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Abstract. We study the interplay of network connectivity and the is-
sues related to feasibility and optimality for probabilistic perfectly reli-
able message transmission (PPRMT) and probabilistic perfectly secure
message transmission (PPSMT) in a synchronous network under the in-
fluence of a mixed adversary who possesses unbounded computing power
and can corrupt different set of nodes in Byzantine, omission, failstop
and passive fashion simultaneously. Our results show that that random-
ness helps in the possibility of multiphase PPSMT and significantly im-
proves the lower bound on communication complexity for both PPRMT
and PPSMT protocols!!
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1 Introduction

We study the fundamental problem of probabilistic perfectly reliable message
transmission (PPRMT), where two non-faulty players, the sender S and the re-
ceiver R are part of a synchronous network modeled as a undirected graph, a
part of which may be under the influence of a unbounded computational power-
ful mixed adversary which is denoted by three tuple (tb, to, tf , tp) and can corrupt
tb, to, tf and tp nodes in Byzantine, omission, failstop and passive fashion respec-
tively. S intends to transmit a message m chosen from a finite field F to R using
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some protocol such that R should correctly obtain S’s message with probability
at least (1 − δ) for arbitrarily small 0 < δ < 1/2. The problem of probabilistic
perfectly secure message transmission (PPSMT) is same as PPRMT except that
the adversary should not get any information about the message.

Intuitively, the allowance of a small probability of error in the transmission
should result in improvements in both the fault tolerance as well as the efficiency
aspects of reliable and secure protocols. What exactly is the improvement? —
this is the central question addressed in this paper. More specifically, we address
the following in the context of PPRMT and PPSMT: (i) When is a protocol
possible in the given network (Possibility) (ii) Once the existence of a protocol
is ensured, what is the minimum communication complexity required by any
protocol to reliably/securely send a message (Optimality), (iii) Finally, how to
design such protocol which satisfies the proven minimum communication com-
plexity bound (Feasibility). Finally, we compare our results with the existing
results for perfectly reliable message transmission (PRMT) and perfectly secure
message transmission (PSMT) and show that randomness and probabilistic ap-
proaches lead to improved communication, phase1 and computational complex-
ities. Moreover results on mixed adversaries reveal higher level of fault tolerance
in the underlying network.

The problem of PPRMT and PPSMT in the presence of static2 threshold
Byzantine adversary was first defined and solved by Franklin et al [4]. As one
of the key results, they have proved, that over undirected graphs PPRMT
(PPSMT) is possible if and only if PRMT (PSMT) is possible!!! Subsequent
works on PPRMT and PPSMT include [14,5].

1.1 Our Contribution

Any reliable/secure protocol is analyzed by the following parameters: the connec-
tivity requirement of the network, the number of phases required by the protocol,
the total number of field elements communicated by S and R throughout the pro-
tocol and the computation done by S and R. There is a trade-off among these
parameter which is well studied in the literature for PRMT and PSMT [9,13]. In
this paper we try to understand this trade-off for PPRMT and PPSMT in the
presence of a mixed adversary, which is done for the first time in the literature
of PPRMT and PPSMT3. The contribution of our paper is four-fold and can be
summarized as follows: (a) We characterize single phase PPRMT and multiphase
PPSMT protocols in the presence of mixed adversary and show that in many prac-
tical scenarios, our characterization shows higher level of fault tolerance in the un-
derlying network, while the extant results offer no such insight. (b) We prove the
lower bound on the communication complexity of any single phase PPRMT and
multiple phase PPSMT protocol tolerating mixed adversary. (c) We also design

1 A phase is a send from S to R or vice-versa.
2 By static adversary, we mean an adversary that decides on the set of players to

corrupt before the start of the protocol.
3 PRMT and PSMT in the presence of mixed adversary is studied in [7].
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polynomial time bit optimal single phase PPRMT and four phase PPSMT proto-
cols whose communication complexity satisfy our proven lower bounds. Our sin-
gle phase PPRMT protocol has a special property that it achieves reliability with
constant overhead when considered with only Byzantine adversary. Similarly our
four phase PPSMT protocol has a special property that it achieves secrecy with
constant overhead when considered with only Byzantine adversary. (d) Finally, we
also compare our bit optimal PPRMT and PPSMT protocols with the existing bit
optimal PRMT and PSMT protocols and cite many practical scenarios where no
bit optimal PRMT or PSMT protocol exist but bit optimal PPRMT and PPSMT
protocol do exists thus showing the power of allowing negligible error probability
in the reliability of the protocols (without sacrificing secrecy).

1.2 Network Model

Following [3], we abstract away the network and concentrate on solving PPRMT
and PPSMT problem for a single pair of processors, the sender S and the re-
ceiver R, connected by n parallel bi-directional channels w1, w2, . . . , wn called
wires such that an adversary having unbounded computing power can corrupt
upto tb, to, tf and tp wires in Byzantine, omission4, failstop5 and passive fashion
respectively. Moreover, we assume that the wires that are under the control of
the adversary in Byzantine, omission, failstop and passive fashion are mutually
disjoint. Note that there is a difference between fail-stop and omission error6. If
some value is sent over all the wires then it is said to be “broadcast”7.

2 Probabilistic Perfectly Reliable Message Transmission

Here we completely characterize the set of tolerable adversaries, prove the lower
bound for communication complexity of any single phase PPRMT protocol and
present efficient/optimal protocol for single phase PPRMT.
4 We say that a player P is under the control of an adversary in omission fashion, if

the adversary can block the working of P at will at any time during the execution of
the protocol. Also, as long as P is alive, it will follow the instructions of the protocol
honestly. The adversary can eavesdrop the data/computation by P but cannot make
P to deviate from the proper execution of the protocol. However, a blocked P can
again become alive at some later stage of the protocol.

5 We say that a player P is under the control of an adversary in a fail-stop manner,
if the adversary can force P to crash at will at any time during the execution of the
protocol. However, as long as P is alive, it will honestly follow the protocol. Also
once P is crashed, it will not become alive again.

6 The fail-stop error models a hardware failure caused by any natural calamity or
manual shutdown. Also the nodes which are fail-stop corrupted cannot be passively
listened by the adversary. On the other hand, nodes corrupted by omission adversary
has listening capability. Thus omission adversary can be considered as a combination
of fail-stop and passive adversary with the exception that unlike fail-stop error, a
node which is crashed once by omission error may become alive during later stages
of the protocol.

7 Any information which is “broadcast” over at least 2tb + to + tf + 1 wires will be
recovered correctly at the receiving end (the receiver can output the majority).
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2.1 Characterization for PPRMT

The existing characterization for PPRMT tolerating Byzantine adversary is:

Theorem 1 ([4]). PPRMT between S and R against a tb active Byzantine
adversary is possible iff the network is (2tb + 1)-(S,R)-connected.

The characterization for PPRMT tolerating mixed adversary is as follows:

Theorem 2. PPRMT between S and R against a mixed adversary (tb, to, tp, tf)
is possible iff the network is (2tb + to + tf + 1)-(S,R)-connected.

Proof: If part: Consider a network which is (2tb + to + tf +1)-(S,R)-connected.
To send a message m, S simply broadcasts m to R over 2tb + to + tf + 1 wires.
It is easy to see that R will receive m with probability one by taking majority8.
Only if part: Assume that a PPRMT protocol Π exists in a network N that is
not (2tb + to + tf + 1)-(S,R)-connected. Consider the network N ′, induced by
N , on deleting (to + tf ) vertices from a minimal vertex cutset of N (this can
be viewed as an adversary blocking the communication over to + tf wires). It
follows that N ′ is not (2tb + 1)-(S,R)-connected. Evidently, if Π is a PPRMT
protocol on N , then Π ′ is a PPRMT protocol on N ′, where Π ′ is the protocol
Π restricted to the players in N ′. However, from Theorem 1, Π ′ is non-existent.
Thus Π is impossible too. �

Significance of Theorem 2: Theorem 2 strictly generalizes Theorem 1 because
we obtain the latter by substituting to = tf = 0. Now consider a network, which
is 4-(S,R)-connected. From Theorem 1, on this network, any PPRMT protocol
can tolerate one Byzantine fault. However, according to Theorem 2, it is possible
to tolerate one additional faulty player, which can be either omission or fail-stop
faulty. Thus our characterization shows more fault tolerance in comparison to
the existing results.

In the sequel, we show that allowance of negligible error probability in trans-
mission reduces the communication lower bound markedly in comparison to
perfect transmission.

2.2 Lower Bound on Communication Complexity of Single Phase
PPRMT Protocol

We now prove the lower bound on the communication complexity of any single
phase PPRMT protocol tolerating mixed adversary.

Theorem 3. Any single phase PPRMT protocol, from S to R over n wires,
communicates Ω( n�

n−(tb+to+tf ) ) field elements to reliably transmit (with high prob-
ability) � field elements.

Proof: In any single phase PPRMT protocol, the concatenation of the informa-
tion sent over n wires can be viewed as a (probabilistic) error correcting code
8 The protocol described here is a naive protocol which does not take the advantage

of allowing small error probability in the reliability.
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which can correct tb Byzantine errors and to + tf erasures with an arbitrarily
high probability. Without loss of generality, the domain of the set of possible
values of the data sent along the wire can be assumed to be the same for all
the wires. Let S be the set of possible values of the data sent along the wires.
Thus, each codeword can be viewed as concatenation of n elements from S which
can be represented by n log |S| bits. Now, the removal of any (tb + to + tf ) ele-
ments from each of the codewords which corresponds to an adversary blocking
tb + to + tf wires ( a Byzantine adversary can also block communication) should
result in shortened codewords that are all distinct. For if any two were iden-
tical, the original codewords could have differed only in at most (tb + to + tf )
elements implying that there exist two codewords c1 and c2 and an adversarial
strategy such that the receiver’s view is the same on the receipt of c1 and c2.
Specifically, without loss of generality assume that c1 and c2 differ only in their
last (tb + to + tf ) elements. That is, c1 = α ◦ β and c2 = α ◦ γ, where ◦ denotes
concatenation and |β| = |γ| = (tb + to + tf ) elements. Now, consider the two
cases: (a) c1 is sent and the adversary corrupts it to α◦ ⊥ by completely block-
ing the last (tb + to + tf ) elements (wires) and (b) c2 is sent and the adversary
again corrupts it to α◦ ⊥. Thus, R can not distinguish between the receipt of
c1 and c2 with probability greater than 1

2 , which violates the PPRMT commu-
nication property (in any PPRMT protocol, receiver should be able to receive
the message with probability more than 1

2 ). Therefore, all shortened codewords
containing n − (tb + to + tf ) elements from S are distinct. This implies that
there are same number of shortened and original codewords. But the number of
shortened codewords can be at most C = |S|(n−(tb+to+tf ). Now each shortened
codeword can be represented by log C = (n − (tb + to + tf )) log |S| bits. Since,
for error-correcting we need to communicate the longer codeword containing
n log |S|, reliable communication of shortened codeword of k = log C bits incurs
a communication cost of at least n log |S| bits. Hence communicating a single bit
incurs communicating n

(n−(tb+to+tf ) bits. So to communicate � elements from a

field F, represented by � log |F| bits, Ω( n�
(n−(tb+to+tf )) log |F|) bits need to be sent.

Since log |F| bits represents one field element from F, communicating � elements
from F requires a communication complexity of Ω( n�

(n−(tb+to+tf ) ) field elements.

Note: In any PPRMT protocol designed in a field F, the size of the field depends
upon the error probability δ of the protocol (we show this in next section)9.

Single Phase PRMT vs Single Phase PPRMT: While the lower bound
on the communication complexity of any single phase PRMT tolerating mixed

9 From Theorem 3, any PPRMT protocol to send � field elements from F need to
communicate Ω( n�

(n−(tb+to+tf )) log|F|) bits. Thus the communication complexity of
any single phase PPRMT protocol is a function of δ (since |F| is a function of δ),
though it is not explicitly mentioned in the expression derived in Theorem 3. It
should also be noted that communication complexity explicitly depends upon the
message size �.
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adversary is Ω( n�
(n−(2tb+to+tf ) ) [11], the same for PPRMT is Ω( n�

(n−(tb+to+tf ))
(Theorem 3). This clearly brings forth the power of randomization.

2.3 Single Phase Bit Optimal PPRMT Protocol

We now present an optimal single phase PPRMT protocol PPRMT Single
Phase, which delivers (tb +1)n field elements by communicating O(n2) field ele-
ments in single phase with (arbitrarily) high probability where n=2tb+to+tf +1.
PPRMT Single Phase achieves reliability with constant overhead, when con-
sidered with only Byzantine adversary. The message block is represented by
M = [m1 m2 . . . mn mn+1 mn+2 . . . m2n . . . mtbn+1 mtbn+2 . . . mtbn+n]. Before
the protocol, we describe a novel technique, called as Extrapolation Tech-
nique which we use in designing single phase PPRMT protocol PPRMT
Single Phase.

Extrapolation Technique: We visually represent M as a rectangular array
A of size (tb + 1) × n where the jth, 1 ≤ j ≤ tb + 1 row contains the elements
m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+n. For each column i of A, 1 ≤ i ≤ n we do the
following: we construct the unique tb degree polynomial qi(x) passing through the
points (1, mi), (2, mn+i), . . . , (tb + 1, mtbn+i) where mi, mn+i, . . . , mtbn+i belong
to the ith column A. Then qi(x) is evaluated at tb + to + tf points namely,
x = tb + 2, tb + 3, . . . n to obtain c1i, c2i, . . . , c(tb+to+tf )i. Finally, we obtain a
square array D of size n × n containing n2 elements, where

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 . . . mi . . . mn

. . . . . . . . . . . . . . . . . .
m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+i . . . m(j−1)n+n

. . . . . . . . . . . . . . . . . .
mtbn+1 mtbn+2 . . . mtbn+i . . . mtbn+n

c11 c12 . . . c1i . . . c1n

. . . . . . . . . . . . . . . . . .
cj1 cj2 . . . cji . . . cjn

. . . . . . . . . . . . . . . . . .
c(tb+to+tf )1 c(tb+to+tf )2 . . . c(tb+to+tf )i . . . c(tb+to+tf )n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

A
C

]
where

C is the sub-matrix of D containing last tb + to + tf rows. Thus D is the row
concatenation of A of size (tb +1)×n (containing elements of M) and matrix C,
whose elements are obtained from A by Extrapolation Technique. We now
prove certain properties of the array D.

Lemma 1. In D, all the n elements of any column can be uniquely generated
from any tb + 1 elements of the same column.

Proof: Without loss of generality, we prove this for ith column of D. The elements
in the ith column are mi, mn+i, . . . , mtbn+i, c1i, c2i, . . . , cji, , . . . c(tb+to+tf )i. From
the construction, the points (1, mi), (2, mn+i), . . . , (tb + 1, mtbn+i),
(tb + 2, c1i), (tb + 3, c2i), . . . , (n, c(tb+to+tf )i) lie on a unique tb degree polyno-
mial qi(x). Any tb +1 points uniquely determines qi(x) and hence the remaining
tb+to+tf points. �

Lemma 2. The elements of message M can be uniquely determined from any
tb + 1 rows of D.
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Proof: From the construction of D, the elements of M are arranged in the first
tb+1 rows. If the first tb+1 rows are known then the lemma holds trivially. On the
other hand, if some other tb+1 rows are known, then from Lemma 1, ith 1 ≤ i ≤ n
column of D can be completely generated from tb + 1 elements of the same
column. Hence, knowledge of any tb + 1 rows can reconstruct the whole matrix
D and hence the message (first tb+1 rows of D). �

Lemma 3. Modification of at most tb elements along any column of D is de-
tectable.

Proof: Recall that in D, the points (corresponds to ith column of D) (1, mi),
(2, mn+i), . . . , (tb + 1, mtbn+i), (tb + 2, c1i), . . . , (n, c(tb+to+tf )i) lie on a unique tb
degree polynomial qi(x). Now suppose tb values are changed in such a manner
that they lie on some other tb degree polynomial q′i(x) where qi(x) �= q′i(x). Since
both qi(x) and q′i(x) are of degree tb, they can match on additional tb common
points. But still there are at least n − 2tb = to + tf + 1 points still passing only
the original polynomial qi(x) (but not through q′i(x)). Hence any attempt to
interpolate a tb degree polynomial passing through the elements of a column (in
which at most tb values has been changed) will clearly indicate that at most tb
values are changed along the column. Hence the lemma holds. �

We are now ready to describe our protocol. Let the set of n wires be denoted as
W = {w1, w2, . . . , wn}. Let δ be a bound on the probability that the protocol fails
to deliver the correct message. We require the size of the field F be Ω(Q(n)

δ ), for

Protocol PPRMT Single Phase - The Single Phase PPRMT Protocol
1. S generates a rectangular array D containing n2 field elements, from the (tb + 1) × n elements of
message M using Extrapolation Technique. S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of
degree n− 1 where pj(x) is formed using the jth row of D as follows: the coefficient of xi, 0 ≤ i ≤ n− 1
in pj(x) is the (i + 1)th element of jth row of D.

2. S chooses another n2 field elements at random, say rji, 1 ≤ i, j ≤ n. Over wj , S sends the fol-
lowing to R: the polynomial pj(x) and the n ordered pairs (rji, pi(rji)), for 1 ≤ i ≤ n. Let vji = pi(rji).

3. Let F denotes the set of wires that delivered nothing and let B denotes the set of wires that delivered
invalid information (like higher degree polynomials etc.). Note that the wires in B are Byzantine
corrupted because omission or fail-stop adversary is not allowed to modify the contents. R removes all
the wires in (F ∪B) from W to work on the remaining wires in W\ (F ∪B) out of which at most tb −|B|
could be Byzantine corrupted. Let R receives p′

j(x) and (r′
ji, v′

ji) 1 ≤ i ≤ n over wj ∈ W \ (F ∪ B).
We say that wj contradicts wi if: v′

ji �= p′
i(r

′
ji) where wi, wj ∈ W \ (F ∪ B) . Among all the wires in

W \ (F ∪ B), R checks if there is a wire contradicted by at least (tb − |B|) + 1 wires. All such wires are
Byzantine corrupted and removed (see Lemma 4).

4. To retrieve M, R tries to reconstruct the array D as generated originally by S as follows: Corre-
sponding to each wj ∈ W \ (F ∪ B), which is not removed in step 3, R fills the jth row of D in the
following manner: coefficient of xi, 0 ≤ i ≤ n − 1 in p′

j(x) occupies (i + 1)th column in the jth row of
D; i.e., the coefficients of p′

j(x) are inserted in jth row of D such that the coefficient of xi in p′
j(x)

occupies (i + 1)th column in the jth row of D.

5. After doing the above step for each wj ∈ W \ (F ∪ B), which is not removed in step 3, R has at
least tb + 1 rows inserted in D (see Lemma 6). R then checks the validity of these rows as follows:
corresponding to the ith, 1 ≤ i ≤ n column, R checks whether the points corresponding to the inserted
elements of ith column lie on a tb degree polynomial.

6. If the above test fails for at least one column of D, then R outputs “FAILURE” and halts. Otherwise,
R regenerates the complete D correctly and recovers M from the first tb + 1 rows (see Lemma 6).
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some polynomial Q(n), but this is acceptable because complexity of the protocol
increases logarithmically with field size.

Lemma 4. In PPRMT Single Phase, if any wj ∈ W\(F∪B) is contradicted
by at least (tb−|B|)+1 wires, then the polynomial pj(x) over wj has been changed
by adversary or in effect wj is faulty.

Proof: The wires in B are already identified to be Byzantine corrupted and hence
neglected by R. Also the wires in F delivers nothing and hence neglected by R.
So among the remaining W \(F ∪B) wires, at most (tb −|B|) could be Byzantine
corrupted. Also there cannot be any contradiction between two honest wires and
hence any honest wire can be contradicted by at most (tb − |B|) wires. Thus if a
wire is contradicted by at least (tb−|B|)+1 wires then it is faulty. �

Lemma 5. In the protocol, if the adversary corrupts a polynomial over wire wj

in such a way that wj is not removed during step 3, then R will always be able
to detect it at the end of step 5 and outputs “FAILURE”.

Proof: At the beginning of step 5, there are at least tb + 1 rows present in the
partially reconstructed D. This follows from the fact there always exist tb +
1 honest wires which will deliver correct polynomials to R. As mentioned in
Lemma 4, any honest wire can be contradicted by at most (tb − |B|) wires and
hence is not be removed by R during step 4. So the coefficients of the polynomials
corresponding to these honest wires will be present in partially reconstructed D.

Now if wj (which has delivered a faulty polynomial) is not removed during
step 3, then during step 4, the coefficients of p′j(x) are inserted in the jth row
of partially reconstructed D. Since pj(x) �= p′j(x), there is at least one coef-
ficient in p′j(x) which is different from the corresponding coefficient in pj(x).
Let pj(x) differs from p′j(x) in the coefficient of xi. Then (i + 1)th column of
partially reconstructed D differs from the (i + 1)th column of original D at jth

position. The proof now follows from Lemma 3. Hence R outputs “FAILURE”. �

Lemma 6. In PPRMT Single Phase, if the test in step 5 succeeds for all
the n columns of partially constructed D, then R will never output “FAILURE”
and always recovers M correctly.

Proof: As explained in previous Lemma, at the beginning of step 5, there will be
at least tb + 1 rows present in the partially reconstructed D. Now if the test in
step 5 succeeds for all the n columns of partially constructed D, it implies that all
the rows present in the partially reconstructed D are same as the corresponding
rows in the original D. From Lemma 1, R will be able to completely regenerate
all the n columns of original D. The proof now follows from Lemma 2. It is easy
to see that R does not outputs “FAILURE” in this case.

Theorem 4. PPRMT Single Phase terminates with a non-“FAILURE”
output with high probability.

Proof: Since no honest wire contradicts another honest wire, from Lemma 4, all
the wires removed by R during step 3 are indeed faulty. We need to show that
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if a wire is corrupted (the polynomial over the wire is changed), then it will
be contradicted by all the honest players with high probability. Let πij be the
probability that a corrupted wire wj will not be contradicted by a honest wire
wi. This means that the adversary can ensure that pj(rij) = p′j(rij) with a prob-
ability of πij . Since there are only n − 1 points at which these two polynomials
intersect, this allows the adversary to guess the value of rij with a probability
of at least πij

n−1 . But since rij was selected uniformly in F, the probability of
guessing it is at most 1

|F| . Therefore we have πij ≤ n−1
|F| for each i, j. Thus the

total probability that the adversary can find wi, wj such that corrupted wire wj

will not be contradicted by wi is at most
∑

i,j πij ≤ n2(n−1)
|F| . Since F is chosen

such that |F| ≥ Q(n)
δ , it follows that the protocol outputs a non-“FAILURE”

value with probability ≥ 1 − δ if we set Q(n) = n3. �

Note. PPRMT Single Phase is a special kind of a probabilistic reliable
message transmission protocol where R actually knows whether he outputs the
correct message. But according to our definition of PPRMT, inability of R to
“detect” every occurrence of an error is acceptable. Thus, our protocol has a
strictly stronger property than that of necessary.

Lemma 7. PPRMT Single Phase reliably sends n(tb + 1) field elements by
communicating O(n2) field elements. In terms of bits, the protocol sends
n(tb + 1) log |F| bits by communicating O(n2 log |F|) bits.

Proof: Over each wire, S sends a polynomial of degree n − 1 and n ordered pair.
Thus the total communication complexity is O(n2). Since each element from
field F can be represented by log |F| bits, the communication complexity of the
protocol is O(n2log|F|) bits. �

Achieving PPRMT in Constant Factor Overhead in Single Phase
In the presence of Byzantine fault, � field elements can be transmitted by com-
municating O(�) field elements in three phases [9] with perfect reliability. Also,
achieving the same in single phase in the presence of Byzantine adversary is
impossible [12]. However it is attainable in case of probabilistic reliability. In
PPRMT Single Phase, if to = tf = 0, then (tb + 1)n = O(n2) field elements
(when to = 0, tf = 0, n = 2tb + 1 and so tb = O(n)) can be sent by communi-
cating O(n2) field elements. Thus, by allowing a small error probability in the
reliability we can send � field elements by communicating O(�) field elements in
only single phase.

In Theorem 3, substituting n = 2tb + to + tf + 1 and � = n(tb + 1), we find
that any single phase PPRMT protocol must communicate Ω(n2) elements to
send n(tb + 1) elements. Now, from Lemma 7, the communication complexity
of PPRMT Single Phase is O(n2). Hence our protocol has optimal com-
munication complexity. In terms of bits, PPRMT Single Phase sends
n(tb+1) log |F| bits by communicating n2 log |F| bits where F = Q(n)

δ , Q(n) = n3

and 1 − δ is the least probability with which the protocol terminates without
”FAILURE”. So, our protocol is bit-optimal.
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Finally, we would like to point out that single phase PPRMT protocols can
also be designed using the idea of check vectors proposed by Rabin and Ben-
Or [10] for VSS. However, simple extension of their idea does not leads to a
bit-optimal single phase PPRMT protocol.

3 Multiphase PPSMT Protocol in Undirected Networks

In this section, we provide characterization, lower bound on the communication
complexity of any multiphase PPSMT protocol and also design one such protocol
whose communication complexity matches with the lower bound.

3.1 Characterization for Multiphase PPSMT Protocol

In the previous section, we have shown how randomization affects the possibility
and optimality of PPRMT protocol in the presence of a mixed adversary. We now
explore the effect of randomization on the possibility and optimality of PPSMT
protocol tolerating a mixed adversary. Our first step towards this exploration is
to characterize the possibility of any multiphase PPSMT protocol.

Theorem 5. Multiphase PPSMT between S and R in an undirected network
tolerating a mixed adversary characterized by 4-tuple (tb, to, tf , tp) is possible if
and only if the network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-connected.

Proof: Necessity: We consider two cases for proving the necessity.

• Case 1: tp ≤ tb: In this case, the network is (2tb + to + tf +1)-(S,R) connected
which is necessary for PPRMT (Theorem 2) and hence obviously for PPSMT.

• Case 2: tp > tb: Here, the network is (tb+tp+to+tf+1)-(S,R)-connected. This
condition is necessary for PPSMT because, if the network is (tb + tp + to + tf )-
(S,R)-connected, then the adversary may strategize to simply block all message

Protocol SECURE - A Three Phase PPSMT Protocol
Phase I: S to R
• Along wi, 1 ≤ i ≤ n, S sends to R two randomly picked elements ρi1 and ρi2 chosen from F.

Phase II: R to S
• Suppose R receives values in syntactically correct form along n′ ≤ n wires. R neglects the remaining
(n − n′) wires. Let R receives ρ′

i1 and ρ′
i2 along wire wi, where wi is not neglected by R.

• R chooses uniformly at random an element K ∈ F. R then broadcasts to S the following: identities of
the (n − n′) wires neglected by him, the secret K and the values (Kρ′

i1 + ρ′
i2) for all i such that wi is

not neglected by R.

Phase III: S to R
• S correctly receives the identities of (n − n′) wires neglected by R during Phase II (because
irrespective of the value of tb and tp, n is at least 2tb + to + tf + 1. So any information which is
broadcast over n wires will be received correctly). S eliminates these wires. S also correctly receives K
and the values, say ui = (Kρ′

i1 + ρ′
i2) for each i, such that wire wi is not eliminated by R.

• S then computes the set H such that H = {wi|ui = (Kρi1 + ρi2)}. Furthermore, S calculates the
secret key ρ where: ρ =

∑
wi∈H ρi2. S then broadcasts the set H and the blinded message M⊕ ρ to R,

where M is a single field element.

Message Recovery by R
• R correctly receives H and computes his version of ρ′. If z′ is the blinded message received, R outputs
M = z′ ⊕ ρ′.
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through (tb + to + tf ) vertex disjoint paths and thereby ensure that every value
received by R is also listened by the adversary.
Sufficiency: Suppose that network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-
connected. Then from Menger’s theorem [6], there exist at least n = (tb +
max(tb, tp) + to + tf + 1) vertex disjoint paths from S to R. We model these
paths as wires w1, w2, . . . , wn. We design a three phase PPSMT protocol called
SECURE to securely send a single field element.

It can be shown that with a probability of at least
(
1 − 1

|F|

)
, ρ′ = ρ and

hence R almost always learns the correct message (Proof is similar to that of
the correctness and security of the information-checking protocol of [10]). Since
n = tb + max(tb, tp) + to + tf + 1, there exists at least one wire say wi, which is
not controlled by the adversary. So, the corresponding ρi2 is unknown to adver-
sary implying information theoretic security for ρ =

∑
wi∈H ρi2 and hence for

M. It is easy to see that the communication complexity of SECURE is O(n2). �

MultiPhase PSMT vs MultiPhase PPSMT: From [7], for any multiphase
Perfectly Secure Message Transmission (PSMT) protocol, the network should be
(2tb + to + tf + tp + 1)-(S, R) connected. Thus, except when either tb or tp = 0,
Theorem 5 shows that allowing a negligible error probability in the reliability of
the protocol (without sacrificing the secrecy) significantly helps in the possibility
of multiphase secure message transmission protocol.

Note: Theorem 5 characterizes multiphase PPSMT protocol. A single phase
PPSMT protocol tolerating Byzantine adversary is given in [5]. The character-
ization, lower bound on the communication complexity and an optimal single
phase PPSMT tolerating mixed adversary is given in [8]. The connectivity re-
quirement for single phase PPSMT is more10 than multiphase PPSMT [8].

3.2 Lower Bound on Communication Complexity of Multiphase
PPSMT Protocol

We now prove the lower bound on the communication complexity of any r-
phase (r ≥ 2) PPSMT protocol which sends � field elements tolerating a mixed
adversary (tb, to, tf , tp). Let n ≥ tb + max(tb, tp) + to + tf + 1.

Theorem 6. Any r-phase (r ≥ 2) PPSMT protocol which securely sends � field
elements in the presence of a threshold adversary (tb, to, tf , tp) needs to commu-

nicate at least Ω
(

n�
n−(tb+to+tf+tp)

)
field elements.

Proof: The proof follows from Lemma 8 and Lemma 9, which are proved below.

Lemma 8. The communication complexity of any multi-phase PPSMT protocol
to send a message against an adversary corrupting up to b(≤ tb), F (≤ tf ) and
P (≤ tb + to + tp) of the wires in Byzantine, Fail-stop and passive manner respec-
tively is not less than the communication complexity of distributing n shares for
10 In [8], it is shown that for the existence of single phase PPSMT protocol the network

should be 2tb + 2to + tf + tp + 1-(S, R)-connected.
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the message such that any set of n −F correct shares has full information about
the message while any set of P shares has no information.

To prove the lemma, we begin with defining a weaker version of single-phase
PPSMT called PPSMT with Error Detection (PPSMTED). We then prove the
equivalence of communication complexity of PPSMTED protocol to send mes-
sage M and the share complexity of distributing n shares for M such that any
set of n − F correct shares has full information about M while any set of P
shares has no information about M. To prove the aforementioned statement, we
first show their equivalence (Claim 1). Finally, we will show the equivalence of
single-phase protocol PPSMTED and multiphase PPSMT protocol in terms of
communication complexity and also answer the question: why it is weaker than
multiphase PPSMT protocol (Claim 3). These two equivalence will prove the
desired equivalence as stated in this lemma. Note that b, F and P are bounded
by tb, tf and tb + to + tp respectively.

Definition 1. A single phase PPSMT protocol is called PPSMTED if it satisfies
the following:

1. If the adversary is passive on all the P (P ≤ tb+to+tp which is the maximum
limit on the number of passive adversaries) corrupted wires then R securely
receives the message sent by S.

2. If the adversary corrupts information over some b wires (b ≤ tb), then R
detects it, and aborts.

3. If adversary blocks some F ≤ tf wires, without doing any other modification,
then R recovers message correctly. Else if adversary blocks more than tf wires
or do some modification (or both), then R aborts.

4. The adversary obtains no information about the transmitted message.

We next show that the properties of PPSMTED protocol for sending message
M is equivalent to the problem of distributing n shares for M such that any set
of n − F correct shares has full information about M while any set of P shares
has no information about the message.

Claim 1. Let Π be a PPSMTED protocol tolerating an adversary that can cor-
rupt up to any b, F and P of the n wires connecting S and R in Byzantine,
fail-stop and passive manner respectively. In an execution of Π for sending a
message M, the data si, 1 ≤ i ≤ n sent by the S along wires wi, 1 ≤ i ≤ n form
n shares for M such that any set of n − F correct shares has full information
about M while any set of P shares has no information.

Proof: The fact that any set of P shares have no information about M follows
directly from property 1 and 4 of definition of PPSMTED. We now show that
any set of n − F correct shares has full information about M. The proof is
by contradiction. For a set of wires A ⊆ W , let Message(M, A), denotes the
set of messages sent along the wires in A during the execution of PPSMTED
to send M. Now for any set C, |C| ≥ n − F of honest wires, Message(M, C)
should uniquely determine the message M. Suppose not, then there exists an-
other message M′ such that Message(M, C) = Message(M′, C). By definition
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the fail-stop adversary can block all the messages sent along the F wires not in
C. Thus for two different executions of PPSMTED to send two distinct message
M and M′, there exists an adversary strategy such that view of R at the end
of two executions is exactly same. This is a contradiction to the property 3 of
PPSMTED protocol Π which outputs the correct message if at most F fail-stop
errors take place. �

The above claim also says that the communication complexity of PPSMTED
protocol to send M is same as the share complexity (length of the sum of all
shares) of distributing n shares for a message M such that any set of n−F correct
shares has full information about M while any set of P shares has no information
about the message. Now we step forward to show the communication complexity
of PPSMTED protocol is the lower bound on the communication complexity of
any multiphase PPSMT protocol.

Before that we take a closer look at the execution of any multi-phase PPSMT
protocol. S and R are modeled as polynomial time Turing machines with ac-
cess to a random tape. The number of random bits used by the S and R are
bounded by a polynomial q(n). Let r1, r2 ∈ {0, 1}q(n) denote the contents of the
random tapes of S and R respectively. The message M is an element from the
set {0, 1}p(n), where p(n) is a polynomial. A transcript for an execution of a
multiphase PPSMT protocol Π is the concatenation of all the messages sent by
S and R along all the wires.

Definition 2. A passive transcript T (Π,M, r1, r2) is a transcript for the exe-
cution of the multiphase protocol Π with M as the message to be sent, r1, r2 as
the contents of the random tapes of sender S and the receiver R and the adver-
sary remaining passive throughout the execution. Let T (Π,M, r1, r2, wi) denote
the passive transcript restricted to messages exchanged along the wire wi. When
Π,M, r1, r2 are obvious from the context, we drop them and denote the passive
transcript restricted to a wire wi by Twi . Similarly, TB denotes the set of passive
transcripts over the set of wires in B.

Given (M, r1, r2) it is possible for S to compute T (Π,M, r1, r2) by simulating R
with random tape r2. Similarly given (M, r1, r2) R can compute T (Π,M, r1, r2)
by simulating S. Note that although S and receiver require both r1, r2 to generate
the transcript, R requires only r2 in order to obtain the message M from the
transcript. This is clear since R does not have access to r1 during the execution
of Π but still can retrieve the message M from the messages exchanged.

Definition 3. A transcript TB, with n−F ≤ |B| ≤ n is said to be a valid fault-
free transcript with respect to R if there exists random string r2 and message M
such that protocol Π at R with r2 as the contents of the random tape and TB as
the messages exchanged, terminates by outputting the message M.

Definition 4. Two transcripts TB and T ′
B, where n − F ≤ B ≤ n are said to

be adversely close if the two transcripts differ only on a set of wires A such that
|A| ≤ b+(|B|− (n−F )). Formally |{wi ∈ W |Twi �= T ′

wi
}| ≤ b+(|B|− (n−F )).
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Claim 2. Two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M′, r′1, r
′
2)

with two different message inputs M,M′, cannot be adversely close to each other,
where n − F ≤ B ≤ n.

Proof: Suppose two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M
′
,

r
′

1, r
′

2) are adversely close, then there is a set of wires A, |A| ≤ b+(|B|−(n−F ))
such that the two transcripts differ only on messages sent along the wires in A.
Without loss of generality, assume last b + (|B| − (n − F )) wires belong to A
with A = X ◦Y where |X | = b and |Y | = (|B|− (n−F )). Consider the following
two executions of Π where the contents of S’s and R’s random tapes are r1, r2
respectively.

• S wants to send M. S and R executes Π while the adversary stop the wires
in Y to deliver any message. As TB−Y (Π,M, r1, r2) is a valid transcript with
respect to M, R terminates with output M.

• S wants to send M. S and R executes Π . The adversary blocks messages
over Y and changes the messages along wires in X such that the view of S is
TB−Y (Π,M, r1, r2) but the view of R is TB−Y (Π,M′, r′1, r

′
2). Since TB−Y (Π,M′,

r′1, r
′
2) is a valid transcript with respect to M′, R will terminate with output M′.

The two scenarios differ only in the adversarial behavior and in the contents of
R’s random tape. In both the scenarios S wanted to send message M. But the
message received by receiver R in the second case is an incorrect message M′.
Thus, with only probability 1/2, R will output the correct message M. This is
a contradiction because Π is a PPSMT protocol. �

Till now, we have shown that a transcript over at least n−F correct wires allows
R to output M correctly. We now show how to reduce a multiphase PPSMT
protocol into a single phase PPSMTED protocol.

Protocol PPSMTED
• S computes the passive transcript T (Π, M, r1, r2) for some random r1 and r2 and sends
T (Π, M, r1, r2, wi) to R along wi.
• If R does not receives information through at least n − F wires then R outputs ERROR and stop.
Otherwise, let R receives information over the set of wires B = {wi1 , wi2 , . . . , wiα} where n − F ≤
|B| ≤ n. R concatenates the values received along these wires to obtain a transcript TB (which may be
corrupted along tb wires) and does the following:

– for each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n) do:
If TB is a valid transcript with random tape contents r2 for message M then output M and

stop.
Output ERROR.

Claim 3. The Communication complexity of any multiphase PPSMT protocol
Π is at least the communication complexity of PPSMTED protocol. Also Π has
stronger properties than PPSMTED. Finally, PPSMTED does not reveals M
to the adversary.
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Proof: The communication complexity of any multiphase PPSMT protocol Π
assuming the adversary to be passive during the complete execution is triv-
ially a lower bound for any multiphase PPSMT protocol with corruption in
any phases. In PPSMTED, S communicates the transcript generated by him
assuming adversary to be passive throughout the execution of Π to R. The
cost of communicating such a transcript by PPSMTED is same as of Π with
the assumption that adversary remain passive throughout the execution of Π .
PPSMTED is weaker than Π for the following reason: under the passive ad-
versary assumption Π always outputs M but PPSMTED does not output M
for certain adversarial behavior . But in that case it detects it and aborts.

The message sent along the wire wi in PPSMTED is the concatenation of
the messages sent along wi in an execution of Π . Hence the adversary cannot
obtain any information about the message M. From Claim 2, we know that valid
transcripts of two different messages cannot be adversely close to each other. So
irrespective of the actions of the adversary, the transcript received by R cannot
be a valid transcript for any message other than M for any value of r2. Hence if
R outputs a message M then it is the same message sent by S. �

This completes the proof of Lemma 8. We now prove the share complexity of
distributing n shares for a message such that any set of n−F correct shares has
full information while any set of P shares has no information about the message.

Lemma 9. The share-complexity (that is the length of the sum of all shares) of
distributing n shares for a message of size � field elements from F such that any
set of n − F correct shares has full information about the message while any set
of P shares has no information about the message is Ω( n�

(n−F−P ) ).

Proof: Let Xi denotes the ith share. For any subset A ⊆ {1, 2 . . . n} let XA denote
the set of variables {Xi|i ∈ A}. Let M be a value drawn uniformly at random
from F

l. Then the secret M and the shares Xi are random variables. Let H(X)
for a random variable denote its entropy. Let H(X |Y ) denotes the entropy of X
conditional on Y . The conditional entropy measures how much entropy a random
variable X has remaining if we have already learned completely the value of a
second random variable Y [2]. Since M is a value drawn uniformly at random
from F

�, we have H(M) = �. Since any set B consisting of n − F correct shares
has full information about M, we have H(M|XB) = 0. Consider any subset
A ⊂ B such that |A| = P . Since any set of P shares has no information about
M, we have H(M|XA) = H(M). It is clear that

H(M|XA) = H(M|XA|XB−A) + H(XB−A) ≤ H(M|XA, XB−A)) + H(XB−A) = H(XB−A)

So H(M) ≤ H(XB−A) { since H(M|XA) = H(M)}

Since |B| = n − F and |A| = P , |B − A| = n − F − P . So for any set C of size
|B − A| = n − F − P ,

H(XC) ≥ H(M) ⇒
∑
i∈C

H(Xi) ≥ H(M)
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Since there are
(

n
n−F−P

)
possible subsets of cardinality n−F −P , summing the

above equation over all possible subsets of cardinality n − F − P we get

∑
C

∑
i∈C

H(Xi) ≥
(

n

n − F − P

)
H(M)

Now in all the possible
(

n
n−F−P

)
subsets of size n − F − P , each of the term

H(Xi) appears
(

n−1
n−F−P−1

)
times. So

(
n − 1

n − F − P − 1

)
n∑

i=1

H(Xi)≥
(

n

n − F − P

)
H(M) ⇒

n∑
i=1

H(Xi)≥ n

n − F − P
H(M)

which is equal to n�
n−F−P . Thus the share-complexity for any M ∈ F

� is

Ω
(

n�
n−F−P

)
. �

Since P ≤ tb + to + tb and F ≤ tf , Ω
(

n�
n−F−P

)
= Ω

(
n�

n−(tb+to+tf +tp)

)
. Theo-

rem 6 now follows from Lemma 8 and Lemma 9. �

Note. In terms of bits, any multiphase PPSMT protocol must communicate
Ω

(
n�

n−(tb+to+tf +tp) log |F|
)

bits to send � log |F| bits, where |F| is a function of
δ. In the next section, we give a concrete PPSMT protocol satisfying this bound
and show how to set |F| as a function of δ.

Randomization Helps in Reducing the Communication Complexity of
Multiphase Secure Protocols: In [7], it is shown that any multiphase PSMT
protocol has a communication complexity of Ω

(
n�

n−(2tb+to+tf+tp)

)
to securely

send � field elements. Comparing this bound with Theorem 6, we find that al-
lowing a negligible error probability in reliability (without sacrificing the privacy)
significantly reduces the communication complexity of multiphase secure protocol.
We support this claim by designing a four phase PPSMT protocol whose total
communication complexity matches the bound proved in Theorem 6.

3.3 Constant Phase Bit Optimal PPSMT Protocol

Here we design a bit optimal multiphase PPSMT protocol called PPSMT Mixed
tolerating mixed adversary. The protocol terminates in four phases and uses the
three phase SECURE protocol (described in Theorem 5) as a black-box11. The
four phase protocol PPSMT Mixed securely sends � field elements by commu-
nicating O(�) field elements against only Byzantine adversary, thus achieving se-
crecy with constant overhead.

11 Since n = tb + max(tb, tp) + to + tf + 1, we can execute SECURE protocol as a
black-box. We cannot use any single phase PPSMT protocol as a black-box because
the connectivity requirement for single phase and multi phase PPSMT are different.
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If tp ≥ tb, then the protocol securely sends n2 field elements by communi-
cating O(n3) field elements and if tb > tp, then (tb − tp)n2 field elements by
communicating O(n3) field elements. Let, n = tb + max(tb, tp) + to + tf + 1. In
the protocol, depending upon whether tb ≤ tp or tp < tb, the field size |F| is set
to at least 3n2

δ or 4n4(tb−tp)
δtb

respectively, where δ is the error probability of the
protocol. Before describing the protocol, we first recall an algorithm from [12].

Consider the following problem: Suppose S and R by some means agree on
a sequence of n numbers x = [x1x2 . . . xn] ∈ F

n such that the adversary knows
n − f components of x, but the adversary has no information about the other
f components of x, however, S and R do not necessarily know which values
are known to the adversary. The goal is for S and R to agree on a sequence
of f numbers y1y2 . . . yf ∈ F such that the adversary has no information about
y1y2 . . . yf . This is achieved by the following algorithm [12]:

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde matrix with members in F. This
matrix is published as a part of the protocol specification. S and R both locally compute the product
[y1 y2 . . . yf ] = [x1 x2 . . . xn]V .

Lemma 10 ( [12]). The adversary gets no information about [y1 y2 . . . yf ]
computed in EXTRAND.

Theorem 7. By setting |F| ≥ 3n2

δ (if tp ≥ tb) or |F| ≥ 4n4(tb−tp)
δtb

(if tb > tp)
the protocol PPSMT Mixed securely transmits the message M with an error
probability bounded by δ.

Proof: For better understanding, we first prove the theorem when tb > tp. So
|F| ≥ 4n4(tb−tp)

δtb
. It is evident from the protocol construction that the theorem

holds if the following are true:

1. For all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1 − δ
4 ).

2. For all 1 ≤ i ≤ n, y′
i = yi with probability ≥ (1 − δ

4 ).
3. If the wire wi were indeed corrupt (i.e., the n2 tuple sent over wi is changed

by the adversary), then wi ∈ Lfault with probability ≥ (1 − δ
4 ).

4. The protocol PPRMT Single Phase to send the vector d fails with prob-
ability of at most δ

4 .
5. The adversary learns no (additional) information about the transmitted mes-

sage M.

The error probability of the protocol depends upon the error probability of the
first four events. If each of the above are true, then the protocol’s failure prob-
ability is bounded by δ. We prove now each of the above four claims separately.

Claim 4. In PPSMT Mixed, for all 1 ≤ i ≤ n, ρ′i = ρi with probability
≥ (1 − δ

4 ).
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Protocol PPSMT Mixed
A Bit Optimal 4-Phase PPSMT Protocol Tolerating Mixed Adversary

The message M is a sequence of n2 field elements if tb ≤ tp, otherwise it is a sequence of (tb − tp)n2

field elements.

Phase I (R to S)

• R selects at random n3 elements, rij, 1 ≤ i ≤ n, 1 ≤ j ≤ n2 from field F. R also randomly selects
ρ1, ρ2, . . . ρn from F.

• R computes yi =
∑ n2

j=1 ρj
i rij , 1 ≤ i ≤ n. Note that ρj

i is jth power of ρi.
• R sends to S over wi, 1 ≤ i ≤ n, the n2 field elements rij , 1 ≤ j ≤ n2. R also sends ρi, yi, 1 ≤ i ≤ n
to S using 2n parallel invocations of the three phase SECURE protocol (described in
Theorem 5) as there are total 2n elements to send. Hence Phase I, II and Phase III are used to do
2n parallel executions of SECURE protocol.
Phase IV (S to R)

• Let S receives r′
ij , 1 ≤ j ≤ n2 along wi, 1 ≤ i ≤ n. S adds wi to a list Lerasure, if S does not receive

any information over wi.
• Let S receives ρ′

i and y′
i, 1 ≤ i ≤ n after the 2n parallel executions of the three phase SECURE

protocol initiated by R. For each i, such that wi �∈ Lerasure, S verifies whether y′
i

?=
∑n2

j=1 ρ′
i
jr′

ij .
If false, then S adds the wire wi to the set of faulty wires, denoted by Lfaulty . S sets Lhonest =
W \ (Lfaulty ∪ Lerasure). If tp ≥ tb, then S computes a random pad Z = (z1, z2, . . . , zn2) of size n2

field elements as follows:

Z = EXTRANDn2|Lhonest|,n2(r′
ij |wi ∈ Lhonest)

However, if tb > tp, S computes a random pad Z of length (tb − tp)n2 from n2|Lhonest| elements using
the above method.
• S computes d = M ⊕ Z. If tp ≥ tb then d is of size n2, so S broadcasts d to R. On the other hand,
if if tb > tp then d consists of (tb − tp)n2 field elements and S reliably sends d to R by invoking
(tb−tp)

tb
∗ n parallel executions of single phase PPRMT Single Phase protocol (This is possible

because n is at least 2tb + to + tf + 1, which is necessary and sufficient for single phase PPRMT. Since
PPRMT Single Phase protocol reliably sends ntb field elements, d consisting of (tb − tp)n2 field

elements can be communicated by S by invoking the single phase PPRMT protocol
(tb−tp)

tb
∗ n times).

S also broadcasts the set Lfaulty and Lerasure to R.

Message recovery by R.
• R correctly receives Lfaulty and Lerasure and sets Lhonest = W \ (Lfaulty ∪Lerasure). R receives d
with certainty (probability one) when tp ≥ tb and with high probability when tb > tp. If tb ≤ tp, then
R computes ZR = (z1, z2, . . . , zn2) of size n2 field elements as follows:

ZR = EXTRANDn2|Lhonest|,n2(rij |wi ∈ Lhonest)

If tb > tp, then R computes ZR of length (tb − tp)n2 using the above method and recovers M by
computing M = ZR ⊕ d.

Proof: In PPSMT Mixed, ρi’s are sent using n parallel execution of the three
phase SECURE protocol. From Theorem 5, the error probability of a single
execution of SECURE protocol is bounded by 1

|F| . Hence the total error prob-
ability of n parallel executions of SECURE to communicate ρi, 1 ≤ i ≤ n, is
bounded by n

|F| . If |F| ≥ 4n
δ , then the total error probability of n parallel exe-

cutions of SECURE is bounded by δ
4 . Since, |F| ≥ 4n4(tb−tp)

δtb
> 4n

δ , the claim
holds. �

Claim 5. In PPSMT Mixed, for all 1 ≤ i ≤ n, y′
i = yi with probability

≥ (1 − δ
4 ).

Proof: Similar to the proof of the above claim. �
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Claim 6. In PPSMT Mixed, if wire wi is corrupted (i.e., at least one of the
value rij , 1 ≤ j ≤ n2 is changed by the adversary) and for all i, ρ′i = ρi then
wi ∈ Lfault with probability ≥ (1 − δ

4 ).

Proof: From the security argument of SECURE protocol, the adversary gains
no information about ρi, yi for all 1 ≤ i ≤ n. Assume that adversary has changed
the n2 tuple over some wire wi and it is not marked as faulty by S. This implies
that yi =

∑n2

j=1 ρj
i rij =

∑n2

j=1 ρj
i r

′
ij = y′

i. As inferred by the expression, yi

and y′
i are the y-values (evaluated at x = ρi) of the polynomials of degree n2

constructed using rij , 1 ≤ j ≤ n2 and r′ij , 1 ≤ j ≤ n2 as coefficients. Since the
polynomials are of degree n2, there are at most n2 points of intersection between
the two. The point ρi is chosen uniformly by R in F. Thus, with probability at
most n2

|F| , the protocol fails to detect the faulty wire. In order to bound this error

probability by δ
4 , we require |F| to be at least 4n2

δ . Since, |F| ≥ 4n4(tb−tp)
δtb

> 4n2

δ ,
the claim holds. �

Claim 7. In PPSMT Mixed, the single phase PPRMT protocol PPRMT
Single Phase which is executed parallely n(tb−tp)

tb
times to reliably send d, fails

with probability of at most δ
4 .

Proof: In PPSMT Mixed, d is sent during Phase IV using n(tb−tp)
tb

parallel
executions of PPRMT Single Phase protocol. If δ′ is the failure probability
of a single execution of PPRMT Single Phase, the total failure probabil-
ity to send d is bounded by n(tb−tp)δ′

tb
. To obtain n(tb−tp)δ′

tb
≤ δ

4 , we require

δ′ ≤ δtb

4n(tb−tp) . Now from Theorem 4, if |F| = n3

δ′ then the error probability of
PPRMT Single Phase is bounded by δ′. So to bound the error probability of
PPRMT Single Phase by δ′ ≤ δtb

4n(tb−tp) , we require |F| ≥ 4n4(tb−tp)
δtb

which is
true in this case. Hence the claim follows. �

Thus Theorem 7 is true if tb > tp and |F| ≥ 4n4(tb−tp)
δtb

. If tp ≥ tb, then
PPSMT Mixed will have an error probability of δ if the error probability
of each of first three events mentioned in Theorem 7 is bounded by δ

3 . This is
because 4th event does not occur, as d is broadcast in this case during Phase
IV, instead of sending by single phase PPRMT. It is easy to check that by set-
ting |F| ≥ 3n2

δ , the theorem holds for tb ≤ tp. �

Note: From Theorem 7, the field size should be either 3n2

δ or 4n4(tb−tp)
δtb

. However,
in PPSMT Mixed, during Phase I, R needs to select at least n3 random field
elements from F. So depending upon δ, we will set the field size as max(n3, 3n2

δ ).
Setting field size like this will not affect the working of the protocol.

Theorem 8. In PPSMT Mixed, the adversary learns no information about
the transmitted message M.
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Proof: The proof is divided into the following two cases:

1. Case I: If tp ≥ tb: In this case, n = tb + tp + to + tf + 1. In the worst case,
the adversary can passively listen the contents over tb + to + tp wires and block
tf wires. So there will be only one honest wire wi and hence the adversary will
have no information about the n2 random elements sent over wi. In this case, S
generates a random pad of length n2 and sends M containing n2 field elements,
using this pad. The proof follows from the correctness of EXTRAND algorithm.
2. Case II: If tb > tp: In this case, n = 2tb + to + tf + 1. In the worst case, the
adversary can passively listen the contents of at most tb + tp + to wires and block
tf wires. So there are at least (tb − tp) honest wires and hence the adversary
will have no information about the n2 random elements sent over these honest
wires. In this case, S generates a random pad of length (tb − tp)n2 and sends M
containing (tb − tp)n2 field elements, using this pad. The proof now follows from
the correctness of EXTRAND algorithm. �

Theorem 9. The communication complexity of PPSMT Mixed is O(n3).

Proof: During Phase I, R sends n2 random field elements over each of the n
wires causing a communication complexity of O(n3). R also invokes 2n paral-
lel executions of SECURE protocol with communication complexity of O(n2).
This incurs total communication overhead of O(n3). During Phase IV, S sends
d to R. If tp ≥ tb, then d will consist of n2 field elements and hence broadcast-
ing it to R incurs a communication complexity of O(n3). On the other hand,
if tb > tp, d consist of (tb − tp)n2 field elements. In this case, S will send d

by invoking (tb−tp)
tb

∗ n parallel executions of single phase PPRMT protocol.
Since, each execution of the single phase PPRMT protocol has a communica-
tion complexity of O(n2), total communication complexity is O

(
(tb−tp)∗n3

tb

)
,

which is O(n3). Thus, overall communication complexity of PPSMT Mixed
is O(n3). �

Finally to comment on the communication complexity of PPSMT Mixed in
terms of bits, we state the following: PPSMT Mixed sends (tb−tp)n2 log |F| (if
tb > tp) or n2 log |F| bits (if tb ≤ tp) by communicating O(n3 log |F|) bits, where
|F| is either 4n4(tb−tp)

δtb
or 3n2

δ respectively. From Theorem 6, if tb ≥ tp (n will
2tb + to + tf + 1), then any four phase PPSMT protocol needs to communicate
Ω(n3 log |F|) bits to securely send (tb − tp)n2 log |F| bits. Similarly, if tp ≥ tb
(n will be tb + tp + to + tf + 1), then any four phase PPSMT protocol need to
communicate Ω(n3 log |F|) bits in order to securely send n2 log |F| bits. Since to-
tal communication complexity of PPSMT Mixed in both cases is O(n3 log |F|)
bits, our protocol is bit optimal.

Significance of the Protocol: In [7], the authors have designed a PSMT proto-
col achieving optimum communication complexity in O(log(to + tf )) phases. Our
PPSMT protocol achieves optimum communication complexity in four phases,
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which shows the power of randomization. However, our protocol does not sacri-
fice security in any sense for gaining optimality.

Achieving Probabilistic Reliability and Perfect Security with Con-
stant Overhead in Four Phases: In [13], the lower bound on the commu-
nication complexity of any multiphase PSMT protocol has been proved to be
Ω

(
n�

n−2tb

)
in the presence of Byzantine adversary. Hence, communicating any

message secretly with constant overhead is impossible by any PSMT protocol.
However protocol PPSMT Mixed achieves this bound. In PPSMT Mixed,
if to = tp = tf = 0, then it sends tbn

2 = O(n3) field elements in four phases
by communicating O(n3) field elements (when to = tf = tp = 0, n = 2tb + 1
and so tb = O(n)). Thus we get secrecy with constant overhead in four phases
when PPSMT Mixed is executed considering only Byzantine adversary. Like
PPRMT Single Phase, PPSMT Mixed is also a special kind of a PPSMT
protocol in that R actually knows if the protocol outputs the correct message
or not.

4 Conclusion

We have studied the problem of PPRMT and PPSMT in the presence of mixed
adversary. The paper shows considerably strong effect of randomization in the
possibility, feasibility and optimality of reliable and secure message transmission
protocols. We summarize our results in Table 1 and Table 2.

Table 1. Connectivity Requirement for the Existence of Protocol

Model Single Phase Multiple Phase
PRMT(Mixed Adversary) n ≥ 2tb + to + tf + 1 [7] n ≥ 2tb + to + tf + 1 [7]
PPRMT(Mixed Adversary) n ≥ 2tb + to + tf + 1, Theorem 2 n ≥ 2tb + to + tf + 1, Theorem 2
PSMT(Mixed Adversary) n ≥ 3tb + 2to + 2tf + tp + 1 [11] n ≥ 2tb + to + tf + tp + 1 [7]
PPSMT(Mixed Adversary) n ≥ 2tb + 2to + tf + tp + 1 [8] n ≥ tb + max(tb, tp) + to + tf + 1, Theorem 5

Table 2. Protocols with Optimum Communication Complexity. � is the message size.

Model Communication Complexity Number of Phases Remarks

PRMT (Byzantine
Adversary)

O(�) 3 � = n2 [9].

PPRMT (Byzantine
Adversary)

O(�) 1 � = O(n2) (Protocol PPRMT Single Phase

given in this paper by substituting to = tf = 0).

PSMT (Byzantine
Adversary)

O

(
n�

n−3tb

)
1 � = O(n) [11].

O

(
n�

n−2tb

)
2 Exponential computation [1].

O

(
n�

n−2tb

)
3 Polynomial computation [9].

PPSMT (Byzantine
Adversary)

O

(
n�

n−tb

)
1 � = O(n) [8].

O(�) 4 � = O(n3) (by substituting to = tf = tp = 0
in PPSMT Mixed)

PSMT (Mixed Adver-
sary)

O

(
n�

n−(2tb+to+tf +tp)

)
O(log(to + tf )) � = n log(to + tf ) [7]

PPSMT (Mixed Ad-
versary)

O

(
n�

n−(tb+to+tf +tp)

)
4 � = n2 or � = (tb − tp)n2

Protocol PPSMT Mixed given in this paper
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