. We formulate them in
a way suitable for formalization in the proof assistant Coq. In particular, we use
the elegant notion of monad stemming from category theory [17] and functional
programming [22]3.

3.1 Probabilities

Oracles and games are probabilistic algorithms. We model them as functions
returning finite probability distributions. A probabilistic choice is a side effect.
A standard way to model side effects is with a monad [17,22]. And indeed prob-
ability distributions have a monadic structure [2,19]. In our case we only need
to consider the simpler case of finite probability distributions. In their defini-
tion we use the notion of multiset (sometimes also called a bag) which is a set
where an element may have more than one occurrence. For example, the multi-
sets {1, 2, 2} and {1, 2} are different; and the union of {1, 2, 2, 3} and {1, 4, 4} is
equal to {1, 1, 2, 2, 3, 4, 4}.

Definition 3.1 (Finite probability distribution). A finite probability dis-
tribution δ over a set A is a finite multiset of ordered pairs from A×R such that∑

(a,p)∈δ p = 1. We write ΔA for the set of finite probability distributions over
a set A.

From now on, we will use the word distribution as an abbreviation for finite prob-
ability distribution. Games and oracles are distributions defined by using three
primitive operations: [a] is the distribution consisting of only one value a with
probability 1; let x ⇐ δ in ϕ(x) consists of selecting randomly one value x
from the distribution δ and passes it to the function ϕ; and

⊕
{a1, . . . , an} is the

uniform distribution of the values a1, . . . , an. Before giving their formal meaning
in the definition below, we need to define the ponderation of a distribution by a
real number p:

p · {(a1, p1), . . . , (an, pn)} =def {(a1, p · p1), . . . , (an, p · pn)}

Definition 3.2 (Operations)

[a] =def {(a, 1)} (1)

let x ⇐ δ in ϕ(x) =def

⋃

(a,p)∈δ

p · ϕ(a) (2)

3 No knowledge of category theory or functional programming is assumed.
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⊕
{a1, . . . , an} =def {(a1,

1
n

), . . . , (an,
1
n

)} (3)

It is easily seen that those three operations above produce well-defined
distributions.

In the rest of this paper, we use the following abbreviations:

(i) let x ← a in ϕ(x) for let x ⇐ [a] in ϕ(x), and
(ii) let x

R← A in ϕ(x) for let x ⇐
⊕

A in ϕ(x).

In (i) we choose ramdomly a value from a distribution with only one value: it is
a deterministic assignment. (ii) is a notation for choosing a uniformly random
value from a list of values.

It might seem surprising that our distributions are multisets instead of sets.
If we were to take sets, our definition of let would be more tricky as it would
involve a phase of normalization. Let us see why on an example. Consider the
distribution defined by let x

R← {1, 2} in [x ?= x] where ?= is the function that
returns the boolean true if its two arguments are equal, or false otherwise. The
above defined distribution is equal to the multiset {(true, 1

2 ), (true, 1
2 )}. If distri-

butions were sets, we would have to define let in such a way that it returns what
might be called the normal form {(true, 1)}.

The following theorem states that we have indeed defined a (strong) monad.

Theorem 3.3 (Monad laws)

let x ← a in ϕ(x) = ϕ(a) (4)
let x ⇐ δ in [x] = δ (5)

let y ⇐ (let x ⇐ δ in ϕ(x)) inψ(y) = let x ⇐ δ in let y ⇐ ϕ(x) in ψ(y) (6)

In order to ease notations we assume that the operator let . . . in is right-associative:
this means that, for example, the right-hand side expression of Equation (6) above
should be understood as

let x ⇐ δ in (let y ⇐ ϕ(x) in ψ(y)).

Equation (4) allows for propagating constants. Equation (6) states associativ-
ity which allows for getting rid of nested let.

Based on our notion of distribution, we can now define the probability that
an element chosen randomly from a distribution satisfies a certain predicate.

Definition 3.4 (Probability). The probability Pr
⎧
⎩P (δ)

⎫
⎭ that an element

chosen randomly in a distribution δ satisfies a predicate P is given by:

Pr
⎧
⎩P (δ)

⎫
⎭ =def

∑

(a,p)∈δ s.t. P (a)

p

We write Prtrue

⎧
⎩ δ

⎫
⎭ for Pr

⎧
⎩(x �→ x = true) (δ)

⎫
⎭ where x �→ x = true is the

predicate that holds iff its argument x is equal to the boolean value true.
The following proposition tells us how to compute the probability for a dis-

tribution defined by a let.
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Proposition 3.5. For all P , δ and ϕ,

Pr
⎧
⎩P (let x ⇐ δ in ϕ(x))

⎫
⎭ =

∑

(a,p)∈δ

p · Pr
⎧
⎩P (ϕ(a))

⎫
⎭

The following corollary shows how to compute the probability of a successful
equality test between a random value and a constant.

Corollary 3.6. For any finite set A, for any a ∈ A,

Prtrue

⎧
⎪⎪⎪⎪⎩

let x
R← A in

[x ?= a]

⎫
⎪⎪⎪⎪⎭ =

1
|A|

The following corollary allows for rewriting under a let.

Corollary 3.7. For all sets A and B, for any distribution δ ∈ ΔA, for all func-
tions ϕ and ψ from A to ΔB, if ∀a ∈ A · Pr

⎧
⎩P (ϕ(a))

⎫
⎭ = Pr

⎧
⎩P (ψ(a))

⎫
⎭

then Pr
⎧
⎩P (let x ⇐ δ in ϕ(x))

⎫
⎭ = Pr

⎧
⎩P (let x ⇐ δ in ψ(x))

⎫
⎭

As another corollary, we obtain a mean to replace a randomly uniform choice in
a goal by a universal quantifier4.

Corollary 3.8. For all P , A, ϕ and p,

(∀x ∈ A · Pr
⎧
⎩P (ϕ(x))

⎫
⎭ = p) ⇒ Pr

⎧
⎩P

(
let x

R← A in ϕ(x)
)⎫
⎭ = p

The reverse implication is not true. We can see that on a counterexample:
if the reverse implication was true, from Corollary 3.6 we would deduce that
∀x ∈ A · Prtrue

⎧
⎩ [x ?= a]

⎫
⎭ = 1

|A| . This is not true. Here x is either equal or
not to a: in case of equality the probability is 1; in case of non-equality the proba-
bility is 0. It shows us a fundamental difference between universal quantification
and random choice.

The following proposition allows for moving around independent random
choices in the definitions of games. In the proposition below, independent means
that the variable x is not used in the expression δ2 and the variable y is not used
in the expression δ1.

Proposition 3.9. For all finite sets A, B and C, for any δ1 ∈ ΔA, for any
δ2 ∈ ΔB , for any ϕ : A × B → ΔC , if δ1 and δ2 are independent, then:

Pr

⎧
⎪⎪⎪⎪⎪⎩P

⎛

⎝
let x ⇐ δ1 in
let y ⇐ δ2 in
ϕ(x, y)

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎪⎩P

⎛

⎝
let y ⇐ δ2 in
let x ⇐ δ1 in
ϕ(x, y)

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎭

4 We assume here a backward reasoning as in the proof assistant Coq where we start
from the goal and go backward to the hypothesis. For example, if our goal is Q and
we have a theorem stating that P ⇒ Q, applying this theorem leaves us with P as
a new goal.
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3.2 Cyclic Groups

A group (G, ∗) consists in a set G with an associative operation ∗ satisfying certain
axioms. We write a−1 for the inverse of a. We write ai for a ∗ · · · ∗ a︸ ︷︷ ︸

i times

. A group (G, ∗)

is finite if the set G is finite. In a finite group G, the number of elements is called
the order of G. A group is cyclic if there is an element γ ∈ G such that for each
a ∈ G there is an integer i with a = γi. Such γ is called a generator of G. The
following permutation properties of cyclic groups will allow us below to connect
probabilities with cyclic groups. Let G be a finite cyclic group.

Proposition 3.10. If the order of G is q, then {γi | 0 ≤ i < q} = G

Proposition 3.11. For any b ∈ G, {a ∗ b | a ∈ G} = G

The set of bit strings of length l equipped the the bitwise exclusive disjunction ⊕
forms a commutative group (not cyclic) where the following proposition holds:

Proposition 3.12. For any s′ ∈ {0, 1}l,
{
s ⊕ s′ | s ∈ {0, 1}l

}
= {0, 1}l

3.3 Probabilities over Cyclic Groups

The following theorem and its corollaries make explicit a fundamental relation
between probabilities and cyclic groups. They are important properties used im-
plicitly by cryptographers but never explicitly stated because they are considered
too obvious in the context of security proofs. However it is necessary to explicit
them when using a proof assistant.

Let G be a finite cyclic group of order q and γ ∈ G be a generator. We write
Zq for the set of integers {0, . . . , q − 1}.

Theorem 3.13. for all sets A, B and C, for any bijective function f : A → B,
for any function g : B → C, for any predicate P on C,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let x R← A in
[g(f(x))]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let y R← B in
[g(y)]

)⎫
⎪⎪⎪⎪⎭

Corollary 3.14. for any set A, for any function f from G to A, for any pred-
icate P on A,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let x
R← Zq in

[f(γx)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m)]

)⎫
⎪⎪⎪⎪⎭

Proof. By Proposition 3.10 and Theorem 3.13. �

Corollary 3.15. for any set A, for any function f from G to A, for any pred-
icate P on A, for any m′ ∈ G,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m ∗ m′)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m)]

)⎫
⎪⎪⎪⎪⎭
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Proof. By Proposition 3.11 and Theorem 3.13. �

Corollary 3.16. for any set A, for any function f from {0, 1}l to A, for any
predicate P on A, for any s′ ∈ {0, 1}l,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let s
R← {0, 1}l in

[f(s ⊕ s′)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let s
R← {0, 1}l in

[f(s)]

)⎫
⎪⎪⎪⎪⎭

Proof. By Proposition 3.12 and Theorem 3.13. �

In Section 3.3 of [20] the proof of semantic security for the encryption scheme
ElGamal uses implicitly such corollaries. Shoup writes: “by independence, the
conditional distribution of δ is the uniform distribution on G, and hence from
this, one sees that the conditional distribution of ζ = δ · mb is the uniform dis-
tribution on G”. The “by independence” part corresponds to our corollary 3.14,
while the “one sees that” part corresponds to our corollary 3.15. It is perfectly
legitimate not to state precisely things that are anyway obvious to the reader.
But for our implementation on top of the proof assistant Coq it was necessary
to state such theorems explicitly and formally.

4 Formal Security

In this section we formalize in our framework some security notions which are
fundamental in cryptography: the Decisional Diffie-Hellman assumption (DDH),
entropy smoothing and semantic security.

4.1 The Decisional Diffie-Hellman Assumption

Let G be a finite cyclic group of order q and γ ∈ G be a generator5.
The DDH assumption [10] for G states that, roughly speaking, no efficient al-

gorithm can distinguish between triples of the form (γx, γy, γxy) and (γx, γy, γz)
where x, y and z are chosen randomly in the set Zq. More formally, there ex-
ists a negligible upper-bound εDDH such that for any efficient algorithm ϕ from
G × G × G to Δ{false, true}:

∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

ϕ(γx, γy, γxy)

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

− Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

ϕ(γx, γy, γz)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH

As will be seen in Section 5, security proofs in our framework mainly consist
in game transformations. Thus, as in [9], we do not need to define precisely the

5 We do not assume that q is prime. However most groups in which DDH is believed
to be true have prime order [8].
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terms efficient and negligible. However they can be given precise definitions in
terms of polynomials.

4.2 Entropy Smoothing

A family (Hk)k∈K , where each Hk is a hash function from G to {0, 1}l, is entropy
smoothing iff there exists a negligible upper-bound εES such that for any efficient
algorithm ϕ from K × {0, 1}l to Δ{false, true}:

∣
∣
∣
∣
∣
∣
∣
Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let m
R← G in

ϕ(k, Hk(m))

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

− Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let h
R← {0, 1}l in

ϕ(k, h)

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣

≤ εES

Roughly speaking, it means that no efficient algorithm can distinguish between
(k, Hk(m)) and (k, h) where k, m and h are chosen randomly.

4.3 Semantic Security

The notion of semantic security was introduced by Goldwasser and Micali [13].
They later showed that it is equivalent to indistinguishability under Chosen
Plaintext Attack (IND-CPA) [14]. We use this latter formulation which is nowa-
days the most commonly used.

We assume two oracles: a key generation oracle keygen which generates a pair
of public and private keys; and an encryption oracle encrypt which encrypts a
given plaintext with a given public key. Because oracles are probabilistic algo-
rithms, they are modeled as functions returning distributions. The attacker is
modeled as two deterministic efficient algorithms A1 and A2 that take among
other input a random seed r taken for some non-empty set R.

The semantic security game SSG(keygen, encrypt, A1, A2) consists in calling
the oracle keygen, then passing the generated public key and a random seed to
A1 which returns a pair of messages m1 and m2. One of the messages is chosen
randomly and encrypted by the oracle encrypt which returns the corresponding
ciphertext. This ciphertext is passed to A2 which tries to guess which of the two
messages was encrypted. In our framework, it is defined by:

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]

Definition 4.1 (Semantic security). An encryption scheme with key genera-
tion algorithm keygen and encryption algoritm encrypt is semantically secure iff
for all deterministic efficient algorithms A1 and A2,

∣
∣
∣
∣Prtrue

⎧
⎩SSG(keygen, encrypt, A1, A2)

⎫
⎭ − 1

2

∣
∣
∣
∣ is negligible.
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5 Application to the ElGamal Encryption Scheme

In our implementation, we illustrate the use of our framework by proving in a
systematic way the so-called semantic security of the encryption scheme ElGamal
[12] and its hashed version. In this paper, due to lack of space, we only show the
hashed version.

The simplest version of ElGamal does not use hash functions. However, in
practice, it is more convenient to consider messages which are bit strings (say
of length l) instead of elements of a cyclic group. The hashed version of the
ElGamal encryption scheme allows for this. We assume that we are given an
entropy-smoothing family of hash functions (Hk)k∈K , each Hk being a function
from G to {0, 1}l. The ElGamal encryption scheme consists in the following
probabilistic algorithms:

– The key generation algorithm keygen():
let x

R← Zq in let k
R← K in [((γx, k), (x, k))]

– The encryption algorithm encrypt((α, k), m):
let y

R← Zq in [(γy, Hk (αy) ⊕ m)]
– The decryption algorithm decrypt((x, k), c):

[Hk(π1(c)x) ⊕ π2(c)]
where π1 and π2 denote the first and second projections of an ordered pair.

Messages are elements of {0, 1}l; public keys are elements of G × K; secret keys
are elements of Zq × K; ciphertexts are elements of G × {0, 1}l.

Theorem 5.1. The hashed ElGamal encryption scheme is semantically secure.

Proof. In this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposi-
tion 3.9. In particular the reader will notice that the order of variable definitions
varies along the game transformations as allowed by Proposition 3.9.

Let us fix A1 and A2. We proceed by successive game transformations.

G0. By definition of semantic security, we must prove that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[̂b
?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is negligible

G1. Knowing that εDDH and εES are negligible, we are led to prove that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[̂b
?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH + εES
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G2. We unfold definitions of oracles and apply associativity of let (by Theo-
rem 3.3 (6)).

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let k
R← K in

let(kp, ks) ← ((γx, k), (x, k)) in

let r
R← R in

let (m1, m2) ← A1(r, kp)

let b
R← {1, 2} in

let y
R← Zq in

let c ← (γy, Hπ2(kp)(π1(kp)y) ⊕ mb) in
let b̂ ← A2(r, kp, c) in

[̂b
?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH + εES

G3. We propagate definitions of kp, ks , m1, m2, c and b̂ (by Theorem 3.3 (4)).
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γ
x, k), (γy , Hk(γxy) ⊕ πb(A1(r, (γ

x, k)))))
?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH+εES

G4. According to DDH assumption, we have that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(γxy)⊕
πb(A1(r, (γx, k)))))

?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(γz)⊕
πb(A1(r, (γx, k)))))

?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH

where the left-hand side game is the one from G3. We are thus left to prove
that6:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

let z
R← Zq in

[A2( r, (γx, k), (γy, Hk(γz) ⊕ πb(A1(r, (γ
x, k)))))

?
= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εES

6 Indeed, for all r1, r2, r3, r1,2, r2,3, in order to prove that |r1 − r3| ≤ r1,2 + r2,3, it is
sufficient to prove that |r1 − r2| ≤ r1,2 and |r2 − r3| ≤ r2,3.
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G5. We replace the randomly uniform choice of z and the computation γz with
a random choice of an element of G (by Corollary 3.14).
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy, Hk(mz) ⊕ πb(A1(r, (γ
x, k)))))

?
= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εES

G6. According to the entropy-smoothing assumption, we have that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(mz)⊕
πb(A1(r, (γx, k)))))

?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let h
R← {0, 1}l in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
h⊕
πb(A1(r, (γx, k)))))

?
= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εES

which is G5 except that
1
2

is replaced by the probability of another game.

We are thus left to prove that this probability is equal to
1
2
:

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

let h
R← {0, 1}l in

[A2( r, (γx, k), γy, h ⊕ πb(A1(r, (γ
x, k)))

?
= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1

2

G7. We delete the right operand of ⊕ (by Corollary 3.16):

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let h
R← {0, 1}l in

let b
R← {1, 2} in

[A2( r, (γx, k), γy , h)
?
= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1

2

This is true by Corollary 3.6. �
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6 Implementation in the Proof Assistant Coq

The proof assistant Coq. Coq is a goal-directed proof assistant. This means that
if we are trying to prove that a formula Q (the goal) is true, and we have a
theorem stating that P1 & P2 implies Q, then we can apply this theorem. Coq
will replace the goal Q by two subgoals P1 and P2. We proceed this way until
we finally reach goals that are either axioms or are true by definition. On the
way, Coq builds a so-called proof term. The critical part of Coq is its kernel
which takes a proof term as an input and checks whether it is correct or not.
On top of that there is a script language which allows users to state theorems
and build their proofs interactively. This script language includes predefined
tactics to prove automatically some mathematical statements such as tautologies,
Presburger arithmetic statements, linear inequations over real numbers. . . Users
can also define their own tactics.

Our framework in Coq. Our current implementation consists of the following
Coq files:

CoqLib.v addendum to the Coq standard library
Distrib.v distributions, probabilities and necessity
Equiv.v equivalence modulo a negligible probability
DistribAuto.v automatically generated properties of distributions
Group.v basic group theory, cyclic groups
GroupProba.v probabilities over cyclic groups
BitString.v bit strings
Challenge.v correctness and security games
DDH.v the DDH assumption
Hash.v hash functions, entropy smoothing
Tactic.v support for automation
CryptoGames.v the main file including the full library
ElGamal.v correctness and semantic security for ElGamal
HashedElGamal.v correctness and semantic security for hashed ElGamal

Our library consists of 3381 lines of Coq and O’Caml code. The O’Caml part
is a program which generates automatically 5923 other lines of Coq code. By
using our library, the proofs of correctness and semantic security for ElGamal
and hashed ElGamal consists respectively of only 160 lines and 209 lines of
Coq code. This shows that our framework, while allowing for fully formal and
readable security proofs, is scalable. Therefore, we believe that it can be further
extended and applied to much more involved security proofs.

We write games as Coq functions and reason on them using the full logic of
Coq: this is a so-called shallow embedding. We use Coq notations which allow for
games and formulas to be written in a syntax close to the one used in this paper.
For example, the game G1 in the proof of Theorem 5.1 appears in Coq as:
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mlet k <~ keygen in
mlet r <$ seed in
mlet mm <- A1 r (fst k) in
mlet b <$ [true; false] in
mlet c <~ encrypt (fst k) (if b then fst mm else snd mm) in
mlet b’ <- A2 r (fst k) c in
[[eqb b’ b]]

Probabilistic choices occurring in games are modeled with a monad. A similar
encoding of randomized algorithms was given in [2]. However our encoding is
much simpler due to the fact that it is enough for our purpose to consider
distributions which are finite.

We provide automated tactics which can move deterministic assignments, ran-
dom choices and calls to oracles from one place to another inside the game, and
prove automatically that this transformation leads to an equivalent game. Those
tactics are defined in the file Tactic.v. In the file Distrib.v we also define a tac-
tic which automatically reduces the correctness of a cryptographic scheme into
an equation which is then trivially proved. For example, in the case of ElGamal,
it generates the following equation: m = γxy ∗m∗ (γyx)−1. For hashed ElGamal,
we get m = Hk(γxy) ⊕ (Hk(γyx) ⊕ m).
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Abstract. Non-interference properties are an important class of security prop-
erties. Many different non-interference properties have been presented based on
different underlying models including the process algebraic languages. Usually,
in specifying the non-interference properties using process algebraic languages,
a specific semantic equivalence is introduced. Though weak bisimulation based
non-interference properties have been studied extensively, it is not always satis-
factory. This paper considers the topic on pursuing a probably more suitable se-
mantic equivalence for specifying the non-interference properties. We find several
alternatives, e.g., should testing equivalence, impossible future equivalence and
possible future equivalence, etc. As another topic in the paper, based on the struc-
tural operational semantics, we suggest a compositional rule format, the SISNNI
format, for an impossible future equivalence based non-interference property, i.e.,
the SISNNI property. We show that the SISNNI property is compositional in any
SISNNI languages, i.e., languages in the SISNNI format.

Keywords: semantic equivalences, rule format, non-interference, computer
security.

1 Introduction

To verify whether a system satisfies certain information flow property [1], a formal de-
scription of this property is necessary. Non-interference is proposed as a formal descrip-
tion of the information flow property. Though practical systems are usually designed to
be with multi-level security [9], they may be simply represented as two-level systems
[1,11]. Based on two level systems, the non-interference properties guarantee that a
high level user should not interfere with the low level user.

Practical systems are modeled with various mathematical models, and thus non-
interference properties should have totally different representations [8]. Besides, even in
a given mathematical model, several information flow properties are always available.
In this paper, we will focus on those properties based on process algebraic languages.
We suppose three specific operators, i.e., the hiding operator of CSP and the parallel
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composition operator and restriction operator of CCS, since they have been used in the
formal characterizations of some information flow properties.

In [1] and [7], many information flow properties have been proposed based on the
variants of CCS and CSP, respectively. We only concern those properties in [1]. On
one hand, NNI (Non-determinism Non Interference) is proposed as a direct translation
of the Non Interference, which requires that for each trace � of the given system p,
there exists another trace Æ with the same subsequence of low level actions and without
high inputs [1]. However, it is not satisfactory when synchronous communications are
considered, and therefore lead to another property, named SNNI (Strong NNI). On the
other hand, NDC (Non-Deducibility on Compositions) says that a low level user sees
of the system is not modified by composing any high level process to the system.

As an extension to these properties, two strengthened properties are proposed to
make the above properties suitable for the dynamic context. P-NDC (Persistent NDC)
requires that each reachable state should satisfy the NDC property, and likewise, SSNNI
(Strong SNNI) requires that each reachable state should satisfy the SNNI property.

Furthermore, observing that the above properties are all based on weak trace equiv-
alence, they may be further promoted by other finer weak equivalences, such as the
testing equivalence and the weak bisimulation. Therefore, several weak bisimulation
based properties, e.g., BNNI (Bisimulation NNI), BSNNI (Bisimulation SNNI), SB-
SNNI (Strong BSNNI), BNDC (Bisimulation NDC) and P-BNDC (Persistent BNDC),
have been proposed in [1].

We will show in the paper that, weak bisimulation is not always satisfactory, because
it requires that two related processes have the same branching structures, which is not
needed for the non-interference. In fact, a counterexample will be put forward to illus-
trate that a trivially secure process will be deemed to be insecure if weak bisimulation
based non-interference properties are applied.

Based on this observation, we suggest a criterion to make clear what semantic equiv-
alences are suitable for the non-interference properties. Then, several semantic equiv-
alences are suggested to be more suitable than weak bisimulation, e.g., should testing
equivalence [2], impossible future equivalence [26,25] and possible future equivalence
[3].

As an example, we will take impossible future equivalence into consideration, and
propose the non-interference properties based on it. These properties include INNI
(Impossible-future NNI), ISNNI (Impossible-future SNNI), SISNNI (Strong ISNNI),
INDC (Impossible-future NDC) and P-INDC (Persistent INDC).

After that, we will show the compositional results of the SISNNI property by propos-
ing a rule format for it. Any languages observing the rule format will be compositional
for the SISNNI property, i.e., if all subprocesses hold the SISNNI property, then the
composite process will also hold the SISNNI property.

Rule format is a concept coming from the structural operational semantics (SOS).
SOS [12] have been widely used in defining the meanings of the operators in various
process algebraic language, such as CCS [13] and ACP [19]. Transition System Specifi-
cations (TSSs) [16], which borrowed from logic programming, form a theoretical basis
for SOS. By imposing some syntactic restrictions on TSS, one can retrieve so-called
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rule formats. From a specified rule format, one may deduce some interesting proper-
ties, within which two properties are concerned in the paper.

On one hand, rule format guarantees the congruence of some equivalence. As stated
in [20], equivalence relation � is congruent on some TSS, if � satisfies the compatibility
property, which states that, for any n-ary function symbol f in the TSS and processes
pi� qi, if pi � qi for 1 � i � n then f (p1� ���� pn) � f (q1� ���� qn). On the other hand, rule
format guarantees the compositionality of some property. A property � is compositional
on some TSS if f (p1� ���� pn) satisfies property � when f is any n-ary function symbol
in the TSS and processes pi satisfies property � for 1 � i � n. We will use language as
an alias of the TSS.

Up to now, some rule formats have been presented to be congruence format for se-
mantic equivalences, for examples, GSOS format [21] and ntyft/nxyft format [17] have
been proved to be congruent on the strong bisimulation, de Simone [18] format was
proved to be congruent on the failure equivalence, and so on. On the other hand, Tini
[11] have proposed rule formats, e.g., rooted SBSNNI format and P-BNDC format, to
be compositional formats for the SBSNNI property and P-BNDC property, respectively.
The readers are referred to Mousavi, Reniers and Groote [14] for a latest review on the
rule formats.

The authors have proposed a rule format, i.e., the weak �-failure format, to be a
congruence format for the impossible future equivalence [6]. In this paper, we will prove
that, if we make a clear cut on the observable actions into high level actions and low
level actions, and restrict that the high level actions (resp. the low level actions) cannot
interplay with the low level actions (resp. the high level actions) in any transition rule,
then the weak �-failure format is also a compositional format for the SISNNI property.

The structure of this paper is as follows. The next section will provide some pre-
liminaries on the process algebraic languages and the SOS, and make a division on the
observable actions into high level actions and low level actions. Section 3 will make a
review on several non-interference properties. In Section 4, we will make a discussion
on what make an weak equivalence suitable for the non-interference properties and then
present several alternatives for the weak bisimulation. Section 5 will discuss along the
canonical way the properties based on impossible future equivalence, which is proved
to be one of the suitable alternative weak equivalences. Then, in Section 6, we will
propose the SISNNI format and prove that it is a compositional format for the SISNNI
property. Finally, we will conclude the paper in Section 7.

2 Preliminaries on Process Algebraic Languages

Let Act denote a set of names which will be used to label on events and Act� be the set
of all action sequences. We usually use a� b� ��� to range over the actions in Act, and use
A� B� ��� to range over the sets of actions in Act. � is generally used to denote the internal
actions which can not be observed by the outer world, and we use �� �� ��� to range over
the actions in Act����. Æ� 	� �� ��� is to range over the sequences of actions. 
 is to range
over the sets of sequences. p� q� ��� will be used to represent processes. Besides, � � ��.
N is the set of natural numbers and � is the cardinality of N.
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Basically, presenting a set of syntactic constructions is the first step to define a pro-
cess algebraic languages, e.g., CCS, CSP and ACP.

Definition 2.1 [15]. Let V � �x1� x2� ���� be a set of variables. A signature � is a collec-
tion of function symbols f � V equipped with a function ar : � � N. The set T(�)
of terms over a signature � is defined recursively by: 1) V � T(�); 2) if f � � and
t1� ���� tar( f ) � T(�), then f (t1� ���� tar( f )) � T(�).

A term c() is abbreviated as c. For t � T(�), var(t) denotes the set of variables that occur
in t. T(�) is the set of closed terms over �, i.e., the terms p � T(�) with var(p) � 	. A
term is an open term if it is not a closed term. A � substitution � is a mapping from V
to T(�).

In the paper, we will use p� q� ��� to range over the closed terms, and call them
processes.

As stated in the introduction, we require that three previously-defined operators, i.e.,
the hiding operator of CSP, the restriction operators and parallel composition operator
of CCS, are in the language, because they have been used in [1] to characterize some
non-interference properties which will be discussed in the paper. Therefore, the syntax
of a language may be:

p ::� p
A � pA � p�p � ���, where A � Act is a set of observable actions.
SOS has been widely accepted as a tool to define operational semantics of processes.

TSSs are a formalization of SOS [12]. The readers are referred to Aceto, Fokkink and
Verhoef [15] for a comprehensive review on SOS.

Definition 2.2. A positive �-literal is an expression t
��� t� and a negative �-literal is

an expression t
�
� with t� t� � T(�) and � � Act � ���. A transition rule over � is an

expression of the form H
C with H a set of � literals (the premises of the rule) and C

a positive �-literal (the conclusion). The left- and right-hand side of C are called the
source and the target of the rule, respectively. Moreover, if r � H

C then let ante(r) � H
and cons(r) � C.

A TSS, written as (�� � ), consists of a signature � and a set � of transition rules over
�. A TSS is positive if the premises of its rules are positive. In the paper, we often use
language as an alias of the TSS.

Here, as an example, the rules for the restriction operator, the hiding operator and
the parallel composition operator are as follows.

pA : p
��� p�

pA
��� p�A

� � A
p

a�� p�

pA
��� p�A

a � A

p
A : p
��� p�

p
A ��� p�
A
� � A

p�q : p
��� p�

p�q ��� p��q
q

��� q�

p�q ��� p�q�
p

a�� p�� q
b�� q�

p�q ��� p��q�
(a� b) � f

where (a� b) � f means that actions a and b may communicate synchronously.
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Following it, the labeled transition systems (LTSs) are to be defined. LTSs are stan-
dard semantic models for the various process algebraic languages, and in fact, each
process has an equivalent LTS by the help of the transition rules.

Definition 2.3. Let � be a signature. A transition relation over � is a relation Tr �
T(�)Act� ��� T(�). Element (p� �� p�) of a transition relation is written as p

��� p�.

Thus a transition relation over � can be regarded as a set of closed positive �-literals
(transitions).

Definition 2.4. A labeled transition system (LTS) is a triple (T�Tr� Act����), where T is
the set of processes, i.e., the set of closed terms, and Tr is the transition relation defined
as above.

After assigning the processes their corresponding LTSs by SOS, a natural topic is to
decide whether two processes with different syntactic expressions are equivalent. Cer-
tainly, two processes with isomorphic LTSs should be deemed to be equivalent, which
forms the so-called tree equivalence. However, tree equivalence may be too strong for
practical uses. Therefore, various semantic equivalences weaker than tree equivalence
are presented for different aims. The readers are referred to Glabbeek [3,4] for compre-
hensive reviews on semantic equivalences.

A common characterization of the equivalences is that, any semantics of some pro-
cess p can be characterized denotationally by a function �(p), which constitute the
observable behaviors of p [3]. Therefore, the equivalence �� can be defined by p ��
q �� �(p) � �(q).

Here, as an example, we present the definition of weak trace equivalence. Other
equivalences used in the paper will be introduced whenever they are mentioned.

For an action sequence Æ � �1����n, if there exists p1� ���� pn � T(�) such that p
�1��

p1
�2�� ���

�n�� pn, then we call Æ a trace of p, denoted as p
Æ�� or p

�1�� ���
�n��.

In weak semantics, the weak transition relations and the weak traces also need to

be defined. Let p be a process, we write p
a
�� iff p

�
�

�� a�� �
�

��, where �� denotes any
number of internal transitions. Hence, for an observable action sequence Æ � a1���an,

p
Æ

�� iff p
a1
�� ���

an
��.

Definition 2.5. Let p� q be two processes and set � (p) � �Æ � Act�H �p
Æ

��� be the
set of all trace of p. Then, p and q are weak trace equivalent, denoted as p �t q, iff
� (p) � � (q).

For a given equivalence, one of the most frequently-asked problems is whether or not
it can be preserved under some frequently-used operators, such as prefixing, choice,
parallel composition, etc., in classical process algebraic languages like CCS [13], CSP
[27] and ACP [19]. Generally, there exist two ways to deal with this problem: the first
one is to prove the congruence properties of these operators one by one. It is a straight-
forward and intuitive way, but may be somewhat clumsy. The second one is to pursue a
rule format for this specified equivalence. And the given equivalence can be preserved
under any operator in this format.
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Definition 2.6. Let � be a signature. A context C(x1� ���� xn) of n holes over � is simply
a term in T(�) in which n variables occur, each variable only once. If t1� ���� tn are terms
over �, then C(t1� ���� tn) denotes the term obtained by substituting t1 for the first variable
occurring in C, t2 for the second variable occurring, etc. If x1� ���� xn are all different
variables, then C(x1� ���� xn) denotes a context of n holes in which xi is the ith occurring
variable.

In the following, we give the definition on the congruence of an equivalence in a
language.

Definition 2.7. Let� � (�� � ) be a language. An equivalence relation � is congruent in
language � iff �i � �1� ���� n� : pi � qi �� C(p1� ���� pn) � C(q1� ���� qn) for any context
C(x1� ���� xn) of n holes in language �, where pi and qi are closed terms, i.e., processes,
over �.

In fact, a congruence format is to make restrictions on the syntax and rules to guarantee
that, in a given language satisfying this format, the given equivalence will be congruent.

Likewise, we can define the compositionality of some property in a language.

Definition 2.8. Let� � (�� � ) be a language. A property� is compositional in language
� iff �i � �1� ���� n� : pi � � �� C(p1� ���� pn) � �, for any context C(x1� ���� xn) of n holes
in language �, where pi � � means that pi satisfies the property �.

A compositional format is to make restrictions on the syntax and rules to guarantee that,
in a given language satisfying this format, the given property will be compositional.

For the application of the above process algebraic theory in specifying the non-
interference properties, two kinds of partitions on the observable actions are necessary:

1) Set Act is to be separated into two disjoint sets ActH and ActL in order to divide
clearly the observable actions into two levels. And, we have Act � ActH � ActL. This
division comes from an idea that the users will be classified into two classes, High and
Low.

2) Set Act is to be separated into two disjoint sets � and � in order to divide clearly
the functions of each action into a output action or an input action. Similarly, we need
Act � � � �.

Finally, function purgeL(Æ) takes a trace Æ and returns an action sequence with all Low
actions removed.

3 Several Related Non-interference Properties

In this section, we will simply review several non-interference properties presented in
the seminal paper of Focardi and Gorrieri [1].

Definition 3.1 [1]. Let p be a process.

1) p �NNI�� (p
IActH)ActH �t pActH , where p
IActH is defined as p
(ActH��).
2) p � SNNI (Strong NNI) �� pActH �t p
ActH.
3) p � NDC �� �q � TH : pActH �t (p�q)
ActH.
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Proposition 3.2 [1]. SNNI � NNI, NDC � SNNI.

The above three properties are based on the weak trace equivalence. And if substituting
the weak trace equivalence with other weak equivalences, we may have three corre-
sponding non-interference properties. But, the relations between them maybe will not
be akin to Proposition 3.2 yet. For example, the properties based on the weak bisimula-
tion BNNI, BSNNI and BNDC will be in the following relation.

Proposition 3.3 [1]. BNDC � BNNI, BNDC � BSNNI, BNNI � BSNNI and BSNNI
� BNNI.

However, these properties may not be used in the dynamic contexts [10]. Therefore, one
more promotion can be made on them.

Definition 3.4 [10,28]. Let p be a process.

1) p � SBSNNI iff, for all �� p� : p
�

�� p�, we have p� � BSNNI.

2) p � P-BNDC iff, for all �� p� : p
�

�� p�, we have p� � BNDC.

4 What Semantic Equivalences Are Suitable

In this section, we will make a discussion on one of the main topics in the paper,
i.e., what semantic equivalences are suitable for the non-interference properties. The
first two subsections come from the works of Focardi and Gorrieri [1] which inter-
pret the reason why weak bisimulation is chosen as the specific weak equivalence for
non-interference properties in their works. Then, in the third subsection, we will give
a counterexample to show that the weak bisimulation is not always satisfactory. This
situation makes us consider the actual requirements for a given weak equivalence to be
suitable and therefore propose a criterion in the fourth subsection. Then, in the follow-
ing several subsections, we will seek for several suitable weak equivalences.

4.1 Weak Trace Equivalence vs. Testing Equivalence

Focardi and Gorrieri [1] have discussed the different performances of these two equiva-
lences when defining the non-interference properties, and claimed that, compared with
the weak trace equivalence, testing equivalence is more suitable for non-interference
due to its ability in detecting the high level deadlocks. They presented an example to
show that, if there exist high level deadlocks, low level user may deduce information
from the high level user and make the information flow insecure.

Weak trace equivalence has been defined in Section 2 and, to ease the following
discussion, we will also give the definition of the testing equivalence.

Testing equivalence is a combination of the may testing equivalence and the must
testing equivalence, which are two important testing-theoretical equivalences in the
testing theory firstly proposed by Nicola and Hennessy [5]. Tests are processes with
a special action

�
to denote the successful termination. The way testing a process p is

to synchronize p with a test t on all observable actions except for
�

, denoted as p�t in
the CCS terms or p��Actt in the CSP terms. Then, various testing theoretical equivalences
are defined based on the necessity of the presence of the successful termination in p�t.
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In defining the must testing equivalence, a notion named maximal run needs to be
introduced beforehand. A maximal run of a transition system is a sequence of states

(pi�ti)0�i�n for n � N � ��� such that pi�ti
�i�1�� pi�1�ti�1 for all 0 � i � n � 1 and if n � �

then �� � Act � ��� : (pn�tn)
���.

Definition 4.1.1 [2]. Let p� q be two processes and t be a test.

1) p may t iff �Æ � Act� : p�t Æ
�

��.

2) p must t iff, for all maximal runs (pi�ti)i�n : (p�t � p0�t0) implies �i � n : pi�ti
�
��.

Moreover, p and q are may (resp. must) testing equivalence, denoted as p �may q
(resp. p �must q) , iff, for all tests t, p may (resp. must) t implies q may (resp. must)
t, and vice versa. And p and q are testing equivalence, denoted as p �test q, iff they
are both may testing equivalence and must testing equivalence, i.e., p �test q � p �may

q � p �must q.

4.2 Testing Equivalence vs. Weak Bisimulation

The defect of testing equivalence has also been pointed out that it may falsely deem all
systems with high level loops insecure. This defect forms one of the main attacks made
by Focardi and Gorrieri, and then they turn to the weak bisimulation. The other reason
is that the weak bisimulation may be checked in polynomial time with respect to the
number of the states in the LTSs, but for the testing equivalence, it may be PSPACE
complete.

Definition 4.2.1. A relation R � TT is a weak bisimulation if (p� q) � R implies, for
all � � Act � ���,

1) if p
��� p�, then there exists q� such that q

�

�

�� q� and (p�� q�) � R, and

2) if q
��� q�, then there exists p� such that p

�

�

�� p� and (p�� q�) � R,

where q
�

�

�� q� stands for q
�

�� q� if � � Act and q
�
�

�� q� if � � �.

4.3 Weak Bisimulation Is Not Always Satisfactory

However, though the weak-bisimulation-based non-interference properties, such as
BNNI, BSNNI and BNDC, etc., have better performance than those based on trace
equivalence and testing equivalence, they are not always satisfactory. The reason is that
if two processes are weak bisimulated then their corresponding LTSs have the same
branching structures. But on the other hand, non-interference cares little on the branch-
ing structures of processes, because a low level user cannot deduce anything from the
branching structure of a give LTS. Therefore, the requirement on the branching struc-
tures may make the weak bisimulation too strong for specifying the non-interference
properties.

In fact, we may construct a system to be secure by intuitiveness but may be falsely
deemed to be insecure by the weak simulation based non-interference properties. It can
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Fig. 1. Weak bisimulation may be too strong in characterizing the non-interference properties

be verified that the process p in Figure 1 does not satisfy the BSNNI, BNDC, SBSNNI
properties, because pActH �ws p
ActH . However, it is secure if the only high level
action h1 is just a high level output action.

On the other hand, p will satisfy the corresponding non-interference properties based
on impossible future equivalence, should testing equivalence or possible future equiva-
lence, which care less branching structures than the weak bisimulation. We will intro-

duce them in the following subsections. In fact, in Figure 1, �p�� Æ : p
Æ

�� p�, we have
p�ActH �shd p�
ActH , p�ActH �i f p�
ActH and p�ActH �p f p�
ActH.

4.4 Criterions

Based on the above observations, we may have a general criterion in seeking a suitable
semantic equivalence as the underlying equivalence for characterizing non-interference
properties. In fact, this equivalence is expected to

1) deal with high level deadlocks as the testing equivalence does,
2) deal with high level loops in a fair way as the weak bisimulation,
3) be decidable in polynomial time in case that the LTSs have only finite states and

labels, and
4) be compositional on the hiding operator, the restriction operator and the parallel

composition operator.

It is trivial that the weak bisimulation meets these criterions, but as we have argued
in the preceding subsection, it may be too strong in some cases. Therefore, we want to
find several alternatives.

4.5 From Testing Equivalence to Acceptance Testing

Leveling with the above criterions, we may find that the testing equivalence can only
satisfy the first clause. The fact that it does not satisfy the second clause has been stated
in Section 4.2, the fact that it does not satisfy the third clause has been pointed out in
[1], and the fact that it does not satisfy the fourth clause has been shown by several
papers including the authors [2,24,6].

In fact, the reason that the testing equivalence does not satisfy the second and the
third clause exists in the maximal run of must testing equivalence. It is the maximal run
that makes the internal loops catastrophic [2].
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Definition 4.5.1. Let p� q be two processes and t be a test. p acc t iff, for all � � Act�

and for all p��t� with p�t �

�� p��t�, there must exist a � Act � ��� such that p��t� a
��.

Moreover, p and q are acceptance testing equivalence, denoted as p �acc q, iff, for all
tests t, p acc t implies q acc t, and vice versa.

In fact, from the above definition, we find that, after excluding the concept of max-
imal runs from its definition, acceptance testing equivalence can deal with the internal
loops in a fair way that the internal transitions may be executed an arbitrary but only
finite number of times.

4.6 From Acceptance Testing to Should Testing

We have observed that the acceptance testing equivalence, or failure equivalence, may
not be invariant under the hiding operator of CSP, which makes them not be the equiv-
alence what we are seeking for. In [2], Rensink and Vogler have proposed the should
testing equivalence to amend the defect of the acceptance testing equivalence.

Definition 4.6.1. Let p� q be two processes and t be a test. p shd t iff, for all � � Act�

and for all p��t� with p�t �

�� p��t�, there must exist Æ � Act� such that p��t� Æ
�

��.

Moreover, p and q are should testing equivalent, denoted as p �shd q, iff, for all tests t,
p shd t implies q shd t, and vice versa.

4.7 Several Other Alternatives

Two other possible alternatives will be presented in this subsection. We will show their
relationships with the should testing equivalence and the weak bisimulation.

Definition 4.7.1. (��
) � Act�  �(Act�) is a weak impossible future pair of process

p iff there exists some p� such that p
�

�� p� and 
 � � (p�) � 	. The set of all weak
impossible future pairs of process p is called the weak impossible future of p, denoted
by �� (p).

For any two processes p and q, they are weak impossible future equivalent, denoted as
p �i f q, iff �� (p) � �� (q).

Definition 4.7.2 (��
) � Act�  �(Act�) is a weak possible future pair of process p iff

there exists some p� such that p
�

�� p��
 � � (p�). The set of all weak possible future
pairs of process p is called the weak possible future of p, denoted as �� (p).

Moreover, for any two processes p and q, they are weak possible future equivalent,
denoted as p �p f q, iff �� (p) � �� (q).

Proposition 4.7.3. Let p and q be two processes. p �wb q �� p �p f q �� p �i f q ��
p �shd q.

4.8 Semantic Lattice

The left graph in Figure 2 shows a semantic lattice of the equivalences mentioned
above. The arrows denote the ’coarser than’ relations between two related semantic
equivalences.
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Fig. 2. Lattices for semantic equivalences and non-interference properties

5 Properties Based on Impossible Future Equivalence

In this section, we will present the non-interference properties based on impossible
future equivalence. The reason why we choose impossible future equivalence is that
it has a simpler denotational characterization than should testing equivalence, and it is
coarser than possible future equivalence. The properties based on other equivalences
may be defined and analyzed similarly.

Definition 5.1 (Impossible Future NNI, SNNI, NDC)

(1) p � INNI �� pActH �i f (p
IActH)ActH;
(2) E � ISNNI �� EActH �i f E
ActH;
(3) E � INDC �� �F � �H : EActH �i f (E�F)
ActH.

Proposition 5.2. (1) BNNI � INNI � NNI; (2) BSNNI � ISNNI � SNNI. (3) BNDC �
INDC � NDC.

Proof. Immediately from the fact �wb is finer than �i f , and �i f is finer than �t. �

Definition 5.3. (1) E � SISNNI �� E� � ISNNI for all E� with E �� E�;
(2) E � P-INDC �� for all E� with E �� E�, we have E� � INDC.

Proposition 5.4. SISNNI � INDC � ISNNI.

Proof. To show that SISNNI � INDC, it is enough to prove that if p � SISNNI,
then p
ActH �i f (p�q)
ActH for all q � ProcessH , because p � SISNNI implies
p
ActH �i f pActH . Then, by the distributive law of 
ActH over parallel composi-
tion operator, which will be prove in Proposition 6.3.3, (p�q)
ActH �i f p
ActH �q
ActH.
Then p
ActH �q
ActH �i f p
ActH since p
ActH is an empty process. Finally, we obtain
(p�q)
ActH �i f p
ActH �q
ActH �i f p
ActH.

INDC � ISNNI is trivial from their definitions. �

Proposition 5.5. SISNNI = P-INDC.

The right graph in Figure 2shows a lattice of the non-interference properties mentioned in
the paper. The arrows denote the ’weaker than’ relations between two related properties.
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6 Compositional Format for the SISNNI Property

6.1 Definition of the SISNNI Format

In this section, a compositional format for the SISNNI property will be proposed.
Firstly, we need to define a class of special rules, i.e., patience rules.

Definition 6.1.1 [15,14]. A rule of the form
xi

��� x�i
f (x1� ���� xi� ���� xn)

��� f (x1� ���� x�i � ���� xn)
with 1 � i � n is called a patience rule of the ith argument of f .

Definition 6.1.2 [29]. An argument i � N of an operator f is active if f has a rule in
which xi appears as left-hand side of a premise. A variable x occurring in a term t is
receiving in t if t is the target of a rule in which x is the right-hand side of a premise.
An argument i � N of an operator f is receiving if a variable x is receiving in a term t
that has a subterm f (t1� ���� tn) with x occurring in ti.

Definition 6.1.3 [6]. A de Simone language� is in weak �-failure format if

1) patience rules are the only rules with �-premises, and
2) patience rules for active arguments and receiving arguments are necessary.

Definition 6.1.4. A weak �-failure language� is in SISNNI format if

1) labels in a rule are either all in set ActH ���� or all in set ActL����. It means that a

rule is in the form of
�xi

hi�� x�i �i�I

f (x1� ���� xn)
h�� g(x�1� ���� x�n)

or
�xi

li�� x�i �i�I

f (x1� ���� xn)
l�� g(x�1� ���� x�n)

such

that I � �1� ���� n�, hi and h are all in set ActH � ���, li and l are all in set ActL � ���, and
2) No rules in the form

f (x1� ���� xn)
h�� g(x�1� ���� x�n)

with h � ActH ���� are allowed.

The first clause of Definition 6.1.4 restricts that high level actions and low level
actions should not occur at the same time in a rule, which is a standard restriction of the
CCS language. In CCS, only the parallel composition operator allows the presence of
the two positive premises, and it also needs that the actions of these two premises are

corresponding, i.e., if one is action a then the other is action
�
a.

The second clause of Definition 6.1.4 excludes the high level prefixing operator from
the SISNNI format, which is consistent with the fact that high level prefixing operator
is not compositional on the SISNNI property.

Moreover, the nondeterministic choice operator of CCS and SPA is also not in SISNNI
format. In fact, the nondeterministic choice operator is not invariant under the impossible
future equivalence.

Fortunately, as argued in the ACP [19] language, the prefixing operator may be sub-
stituted with a sequential composition operator. And the nondeterministic choice oper-
ator may be substituted with several operators in CSP [27], including internal choice
and external choice. These operators satisfy the SISNNI format.
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6.2 Ruloids and Ruloid Theorem

Ruloids and the ruloid theorem originated from the works of Bloom [22,23] for the
GSOS format.

For a language � � (�� � ) in the SISNNI format, the ruloids R(C� �), for a context
C(x1� ���� xn) of n holes and an action �, are a set of expressions like the transition rules:

�xi
�i� x�i �i�I

C(x1� ���� xn)
�� D(y1� ���� yn)

(1)

such that D is another context, yi � x�i for i � I and yi � xi for i � I, where
I � �1� 2� ���� n�. These expressions characterize all possible behaviors of the context
C(x1� ���� xn) in the language. Moreover, we define R(C) �

�
��Act�	�
 R(C� �).

It should be noted that the context D does not need to have exactly n holes. In fact,
after leaving out the copying and the lookahead in the de Simone format (the SISNNI
format is a subformat of the de Simone format), the number of the holes of D should
be less than or equivalent to n. But for convenience, in form (1), we still write it as
D(y1� ���� yn).

Furthermore, two properties need to be imposed on R(C� �), we call them soundness
property and completeness property, by a little abusing the terminologies.

Definition 6.2.1. Let � � (�� � ) be a language in the SISNNI format, and C(x1� ���� xn)
be any context of n holes in�. A set R(C� �) of ruloids of form (1) are ruloids of context
C and action �, with � � Act � ���, iff

1) Soundness. Let r � R(C� �) be a ruloid of form (1). If � is a closed � substitu-
tion such that �(xi)

�i� �(x�i) for all i � I, then there must exist a context D such that

�(C(x1� ���� xn))
�� �(D(y1� ���� yn)).

2) Completeness. Let � be any closed � substitution. If �(C(x1� ���� xn))
��, then there

must exist a ruloid r of form (1) in ruloids R(C� �), and �(xi)
�i� for all i � I.

Here, a strategy to obtain the ruloids for some context C of n holes is possible, and
it can be proved that the ruloids obtained by the strategy will satisfy the soundness and
completeness properties of Definition 6.2.1, which forms the ruloid theorem.

As a corollary to the ruloids and the ruloid theorem, we may have the following
proposition which will be used in the next subsection. This proposition states that each
trace of the composite process can be decomposed into traces of its subprocesses.

Proposition 6.2.2. Let � � (�� � ) be a SISNNI language, and C(x1� ���� xn) be any
context of n holes. Suppose that � is any closed � substitution mapping xi into pi. If
� is a trace in � (C(p1� ���� pn)), then, for all 1 � i � n, there should be a trace �i in

� (pi� �) such that, when C(p1� ���� pn)
�

�� C�(p�1� ���� p�n), we have pi
�i
�� p�i .

6.3 The Proof of the Compositional Theorem

To ease to proving of following propositions, an alternative characterization on the im-
possible future equivalence is needed.
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Proposition 6.3.1. Let p� q be two processes. For 1 � i � �, p �i f q iff

1) for any � � � (p) and p� with p
�

�� p�, there exists q� such that q
�

�� q� and
� (q�) � � (p�), and

2) for any � � � (q) and q� with q
�

�� q�, there exists p� such that p
�

�� p� and
� (p�) � � (q�).

The following two propositions say that, in any SISNNI language, operators ActH

and 
ActH are both distributive on any context of n holes.

Proposition 6.3.2. Let � be an SISNNI language, and C be any context of n holes. If
p1� ���� pn are any processes, then C(p1� ���� pn)ActH �i f C(p1ActH � ���� pnActH).

Proof. The only problem may exist when a ruloid like
�xi

hi� x�i �i�I

C�(x1� ���� xn)
��� D(y1� ���� ym)

is applied, where I � �1� ���� n�, �I� � 1 and �i � I : hi � ActH . Therefore, when

C(p1� ���� pn)ActH �� C�(p�1� ���� p�n)ActH
��� C��(p��1 � ���� p��n )ActH, it is possible that

C(p1ActH � ���� pnActH) �� C�(p�1ActH � ���� p�nActH)
��� C�

1(p�11ActH � ���� p�n1ActH)
��� C�

2(p�12ActH � ���� p�n2ActH)
��� ���

���
C�

k(p�1kActH � ���� p�nkActH) � D(p��1 ActH � ���� p��n ActH) occurs in C(p1ActH � ����

pnActH) with k � �I�.
However, observe that all � (C�

m(p�1mActH � ���� p�nmActH)) with 1 � m � k are equiva-
lent. Therefore, each impossible future pair of C(p1ActH � ���� pnActH) has correspond-
ing impossible future pair of C(p1� ���� pn)ActH , and vice versa. �

Proposition 6.3.3. If p1� ���� pn are any processes satisfying the SISNNI property, then
C(p1� ���� pn)
ActH �i f C(p1
ActH� ���� pn
ActH).

Theorem 6.3.4 [6]. Weak �-failure format is a congruence format for the impossible
future equivalence.

Theorem 6.3.5. SISNNI format is a compositional format for the SISNNI property.

Proof. It is enough to prove that C(p1� ���� pn)ActH �i f C(p1� ���� pn)
ActH if
piActH �i f pi
ActH for all 1 � i � n. By Proposition 6.3.2, C(p1� ���� pn)ActH �i f

C(p1ActH � ���� pnActH). By Proposition 6.3.3, C(p1� ���� pn)
ActH �i f C(p1
ActH� ����

pn
ActH). Now, C(p1ActH � ���� pnActH) �i f C(p1
ActH� ���� pn
ActH) can be guaran-
teed by Theorem 6.3.4 and piActH �i f pi
ActH . Finally, we will obtain the conclusion
by the transitivity of the impossible future equivalence, because it is an equivalence
relation. �

7 Conclusions

We have observed in the paper that, for characterizing the non-interference-like infor-
mation flow properties, the weak bisimulation may not be the only suitable semantic
equivalence, and even may falsely deem some systems insecure though they are actu-
ally secure. Then, we present several alternative semantic equivalences and argue that
they can play the same role with the weak bisimulation in verifying whether a system
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holds some information flow security. Moreover, they will not lead to the faults caused
by the weak bisimulation, or at least make less faults than weak bisimulation does.

As the second topic, we propose a rule format to guarantee the compositionality of
the SISNNI property, which is an impossible future equivalence based non-interference
property. This rule format make little modifications on the congruence format for the im-
possible future equivalence proposed by the authors. If a language is in this format, then
impossible future equivalence is a congruence and SISNNI property is compositional.
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Abstract. Agreement problems are one of the keys to distributed com-
puting. In this paper, we propose a construction of the ideal-model
functionality of one of the most important agreement problems, non-
blocking atomic commitment (NBAC), in the universally-composability
(UC) framework. NBAC is not only important in realizing dependable
transactions in distributed computing environments but also useful in
constructing security protocols that require the fairness property, such as
fair exchange protocols. Our construction of NBAC functionality (namely
FNBAC) is exactly equivalent to the NBAC definition; it is formally
proved that a protocol UC-securely realizes FNBAC if and only if the
protocol is an NBAC protocol. The proposed functionality and its proof
of equivalence to NBAC enables the NBAC protocols to be used as a
provably secure building block, and thus makes it much easier to feasi-
bly and securely create higher-level protocols.

1 Introduction

Motivation. Agreement problems, which represent consistent decision making
processes among independent subjects interacting with each other, are the most
essential problem in the distributed computing literature. Their resolution is
indispensable to realize trustworthy electronic commerce; e.g., consistent money
transfer among banks is guaranteed by transaction processing systems that solve
one type of agreement problem, namely the atomic commitment problem[1].

Protocols that can solve agreement problems, namely agreement protocols,
are not only useful in themselves but also needed as fundamental building-blocks
for realizing security protocols since multi-party protocols that require fairness
explicitly or implicitly must include a process to resolve agreement problems.
For example, broadcast channels, commonly used in multi-party protocols[2],
are realized by solving the Byzantine agreement problem[3]. Another example
is fair exchange[4,5], which is known to be unconditionally reducible into non-
blocking atomic commitment (NBAC)[6] among trusted processes.[7,8]

Since the agreement problems are well-studied and a number of agreement
protocols for diverse environments and assumptions have been developed so
far[6,3,9,8], modeling agreement problems as securely composable functionali-
ties enables us to dispense with reinventing the wheel when creating multi-party
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protocols and makes it easier to implement those protocols by introducing the
concept of reusability, which is quite common in software programming, to se-
curity protocol design.

To realize this scenario, it is important to design functionalities that are “ex-
actly equivalent” to the agreement protocols; a too strong functionality may
lack protocols that realize it, while a too weak functionality may make it diffi-
cult to prove the security of the protocols that uses the functionality. The aim
of this paper is to introduce functionalities that are provably equivalent to the
agreement protocols so that we can use them as securely composable and sub-
stitutable building-blocks and so permit the design of high-level and complex
security protocols.

Contributions. In this paper, we propose a construction of the functionality of
NBAC, which is a fundamental agreement problem[6,10,11] known to be capable
of becoming a building block in the construction of fair exchange protocols[7,8],
in the universal composability (UC) framework[12]. To ensure that the func-
tionality, namely FNBAC, captures the NBAC properties exactly, we introduce
an oracle called failure detection oracle (OFD), which detects if any failure has
occurred during protocol execution. This oracle is a sort of failure detector[13]
commonly used to abstract the error detection abilities of distributed processes
(e.g. timeout detection) in the distributed computing literature[14]. To be ex-
act, the introduced oracle has abilities equivalent to those of the anonymous
perfect failure detector (usually denoted as ?P)[11], which can correctly detect
any failure but does not provide any information about where the failure has
occurred.

A proof of the exactness of the proposed functionality FNBAC is also provided
in this paper. Designing a functionality that exactly represents the properties
of the agreement protocols is, however, not be so straightforward that everyone
can intuitively understand its correctness; it must be proved that the designed
functionality exactly satisfies the properties in order to utilize the functionality
as a securely composable building block. We provide proofs that the proposed
functionality FNBAC is exactly equivalent to NBAC; i.e., some protocol π securely
realizes FNBAC if and only if π holds all of the NBAC properties.

Related works. The concept of universal protocol composition has been attracted
much attention, however, few studies have focused upon the agreement properties
of protocols.

Lindell et al.[15] focus upon composability of the Byzantine agreement (or
generals) problem[3], which are known to be reducible from the problem to
establish a broadcast channel in a point-to-point network. Their notable impos-
sibility results show that a Byzantine agreement protocol requires more than
2/3 honest parties to be secure under parallel composition even if the messages
are authenticated, although it was originally believed that the Byzantine agree-
ment with authenticated messages (authenticated Byzantine agreement) could
be solved under any number of dishonest (corrupted) parties.[3]
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Garay et al.[16] specified a composable ideal functionality that gives the
resource-fair property, which states that if one party learns the output of the
protocol, then so can all other parties, as long as they expend roughly the same
amount of resources. The functionality is defined in a similar way to the UC
framework, but works in the framework where the environment compensate the
additional resources for honest parties prematurely aborted by the adversary.
This functionality and framework provide the notion of fairness (which is a sim-
ilar notion to agreement) as a composable building block in secure multi-party
computation protocols, however, this model assumes synchronous channels and
the functionality is constructed upon a fair delivery mechanism that provides
complete fairness[2], where if one party receives the output, all parties receive
the output; these assumptions are too ideal and hard to realize in real systems.

In the distributed computing literature, on the other hand, NBAC[6] is con-
sidered to be a fundamental agreement problem to ensure the atomicity of a
distributed transaction, and its characteristics including solvability have been
well-studied[10,1,17,11,9,14,8].

NBAC can be solved in the asynchronous model if (a certain class of) failure
detectors can be assumed. For example, every following protocol solves NBAC
in certain environment: the 3-phase commitment (3PC) protocol[6], the 2-phase
commitment (2PC) protocol1[1] and the optimistic NBAC protocol[8]. A differ-
ent application or situation would need a different NBAC protocol since every
protocol has its own strengths and weaknesses; e.g., the 3PC protocol is the most
versatile but is extremely complicated[9], 2PC is easy to implement but requires
special assumptions on a process (i.e. coordinator), and the optimistic NBAC is
simple and efficient but applicable only to the 2-party setting where each party
has a trusted module such as a smartcard.

The functionality proposed in this paper makes all protocols that correctly
hold the NBAC properties under parallel composition usable as securely com-
posable building blocks in the UC framework.

2 Preliminaries

2.1 Non-Blocking Atomic Commitment (NBAC)

An NBAC agreement guarantees that the participating processes, each of which
votes yes or no, eventually agree upon a common outcome, commit or abort. In
this agreement, commit can be decided only if all participants vote yes2. If any
process votes no, abort must be decided. Every correct process is guaranteed to
receive the decided value.

Precisely, the NBAC problem is defined as follows.[6,17]

1 The 2PC protocol is usually known to solve the atomic commitment problem, which
is similar to NBAC but does not guarantee the Termination property, but it solves
NBAC if no misbehavior (including crash) of the coordinator process and resilient
channels between the coordinator and the other processes can be assumed.

2 Note that “if” direction is not guaranteed.
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Definition 1 (NBAC). The NBAC problem consists of a set of independent
processes that reach a unanimous decision, commit or abort, according to initial
votes of the processes, yes or no, such that the following properties3 are satisfied:

Agreement. No two processes decide differently;
Termination. Every correct process eventually decides;
Commit-Validity (C-Validity). If all processes propose yes and there is no

failure, then the decision value must be commit; and
Abort-Validity (A-Validity). If at least one process proposes no, then the

decision value must be abort.

While NBAC is an essential problem in the distributed computing literature, it
is also valuable in constructing fair exchange protocols as mentioned in Sect. 1.
Fair exchange is reducible into NBAC between trusted processes by the following
reduction algorithm[7]:

FairExchange(item i, description d) {
〈send i to exchange partners over secure channel〉
timed wait for 〈expected item ie from exchange partners〉

〈check d on ie〉
if (check succeeds and no timeout)

then vote := yes else vote := no endif
result := NBAC(vote)
if (result = commit)

then return ie else return 〈abort〉 endif
}

The fair exchange protocol based on this algorithm enables parties to fairly
exchange arbitrary items. When using the optimistic NBAC protocol[8] as the
NBAC part of this algorithm, this exchange realizes optimistic (strong) fair
exchange of arbitrary items while other known optimistic protocols can guarantee
strong fairness only when at least one exchanged item has a special property
called strong generatability[5]4.

2.2 UC Framework

In the following, we briefly introduce the concept of the UC framework; its
comprehensive and rigorous definition is described in [12].

The UC framework is a sort of simulation-based security framework, where
the “formal specification” of the security requirements of a task is represented
as a set of instructions of a trusted process, namely ideal-model functionality.
3 C-Validity and A-Validity are often called “non-triviality” and “uniform-validity”,

respectively.
4 However, note that fair exchange by this method requires both parties to run trusted

processes; i.e., each party has to have access to a trusted device such as a smartcard.
This requirement would be easily satisfied by recent mobile phones (equipped with
(U)SIM cards), but might be rather difficult in other environments.
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A protocol is said to UC-realize the functionality (for the task) if running the
protocol “emulates” the functionality, in sense that observable outputs from the
parties and an adversary running the protocol and those from the parties and
an ideal adversary (i.e. a simulator) interacting with the functionality cannot
be distinguished by the environment machine with non-negligible probability.
The environment machine is a probabilistic interactive Turing machine (PITM)
that can hand arbitrary inputs to the parties and the adversary and can collect
(observe) outputs from them.

The characteristic merit of this framework is to guarantee secure universal
composition of the protocol (i.e. universal composition theorem); when a proto-
col UC-realize a functionality, the functionality that is “called” within another
protocol (like a subroutine) can be securely substituted by an execution of the
protocol UC-realizing the functionality5.

This merit makes security protocols modular as building-blocks and makes it
much easier to design and analyze complicated security protocols, however, the
other side of the coin is the difficulty of designing functionalities. Since universal
composability is founded upon tight simulatability between a protocol and a
functionality, a functionality that is either stronger or weaker than the desired
properties of the task obstructs secure composition of the protocol; a too strong
functionality often lacks protocols that realize it, while a too weak functionality
often makes it impossible to prove the security of the hybrid protocol that use
the functionality even if the protocol is actually secure.

Designing an adequate functionality exactly equivalent to the desired proper-
ties of a task, therefore, is quite important in realizing modularized designs and
simplified implementation of security protocols in the UC framework.

3 Ideal Functionality of NBAC

The ideal functionality in the UC framework is represented as a trusted party
that captures the desired specification of the task by way of specifying a set of
instructions.

Since the desired specification of NBAC is defined as the four NBAC properties
(i.e., Agreement, Termination, C-Validity and A-Validity), designing the ideal
functionality of NBAC is, accordingly, basically similar to finding a constraint
satisfaction algorithm that exactly satisfies these properties.

As mentioned in Sect. 2, it is important to be careful not to make the func-
tionality “too ideal” — it should exactly satisfy the properties to make the func-
tionality useful as a secure building block. For example, a functionality, which
outputs commit if all input values are yes or outputs abort otherwise, obviously
satisfies all NBAC properties, but is almost useless as the ideal functionality of
NBAC. This functionality is too ideal to be securely realized by any practical

5 To be more exact, provided that protocol ρ UC-realizes some functionality F and
protocol π in which parties make calls to F UC-realizes some functionality G, pro-
tocol πρ in which parties run ρ instead of calling F also UC-realizes G.
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NBAC protocol in the real world, so any hybrid protocol constructed with this
functionality would also be unrealizable.

In order for the functionality to exactly capture the desired properties, the
functionality interacts with a party called simulator, which simulates attacks
by an adversary in the real-world model. Most agreement protocols including
NBAC, however, have a property that cannot be represented even by interacting
with the simulator; i.e., the condition “there is no failure” in the C-Validity
properties. A simulator naturally knows whether a failure occurs internally, but
there is no means for a functionality to rightly know that from the simulator; even
if the simulator sends a message that indicates that a failure has occurred, the
functionality may not trust it because the UC framework does not guarantee that
the simulator sends a message based on its internal states correctly . Accordingly,
another means by which the functionality can accurately know whether a failure
has occured is needed for the functionality to correctly represent the C-Validity
property.

3.1 Failure Detection Oracle

To adequately represent the C-Validity property, we introduce the failure de-
tection oracle, denoted by OFD. This oracle is an ideal failure detector that
detects if any failure (including network failure, prematurely abortion or any
other misbehaviors by corrupted party) is caused by the adversary.

Definition 2 (Failure detection oracle). Failure detection oracle OFD is an
oracle that outputs f ← {0, 1} upon receiving sid, where f takes the following
value according to failure events in the protocol execution identified by sid:

f =

{
1 (if no failure occurs in the protocol), or
0 (otherwise).

(1)

No failure in the above definition means that every participant behaved correctly
and every message is transfered as expected by the protocol definition.

Since OFD is a virtual function to define a functionality in the ideal model,
protocols realizing a functionality with this oracle do not have to assume the
existence of OFD in the real-world model. However, interestingly, this oracle has
equivalent abilities to the anonymous perfect failure detector (?P), which can
detect any failure completely (i.e. any failure is detected within some time) and
accurately (i.e. no failure is detected unless a failure occurs) but does not provide
any information about where the failure happened; this failure detector is known
to be sufficient to transform Consensus6 into NBAC.[18]

6 The Consensus problem is another agreement problem where the following validity
property holds instead of C-Validity and A-Validity properties in NBAC: a value
decided must be a value proposed by some process.
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3.2 Definition of FNBAC

The ideal functionality of NBAC, namely FNBAC, is defined as follows:

Definition 3 (Ideal functionality of NBAC (FNBAC)). This functionality
proceeds as follows, running with participants P = {P1, P2, ..., Pn}, simulator S,
and failure detection oracle OFD:

1. Upon receiving a vote (Vote, sid,P, votei) from Pi, where votei ← {0, 1} is
the proposal value of Pi (yes: 1, no: 0), check if a vote from Pi is recorded.
If it is already recorded, ignore the received vote. If not, record the vote.

2. When all votes from P are recorded, send (Exec, sid,P) to S.
3. Upon receiving (Notice, sid, φ, χ) from S, where φ ← {0, 1} indicates if abort

was forcibly caused by the adversary (forcibly aborted: 1, otherwise: 0) and
χ = χ1||χ2||...||χn ← {0, 1}n indicates if termination of a participant Pi was
interrupted by corrupt acts of the adversary (Pi can terminate: χi = 1, Pi is
corrupted and cannot terminate: χi = 0), send sid to OFD.

4. Upon receiving f from OFD, send (Result, sid, resulti) to Pi, where resulti
takes the following value:

resulti =

⎧
⎪⎨

⎪⎩

⊥ (if χi = 0 and Pi is corrupted),
∏n

j=1 votej (else if f = 1),
∏n

j=1 votej · φ (otherwise).
(2)

resulti is the decision value that participant Pi receives. 0 and 1 represent
abort and commit, respectively. ⊥ indicates that Pi cannot decide (i.e., does
not terminate).

4 Proving the Equivalence of FNBAC to NBAC

In this section, we prove that FNBAC defined in Sect. 3 is the equivalent function-
ality of NBAC; i.e., a protocol is an NBAC protocol if and only if it UC-securely
realizes FNBAC.

Before proving it, we firstly provide a formal definition of an NBAC protocol,
namely πNBAC, by using symbolic logic in order to rigorously discuss the equiv-
alence of the functionality to NBAC. Next, we prove two lemmas: 1) πNBAC

UC-realizes FNBAC (i.e., FNBAC is not stronger than πNBAC), and 2) any pro-
tocol realizing FNBAC is πNBAC (i.e., FNBAC is not weaker than πNBAC). The
equivalence can be stated as a corollary of these two lemmas.

4.1 Formal Definition of NBAC

Although the definition of NBAC in Sect. 2 (1) is commonly used and easy
to understand, it isn’t rigorous enough to discuss the equivalence of FNBAC to
NBAC. An NBAC protocol can be formally defined by using symbolic logic as
follows:

Definition 4 (NBAC protocol). A protocol running with a set of independent
processes P = {P1, P2, ..., Pn} is an NBAC protocol πNBAC if it satisfies the
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following, where Pi inputs a vote value vi(∈ {0, 1}; yes : 1, no : 0) and receives a
decision value ri(∈ {0, 1, ⊥}; commit : 1, abort : 0,no decision :⊥), PC(⊆ P) is a
set of corrupted (incorrect) processes, and f is a value defined as Eqn. 1:

Agreement. The requirement of Agreement property, No two processes decide
differently, means that the results of any two different processes (ri and
rj(i �= j)) are equal if both processes receive the result (ri �=⊥ ∩ rj �=⊥).
Hence, this property can be formalized as follows:

∀((ri, rj)|ri �=⊥, rj �=⊥)ri = rj . (3)

(Termination). This property requires that any honest process (Pi(/∈ PC)) can
terminate and get a result (ri �=⊥). Hence,

∀(ri|Pi /∈ PC)ri �=⊥ . (4)

(C-Validity). This property requires that the result of any process is commit
(∀(ri)ri = 1) if all votes are yes ((∀(vj)vj = 1)) and there is no failure (i.e.,
the failure detection oracle OFD outputs f = 1). Hence,

∀(ri)ri = 1 if (∀(vj)vj = 1) ∩ (f = 1). (5)

(A-Validity). This property requires that the result of any terminated process
is abort (∀(ri|ri �=⊥)ri = 0) if at least one vote is no (∃(vj)vj = 0). Hence,

∀(ri|ri �=⊥)ri = 0 if ∃(vj)vj = 0. (6)

4.2 Proving That πNBAC UC-Realizes FNBAC

Lemma 1. An NBAC protocol (πNBAC) UC-securely realizes FNBAC.

Proof. To prove this lemma, it suffices to show that there exists a simulator S
that can simulate any adversary by internal execution of πNBAC.

Suppose simulator S runs as follows:

1. Upon receiving message (Exec, sid,P), internally run πNBAC with vote values
vi = votei and obtain decision values ri (i = 1, ..., n).

2. Equate φ and χi as follows:

φ =

{
0 (∃(ri|ri �=⊥)ri = 0),
1 (otherwise);

(7)

χi =

{
0 (ri =⊥),
1 (otherwise).

(8)

3. Send (Notice, sid, φ, χ) to the functionality in terms of the above φ and χi.

In the following, we prove that such a simulator can simulate any adversary
so that environment Z cannot distinguish FNBAC and πNBAC; i.e., the observ-
able output of FNBAC (resulti) and that of πNBAC (ri) are always consistent
(resulti = ri).

The proof is divided into the following two cases: Pi is not corrupted (case 1)
and Pi is corrupted (case 2).
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Case 1: Pi is not corrupted. If Pi is assumed not to be corrupted (Pi is correct),
i.e., Pi /∈ PC , it holds ri �=⊥ according to Termination property and χi = 1 is
given by Eqn. (8).

Under this assumption, ri must have the following values: ri = 1 if (∀(vj)vj =
1) ∩ (f = 1) according to C-Validity property, ri = 0 if ∃(vj)vj = 0 according to
A-Validity property; ri is undefined in other cases, i.e., if (∀(vj)vj = 1)∩ (f = 0),
however, it must be 0 or 1 according to the assumption (cf. Termination property).

Consequently, ri holds the following value in terms of vj(j = 1, ..., n) and f .

ri =

⎧
⎪⎨

⎪⎩

1 (∀(vj)vj = 1 ∩ f = 1),
0 or 1 (∀(vj)vj = 1 ∩ f = 0),
0 (∃(vj)vj = 0).

(9)

In the first case, resulti has the following value according to Eqn. (2):

resulti =
n∏

j=1

votej = 1. (10)

It holds resulti = ri.
In the second case, Agreement property requires that ∀(rj |rj �=⊥)rj = ri.

Eqn. (7) gives φ = 0 if ∃(rj)rj = 0, or φ = 1 otherwise. Hence, it holds that
ri = φ. Since ∀(j)votej = vj = 1, resulti becomes:

resulti =
n∏

j=1

votej · φ = 1 · φ = φ. (11)

It also holds that resulti = ri in this case.
In the last case, it obviously holds that resulti = 0(= ri) since

∏n
j=1 votej = 0.

Therefore, it always holds that resulti = ri if Pi is not corrupted.

Case 2: Pi is corrupted. If Pi is assumed to be corrupted, Termination property
does not restrict ri not to become ⊥ (no decision) so that ri may take any value
of {0, 1, ⊥}.

If ri �=⊥, it holds that resulti = ri as shown in case 1. If ri =⊥, Eqn. (8) gives
χi = 0. Since χi = 0 and Pi is corrupted in this case, it becomes resulti =⊥
according to Eqn. (2); it holds that resulti = ri(=⊥).

Hence, simulator S can simulate any adversary so that environment Z can-
not distinguish FNBAC and πNBAC, and therefore πNBAC UC-securely realizes
FNBAC. �

4.3 Proving That Any Protocol UC-Realizing FNBAC Is πNBAC

Next, we prove that any protocol that UC-realizes FNBAC is πNBAC by proving
the following contrapositive lemma.

Lemma 2. A protocol that is not πNBAC cannot UC-realize FNBAC.

Proof. In the following, we show that no simulator can simulate adversaries
such that the environment cannot distinguish FNBAC and protocol π that does
not hold at least one of the NBAC properties.
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If π does not hold Agreement property. Assume that π does not hold Agreement
property and thus outputs decision values ri, rj where ri �= rj(ri �=⊥, rj �=⊥).

In order that π UC-securely realize FNBAC, there must exist a simulator such
that FNBAC outputs resulti, resultj where resulti �= resultj(i �= j).

However, FNBAC always outputs resulti and resultj such that resulti =
resultj for any pair of i and j when resulti �=⊥ and resultj �=⊥, regardless
to the behavior of the simulator; i.e., FNBAC outputs either resulti = resultj =∏n

k=1 votek or resulti = resultj =
∏n

k=1 votek ·φ. Hence, under this assumption,
the outcome of π and FNBAC become inconsistent so the environment can easily
distinguish them.

If π does not hold Termination property. Assume that π does not hold Termi-
nation property and thus outputs ri =⊥ to Pi(/∈ PC).

FNBAC always gives resulti �=⊥ according to Eqn. (2) to Pi if Pi is not
corrupted. resulti and ri contradict each other and are thus distinguishable.

If π does not hold C-Validity property. Assume that π does not hold C-Validity
property and thus outputs ri = 0 to Pi despite ∀(vj)vj = 1 and f = 1.

Under this assumption, FNBAC outputs resulti =
∏n

j=1 votej = 1 to Pi,
according to Eqn. (2); it becomes resulti �= ri.

If π does not hold A-Validity property. Assume that π does not hold A-Validity
property and thus outputs ri = 1 despite ∃(vj)vj = 0.

According to Eqn. (2), FNBAC outputs resulti =
∏n

j=1 votej = 0 when
∃(vj)vj = 0 and therefore resulti �= ri under this assumption.

Consequently, an execution of π, which does not hold at least one of the
NBAC properties, is inevitably distinguishable from FNBAC running with any
simulator; a protocol that is not πNBAC cannot UC-securely realize FNBAC and
therefore any protocol that can UC-securely realize FNBAC is πNBAC. �

4.4 Equivalence of FNBAC to NBAC

As a corollary of Lemma 1 and Lemma 2, the following theorem can be stated:

Theorem 1. Some protocol π realizes FNBAC if and only if π is an NBAC
protocol (πNBAC).

The equivalence of FNBAC to NBAC is thus proved. �

5 Conclusion

We proposed a construction of ideal functionality of the non-blocking atomic
commitment, namely FNBAC, in the universal composability framework. To ex-
actly capture the NBAC properties by the functionality, we introduced a failure
detection oracle OFD, which is an ideal failure detector notifying the functional-
ity of the occurrence of failures caused by the adversary during protocol execu-
tion. We also confirmed that the proposed functionality is a proper functionality
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of NBAC by proving the equivalence of the FNBAC and the formalized NBAC
protocol πNBAC; i.e., a protocol UC-realizes FNBAC if and only if the protocol is
πNBAC.

Our construction of NBAC can be easily applied to design another agree-
ment problems. For example, the atomic commitment (AC) problem, the most
frequently-examined agreement problem in the distributed computing field, is
equivalent to NBAC without the Termination property; the equivalent function-
ality can be defined as follows:

Definition 5 (Ideal functionality of AC (FAC)). This functionality proceeds
as follows, running with participants P = {P1, P2, ..., Pn}, simulator S, and
failure detection oracle OFD:

1. (Same as Step 1 ∼ 3 of FNBAC, see Def. 3)
2. Upon receiving f from OFD, send (Result, sid, resulti) to Pi, where resulti

takes the following value:

resulti =

⎧
⎪⎨

⎪⎩

⊥ (if χi = 0),
∏n

j=1 votej (else if f = 1),
∏n

j=1 votej · φ (otherwise).
(12)

resulti is the decision value that participant Pi receives. 0 and 1 represent
abort and commit, respectively. ⊥ indicates that Pi cannot decide (i.e., does
not terminate).

The only difference of FAC from FNBAC is the condition that resulti becomes ⊥;
this difference reflects the fact that only corrupted processes can become unable
to terminate in NBAC but any process can become unable to terminate in AC.
The proof of equivalence between an AC protocol and FAC is also similar to that
of NBAC and is thus trivial.

As mentioned in Sect. 1, these agreement protocols are useful in constructing
other higher-level (and more complicated) protocols such as fair exchange proto-
cols. The proposed functionality FNBAC and other functionalities derivable from
our FNBAC construction (e.g. FAC) will be beneficial in designing such compli-
cated protocols and in making it easier to formally prove their security, without
sacrificing any feasibility or realizability of the protocols in the real world.
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Abstract. In this paper, we present a history-based model which con-
siders not only the content of an XML document to define access, but
also how this content was created. The last aspect is an important factor
for access control. Within the proposed model, the creation of documents
is stored in histories, which also contain the source and destination of
copied document parts. This enables us to define access depending on the
origin of document parts. Applying this model in an environment where
multiple users can edit documents concurrently is a challenging task,
since access decisions depend on other documents, which are possibly
edited at the same time. For this purpose, we present a system architec-
ture which supports an efficient workflow and reduces the overhead for
determining access rights of documents depending on other documents.
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1 Introduction

In the modern business world, many IT systems use XML as a standard for
information storage and exchange. In such systems, security is crucial, since
unauthorized access and information theft are responsible for a major part of
damages caused by computer crime [9]. Access control (AC) is a central security
mechanism to reduce that kind of loss. Although much work on AC in the areas
of file systems or relational databases has already been done, defining access to
XML documents is a different issue as stated in [7].

Consequently, a large number of models for AC for XML documents were
proposed [2,5,6,8,13]. These approaches consider the content of a document to
define access to its parts. This leads to a flexible way of defining policies inde-
pendently of concrete instances. However, theses approaches do not regard how
the content of an XML document was created. But this is important for AC, e.g.,
if the source of a copied part of a document is a top secret document, access to
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that part has to be restricted, too. A similar situation arises when a document
part is copied to a top secret document, e.g., a patent application. In this case, it
is desirable to deny access to the document parts located in the source document
to avoid information disclosure. Additionally, it is important to know who has
modified a document. Consider the following example: A researcher can change
the title of a section, e.g., to make a suggestion, until the title is changed by a
senior researcher, who has the authority to declare a title as final. Moreover, to
enable Chinese Wall policies [3], which are important in the financial domain,
the knowledge about previously performed operations is required.

Since in some cases XML elements contain a large amount of data, the gran-
ularity of AC on the level of XML elements is too coarse. An XML element can
be composed of text parts from different sources. In this case, the AC system
must be able to consider these parts individually to increase both flexibility and
usability.

For these reasons, we introduced a model in [14] that is capable of defin-
ing access based on the content of the current document, the recorded histories
and the content of dependent documents. These are documents between which
documents parts have been copied to or from the current document. The histo-
ries contain information about the operations that led to the current document
state. Moreover, these histories also include the source and destination of copied
document parts. We use this information to define access.

Applying our model in a scenario where multiple users concurrently edit mul-
tiple documents introduces four challenges. First, since access rights of one doc-
ument depend on other documents, we need a method for accessing these dis-
tributed documents when calculating access rights. Second, changes to one doc-
ument require the recalculation of the views of all dependent documents, which
are currently viewed. The straight forward approach for this is to recalculate the
views of all dependent documents after a document has been changed. However,
this results in a much higher number of view recalculations compared to models
which only define access depending on the current edited document. For ex-
ample, editing 20 depending documents concurrently, leads to a 20 times higher
number of view recalculations with the straight forward approach. Therefore, we
need a method which reduces the number of these view recalculations. Third,
the changes of one user to a document can revoke the access rights of other
users which are currently editing dependent documents. As a consequence, ac-
cess rights can be revoked during an editing process, which can lead to conflicts
regarding the content of the document and the access rights. Consequently, we
need a method for handling these conflicts. Fourth, aforementioned the straight
forward approach causes intermediate editing steps to become relevant for access
decisions of other users, which is not desired. For example, a user can change a
policy relevant element of a document by first deleting it and then replacing it
with an updated version afterwards. In this example, the first step can revoke
the access rights of another user, whereas the second step might restore these
access rights.
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The remainder of this paper is organized as follows: We summarize our model
for AC for XML documents in Section 2. In Section 3, we present a system
architecture that solves the four challenges mentioned above. Section 4 presents
related work. We conclude and discuss future work in Section 5.

2 Model

In this section, we give an overview of our model and its components, which are
explained in the following sections. We start with a description of the histories,
continue with the operations defined in our model and finally present the syntax
of our access rules.

2.1 Histories

We use histories to keep track of changes caused by the operations create,
copy, delete, and change attribute. The operation view is also logged in the
histories. These operations are described in detail in Section 2.2. We keep one
history for every element itself including its attributes and one history for its
text content. The latter history uses markup elements to divide the text into text
blocks with a block ID. This mechanism enables us to keep track of sub-elements
of arbitrary size. The markup elements are defined by ac:block elements, where
ac is the prefix for the namespace of the access control system. We use the block
IDs to reference individual text blocks in the history for the text content. If a
view is created for a user, the ac:block elements are omitted. Keeping track of
such implicitly defined sub-elements allows us to manage protection units smaller
than an XML element. Technically, we use XML elements to define those sub-
elements, but from a user’s point of view, these sub-elements are not visible.

A new text block is created in two cases. First, we create a new text block
as a result of copy operations, at both the source and the destination element.
Second, we create a new text block whenever text is added to an element.

In addition to the histories, we maintain a unique element ID for each element
to reference it independently of its current position within the document. More-
over, each document has a unique document ID. We use these IDs to keep track
of copy operations by maintaining an is-copy-of relation among the elements
and text blocks. Two objects are in is-copy-of relation with each other if one
object is a copy of the other.

A history entry consists of an action element, which contains details on the op-
eration and a context description. In addition to the operation, an action element
can have up to two arguments that describe the action. For the actions related
to attributes, we store the name of the corresponding attribute. The change
attribute and create attribute operations additionally store the new value
of the attribute. The create text and delete text operations store the block
ID of the corresponding text block.
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2.2 Operations

In this section, we describe the details of the operations supported by our model.
These are view, create, delete, change attribute and copy. Most of the op-
erations can be applied to elements, text and attributes. Each operation, except
for view, has an effect on the document itself as well as on the histories. The
view operation creates a history entry only. The create operation is divided
into creating elements, creating attributes and creating text.

The create element operation creates an element without any attributes or
text. In addition to the element itself, the history of the element is created. The
first entry of the history for the element describes its creation. The attributes
of an element are created with the create attribute operation, which is also
logged with an entry in the history of the enclosing element. It can be required
that elements have mandatory attributes. This requirement should be checked on
the application level and not within the access control system. This also applies
to the deletion of mandatory attributes.

The create text operation is used to add new text to an element. This
operation has an argument that specifies the position of the new text. If this
position is within an existing block, this block is split at the position where the
new content should be placed and the new content is placed in-between the split
blocks. The split blocks keep their original histories, whereas the new content
gets a new history with one entry describing its creation. The boundaries of
the split content pieces are denoted by the ac:block elements, as described in
Section 2.1.

The delete operation is used to delete elements, attributes, text or parts of
the text. Since elements and their attributes are checked in rules, we need to
keep them after deletion. For that purpose, the context of a delete operation is
captured in the element history with a delete action entry. A context is a tuple
of Date, Subject and Role, where Date refers to a date including time and Role
is the role of the Subject that performs the corresponding operation.

The copy operation is used for elements, text or parts of the text. In all cases,
we apply the corresponding create operation to create a new instance at the
destination as a copy from the source, which is registered in the destination
element. Additionally, the is-copy-of relation of the elements is updated.

The view operation displays elements which have not been deleted. When a
user wants to view a document, the view operation is invoked for every element
of the document itself, but also for its attributes and text. In contrast to the
read operation of some other systems, e.g., [1,3], the view operation does not
imply a data transfer.

The change attribute operation allows users to change the value of a specific
attribute. Since former values of an attribute can be checked by rules, we record
the change with an entry in the element history.

2.3 Rules

In this section, we define a syntax for AC rules, which can express policies that
depend on the content of the current document, the recorded history information
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and the content of dependent documents. Generally speaking, a rule has the
typical structure of subject, operation, object and mode. The mode field of a rule
defines whether it is positive (allow) or negative (deny). The default semantics
of our model is deny: if the access to the object is neither allowed nor denied
by a rule, then the object is not accessible. If conflicts occur, we take the rule
with the superior role and finally apply “deny takes precedence over allow”. We
use roles [15] to model the subjects to gain a higher level of abstraction and
therefore more flexibility compared to directly listing individual subjects.

Instead of listing individual objects in rules in an ACL-like manner [10], we
describe objects by their properties, e.g., location within a document or attribute
values. For this purpose, we use XPath patterns [4] to describe the objects for
which a rule is applicable. We use XPath, since its clearly defined semantics
makes the interpretation of the resulting rules unambiguous. Moreover, XPath
has a predefined set of mechanisms that can be used for our purpose, which
simplifies the implementation of our model.

We define two types of rules. The first type of rule defines permissions for the
unary operations create, view, delete and change attribute. The objects of
an AC rule are defined by an XPath pattern. The second type of rule defines
permissions for the binary copy operation, which requires the specification of a
source and a destination object. We use two XPath patterns for this. The syntax
of both types of rules is listed in Figure 1.

Unary rule Copy rule
Element Description Element Description

Role Role Role Role
Operation Operation Operation “Copy”
Object XPath Object XPath

Destination XPath
Mode allow | deny Mode allow | deny

Fig. 1. Syntax of AC rules

2.4 Accessing History Information with XPath

We use XPath patterns in rules to define access depending on histories. As
a consequence, we need a mechanism to access the histories within an XPath
pattern. Therefore, we extend the function library of XPath by a set of functions,
which we collect in the following six groups. The namespace of our functions is
indicated by the prefix ‘ac:’. In the context of XPath, we speak of a node instead
of an object.

Getting Copies of a Node. This group of functions is related to the is-copy-of
relation of nodes among each other. It is required to express rules that define
access depending on the source of an object or on the locations to where an
object was copied.
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The function ac:copies returns all nodes that are in is-copy-of relation with
the current node, whereas the function ac:predecessors returns all nodes of
which the current node is a copy. Finally, the function ac:successors returns all
nodes that are copies of the current node. All three functions also return nodes
that are in indirect is-copy-of relation to the current node, e.g., ac:successors
also returns the copies of the copies of the current node.

Getting Attribute Values. The function ac:attribute-values returns a
chronologically sorted list of tuples of an attribute value and the context corre-
sponding to the change of the attribute value. It is required to define rules, which
inspect former values of an attribute. For example, the rule {researcherB, View,
deny, /Report[count(ac:attribute-values(’funded-by’)[value=’Company
A’]) > 0]/*} states that subjects in the role researcherB are not allowed to
view reports that were funded by ’Company A’ in the past or at present.

Getting Related Nodes Depending on Time. This group of functions
retrieves nodes addressed relatively to the context node that existed within a
specified time interval. In the XPath terminology, the element to be checked
against the pattern is called the context node. XPath offers functions to retrieve
nodes addressed relatively to the context node, but without the specification of
a time interval, since XPath only considers the current state of a document. This
time interval is required to select related nodes depending on time, since nodes
can be deleted. Therefore, each of these functions can have a time interval as
parameter, e.g., ac:children-at(t1, t2) returns all nodes that were children
of the context node in the time interval between t1 and t2. To inspect a single
point in time, t2 can be omitted. The functions of this group are ac:parent-at,
ac:following-at, ac:preceding-sibling-at, ac:preceding-at, ac:follow-
ing-sibling-at, ac:children-at, ac:descendant-at, ac:root-at and ac:-
self-at.

Getting the Context of a History Entry. This group of functions offers
access to the context of a specific history entry. Each function returns an element
consisting of subject, role and time. These functions are ac:creation-context
and ac:deletion-context.

Getting Accessed Nodes. This group of functions is used to get all nodes
which have been accessed by a specified user or by a user in a certain role.
For example, these functions are required to express Chinese Wall policies [3].
The functions are ac:created, ac:viewed, ac:changed-attribute and ac:-
deleted. Each function refers to a specific operation, e.g., ac:viewed returns
viewed nodes. In addition, the function ac:accessed returns all accessed nodes
independently of the operation. All functions have two parameters that define
conditions on the returned nodes. The first parameter user specifies to return
only nodes that have been accessed by the specified user. Analogously, we define
the parameter role. Both parameters can be set to any to indicate to return
nodes accessed by any user or in any role. Optionally, each parameter can be
set to current. In this case, the current user or his current role is used for the
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check. For example, created(any, current) returns all nodes which have been
created by users who were active in the same role as the one in which the current
user is active in.

Getting Specific Nodes of Current Rule. We define three functions for
accessing specific nodes within an XPath pattern. The function ac:current-
-node returns the node in question for which the XPath pattern is evaluated.
This function is required when the pattern’s context changes to a document that
is different from the document for which the pattern was initiated. The function
ac:src-node retrieves the source node in question when checking a copy rule.
In a similar fashion, the function ac:dest-node returns the destination node
of a copy rule. The last two functions are necessary to define copy rules which
compare the source and destination objects with each other.

3 System Architecture

In this section, we present a system architecture for applying history-based AC
in an environment where multiple users can edit documents concurrently. Its
components are explained in the following sections. Additionally, we describe
the algorithms and protocols that are required for the interaction between the
components.

3.1 Architecture Overview

Our system architecture and its components are depicted in Figure 2. Our system
uses four databases. The document database (Doc DB) contains all documents
of the system. The rule database (Rule DB) contains the AC rules, which specify
allowed or denied accesses to the documents and their parts. The copy database
(Copy DB) stores the is-copy-of relation of the objects. Since the is-copy-of
relation can be depicted by a graph, we speak of an edge when we refer to a
single is-copy-of relation between two objects. Finally, the user database (User
DB) stores the credentials of the users of the system as well as the corresponding
roles including their hierarchy.

The user interface (UI) presents documents to the user and offers operations
that can be performed on the documents. If the user invokes such an opera-
tion, the corresponding request is sent to the document processor (DP), which

UI

PDP

User DP

PEP

Rule DB

Copy DB

Doc DB

User DB

Fig. 2. System architecture
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performs the requested operation if it is permitted. Inside the DP, the policy
enforcement point (PEP) intercepts each operation and asks the policy decision
point (PDP) whether the requested operation is allowed. The PDP uses the four
databases to decide whether to allow or deny the requested operation. This ar-
chitecture allows us to access distributed documents when a rule is evaluated
and therefore it represents a solution for the first challenge mentioned in the in-
troduction and. In the following, we explain the workflow for editing a document
to illustrate the processes within our architecture.

3.2 Workflow

A document must be opened before it can be viewed or edited. Therefore, the
UI offers a command to open a document. This command is sent to the DP,
which loads a copy of the document from the document database. We refer to
this process as check-out, since it has semantics similar to the check-out com-
mand of a version control system [16]. After the check-out, the user can edit
the document by applying the operations of our model. The changed content
of an opened document including the corresponding histories becomes relevant
for access decisions of other documents after it is checked-in. Up to then, the
content of the opened document is only relevant for access decisions concerning
that document itself. The document and the corresponding histories are kept as
a local copy in the DP. To check-in a document, the user must invoke the cor-
responding command of the UI. Then, the DP stores the copy of the document
back to the document database.

The check-in and check-out concept is more efficient and offers a higher usabil-
ity compared to directly working on the policy-relevant version of a document.
The first concept is more efficient, because changed content must be propagated
less often, i.e., only when a document is checked-in compared with immediately
after each change. This also reduces the overhead for recalculating permissions.
The usability is also higher, because of the transaction semantics of the approach.
With this concept a user can decide when the changing of a document is done,
instead of having potentially unwanted intermediate states to get relevant for
access decisions. With this concept we give a solution for the second and fourth
challenge mentioned in the introduction.

Check-Out. When a user invokes the command to check-out a document, the
DP first loads a copy of that document from the Doc DB. The Doc DB main-
tains a list for each document that denotes by which users the corresponding
document is currently opened to support concurrent access to documents. The
PDP executes Algorithm 1 to create a view. This algorithm removes nodes from
the document for which the user in question has no view permission and deleted
nodes. For that purpose, the algorithm adds a marker to each node which is set
initially to “default”, where a node can either be an element, an attribute or a
text block. Next, we sort all rules by their role and their mode. More special roles
are priorized over less special roles and deny rules are placed before allow rules.
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Then, we remove inapplicable rules. For each of the remaining rules, the corre-
sponding XPath pattern is evaluated. The result of this step is a set of nodes
that match with the current XPath pattern, which defines the applicable objects
of the rule. For each of these nodes, the marker is set according to the mode field
of the current rule. If all nodes have a marker different from “default” we stop
inspecting rules. Finally, we remove every node with a marker set to “default”,
every node with a marker set to “deny” and deleted nodes. After that, the PDP
sends the view to the DP, which creates history entries for the view operation
and forwards the view to the UI.

Algorithm 1. Create View
Input : rulesall, rolecurr, role hierarchy, doc
Output: doc
add marker to every node of doc1

set marker of every node of doc to “default”2

sort rulesall by role (special first) and mode (deny first)3

for each rulei of rulesall do4

if operation of rulei is not “view” or role of rulei is not inferior or equal to5

rolecurr then
continue with next iteration of loop6

nodesresult ← evaluate XPath of rulei for doc7

for each nodej of nodesresult do8

if marker of nodej is “default” then9

set marker of nodej to mode of rulei10

if all markers of doc are different from “default” then11

exit loop12

for each nodej of doc do13

if marker of nodej is “default” or “deny” or the node is deleted then14

remove nodej and subtree below from doc15

return doc16

Editing. To edit a document, the user first selects an operation offered by the
UI. This operation is sent to the DP, where the PEP intercepts the operation
to check whether it is allowed. For this purpose, the PEP sends the requested
operation together with the current document to the PDP, which evaluates the
rules to answer the request of the PEP. For this purpose, the PDP performs the
Algorithm 2.

The algorithm for rule evaluation sorts all rules like the previous algorithm.
Then, it checks the applicability of each rule by inspecting its role and its opera-
tion. For each rule, the XPath pattern is evaluated to check whether it matches
with the object in question. In case of a copy operation, the XPath pattern for
the destination is evaluated, too. If the rule is applicable, its mode is returned.
After evaluating all rules, the algorithms returns “deny”, if none of the rules was
applicable. The PDP sends the result of this algorithm back to the DP. If the
result is deny, the DP does not perform the requested operation and informs the
user via the UI. If the result is allow, the DP performs the requested operation.
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Algorithm 2. Evaluate Rules
Input : rulesall, rolecurr, role hierarchy, op, doc, obj, docdest, objdest

Output: deny | allow
sort rulesall by role (special first) and mode (deny first)1

for each rulei of rulesall do2

if operation of rulei is not op or role of rulei is not inferior or equal to3

rolecurr then
continue with next iteration of loop4

if op is “copy” then5

nodesresult ← evaluate XPath for source of rulei for doc6

else7

nodesresult ← evaluate XPath of rulei for doc8

if obj is not contained in nodesresult then9

continue with next iteration of loop10

if op is “copy” then11

nodesresult ← evaluate XPath for destination of rulei for docdest12

if objdest is not contained in nodesresult then13

continue with next iteration of loop14

return mode of rulei15

return “deny”16

Check-In. A user can invoke the check-in command of the UI to save his changes
to an opened document doca, which is currently stored only within the DP, to
the Doc DB. As a result of this, the checked-in version of the document becomes
relevant for the access decisions of other documents, which also includes con-
currently opened versions of doca. For these documents the permissions must
be recalculated, which possibly revokes permissions of currently edited docu-
ments. The concurrent editing of a document can also lead to conflicts, where
the editing of one user to doca is incompatible to the editing of another user,
who also has edited doca. For these reasons, we have to perform two steps when
a document is checked-in. In step one, we have to solve conflicts between the
concurrent versions of a document. In step two, we must update the permissions
of other affected documents whose permissions depend on the saved document.

To perform step one, we first retrieve the list of concurrently edited versions of
doca, which is maintained by the Doc DB for each opened document. Next, we must
merge all concurrently edited versions of doca to one consistent version. We apply
a conflict resolution strategy to solve conflicts between concurrently edited docu-
ments. It depends on the scenario to define a specific strategy.Onepossible strategy
is to resolve conflicts manually. An automatic strategy can accept or reject changes
depending on the role of the subject that performed the changes or depending on
the time the changes were performed, since this information is available in the cor-
responding histories. After the conflicts are solved, the temporarily stored edges,
which correspond to the accepted operations, are saved to the Copy DB.

To perform step two, we first inspect the Copy DB to retrieve the opened
documents that might depend on doca. These documents have at least one node,
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that is in is-copy-of relation with a node of doca. Then, we recalculate the per-
missions of these documents for their current users. In some cases, permissions
of edited nodes are revoked. In these cases, the UI asks the user whether he
wants to reject the current changes or keep them and accept being unable to
make further changes. These two steps provide a solution for the third challenge
mentioned in the introduction.

3.3 Implementation

We have implemented all components of our system architecture in Java ver-
sion 1.5. We have extended the XPath function library of the Saxon XSLT and
XQuery processor1 version 8.8 with the functions defined in Section 2.4. The
implementation supports all operations defined in Section 2.2. In addition, it
is able to evaluate and enforce our AC rules defined in Section 2.3. We have
verified the feasibility of our model by evaluating the performance of our im-
plementation. For example, the calculation of a view for a document with 2000
nodes takes less than a second. This performance is sufficiently fast, since our
check-in and check-out concept avoids additional view recalculations after every
operation on depending documents. Instead, we must update views only when a
depending document is checked-in. More details about the implementation and
performance evaluation can be found in [12].

4 Related Work

The model proposed in [2] supports selective authorizations to parts of docu-
ments based on the semantic structure of XML documents. Authorizations can
be defined for different nodes together with propagation options. Regarding these
aspects, the model is very similar to our work. However, the supported opera-
tions and their semantics are different, since our approach is able to differentiate
between objects with different histories. The support of copying data differs from
our work, since the model proposed in [2] supports only a push of different views
of a document to different sets of users, whereas our model allows us to define
which elements of one document may be reused in other documents. Similar
approaches can be found in [5,6,8,13], where [8,13] consider access control rules
for the read operation only. All these approaches consider the XML element as
the smallest unit of protection, in contrast to our approach, which is capable of
handling parts of the text.

Iwaihara et al. allow to define access based on the version relationship of docu-
ments and elements among each other [11]. They define six operations including
copy, which is similar to our copy operation, but can only be applied to elements
or subtrees and not to text content or parts of the text content. In contrast to
our model, the modification of the text content of an element is modeled by
the operation update only, which describes that the entire content of a node is

1 See http://saxon.sourceforge.net/

http://saxon.sourceforge.net/
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replaced with a new content. Concerning AC, Iwaihara et al. only consider read
and write operations and do not define a copy operation as part of their privi-
leges. Consequently, they can not express which transfers among documents are
permitted or denied. Moreover, they do not have the concept of splitting copied
elements to have different history information for parts from different sources.

5 Conclusions and Future Work

In this paper, we have summarized our model for defining access control for
XML documents and presented a system architecture that enables us to ap-
ply the model in a scenario where multiple users concurrently edit documents
in an efficient way. The proposed system architecture maintains the rules, the
documents and the history, so that this information is accessible for access de-
cisions of the PDP. We introduced the check-in and check-out approach, which
reduces the overhead of recalculating permissions for dependent documents. We
specified the workflow for editing a document by explaining the algorithm for
the calculation of permissions and the algorithm for the creation of views. We
are currently using the implementation of our model to study its usability in
different application scenarios.

References

1. Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations and
Model. Technical Report M74-244, MITRE Corp, Bedfort, MA (1973)

2. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents.
ACM Transactions on Information and System Security 5(3), 290–331 (2002)

3. Brewer, F.D., Nash, J.M.: The Chinese Wall Security Policy. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society Press, Los Alamitos (1989)

4. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C recommen-
dation, W3C (1999), http://www.w3.org/TR/1999/REC-xpath-19991116

5. Damiani, E., Capitani, S.D., Paraboschi, S., Samarati, P.: Securing XML Docu-
ments. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT
2000. LNCS, vol. 1777, pp. 121–135. Springer, Heidelberg (2000)

6. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Fine-Grained
Access Control System for XML Documents. TISSEC 5(2), 169–202 (2002)

7. Fundulaki, I., Marx, M.: Specifying Access Control Policies for XML Documents
with XPath. In: SACMAT 2004. Proceedings of the ninth ACM Symposium on
Access Control Models and Technologies, ACM Press, New York (2004)

8. Gabillon, A., Bruno, E.: Regulating Access to XML Documents. In: Working Con-
ference on Database and Application Security, pp. 299–314. Kluwer Academic Pub-
lishers, Dordrecht (2002)

9. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: 2006 CSI/FBI Computer
Crime and Security Survey. Technical report, CSI (2006)

10. Graham, G.S., Denning, P.J.: Protection - Principles and Practice. In: Spring Joint
Computer Reference, vol. 40, pp. 417–429 (1972)

http://www.w3.org/TR/1999/REC-xpath-19991116
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Abstract. The Trusted Mobile Platform (TMP) is developed and pro-
moted by the Trusted Computing Group (TCG), which is an industry
standard body to enhance the security of the mobile computing environ-
ment. The built-in SHA-1 engine in TMP is one of the most important
circuit blocks and contributes the performance of the whole platform
because it is used as key primitives supporting platform integrity and
command authentication. Mobile platforms have very stringent limita-
tions with respect to available power, physical circuit area, and cost.
Therefore special architecture and design methods for low power SHA-1
circuit are required. In this paper, we present a novel and efficient hard-
ware architecture of low power SHA-1 design for TMP. Our low power
SHA-1 hardware can compute 512-bit data block using less than 7,000
gates and has a power consumption about 1.1 mA on a 0.25μm CMOS
process.

1 Introduction

The Trusted Computing Group(TCG) is an organization that develops and pro-
duces open specifications, with regard to security-based solutions for various
computing systems. They published a group of related specifications that define
secure procedures as they relate to the boot-up, configuration management, and
application execution for personal computing platforms. The core component of
the TCG is the Trusted Platform Module(TPM) that acts as a monitoring and
reporting component.

TPM is a small chip capable of securely storing cryptographic keys and other
cryptographic functions like asymmetric encryption, signature schemes, and hash
functions. Using these functionalities user can attest the initial configuration of
a platform and seal or bind data to a specific platform configuration. To ensure
that the platform behaves correctly, TPM checks all software and applications
each time the underlying platform starts. In practice several vendors[16, 17, 18]
already deploy laptop computers that are equipped with a TPM chip placed on
the main board of the underlying platform. However most of these TPM chips
feature high performance usages.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 375–385, 2007.
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As the mobility of the computing platform increases, device theft and loss
has always been an issue for mobile devices. Data stored on mobile devices
is often at greater risk than data communicated over the air, due to the ease
with which those devices can be lost. With the inclusion of sensitive personal
information such as address books, as well as high value premium a service on the
devices, the risk from loss is increasing. In addition, as mobile devices become
smarter and support more data functions, the industry is facing many of the
same threats as personal computers from malicious software and attacks. Thus,
the need to protect user data and secrets of mobile device is underscored in a
mobile computing environment.

For these reasons, TCG is now extending the security realizations into mobile
technology and other embedded system platforms. It aims at adapting exist-
ing IT security standard, especially the TCG specifications, to mobile device
platforms to achieve a trusted mobile platform. A set of Trusted Mobile Plat-
form(TMP) specifications defining security features for mobile devices has been
released for public review by the authors and promoters from IBM, Intel, and
NTT DoCoMo. In these specifications, TCG recommend to use a hash algorithm
to compute and verify the integrity measurement value of underlying platforms.

Contrary to personal computers, mobile devices have strict environment in
power consumption, in battery life and in available circuit area. Among these
limitations, the power consumption is the major issue in the design of crypto-
graphic circuits for mobile platforms. Therefore, design methodologies at differ-
ent abstraction levels, such as systems, architectures, logic design, basic cells, as
well as layout, must take into account to design the SHA-1 circuit for trusted
mobile platform.

In this paper, we introduce an efficient hardware architecture of low power
SHA-1 algorithm for trusted mobile platforms. As a result, a compact and low
power SHA-1 hardware implementation capable of supporting the integrity check
and command authentication of trusted mobile platforms was developed and
evaluated.

This paper is constructed as follows. Section 2 describes some related works
for low power design of SHA-1 algorithm. Section 3 describes SHA-1 algorithm
reviews and architecture of our low power SHA-1 circuits. Section 4 describes
synthesis and implementation results. Finally, in section 5, we conclude this
work.

2 Previous Works

The Secure Hash Algorithm (SHA) was developed by the National Institute of
Standards and Technology (NIST) and published as a federal information pro-
cessing standard (FIPS PUB 180) in 1993, a revised version was issued as FIPS
PUB 180-1 [5] in 1995 and is generally referred to as SHA-1. Numerous FPGA
[8-14] and ASIC [6, 7] implementations of SHA-1 algorithm were previously pro-
posed and evaluated. Most of these implementations feature high speeds and
high costs suitable for high-performance usages such as WTLS, IPSec and so on.
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Early SHA-1 design were mostly straightforward implementations of vari-
ous loop rolling architectures with limited number of architectural optimization.
S.Dominikus [7] used loop rolling technique in order to reduce area requirement.
He proposed an architecture uses only 4 operation blocks, one for each round.
Using a temporal register and a counter, each operation block is reused for 20
iterations. G.Selimis [10] applied the reuse technique of [7] to the non-linear
function of SHA-1 algorithm. He modified the operation block to include the
four non-linear functions. Another architecture of the SHA-1 implementation is
based on the use of four pipeline stages [14]. This method exploits the charac-
teristics of the SHA-1 algorithm that requires a different non-linear function for
each round.

Unfortunately, most of these implementations have been designed aiming only
at large message and high speed operation, with no power consumption taken
into considerations. As the security of mobile and embedded devices is becoming
more important, recent researches focus on efficient low power hash hardware
implementation [13], [15].

3 Low Power Hardware Architecture of SHA-1

SHA-1 hash function has been developed by NIST in order to be used in the
Digital Signature Standard. For a message of length less than 264, the SHA-1
computes a 160-bit message digest. SHA-1 algorithm sequentially processes 512-
bit data block when computing message digest. So data padding is performed to
make the total length of padded data a multiple of 512-bit.

For our SHA-1 implementation, we assume that one 512-bit data block of
preprocessed by microprocessor is stored in memory and available to our SHA-
1 circuit for reading and writing. The operation of our SHA-1 circuit is broken
into three steps. The initial step comprises data reading and conversion to 32-bit
data. Here, the interface block reads four 8-bit data and convert them to 32-bit
data using for Mt. After data converting, data padding is followed. The next
step is round operation which ends with the 80 round. During this step, message
expansion block computes Wt and message compression is performed. The final
step is needed to compute the final hash values from the intermediate values.

3.1 Architecture of the Compact Implementation

We began the design of our low power SHA-1 hardware architecture by analyzing
the basic architecture of SHA-1 algorithm [5]. For each 512-bit message block,
the round operation is processed 80 times. As shown in figure 1, each round
operation performs several predefined processing, which involves four additions,
two circular right shift operations, and logical function ft operating on three 32-
bit values and produces a 32-bit data as output. It seems rather straightforward.
However, in order to compute the values of each round, the values from previ-
ous round are required. This data dependency imposes a sequential processing,
preventing parallel computation between round operations.
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Fig. 1. Round function of SHA-1 algorithm

The first step for our low power circuit design was to find a minimal archi-
tecture. A set of key components thus obtained. Components of SHA-1 circuit
then designed and applied several low power technologies to each component.
Figure 2 shows main components and interactions of our SHA-1 design: interface
block, data expansion, controller and message compression.
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Fig. 2. Outline of SHA-1 circuit block

The microprocessor controls all of the internal operation on the trusted mo-
bile module. It performs functions such as managing the interface to the mobile
platform, controlling operation of the TMP crypto engines, processing TMP
commands received from the mobile system, and performing security check on
the trusted mobile platform. Simple micro-controllers are used for trusted plat-
form module because of cost and power issues.

Interface block is responsible for converting 8-bit data applied to an input
into 32-bit ones and vice versa when it outputs the result. It also performs
padding operation about the transformed data to generate the padded 512-bit
block required by the algorithm. We use 32-bit data bus for efficient design of our
SHA-1 circuit. It is not a good idea to make the bus width smaller than 32-bits,
because all operation of SHA-1 algorithm and variables need 32 bits of data at
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Fig. 3. Functional block diagram of data compression

one time. A smaller bus may requires less registers, but it uses more data selectors
and resource sharing is hindered, resulting in an inefficient implementation.

The controller logic block is used to generate signal sequences to check an
input signal sequence or to control datapath parts. The basic structure of con-
troller is state register and two logic blocks. The input logic block computes the
next state as a function of current state and of the new sets of input signals. The
output logic block generates the control signals for datapath using the function
signals of the current states. The power can be consumed in the logic blocks or
in the clock distribution to the flip-flops of the state register.

The efficiency of a low power SHA-1 hardware in terms of circuit area, power
consumption and throughput is mainly determined by the data path structure of
data expansion and message compression block. The message compression block
performs actual hashing. In each step, it processes a new word generated by the
message expansion block. The functional block diagram of message compression
is presented in figure 3.

Figure 3 shows that SHA-1 algorithm uses five 32-bit variables (A, B, C, D,
and E) to store new values in each round operation. It can be easily seen from
[5] that four out of the five values are shifted by one position down in each round
and only determining the new value for A requires computation. Therefore, we
use a five stage 32-bit shift registers for these variables.

As shown in figure 3, the computation for A requires two circular right shifting
and four operand addition modulo 232 where the operands depend on all input
values, the round constant Kt, and current message value Wt. For compact and
low power SHA-1 circuit design, we use only one 32-bit adder to perform four
additions and use register E to store temporary addition values. Therefore, four
clock cycles are required to compute a round operation. Equation 1 shows the
functional steps for this operation.

t1 : Et1 = Et0 + Kt

t2 : Et2 = Et1 + ROTLEFT5(At)
t3 : Et3 = Et2 + Wt

t4 : At = Et3 + F (B, C, D)

(1)
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All aforementioned optimizations lead to the schematic of the compact ar-
chitecture of the data compression. Dashed line in figure 4 shows the detailed
structure of data compression block for our low power SHA-1 design. At first, all
registers are initialized and multiplexors choose path zero to load initialization
constant H0 ∼ H4 stored in KH. Five clock cycles are required to load initial
vector to each register. For optimized power consumption, we applied gated clock
to all registers in data compression.

reg_a reg_b

reg_c

reg_d

reg_e

Adder

KH

L5

F

L30

10 0 1

Wt

Data
expansion

mem_out

data_compression

Fig. 4. Detailed architecture of data compression

The F-function in figure 4 is a sequence of logical functions. For each round
t, F-function operates on three 32-bit data (B, C, and D) and produces a 32-bit
output word. The operation of F-function is shown in equation 2.

F (B, C, D) =

⎧
⎪⎪⎨

⎪⎪⎩

(B ∧ C) ⊕ (B̄ ∧ D) 0 ≤ t ≤ 19
B ⊕ C ⊕ D 20 ≤ t ≤ 39
(B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 40 ≤ t ≤ 59
B ⊕ C ⊕ D 60 ≤ t ≤ 79

(2)

During the final round operation, the values of the working variables have to
be added to the digest of the previous message block, or specific initial values
for the first message block. This can be done very efficiently with additional
multiplexer and the five stage shift registers for working variables.

KH in figure 4 stores initial values Hi and constant values Kt. It also stores
updated Hi values, which is used as the initial values for next 512-bit data block
computing. Computing the final hash value for one input message block takes
five clock cycles.
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Another important part of SHA-1 data path is data expansion. This block
generates message dependant words, Wt, for each step of the data compression.
As shown in figure 5, most implementations of data expansion in previous works
use 16 stage 32-bit shift register for 512-bit data block processing. This meth-
ods are inefficient to use in mobile platforms because they require a significant
amount of circuit area and power consumptions.
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Fig. 5. General data expansion of SHA-1 algorithm

We use only one 32-bit register to store temporary values during computation
of the new Wt. Our message expansion block performs the function of the equa-
tion 3, where ⊕ means bitwise XOR and M

(i)
t denotes the first sixteen 32-bit

data of i-th data block.

Wt =

⎧
⎨

⎩

M
(i)
t 0 ≤ t ≤ 15

ROTL1(Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) 16 ≤ t ≤ 79
(3)

Four values of memory data have to be read and the result written back to
memory in each round. This job takes 4 clock cycles, therefore, each round of
SHA-1 takes 4 clock cycles. Dedicated hard wired logic is used for computation
of necessary address. The detailed architecture of our data expansion module is
shown in figure 6.

Wt

L1

reg_w

mem_out

Fig. 6. Compact data expansion of SHA-1 algorithm

The memory used in our circuit is register based and single port 512-bit
memory using standard logic cells. In order to minimize the power consumption,
the internal registers of memory are disabled when they are not being used, thus
reducing the amount of unwanted switching activity. Additional multiplexer is
used to select input data between initial input data and intermediate compression
data.
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3.2 Consideration of Low Power Design

Our SHA-1 design not only result to a higher throughput but it also leads to a
more efficient implementation as long as power dissipation is concerned. In order
to optimize our low power SHA-1 circuit, resource sharing in the data path is
fully employed. We also used some low power circuit design technologies.

First of all, we try to optimize the data path of data compression and data
expansion block at the architectural level. At the gate level, gated clock is used
to reduce switching activities of latches and sequential logics. The gated clock
technique is extensively used in the design of low-power circuits. It consists to
gate the clock of sub-circuits that are in idle mode or that have just to keep
their data as such. Actually, some logic synthesize tools introduce gated clocks
automatically. However, these tools could also gate clocks that have to be always
active, which is useless. Therefore, it is preferable to describe in very high speed
hardware description language (VHDL) the necessary code to gate a clock and
to introduce it only if it is useful.

Although clock gating saves power dissipation in the clocked or sequential log-
ics of the design, power savings in the combinational logic parts are impossible.
So, we used an operand isolations, which prevents the activity in the combina-
tional logic by not allowing the input data to toggle in clock cycles when they
do not perform any useful computation.

The main goal of these low power circuit design methods are to reduce dy-
namic power consumption by preventing unwanted switching activities.

4 Implementation Results and Comparison

All hardware architectures of our design were first described in VHDL, and
their operation verified through functional simulation using Active HDL, from
Aldec Inc. In order to evaluate our low power SHA-1 design, we used Synopsys
synthesize flows for the targeted technology. For the target technology, we used
0.25μm CMOS standard cell library from Samsung Electronics. The applied
voltage was 2.5V and the operating frequency was 25 MHz.

Although the maximum operating frequency obtained using timing analysis
is 114 MHz, we use 25 MHz as the operating frequency for evaluating our circuit
because the system clock of most mobile phones is about 20 MHz.

The design was fully verified using a large set of test vectors. After synthesis,
Synopsys PowerCompiler was used to calculate the overall power dissipation of
our design. The activity of the netlist was estimated for various test messages
so that the netlist activity could be considered as reasonable values. We would
like to emphasize that our design is on the algorithmic and architectural level.
Implementing our designs using an low power ASIC library or a full custom
design will enable higher energy and power savings.

Table 1 shows the synthesis and power estimation results of our design based
on the logic blocks, circuit area and power consumption. Our SHA-1 design
consumes an area of 6,812 gates and needs 450 clock cycles to compute the hash
of 512 bits of data. The total power consumption at 25 MHz is about 1.1 mA.
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Table 1. Logic blocks, complexity, and power consumptions from Samsung 0.25 μm
CMOS process

Circuit area Power consumption

Logic Block gates percentage mW@25MHz percentage

Interface 468 6.8 0.054 1.8

memory 3,434 50.4 0.895 30.2

data expansion 314 4.6 0.17 5.7

controller 350 5.1 0.228 7.7

reg a∼e 876 12.9 0.336 11.3

adder 200 3.0 0.514 17.4

data compression 1,170 17.2 0.764 25.9

Total 6,812 100% 2.961 100%

Table 2. Comparison with previous works of SHA-1 ASIC implementation based on
circuit area

SHA-1 computation Tech.(μm) Freq.(MHz) Circuit area

This work 0.25 114 6,812

Y.Ming-yan [6] 0.25 143 20,536

S.Dominikus [7] 0.6 59 10,900

In table 2, we present the comparison of our design with some previous works
for SHA-1 ASIC designs. At this point, there are relatively few works available
for comparison of consuming power. It can easily be seen from table 2 that our
implementation uses 29% less hardware resources than the design of [7].

Table 3. Comparison with commercial TPM chips based on SHA-1 computations

Freq.(MHz) SHA-1 performance

This work 25 <18 μs/64-byte

AT97SC3203 [16] 33 <50 μs/64-byte

SSX35A [18] 33 <258 ms/1M-bit

There exist several commercial TPM chips implementing SHA-1 algorithm [16],
[17], [18]. In table 3, we present the comparision of our design with the most rep-
resentative TPM chips with the same functionality. Although the operating fre-
quency of the proposed implementation is lower than that of [16] and [18], the
achieved throughput exceeds SHA-1 circuits of some commercial TPM chips de-
signed for desktop computers.

5 Conclusions

In this work, we proposed a compact yet high-speed architecture for a low power
SHA-1 cryptographic circuit and evaluated through simulation and synthesis for
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ASIC implementation. Our architecture provides a compact and high perfor-
mance SHA-1 cryptographic hardware for low power trusted mobile computing.
The SHA-1 implementation has a chip area of 6,812 gates and has a current
consumption of 1.1mA at a frequency of 25MHz. Our design requires less than
450 clock cycles to compute the hash of 512 bits of data.

To our best knowledge, the proposed design is at least 270% faster than any
commercial TPM chips supporting SHA-1 circuit, while using lower operating
frequency and achieving a reduction of the required hardware. The results of
power consumption, throughput, and functionality make our low power SHA-1
cryptographic hardware suitable for trusted mobile computing and other low-
end embedded systems that urge for high-performance and small-sized solutions.
However, the major design advantage of our design is the low power dissipation
that is required to calculate the hash value of any given messages.
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Abstract. This paper develops a language and a reference architec-
ture supporting the management and enforcement of authentication poli-
cies. Such language directly supports multi-factor authentication and the
high level specification of authentication factors, in terms of conditions
against the features of the various authentication mechanisms and mod-
ules. In addition the language supports a rich set of constraints; by using
these constraints, one can specify for example that a subject must be au-
thenticated by two credentials issued by different authorities. The paper
presents a logical definition of the language and its corresponding XML
encoding. It also reports an implementation of the proposed authentica-
tion system in the context of the FreeBSD Unix operating system (OS).
Critical issues in the implementation are discussed and performance re-
sults are reported. These results show that the implementation is very
efficient.

1 Introduction

Authentication is the process by which systems verify the identity claims of
their users. It determines who the user is and if his claim to a particular identity
is true; authenticated identities are then the basis for applying other security
mechanisms, such as access control. Generally speaking, a user can be authenti-
cated on the basis of something he holds, he is, or he knows.Something you know
is typically implemented through mechanisms such as password, or challenge-
response protocols. The something you hold approach is implemented through
token-based mechanisms, smartcards, or a PIN that the user possesses and must
present in order to be authenticated. Finally, the who you are paradigm is based
on biometrics and includes techniques such as fingerprint scans, retina scans,
voiceprint analysis, and others.

A same system may have resources with different requirements concerning
authentication strengths for the users wishing to access them. A straightforward
solution to authentication for resources with such heterogeneous requirements
is based on a conservative approach that maximizes authentication checks each
time a user connects to the system. However, such a solution may result in
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computationally consuming authentication tasks and may also be very expensive
and complex to deploy. For example, adopting one-time passwords [12] for all
users of an organization, independently from the tasks they have to perform and
the resources they have to access, may be very expensive; ideally one would like to
require such authentication measures only for users who need to access sensitive
resources and use conventional passwords for the other users. Additionally, such
an approach does not avoid the risk of session hijacking.

We believe that authentication should be based on a variety of mechanisms
targeted to the resource security requirements and be easily configurable. Iden-
tity of users should always be known and certain during the whole duration of a
user session within the system, especially as the user browses multiple resources.
Continuous authentication [3] has been proposed to tackle issues related to fake
authentication from attackers. Most approaches to continuous authentication are
based onbiometric techniques, like keyboard typing recognition or face recognition
through trusted cameras [7]. However these approaches require costly machinery
and tools and in addition are based on the assumption that the one method of
authentication is to be accepted for every possible resource the user connects to.

Logic based authentication approaches [1, 15] have been proposed to support a
weak form of continuous authentication through the association of multiple prin-
cipals with each user. However, these approaches have mostly focused on abstract
representationof roles, groups, anddelegation.Mechanically generatedproofs have
resulted to be impractical to compute. As we discuss in more detail in the related
work section, such approaches are not expressive enough to support fine-grained
authentication policies. We thus believe that more articulated solutions are needed
based on the use ofmultiple authentication mechanisms combined through authen-
tication policies and on the association of authentication requirements with the
protected resources. The goal of our work is to develop such a solution.

We propose an authentication framework based on an expressive authentica-
tion policy language. By using such language, one can specify how many authenti-
cation factors are required and of which type, for accessing specified resources, or
impose constraints on the authorities by which credentials used for authentication
have to be provided, thus providing a quality-based authentication. Flexibility in
specifying the various factors for authentication is important as typical two-factor
authentication mechanisms may not be sufficient to satisfy the security require-
ments of a given system [16]. It is important to notice that the SAML (Security
Assertion Markup Language) standard [11] supports the encoding of authentica-
tion statements for exchange among sites in a distributed system. The goals of our
authentication policy language are different from the goals of SAML. SAML is a
standard for encoding authentication statements; such a statement typically as-
serts that a given subject has been authenticated under a certain modality by a
given entity at a given time. SAML thus does not deal with taking authentication
decisions; it only deals with encoding and transmitting such decisions. The goal of
our language is exactly to specify policies driving authentication decisions; as such
policies expressed in our language may also take into account previous authenti-
cation decisions, taken for example by other sites in a distributed system, together
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with other information in order to reach an authentication decision.In what fol-
lows we refer to our framework as authentication service language, abbreviated as
Auth−SL. Our goal is to develop a comprehensive set of functions for specifying,
managing, enforcing, and inspecting authentication policies that can be used by
parties and applications in a system.

The contributions of our work are as follows: (1) The development of a ref-
erence architecture for a novel authentication service. (2) The specification of
a language to express authentication policies. The proposed language supports
the specification of the number of authentication factors required for accessing
a resource and the qualification of the authentication factors in terms of a large
variety of conditions. (3) An implementation of the proposed authentication ser-
vice and the policy language in the context of the FreeBSD Unix OS, which
allows continuous authentication. That is, the user can fluidly re-authenticate
users throughout sessions. Authentication policies can be associated with the
protected resources, in addition to being used when the user initially connects
to the system; our implementation thus supports the notion of continuous au-
thentication. Auth-SL, as our experiments show, is also very efficient; it improves
the functionality of the OS without impacting its performance.

We would like to emphasize that our approach departs from the conventional
security “pipeline” according to which, during a user session with a system, au-
thentication is executed only once at the beginning of the session, and then access
control is applied multiple times during the session. Our approach proposes a dif-
ferent paradigm under which the activities of authentication and access control
can be interleaved in a session, depending on the specific security requirements
of the resources accessed during the session. It is important to notice that the
conventional pipeline can be supported as a special case of our approach.

The rest of the paper is organized as follows. In Section 2 we present the
reference architecture for our authentication service. We then present the formal
definition of authentication language and discuss the implementation in FreeBSD
Unix. Finally we outline future work.

2 Reference Architecture for an Authentication Service

We begin with a reference architecture of our authentication service, to clarify
the main logical components. Auth-SL consists of two major subsystems, namely
the authoring subsystem and the enforcement subsystem.

Authoring subsystem. This system supports the specification and the man-
agement of the authentication policies. One of its key features is that it supports
the specification of which mechanism to use through the specification of condi-
tions against the features of the available mechanisms. Such specification relies
on two components: a library of authentication modules, very much like a set of
PAM modules [8]; and a specialized UDDI Registry recording all features of the
authentication modules that are relevant for the specification of the authentica-
tion policies. Each module in the library supports a specific type of authentication.
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Such modules can then be dynamically invoked to enforce the specific authentica-
tion policies. The information required about the authentication modules that are
needed for authoring authentication policies is as follows: (1) Module’s authentica-
tion characteristics. These data describe the settings for the specific mechanism.
For example, in a password based authentication, a characteristic is the maximum
number of tries allowed, or the minimum length of the password. For token-based
authentication, a characteristic is the authentication method (e.g. SSO, Basic-
Auth credentials), NTLM credentials (username, password, domain), and X.509
client certificates, and the software used (e.g. IBM Tivoli Client RSA). (2) Imple-
mentation data. These parameters qualify the specific implementation of a mech-
anism and can refer to the storage of the secret token, the cryptographic technique
used to transmit it, the audit trails and so forth.

The authentication policies that can be expressed thus depend on the au-
thentication modules available, and the characteristics of these modules. Such
data are to be considered part of the knowledge needed to specify adequate
authentication policies. For example, if a system administrator knows that a
given authentication module is weak, due to implementation limits or module
vulnerabilities, he can apply stronger authentication policies. Authored authen-
tication policies are stored into a repository referred to as Authentication Policy
Base providing query capabilities to properly authorized users, such as system
administrators and auditors.

Enforcement subsystem. Upon an authentication request, such system is in
charge of evaluating an authentication policy and make an authentication deci-
sion. The evaluation is executed by the Authentication Enforcement Point, which
first retrieves a proper authentication policy. Policy evaluation may also take into
account previous authentication events concerning the subject being authenti-
cated. To express fine grained constraints over past authentications we collect
information on the past authentication in two different logs, serving different
purposes: (i) track subjects actions related to authentication and (ii) record the
conditions under which a successful authentication is executed. In the first log,
referred to as Authentication event log, we record authentication events (event
for short) related to the subjects. An authentication event is basically an au-
thentication executed against a subject. Such log tracks in a chronological order
all events related with authentication of the users performed during each session.
Once the policy is evaluated, a new event is generated and stored in the log in
order to keep track of this authentication step. Each record can refer to either
an authentication attempt using a specific factor, the verification and/or the
failure of the verification of a given factor. A successful authentication implies
successful authentication of multiple factors traced in the event log.

The context data log instead tracks specific data related to previous authenti-
cation. The information stored by such log is used to evaluate whether previously
executed authentication can be leveraged for satisfying an authentication policy
An instance of the context data log is created when the user begins a session
and it is maintained only for the session duration. Each log record stores con-
text data related to the specific authentication performed, and the settings of the
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module used. In the current Auth-SL system, each entry in a context data log
collects: the type of mechanism used, the time of the authentication execution,
the number of failed attempts, the party that originally generated the authen-
tication token used, storage information (remote versus local token storage)and
the storage mode (encrypted versus clear text token). Note that Auth-SL does
not mandate the specific set of data to be tracked. Additional data may be saved,
according to the specific system modules and system security requirements.

The output of the enforcement subsystem is an authentication assertion, which
can be returned either to the user or transmitted to some other system or appli-
cation. Since policies are associated with resources, in most cases the authentica-
tion service will interact with the access control system. Typically when subject
requires access to a resource, the access control system will will require the au-
thentication service to determine if there are authentication policies associated
with the resource and, if this is the case, to evaluate such policies.

3 The Policy Language

In this section we discuss the language for the specification of authentication
policies. We begin introducing some notation and symbols to be used for the
policy specification and then illustrate the syntax of the language.

3.1 Constant Symbols

The constant symbols used in our language are described as follows.

Objects (O) denotes the set of objects available in the system. Each object has
an associated set of operations according to which the object can be accessed.
We denote the possible set of operations for object o in O as OPo

1.
Authentications Modules (AM) is a set of authentication modules available

in the system library. We assume that modules are described in terms of param-
eters collected in a set ModP. Each module m ∈ AM has an associated profile,
defined by a subset {varm

1 , . . . , varm
k } of elements in ModP. In particular, each

profile always includes a mechanism type name (denoted as MechType), specify-
ing the type of mechanism supported by the module. Some mechanisms are also
qualified in terms of the algorithm used for authentication, as for instance the
cryptographic algorithm or the algorithm used for biometric authentication.

Policy constraints (P) is a set of policies used to establish authentication
requirements for elements in O. We assume that for each o ∈ O there is at most
a policy p ∈ P . Policies are defined as combination of authentication factors (F),
to qualify the authentication to be executed.

Time (T) is the discrete time in the system.

3.2 Formal Definitions

Authentication policies are the key elements to drive authentication decisions.
The specification of authentication policies relies on the notion of Authentication
1 The set of resources contains at least the object corresponding to the user login.
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Factor. Authentication factors define the features of a specific authentication,
using one specific mechanism in AM, and are described in terms of descrip-
tors. Each descriptor has at least one parameter, which is the alias -or unique
identifier- of the authentication factor.

Definition 1 (Descriptor). A descriptor d is a predicate of the form p(x, t),
in which x is a variable, and t is a vector of one or more terms2.

Descriptors can be classified into four different categories, according to the spe-
cific property they capture.

† Authentication Verifier descriptors. These descriptors state properties of the
verifier of the authentication token. This could be related to the trusted third
party that originated the secret token, or to the module that at the time of
verification of the identity token checks its integrity.

† Module Characteristics. These properties describe the characteristics of the
module used for the authentication and the configuration used to run
authentication.

† Context Information. These properties refer to external conditions that may
arise during a specific authentication.

† Space and time. These descriptors attest properties of the authentication
factors with respect to space and time constraints.

Properties of a specific authentication could potentially be described in various
ways. In Auth-SL, we chose to represent them through a finite set of descriptors
to enable specification of fine grained authentication policies. Relevant descriptors
necessary to express articulated policy conditions are provided in [17]. Authenti-
cation factors are specified through a Boolean conjunction of descriptors.

Definition 2 (Authentication factor). An authentication factor is a Boolean
conjunction of descriptors d1, . . . , dk, each of the form d = p(x, t), such that: (1)
The same factor variable x appears in every descriptor dm = p(x, t) ∀m ∈ [1, k]
(2) ∃dj , j ∈ [1, k] such that pj(x, a) = Mechanism(x, a), a ∈ MechType.

We describe a factor in terms of the descriptors {d1, . . . , dk} composing it, when
the exact arguments of the descriptors are not needed. As from Definition 2, au-
thentication factors can be defined using any possible combination of descriptors.
The only mandatory descriptor is the one specifying the mechanism to use.

Example 1. Examples of authentication factors are the following:

1) Mechanism(z2, Biometric) ∧ Algorithm(z2, V eriF inger) ∧ T imeBefore
(z2, t

′′),
2) Mechanism(z1, Kerberos) ∧ T imeBefore(z1, t)

The authentication factors, as defined, are stand alone in that the specification
of one single factor is not related to any other factor. However, this is not ade-
quate for the specification of complex and multi-factor authentication policies.
2 Recall that a term is either a variable like cid or it is a compound term f(t1, . . . , tk)

where f is a function symbol of arity k and t1, . . . , tk are smaller terms.
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To correlate different factors and their characteristics specific constraints can be
specified. Factor constraints are specified as logic formulae in which the occur-
ring variables are the factor identifiers. We assume the existential and universal
formula be specified always over attributes having a finite domain. The domain
of constraints supported belongs to the class of order and inequality constraint
domain [10]. This domain include binary predicates as defined in our comparison
assertions set presented in Section 3.1.

Definition 3 (Factor Constraints). Let d1, . . . , dk be authentication descrip-
tors specified according to Definition 1. A factor constraint φ for descriptors
d1, . . . , dk is a first order logic formula defined expressing conditions against
variables appearing in {d1, . . . , dk}.

Example 2. Let d1, d2 be two different authentication descriptors. An example
of constraints are:

φ1 =∃(TrustedParty(x1, value1)∧TrustedParty(x2, value2))∧value1 �= value2

φ2 = ∃(T imeBefore(z1, t
′′)) ∧ T imeBefore(z2, t

′)) ∧ t′ > t′′

The first constraint requires that the two factors be issued by different trusted
parties. This is useful to impose authentication to be proved trough credentials
issued by different authorities. The second constraint implies an ordering in the
execution of the factors and requires factor d1 to be executed after d2.

We are now in the position to formalize the notion of authentication policy.

Definition 4 (Authentication Policy). An authentication policy p is a tuple
of the form 〈obj, op, [d1, . . . , dk], T s, Φ〉, k ≥ 1, where:

– obj ∈ O is the object target of the policy;
– op ∈ OPobj denotes a non-empty set {op1, . . . , opk} of operations according

to which obj is to be accessed.
– [d1, . . . , dk] is a list of authentication factors, such that dj �= dm if j �= m;
– Ts denotes the number of mandatory authentication factors to be verified,

thus 1 ≤ Ts ≤ k;
– Φ is a set of factor constraints {φ1, . . . , φk}; each φi, i ∈ [1, k] , is specified

in terms of descriptors appearing in d1, ..., dk.

An authentication policy is by definition specified by a combination of factors to
be evaluated. The execution of all the factors may or may not all be mandatory,
as specified by threshold value, denoted by Ts. The specification of Ts enhances
the flexibility of authentication by establishing the sufficient demands needed to
authenticate the user. The listed factors are to be evaluated accordingly.

Example 3. The following is an example of authentication policy:

p = 〈file1, {open}, [f1, f2], 2, φ2〉 states that to be authenticated for opening
file1 the user identity should be checked by executing both factors f1 and f2.
Here, f1 and f2 correspond to the factors in Example 1 and φ2 denotes the
constraint of Example 2.



Auth-SL - A System for the Specification and Enforcement 393

To avoid specification of policies which cannot be processed by the policy en-
forcement point, authentication policies should be well-formed.

Definition 5 (Well-formed policy). Let obj be a object, op be the associated
operation and let p=〈obj, op, [d1, . . . , dk], j, Φ〉, k ≥ 1, be an authentication policy.
p is a well-formed policy for obj if the following condition holds: Ts = j, j ≤ k
and a set of j factors dm1, . . . , dmj exists in [d1, . . . , dk] such that each φ ∈ Φ
that involves factor variables in dk1, . . . , dkj is satisfiable.

By definition, satisfiability of the constraints needs to be guaranteed. Also con-
straints expressed in terms of factor variables referring to factors that are not
part of the subset need to be satisfiable. That is, if they refer to factors that are
not part of the list, the policy is not well formed. We clarify this concept with a
simple example.

Example 4. Consider a policy that specifies [f1, f2, f3] and requires at least 2
out of 3 factors to be verified. If among the constraints in Φ there is a constraint
φ1 that compares qualities of the factor f1 with qualities of factor f2 and there
is a second constraint φ2 that compares qualities of f2 with qualities of f3, then
the policy is not well-formed. The constraints can only be evaluated if all the 3
factors are verified, and this contradicts the threshold value.

Verifying whether a policy is well-formed or not is a decidable and deterministic
problem, as a consequence of the fact that the set of factors and constraints is
always finite and of the adopted constraint language.

4 Implementation of the Authentication Service in
FreeBSD Unix

As part of our work, we have developed a prototype of the authentication ser-
vice in the context of the FreeBSD Unix OS[9]. The main components identi-
fied in the framework reported in Section 2 have been translated into modified
modules/operations for implementation in FreeBSD. A sketch of the resulting
prototype architecture is presented in Figure 1. The core of the system, which
is represented by the authentication enforcement point, has been implemented
trough a set of APIs, for policy access and context access. We elaborate on those
components as well as on the above issues in what follows and we also report
some performance results.

Policy Encoding. Each object in the OS is associated with one authentication
policy, composed by one or more authentication factors. In order to support an
efficient processing of policies, we provide an internal representation of policies
expressed according to the C language. Auth-SL policies are encoded using XML
and then parsed into C functions by an authoring tool. Each policy function is
associated with a unique ID. Policy functions are parameterized with actual con-
straint values that appear in the policy factors. The C functions, which evaluate
the logic of a particular policy, take as input parameters the context data log and
the parameter values that qualify the arguments of the descriptors for factor.
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Fig. 1. Prototype architecture Fig. 2. Auth-SL authentication services

Policy Storage and Binding. The storage strategy adopted for the policies
is a key element for ensuring good performance and effective management of
the policies. We exploit the extended attributes stored in the Extended file
Attributes (EA) of the inode for policy storage. As shown in Figure 1, the
inode is connected with the resource and the set of API used for policy ac-
cess. EAs are included as part of the UNIX File System Version 2 (UFS2) for
FreeBSD. The extended file attributes provide a mechanism for supporting the
association of various metadata with files and directories; such metadata are
not directly used by the file system (unlike other attributes such as the owner,
permissions, size, and creation/modification times) [14]; rather they are meant
to be used by programs for associating attributes with files. However, due to the
limited amount of space available in EA, the whole policy structure cannot be
stored. Moreover, policy functions cannot be stored along with the objects, as
no executable code can be stored at the inodes. Thus, we store the policies in
a central repository and refer them from the EA through a unique id, referred
to as policyID. We also use the EA to store the constraints for evaluating the
policy identified by policyID.

PAM module extension. PAM presents a common solution for organizing
multiple authentication mechanisms into a single, high-level API for authenti-
cation programs. These programs, which are usually system entry applications,
like login or sshd, can use the PAM API to authenticate a user while hiding the
details of the underlying authentication mechanism used. The PAM library con-
sists of several modules, each implementing a particular authentication scheme.
A system administrator uses a set of configuration files in /etc/pam.d/ to asso-
ciate each system entry application with one or more PAM [9]. Although well
designed, PAM modules cannot be used as they are in the Auth-SL system.
This follows from the fact that our system relies on controlling not only which
authentication mechanism is to be used, but also its parameters. We thus cre-
ated an authentication context object storing: type of mechanism, time of
authentication, number of authentication tries, threshold, TTP, storage location
(local or remote), and storage mode (encrypted, plain text, etc.). We extended
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pam unix module by adding code to store the authentication context object.
Thus we are able to retrieve, control, and record module-specific data during
every authentication attempt. The problem of continuous authentication is ad-
dressed by creating a set of configuration files, each of which specifies the PAM
module that provides a particular type of authentication service. The name of
each configuration file reflects the underlying authentication mechanism.

Policy enforcement and continuous authentication. Enforcement of an
authentication policy is a multi-step activity, illustrated in Figure 1. As shown,
the authentication enforcement point is invoked by kernel file access calls, which
have been connected with the Unix system entry applications through a library
of APIs for context access. Specifically, policy enforcement is as follows. The
authentication activity is initiated when a user initially logs in as a subject (ac-
tually a process) and then attempts to perform an operation, such as open, read,
write, on an object o, such as a file, device, process, or socket. The operation
as part of its execution requires the Authentication Enforcement Point (AEP)
to perform an authentication enforcement operation. The AEP gathers the au-
thentication context c (from the context log stored in the ucred struct) of the
subject and the policy identifier along with the parameter values stored within
the extended file attributes associated with the object o being requested. This
is achieved by calling the function authGetPolicy fd(), which returns the policy
identifier, by function authGetPolicy Const() which returns the constraints to be
passed for the policy evaluation and by the extractAuthCotext() function. Once
these data are gathered, the function ContextSatisfies(), which is the core of
the enforcement activity, attempts to match the authentication context logged
with the authentication factors required by the authentication policy. The policy
identifier is passed as input to the function to select the policy to be enforced.

Performance evaluation. We have conducted several experiments to evaluate
the performance of our solution.The testswere carried out on a Intel(R)Xeon(TM)
2.80GHz CPU with 1 GB of RAM. The performance of the prototype has been
measured in terms of CPU time (in milliseconds). We present the results of the
evaluation of the policies. Due to lack of space we report only some of the experi-
mental results. Our testing consisted of timing the execution of policy functions to
determine whether the factors have been verified or not, by looking into the con-
text data log. For the experiments, we considered three simple policies: the first
with one a single factor; the second with two factors and zero constraints; and the
third with two factors and one constraint binding the two factors. Each policy is
composed of two factor assertions, and refers to a password authentication mech-
anism. The results show that our implementation does not introduce significant
latency (as by Figure 2). When policies are not satisfied, the time needed for the
open command to complete is significantly reduced. This follows from the fact that
the authentication check is performed prior to the application of any access control.
If the required authentication factors are not satisfied, the open process terminates
quickly. Hence, it is clear that the evaluation of our authentication policies do not
significantly burden the system.
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5 Related Work

Quality of authentication has been explored as authentication confidence by
Ganger et al. [6]. In this approach the system remembers its confidence in each
authenticated principals identity. Authorization decisions explicitly consider both
the “authenticated” identity and the system confidence in that authentication.
The categorization of the authentication type is based on either the possession of
secrets or tokens, e.g. passwords or smartcards, or on user specific characteristics
like biometrics. Such an approach however does not support a fine granular quality
of authentication. We instead provide an expressive policy language supporting
quality of authentication. We also provide a reference architecture for authenti-
cation services and have implemented a version of it. Our approach is thus more
comprehensive and provides a fine granularity control over authentication.

Authentication policies have also been implemented in WebSphere [13] as a
part of a flexible set of authentication protocols. These authentication protocols
are required to determine the level of security and the type of authentication,
which occur between any given client and server for each request. Compared
to Websphere policies, our authentication policies are more expressive and have
more efficient evaluation as they are enforced at the kernel level.

Our work has some relationship with existing work on authentication log-
ics [1, 2, 15]. For lack of space we limit our discussion to the seminal paper by
Abadi et, al. [15], which has goals close to ours. The authors propose a logic based
authentication language which has been implemented in the Taos OS. A key no-
tion is such approach is the notion of identity that includes simple principals,
credentials and secure channels. The authentication system allows a weak form
of continuous authentication through the “speaks-for” notion, that in practice
represents subsumption among principals, and the use of authentication cache.
By contrast Auth-SL supports the specification of fine-grained authentication re-
quirements that are independent from principals. Besides simple subsumption of
principals, Auth-SL supports true multi-factor authentication, enforced through
a combination of authentication factors. In addition Auth-SL supports the spec-
ification of freshness requirements. Expressing our authentication mechanism in
terms of authentication logics could yield to a limited characterization of Auth-
SL, which would exclude interesting features such as fine grained conditions
against factors and support of temporal constraints. We will further investigate
possible extensions of Auth-SL with ideas from the work on authentication logics.

Operating systems define various policies for access control. In particular Se-
curity Enhanced Linux [5] (also known as SELinux) provides an expressive policy
language which can be used for defining authentication policies. Differently from
SELinux, provide a simple syntax which is expressive to describe the various
types of authentications and the requirements. Our policies are translated to C
functions which are executed at the time of the authentication check. Thus, as
compared to SELinux policies, our policies are much simpler to define. Moreover,
since our policies are finally encoded as C functions which are pointed to by file
objects, we do not require a centralized policy enforcement as in SELinux.
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6 Future Work

We plan to extend this work in various directions. The first direction concerns
the specification of when the authentication has to be executed; such as when
specific events occur, or at periodic time intervals. A second direction concerns
the possibility of specifying different authentication policies for different users of
the system; this extension would also require an additional component for the
policy language and mechanisms for associating policies with users. Finally we
plan to implement an authentication service for use by applications and federated
digital identity management systems.
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Abstract. In this paper, we present a new approach called Secure Virtual 
Execution Environment (SVEE) which enables users to "try out" untrusted 
software without the fear of damaging the system in any manner. A key feature 
of SVEE is that it implements the OS isolation by executing untrusted code in a 
hosted virtual machine. Another key feature is that SVEE faithfully reproduces 
the behavior of applications, as if they were running natively on the underlying 
host OS. SVEE also provides a convenient way to compare the changes within 
SVEE and host OS. Referring to these comparison results, users can make a 
decision to commit these changes or not. With these powerful characteristics, 
SVEE supports a wide range of tasks, including the study of malicious code, 
controlled execution of untrusted software and so on. This paper focuses on the 
execution model of SVEE and the security evaluation for this model. 

Keywords: Virtual execution environment, isolated execution, execution 
model, virtual machine. 

1   Introduction 

On PC platforms, users often download and execute freeware/shareware. To benefit 
from the rich software resource on the Internet, most of the PC users seem to be 
willing to take the risk of being compromised by untrusted code.  

To enhance the host security, some host-based security mechanisms have been 
deployed, such as access control, virus detection and so on. But the access control 
mechanism will be easily bypassed by authorized but malicious code. The virus 
detection technology has been introduced to prevent the computer system from the 
widely prevalent malware, yet such technology does not work well for the unknown 
malware. A more promising approach for defending against unknown malicious code 
is based on sandboxing. However, the policies which the commodity sandboxing tools 
incorporate trend to be too restrictive to execute most useful applications. 
Consequently, the PC users, often not a computer expert, will prefer functionality to 
security. Thus, isolation execution, an intrusion-tolerant mechanism, has been applied 
to allow untrusted programs to run while shields the rest of the system from their 
effects. But on PC platforms, existing isolation solutions fail to achieve both the OS 
isolation and the execution environment reproduction (reproducing the execution 
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environment of the trusted environment in the untrusted environment), i.e., they 
cannot provide security against potential privileged malware without negating the 
functionality benefits of benign programs. 

In this paper, we propose a new execution model called Secure Virtual Execution 
Environment (SVEE) for executing untrusted code. In this execution model, all the 
untrusted code should be executed within a hosted virtual machine (SVEE VM) while 
other programs run in host OS. This feature guarantees the OS isolation and provides 
security against the privileged malicious code. The most desirable feature of SVEE 
VM is that it boots not from a newly installed OS image but just from the underlying 
host OS, so the execution environment reproduction is achieved. This is significantly 
different from the existing VM-based security approaches. In this local-booted OS, no 
privileged operations will be restricted. Thus, the behavior of untrusted code is 
reproduced accurately. To retain the acceptable execution results within SVEE VM, 
SVEE also provides an approach for users to track and compare the changes within 
SVEE VM and host OS. Using these comparison results for reference, users can make 
a choice between committing these execution effects and discarding them. 

The rest of the paper is organized as follows. Section 2 covers the execution model 
details of SVEE and discusses its implementation architecture. Section 3 proposes a 
qualitative security evaluation for SVEE. Section 4 shows the current implementation 
status and provides an evaluation of the functionality as well as the performance of 
our approach, then presents our plans for future work. In Section 5, we review 
previous works on isolated execution technology. Section 6 concludes this paper. 

2   Execution Model of SVEE 

As discussed in the previous section, the goal of SVEE is to accomplish three 
capabilities: OS isolation, execution environment reproduction and execution effects 
committing. The capability of OS isolation is a prerequisite to make the trusted 
environment be resistant to the attacks from kernel-mode malicious code. Execution 
environment reproduction is necessary to reproduce the behavior of untrusted code 
because the behavior of an application is usually determined by the execution 
environment, especially the contents of the file system. Besides, the execution 
environment reproduction should not be implemented via duplicating the complete 
resource of trusted environment, viz. reinstalling the OS and software in the untrusted 
environment. This is because few PC users can afford such deployment overhead 
from the usability’s standpoint. From the security pointer of view, the resource to be 
reproduced must be configurable for users to avoid uncovering the security-sensitive 
or privacy-sensitive files. In addition, for many of the applications running within 
untrusted environment, a user would like to retain the results of activities that are 
acceptable. So the execution mode of SVEE should provide an approach to track and 
commit the execution results of the isolated programs.  

To achieve OS isolation, the execution model of SVEE must introduce the virtual 
machine monitor as the software layer to close off the trusted environment and the 
untrusted ones. According to the definition of  Goldberg [1], a virtual machine 
monitor (VMM) is software for a computer system that creates efficient, isolated 
programming environments that are "duplicates", which provide users with the 
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appearance of direct access to the real machine environment. These duplicates are 
referred to as virtual machines. There are two different types of VMMs that can serve 
as a virtualization environment: Type I VMM and Type II VMM. A Type I VMM just 
runs above a bare computer hardware platform. It tends to be implemented as a 
lightweight OS with the virtualization capabilities. A Type II VMM is executed as an 
application. The OS that manages the real computer hardware is called the "host OS". 
Every OS that runs in the Type II virtual machine is called a "guest OS ". In a Type II 
VMM, the host OS provides resource allocation and a standard execution 
environment to each guest OS. 

Considering the performance of the trusted environment, Type II VMM wins an 
advantage over Type I VMM [1]. For Type I VMM, all OSes run above the virtual 
machine. So every OS, including the one serving as the trusted environment, cannot 
but suffer the performance penalties due to virtualization [2]. But for Type II VMM, 
the trusted environment, viz. the host OS, suffers no performance overhead. In 
addition, unlike mainframes that are configured and managed by experienced system 
administrators, desktop and workstation PC’s are often preinstalled with a standard 
OS and managed by the end-user. Ignoring the difficulty of proposing a practical and 
seamless migration approach for PC platforms, it will maybe take several years to 
migrate all of them to the Type I VMM. It also might be unacceptable for a PC user to 
completely replace an existing OS with a Type I VMM. In contrast, Type II VMM 
allows co-existing with the preinstalled host OS and programs. 

Thus, taking into account that PC platform is the prime concern for SVEE, as well 
as the significant predominance of Type II VMM on PC platforms, we select Type II 
VMM over Type I VMM. 

The execution model is illustrated in Fig. 1. If users wish to execute any untrusted 
program, they should firstly configure which resource will be reproduced and then 
boot the local-booted virtual machine (SVEE VM) created by SVEE VMM. From 
then on, these two OSes, the host OS above the bare computer hardware and the local-
booted OS above SVEE VM, will run concurrently. SVEE VMM catches the 
sensitive instruction traps and emulates their semantics to implement a Type II VMM. 
In this execution model, The SVEE VM serves as the untrusted execution 
environment wherein all untrusted programs are bounded. The local-booted OS above 
this virtual machine just is the virtualized instance of the underling host OS. In the 
local-booted OS, the behavior of untrusted programs is reproduced accurately while 
isolating their effects from the host OS which is the execution environment of the 
trusted applications.  

After SVEE ending, the user may make a choice among discarding the 
modification effects within SVEE, reserving them and committing them. In the first 
case, the contents of SVEE VM will be destroyed, which means that we simply delete 
all the reproduced resource and leave the contents of the file system in host OS "as 
is". In the second case, we reserve all the reproduced resource, so we can start SVEE 
VM using them next time or access them at any time. And in the third case, the 
contents of the reproduced resource need to be merged into the host OS.  

When merging the reproduced resource and the native file system of host OS, 
conflicting changes may have taken place within and outside the SVEE VM. For 
example, the same file may have been modified both in host OS and in SVEE VM. In 
such cases, it is unclear what the desired merging result should be. Thus, firstly we  
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Fig. 1. Execution Model of SVEE 

must identify commit criteria that ensure the consistency of the file systems in host 
OS when implementing the commit operation. We use the commit criteria described 
in [3]. If the commit criteria are not satisfied, then manual reconciliation of conflicting 
actions that took place inside the SVEE VM and outside will be needed. On this 
condition, SVEE will provide the user the details about such conflict. Referring to this 
information, the user can make a choice among optional operation: 

Abort, just discards the results of SVEE VM execution.  
Retry, that means discarding the results of SVEE VM execution, restarting a new 

SVEE VM, redoing the actions that were just performed, and then trying to commit 
again. Usually it often has a high probability to solve the conflicts.  

Resolve conflicts, in this case, it is the user’s duty to commit the contents 
manually. 

To achieve the capabilities discussed previously, we introduce the local-booted 
technology implement SVEE. As shown in Fig. 2, SVEE is composed of three key 
components: SVEE Virtual Machine Monitor (SVEE VM), Virtual Simple Disk and 
Tracking Manager. 

SVEE Virtual Machine Monitor (SVEE VMM): it’s a novel local-booted virtual 
machine monitor which creates the local-booted virtual machine (SVEE VM). The 
local-booted OS, wherein untrusted programs run, just boots within this virtual 
machine. With the strong isolation capability of this system virtual machine, we 
achieve the features of OS Isolation and OS & Application Transparency 
effectively. With the local-booting technology, SVEE implements partial one-way 
isolation [4]. One-way isolation makes the host environment visible within the SVEE 
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Fig. 2. SVEE Architecture 

VM. Our partial one-way isolation means the environment visible within SVEE VM 
is a branch of host OS, and this branch was created just at the time SVEE VM started. 
In this sense, execution environment reproduction is achieved. 

Virtual Simple Disk Based on Volume Snapshot. The key challenge to implement 
the local-booting technology is how to reuse the system volume, wherein OS is 
installed. While SVEE VM is running, the host OS is also modifying the same system 
volume. However, the local-booted OS cannot be aware of these modifications and 
vice versa. So they will crash because of the content inconsistency between the 
memory and the disks. SVEE resolves these conflicts by introducing the virtual 
simple disk based on volume snapshot. Volume snapshot introduces Copy-on-Write 
mechanism to shield the modification effects of host O from SVEE VM and vice 
versa. Virtual simple disk acts as the virtual storage device to export the volume 
snapshots to SVEE VM. Before exporting volume snapshots, the user can remove the 
files or folders he does not want to make visible inside SVEE VM. This characteristic 
makes our execution environment reproduction more configurable, i.e., the processes 
in SVEE VM are given access to only the volumes and files exported to SVEE VM, 
but not the whole file system.  

From the perspective of implementation, the snapshot of an entire disk device is 
more intuitive than a volume snapshot. However for SVEE, such a virtual simple disk 
has more benefits listed as follows: 

Can configure the volumes to export. If SVEE uses the disk snapshots directly, all the 
volumes in this disk will be visible inside SVEE VM (this is usually not the users’ 
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desire). While in our approach, only the volumes the users want to expose will be 
accessible within SVEE VM. 
 

Volume format transparent. There are several types of volumes in host OS, including 
single partition volume and multi-partition volumes, e.g., mirrors, stripes and RAID-
5. So if the disk to export contains any multi-partition volume, we must export all 
other disk which this volume depends on. But our approach avoids this trouble. 
Convenient to manipulate the data in snapshots. A volume is the basic unit to mount 
for the file system. Via mounting volume snapshots, we can expediently access their 
files in the host OS. 

Tracking Manager. To support monitoring and committing changes, change tracking 
filter drivers are deployed within both local-booted OS and host OS. The tracking 
manger is responsible for collecting the results and comparing them to generate 
committing references for users. 

As a summary, the key component of SVEE is the SVEE VM, a system virtual 
machine, whose effects are to be shielded from the host OS. Any untrusted code or 
the programs that trend to be attacked will be bounded inside SVEE, and share the 
same consistent OS. One or more such SVEE VMs can be active on the same host 
OS. Moreover, SVEE also provides a convenient way for users to compare the 
changes within local-booted OS and host OS. Using these comparison results for 
reference, users can make a decision to commit these changes or not. 

3   Security Evaluation of SVEE 

Section 2 has covered the execution model details of SVEE and its advantages under 
PC platforms. In this section, we evaluate the security of SVEE qualitatively. Thus, 
the correlative definitions are listed as follows: 

S = { p | p is a program} 
SU = { p | p∈S is an untrusted program}, ST = { p | p∈S is a trusted program} =  

S - ST 
SM = { p | p∈SU and contains malicious code}, SI = SU – SM 
SV = { p | p∈ST and contains vulnerable code}, SS = ST – SV 
VMM and OSes are two types of special programs, for they are programs as well 

as execution environments.  
Senv = { p | p∈S and runs within env}, env∈ENV = {OS, local-booted OS, host 

OS}, OS refers to a conventional multiprogramming OS, local-booted OS and host OS 
are illustrated in Fig. 2. 

P (p), p∈Senv: : The probability that p will cause a security violation within env to 
occur. 

PM (p), p∈Senv: : The probability that program p within env contains malicious 
code. 

PV (p), p∈Senv: : The probability that a given program p contains vulnerable code 
which will cause a security violation to occur.  

Size (p): the number of lines of a program p in source code, this is a measurement 
for a software scale. 
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Based on these definitions, we would get the following conclusions: 

S = ST
∪SU = (SV

∪SS ) ∪(SM
∪SI) (1) 

P (p) = PM (p) + PV (p), and ( ) ( ) ( ) 1
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As showed in formula (3), the probability of system failure tends to increase with 
the load on the env (i.e., the number of different requests issued, the variety of 
functions provided, the frequency of requests, etc.).  

Noted "secure coder" Wietse Venema estimates that there is roughly one security 
bug per 1000 lines in software source code. This conclusion assumed the complexities 
of all the programs to be analyzed are approximately same. So we can deduce that the 
vulnerability of a program p is proportion to Size(p). Thus, PV (p) can be calculated 
as: 
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For a conventional multiprogramming OS, we can calculate P (SOS) by: 
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In formula (5), P (SS
OS) is ignored because the programs in SS

OS are trusted and 
without any vulnerability. Then, with these basic conclusions, we can evaluate the 
security of the isolation mechanism for hosted SVEE architecture as follows. 

For the local-booted OS within SVEE and underlying host OS: 

( ) ( ) ( ) ( )+U M I
Local-Booted OS Local-Booted OS Local-Booted OS Local-Booted OSP S P S P S P S= =  (6) 

( ) ( ) ( ) ( ) ( )+ =T V S V
Host OS Host OS Host OS Host OS Host OSP S P S P S P S P S= =  (7) 

Considering that within host OS, only the SVEE VMM, network adapter driver and 
network protocol components of OS will exchange data with other environments, we 
can deduce the following formula: 

{ },

( ) ( ) ( )

SVEE VMM Network Components

SVEE VMM Network Components Size OS

≅ ⊂ <<

+ <<

V T T
Host OS Host OS OS Host OS OSS   , S S  and  |S | |S |

Size  Size  
 (8) 

Based on formula (3), (4), (7) and (8), inequality (9) is reached: 

( ) ( ) ( ) ( )SVEE VMM P Network Components≅ + <<Host OS OSP S P   P S  (9) 
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Since SVEE VMM, a Type II VMM, tends to be shorter, simpler, and easier to 
debug than conventional multiprogramming OSes, even when SSVEE VMM = SOS, the 
VMM is less error-prone. For example, since the VMM is defined by the hardware 
specifications of the real machine, the field engineer's hardware diagnostic software 
can be used to checkout the correctness of the VMM.  

For all untrusted programs run within SVEE VM, and SVEE is particularly 
concerned about the host OS security, we can define the probability of a program p on 
one SVEE VM violating the security of another concurrent program on host OS as: 

( | | ) ( )

( ) ( ) ( ) ( )

VMM Host OS

VMM Host OS

+ =

× × +
Host OSLocal-Booted OS

Local-Booted OS Host OS

P S  P S

                     P S P P  P S
 (10) 

P (Slocal-booted OS |VMM | host OS) is the probability of the simultaneous security 
failure of local-booted OS, VMM and host OS. If a single OS's security fails, the 
VMM isolates this failure from the other virtual machines. If the VMM'S security 
fails, the malicious code will have to break the protection of host OS. But, if 
functioning correctly, malicious code within local-booted OS will not take advantage 
of the security breach. This assumes that the designers of the individual OSes are not 
in collusion with malicious users. This seems to be a reasonable hypothesis. 

Based on the formulas of (3), (9) and |{VMM}|=|{host OS}|=1 << |SOS|, we arrive 
at the following conclusion: 

( | | ) ( )

( ) ( ) ( ) ( ) ( )

VMM Host OS

VMM Host OS

+ =

× × + <<
Local-Booted OS Host OS

Local-Booted OS Host OS OS

P S  P S

             P S P P  P S P S
 (11) 

As a summary, based on the inequality (11), the conclusion that the isolation 
architecture of SVEE improves the security of host OS observably can be reached. 

4   Status and Future Work 

SVEE has been firstly implemented on Windows with Intel x86 processors because of 
the prevalence of Windows and Intel processors under PC platforms. A detailed 
description of SVEE implementation is beyond the scope of this paper. Instead, the 
framework of the three key components in SVEE is outlined in this section. 

It’s well-known that Intel x86 processor is not virtualizable [5]. Ignoring the legacy 
"real" and "virtual 8086" modes of x86, even the more recently architected 32- and 
64-bit protected modes are not classically virtualizable for its visibility of privileged 
state and lack of traps when privileged instructions run at user-level. To address this 
problem, we have come up with a set of unique techniques that we call ISDT 
(Instruction Scan and Dynamic Translation) technology, which is composed of two 
components: Code Scanner (CS) and Code Patcher (CP). Before executing any ring 0 
code, CS scans it recursively to discover problematic instructions. CP then performs 
in-situ patching, i.e. replace the instruction with a jump to hypervisor memory where 
an integrated code generator has placed a more suitable implementation. In reality, 
this is a very complex task as there are lots of odd situations to be discovered and 
handled correctly. 
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We implement the volume snapshot using the Windows volume filter driver. This 
driver creates two types of device objects, one is a volume filter device object just 
located above the original volume to filter all I/O Request Package (IRP) sent to it and 
execute the COW operations, and the other is a volume snapshot device object which 
exports all general volume interfaces to provide a way to access volume snapshots. 

To support change committing, we must track all the modification made within 
SVEE VM and host OS. For Windows, besides file changes, the registry changes are 
also pivotal. Our approach accomplishes file change tracking as a file system filter 
driver, and adopts a Native API interceptor to monitor the registry modification. On 
termination of SVEE, tracking manager collects the change results generated by 
change tracking filter driver and registry monitor, and compares them to provider 
committing reference for uses. 

 

Fig. 3. Screenshot of a Running SVEE 

Fig. 3 is a screenshot of a running SVEE VM showed in the window with a title of 
Secure Virtual Execution Environment. The resolution of the local-booted Windows 
within SVEE VM is 1024x768 while the resolution of host Windows is 800x600, so 
the icon arrangement within its desktop differs from that of host Windows. As 
showed in Fig. 3, the programs of Explorer and MediaPlayer are running in this local-
booted Windows. Compared the file system volumes showed in the Explorer 
programs running within local-booted Windows and outside, we can find that only the 
volumes C: and D: are exported to it. This just brings forth the SVEE’s capability of 
configurable execution environment reproduction: the resource to be reproduced to 
SVEE VM can be configurable for users. In the Explorer of host Windows, volume 
K: and L: are the relevant snapshots of C: and D:. When local-booted Windows is 
running, no programs except SVEE VMM on host Windows can access these 
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snapshots which compose the virtual simple disk of SVEE VM. After local-booted 
Windows ends, SVEE will help users to access its file system contents for execution 
effects committing. 

We have tested the basic functions of SVEE VMM, including instruction set and 
hardware virtualization. Instruction set virtualization is verified by the QEMU’s test-
i386 tool, which we have ported to Windows. This tool tests all the x86 user-mode 
instructions, including SSE, MMX and VM86 instructions. The results show that the 
execution results of all the instructions are equivalent with those in Host Windows. In 
addition, we ran PassMark on local-booted Windows. All the virtual hardware devices 
works perfectly well, including IDE disk, CD-ROM, network card, display adapter 
and so forth. 

For a desktop-oriented workload, we ran Everest Ultimate 2006 both natively and 
in a local-booted Windows. Everest Ultimate is a synthetic suite of microbenchmarks 
intended to isolate various aspects of workstation performance. Since user-level 
computation is almost not taxing for VMMs, we expect local-booted Windows runs to 
score close to native. Fig. 4 confirms this expectation, showing a slowdown over 
native of 0.41-4.18%, with a 1.75% average slowdown for SVEE VMM. 

 

Fig. 4. Performance Comparison between host OS and SVEE VM 

To improve the usability and performance of SVEE, we are currently improving 
the memory management mechanism of SVEE VMM to share the memory pages 
between SVEE VM and host OS. Multiprocessor virtualization capability is also to be 
added to SVEE VMM to support Multiprocessor-Specialized host OS version. In 
addition, we are integrating some intrusion detection mechanisms into SVEE at the 
virtual hardware layer. To make SVEE VM support the multimedia programs such as 
3D games, we plan to reimplement the graphic virtualization mechanism referring to 
the approach proposed by H. Andres Lagar-Cavilla, et al [6]. Finally, we will 
investigate the automated change committing technology for SVEE. 
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5   Related Work 

Sandbox. A sandbox is an environment in which the actions of a process are restricted 
according to a security policy. Sandboxing based approaches involve observing a 
program’s behavior and blocking actions that may compromise the system’s security. 
Janus [7] and Chakravyuha [8] implement sandboxing using kernel interposition 
mechanism. MAPbox [9] introduces a sandboxing mechanism with the aim at making 
the sandbox more configurable and usable via providing a template for sandbox 
policies based on a classification of application behaviors. Safe Virtual Execution 
(SVE) [10] implements sandboxing using software dynamic translation, a technology 
for modifying binaries at runtime. Systrace [11] proposes a sandboxing system that 
notifies the user about all the system calls that an program tries to invoke and then 
generates a policy for the program according to the response from the user.  

However, use of sandboxing approaches in practice has been hampered by the 
difficulty of policy selection: determining resource access rights that would allow the 
code to execute successfully without compromising system security. Sandboxing 
tools often adopt highly restrictive policies that preclude execution of most useful 
applications. So users usually choose functionality over security, i.e., executing 
untrusted code outside such sandboxing tools, exposing themselves to unbounded 
damage if this code turned out to be malicious. 
 

Isolation Technology within Mono-OS. Isolated execution has previously been 
studied by researchers in the context of Java applets [12, 13]. Compared with general 
applications, such applets do not make much access to system resources. So the 
approach used by applets often relied on executing these untrusted applets on a 
"remote playground", i.e., an isolated computer. However, most of the desktop 
applications will usually require access to more resources such as the file system on 
the user’s computer. To run such applications on a remote playground, the complete 
execution environment on the user’s computer, especially the entire file system 
contents, should be duplicated to the remote playground. 

Literature [4] is the first approach to present a systematic development of the 
concept of one-way isolation as an effective means to isolate the effects of running 
processes from the point they are compromised. They developed protocols for 
realizing one-way isolation in the context of databases and file systems. However, 
they did not present an implementation of their approach. As a result, they do not 
consider the research challenges that arise due to the nature of COTS applications and 
commodity OSes.  

Alcatraz [14] and its improved version [3], Security Execution Environment (SEE), 
proposes its improved version with the name of. A key property of SEE is that it 
reproduces the behavior of applications, as if they were running natively on the 
underlying host OS. But this approach does not achieve OS isolation, so such 
protection mechanism can be bypassed by kernel-mode malicious code. And in SEE, 
a number of privileged operations, such as mounting file systems, and 
loading/unloading modules are not permitted. 

All these approaches suffer from the same problem: they can be turned off if 
intruders compromise the operating system and gain system privileges [15]. The file 
protection they provide is thus less effective in a compromised environment. 
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Isolation Based on Virtual Machine. Covirt [16] proposes that most of applications 
may be run inside virtual machine instead of host machines. User-mode VMs have 
been proposed for the Linux OS [17]. All the above approaches suffer from the 
difficulty of environment reproduction. 

Denali [18, 19] is another virtual machine based approach that runs untrusted 
distributed server applications. Denali focuses on supporting lightweight VMs, 
relying on modifications to the virtual instruction set exposed to the guest OS and 
thus requiring modifications to the guest OS. In contrast, we are focusing on heavier 
weight VMs and make no OS modifications. 

VMWare ESX Server provides an isolation approach for server platform with a 
similar objective to ours. XEN [20] and L4-based virtual machine [21] also 
implement isolated virtual execution environments. But all of these three 
environments are just located above computer hardware in form of Type I VMM. So 
as discussed in section 2, they are not fit for PC platforms because of their drawbacks 
caused by Type I VMM architecture. 

The COW/COW2 mechanism of QEMU [22], an open source emulator, can only 
isolate the Guest OS’s modifications to file system from host OS. But modifications 
made by host OS will cause the conflicts between the disk and file system content in 
Guest OS and crash it. Thus QEMU failed to achieve the environment reproduction. 
Besides, its poor performance prevents it from server as an effective virtual 
environment. KVM [23], a Kernel-based Virtual Machine based on QEMU, 
significantly improves the performance. But it also cannot provide the capability of 
environment reproduction. Besides, it must modify the host OS and rely on the 
hardware virtualization technology, such as Intel VT and AMD-V. 

6   Conclusions 

In this paper, we proposed a new execution model called SVEE for executing 
untrusted code safely and shown the security evaluation for this model. SVEE is 
versatile enough to coexist with the existing OS and programs. The most considerable 
benefit of SVEE is that it provides the capability of OS isolation while accomplishing 
the configurable execution environment reproduction. SVEE also provides a 
convenient way for users to track the changes made within the SVEE VM, viz. the 
untrusted execution environment. These changes can be discarded if the user does not 
accept them. Otherwise, the changes can be committed so as to become visible within 
host OS. 

SVEE accomplishes all the capabilities discussed in section 2: OS isolation, 
configurable execution environment reproduction and execution effects committing. 

Consequently, SVEE provides security against potential malicious code without 
negating the functionality benefits provided by benign programs. With these 
capabilities, SVEE supports a wide range of tasks, including the study of malicious 
code, controlled execution of untrusted software, experimentation with software 
configuration changes, testing of software patches and so on. 
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Abstract. Crash implies that a software is unstable and possibly vul-
nerable. Stack overflow is one of many causes of crashes. This kind of
bug is often hard to debug because of the corrupted stack, so that debug-
gers cannot trace the control flow of the programs. A control-type crash
caused by stack overflow is easy to be developed as a control interception
attack. We develop a method to locate this attack and implement it as a
plug-in of Valgrind [1]. This tool can be used in the honeypot to detect
and diagnose zero-day exploits. We use it to detect several vulnerabilities
and automatically locate the bugs.

1 Introduction

According to a recent report [2] developed by the IBM Internet Security Sys-
tems, there were 7247 new vulnerabilities in 2006. This number increases nearly
40 percent than the previous year. Over 88 percent of vulnerabilities could be
exploited remotely, and over 50 percent allowed attackers to gain access to a
machine after exploitation. This serves as a good reason for us to develop a tool
to detect attacks and diagnose the vulnerabilities in software.

For better performance, majority of internet servers are implemented in C and
C++ programming language. These languages provide low-level operations such
as pointer access. While powerful, these operations are the source of common
programming errors, one of which is buffer overflow in the stack.

If buffer overflow occurs, the contiguous data are overwritten. This would
result in one of three consequences:

1. The program works normally like nothing has happened. For example, some
data are overwritten, but they will not be used later on. This kind of bug is
harmless and may be ignored for a long time.

2. The program works abnormally, but most functionalities are as usual. The
program may display the extraordinary string or number, because these data
are overwritten. This kind of bug is usually easy to identify. With the help of
a debugger, the programmer can set watchpoints on these suspect variables;
the debugger can pause the program as soon as the values of these variables
change. There are many researches working on recovering or rollbacking from
the abnormal state. Periodic check-points of the system state can be used as
replay debugging [3].

3. The program becomes uncontrollable because control-sensitive data are cor-
rupted, thereby causing the program to crash.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 412–426, 2007.
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If the flaws can be triggered by user inputs, it is easy for attackers to ex-
ploit the bug by intercepting the control flow with carefully crafted input. Even
worse, conventional debuggers are handicapped by corrupted stacks . We call
this control interception attack and develop a tool to detect and diagnose it.

Typical control interception attacks contain code injection and control inter-
ception. Attackers inject malicious code into vulnerable programs. This code
is known as shellcode, since the traditional injected code creates a new shell.
Through efforts of the hackers [4], new shellcode can even execute as a VNC
server.

The second part of the control interception attack is to intercept the control
flow of a program. By exploiting the vulnerability of the program, an attacker
can overwrite a control-sensitive data to divert the program into the injected
code.

1.1 Avoidance of Execution of Injected Code

To mitigate the attacks, many researches attempt to render the injected code
harmless. Since the injected code is usually located in the stack or heap, making
these areas non-executable [5] would prevent the execution of injected code.
However, this technique would cause problems for some software, such as the
JIT compiler. Linn et al. [6] observe that successful exploits must invoke system
calls. They record the program counter of every invocation of system calls in
the executable. The kernel can use the information to differentiate user code
from injected code at runtime. Instruction Set Randomization [7][8] encrypts
trusted binary code with a random key during loading and decrypts them during
instruction fetching. Injected malicious code becomes garbage and leads to a
crash.

Another way is to hinder attackers to predict where the injected code is.
Address space layout randomization (ASLR) [5] moves the code segment, stack
segment and other segments to different address at each run. PointGuard [9]
encrypts all pointers while they reside in memory and decrypts them only before
they are loaded to a CPU register. Without knowing where the injected code is,
attackers cannot divert the vulnerable program into these code.

1.2 Detection of Control Corruption

Attackers must corrupt the control-sensitive data to intercept the control flow of
the vulnerable program. During every function call in C, there are at least two
control-sensitive data in the stack: return address and saved frame pointer.

In this work, we present a method to locate the control-type crash with which
conventional debuggers are hard to help. We can report where the control state
are corrupted and how the program goes there. The algorithm has been imple-
mented as a plug-in of Valgrind [1], called Beagle. We use it to evaluate several
vulnerabilities and correctly pinpoint these bugs.

The tool can complement the Valgrind in stack overflow detection. The es-
tablished memcheck plug-in of the Valgrind works perfectly in detecting heap
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overflow. However, Valgrind still lacks the capability to detect stack overflow.
In the recent Valgrind user survey [10], the stack overflow detection is the most
wanted feature. Valgrind developers answer this request in the FAQ 5.2 with

”Unfortunately, Memcheck doesn’t do bounds checking on static or stack
arrays. We’d like to, but it’s just not possible to do in a reasonable way
that fits with how Memcheck works. Sorry.”

If the control-sensitive data in the stack are overwritten, our tool can report
where the bug is. With this ability, this tool can be a good honeypot to detect
zero-day exploit. Because it can detect the attack immediately and does not need
to replay the attack. After detecting an attack, it can diagnose the vulnerable
code. This tool can also be used with fuzzers (random input generation tools)
to find new vulnerabilities.

The remainder of this paper is organized as follows. In Sect. 2, we cover the
control-type crash and why it is hard to debug. In Sect. 3, we propose a scheme
to point out the bug. In Sect. 4, we detail the implementation of our tool in
Valgrind. In Sect. 5, we evaluate our tool with case studies. Finally, in Sect. 6,
we present our conclusions.

2 Background

As stated in Sect. 1, uncontrollable programs often lead to crash. Crash implies
that there is either an inherent bug (programmed by mistake) or a vulnerability
(triggered by unexpected input). Programs may run out of control and crash due
to the corruption of branch control state. Branch control state determines the
branch flow of the next instruction for execution, corresponding to three types
of branch instructions: function call, function return, and jump. If the branch
targets of these instructions are dynamic addresses, they may be corrupted with
an invalid address range. For example, dynamic call target can refer to an offset
of a virtual table in C++ implementation, or a function pointer in C language.
Function returns are usually dynamic. Jump target can also be dynamic. If
these targets are corrupted (either unintentionally, or maliciously), the program
may fail to meet specifications. Such programs with corrupted control states
may also be exploited and thus become vulnerable. It is difficult to reconstruct
system failures after a program has crashed due to a corrupted control state and
the propagated distance between crash sites and corrupt sites. To cope with this
difficulty, we try to monitor running behavior during programs execution. We
aim to design a tool that analyzes the program running behavior and determine
where the bug is.

First of all, we must clarify that not all crashes are exploitable. We roughly
classify two types of crashes: data-type crash and control-type crash. The data-
type crash is caused by accessing an illegal memory address; the control-type
crash is caused by transferring control to an illegal address. Control-type crash
is usually exploitable, while the other one is usually non-exploitable. Secondly,
there are two pieces of information that are very helpful in the debugging process:
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where the program crashes and how it goes there. Programmers find out the bug
more easily with these clues. Normally, it is harder to debug a control-type crash
than other crashes, because these clues are missing after a control-type crash.

2.1 Data-Type Crash

Programs often crash resulting from access to illegal memory, which is either an
unmapped address or a privileged address. In the Unix environment, programs
crash with a message ”segmentation fault.” To debug a crash, experienced pro-
grammers would trace the code from the crash statement rather than the entry
point or any other statement, since the bug is usually the crash statement or its
preceding statements. Tracing backwards from the crash statement is easier for
debugging. If the bug is not in the current function, programmers continue to
trace the caller. In this way, it relies on programmer’s expertise to find the bug.

It is not easy to identify the crash statement in a big project, if the program
does not indicate any message before the crash. A debugger can easily identify
the crash statement by reproducing the crash case. For example, the program
crash.c in Fig. 1 ends with a crash.

#include <stdio.h>

void foo(char *p){
*p = ’x’;

}

int main(void){
char *p;
p = NULL;
foo(p);

}

Fig. 1. crash.c: sample program with a NULL pointer dereference bug

After running the program in gdb, we get the following messages:

Program received signal SIGSEGV, Segmentation fault.
0x0804835e in foo (p=0x0) at crash.c:4
4 *p = ’x’;

In this case, the program crashes in the function foo at the line 4 of crash.c,
which dereferences a NULL pointer p. From the crash statement, we need to
trace backwards. The debugger provides a backtrace, by which we can follow to
trace the caller. We use the command bt to print the backtrace as following:

(gdb) bt
#0 0x0804835e in foo (p=0x0) at crash.c:4
#1 0x0804838e in main () at crash.c:10
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This shows that main() calls foo() ,and the program crashes within foo()
at line 4. We can search for the bug from the crash statement and then the
caller, main(), and so on. After finding out the bug, we can easily fix this bug
by initializing the pointer p with a right value.

Debugging is a backward search; however, conventional debuggers only sup-
port forward execution. Programmers need to set breakpoints in the right place
and observe the values of variables. If the program crashes before reaching any
breakpoint, programmers need to set an earlier breakpoint and restart the pro-
cess. Thus, programmers must set breakpoints carefully or they will miss the
bug. To overcome the difficulty, Bidirectional debuggers [11] allow programmers
to trace programs forwards as well as backwards.

From this debugging example, we demonstrate that corrupt statement is much
closer to the real bug than the crash statement. The corrupt statement is where
important data are corrupted, thereby causing the crash later on. The corrupt
statement is usually the bug itself. If we fix the corrupt statement, the program
will not crash. In the aforementioned crash.c program, there is a NULL pointer
dereference crash. The corrupt statement is ’p = NULL;’ and it is also the bug.
To automatically inference from the crash statement to the corrupt statement,
Manevich et al. [12] use the static analysis approach.

2.2 Control-Type Crash

After reviewing the debugging process for a data-type crash, we study the control-
type crash. The control-type crash is caused by corrupting control-sensitive data,
such as the return address in the stack. These control-sensitive data manage the
control flow of the program. If one of them get corrupted, the program is out of
control when using the corrupted value. The most common corruption is because
of the buffer overflow in the stack.

void foo(void){
char buf[8];
bar(buf);

} /*crash statement*/

void bar(char *buf){
strcpy(buf, "this is a long string"); /*bug*/
...

}

Fig. 2. The crash statement and the bug

If a program writes data to a buffer beyond its boundary, other data subsequent
to the buffer would be overwritten. The C standard library has many unsafe func-
tions, such as strcpy(), strcat() and etc. For performance issue, these functions
copy data without boundary checking. The buffer is in the stack or heap, and the
overflow is referred as stack overflow or heap overflow respectively. In this paper,
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we focus on detecting stack overflow. Figure 2 is a sample program with stack over-
flow vulnerability. The strcpy() function writes a long string into the buffer, buf,
and then the program crashes. As usual, we use gdb to find out the crash state-
ment, but get the following message:

Program received signal SIGSEGV, Segmentation fault.
0x7320676e in ?? ()

The buggy program crashes, but the gdb cannot report the crash statement
in this case. The command bt shows no clue as well:

(gdb) bt
#0 0x7320676e in ?? ()
#1 0x6e697274 in ?? ()
#2 0xb7fd0067 in ?? () from /lib/tls/libc.so.6
#3 0x080494c4 in ?? ()
#4 0xb7fd7ff4 in ?? () from /lib/tls/libc.so.6
#5 0x00000000 in ?? ()
#6 0xb8000ca0 in ?? () from /lib/ld-linux.so.2
#7 0xbffff358 in ?? ()
#8 0xb7ec6e4b in __libc_start_main() from /lib/tls/libc.so.6
Previous frame inner to this frame (corrupt stack?)

We redo the experiment in Microsoft Visual Studio 2003 .NET and get the
similar result. Conventional debuggers lose track of the program after the control-
type crash, because the control-sensitive data in the stack are corrupted. In this
case, programmers must carefully set breakpoints in the debugger before the
corruption happens and localize the crash statement in a binary search fashion.

The distinction between the crash statement and the corrupt statement in
a control-type crash is essential. The crash statement is obviously where the
program crashes, whereas the corrupt statement is where control-sensitive data
are corrupted. For example, in Fig. 2, the function foo passes its local buffer buf
to the function bar. After calling strcpy(), the program’s stack is corrupted.
However, the program does not crash until the function foo returns (in line 4).
This example also supports our claim that the corrupt statement is much closer
to the bug (the corrupt statement is also the bug).

If attackers overflow the stack with carefully designed values, they can inter-
cept the program. Many kinds of attacks aim to overwrite the control-sensitive
data. These attacks contain either a discrete corruption or a continuous corrup-
tion. A discrete corruption is defined as an directly overwrite of control-sensitive
data. The typical example of discrete corruption is to overflow via a pointer or
a format-string function. A continuous corruption is defined as multiple con-
secutive writes that overflow the control-sensitive data. The typical example of
continuous corruption is the buffer overflow caused by using functions in the
C standard library. Attackers can inject any code to execute in the vulnerable
program.
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3 Detection and Diagnosis of Control Corruption

In this section, we first review several detection methods on control corruption
and why they are not precise. Then, we detail our detection method.

3.1 Detection of Library Misuse

Software wrapper is a effective approach to monitor dangerous library call. How-
ever it detects only vulnerabilities due to use of library functions. libsafe [13]
wraps dangerous functions (such as strcpy(), strcat() and etc.) to enforce
boundary checking. Wrapped functions compute the size between the buffer’s
address and saved frame pointer. If the input data is larger than the size, libsafe
halts the program to avoid overwriting the saved frame pointer and the return
address. Robertson et al. [14] wrap heap-related functions to detects heap over-
flow. By wrapping malloc(), it inserts canary and padding in front of each
memory chunk. By wrapping free(), it checksums the chunk to ensure the
canary unchanged.

STOBO [15] wraps user functions to detect buffer overflow. It keeps track of
lengths of memory buffers and issues warnings when buffer overflows may occur.
STOBO finds vulnerabilities in programs even when the test data do not cause
overflow, thus sometime issuing false positive.

3.2 Detection of Stack Control Corruption

There are many researches about detecting stack overflow. When they detect
corruption in the control-sensitive data, they will terminate the process to avoid
executing malicious code. There are two approaches to detect corruption: canary
and backup.

Canary approach is used by StackGuard [16]. A canary is a special value
inserted before the saved return address when a new stack frame is allocated. Any
attempt to overwrite the saved return address will also overwrite the canary. Just
before the function returns, the canary will be checked. If the canary changes,
StackGuard detects a stack overflow and terminates the process. The StackGuard
aims to protect the saved return address, but it leaves another control-sensitive
data, the save framed pointer, under attack. SSP [17] and Microsoft Visual
Studio /GS option [18] enhance the method by inserting the canary between
the saved frame pointer and local variables. The canary approach works fine for
continuous corruption. Nevertheless, it may not detect the discrete corruption
since the canary can be bypassed.

Backup approach is used by StackShield [19]. It backs up the return address
of the current function in another global variable when a new stack frame is
allocated. When the function returns, it compares the return address with the
stored one. If the value changes, StackShield detects a stack overflow and ter-
minates the process. The same approach is implemented in Win32 PE binary
programs [20] as well as DLL [21]. VtPath [22] extracts return addresses from
the call stack in a training phase and uses them to detect exploits in runtime.
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These approaches all neglect the saved frame pointer. Our tool takes the backup
approach since it is better than the canary approach, and we back up both the
saved return address and the saved frame pointer.

Other than the aforementioned shortcomings, these methods are designed to
detect attacks and kill itself to avoid executing the injected code. Hence, they
can not find the corrupt site. The first reason is that they check at the epilog of
every function. Therefore, any corruption occurred in a function is not detected
until the epilog of the function. The larger the function is, the more imprecise the
method is. Programmers must waste much time in finding the corrupt statement
backwards in the function. Due to this reason, our method’s detection granularity
is a basic block. If the corrupt statement is in the library, the bug is usually in
the line of function invocation, because most faults occur in misuse of the library,
not the implementation of the library itself, for example, the use of strcpy().

After enhancing the detection timing, there is still another problem. If one
function corrupts its caller’s control-sensitive data via the pointer, the corruption
is not detected until returning to the caller. For example in Fig. 2, the function
foo passes a pointer of its local variable buf to the function bar, which calls
strcpy() to overwrite foo’s local variable and return address. The program’s
control-sensitive data are corrupt, but the program has not yet crashed until the
function foo returns1. To detect this corruption as soon as possible, we need
to check every control-sensitive data in the stack, rather than those of current
function only. In this way, we can detect the function foo’s control-sensitive data
are corrupted after the function strcpy is called.

3.3 Localization of the Corrupt Statement

We first instrument a Backup function in every function’s prolog and instrument
a Verify function in the end of every basic block. If the Verify function find a
mismatch, it will report the corrupt statement and the stack trace. It also reports
which stack frame is corrupt (victim frame). With this detection mechanism
we have to ensure that these functions will not disturb the program’s normal
execution. The jobs of these functions are:

Backup saves the current frame’s saved frame pointer and return address. The
Backup function also needs to track which frame we are executing. We will
cover this in the next section.

Verify compares current frame’s saved frame pointer and return address with
backups. Then it compares the previous frame’s frame pointer and return
address with corresponding backups and so on until the main function. If
one of these does not match the backup values, the Report function will be
called.

Report will report the victim stack frame and the backtrace. The currently
executing statement is the corrupt statement, and the first unmatched frame

1 Function foo’s return address and saved frame pointer are corrupt, but function
bar’s are normal.



420 C.-H. Tsai and S.-K. Huang

is the victim frame2. It is easy to reconstruct the backtrace since we have
all the return addresses before corruption. We can infer the calling addresses
from these return addresses.

4 Implementation in Valgrind

We implement this method as a plug-in of Valgrind, which is a JIT-based em-
ulator for linux. At runtime, each basic block in the binary is translated into a
RISC-like assembly language, called UCode, and the instruments it with Backup
and Verify function. The instrumented block is then translated back into the na-
tive code to execute.

In Bealge plug-in, we first find the base address of main’s stack frame. The
data whose address is beyond the base address are used by the startup code of
libc, and it is not our concern. The base address will be used as the boundary in
the Verify function. When a new basic block comes to the plug-in, we map the
code address to a symbol name by using VG (get fnname if entry) function.
If the symbol name is "main", we are instrumenting the main function. We save
the frame pointer of this function as main ebp, which is the boundary.

After recoding the main ebp, we need to instrument Backup function in the
prolog of every function. Normally, a function prolog is like:

pushl %ebp
movl %esp, %ebp

The movl %esp, %ebp is translated to UCode as:

GETL %ESP, t6
PUTL t6, %EBP
INCEIPo $2

We check each instruction in a basic block. If the opcode is ”PUT” and the
value is EBP, the program is modifying the EBP register. This usually indicates
that a new stack frame is allocated. We instrument the Backup function after
such instruction.

We instrument the Verify function before the last instruction of every basic
block. In this way, we can make sure the corrupt statement is in this block, if
there is a mismatch found in the Verify function. If so, we collect all the return
addresses as an array for the parameter of VG (mini stack dump), which prints
the stack trace.

A simple implementation of the Verify function is a stack walk algorithm.
Figure 3(a) shows the normal stack where every saved frame pointer points to the

2 In the most cases, if the frame pointer in the victim frame does not match the
backup, this indicates a continuous corruption. The victim buffer is allocated as this
function’s local variable. If the return address does not match the backup, but the
frame pointer matches the backup, it indicates a discrete corruption on the return
address.
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Fig. 3. (a) The normal stack frame (b) Frame pointer omission

previous saved frame pointer. In the algorithm, the saved frame pointer is first
compared with the backup. If the values match, it is used as the address to find the
saved frame pointer of the parent function. The saved frame pointer of the parent
function is then compared with the corresponding backup. The stack walk algo-
rithm goes on until reaching the main function (comparing with the main ebp).

4.1 Frame Pointer Omission

The simple stack walk implementation works fine for normal case; however, a
compiler optimization technique, called Frame Pointer Omission (FPO), may
complicate the task. As there are only seven general registers in the x86 CPU
it is undesirable to dedicate one of them, the EBP register, for addressing local
variables. Contemporary compilers can generate code that addresses local vari-
ables via the ESP register instead of the EBP register. In gcc, the FPO feature
is enabled by the -fomit-frame-pointer option, which is implied by several
optimization levels.

With FPO, some functions may have no formal stack frame. The EBP registers
during these functions serve for general purpose rather than pointing to the saved
frame pointer. As shown in Fig. 3(b), the static link used by the saved frame
pointer is ”broken” in these functions. Considering the FPO, we must not only
store the value of the save frame pointer but also the value of the EBP register.

In the implementation, an array ebp stores all the previous seen values of the
EBP register. An array savefp stores all the previous saved frame pointers. An ar-
ray retaddr stores all the return addresses. The index variable nframe is tracking
which frame we are executing. In the Backup function, there are several cases:

*EBP == ebp[ nframe ] This is a new stack frame, and the variable nframe
is increased by one. The saved frame pointer, the value of the EBP register
and the return address are backed up.
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EBP == ebp[ nframe-1 ] We returns to the parent function, and the variable
nframe is decreased by one.

*EBP == savefp[ nframe ] We are in the same function.

4.2 setjmp and longjmp Functions

The C standard library provides two functions, setjmp and longjmp, to trans-
fer control directly from one function to another currently executing function
(one of the parent functions) without going through the normal return se-
quence. The setjmp function saves the current stack context for later use by
longjmp. There may be several longjmp calls, each of which represents one
case of exception. After the longjmp is called, the control will directly trans-
fer to the recently called setjmp with different return values to distinguish the
exceptions.

In the implementation of Verify function, we must consider the presence of
the longjmp call. In the normal case, the value of the EBP register will be the last
used element of the ebp array (indexed by nframe). However, after the longjmp,
the EBP register will point to the previous frame where the setjmp is called. The
Verify function must first find the matched value of the EBP register in the ebp
array before starting matching the retaddr and savefp array.

5 Evaluations

To validate the correctness of our tool, we need to verify that our tool does
point out real bugs. In this section, we check several vulnerabilities in open
source projects.

5.1 Picasm Error Handling Stack Overflow Vulnerability

Picasm is a Microchip PIC16Cxx assembler, designed to run on most UNIX-like
operating systems. When generating error and warning messages, picasm copies
strings into fixed length buffers without bounds checking. Below is one of the
vulnerable functions.

152 void
153 error(int lskip, char *fmt, ...)
154 {
155 va_list args;
156 char outbuf[128];
157
158 err_line_ref();
159 strcpy(outbuf, "Error: ");
160 va_start(args, fmt);
161 vsprintf(outbuf+7, fmt, args);
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We run the crash case under Beagle and get the following report:

corrupted in frame[1]
==10941== at 0x3AA00D6C: mempcpy (mempcpy.S:58)
==10941== by 0x3A9D2AD8: vfprintf (vfprintf.c:1535)
==10941== by 0x3A9EBD2A: vsprintf (iovsprintf.c:46)
==10941== by 0x8048FBD: error (picasm.c:161)
==10941== by 0x8049F3A: main (picasm.c:887)

The first line indicates the victim frame is the first frame, function error , be-
cause its local variable outbuf is overflow. The next lines indicate the backtrace
at the corrupt statement. The ”==10941==” is the process id of the process.
The corrupt statement is the vsprintf in line 161 of picasm.c, which copies
the error message into the outbuf without boundary checking.

5.2 Buffer Overflow in Elm (Expires Header)

Elm is a popular mail user agent for Unix. There is a stack overflow in processing
mail header disclosed in Aug 2005. Attackers can craft the following mail with
overlong Expires header to crash the elm:

From: attacker@localhost
To: user@victim.com
Subject: Elm buffer overflow
Expires: UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

The vulnerability exists in expires.c:process expiration date that pro-
cesses the Expires header:

41 process_expiration_date(date, message_status)
42 char *date;
43 int *message_status;
44 {

....
72 items = sscanf(date, "%s %s %s %s %s",
73 word1, word2, word3, word4, word5);

The sscanf() in line 72 reads the string into local variable word1, word2, word3,
word4 and word5. The size of these variable is 20 bytes. It enough for date, but
is far less than arbitrary string as the crafted email. We use Bealge to get the
following result:

corrupted in frame[3]
==13073== at 0x3AA3794B: _IO_sputbackc (in /lib/tls/libc-2.3.4.so)
==13073== by 0x3AA214F7: _IO_vfscanf (in /lib/tls/libc-2.3.4.so)
==13073== by 0x3AA2D5A8: vsscanf (in /lib/tls/libc-2.3.4.so)
==13073== by 0x3AA2884A: sscanf (in /lib/tls/libc-2.3.4.so)
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==13073== by 0x8058BAC: process_expiration_date (expires.c:72)
==13073== by 0x8068B07: read_headers (newmbox.c:705)
==13073== by 0x806796C: newmbox (newmbox.c:184)
==13073== by 0x8055B2D: main (elm.c:108)

The Elm starts from main and then newmbox, and so on. The third frame,
process expiration date, is corrupted by the sscanf in line 72 of the file
expires.c.

5.3 Berlios GPSd gpsd report() Format String Vulnerability

Berlios GPSd is a daemon that monitors GPSes attached to a computer and
makes all data available at a TCP socket. In GPSd versions 1.9.0 through 2.7,
there is a format string vulnerability that the file gpsd report calls syslog with
an input from user.

112 syslog((errlevel == 0) ? LOG_ERR : LOG_NOTICE, buf);

We attack this server with the exploit from Metasploit [4] and find out the
bug as following.

==15277== Process terminating with default action of signal 11 (SIGSEGV)
==15277== Access not within mapped region at address 0x3A746E65
==15277== at 0x3A9E2032: vfprintf (in /lib/i686/libc-2.4.so)
==15277== by 0x3AA6AAF5: __vsyslog_chk (in /lib/i686/libc-2.4.so)
==15277== by 0x3AA6ACE9: syslog (in /lib/i686/libc-2.4.so)
==15277== by 0x8049077: gpsd_report (gpsd.c:112)
==15277== by 0x804A633: main (gpsd.c:620)

5.4 Comparison with CRED

In our survey, CRED [23] is the most related work to ours and its source code
is available, so we compare it with our work. From the standpoint of program
language, any pointer access out of its storage is a bug. However, there is no
size information in a pointer in C language. Jones and Kelly [24] store pointer
address and size information for run-time checks in a splay tree. CRED is an
extension of Jones and Kelly’s work to allow OOB access.

Both as dynamic analysis, CRED is designed to detect buffer overflow, whereas
Beagle is designed to detect control corruption. CRED can detect buffer overflow
in the stack, but we can not detect some cases if the quasi-invariant is not vio-
lated. Nevertheless, CRED can not detect the three vulnerabilities presented in
this section, because it does not handle the format-string functions. In addition,
CRED can not detect the overflow caused by system call, such as read(). Val-
grind can not instrument the system call as well, but it will detect the corruption
after the system call. This is another advantage to use our method.

As shown in Table 5.4, we conduct several experiments to compare the perfor-
mance on a 3.4Ghz Intel Pentium 4, Linux system using gcc 4.0.2. Gzip and bzip2
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Table 1. Performance of Analysis (seconds)

gzip-1.3.12 ccrypt-1.7 bzip2-1.0.4

gcc 0.02 0.01 0.02
CRED 0.20 0.79 0.24
beagle 0.30 0.25 0.30

are used to decompress their tarball, and ccrypt is used to encrypt a file. Both
CRED and beagle suffer from great performance loss compared with original
program. Generally speaking, Beagle runs slower than CRED. However, CRED
has worst performance in ccrypt, which has many pointer operations.

6 Conclusion

Unreliable software with inherent bugs may be exploited to violate security spec-
ifications, meant to be security faults. We design and implement a tool to back-
track the control-type crash. We can detect control corruption caused by stack
overflow, format-string attacks or directly overwrites. It can be an effective tool
to diagnose the control-type crash. It is also a good tool to detect and analyze
security attacks.
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Abstract. The BIOS’s security threats to computer system are analyzed and 
security requirements for firmware BIOS are summarized in this paper. Through 
discussion about TCG’s trust transitivity, a new approach about CRTM 
implementation based on BIOS is developed. In this paper, we also put forward a 
new trusted BIOS architecture-UTBIOS which is built on Intel Framework for 
EFI/UEFI. The trustworthiness of UTBIOS is based on trusted hardware TPM. In 
UTBIOS, trust encapsulation and trust measurement are used to construct pre-OS 
trust chain. Performance of trust measurement is also analyzed in the end. 

Keywords: Trusted Computing, Trust Measurement, BIOS, UEFI, TPM. 

1   Introduction 

The traditional information security mechanisms which are built on the level of 
operating system can not meet the requirements of the developing information security. 
The security of computer system requires protection to extend to the firmware level 
even the hardware level. The firmware BIOS is the software that the computer 
processor carried out at the earliest stage, so its security will affect directly the security 
of the whole computer system. The traditional design of BIOS does not consider the 
security problem, it exists many hidden risks. In 1997, William A. Arbaugh put forward 
a kind of computer security bootstrap architecture AEGIS [1]. AEGIS is based on the 
traditional BIOS of IBM PC, it ensures the integrity of the code of the firmware BIOS 
and improves the security of code at BIOS bootstrap process by using authentication. 
But AEGIS lacks hardware protection and trusted root of hardware. As a firmware, 
AEGIS also can’t provide extent protection for operating system. Dexter Kozen put 
forward a language-based approach which checks the security of control flow safety, 
memory safety and stack safety during compiling process to improve the code security, 
and using this way to inspect malicious code for open firmware [2] [3]. But the 
language-based method is so complex that it works poor in practice. 

Without a trusted bootstrap process or trusted BIOS the operating system and 
application cannot be trusted since it is invoked by an un-trusted process. This paper 
researches how to build a new trusted firmware BIOS.  

1.1   UEFI  

The Extensible Firmware Interface [9], or EFI, is the layer between the Operating 
System and platform firmware. EFI is the new model for the interface between 
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operating systems and the platform firmware running them. EFI is the data tables 
(containing platform specific information), boot and runtime service calls available to 
the operating system and its loader. The end result of EFI is a standards compliant 
environment for running pre-boot applications and for booting the operating system. 

The EFI specification was primarily intended for the next generation of IA 
architecture-based computers, and is an outgrowth of the "Intel® Boot Initiative" (IBI) 
program that began in 1998. In 2005 the Unified EFI Forum was formed. Using the EFI 
1.10 specification as the starting point, this industry group is now responsible for 
developing, managing and promoting the ongoing evolution of the UEFI specification 
[6][10]. 

1.2   The Intel Platform Innovation Framework for EFI 

The Intel Platform Innovation Framework for EFI (referred to as "the Framework for 
EFI/UEFI") is a product-strength implementation of EFI and UEFI. The Framework is 
a set of robust architectural interfaces, implemented in C that has been designed to 
enable the BIOS industry to accelerate the evolution of innovative, differentiated, 
platform designs. The Framework is Intel's recommended implementation of the EFI 
Specification for platforms based on all members of the Intel® Architecture (IA) 
family [7]. 

Unlike the EFI Specification, which focuses only on programmatic interfaces for the 
interactions between the operating system and system firmware, the Framework is an 
all-new firmware implementation that has been designed to perform the full range of 
operations that are required to initialize the platform from power on through transfer of 
control to the operating system. 

Figure 1 shows the phases that a platform with Framework-based firmware goes 
through on a cold boot. 

 

 

Fig. 1. Framework Firmware Phases 
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The SEC phase is defined as CRTM in Intel Platform Innovation Framework for EFI 
[7], but Intel gave an empty implementation of CRTM in Intel’s EFI BIOS product. 
Furthermore, the smallest set of functions for CRTM is not discussed yet in Intel 
Platform Innovation Framework [7], and it is not sufficient to exclude PEI phase out of 
the CRTM. Section 4 of this paper discusses about this. 

1.3   Trusted Computing 

Trusted computing environment requires every component from hardware level to 
software level in whole system is trusted and excludes any component from system that 
can not be proved as trusted, such as malicious-codes, viruses, and Trojans etc. This 
computing and network environment is named as trusted computing ecological 
environment. For building this trusted computing environment, we should enhance the 
lower layers security of computer terminal such as hardware and firmware. In 2003, 
IBM, Intel, and Microsoft established international trusted computing organization 
TCG (Trusted Computing Group). The TCG is a not-for-profit organization formed to 
develop, define, and promote open standards for hardware-enabled trusted computing 
and security technologies, including hardware building blocks and software interfaces, 
across multiple platforms, peripherals, and devices. 

2   Transitive Trust 

The trustworthiness of trusted computing of TCG is based on the trusted hardware. The 
chain of trust is constructed through transitive trust between hardware and software [8] 
[13]. Any entities must be authenticated and validated about its integrity before be 
loaded and run. The process of trust transiting that is defined by TCG is illustrated in 
Figure 2. 

 

Fig. 2. Transitive Trust 
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TBB（Trusted Building Blocks）is the basic component of trusted computing 
platform. The core trusted root of TBB is the Trusted Platform Module (TPM). TPM 
[12] is a microcontroller chip affixed to the motherboard of computer that stores keys, 
digital certificates and trust measuring event logs. TPM also has computing capabilities 
such as digital signature, key exchange, encryption and decryption etc. Although these 
functions can be realized using pure software, TPM usually adopts independence 
hardware chips for satisfying sealed store requirement. 

Core Root of Trust for Measurement (CRTM) is a trusted component which include 
the first instruction CPU picks up when power on. CRTM should be trusted 
non-conditionally.   

Ideally, the CRTM is contained in TPM [13], which is illustrated as Figure 3.A. This 
demands CPU reset vector points to TPM, i.e., the first instruction which CPU picks 
and executes should be located in TPM after power on. This requires the existing 
computer architecture to be changed. Implementation decision of this paper is putting 
CRTM into BIOS firmware illustrated as Figure 3.B. Following the existing computer 
architecture, the first instruction picked and executed by CPU after Power on is located 
at address 0xFFFFFFF0 (32bit CPU) in BIOS firmware, so this implementation is more 
realizable. For this implementation, additional software and hardware protection 
should be taken to enhance the reliability and security of CRTM.  

 

Fig. 3. Different Implementation of CRTM 

3   Security Threats Against BIOS 

Security threats against BIOS should be analyzed firstly to list security requirements of 
trusted BIOS.  
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For requirements of patching and updating BIOS product online, more and more 
mainboard manufacturers use FLASH ROM to store BIOS firmware. Using of flash 
ROM makes BIOS code can be read and flashed just by means of pure software without 
any assistant hardware device under operating system environment. So the third 
spiteful party can implant malicious codes such as virus and Trojan into BIOS [4]. And 
the increasing capacity of Flash chip also provides storage space for malicious codes. 

Framework for EFI/UEFI even admits user load and execute EFI drivers or EFI 
applications under EFI Shell [7]. These EFI drivers or applications may come from 
other devices, such as USB disk or hard disk, than the Flash chip that contains the BIOS 
code. This causes increasing chances for malicious code being loaded and executed by 
BIOS.  

Intruders can also juggle some bytes to destroy the integrity of BIOS code. This is a 
kind of denial-of-service attack that will make the computer system can not boot 
normally. The representative of this kind of attack is CIH virus and its variation. 

4   Trusted BIOS 

4.1   Security Requirements of Trusted BIOS 

Trusted computing requires every step of execution can transit trust and build chain of 
trust based on trusted hardware from system lower-level to upper-level. These 
requirements emphasize the integrity protection of entity which is similar with the 
integrity model of Clark-Wilson [5]. Trust transitivity is implemented by trust 
measurement. Trust measurement is the process to verify integrity and authenticity of 
entities. 

Trust measurement can prevent execution of illegal and malicious Option ROMs, 
EFI drivers and EFI applications which come from external to ensure bootstrap process 
only executes the code from trusted BIOS manufactures, devices driver manufactures, 
or trusted users. Although malicious code can be embedded into BIOS or BIOS code 
may be juggled, the trust measurement can prevent the execution of these illegal or 
malicious codes. 

Trusted BIOS need to measure the following three kinds of code. One is BIOS own 
code of trusted BIOS except CRTM code. The second include option ROM code, EFI 
driver and EFI application loaded by trusted BIOS from external. The third is OS 
Loader Code. 

When the integrity of BIOS code or data is juggled by unpredictable failure or 
attack, the trusted BIOS system must support the safe and reliable failure self-recovery 
mechanism to deal with denial-of-service attack. In order to ensure the trusted 
self-recovery mechanism may not be destroyed, the BIOS codes that used to implement 
the failure self-recovery mechanism must be protected by hardware. During the process 
of recovery, the recovery contents integrity must be measured too. This process is 
called trusted self-recovery. 

4.2   Security Requirements of CRTM 

As starting point of the chain of trust measurement, CRTM should be trusted 
unconditionally. To guarantee the source of trust transiting can be trusted, CRTM 
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should content with four preconditions: 1) CRTM should be protected physically from 
writing or flashing by means of pure software; 2) CRTM should have capability of trust 
measuring for the next step executive code; 3) CRTM should have trusted self-recovery 
mechanism when others component of trusted BIOS is juggled; 4) The code of CRTM 
should be the minimum set which can fulfill the functions of precondition 2 and 3, 
including other essential initial codes for CPU, chipset and platform. 

5   UTBIOS Architecture and Boot Process  

UTBIOS is a trusted bios building on Intel Platform Innovation Framework for 
EFI/UEFI.  The SEC phase is defined as CRTM by Intel in [7], but Intel gave an empty 
implementation of CRTM in Intel’s EFI BIOS product. Furthermore, it is not sufficient 
to fulfill CRTM functions if PEI phase defined by Intel is excluded out of the CRTM.  

Requirements of CRTM are discussed in section 4.2. Based on these requirements, 
this paper reconstructs the SEC and PEI phase of Intel Framework for EFI, and adds 
other essential functions in. In UTBIOS, Intel’s phase SEC and PEI are combined 
together to form CRTM. To fulfill trust measuring, hash computing code and TPM 
driver are embraced in CRTM. Here TPM must be driven as much as early to satisfy the 
demands of integrity verification and event logging. USB driver is immigrating from 
DXE phase into CRTM so that when self-recovery code is invoked, the USB storage 
device can be accessed. So CRTM of UTBIOS is constructed from following five parts: 
initial code for CPU, chipset, memory and stack; TPM Driver code; hash computing 
code; self-recovery code including USB driver; PEI Core Code. In UTBIOS, CRTM is 
 

 

Fig. 4. UTBIOS Architecture and Boot Process 
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stored at the highest 64KB block of the flash ROM, and is protected physically to avoid 
being rewritten or flashed using pure software. 

Figure 4 shows UTBIOS architecture and boot process. 
The boot process is as following: 1) Initialize CPU, chipset, memory and Stack, 

build the environment of executing language C code; 2) Enter into PEI core, initialize 
TPM, install TPM protocol, self-recovery protocol including USB driver and Hash 
Protocol; 3) PEI core measures trust of DXE core, saves trust measuring event log 
[14][15]. If successful, loads and executes DXE core, else enters into trusted 
self-recovery mode; 4) According to the requirements of executing environment, DXE 
core loads internal or external EFI Drivers, EFI Applications, or Option ROM of other 
devices. During this procedure, DXE core measures trust of those loaded code and 
saves trust measuring event logs. If successful, loads and executes code, else enters into 
trusted self-recovery mode; 5) DXE core measures trust of BDS code and saves trust 
measuring event log. If successful, loads and executes BDS core, else enters into 
trusted self-recovery mode; 6) According to the requirements of executing 
environment, BDS core loads Option ROM of boot device, measures trust of the code 
and saves trust measuring event log. If successful, loads and executes the code, else 
enters into trusted self-recovery mode; 7) BDS core measures trust of TSL code, saves 
trust measuring event log. If successful, loads and executes TSL code, else enters into 
trust self-recovery mode; 8) TSL core measures trust of OS Loader code, saves trust 
measuring event log. If successful, loads and executes OS Loader code, else enters into 
trusted self-recovery mode.  

When finishing OS loader trust measurement, the UTBIOS transfers system control 
to OS Loader and the trust measurement of OS Kernel will be measured by OS Loader. 
As so far, the pre-OS chain of trust is constructed successfully. 

After enter into trusted self-recovery mode, the self-recovery protocol that installed 
in CRTM should be executed and with responsibility for reading trusted BIOS image 
except CRTM from USB device and writing it back to flash ROM. During the process 
of trusted self-recovery, the loaded BIOS image need to be trust measured. 

6   UTBIOS Trust Encapsulation and Trust Measurement  

6.1   Principle of Trust Encapsulation and Trust Measurement 

UTBIOS uses digital signature and message digest for trust measurement of various 
entities. In the process of producing the UTBIOS, vendors are required to bind each 
component together with the digital signature of message digest of the component. This 
procedure is called trust encapsulation. All components except CRTM are required to 
be encapsulated. Trust measurement is the reversed procedure of trust encapsulation. In 
trust measuring procedure, digital signature is decrypted to get the message digest 
being signed, and then message digest of the entity being measured is calculated again 
and compared with the decrypting result to verify the integrity of the entity. The public 
and private keys used in this procedure are corresponding unique, so it is feasible to 
judge whether the entity is come from trusted owner or not, and whether the entity is 
juggled or not. The principle of trust encapsulation and trust measurement is illustrated 
in Figure 5 and Figure 6. 
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Fig. 5. Trust Encapsulation 

 

Fig. 6. Trust Measurement 

Think about a kind of attack, attackers sign malicious code using their own private 
key, and replace the trusted BIOS verification public key with their own public key. 
Then when the malicious code is trust measured, the measuring result would be 
successful. In this situation, the attackers can embed malicious code into BIOS and run 
them successfully. In order to prevent this kind of attack, the public key, which is used 
for trust measurement, can not be stored at the same place with measured module, and 
should be stored sealed. The best way to prevent this attack occurring is storing public 
key in TPM. In the trust measurement process, the encapsulated signature of the 
measured entity is taken apart and sent to TPM, and the verification computing is 
finished in TPM. 

6.2   Trust Initialization 

Legacy Option ROM and OS Loader Code maybe not be encapsulated and signed when 
the system executed at the first time the computer is used by user, so there need a trust 
initialization procedure when the system run firstly. Following is the way of UTBIOS 
trust initialization. UTBIOS would self-create a couple of keys automatically when the 
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system runs at first. UTBIOS computes the hash value of exterior entity and uses the 
private key to sign the hash value of the entity, and discards the private key after the 
signature. The public key would be sealed and protected by TPM, and the digital 
signatures of the external entities are preserved in BIOS Flash’s NVRAM data area. 
Once the trust initialization finished, subsequent bootstrap process after that can use the 
initializing result (including the public key in TPM and the digital signatures in 
NVRAM) to measure the trust of exterior entities such as unsigned Option ROM and 
OS Loader.  

On the platform in which all exterior entities are signed, there is no need for using 
trust initialization. 

7   Performance 

Comparing UTBIOS with Legacy BIOS, the performance of bootstrap speed is affected 
mainly by trust measurement. The main operations of trust measurement include hash 
value computing and signature verification. The SHA-1 hash algorithm and RSA 
Verification whose key length is 2048bits are used in UTBIOS. Signing a message 
takes much longer than verifying the signature does, but in the process of bootstrap of 
UTBIOS, there is only verification operation, no signing operation. 

We can compute the estimated increased extra time consumed by trust measurement 
in UTBIOS using following equation: 
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T (L1) is the total time that consumed by UTBIOS to load the EFI Driver, EFI 
Application and Option ROM for internal and external entities. T (L2) is the time 
consumed by trusted BIOS to measure OS Loader Code. t (mi) is the time to measuring 
the ith entity. t (H()) means the time to compute SHA-1 digest for the ith entity, t (V()) 
means signature verification time of the ith entity. 

On the machine with 1GHz Pentium CPU, creating SHA-1 digest for 1Mbytes 
message needs 13ms. Table 1 is the time used for SHA-1 algorithm and public keys 
with different length to check 1500000 Bytes data for one time [17]. 

Table 1. Digital signature verification times 

Hash 
function 

Public key 
sizes(bits) 

Verification 
time(seconds) 

SHA-1 512 0.093 
SHA-1 768 0.093 
SHA-1 1024 0.094 
SHA-1 2048 0.098 
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SINOSUN SSX3B TPM is used in the implementation, the verification time for 
2048 bit of SSX3B TPM is less than 40ms [16]. 

For the ith entity with 1Mbytes length: 

 t (H(i))=0.013 seconds 
 t (V(i))=0.040 seconds 

This means the Trust Measurement of measuring 1Mbytes entity costs 0.053 
seconds. In UTBIOS，the sum of entity is less than 100 and the size of entity is less 
than 0.5 Mbytes. So T (L1) is estimated to be 2.7 seconds. The size of OS Loader Code 
is always less than 10MBytes, the time required to verify OS Loader is about:  

 t (H(L2))=0.13 seconds 
 t (V(L2))=0.40 seconds 

And T (L2) is estimated to be 0.53 seconds. The T is estimated to be 3.23 seconds. 
Actually, the sum of entities and it size that needed to be measured by UTBIOS are far 
less than the maximum number used to be estimated; thereby the actual increase extra 
time is less than this estimated time. 

Experiment results show that the time of UTBIOS boot without Trust Measurement 
is 11 seconds and the time of UTBIOS boot with Trust Measurement is 16 seconds. 
Because of device accessed and data exchanged, the actual Trust Measurement extra 
time is about 4 seconds, which is longer than computed estimated time 3.23 seconds. 

8   Conclusions 

Without changing the current computer architecture, BIOS should become the Core 
Root of Trusted Measurement and the root of transitive trust. Based on this idea, this 
paper proposed a trusted BIOS architecture, implemented a trusted BIOS-UTBIOS 
which is build on Intel Innovation framework for EFI/UEFI. UTBIOS can not only 
defend against effectively the security threats faced by firmware, but also can construct 
pre-OS trust chain successfully. To build a trusted computing terminal and trusted 
network connection, there have two problems to be solved next: one is to establish 
practicable trust management mode, the other is to construct post-OS chain of trust. 

References 

1. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A Secure and Reliable Bootstrap Architecture. In: 
Procedings, 1997 IEEE Symposium on Security and Privacy (4-7 May 1997) pp. 65–71 
(1997) 

2. Kozen, D.: Efficient Code Certification. Technical Report98-1661,Computer Science 
Department, Cornell University (January 1998)  

3. Adelstein, F., Stillerman, M., Kozen, D.: Malicious Code Detection for Open Firmware. In: 
Computer Security Applications Conference. Proceedings 18th Annual (9-13 Decembr 
2002) pp. 403–412 (2002) 

4. Heasman, J.: Implementing and Detecting an ACPI BIOS Rootkit,  
http://www.ngssoftware.com/jh_bhf2006.pdf  



 BIOS Security Analysis and a Kind of Trusted BIOS 437 

5. Clark, D.D., Wilson, D.R., Comparison, A.: A Comparison of Commercial and Military 
Computer Security Policies. In: Proceedings of the 1987 IEEE Symposium on Security and 
Privacy, IEEE Computer Society Press, Los Alamitos (1987) 

6. The Unified, E.F.I.: Forum. Unified Extensible Firmware Interface Specification Version 
2.0 (January 31, 2006), http://www.uefi.org 

7. Intel Corporation. Intel Platform Innovation Framework for EFI Architecture Specification 
Version 0.9 (September 16, 2003) 

8. TCG. TCG Infrastructure Architecture Version 1.0.  
https://www.trustedcomputinggroup.org/specs/  

9. TianoCore, https://www.tianocore.org/ 
10. UEFI, https://www.uefi.org/ 
11. Intel Corporation. Intel Platform Innovation Framework for EFI Firmware File System 

Specification Version 0.9 (September 16, 2003),  
http://www.intel.com/technology/framework/ 

12. TCG. TPM Main Specification Part 1,2,3 Version 1.2 (March 29, 2006)  
https://www.trustedcomputinggroup.org/specs/  

13. TCG. TCG Specification Architecture Overview, https://www.trustedcomputinggroup.org  
14. TCG.TCG EFI Platform Version 1.0 Final Revision 1.00,  

https://www.trustedcomputinggroup.org  
15. TCG.TCG EFI Protocol Version 1.0 Final Revision 1.00,  

https://www.trustedcomputinggroup.org  
16. Sinosun. SSX35, T.P.M.: Datasheet Version 1.2 
17. Menasce, D.A.: Security Performance[J]. IEEE Internet Computing 7(3), 84–87 (2003) 



Collecting Autonomous Spreading Malware Using
High-Interaction Honeypots

Jianwei Zhuge1, Thorsten Holz2, Xinhui Han1, Chengyu Song1, and Wei Zou1

1 Institute of Computer Science and Technology,
Peking University, China

���������	
�����	��	�����	����	�������
�����������������	
2 Laboratory for Dependable Distributed Systems,

University of Mannheim, Germany
������	����������	����		�������

Abstract. Autonomous spreading malware in the form of worms or bots has
become a severe threat in today’s Internet. Collecting the sample as early as
possible is a necessary precondition for the further treatment of the spreading
malware, e.g., to develop antivirus signatures. In this paper, we present an inte-
grated toolkit called HoneyBow, which is able to collect autonomous spreading
malware in an automated manner using high-interaction honeypots. Compared
to low-interaction honeypots, HoneyBow has several advantages due to a wider
range of captured samples and the capability of collecting malware which propa-
gates by exploiting new vulnerabilities. We validate the properties of HoneyBow
with experimental data collected during a period of about nine months, in which
we collected thousands of malware binaries. Furthermore, we demonstrate the
capability of collecting new malware via a case study of a certain bot.

Keywords: Honeypots, Intrusion Detection Systems, Malware.

1 Introduction

Since the outbreak of the Code Red worm in 2001, malware has become one of the
severest threats to the Internet. Especially autonomous spreading malware in the form
of worms or bots that propagates over the Internet and infects thousands of computers
all over the world in days or even minutes is a problem. In the form of botnets, the com-
prised computers can even be organized into networks that can be remotely controlled
by an attacker, and cause lots of harms following the attackers’ purposes [14].

In order to deal e�ectively and eÆciently with the threat associated with malware,
CERTs, antivirus vendors, and security researchers need to obtain a sample of the actual
malware as quickly as possible in the early stage of propagation. This sample can then
be analyzed deeply, e.g., to study the propagation and infection mechanism, in order
to develop accurate detection signatures or an appropriate treatment strategy. Conven-
tional sample collection approaches include extraction of the binary from an infected
machine, reports from customers, exchange between AV vendors, and similar ways.
These conventional approaches generally need human interaction. With the increasing

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 438–451, 2007.
c� Springer-Verlag Berlin Heidelberg 2007
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birth rate of new malware and the speeding up of the malware propagation, e.g., in the
case of the Slammer worm [6], these malware collection approaches with human inter-
action are always too late for timely incident response. Therefore, we need a completely
automated malware collection scheme to catch these trends.

As a new active attack-decoying technology, honeypots have been used in the do-
main of Internet security threats measurement. A honeypot is defined as an information
system resource whose value lies in unauthorized or illicit use of that resource [13]. A
honeypot has no production usage, therefore, every access launched by the attackers –
including automated malware – can be captured and studied in detail. In general, honey-
pots can be distinguished into two di�erent types: low-interaction and high-interaction
honeypots. Low-interaction honeypots o�er limited interaction level to the attackers,
commonly through simulation (or emulation) of network services or operation systems.
Therefore, they can often only lure automated attacks, and can be identified by a hu-
man attackers easily. A popular example of this kind of honeypots is honeyd [8]. High-
interaction honeypots, on the other hand, use real systems for attackers to interact with.
This type of honeypots is commonly more complex, furthermore deployment and main-
tenance often takes more time. In addition, more risks are involved when deploying
high-interaction honeypots since an attacker can get complete control of the honeypot
and abuse it, e.g., to attack other systems on the Internet. Thus it is necessary to intro-
duce and implement data control mechanisms to prevent the abuse of honeypots. The
most common used setup for high-interaction honeypots are GenIII honeynets [2].

In this paper, we introduce the HoneyBow toolkit, an automated malware collection
system based on the high-interaction honeypot principle. The HoneyBow toolkit inte-
grates three malware collection tools called MwWatcher, MwFetcher, and MwHunter.
All of them use di�erent techniques and strategies to detect and collect malware sam-
ples, in order to achieve a comprehensive collection eÆciency. HoneyBow inherits the
high degree expressiveness of high-interaction honeypots: it can be constructed upon
various customized honeynet deployments, using the true vulnerable services as vic-
tims to lure malware infections, but not emulated vulnerable services. Thus HoneyBow
is capable of collecting zero-day malware even if the vulnerability exploited during the
propagation phase is unknown to the community before the malware outburst. Further-
more, we do not need to investigate the details of the vulnerabilities and implement
an emulated version of the vulnerable services, which is commonly required for low-
interaction honeypots. Thus the deployment of the HoneyBow toolkit is more flexible
and easy. On the other hand, HoneyBow has its limitation in the scalability compared to
low-interaction honeypots. Therefore, we combine HoneyBow and the low-interaction
honeypot Nepenthes [1] to build an integrated malware collection system.

This paper is organized as follows: Section 2 describes the related work in the area
of honeypot and automated malware collection research. Section 3 introduces the Hon-
eyBow toolkit in details, discusses the advantages and limitations of our approach, and
shows how to integrate Nepenthes, HoneyBow and the GenIII Honeynet to achieve a
fully-automated and eÆcient distributed malware collection solution. Section 4 com-
pares the malware collection eÆciency between Nepenthes and HoneyBow. Finally, we
conclude the paper and give the further research directions in Section 5.
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2 Related Work

Researchers have developed several methods and tools for malware sample collection
based on honeypot techniques, among them the Nepenthes platform [1]. Nepenthes
uses the principle of low-interaction honeypots: it emulates the vulnerable parts of net-
work services to lure and collect malware samples which attempt to infect the host by
exploiting these vulnerable services. As the comparable reference to our HoneyBow
toolkit, we compare the advantages, limitations, and the practical e�ects between them
throughout the paper. Using high-interaction honeypots, Levine et al. collected and an-
alyzed rootkits manually [5]. This paper is the first to introduce an automatic malware
collection schemes based on high-interaction honeypot principle. Furthermore, we are
interested in collecting all types of autonomous spreading malware, i.e., worms, bots,
and other kinds of malware, in an automated manner.

Antivirus vendors such as Symantec Inc. developed malware collection tools based
on the honeypot technology, and present their measurement status reports on the preva-
lent malware [12]. However, the actual methods and implementations used for these
projects are usually not open to the community due to the commercial benefits.

The Honeynet Project develops the GenIII honeynet [2], which composes the foun-
dation of our deployment. We use a GenIII honeynet as a building block of our system.
Portokalidis et al. introduce Argos [7], a containment high-interaction honeypot envi-
ronment to study malware as well as human-generated attacks. Argos is built upon the
Qemu x86-emulator and is capable of detecting exploitation with the help of a technique
called taint tracing. In addition, the tool generates intrusion detection signatures for a
detected attack. Argos has not implemented special mechanisms for malware sample
collection yet, but the principles behind the HoneyBow toolkit can be integrated into
Argos. The Potemkin virtual honeyfarm by Vrable et al. exploits virtual machines, ag-
gressive memory sharing, and late binding of resources to emulate more than 64,000
high-interaction honeypots using ten physical servers [16]. Although the implementa-
tion of Potemkin is not publicly available, and there are only preliminary results for the
scalability available, it shows a promising approach for improving the scalability limi-
tation of high-interaction honeypots deployment, which can be used by the HoneyBow
toolkit to overcome its limitations in the area of scalability.

A study similar to ours own was conducted by Goebel et. al [3]. They collected 2,034
valid, unique malware binaries using Nepenthes listening on about 16,000 IPs within
a university environment for a period of eight weeks, and present the measurement
and analysis results of autonomous spreading malware. We collect two orders of mag-
nitude more malware binaries by combining Nepenthes and HoneyBow. Furthermore,
our study lasts for nine months, thus we can study long-term e�ects and the temporal
changes of malware.

Rajab et al. also use Nepenthes to collect spreading bot instances and focus their
work on botnets [10]. To support distributed deployment on the PlanetLab testbed, they
deploy a modified version of the Nepenthes platform. We propose a standalone structure
integrating Nepenthes, HoneyBow and the GenIII Honeynet for distributed honeynet
deployment, and have constructed a widely distributed honeynet on the public Internet
of China, which contains up to 50 high-interaction honeypots located at 17 nodes now.
The presented results are based on the data collected by such an infrastructure.
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3 The HoneyBow Toolkit

In this section, we introduce the HoneyBow toolkit in detail. We present the individual
building blocks HoneyBow is based on, and show how the high-interaction honeypot
principle can be used to construct an automated malware collection approach, especially
for collecting malware samples that use unknown or new vulnerabilities.

A high-interaction honeypot is a conventional computer system, deployed to be
probed, attacked, and compromised [13]. Such a system has no production usage in
the network and no regularly active users. Thus it should neither have any unusual ac-
tivities on the system nor generate any network traÆc. These assumptions aid in attack
detection: every interaction with the honeypot is suspicious by definition. HoneyBow
uses this idea and is an approach to collect malware with high-interaction honeypots.
Compared to Nepenthes, this has the advantage that we do not need to emulate any
vulnerable services: we can use a conventional machine, patch it to an arbitrary patch-
level, deploy the honeypot, and wait for successful compromises. The key concept is
that a malware binary usually propagates itself through the network and installs a copy
of itself into the victim’s file system after a successful compromise. If we thus monitor
the network flow stream and the changes to the file system, we can detect an infection
attempt and also obtain a binary copy of the malware sample.

3.1 Architecture of the HoneyBow Toolkit

The HoneyBow toolkit uses similar concept as the GenIII honeynet architecture, the
most common setup for high-interaction honeypots used nowadays. In the honeynet re-
search area, there are two well-known methods to deploy high-interaction honeynets:
the first is called physical honeynets and the second one is called virtual honeynets [9].
Physical honeynets use normal machines for deploying high-interaction honeypots, and
use an actual networking device to link them together into a honeynet. In contrast to
this, virtual honeynets use virtual machines (VMs) like VMware or Virtual PC to set up
virtual honeypots. Obviously, virtual honeypots have advantages due to lower deploy-
ment costs and easier management compared to physical honeynet. On the other hand,
this kind of honeypots also has several disadvantages, e.g., in the area of performance
degradation, single point of failure, and higher risk of fingerprinting.

The HoneyBow toolkit supports both methods of high-interaction honeynet deploy-
ment. As depicted in Figure 1, the HoneyBow toolkit consists of three malware collec-
tion tools: MwWatcher, MwFetcher, and MwHunter, all of which implement di�erent
malware collection strategies. Additionally, two tool called MwSubmitter and MwCol-
lector support distributed deployment and malware collection.

The individual building blocks of HoneyBow perform the following tasks:

– MwWatcher is one of the three malware collection tools implemented in the Honey-
Bow toolkit. It is based on the essential feature of honeypot – no production activity
– and watches the file system for suspicious activity caused by malware infections
in real time. The tool is executed on a high-interaction honeypot and exploits a
characteristic feature of propagating malware: when some malware successfully
exploits a vulnerable service and infects the honeypot, the malware sample will
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Fig. 1. Schematic Overview of the HoneyBow architecture

commonly transfer a copy of itself to the victim and stored it in the file system.
MwWatcher will then detect this change of the filesystem and catch a binary copy
of the malware sample. This sample is moved to a hidden directory and waits for
further collection by another tool called MwFetcher.

– MwFetcher is the second malware collection tool in the toolkit. This tool runs pe-
riodically on the host OS, issues a command to shutdown the honeypot OS, and
generates a listing of all files from the hard disk image of the honeypot system.
Then this listing is compared to a file list generated formerly from the clean sys-
tem, and all added or modified files are extracted since they could be artifacts of
successful infections. The samples collected by MwWatcher are also extracted and
aggregated with the MwFetcher results. After sample extracting, MwFetcher will
activate a restore procedure which reverts the honeypot OS to a clean state.

– MwHunter is the third malware collection tool in the toolkit and it is based on the
PE Hunter [18] tool. MwHunter is implemented as a dynamic preprocessor plu-
gin for Snort, an open source network intrusion detection system, and can be inte-
grated into the Snort instance running at inline mode on the Honeywall of a standard
GenIII honeynet [15]. MwHunter relies on the ������� and ������ ��������	


preprocessor build in the Snort daemon: it extracts Windows executables in PE for-
mat from the reassembled network stream and dumps them to the disk. The tool
tries to find a PE header based on the DOS header magic �� and PE header magic
�����, and then uses a simple heuristic to calculate the file length. Starting at the
position of the header, the resulting number of bytes is then dumped to a file. When
an executable has been successfully identified, MwHunter will treat the captured
binary as a malware sample due to the properties of the honeynet environment.
MwHunter generates an alert including the five tuple (source IP, source port, IP
protocol, destination IP, destination port) of the network stream, timestamp, and
MD5sum of the captured sample.

In a virtual honeynet deployment, apparently, the host OS refers to the operation sys-
tem where the virtual machine software is installed, and the restore procedure can be
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easily implemented using the revert functionality that almost all of the virtual machines
such as VMware support. But in a physical honeypot deployment, generally, we need
to manually reinstall the operation system or restore the file system using system man-
agement software such as Norton Ghost. To achieve automated malware collection and
honeypot operation, we introduce a full-automatic system restore procedure for phys-
ical honeypots based on the IPMI (Intelligent Platform Management Interface1) and
PXE (Preboot Execution Environment [4]) protocol. A schematic overview of the sys-
tem is given in Figure 2. In a physical honeynet deployment, the host OS refers to the
little customized Linux kernel which is downloaded and activated via the PXE proto-
col. MwFetcher operates after step 4 (load base OS) and before step 5 (download the
backup honeypot OS image).

Fig. 2. Full-automatic system restore procedure for physical honeypots

MwSubmitter and MwCollector support a distributed deployment: multiple Mw-
Fetcher instances can be deployed in a distributed honeynet and each instance sends
the collected information to MwSubmitter. This tool monitors the capture logs of the
di�erent malware collection tools and the collected binaries, and submits new collected
samples to MwCollector. MwCollector is a network daemon at a central malware col-
lection server, accepting MwSubmitter’s sample submissions, and storing all collected
information and samples in a central database.

Because malware for the Windows operating system constitutes the vast majority of
malware in the wild, we implemented the HoneyBow toolkit for now only for Win-
dows. For other platforms such as Linux or FreeBSD, the mechanism of real-time file
system monitoring behind MwWatcher, and executables identification and extraction
behind MwHunter, can also be implemented. The implementation details di�er, but the
principle remains the same.

3.2 Comparison of Advantages and Limitations

The HoneyBow toolkit integrates three malware collection tools using di�erent mal-
ware identification and collection techniques: MwWatcher runs on the honeypot and

1 


��	������������	������������

www.intel.com/design/servers/ipmi/ 
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adopts real-time file system monitoring to detect and collect the changed files as mal-
ware samples. MwFetcher is executed periodically on the host OS and uses cross-view
file system list comparing technique to extract added�modified files. MwHunter is in-
tended to sit inline at the network level in front of high-interaction honeypots, and it can
identify and extract Windows executables from the network stream. Due to the nature of
honeynet environments, the resulting files collected by these three tools can be treated
as malware samples with a low false negative rate.

Although these three tools achieve the same objective, each has their own advan-
tages and limitations when comparing them with one another. We summarize and list
the comparison results in Table 1. MwWatcher can be easily detected and bypassed if
the malware implements some evading detection mechanisms. In contrast, MwFetcher
and MwHunter operate outside the honeypot box and are thus hard to detect by malware.
As MwWatcher and MwHunter monitor the file system and the network, respectively, in
real time, they can both deal with temporary files which delete themselves after execu-
tion. MwHunter can even capture some forms of memory-only malware samples which
do not store a copy of themselves on the permanent storage. MwFetcher can not collect
temporary files because they have been already eliminated when MwFetcher compares
the listing after a certain period. However, MwFetcher has its advantages on detecting
concealed malware, including rootkits, which protect themselves from exposing to the
application level APIs and tools. MwHunter relies on the signatures of Windows exe-
cutables during the transmission through the network: if the executable is compressed,
encrypted, or encoded, then they can not be detected by MwHunter.

Table 1. Comparison of advantages and limitations among the three di�erent HoneyBow tools

Collection technique Advantages Limitations
MwWatcher Real-time file system

monitoring
Can deal with temporary files Can be easily detected

by malware
MwFetcher Cross-view file system

list comparing
Can deal with concealed mal-
ware, such as rootkits; Hard to
be detected by malware

Can not collect tempo-
rary files; Loss of exact
time and attacker infor-
mation

MwHunter Identification and ex-
traction from network
streams

Can deal with temporary files
and some memory-only sam-
ples; Passive, hard to be de-
tected by malware

Can not deal with
some specially crafted
binaries, e.g., self-
extracting archives

Since these three tools have their unique advantages and limitations, we integrate
them into the HoneyBow toolkit, and hope to achieve better coverage of collecting
autonomous spreading malware.

Compared with the Nepenthes platform based on the low-interaction honeypot prin-
ciple, the HoneyBow toolkit has several advantages. First, HoneyBow is capable of col-
lecting zero-day malware samples which exploit unknown vulnerabilities. This feature
is significant for CERTs and AV vendors, since they can then obtain a malware sample
in the early stage of their propagation. For example, we could capture samples of bots
that use new attack vectors (e.g., MocBot which uses MS06-040 for propagation [11],



Collecting Autonomous Spreading Malware 445

see Section 4.2) which were not caught by Nepenthes. Second, the high-interaction ap-
proach taken by HoneyBow does not need any signature of the malware, including no
detailed information about the exploited vulnerability. Thus we do not need to inves-
tigate the specific vulnerability and implement an emulated version of the vulnerable
service. The deployment and maintenance of the HoneyBow toolkit is quite easy. Third,
we can customize the patch level, installed network services, and existing vulnerabili-
ties of the deployed high-interaction honeypots, to satisfy the di�erent requirements of
malware collection. Such a customization does not need to modify or re-configure the
HoneyBow toolkit and demonstrates the flexibility and easy-of-use of the tool. Fourth,
HoneyBow has the capability of collecting the second-stage samples (and possibly even
more stages) downloaded by the initial malware.

On the other hand, HoneyBow has several limitations: First, the scalability of Hon-
eyBow is limited. Although we can assign several IP addresses to a high-interaction
honeypot to enlarge the measurement scope and improve the malware collection e�ect,
HoneyBow lacks a large scalability compared with Nepenthes, which can emulate more
than 16,000 di�erent IP addresses on a single physical machine. With techniques sim-
ilar to the ones used by Potemkin [16], this could be addressed in the future. Second,
HoneyBow relies on special hardware conditions (IPMI-enabled motherboard) when
deployed in the physical honeynet mode, and the cost of such a hardware is relative
high. When deployed in the virtual honeynet mode, the malware sample can detect the
virtual environment (e.g. VMware) and the presence of MwWatcher in order to evade
the collection and analysis. Third, HoneyBow can only collect malware samples that re-
motely exploit security vulnerabilities and infect the honeypot successfully by sending
a binary to the victim. Malware that propagates via e-mail or via drive-by downloads
can not be captured with such an approach.

Since both malware collection tools have their own advantages and limitations, we
should combine these two di�erent malware collection methods adequately, exploiting
their advantages while restraining their limitations, to achieve the best malware collec-
tion eÆciency and coverage.

3.3 Integration of HoneyBow, Nepenthes, and the GenIII Honeynet

To measure security threats on the Internet, we have constructed a distributed honeynet
based on the architecture shown in Figure 3. One of the most important objectives of the
distributed honeynet is to collect autonomous spreading malware samples in the early
stage of their propagation. Furthermore, we want to measure the prevalence of specific
malware samples. To achieve these objectives, we integrate HoneyBow, Nepenthes, and
the GenIII Honeynet into one architecture. Each honeynet site contains two physical
machines: one is used to deploy a standard GenIII virtual honeynet setup based on
VMware, and the other takes the role of a Site Server. This machine is responsible for
the storage, upload, and analysis of the collected samples and attack data.

The HoneyBow tools are installed at di�erent components of the honeynet site:
MwWatcher runs on the honeypot guest OS. We use both Windows 2000 and Win-
dows XP as guest OS, in order to cover the two common OS installed on end-user
machines. MwFetcher is executed on the host machine of the virtual honeynet, and
MwHunter is placed on the Honeywall in front of the honeypots. In order to integrate
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Fig. 3. Integration of HoneyBow, Nepenthes and GenIII Honeynet

malware collection methods based on the low-interaction honeypot principle, we install
Nepenthes in a Linux VM and place it behind the Honeywall. All of the malware sam-
ples collected by MwWatcher, MwFetcher, MwHunter, and Nepenthes are aggregated
to an NFS-mounted directory on the Site Server. From there, all samples are submitted
by MwSubmitter to the MwCollector located at a central server site.

4 Collection Results of Autonomous Spreading Malware

In this section, we present the results of collecting and analyzing autonomous spreading
malware with the help of a widely distributed honeynet deployment containing 17 sites
and up to 50 honeypots around the public Internet of China. Each site is constructed
based on the topological structure shown in Figure 3, except the MwHunter tool because
it was integrated in the architecture just recently. Our collection and analysis results are
based on nine months in-the-wild measurements, which took place during October 2006
and June 2007.
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4.1 Statistical Results

With the help of the distributed honeynet setup integrating Nepenthes, HoneyBow and
GenIII Honeynet, we had a hit count of about 800,000. The hit count specifies the
total number of downloaded samples, i.e., how often we successfully captured a binary,
disregarding multiple copies of the same binary. As a metric for uniqueness we use
the MD5sum. While this has same problems, e.g., small changes in a binary result in a
completely di�erent MD5sum, it allows us to quickly determine whether or not we have
seen a particular binary before. Using this metric, we collected nearly 100,000 unique
sample binaries during the measurement period of nine months.

This means that we have on average about 2,800 collected and 360 new unique bina-
ries per day. The large amount of collected binaries is to some degree due to our weak
measurement of uniqueness: by using MD5 hash values, even slight di�erences in two
binaries cause a completely di�erent hash value. This implies that if we capture a poly-
morphic worm, we can not eÆciently di�erentiate di�erent versions of the same binary.
As part of our future work, we plan to develop better metrics to di�erentiate between
malware binaries.

All collected binaries were analyzed with MwScanner, a tool that combines nine
common antivirus (AV) engines, to identify the known malware variations and fami-
lies, and to examine the detection rates of these AV engines. Using MwScanner, each
collected sample is scheduled to be scanned several times: immediately after collection,
after 1 day, after 3 days, after 2 weeks, and finally after 1 month. These results allow us
to study the response rates of common AV engines to the threat brought by autonomous
spreading malware. In general, the detection rates are rather low. The detection rates
vary between 50.4% and 92.8% for the nine engines in the first scan. Even the best
engine in our test detected only 93.7% of the samples in the last scan one whole month
after the samples was collected.

Table 2 summarizes the comparison of collected malware samples for both Ne-
penthes and HoneyBow. On average, Nepenthes collects 1,539 samples per day and
HoneyBow 1,359, thus Nepenthes captures slightly more samples per day. Nepenthes
has predominance on the number of captures because of their capacity to capture unsuc-
cessful infections and some forms of exclusive samples. However, the situation changes
when comparing the number of unique samples per day: We collect about 63.7 unique
samples with Nepenthes and 296 unique samples with HoneyBow per day. HoneyBow
thus yields a higher number of unique malware samples than Nepenthes, mainly be-
cause it does not rely on known vulnerabilities. With the help of MwScanner, we are
able to compare the numbers of collected malware variations and families between Ne-
penthes and HoneyBow: We use the output of an AV-engine to assign a given malware
sample to a malware family and malware variant. For example, if binary A has the AV-
label Trojan.Delf-1470 and binary B the label Trojan.Delf-142, both belong to the same
family, but are di�erent variants. As shown in Table 2, during the measurement period,
Nepenthes collected 467 di�erent malware variations of 64 families, but HoneyBow
achieved 1,011 variations of 171 families.

In Figure 4, we illustrate the temporal distribution of hit counts and number of unique
samples captured over the period of nine months. The hit count in Figure 4(a) shows
that both tools collect a comparable amount of binary samples per day, disregarding
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Table 2. Comparison of total � average number of collected malware samples for number of
captures, binaries, variants, and families between Nepenthes and HoneyBow

Captures (hit count) Binaries Variants Families
Nepenthes (Total) 427,829 17,722 467 64
HoneyBow (Total) 376,456 82,137 1,011 171

Nepenthes (Average per day) 1,539 63.7 15.0 8.2
HoneyBow (Average per day) 1,359 296.0 17.8 10.6

(a) Number of malware samples captured (hit
count) per day

(b) Number of unique malware binaries cap-
tured per day

Fig. 4. Comparison of malware collection e�ects between Nepenthes and HoneyBow

(a) Number of di�erent malware variants cap-
tured per day

(b) Number of di�erent malware families cap-
tured per day

Fig. 5. Comparison of malware collection e�ects between Nepenthes and HoneyBow

duplicate copies. Figure 4(b) shows clearly the advantages of HoneyBow for collecting
unique binaries: on almost all days, we collect more unique binaries with HoneyBow
than with Nepenthes.

The spikes in Figure 4(b) (and also Figure 4(a)) are mainly caused by polymorphic
worms: in each iteration, such a worm changes certain parts of itself and thus the MD5
hash value is di�erent. Due to our metric of uniqueness, a polymorphic worm thus
generates many hits and a large amount of unique binaries. In the wild, we commonly
see polymorphic worms like All.Aple which cause such spikes.
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In Figure 5, we illustrate the temporal distribution of number of di�erent malware
variants and families captured over the period of nine months. In both areas, HoneyBow
usually outperform Nepenthes. This is mainly due to the fact that Nepenthes relies on
static signatures of how to respond to an incoming attack. If a malware binary uses a
vulnerability that Nepenthes does not know how to emulate (or sometimes even a slight
variation of a known vulnerability), the tool can not capture a copy of this particular
binary. On the other hand, HoneyBow follows the high-interaction principle and uses a
real system, thus the actual system replies to an incoming attack and we do not need to
emulate a vulnerability.

4.2 MocBot Case

With the help of an anecdotal report, we want to show how HoneyBow is also able to
capture malware samples that use an unknown or recent vulnerability.

During the MocBot outbreak in August 2006 [11], our distributed honeynet de-
ployment and the HoneyBow toolkit played an important role. In the early stages of
the MocBot outbreak, our HoneyBow system captured the sample for the first time at
03:54 pm of August 13 (Beijing time - CST). After the MocBot sample was downloaded
and executed on the high-interaction honeypot, it connected to an IRC-based botnet.
The Command and Control (C&C) server used the domain �����������������, and
the bot joined an obfuscated channel to accept the botherder’s commands. After several
hours, the MocBot sample received an obfuscated command which could be decoded
as � ����������������������������������� �!. The bot was thus instructed to
download and execute a file from a remote location. This command installed a second-
stage infection Trojan named Ranky. As shown in Table 3, HoneyBow collected both
samples in a very early time. MwScanner was executed by schedule at 04:10 am with
latest signature base: none of the AV engines was able to identify the MocBot sample.

Table 3. MocBot samples captured by the HoneyBow toolkit in its early stages of propagation

Sample MD5 Family Timestamp (CST) Honeypot
9928a1e6601cf00d0b7826d13fb556f0 IRCBot 2006-08-13 03:54 vmpot.2k
4e618ca11b22732f412bafdac9028b19 Ranky 2006-08-13 11:14 vmpot.2k

Since the exploited vulnerability (MS06-040) was not implemented in Nepenthes
(and is not implemented as of today), this tool can not deal with malware that ex-
ploits this particular vulnerability. After a deep analysis of the captured sample binary,
CNCERT�CC took appropriate strategies, announced the situation and treatment mecha-
nisms to the public. With the help of this information, the botnet constructed by MocBot
was then taken down and its propagation was restrained.

5 Conclusion and Future Work

In this paper, we presented an integrated toolkit called HoneyBow to collect samples of
autonomous spreading malware. HoneyBow is based on the high-interaction honeypot

bniu.househot.com
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principle and can collect malware in an automated manner. The HoneyBow toolkit con-
tains MwWatcher, MwFetcher, and MwHunter, each of them using a di�erent malware
collection strategy. Compared with the Nepenthes platform based on the low-interaction
honeypot principle, HoneyBow has its advantages due to a larger range of captured sam-
ples and the capability of collecting malware samples that use new vulnerabilities. The
toolkit has its limitation mainly in the area of scalability. Thus we introduced a topolog-
ical structure which integrates Nepenthes, HoneyBow, and GenIII honeynets, to achieve
an even better malware collection coverage. Measurement results of a nine-month pe-
riod and the MocBot case validated that HoneyBow has better collection coverage com-
pared to Nepenthes and that it is capable of capturing unknown malware samples.

Nepenthes and HoneyBow are both only intended for malware sample collection:
they ignore some valuable information about malware propagation including informa-
tion about the attackers, targeted services, and exploited vulnerabilities. As an improve-
ment, we extend these tools to support the collection of more detailed information.
Even with the combination of Nepenthes and HoneyBow, we can not collect malware
that uses other propagation vectors like e-mails or exploitation of browsers. We plan to
extend our system with client-side honeypots [17] which can be used to fill this gap.
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Abstract. Distributed Denial of Service (DDoS) attack poses a severe
threat to the Internet. It is difficult to find the exact signature of at-
tacking. Moreover, it is hard to distinguish the difference of an unusual
high volume of traffic which is caused by the attack or occurs when a
huge number of users occasionally access the target machine at the same
time. The entropy detection method is an effective method to detect the
DDoS attack. It is mainly used to calculate the distribution randomness
of some attributes in the network packets’ headers. In this paper, we
focus on the detection technology of DDoS attack. We improve the pre-
vious entropy detection algorithm, and propose two enhanced detection
methods based on cumulative entropy and time, respectively. Experi-
ment results show that these methods could lead to more accurate and
effective DDoS detection.

Keywords: DDoS detection, entropy computing, network security.

1 Introduction

The traditional Denial of Service (DoS) attack is usually a point-to-point attack.
The attacker makes use of proper service requests to occupy excessive service
resources to force the server crash, or to make other legal users unable to attain
timely service responses. When the host under attack has limited computing,
memory and network bandwidth, the consequence of DoS attacks could be fairly
serious. However, along the development of computer and network technology,
the impact of DoS attacks has been significantly mitigated.

Distributed Denial of Service. (DDoS) attack is an extension of the traditional
DoS attack. DDoS attack is a kind of distributed, cooperative large-scale attack.
It has the same working principles as DoS, but compared with the traditional
DoS whose attack is originated from a single attacker point, the realization of
DDoS comes from hundreds or even thousands of PC attackers which have been
installed Daemon, and it is a group-based attack behavior. The targets of DDoS
are usually high-volume websites, search engines, or government departments.
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Compared with the traditional DoS attack, DDoS attacks possess more attacking
resources and have more destroying power, and thus they are more difficult to
be detected and defended. DDoS attacks have brought tremendous threat to the
security of Internet, and also gain much research attention in the area of network
security [4, 20].

Now, the DDoS attacks tend to become more distributed and automated,
and the destruction is more serious. The attacks have some technical trends: (1)
make use of clusters of controlled PCs to start intensive attacks; (2) produce
randomly distributed source IP addresses to conceal the track; (3) change the
structure of attack packets randomly; (4) explore the bugs and weaknesses of
both network protocols and operating systems; (5) send packets faster with no
apparent attack characteristics. Hybrid attacks make the defense even harder.

Once the DDoS attacks have been carried forward, the attack packets will
flood to the targeted victim and submerge those legal users’ packets, making
those legal users unable to access the server’s resources. Only by timely detection
of DDoS attacks, the system could make proper response to escape big loss.
Research conducted by other organizations shows that statistical measurements
and processing is an effective approach to DDoS problem [12]. The EMERALD
project at SRI International uses intrusion detection signatures with Bayesian
inference to detect distributed attacks [14]. A destination address monitoring
scheme was proposed in [17]. Using only a few observation points, the authors
proposed a method to monitor the macroscopic effect of DDoS flooding attacks
[7]. In [2], the authors detect flooding attacks at the edge and classify them as
incoming or outgoing attacks with an Artificial Neural Network (ANN).

In this paper, we put forward two new DDoS detection methods based on
the traditional entropy detection method [1, 8]. One uses computing cumula-
tive entropy, which monitors the network for a period of time instead of making
judgment soon after detecting abnormal network condition. The other method
makes use of the concept of time to judge the network condition without set-
ting a threshold of traffic volume, but observing whether the abnormal network
condition persistently lasts for a certain period. We conduct experiments for the
traditional entropy detection and the cumulative entropy detection methods, re-
spectively. The test results demonstrate that our improved methods have better
detection capability than before.

The rest of this paper is organized as follows. We briefly introduce the back-
ground of DDoS attack detection in Section 2, then propose two new approaches
based on cumulative entropy and time, respectively in Section 3. Section 4 de-
scribes our implementation, and Section 5 shows the experiment results. Finally,
we conclude the paper in Section 6.

2 Previous Work

In this section, we first introduce the background of DDoS attack detection, and
then focus on the entropy detection algorithms which would be the premise of
our improved algorithms shown in Section 3.



454 L. Li, J. Zhou, and N. Xiao

2.1 DDoS Detection Background

In the past years, it was discovered that DDoS attack methods and tools are
becoming more sophisticated, effective, and also more difficult to trace to the real
attackers. On the defense side, current technologies are still unable to withstand
large-scale attacks [3].

Defending the DDoS attacks involves three phases: before the attack, during
the attack and after the attack. The first one is precaution, which needs a process
or long time to deploy the network to guard against the attack. The last one is the
second line of defense. Therefore, a practical way to defend the DDoS attack is to
prevent the attack flow reach the target and to ensure its availability. Protection
using history-based IP filtering is a method when facing the attack [18]. But the
premise of defense is to detect the attack timely and exactly.

The main DDoS detection methods comprise two categories: signature-based
detectionandanomalydetection.Our research is focusedon theanomalydetection.

Signature-Based Detection. Suppose that the intruder’s activity could be
expressed by a pattern that gives an accurate description of some known attack or
intrusion manners. The purpose of this method is to detect whether the object’s
activity matches these patterns or not. This method could detect the known
intrusions, but could do nothing for the new intrusions. The difficulty is how to
derive the pattern that could present the phenomenon of intrusion and will not
cover other normal behaviors at the same time.

This method has high accuracy for the attack detection, but it is not useful
for those intrusions or attacks without experience knowledge. The updating of
detection rules is always slower than the emergence of new attacks. At present,
after a new bug is published on the Internet, we might find the attack method
and codes for this bug next day, but the relative detection rules will come out
after several days. The time gap between the new attack and the update of
user’s rules will give the intruders enough time to launch attacks. In addition,
many published attack detection rules still have high error rate, and more and
more hackers tend to not publicize the bugs they have found. Therefore, it is
difficult to summarize the characteristics of those attacks. In [9], the authors
propose to discover the DDoS attacking signature by analyzing the TCP/IP
packet header against the well defined rules and conditions, and distinguish
the difference between normal and abnormal traffic. A general feature space
modeling methodology was presented to identify DDoS attacks. It changes the
non-separable attacks to separable cases, and it also allows the unknown attacks
potentially being identified by their own features [15].

Anomaly Detection. This method pre-defines the normal and abnormal sys-
tem activities, and thus to identify the abnormal behaviors among all normal sys-
tem activities. When the anomaly occurs, it should be detected and responded by
alerting or prevention. Some anomaly detection system could allow users to define
a threshold or baseline for a normal behavior. This baseline could be constructed
by sample statistics, or neural network. Then the detection system works. When
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finding the behavior exceeds this baseline, the system gives an alarm. More specif-
ically, it compares the detection record of the network communication condition
with the normal record. When the difference is large, we say some anomaly occurs
and the detection system will warn the intrusion in time.

In [13], the authors use energy function variance based on wavelet analysis
to detect DDoS attack traffic. A covariance model was proposed to effectively
differentiate between normal and attack traffic, and to some extents verifies the
effectiveness of multivariate correlation analysis for DDoS detection [16].

The objects used in the anomaly detection include: attack flow speed, packet
size and port distribution, distribution of the packet arrival time, concurrent traffic
flow number, advanced protocol characteristics, in/out data rate, and so on.

2.2 Entropy Detection

In information theory, the Shannon entropy or information entropy is a measure
of the uncertainty associated with a random variable. It can be interpreted as the
average shortest message length, in bits, that can be sent to communicate the
true value of the random variable to a recipient. This represents a fundamental
mathematical limit on the best possible lossless data compression of any commu-
nication: the shortest average number of bits that can be sent to communicate
one message out of all the possibilities is the Shannon entropy. This concept was
introduced by Claude E. Shannon in his 1948 paper “A Mathematical Theory
of Communication”.

This entropy detection method is mainly used to calculate the distribution
randomness of some attributes in the network packets’ headers. These attributes
could be the packet’s source IP address, TTL value, or some other values indicat-
ing the packet’s properties. For example, the detector captures 1000 continuous
data packets at a peak point, and calculates the frequency of each distinct IP
address among these 1000 packets. By further calculation of this distribution,
we could measure the randomness of these packets [8].

After analyzing the phenomenon of DDoS attack, we could know that, when
the attack comes out, there will be large number of data packets, high volume
of traffic flow, and many incomplete connection requests. The attackers always
fabricate a lot of data packets, and the IP addresses of these packets are generally
different and randomly distributed. The analysis of these characteristics could
help us to detect the DDoS attack better.

Entropy could be calculated by computing a series of continuous packets. The
entropy value gives a description about the corresponding random distribution
of these source IP addresses. The bigger the entropy, more random the source
IP is. The smaller the entropy, the narrower the distribution range of packets’
source addresses is, and some addresses have quite high emergence probability.
Under normal network condition, the entropy of network packets always fluctu-
ates to some extent. But when the attacks come out, the entropy value will have
perceptible changes. We could detect the change of the source IP distribution
through monitoring the entropy change, and thus provide reasons for keeping or
discarding those packets.
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Next, we discuss the detection methods by analyzing the distribution of
packet’s source IP. This is also the entropy computing model used as the basis
for our improved detection algorithms. The formula of entropy calculation is as
follows [1]:

H = −
n∑

i=1

pi log2 pi (1)

where pi is the emergence probability of each distinct source IP address, n is the
total number of packets being analyzed, and H is the entropy.

In [8], the authors proposed an improvement of this entropy detection comput-
ing. In the implementation of their algorithm, the authors use a fixed-size sliding
window to simplify the computation complexity of the entropy. The window size
is W , the probability pi here equals to emergence probability of each distinct
source IP address, that is the counts of one address divided by the total packet
number. Therefore, we do not need to calculate all the packets’ entropy value for
our detection, but just compute W packets’ entropy value for our judgments.

A proficient attacker usually tries to defeat the detection algorithm by se-
cretly producing flooding attack and simulating the monitors’ expected normal
data flow. After knowing some packet attributes’ entropy values, these attackers
could use the attack tools to produce some flooding with adjustable entropy
values. By guess, test and summary, these attackers could probably know the
normal entropy range in the monitors, and adjust their own flooding to match
it, although it is not easy to realize.

3 Improved Entropy Detection Methods

In this section, we propose two improved DDoS detection methods based on
entropy computing. One uses computing cumulative entropy, and the other is
time-based.

3.1 Cumulative Entropy Detection

Cumulative Sum (CUSUM) is an algorithm from statistical process control that
could detect the mean variation of a statistical process. CUSUM is based on the
fact that if there is some change happened, the probability distribution of the
random sequence will also be changed [10, 11].

Here we further improve the previous entropy detection algorithm by incor-
porating the idea of cumulative sum and variation detection [10, 11] to our own
entropy approach and try to cumulate the entropy according to some rules, thus
it will have more accurate DDoS attack detection rate.

In our DDoS attack method, suppose Xn is the entropy value calculated by
using sliding window[8] at each time interval of Δn, and the random sequence
{Xn} is extracted as network service random model. In the normal occasion,
this sequence is independent and distributed. Assume the variation parameter
is the average value of sequence {Xn}. Before change, this value E(Xn) = α is
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very small, and always positive. Before attack, when the network is normal, the
distribution of IP addresses should be stable, and have little randomness, thus
the entropy value should be small. But when DDoS attack happens, this average
value will increase suddenly, E(Xn) will become far bigger than α, and becomes
a constant or dynamic value.

CUSUM algorithm[10, 11] has an assumption that in the normal case, the
average value of the random sequence should be negative, and it becomes positive
after change. Therefore, without losing any statistics properties, we transfer
the sequence {Xn} into another random sequence {Zn} with negative average
value. Let Zn = Xn − β, where α = α − β. In a given network environment,
the parameter β is a constant, used for producing a negative random sequence
{Zn}, and thus the entire negative value of {Zn} will not be cumulated along
the time. In our detection algorithm, we define that β = 2α. Assume that when
the network entropy value becomes two times as the normal network entropy,
we say that the network is abnormal, and then we start to cumulate. When the
attack happens, Zn will suddenly become very large and positive. The detection
threshold is the limit for the positive, which is the cumulative value of Zn.

We use this recursive formula for cumulative sum:
{

yn = (yn−1 + Zn)+

y0 = 0
(2)

where x+ =

{
0, x ≤ 0
x, x > 0

, yn and represents the cumulative positive value of Zn.

The bigger yn is, the stronger the attack is. For the variation in time period τN

(when yτn ≥ N), the judgment function could be:

dN (yn) =

{
0, (yn ≤ N)
1, (yn > N)

(3)

where dN (yn) is the judgment at time n, the value 1 shows that attack happens,
while 0 shows the normal case. N is the detection threshold.

The advantage of this improved algorithm lies in that it comprises implicitly a
concept of process cumulating. In the previous entropy detection algorithms, we
always judge the network condition according to a threshold. For example, when
the network entropy is bigger than a value, we say the network is abnormal or
some attack happens. But this judgment may not be suitable in some occasions.
For example, the traffic flow in the network suddenly increases, but the flow is
actually from some legal users. The function of cumulating process is to avoid
the false alarm when the network has something abnormal just at a time point.
We need to cumulate the total entropy during a time period, and judge this
value whether exceeds the limit or not, and the results in this way should be
more accurate. From the equation yn = (yn−1 + Zn)+, we know when Zn is
fluctuating among negative and positive values, the cumulative value yn might
finally be 0, or just very small positive value. In this case, the network may
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only suddenly become abnormal, or not stable, but it is not attacked, and our
detection will not give false alarm.

In the non-parameter CUSUM algorithm [10, 11], the idea of sequential vari-
ation is first proposed. But its approach is to analyze the ratio between the new
arrival IP number in a time unit and the total IP number, and thus construct
a random sequence. To implement that algorithm, we need to create a database
containing a large amount of legal IP address, and each time we should com-
pare and calculate the number of all new IP in each time unit. The calculation
is complicated and has low efficiency. In our improvement, we use the entropy
statistics based on sliding window [8]. Because the nature of entropy, it could
clearly show the distribution of source IP’s randomness. By controlling the slid-
ing window size, we could enhance the detection accuracy. For example, when
the host has large traffic flow in normal work, and the IP is very distributed, we
could properly increase the window size to have better detection.

The implementation and test results of this cumulative entropy detection
algorithm will be shown in Sections 4 and 5.

3.2 Time-Based Entropy Detection

In the anomaly detection, we usually have to set a threshold value. When the
statistics exceed this threshold, we say that the system is facing attacks. In the
previous entropy detection algorithms, when a single value is beyond the range or
a cumulative value exceeds a value, the system will give an alarm. The setting of
this threshold is usually through experience, to some extent. For some systems’
design, they could also get a proper threshold value by using neural network to
study the normal network. Here, we do not consider neural network, but try to
use some simple method to complete timely and accurate attack detection.

Based on the cumulative entropy detection described before, we make some
improvement. Here, we give up the threshold value N and do not cumulate
the entropy. Instead, we propose a time-based entropy detection method. The
main concept is to use time to judge the network condition, not according to a
threshold value to judge the attack condition.

We calculate the network entropy V using a fixed rate and time unit t. Suppose
Xn is the entropy value computed by sliding window in each time interval �n

. By the formula Zn = Xn − β, set β = 2α (here β could be other values
according to the environment), so we get a random sequence {Zn} with negative
average value. (The computation of Zn is the same as described in cumulative
entropy method.) Let Vj = Zn. Construct a vector X , with initial value XT

0 =
[−1 − 1 · · · − 1 − 1]. Vector X has n elements, and the initial value for each
element is -1.

xnew
j = Φ(vj) =

⎧
⎪⎨

⎪⎩

+1, vj > 0
−1, vj < 0
xold

j , vj = 0
(1 <= j <= n) (4)

Using the above update rule, we could update each Xj according to the relative
Vj . When the vector XT = [+1 + 1 · · · + 1 + 1], or say all the elements of X
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becomes +1, it shows that there is some attack in the network, and the alarm is
triggered. The update of each Xj is cyclic, and the value of j is from 1 to n, then
1 to n again. The advantage of this algorithm is that we could control the total
attack detection time by setting those two parameters: t and n, where t is the
data collection interval, and n is the element number of vector X . For example,
when t = 2s, n = 15, and the system will give an alarm only when the network
abnormal entropy persists over 30s. A sudden traffic increase in a short time
might still be a normal traffic, and we allow it. But if the network’s anomaly
lasts for more than 30s, or even longer, we could believe that, the system might
be abnormal, and some attacks might happen.

The threshold-based approach is widely applicable, and it may lead to a more
real-time and timely attack detection. But for the time-based approach, we tend
to emphasize the time tolerance. In some allowable range, we could ignore the
network anomalies. But only when exceeding our tolerable limit, defined by a
time period, we regard the network is abnormal or attack happens. These two
approaches may have their own advantages under different environments. In
some cases, the DDoS detection that combines threshold-based and time-based
approaches may be more efficient, and have fewer false alarms.

4 Implementation

In this system, we need to start two threads for handling. The first thread
(statisticThread) is mainly responsible for capturing packets and buffering them.
The second thread (analysisThread) is used to analyze the packets’ properties,
and is controlled by a timer.

4.1 statisticThread Analysis

Our statistic thread is designed mainly based on the modification of Winpcap
[6]. Winpcap is a system for capturing and analyzing packets under the platform

Fig. 1. Winpcap Processing
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of Win32. It includes a kernel-level packet filter, a basic DLL (packet.dll) and
an advanced DLL (Wpcap.dll) independent of the system as shown in Figure 1.

Based on the sliding window mode, we could buffer those packet contents we
are interested in, and ensure the space utilization and computation convenience
at the same time.

statistic_Info statisticWin[WINDOW_SIZE_RECORD];

Before the system runs, we need to create the database containing all legal IP
address according to the system’s history record. In order to hasten the system’s
running, we design a hash mechanism shown in Figure 2. First build a hash lookup
table according to the IP address database, and realize the fast query for IP.

Fig. 2. Hash Table Structure

After invoking the function pcap next ex() to get the original packets from
Winpcap, we enter the processing function. According to the current winPos, we
calculate the saving address, and then save the information, and modify winPos.

Fig. 3. statisticThread Processing
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statistic_Info * pShannon = & statisticWin [winPos];
memcpy((u_char*)&pShannon->header, &pkt_data[26], sizeof(UINT32)*3);
pShannon->header.protocol = pkt_data[23];
winPos = (winPos + 1) % WINDOW_SIZE_RECORD;

The statisticThread Processing is shown in Figure 3.

4.2 analysisThread Analysis

The main function of the thread analysisThread is to save the data characteristics
in the window. Set a timer that starts every 1s. Calculate the average value of
the sequence {Xn}, and according to Zn = Xn − β and yn = (yn−1 + Zn)+ to
calculate the relative data. Plot the fluctuation graph, and judge whether the
attack exists.

In the practical implementation, we start the detection analysis on those pack-
ets having the same IP address. The analysis thread starts every 1s, and we
analyze the relative packets’ characteristics during this 1s period, and conduct
cumulating. When the cumulative value reaches a certain limit, the system will
give an alarm.

5 Experiment Results

In this section, we show the experiment results and analyze the traditional en-
tropy detection method and our two improved methods: cumulative entropy
detection method and time-based detection method. In this test, our sliding
window size is set to 1000, and the total test time is 300s.

5.1 General Entropy Statistics

Test method: we start two attacks [5]. The first one is between the time 40s and
80s, and the second one is from 180s to 230s. The effect of this entropy detection
method is quite good, and the entropy value changes quickly, and increases to
around 10. Here we only calculate every 1000 packets’ entropy value. When the
attack comes, the number of packets increases a lot, and a large number of
random IP addresses come out. The extreme condition is that for every 1000
packets, each packet has a different IP address. In this case, the extreme and
maximum value of entropy should be:

H = −
1000∑

i=1

pi log2 pi = −1000 × 0.001 × log2 0.001 ≈ 9.966 (5)

The test result is shown in Figure 4 below.
This experiment result is shown in the condition of one PC attacks another

PC, and the CPU utilization of the attacked computer is reaching to 100%
immediately. Note the configuration of the attacked computer has one CPU of
Intel core 2 duo T5600, and its memory capacity is 512M. When we use two
attackers to simulate the test, the attacked PC is directly shut down. Therefore,
we could see the powerful destruction of TCP-SYN-Flood.
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Fig. 4. Entropy Statistics under TCP-SYN-Flood

5.2 Cumulative Entropy Detection

We calculate the current packets’ entropy every 1 second. From Figure 5, we
could see that the normal entropy value is fluctuating around 2 bits in our
network environment.

Fig. 5. Entropy Statistics Xn in Network

We set β = 2α = 4 bits, and then Zn = Xn − β. In the normal condition, the
sequence of {Zn} should be negative, sometimes Zn may be bigger than 0. But
when the attack happens, Zn will rapidly increase a lot. As shown in Figure 6,
the entropy becomes 10 bits, which is much bigger than 0.

By the formulas yn = (yn−1 + Zn)+, y0 = 0, we could cumulate the positive
value of Zn. As shown in Figure 7, in the normal case, yn should be 0 or a small
positive value close to 0. When the attack happens, this cumulative value yn

increases quickly. By setting the threshold N , when yn > N , the system will
give an alarm.
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Fig. 6. Offset Entropy Statistics Zn

Fig. 7. Cumulative Entropy Yn

5.3 Time-Based Entropy Detection

In this test, we choose t = 1s, n = 10, which means that every 1s we compute
the entropy value, and judge whether it is the two times of the normal value. If

Fig. 8. Time-based Entropy Detection
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so, we believe that something abnormal happened in this network. If the vector’s
n elements are all changed to +1, which means that the abnormal persisted over
t×n = 10s, and we believe that the network is attacked. The test result is shown
in Figure 8.

Because here n = 10, when the vector becomes [+1 + 1 · · · + 1], and there are
total ten +1, we compute the sum equals to 10 in the graph. When the network
is completely good, nothing abnormal exists, and the sum then is -10. Of course,
the values of n and t depend on the practical environment.

5.4 Discussions

From the graphs shown previously, we could see that, for the statistics of entropy,
when the attack occurs, there will be a rapid increase for the statistics, and it
then reaches a very big value. If the network administrator sets such a value,
when exceeding this value, the system will regard it as attack coming. For the
cumulative entropy detection approach, we make use of a process to cumulating
entropy. We emphasize that the anomaly lasts for a time period, not just happens
at a time point. When the attack comes, the system does not immediately give
an alarm like the traditional entropy detection method, but the system needs to
cumulate a time-period’s attack condition, and then gives the judgment. When
the network just has some abnormal flow in a normal network environment,
our cumulative entropy may not give an alarm. This approach reduces the false
alarm rate.

As we use sliding window method to complete the calculation of entropy,
the entropy we compute is not all network packets’ entropy in a time unit, but
just the window size’s entropy. Thus we could use another way to judge the
anomaly. Set the window size W = 1000. From the previous test results, the
normal entropy value should be around 2 bits, and the maximum entropy value
should be 9.96, when every packet has different IP address. Because we set a
small window value, when the attack comes, large number of random IP packets
will lead to the rapid increase of entropy, close to 10. During the attack, this
value is quite stable. See from the graph, it is approximately a line. In normal
traffic case, the entropy always fluctuates, without a stable value. According to
this point, we might use a small window size W , calculate its maximum entropy
Emax, and when (E − Emax) → 0, we say that network is abnormal.

6 Conclusions

In this paper, we studied the DDoS detection algorithms based on entropy mon-
itoring, and proposed two improved entropy detection approaches: cumulative
entropy and time-based methods. We also conducted experiments for the tradi-
tional entropy detection method and the cumulative entropy detection method,
respectively. From the test results, we could see that our cumulative entropy
detection method has good detection capability. For different network environ-
ments, how to configure the threshold value is a key point, which influences the
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detection efficiency. In the time-based entropy detection method, we introduced
a new concept of time cumulating. By setting a system’s tolerable detection time,
DDoS detection can be carried out without giving a typical threshold value.
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Abstract. Mobile communication is becoming the mainstream with the rapid 
growth of mobile devices penetrating our daily life. More and more mobile 
devices such as mobile phones, personal digital assistants, notebooks etc, are 
capable of Internet access. Mobile devices frequently change their 
communication IP addresses in mobile IPv6 network following its current 
attached domain. This raises a big challenge for building firewall for mobile 
devices. The conventional firewalls are primarily based on IPv4 networks where 
the security criteria are specified only to the fixed IP addresses or subnets, which 
apparently do not apply to mobile IPv6. In this paper we propose three solutions 
for mobile IPv6 firewall. Our approaches make the firewall adaptive to dynamic 
IP addresses in mobile IPv6 network. They have different expense and weight 
corresponding to different degree of universality. The paper focuses the study 
more from practical aspect. 

Keywords: Firewall, Mobile IP6. 

1   Introduction 

Firewalls are frequently used to prevent unauthorized Internet users from accessing 
private networks connected to the Internet, such as intranets. All messages entering or 
leaving the intranet need to pass through the firewall, which examines each message 
and blocks those that do not meet the specified security criteria. In the traditional 
firewall, the security criteria are specified only for fixed IP addresses or subnets.  

Along with the increasing number of 3G networks and WiFi hotspots, people can 
now easily gain access to the Internet anywhere using their mobile devices, such as 
mobile phones, personal digital assistants (PDA) and laptop computers etc. Mobile 
IPv6 [1] enables IP mobility for IPv6 nodes. It allows a mobile IPv6 node to be 
reachable via its home IPv6 address irrespective of the link and the domain that the 
mobile attaches to. The Route Optimization is also supported in the mobile IPv6 
specification. The Route Optimization technology enables optimized routing of packets 
between a mobile node and its correspondent nodes. 

To build up firewall for mobile devices, we are facing the challenge: the firewalls 
need a series of fixed IP addresses or subnets to specify the security criteria, meanwhile 
the roaming mobile nodes need variable IP addresses to indicate their current location 
so that the mobile nodes can be reached seamlessly. In this paper we analyze the mobile 
IPv6 specification and firewall technology, and then present in detail of building a 
dynamic firewall in mobile IPv6 environment.  For Ethernet devices, we suggested to 
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employ the feature of MAC address filter. For the mobile nodes with traceable 
addresses, masking the low 64-bits of source address is a simple and efficient solution. 
For general mobile nodes, we introduced an extended firewall and the improved Return 
Routability protocol. 

The rest of this paper is organized as follows. Section 2 reviews the basic operation 
of Mobile IPv6 and firewalls. Section 3 presents our solution for configuring the 
firewall rules in mobile IPv6 networks. Section 4 describes an analysis of security and 
performance of our approaches. Section 5 concludes the paper.  

2   Mobile IPv6 and Firewall 

2.1   Mobility Support in IPv6 

In the current IETF Mobile IPv6 specifications [1], every mobile node (MN) has a 
home address (HoA), an IP address assigned to a mobile node within its home subnet. A 
MN is always addressable by its home address, whether it is currently attached to its 
home subnet or is away from home.  

While a mobile node roams and attaches to some foreign subnet, it is also 
addressable by one or more care-of addresses (CoAs), in addition to its home address. A 
care-of address is an IP address associated with a mobile node while visiting a 
particular foreign subnet. The subnet prefix of the mobile node’s care-of address is the 
subnet prefix of the foreign subnet being visited by the node. A mobile node typically 
acquires its CoA through stateless [3] or stateful (eg., DHCPv6 [4]) address 
autoconfiguration.  

After getting a new CoA on the foreign subnet, a mobile node informs its current CoA 
to its home agent (HA) [1,5] by sending a Home Binding Update (BUHA) message to the 
home agent: 

BUHA = {Src=CoA, Dst=HA, Opt=HoA, ... ... } 

As the paper deals with the problem how a MIPv6 packet goes through firewalls, we 
just discuss and analyze the IP address in the header of a traffic packet and ignore its 
payload. 

The home binding update message creates an association between HoA and CoA for 
the mobile node with the specified lifetime at the home agent. HA thereafter uses proxy 
Neighbor Discovery [6] to intercept any IPv6 packets addressed to MN’s HoA on the 
home subnet, and tunnels each intercepted packet to MN’s CoA [1]. To tunnel 
intercepted packets, HA encapsulates the packets using IPv6 encapsulation, with the 
outer IPv6 header addressed to MN’s CoA. 

The mobile node may also initiates route optimization operation with its 
correspondent node (CN) to inform its current CoA by sending a Correspondent 
Binding Update (BUCN ) message to the correspondent nodes. Figure 1 shows the 
procedure: 

When MN wants to perform route optimization, it sends  

HoTI = {Src=HoA, Dst=CN, … …} 
and 

CoTI = {Src=CoA, Dst=CN, … …} 
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Fig. 1. The procedure of Correspondent Binding Update 

to CN. HoTI tells MN’s home address HoA to CN. It is reverse tunneled through the 
home agent HA, while CoTI informs MN’s care-of address CoA and is sent directly to 
CN.  

When CN receives HoTI, it takes the source IP address of HoTI as input and 
generates a home cookie and replies MN with home cookie 

HoT = {Src=CN, Dst=HoA, … …}. 

Similarly, when CN receives CoTI, it takes the source IP address of CoTI as input 
and generates a care-of cookie and sends it 

CoT ={Src=CN, Dst=CoA, … …} 

to MN. Note that HoT is sent via MN’s home agent HA while CoT is delivered directly 
to MN.  

When MN receives both HoT and CoT, it hashes together the two cookies to form a 
session key which is then used to authenticate the correspondent binding update 
message to CN:  

BUCN  = {Src=CoA, Dst=CN, HoA, … …}. 

Note that CN is stateless until it receives BUCN and verifies the authentication MACBU. 
If MACBU is verified positive, CN may reply with a binding acknowledgement (BACN) 
message 

BACN = {Src=CN, Dst=CoA, HoA, … …}. 

CN  then creates a binding cache entry for the mobile node MN. The binding cache 
entry binds HoA with CoA which allows future packets to MN be sent to CoA directly. 

When sending a packet to the MN, the CN checks its cached bindings for an entry for 
the packet’s destination address. If a cached binding for this destination address is 
found, the node uses an IPv6 Routing Header [7] to route the packet to the MN by way 
of the CoA indicated in this binding. If, instead, the CN has no cached binding for this 
destination address, the node sends the packet normally (i.e., to the MN’s HoA with no 
routing header), and the packet is subsequently intercepted and tunneled to the MN by 
its HA as described above. Therefore, route optimization allows a CN to communicate 
directly with the MN, avoiding delivering traffic via the MN’s HA.  
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From the above brief review, we observed that the source/ destination addresses in 
the packets from/to MNs are not fixed. It would occur the transmit problem through 
firewalls. 

2.2   Problem Statement of Mobile IPv6 and Firewall 

Firewalls usually decide whether to allow or to drop packets based on source IP address 
and destination address as well as protocol type and port numbers.  RFC4487 [2] 
analyzed various scenarios involving MIP6 and firewalls. It classified three scenarios 
of firewall networks: 

 

1) When the correspondent node is within a network protected by firewall(s), the 
major issue is how the firewall accepts the packets from/to the address CoA, 
which has no associated rule with the diverse CoA in the firewall. Requiring the 
firewalls to update the connection state upon detecting Binding Update messages 
from a node outside the network protected by the firewall does not appear feasible 
or desirable, because changing the firewall states without verifying the validity of 
the Binding Update messages could lead to denial of service attacks. 

2) When the HA is within a network protected by a firewall, the firewall(s) may drop 
connection setup requests from CNs and packets from MNs’ CoAs if the 
firewall(s) protecting the HA block unsolicited incoming traffic (e.g., as stateful 
inspection packet filters do). 

3) When a mobile node is within or moves from outside into a network protected by 
firewall(s), the firewall blocks the traffic to the MN due to the its new CoA. 

2.3   IPv6 Address Generation 

An interface which uses IPv6 usually gets link-local address and global address 
allocated at least. Link-local address is used for control functions, while global address 
is used for usual data communications.   

In mobile IPv6, IP address is usually generated by the following three methods: 
Stateless Address Autoconfiguration, Stateful Address Autoconfiguration & Manual 
Configuration. 

 
Stateless Address Autoconfiguration [3] 
Address autoconfiguration in IPv6 usually means that a node can configure its own IP 
address, using information on the network. 

In IPv6, the 128 bit IP address is separated to two parts: i) network prefix (64 bits), 
which identifies network; and ii) interface ID (64 bits), which identifies a node 
(interface). Interface ID is configured by the node on its own (usually derived from the 
MAC address), and the prefix is advertised by the network (usually router). These two 
parts are combined to form an IPv6 address. 

 
Stateful Address Autoconfiguration 
Stateful Address Autoconfiguration uses a server, such as DHCPv6 [4], to manage and 
allocate address to nodes.  
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With DHCPv6, DHCP servers are placed on the network to allocate addresses to a 
network interface.  

Note that the DHCP server manages address information and maintains which 
address is allocated to whom. In address allocation with DHCP, a node can use only 
one DHCP server (although there may be multiple DHCP servers on the same 
network). 

 
Manual Configuration 
It means to set IP address to an interface manually. This includes setting a 
pre-configured address based on a configuration file at the boot. 

3   Deploying Firewall in Mobile IPv6 

3.1   Traceable IP Address and Untraceable IP Address 

From the brief description in subsection 2.3, we know the IP address generated by the 
method of stateless address autoconfiguration is traceable, because its low 64 bits is 
fixed even though its prefix depends on the router. In contrast, the IP address obtained 
by the method of stateful address auto-configuration is untraceable because there is no 
association between the previous and subsequent addresses of an interface if it attaches 
different routers. 

We can define the following two types of addresses. 

Traceable Address: If the series of IP addresses for an interface are derived from 
certain data (e.g. MAC address), no matter it is generated by manual configuration or 
stateless autoconfiguration, we call the IP addresses are traceable. 

Untraceable Address: If the series of IP addresses for an interface are not derived 
from certain data, no matter it is generated by manual configuration or stateful auto- 
configuration or other stateless autoconfiguration [8, 9], we call the IP addresses are 
untraceable. 

 

In the following subsections, we will discuss how to configure and deploy the 
firewall in a variety of scenarios. We will focus on how to manage the variation of 
MN’s IP address. Other firewall filtering issues, such as protocol type, port number, 
etc., will be ignored because they are not changed along with the locations of mobile 
nodes and can be set in advance.    

3.2   Scenario of the CN Protected by Firewall(s) 

Figure 2 presents the scenario that the correspondent node of a mobile node is protected 
by firewall. 
 
Firewall Configuration if MN’s CoA is Traceable Address 
The disadvantage of IPv4 is that its address is only 32 bits meanwhile the MAC address 
is 48 bits. Therefore the IPv4 address is not able to include the MAC address 
information. If a mobile node roams to foreign networks, its new IPv4 address is totally  
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Fig. 2. CN is protected by a firewall 

different from its previous IPv4 address and we are not able to trace back any 
information of its previous address from its new address. 

In IPv6, the stateless address autoconfiguration is wildly deployed due to efficiency 
and lightweight. If a MN’s IPv6 address is generated by the stateless address 
autoconfiguration, the IPv6 address always contains the interface identity (derived 
from the unique MAC address). Hence, if two IPv6 addresses share the same 64-bit 
interface identity, we consider them to be the same device.  

Therefore, the firewall rules for a mobile node could mask the low 64-bits of the IPv6 
address. For example, if a mobile node’s home address (HoA) is y:y:y:y:xxxx:xxff 
:fexx:xxxx. Its care-of address in the network A would be a:a:a:a:xxxx:xxff:fexx:xxxx 
and its IPv6 address in network B would be b:b:b:b:xxxx:xxff:fexx:xxxx, we could set 
the firewall rules with following pattern for the mobile node:  

 
TARGET   INPUT 
--source   y:y:y:y:xxxx:xxff:fexx:xxxx 

--source mask   0::ffff:ffff:ffff:ffff 
--destination   address_of_CN 
--protocol   135 

and 
TARGET   OUTPUT 
-- destination   y:y:y:y:xxxx:xxff:fexx:xxxx 

-- destination mask   0::ffff:ffff:ffff:ffff 
--source   address_of_CN 
--protocol   135 

 
where protocol 135 specifies the protocol of Mobility Header. 

After filtering by mask 0::ffff:ffff:ffff:ffff, all of the source addresses from/to MN are 
the same xxxx:xxff:fexx:xxxx and match the firewall rules. However, only messages 
HoTI, HoT, CoTI, CoT, BUCN  and BACN can go through the firewall because they are 
with the mobile protocol type 135.  

From above analysis, we could summarize that the firewall, which protects the 
correspond node of mobile node, does not block the communication between the 
mobile node with traceable address and the correspondent nodes. However, the 
traceable addresses are not always available. The next subsection will discuss solution 
for mobile nodes with untraceable addresses. 
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Firewall Configuration if MN’s CoA is UntraceableAddress 
If the mobile device is an Ethernet device, we could use the MAC feature in firewall to 
filter it. The rule pattern is: 

 
TARGET   INPUT 

--mac-source   xx:xx:xx:xx:xx:xx 
--destination   address_of_CN 

 
where, xx:xx:xx:xx:xx:xx is the MAC address of the MN.  

The filter feature for MAC source addresses only makes sense for packets coming 
from an Ethernet device. It is not suitable for the mobile devices that do not support 
Ethernet, such as mobile phone. Hence, we have to come back IP layer. 

From the perspective of the correspondent node, the care-of address of mobile node 
is an untraceable address. It is not able to set up firewall rules based on the kind of 
addresses. Mobile IPv6 specification [1] introduces a new herder “Type 2 Routing 
Header” which carries the home address of the mobile node. The new routing header 
uses a different type to that defined for "regular" IPv6 source routing, enabling 
firewalls to apply different rules to source routed packets than to Mobile IPv6. 
Therefore, we suggest that the current firewalls extend a feature to filter the field of 
Home Address Option in the mobility header as well as the field Type 2 Routing 
Header. With the new feature, we use 3 firewall rule patterns for the mobile node, 
which home address is y:y:y:y:xxxx:xxff:fexx:xxxx and its current care-of address is 
a:a:a:a:xxxx:xxff:fexx:xxxx: 

 
TARGET   INPUT 

--source    y:y:y:y:xxxx:xxff:fexx:xxxx 
--destination    address_of_CN 

 
TARGET   OUTPUT 

--destination    y:y:y:y:xxxx:xxff:fexx:xxxx 
--source    address_of_CN 

and 
TARGET   INPUT &OUTPUT 

--home-address y:y:y:y:xxxx:xxff:fexx:xxxx  
--protocol  135 

 
where --protocol 135 specifies the protocol of Mobility Header.   

Accordingly, we proposed an improved Return Routability (RR) procedure [10] in 
which the message of HoTI, HoT, CoTI and CoT bundles HoA and CoA together instead 
of HoA or CoA alone in the original RR procedure. (The analysis in [10] indicated that 
binding HoA and CoA together makes the original RR protocol much stronger.) 

Now let’s look every message in the improved RR procedure: 
The HoTI message:  its source address is y:y:y:y:x:xxxx: xxff:fexx:xxxx and 

destination address is address_of_CN. The HoTI message meets the firewall rules and 
then passes the firewall. 

The HoT message:  its destination address is y:y:y:y:xxxx: xxff:fexx:xxxx and source 
address is address_of_CN. The HoT message meets the firewall rules and then passes 
the firewall. 



474 Y. Qiu, F. Bao, and J. Zhou 

The CoTI message: the message with source address a:a:a:a:xxxx:xxff:fexx:xxxx, 
destination address address_of_CN, home address y:y:y:y:xxxx:xxff:fexx:xxxx and 
mobility header protocol 135. The CoTI message meets the extended firewall rule and 
is also able to pass the firewall. 

The CoT message: the message with destination address a:a:a:a:xxxx:xxff:fexx:xxxx, 
source address address_of_CN, home address y:y:y:y:x:xxff:fexx:xxxx and mobility 
header protocol 135. The CoT message meets the extended firewall rule and is also able 
to pass the firewall. 

The BUCN  message:  the message with source address a:a:a:a:xxxx:xxff:fexx:xxxx 
and destination address address_of_CN, home address y:y:y:y:x:xxff:fexx:xxxx and 
mobility header protocol 135. The BUCN message meets the extended firewall rule and 
can pass the firewall. 

The BACN  message:  the message with destination address 
a:a:a:a:xxxx:xxff:fexx:xxxx, source address address_of_CN,  home address 
y:y:y:y:x:xxff:fexx:xxxx and mobility header protocol 135. The BACN  message meets 
the extended firewall rule and can pass the firewall. 

Upon receiving the BUCN  message, the correspondent node opens a dynamic pinhole 
for the address a:a:a:a:xxxx:xxff:fexx:xxxx so that following traffic packets from this 
address with any protocols can reach the correspondent node. 

After this modification, the firewall, which protects the correspondent node of 
mobile node, will not block any more the communication between the mobile node 
with untraceable address and the correspondent nodes.  

Of course, the application of the solution is more general. It is certainly suitable for 
the mobile nodes with traceable addresses. 

Based on the same mechanism, the description of other scenarios is simple in the 
following subsections.  

3.3   Scenario of the HA Protected by Firewall(s) 

Figure 3 displays the scenario that the home agent of a mobile node is protected by 
firewall. In the specification of mobile IPv6 [1, 5], the following messages from the 
mobile node will send to/through its home agent: Home Binding Update BUHA, Home 
Test Init HoTI and Home Test HoT. 

CN

Internet

MN
HA

Firewall

 

Fig. 3. HA is protected by a firewall 
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Firewall Configuration if MN’s CoA is Traceable Address 
Similar to the usage described in above section, we set the below firewall rules in the 
firewalls that protect the HA.  

 
TARGET   INPUT 

--source   y:y:y:y:xxxx:xxff:fexx:xxxx 
--source-mask   0::ffff:ffff:ffff:ffff  
--destination   address_of_HA 
--protocol   135 

and 
TARGET   OUTPUT 

--destination   y:y:y:y:xxxx:xxff:fexx:xxxx 
--destination-mask   0::ffff:ffff:ffff:ffff  
--source   address_of_HA 
--protocol   135 

 
After masking by 0::ffff:ffff:ffff:ffff, all of the addresses from/to MN become the same 

xxxx:xxff:fexx:xxxx and match the firewall rules. But, only the messages BUHA and 
BAHA can go through the firewall because they are with the mobile protocol type 135.  

According to RFC 3776 [5], the HoTI/HoT message is encapsulated by ESP 
tunneling mode in the MN-HA path, so the headers do not contain the mobile protocol 
type 135. However, upon receiving the BUHA message, the home agent opens a 
dynamic pinhole and sets up a security tunnel for MN’s CoA so that following traffic 
packets from this address with any protocols can reach the home agent. Thereafter, the 
encapsulated HoTI and HoT can pass through the firewall. 

From above analysis, we summarize that the firewall, which protects the home agent 
of mobile node, does not block the communication between the mobile node with 
traceable address and the home agent. 

 
Firewall Configuration if MN’s CoA is UntraceableAddress 
If the mobile device is an Ethernet device, we could also use the MAC feature in 
firewall to filter it: 

 
TARGET   INPUT 
--mac-source   xx:xx:xx:xx:xx:xx 
--destination   address_of_HA  

 
For general purpose, we propose a firewall configuration based on the improved RR 

protocol and add 3 firewall patterns for the mobile node: 
 
TARGET   INPUT 
--source    y:y:y:y:xxxx:xxff:fexx:xxxx  
--destination   address_of_HA 

 
TARGET   OUTPUT 
-- destination   y:y:y:y:xxxx:xxff:fexx:xxxx  
--source   address_of_HA 



476 Y. Qiu, F. Bao, and J. Zhou 

and 
 

TARGET   INPUT&OUTPUT 
--home-address   y:y:y:y:xxxx:xxff:fexx:xxxx  
--protocol   135 -j ACCEPT 

 

where --protocol 135 specifies the protocol of Mobility Header.   
Now let’s look at every message in the improved RR procedure in which the HoA 

and CoA are bundled together: 
The BUHA  message: the message with source address a:a:a:a:xxxx:xxff:fexx:xxxx 

and destination address address_of_HA, home address y:y:y:y:x:xxff:fexx:xxxx and 
mobility header protocol 135. The BUHA message meets the extended firewall rule and 
can pass the firewall. 

The BAHA  message:  the message with destination address 
a:a:a:a:xxxx:xxff:fexx:xxxx, source address address_of_HA,  home address 
y:y:y:y:x:xxff:fexx:xxxx and mobility header protocol 135. The BAHA message meets the 
extended firewall rule and can pass the firewall. 

Upon receiving the BUHA message, the home agent opens a dynamic pinhole and sets 
up a security tunnel for the address a:a:a:a:xxxx:xxff:fexx:xxxx so that following traffic 
packets from this address with any protocols can reach the home agent. Thereafter, the 
encapsulated HoTI and HoT can pass through the firewall. 

3.4   Scenario of the MN Protected by Firewall(s) 

Figure 4 indicates the scenario where the MN is within a network protected by firewall. 
In the specification of mobile IPv6 [1, 5], the MN will send/receive following 
messages: BUHA, BAHA, HoTI, HoT, CoTI, CoT, BUCN and BACN. 
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Fig. 4. MN within a network protected by a firewall 

No matter if a MN is roaming into a visiting network or already stays in the visiting 
network and need to update its CoA, after allocated or authorized a new CoA, it informs 
its HA and CN of its current CoA. Since the MN is always the initiator, it is able to apply 
the pinholes from the firewall for the communications with other parties. 

The procedure of the home binding update is: 

1) the mobile node gets current care-of address; 
2) the mobile node solicits a firewall pinhole for the communications between the 

care-of address and its home agent (a fixed address) with the protocol number 50 
(ESP) and 135 (Mobility Header); 



 Firewall for Dynamic IP Address in Mobile IPv6 477 

3) the mobile node sends the home binding update message BUHA to its home agent 
through the pinhole; 

4) the home agent sends back a acknowledgement BAHA through the pinholes and set 
up security tunnel between the home agent and its home agent; 

5) thereafter every packet between the mobile node and its home agent goes through 
the security tunnel. 

 

The procedure of the correspondent binding update is: 
 

1) the mobile node sends the HoTI message to its home agent through the security 
tunnel; 

2) after receiving the HoT message from the correspondent node, the home agent 
forwards the HoT message to the mobile node through the security tunnel, too; 

3) the mobile node solicits a firewall pinhole with protocol number 135 for the 
communications between the care-of address and the correspondent node; 

4) the mobile node sends the CoTI message to its correspondent node through the 
pinhole; 

5) the correspondent node sends back the CoT message through the pinhole; 
6) the mobile send the binding update message BUCN to its correspondent node 

through the pinhole; 
7) the correspondent node sends back a acknowledgement BACN through the 

pinholes; 
8) the mobile node requires to open more ports for the pinhole; 
9) thereafter every packet between the mobile node and its correspondent node goes 

through the pinhole. 

4   Analysis of Security and Performance 

The purpose of the paper is to provide some schemes to make conventional firewalls 
suitable for mobile IPv6 network, and should not bring new threats. The paper 
proposed three methods: filtering MAC address, masking low 64 bits of source address 
and extending the firewall functions. Below we discuss and analyze the security and 
performance of these approaches.   

 
1) Method of filtering MAC address: Since the method just employs the feature of 

the ordinary firewalls, it does not bring any further security issue. However, its 
application scope is limited due to the restriction of Ethernet devices. 

2) Method of masking low 64 bits: As the method ignores the address prefix, it fails 
to detect the source location of the packets.  This brings the threat of address 
spoofing because the firewall is opened to all nodes if they have the same interface 
identity, no matter where these nodes are. In order to reduce the risk, the protocol 
option is switch on to filter the mobility header (135). As the messages with 
mobility header are very small in term of size and need a little processing, it would 
not bring a serious threat.   

The method does not introduce any new fields and operations. Hence its 
performance is the same as the ordinary firewall. 

The application scope is also restricted due to the requirement of traceable 
addresses. 
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3) Method of extending the firewall function: In mobile IPv6 network, the CoA in the 
source address field of binding update message is no sense to the firewall rules, an 
identity field is required so that the firewall recognizes the packets’ owner. The 
method extends the ordinary ip6tables’ features to filter the home address in the 
home address option header or in typing 2 routing header. 

The improved RR protocol [10] is also needed as the CoTI/CoT messages in 
original RR protocol do not contain the home address information.  

The improved RR protocol provides much stronger security than the original 
RR protocol. It can prevent three redirect attacks: Session Hijacking Attacks, 
movement Halting Attacks and Traffic Permutation Attacks. This protocol just 
bundles HoA and CoA together in the messages of HoTI, HoT, CoTI and CoT, and 
does not change the original RR’s architecture. 

If the firewalls deployed in IPv6 networks support the 3rd addresses (Routing 
Header, Home Address Option or Destination Options Header), the concern of 
performance by the modification is minor because the architecture and operation 
are the similar as the original one. After all, either Routing Header or Home 
Address Option is an inner address and not always next to the IPv6 Header, the 
firewall performance will suffer and hardware implementations become difficult 
in this solution comparing with traditional firewalls that just check the most 
outside IP addresses. 

5   Conclusions 

We first reviewed the mechanism of mobile IPv6 networking and analyzed the 
exchanging messages among the mobile nodes, home agents and correspondent nodes. 
Then we proposed three potential solutions to make the firewall friendly in mobile IPv6 
network. 

For Ethernet devices, we suggested to employ the feature of MAC address filter. For 
the mobile nodes with traceable addresses, masking the low 64-bits of source address is 
a simple and efficient solution. For general mobile nodes, we introduced an extended 
firewall and the improved Return Routability protocol. The extended firewall could 
always monitor the home addresses of mobile nodes as well as the care-of addresses. It 
also improved the security capability of the original RR protocol without changing its 
architecture 
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Abstract. The task of separating genuine attacks from false alarms in
large intrusion detection infrastructures is extremely difficult. The num-
ber of alarms received in such environments can easily enter into the mil-
lions of alerts per day. The overwhelming noise created by these alarms
can cause genuine attacks to go unnoticed. As means of highlighting these
attacks, we introduce a host ranking technique utilizing Alarm Graphs.
Rather than enumerate all potential attack paths as in Attack Graphs,
we build and analyze graphs based on the alarms generated by the intru-
sion detection sensors installed on a network. Given that the alarms are
predominantly false positives, the challenge is to identify, separate, and
ideally predict future attacks. In this paper, we propose a novel approach
to tackle this problem based on the PageRank algorithm. By elevating
the rank of known attackers and victims we are able to observe the effect
that these hosts have on the other nodes in the Alarm Graph. Using this
information we are able to discover previously overlooked attacks, as well
as defend against future intrusions.

Keywords: Intrusion Detection,Security Visualization, Watch Lists,
Alarm Graphs, PageRank.

1 Introduction

Managing the high volume of alarms generated by large intrusion detection envi-
ronments can be very challenging.A major problem faced by those who deploy cur-
rent intrusion detection technology is the large number of false alarms generated
by Intrusion Detection Sensors (IDSs), which can be well over 90 percent [13,14].

Since their introduction, Attack Graphs have received considerable attention
as a way to model the vulnerabilities of a network. These graphs model the
paths that an attacker could take in order to successfully compromise a target.
Näıve representations typically result in models that grow exponentially in the
number of possible states. Because the resulting graphs are unwieldy even for
small networks, recent research has focused on reducing their visual complexity
and making them tractable for computational purposes [11,25].
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In this paper, we propose Alarm Graphs, an alternative to Attack Graphs,
that are built from the alarms produced by the monitoring infrastructure. We
establish that several useful insights about intrusions can be gained when these
graphs are augmented with knowledge of known attacks, and are analyzed using
the PageRank algorithm.

Specifically, our contributions support the following goals:

– Risk Assessment. When faced with the task of monitoring large networks,
it is easy for human analysts to develop tunnel vision, narrowing their at-
tention to a subset of hosts such as web servers which are commonly known
to be involved in attacks. In comparison, our technique allows analysts to
algorithmically assess the risk of all nodes and not lose sight of the “big
picture” by considering how known attacks affect their neighbors.

– Systematic Identification of Missed Attacks. Our technique provides a
methodical analysis of the network, and reports the full extent of damage due
to an attack. This data is invaluable for forensics and intrusion prevention.
When our algorithm was run against historic intrusion data, it identified
compromised nodes that were missed by security personnel using manual
evaluation techniques.

– Automated Watch List Generation. The output generated by our algo-
rithm is a list of those hosts which have higher probability of being involved
in future attacks. During our experiments, our algorithm predicted a sur-
prisingly high number of attacks when run against historic intrusion data.
For exact numbers, see Section 5.4.

– Sensor Tuning. During the course of our analysis, we found that hosts
which generated high volumes of false alarms often repeatedly earned a high
rank, despite not being involved in a genuine attack. This information pro-
vides a means to create filters to remove the false alarms, thus decreasing
the overall cost associated with running the monitoring infrastructure, while
increasing the overall fidelity of the alarm stream.

– Visualization. Alarm Graphs can be visualized using tools such as GraphViz
[9]. Because the alarms are reduced to a single link between distinct hosts,
as opposed to full enumeration of the alarm log, visualizations produced are
compact and easily digestible by a human analyst.

The remainder of this paper is organized as follows. Related work is reviewed
in Section 2. An overview of the experimental environment and a discussion of
representing alarms as directed graphs is provided in Section 3. The PageRank
algorithm is discussed in Section 4. We present our results in Section 5, and
provide examples of attacks which were discovered using our technique. Section
6 presents concluding remarks.

2 Related Work

Prior research in the area of analyzing intrusion detection alarms has focused
mainly on the classification of alarms as either false or true attacks. Julisch pro-
poses a classification system using cluster analysis to identify the root causes of
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alarms in order to remove false positives from the system in [13,14]. A technique
employing machine learning in conjunction with cluster analysis to identify gen-
uine attacks based on previously labeled attacks is described by Pietraszek in [28].

Our research draws inspiration from the field of Attack Graph generation.
Attack Graphs are used to model the set of possible actions that could result in
a compromised network. As described by Lippmann and Ingols in [17], research
on Attack Graphs has focused on three areas. The first is the modeling of net-
work connectivity and known vulnerability findings as a means of enumerating
the options available to an attacker to successfully compromise a target host
[1,2,11,12,20,21,22,29]. The second is the definition of formal languages used to
describe these graphs, as well as the conditions under which state transitions
within them are allowed [5,30]. The third thrust of research has focused on
grouping large numbers of intrusion detection alerts by compiling end-to-end
attack scenarios or strategies based on Attack Graph analysis as discussed by
Ning, et al. in [21,22,23].

Although various works [25,29] have discussed methods for the use of proba-
bilistic processes to analyze Attack Graphs, they generally make the assumption
that the values which describe the probability of a state transition are predefined.
This is addressed by Mehta, et al. in [19], who provide a method for ranking At-
tack Graphs using link analysis techniques to find the values algorithmically.
After the ranking values are computed for an Attack Graph, the nodes with the
highest ranks are highlighted as those which have the greatest probability of be-
ing involved in an attack. Starting with these marked nodes, an analyst can then
focus their attention on the most important portions of the Attack Graph, and
use the information contained therein to develop mitigation strategies. It is this
concept that we extend in our work by applying a similar analysis technique. Our
approach differs from previous work in that rather than use Attack Graphs, we
construct an Alarm Graph using the set of intrusion detection alarms triggered
for a specified time period. A second key difference between our approach and
the previous work is that we augment this graph with data on known attacks,
and use link analysis techniques to gain deeper understanding as to how the
known attacks influence other nodes in the graph.

3 Preliminaries

3.1 Data Collection

The alarms used in our analysis are generated by a set of intrusion detection
sensors (IDSs) representing all major vendors. As such, our technique is technol-
ogy neutral. The alarms are collected at a central Enterprise Security Manager
(ESM) which consolidates them for display in a Security Operations Center
(SOC). The ESM has the ability to maintain hot lists of suspicious IP addresses.
If an alert is received for an address on this list, the alert is marked for higher
priority review by SOC personnel. The ESM performs other automated analysis
that is out of the scope of this paper.
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Alarms are stored temporarily in a database on the ESM, and are periodically
extracted and stored in a permanent data warehouse. The data warehouse was
custom built to facilitate off-line analysis. We automatically retrieve the set of
alarms used during our analysis via a query to the data warehouse, eliminating
any need for manual intervention.

3.2 Modeling Alarms as Directed Graphs

Definition 1. The set of all intrusion detection alarms A is a set of 5-tuples
a =< t, s, d, g, n > which capture the information contained in an IDS alarm.

Each a ∈ A is comprised of the sensor type t, either host based or network
based; the source IP address of the attack s; the destination, or target IP of the
attack d; the alarm signature g which describes the perceived malicious activity;
and a count n describing the number of times this combination repeats. This
information is stored as a table in a data warehouse, and is easily retrievable.

Table 1. Typical intrusion detection alarms

Sensor Source Target Signature Count
Type IP IP

Network 10.1.1.1 10.1.1.3 Share Enumeration 500

Network 10.1.1.1 10.1.1.3 Buffer Overflow 300

Network 10.1.1.2 10.1.1.3 Buffer Overflow 300

Network 10.1.1.3 10.1.1.4 Share Enumeration 100

Host 10.1.1.4 10.1.1.4 Brute Force Login 10

Definition 2. An Alarm Graph models the set of alarms A as a directed graph
G = (V, E). The set of vertices represents the IP space of A, and the set of edges
models the set of detected alarms between the various IP addresses.

Using the set of alarms A, we generate a directed graph G = (V, E). We define S
as the set of distinct source IP addresses, and D as the set of distinct destination
IP addresses. The set of vertices V = S ∪D, such that each v ∈ V represents an
IP address from the set of alarms A. It is important to note that S and D are
not disjoint, and in fact S ∩ D can make up a large percentage of the overall IP
space. A directed edge e ∈ E = (s, d) is drawn corresponding with the direction
of the perceived attack. We deduce the direction of each alarm from the source IP
to the destination IP address. The directed graph G = (V, E) is then generated
such that each IP address in the alarm set is represented as a vertex in the graph,
and each edge represents the detection of one or more detected alarms between
the two vertices. Alarms which are triggered by Host Intrusion Detection Sensors
(HIDS), where the sensor resides on the machine being attacked, are denoted as
self-loops, as the source IP address is not captured by this type of sensor.
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For the purposes of our analysis, the raw alarm data shown in Table 1 is
summarized by the adjacency function fG : S × D → {0, 1}. We define the
adjacency function fG such that if for any s ∈ S, d ∈ D an alarm is triggered
by the IDS, a corresponding entry exists fG(s, d) = 1, representing the directed
edge e = s → d ∈ E. Or,

fG(s, d) =
{

1 if an alarm is triggered from s to d;
0 otherwise.

The alarms are summarized such that independent of how many alarms are
triggered between distinct pairs of hosts, only one edge is drawn. The rationale
behind this approach is that given the high volume of false alarms, the structure
that describes the alarm flow is more important than the actual volume. This
sentiment echoes Chakrabarti, et al. [4] who note during their analysis of web
graphs that the link structure of the web implies underlying social networks. We
extend this concept to the social structures implied by the connections present
in Alarm Graphs. Understanding this link structure provides an effective means
of discovering attacks that would have otherwise gone unnoticed. The results
are such that the IDS alarms which are shown in Table 1 are modeled as the
directed graph shown in Figure 1.

Fig. 1. Intrusion detection alarms from Table 1 as a directed graph

4 The Ranking Algorithm

We employ Page and Brin’s PageRank algorithm [3,27] to analyze our Alarm
Graphs. The page rank algorithm was originally designed to rank the relative
importance of a web page among the set of all pages in the World Wide Web.
PageRank utilizes the link structure provided via hyperlinks between web pages
to gauge this importance. Each hyperlink from a page to a target page is con-
sidered a vote, or endorsement of a page’s value by the page which links to it.
PageRank is computed recursively, and as such, any page that is linked to from
a page that has high rank will itself receive a higher rank due to the fact that
an important page has linked to it. A random surfer model is assumed, in which
a user selects a random starting point and navigates the web via random clicks
to other pages. If a surfer lands on a page with no outbound links, known as a
dangling state, they are assumed to start the process again from a new random
location. It is also assumed that at any point, a surfer can randomly jump to
a new starting point. This random re-entry is captured via a damping factor γ,
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which is divided by the number of nodes in the graph, and added to all other
nodes equally. This model yields Eq. 1.

PR(vi) =
(1 − γ)

N
+ γ

∑

vj∈IN(vi)

PR(vj)
|OUT (vj)|

(1)

The first term of this equation represents the probability of a node being
reached via a random entry into the graph, either through a bookmark or the
surfer typing a known URL into the browser. The second term is the summation
of the probabilities given to a state from all nodes that link into the node. As
such, {v1, v2, v3...vn} ∈ V are the vertices in the web graph, IN(vi) is the set
of pages that link in to vi, |OUT (vj)| is the number of links out of vj , and N
represents |V | [3,27].

The output of the PageRank function is given by the vector PR=(pr1, pr2, ...,
prn) where pri represents the rank of vertex vi. The values of PR correspond to
the entries of the dominant eigenvector of the normalized adjacency matrix of
G. This eigenvector is defined as:

PR =

⎛
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pr2
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prn

⎞

⎟
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where PR is the solution to:
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⎝
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⎞

⎟
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⎟
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⎛
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⎝

α(v1, v1) · · · α(v1, vN )

α(v2, v1)
. . .

...
α(vN , v1) · · · α(vN , vN )

⎞

⎟
⎠ PR

using the adjacency function:

α(vi, vj) =
{ 1
|OUT (vj)| if an edge exists from vi to vj ;

0 otherwise.

This algorithm models the probability that a user who is randomly surfing
the Internet will land on a given page [3,19,27].

4.1 Extending PageRank to Alarm Graphs

We extend the concept of ranking web graphs to ranking Alarm Graphs in the
following manner. Each alarm in the alarm set has the potential to represent a
genuine attack. For the purposes of our analysis, we think of an attack as a state
transition from the node representing the attacker to a successful compromise of
the target IP of the alarm. Following this logic, each path in the Alarm Graph
represents a potential path of compromise by an attacker through the monitored
network.
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Using Alarm Graphs, we model the potential paths that an attacker could
take through the network, as detected by the intrusion detection sensors, in lieu
of the web graph which is proposed in the original PageRank discussion. Using
this model, we can then analyze which nodes in the graph have the highest
probability of being visited by an attacker, given random entry into the Alarm
Graph.

The use of the PageRank algorithm requires that we model the IDS alarms
as an ergodic Markov model. Simply put, ergodicity of a Markov model means
that every state in the graph is reachable from every other state, given sufficient
time. Ergodicity also guarantees that the model will converge to a stable state
given sufficient time [8]. The model generated using IDS alarms is not ergodic
without some modification. We remedy this in the same manner as is proposed
in the original PageRank paper [27], by creating a link from all dangling states
to all other nodes in the graph, where a dangling state is defined as a state in
the graph from which no outbound links originate. The intuition here is that if
an attacker reaches a dangling state, or the end of a potential attack path as
detected by the IDS, that they can begin a new attack by jumping randomly
to another portion of the graph. The PageRank algorithm captures the effect
of this random re-entry into the graph via the damping factor, as described in
Equation 1.

Fig. 2. Ideal coloring of an Alarm Graph

Ideally, when using this approach we would produce rankings in which nodes
undergoing genuine attacks receive the highest ranks, and as the level of risk for
a host decreases, so does its corresponding rank. Using these ranks, we would
like to produce visualizations that highlight nodes of highest risk as shown in
Figure 2a. However, in order to accomplish this consistently, we must incorporate
additional information into the graph prior to executing the ranking algorithm.

4.2 Incorporation of Known Attacks

The results of data analysis are known to improve if the analysts (or algorithm)
are able to include additional up front knowledge of the data set [7]. The data
warehouse that stores our intrusion detection alarms also contains a labeled data
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set of known attacks that have been identified by the SOC during the course of
monitoring the network. We will refer to this data as the set of known security
incidents. Prior to ranking the Alarm Graph G, we augment the graph with this
data in a manner that improves the quality of the ranking output.

The graph augmentation occurs as follows. In the same manner that a link from
one web page to another can be considered a vote or endorsement for the target
page, the existence of an edge to a given node in the Alarm Graph can be consid-
ered a vote that the targeted node is involved in an attack. Extending this notion,
if we know for certain that a given node is involved in an attack, we would like
to observe how this fact influences the other vertices in the graph. We accomplish
this by annotating the graph with a set of n auxiliary nodes, each of which casts
a vote for a single known attacker or victim. The size of n is variable based on the
size of the Alarm Graph as a whole. For the purposes of our experiments we uni-
formly set n = 50. Our primary goal is to evaluate the risk that other nodes are
extensions of known attacks. Our analysis does not evaluate physical network con-
nectivity, rather we examine the existence of traffic between pairs of hosts that has
been perceived as malicious by the IDS. It is important to note that no edges are
drawn toward auxiliary nodes, which ensures that no auxiliary vertex will appear
as a highly ranked host. We illustrate this technique in Figure 2b.

Given this annotated Alarm Graph we can now calculate the influence of
known attackers and victims on the remaining vertices in the graph using the
PageRank algorithm. PageRank is computed recursively, and once the model
converges, we are able to observe the influence of these high ranking nodes on
the network. The results provide us with a realistic representation of those nodes
that have the highest risk of being extensions of known attacks.

5 Results

To test the efficacy of our approach, we conducted a series of experiments using
intrusion detection data from a production network. The results show that our
technique can be used to conduct a more complete analysis of the data produced
by the intrusion detection infrastructure. The data consisted of all alarms pro-
duced within a 24-hour period. Our experiments were conducted over a 30-day
period using data produced by 125 intrusion detection sensors. On average we
observed 1,800 distinct source IP addresses and 1,000 target IP addresses per
day. Note that for all examples, the true IP addresses have been obfuscated to
protect the confidentiality of the subject network. The total number of alarms
received at the SOC averaged 10,000 network IDS (NID) alarms, and 40,000 host
IDS (HID) alarms per day. On average, computation of the ranks took between
2 to 5 minutes on a 1 CPU machine with 1Ghz processor and 2 Gbyte RAM,
depending on the alarm volume for that day.

5.1 Emergence of Unseen Hosts and Forensic Analysis

During the course of our experiments we discovered that the vast majority of
incidents were attributed to a small subset of the overall IP space. This has the
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adverse effect of causing the analysts to subconsciously focus on this familiar
subset of IP addresses, and potentially overlook attacks occurring on other hosts.
By using our algorithm, we were able to highlight newly emerging hosts for
analysis. As the structure of the underlying Alarm Graph changed over time, new
IP addresses moved to the top of the IP ranking automatically. Newly appearing
hosts increased in rank and importance if they had a direct connection from an
IP address that had been identified as a known attacker or target. This happened
as a result of the new host inheriting a portion of the high rank associated with
the known attacker or victim. A new host’s rank also rose if it was the victim of
a coordinated attack wherein it was targeted by multiple attackers. In either of
these scenarios, our algorithm consistently marked these hosts as high risk.

5.2 Anomalous Alarm Pattern Recognition

By algorithmically identifying anomalous link patterns in the Alarm Graphs,
we are able to highlight sets of alarms which have a higher probability of be-
ing genuine attacks. For example, the cluster of alerts shown in Figure 3 is an
uncommon structure in the graph and represents the emergence of a Denial of
Service (DoS) Attack.

5.3 Identification of Missed Attacks

Figure 4 demonstrates the ability of our algorithm to discover attacks which
were missed by the SOC. The darker nodes in the graph are those hosts for
which a known incident had occurred. The ranks of these vertices were artifi-
cially inflated using the previously described technique. The lighter color nodes
represent hosts which inherited these high ranks, and were marked for inspec-
tion by our algorithm, but had not been discovered by the SOC. This example

Fig. 3. Probable denial of service attack
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shows a brute force dictionary attack against an FTP service running on multi-
ple servers. The SOC detected a portion of this attack, and opened an incident
record. However, the analyst only identified half of the victims of the attack.
The upper half of Figure 4 illustrates those hosts which were marked as targets,
while the lower left portion shows those which were missed. By elevating the
rank of the attacking node, our algorithm highlighted the additional three hosts.
Upon inspection, these were found to be victims of the same attack. We have
included packet capture data from the alarms to further illustrate the attack.

Fig. 4. Detection of partially identified dictionary attack

5.4 Automated Watch List Generation

Watch lists of suspicious IP addresses are maintained by the ESM and are used
to monitor the alarm stream for any alerts generated by these hosts. Currently,
these watch lists are populated manually. By using the results generated by our
algorithm, it is now possible to build these watch lists automatically. By using
the ranked output, we can successfully predict those IP addresses which have
the highest probability of being involved in an attack during the subsequent day.
Evaluation of our watch lists showed that on average we were able to successfully
predict 83% of the security incidents that were manually flagged in a 30-day
sample of historic alarm data. This evaluation was conducted using a watch list
comprised of the 100 highest ranked IP addresses, or 3% of the roughly 3,000
unique IP addresses that triggered an alarm in the SOC on a given day.

We define successful prediction of an incident as the inclusion of either the
source or destination IP address of the alarms comprising that incident on a
watch list produced by our algorithm. Using our algorithm, we were able to
produce a list of those IP addresses which were suspicious based on the number
distinct attackers, or because they were close to hosts which held high rank in the
Alarm Graph and inherited a portion of this high ranking based on the recursive
calculation of the PageRank algorithm. Figure 5 illustrates the performance
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of the watch lists generated via the ranking algorithm over a 30-day period.
For purposes of completeness, it should be noted that a diminishing return on
investment is observed in watch list size. On average, when the size of the watch
list was reduced to 50, the success rate fell only by 5%. If the size was increased
above 100, the results improved only slightly.

Fig. 5. 30-day trend of incident prediction using a watch list size of 100

5.5 Facilitation of Sensor Tuning

The ranking algorithm sometimes repeatedly identified hosts that received a high
rank, but were not involved in genuine attacks. When this behavior was observed
over a period of time, we were able to use the patterns identified by the algorithm
to filter the alarms that were causing the fictitious spikes. This type of filtering
improves the overall effectiveness of the IDS infrastructure as it reduces the load
on the ESM and the analysts, and improves the overall quality of the incoming
alarms, resulting in a higher number of genuine attacks being detected.

5.6 Visualization

Figure 6 shows a subgraph of an Alarm Graph generated from production IDS
data. The full Alarm Graph is too large to display in a readable manner in
print. This figure illustrates two known attacks. The nodes are colored so that
the darker the color of the vertex, the higher its rank. The darkest vertices in
the graph are those hosts which are known to be involved in attacks, and are
shown with the corresponding auxiliary nodes added. Those vertices which are
a lighter shade of gray have inherited high rankings, and will appear on the
watch list generated at the end of the ranking routine. Additional gray nodes
exist in the form of hosts which have received IDS alarms from multiple sources.
These atypical patterns are caught by our ranking algorithm, and these hosts
will appear on the watch list as well.
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Fig. 6. Colored Alarm Graph from production network, including auxiliary nodes and
attack signatures

The visual representation of the colored Alarm Graphs provides a compact
model that can be used by a human analyst to quickly triage the monitored
network, providing visual cues as to which systems require immediate attention.
Because the alarms are summarized into a single edge per pair of hosts for which
an alarm was raised, the graphs grow slowly as compared to the overall alarm
volume, and are easily understood for realistic networks.

5.7 Limitations

Certain type of attacks cannot be detected using our technique. These can be
classified into the following categories.

1. Atomic Attacks. Attacks which are comprised of a single action are very
difficult to detect using our technique. However, rules generally exist in the
ESM to automatically detect this type of attack. Once they are labeled in
the data warehouse the ranking algorithm will detect any propagation of
these attacks to other nodes.

2. New Hosts. In this situation, a new IP address appears in the alarm logs
that has not been previously observed. Because the host was not previously
in the alarm logs, it will not be included in any watch lists. This type of
host can be detected using our technique for off-line analysis if one of two
conditions is true. First, if the host is a descendant of a node in the Alarm
Graph which is known to be involved in an incident it will inherent a portion
of the high rank and appear in the watch list. Secondly, the host will be
flagged if it is linked to by a sufficient number of distinct attackers.



492 J.J. Treinen and R. Thurimella

6 Conclusion

The PageRank algorithm, when applied to annotated Alarm Graphs, is a useful
tool for efficiently and methodically analyzing large sets of intrusion detection
alarms. Our technique provides an effective means of performing forensic analysis
to uncover attacks which were overlooked during real-time monitoring. Addition-
ally, we are able to generate watch lists of IP addresses which are known to have
high risk of being involved in an attack. The watch lists are comprised of hosts
that are in close proximity to a known attacker or victim, or that are a member
of an anomalous structure in the Alarm Graph.

The incorporation of known attacks into our analysis allows us to drastically
improve the quality of our results. Prior to annotating the Alarm Graphs with the
incident data, the rankings produced were of minimal value, as the distributions
reflected the random nature of the underlying graph. However, by including the
attack data we are now able to highlight those hosts that deserve a higher rank.
By forcing these high ranks, we are able to observe the ripple effect of malicious
hosts throughout the network. This provides an effective means of decreasing
the likelihood that an attack will be lost in the noise of the false alarms.

The algorithm is being improved in the following ways:

1. Removal of Auxiliary Nodes: The main drawback of the addition of auxiliary
nodes is that the size of the graph increases with each incident. By adjusting
the probabilities of the incoming edges of a victim, auxiliary nodes will no
longer be required.

2. Parallel Edges: Parallel edges will be drawn for distinct alarm signatures
and severities which will allow us to assign more weight to nodes which
trigger multiple discrete alarm signatures, or for those hosts which trigger
high severity alerts.
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Abstract. This paper describes an attack concept termed Drive-by
Pharming where an attacker sets up a web page that, when simply viewed
by the victim (on a JavaScript-enabled browser), attempts to change the
DNS server settings on the victim’s home broadband router. As a result,
future DNS queries are resolved by a DNS server of the attacker’s choice.
The attacker can direct the victim’s Internet traffic and point the victim
to the attacker’s own web sites regardless of what domain the victim
thinks he is actually going to, potentially leading to the compromise of
the victim’s credentials. The same attack methodology can be used to
make other changes to the router, like replacing its firmware. Routers
could then host malicious web pages or engage in click fraud. Since the
attack is mounted through viewing a web page, it does not require the
attacker to have any physical proximity to the victim nor does it require
the explicit download of traditional malicious software. The attack works
under the reasonable assumption that the victim has not changed the
default management password on their broadband router.

1 Introduction

Home Networks & Drive-by Pharming. Home broadband routers are becoming
more popular as people wish to share broadband Internet access with, or provide
wireless access to, all computers in their homes. These routers typically run a
web server, and configuration of the router is done through a web-management
interface. People assume that this internal network is safe from outside attack-
ers since home routers are usually configured by default to reject all incoming
connection requests.

However, we show that it’s possible to construct a web page that, when sim-
ply viewed, can manipulate its visitors’ home routers, changing its settings. The
attacker can then selectively siphon off the victim’s internet traffic to an attacker-
controlled server, leading to the theft of sensitive credentials and identity infor-
mation. The attack, which we call Drive-by Pharming can also enable spread
of malware, target phishing attacks, or starve the visitor from critical security
updates. The attacks do not require the attacker to have any physical prox-
imity to the victim’s machine. Also, the attack methodology applies equally to
wired and wireless routers. The attack only assumes that the victim is running a
JavaScript-enabled browser and that the default management password on the
router has not been changed. Moreover, many standard protection mechanisms
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for wireless networks (e.g., encrypting the traffic through WPA), do nothing to
stop these attacks.

In more detail, the paper describes a web-based automated method to detect
routers on a victim’s internal network and then change the router settings using
JavaScript-generated host scans and a cross-site request forgery (using HTTP re-
quests). We then describe attacks stemming from this internal network scanning,
delving into the effects of changing the DNS values on home routers and how
this can be used by attackers to perform more successful and difficult to detect
phishing scams. We also present ways for this attack to become self-sustaining
and spread in a viral fashion between routers using human users as a trigger for
its spread.

Combining the results of an informal survey that found that 50% of home
users use a broadband router with default or no password [11] and a formal
study that shows 95% of home users allow JavaScript in their browsers [13], we
estimate that 47.5% of all home users (hundreds of millions of users [8]), are
potentially susceptible to the attacks we describe.

1.1 Phishing and Pharming

Phishing is a prevalent scam in which attackers masquerade as an authority
in an attempt to obtain identity credentials from victims. It is a significant
industry, but Gartner estimates that approximately 3% of a phishing attack’s
targets will fall victim [15]. Violino explains how scammers can dramatically
increase their yield by spoofing DNS records for a victim domain [12]. When DNS
records are spoofed, instead of going to the “correct” web site corresponding to
a web site such as bank.com), victims will navigate to a fraudulent site that
appears to be legitimate. The browser will even display bank.com in its address
bar. The scammer can stealthily usurp all web traffic directed at the victim
domain. These DNS spoof attacks, or Pharming attacks, are harder to detect
than ordinary fraudulent web sites since the address bar on the browser displays
the domain of the spoofed site. There is no need to lure victims to a phishing
site when they will find a pharmed site on their own—removing the possibility
that someone will catch an attack based on the lure. Pharming can easily be
accomplished when an attacker can change settings on home routers. Traditional
techniques for pharming include directly compromising a DNS server, poisoning
its cache, or even compromising the HOSTS file on an end-user’s PC. This paper
demonstrates a different way to engage in pharming—namely, by compromising
the DNS settings on the end-user’s home broadband router. The paper further
shows a relatively easy-to-carry-out mechanism for achieving this aim through
the use of a specially crafted web page.

1.2 Attacking a Home Router

Most end users create a small internal network at home by purchasing a consumer
router (such as a Linksys, Belkin, Netgear, D-Link, to name a few). For the

bank.com
bank.com
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entirety of this paper, we will discuss attacks on consumer or home routers—
those purchased for use in homes and small businesses, not commercial-grade
routers. Any reference in this paper to a “router” indicates the consumer routers
and not commercial grade ones.

Assumptions can be made about the internal IP address of a deployed con-
sumer router; alternatively, one can guess the visitor’s internal IP address range
(or detect it using a simple Java Applet [6]) and initiate a JavaScript-based host
scan via the victim’s browser to detect consumer routers with HTTP-based ad-
ministration. Once a router is identified, the malicious (external) web site can
use the victim’s browser as a conduit to take control over the router on the vic-
tim’s (internal) network. This leads to many attack scenarios, like modifying the
router’s DNS settings or changing its firmware, which we propose and describe in
detail. More details and proposed countermeasures are discussed in our related
Technical Report [5].

Overview. Section 2 describes related work. In Section 3, we describe how an in-
ternal network is identified, and what types of attacks emerge from control over
a home router. We continue by discussing how attempts to attack a router from
inside an internal network can be accomplished quickly and quietly. Section 4
describes the technology and techniques used to discover and attack an inter-
nal home router from an external web site, describing some of the JavaScript
code utilized. In Section 5 we discuss the different types of attacks that can be
mounted by controlling a home router and how these may spread in a socio-viral
fashion.

2 Related Work

Internal Net Discovery. Kindermann has written a Java Applet that discovers
a host’s internal (i.e., NAT’ed) IP address [6]. Simply because this detection is
accomplished via a Java Applet, and 94% of people on the Internet leave Java
enabled [13], his method of internal IP discovery can be considered quite reliable.
He also describes ways to prevent sites from using his technique to determine a
host’s internal IP: disable ActiveX, Java, and all other plug-ins.

Grossman [3] shows that once an internal IP is obtained, host scanning using
JavaScript is easy by attempting to load images or scripts from a host on various
ports. Likewise, scanning for web-serving hosts on a network is simple, and a list
of web-serving IPs can be quickly identified. SPI Labs [17] show that existing
image names and dimensions combined with the default password used to access
the router can provide a “fingerprint” giving away the type of router. We use
this technique combined with knowledge of default router passwords and default
router DHCP schemes to quickly identify routers on internal networks — then
reconfigure them. Tsow et al .[11] show how router firmware can be changed by
accessing its configuration web page.

Building on these works, we illustrate stealthy attacks on internal networks
that manipulate a router’s settings or completely takes control by replacing
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the router’s firmware. The attacks are both difficult for service providers and
victimized consumers to detect, and also exhibit high success rates.

Bad Security Assumptions. According to Microsoft, 3.5 million Windows com-
puters are infected with back-door trojans [1,16]; many infections are caused by
web pages that automatically trigger a download of an executable or ActiveX
control which the targeted user must authorize by clicking “run” when prompted.
People blindly authorize these drive-by, possibly malicious executables because
of repeated prompts (authorizing is the only way to stop them) or because they
are unaware what the prompt means.

Drive-by virus infections are amplified when internal networks are not secured.
Oppliger [9] suggested that many people who employ firewalls as a security
measure might gain a false sense of complete security on the internal network.
He claims they assume it will keep all bad traffic out of the internal network,
thus eliminating the need for internal network protections. We show this is not
the case, since an external web site set up by the attacker can attack the victim’s
internal network, using the browser as a conduit; the intrusion is accomplished
through HTTP originating from inside the internal network — access allowed
by nearly all firewall configurations. We stress that our proposed attacks do not
deal with drive by personal computer infections; instead, the infection is targeted
at the home routers and uses standard Web technologies (which have legitimate
uses).

JavaScript Malware. It has been proposed that distributed denial of service
(DDoS) attacks can be mounted from a set of clients visiting an attacker’s site [7].
Using JavaScript (or similar technologies) a web site can send instructions to all
of its visitors to create traffic at a victim’s web site. We extend this DDoS idea
by using compromised routers (which are more likely to remain in an attacker’s
control) as well as corrupt DNS records to create a large amount of unwanted
traffic to a victim’s site.

3 Intuition

Figure 1 shows how an internal network can be discovered and attacked, changing
the configuration of a home router. Related work has exposed steps 1–4 of the
attack shown in Figure 1. This paper explains how to accomplish step 5 (changing
settings on a router) and what types of attacks this enables.

3.1 Attack Scenarios

Access to a home router from the inside can lead to its complete compromise,
making it a zombie performing actions at an attacker’s will. This threat is signifi-
cant since most zombified hosts are personal computers, which may be restarted
or removed from a network frequently in the case of notebook computers. A
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Fig. 1. How a home network’s routers are attacked with Internal Net Discovery. (1) A
client loads requests a page from the attacking server through the home router. The
page is rendered and (2) the client’s internal IP address range is either guessed or an
Applet is run to detect the client’s internal IP. (3) JavaScript requests resources from
hosts on the network, which (4) throws JavaScript errors which the client-run page
interprets to discover and fingerprint the victim’s router. (5) The script attempts to
change the discovered router’s settings.

home router is sedentary, and often left powered on, or unattended, for months
at a time, resulting in a zombie with a persistent Internet connection that more
reliably responds to its controller. Additionally, home router compromise can
lead to subversive DNS spoofing where DNS records are compromised on victims’
local networks causing them to visit malicious sites though they attempt to
navigate to legitimate ones such as http://www.securebank.com.

Security Patch DoS. An attacker could redirect requests for Windows up-
dates or antivirus updates through his own server, which can starve affected
clients from some critical patches: this leaves victims vulnerable to security
flaws even after the are patched.

High-Yield Phishing. An attacker can redirect victims to his own copies of
web sites that seem hosted at legit domains (like bank.com) with intent to
harvest their passwords; the victims will most likely be oblivious of such a
change.

High-Yield Malware. Using DNS spoofing through the compromised router,
an attacker can pose as an authority (such as an antivirus website) suggesting
that victims install malware that is advertised as critical software. To identify
especially vulnerable targets, the attacker can record IP addresses of routers
he compromises using Drive-By Pharming, and share this list with other
people who have nefarious plans.

http://www.securebank.com
bank.com
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3.2 Internal Net Discovery

Since it is assumed that a network behind a firewall is safe from intruders [9],
most commercial home network routers (including wireless routers used for shar-
ing a broadband connection) are pre-configured out of the box to disallow admin-
istration features over the Internet, or Wide-Area Network (WAN) interface but
allow administration over the internal network or Local Area Network (LAN)
interfaces.

But as we describe, an attacker can still access the LAN-side configuration
page from the WAN port due to the methods employed by many home users to
make their single broadband connection accessible to their whole family. Most
often, people purchase an inexpensive personal router/switch device to provide
WiFi access to the Internet or to share a single broadband Internet connection
with multiple computers. These devices usually include a NAT firewall and a
DHCP server so connected computers do not have to be manually configured.
Thus IP addresses are distributed to computers on the LAN from a reserved
private IP space of 10.*.*.* or 192.168.*.*. Internet traffic is then routed to
and from the proper computers on the LAN using a Network Address Transla-
tion (NAT) technique. Because of the employment of NAT, an attacker cannot
simply connect at will to a specific computer behind the router — the router’s
forwarding policy must be set by the network’s administrator in anticipation
of this connection, thus preventing malware from entering the network in an
unsolicited fashion. If a piece of malware were able to run on one of the com-
puters behind the router, it would more easily be able to compromise devices —
especially if it knows the IP addresses of other devices on the network. This is
possible because it is often wrongly assumed that the router (or its firewall) will
keep all the “bad stuff” out, so there is no dire need for strict security measures
inside a home network.

3.3 Identifying/Configuring Routers

Once the internal IP of a victim has been identified, assumptions about the
addressing scheme of the internal network can be made. For example, if Alice’s
internal IP is 192.168.0.10, one can assume that all of the computers on the
internal network have an IP starting with 192.168.0. This knowledge can be
used to scan the network for other devices, such as the router (steps 3, 4, 5 in
Figure 1).

Using JavaScript (or similar logic developed with HTML and CSS), a mali-
cious web page can “ping” hosts on the internal network to see which IP addresses
host a live web-based configuration system.1 More JavaScript can be used to load
1 Most off-the-shelf routers are pre-configured to be the lowest address in the range

they serve. For example, if Alice has internal IP 192.168.0.10 an attacker can
comfortably assume the router has internal IP 192.168.0.1. This greatly reduces
the number of addresses that need to be checked before attempting to compromise
a router; though it is not always accurate, this assumption should be acceptable in
most cases.
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images from these servers — images that will be unique to each model of router,
giving the malicious software a hint about how to re-configure the host.

When a router’s model is known, the malicious scripts can attempt to access
configuration screens using known default username/password combinations for
that specific router model. By transmitting requests in the form of a query string,
the router’s settings can easily be changed. The preferred DNS servers, among
other settings, can be manipulated easily if the router is not protected by a
password or if it uses a default password.

Owners of these routers are not required to set a password! Since administra-
tion via the WAN port (the Internet) is turned off by default, some manufacturers
assume no administration password is needed. Membership of a router’s internal
network is not sufficient to determine that a person is attempting to change the
settings of a router: it could instead be JavaScript malware as described.

4 Attacking a Network

An attacker who can detect a victim’s internal network has the ability to attack
the router controlling the network, and thus control any data going through
the compromised router. To take control, first an attacker must discover the
internal IP address of the victim’s router. Next, the attacker must determine
the make or model of the router in an effort to understand its configuration
scheme, and then eventually accesses the router and manipulates its settings
from the victim’s computer. All of this can be done in an automated fashion,
swiftly in most cases—when routers are configured with default passwords.

4.1 Router Discovery

Many home routers have a standard internal IP address (e.g., 192.168.1.100). In
other cases, the malicious web-site can deploy a very simple Java Applet [6] to de-
tect the internal IP. Given the internal IP address of a host (e.g., 192.168.0.10),
other IP addresses that are likely to be on the internal network are enumerated
(e.g., 192.168.0.1, 192.168.0.2,..., 192.168.0.254). Some JavaScript code
then executes to append off-site <script> tags to the document resembling the
following:

<script src=‘‘http://192.168.0.1’’></script>

These tags tell the browser to load a script from a given URL and are com-
monly used to load off-site scripts with many purposes. One example of com-
monplace use of this is advertisement tracking: a web site embeds a script from
http://adsformoney.com in order to display advertisements specified by the
adsformoney.com web service. The script must be loaded from the advertise-
ment company’s site and not the publisher’s site so that the advertisement com-
pany can verify the integrity of the script that is served. The effect of using
script tags in this way is that a web-based request can be sent to an arbitrary
server (or router) from a client’s browser. Requests can thus be sent to another
host on a victim’s internal network through that victim’s browser.

http://adsformoney.com
adsformoney.com
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It is expected that all of these <script> elements will fail to load and generate
a JavaScript error — the key is that they will fail in different ways. If the specified
URL is a valid web server, the browser will fetch the root HTML page from that
server and fail since the root HTML page is not valid JavaScript. If the specified
URL is not serving web pages, the request will time out.

Leveraging error information, one can also determine the router’s make and
model. In particular, the router has a web server which might host an image
(e.g., the manufacturer’s logo). Using an <IMG> tag with onload() or onerror()
handlers, one can detect the presence or absence of an image to determine which
router is used.

4.2 Manipulating Routers

Routers with web-based configuration rely on HTML forms to obtain configura-
tion data from a user. While most utilize the HTTP POST method to send data
from the web browser to the router, many routers will still accept equivalent
form submissions via HTTP GET. This means that form data can be submitted
in the URL or query string requested from the router.

For example, the D-Link DI-524 allows configuration of the DMZ host through
a web form. A DMZ or demilitarized zone host is a host on the internal network
that is sent all incoming connection requests from the WAN. The form con-
tains the input variables dmzEnable and dmzIP4. When sent the query string
“/adv dmz.cgi?dmzEnable=1&dmzIP4=10”, the DI-524 enables DMZ and sets
the host to 192.168.0.10. Similar query strings can be constructed for other
configuration forms.

Swift Attack Scenario. Additionally, it is important to note that all of these
seemingly sequential attack stages can be accomplished in one step. Consider a
web site whose only aim is to set the DMZ host to 192.168.0.10 on all networks
using DI-524 routers with default passwords (the DI-524 has a null administrator
password by default). The author of the site could embed this script tag in his
HTML to attempt this attack:

<script src = ‘‘http://<ip>/adv dmz.cgi?dmzEnable=1&dmzIP4=10’’></script>

This attack will only fail if the owner of the victim network has set a password
or is not using a DI-524. Following is another plausible example that specifies a
default username and password for a router:

<script src = ‘‘http://root:pwd@<ip>/apply.cgi?DNS serv=p.com’’></script>

5 New Attacks

We have shown how routers’ IP addresses can be discovered and their configu-
rations can be changed using JavaScript. This leaves networks that are vulnera-
ble to Internal Network Detection open to DNS spoofing, or Pharming, as well

/adv_dmz.cgi?dmzEnable=1&dmzIP4=10
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as complete router control or zombification. Additionally, compromise of home
routers has the potential to spread in a viral fashion, by turning routers into
sources of the exploit, then advertising their existence.

5.1 Pharming

We implemented a DNS-configuration change by compromising a D-Link DI-
524. By accessing a website with simple Java and JavaScript (as documented
in Section 3.2) to detect our internal network we found the router’s IP address.
Additionally, the JavaScript was able to identify our router model by successfully
loading an image. We stress that this image was available from the router without
authenticating. Only web page requests required authentication on this model.
Once the router model was identified (by IP address and image loaded), a request
to change the DNS server settings was sent to the router:

<script src = ‘‘http://192.168.0.1/h wan dhcp.cgi?dns1=w.x.y.z’’></script>

This changed the DNS server address distributed by the router to w.x.y.z, one
other than the one specified by our service provider. We set up a test (rogue) DNS
server at this location, and included fraudulent DNS records for some popular
web sites. When we attempted to access these web sites, the DNS requests were
directed to the new DNS server specified by our exploit, and IP address to which
the requests were resolved directed us to a fake page. We developed similar
proof of concepts for the Linksys WRT54GS and NetGear WGR614 routers.
We remark that when DNS server settings change, the browser will do a fresh
look-up for each domain, so measures like DNS pinning [4] will fail to provide
protection.

5.2 Growing Zombies

The DNS-server address-changing attack relies on the attacker controlling a
DNS server. Another method of attack would be to modify the router’s soft-
ware to contain persistent false records [11]. The malicious firmware can be pre-
configured to serve bad DNS data itself. Alternatively, the firmware can “phone
home” to an attacker’s server and identify itself as a compromised “zombie.”
This can be done much in the fashion that malware currently “zombifies” com-
puters. These zombies can be configured to perform DDoS attacks or to allow
the attacker to change the set of spoofed DNS records at any time.

A victim, who visits the attacker’s web site, becomes vulnerable to internal
network discovery, and thus router is compromised. Next, the malicious web
page tells the router to enable “WAN port administration” so that an arbitrary
Internet host can configure it. The victim’s browser then contacts the attacking
server to begin “updating” the router’s firmware. The attacker’s server, easily
detecting the external IP of the router (which is the same as the external IP
of the victim’s computer) then accesses the router over the WAN port. The
server uploads new firmware to the router, which is then configured to behave
in any way the attacker desires. If desired, the attacker can ensure the router
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will behave as it did before compromise, but with subtle modifications such as
remote control. The victim’s router is now a zombie under the control of the
attacker.

Proof of Concept. We implemented this router firmware modification by com-
promising a D-Link DI-524 as described. A client within the DI-524’s internal
network accessed our malicious web page. The web page targeted the DI-524,
which was configured with default settings (no password). The web page caused
the router’s WAN port configuration to become enabled. Next, the web page
sent a request-based message back to its’ host server which used the remote
IP of the request (the victim’s and his router’s external IP) to access the router
with the default password (blank). Finally, the malicious server transmitted new
firmware to the router, changing the version of the firmware on the router.

5.3 Viral Spread

Zombifying routers by replacing firmware can be deployed through a web page
executing JavaScript on one of the router’s internal network hosts. A router
compromised in this fashion is open to a staggeringly large variety of purposes.
There is nothing to say that the new firmware may contain web serving software
and content including the malicious scripts themselves. Effectively, a compro-
mised router could be transmogrified into a router that also serves the virus
that compromised it.

An infected router could be instructed to use search engines to locate web-based
bulletin boards, and post its address to lure readers into viewing its content. This
mechanism would draw unwitting victims to infect their own networks—resulting
in a spread from router to router via human-initiated transmission. This socio-
viral spread, much like the social spread of other malware [10], will depend on the
content of the viral site to spread itself.

This viral spread mechanism is hard to “shut down” since there are presum-
ably many infected routers. In other words, there is no single source that can be
turned off. In contrast, if a single web site hosts malicious code, then the site’s
owner can potentially be contacted for a takedown.

6 Conclusions

This paper described a new attack concept, termed Drive-by Pharming, that
provides an alternate (and in our opinion easy-to-carry-out) method by which
a pharming attack can be mounted. The attacker creates a web page, that sim-
ply when viewed by the victim, changes the DNS settings on the victim’s home
broadband router. From then on, when the victim navigates to his usual web
sites, his data can be siphoned off to an attacker. The victim will likely be un-
aware that this change has taken place since even the address bar on his browser
will indicate that he is viewing a legitimate web page. The attack requires that
the victim run a JavaScript-enabled browser and use the default password on
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their home broadband router – both of which happen reasonably often enough
to make the attack’s implications widespread.

We developed proof-of-concept code to demonstrate the Drive-by Pharming
attack on three popular home broadband routers. We also explained how this
drive-by modification of router settings can be used to help ease the spread of
viruses by denying automated security upgrades and patches to victims.

The attacks demonstrate that even with well-defined security policies, exten-
sive firewall and IPS rules, as well as the growing enforcement of the same-origin
policies on web browsers, attacks based on Internal Network Detection are still
very much possible. These attacks use the victim’s browser as a conduit to their
internal network. As the complexity of both the web and web browsing environ-
ment grow, we expect that many similar attack concepts will be discovered in
the future.
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