
Related-Key Attacks on the Py-Family of
Ciphers and

an Approach to Repair the Weaknesses�

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{gautham.sekar,souradyuti.paul,bart.preneel}@esat.kuleuven.be

Abstract. The stream cipher TPypy has been designed by Biham and
Seberry in January 2007 as the strongest member of the Py-family ci-
phers, after weaknesses in the other members Py, Pypy, Py6 were discov-
ered. One main contribution of the paper is the detection of related-key
weaknesses in the Py-family of ciphers including the strongest member
TPypy. Under related keys, we show a distinguishing attack on TPypy
with data complexity 2192.3 which is lower than the previous best known
attack on the cipher by a factor of 288. It is shown that the above attack
also works on the other members TPy, Pypy and Py. A second contribu-
tion of the paper is design and analysis of two fast ciphers RCR-64 and
RCR-32 which are derived from the TPy and the TPypy respectively.
The performances of the RCR-64 and the RCR-32 are 2.7 cycles/byte
and 4.45 cycles/byte on Pentium III (note that the speeds of the ciphers
Py, Pypy and RC4 are 2.8, 4.58 and 7.3 cycles/byte). Based on our se-
curity analysis, we conjecture that no attacks lower than brute force are
possible on the RCR ciphers.

1 Introduction

Timeline – The Py-Family of Ciphers

– April 2005, Design. The ciphers Py and Py6, designed by Biham and
Seberry, were submitted to the ECRYPT project for analysis and evaluation
in the category of software based stream ciphers [4]. The impressive speed
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of the cipher Py in software (about 2.5 times faster than the RC4) made it
one of the fastest and most attractive contestants.

– March 2006, Attack (at FSE 2006). Paul, Preneel and Sekar reported
distinguishing attacks with 289.2 data and comparable time against the cipher
Py [18]. Crowley [7] later reduced the complexity to 272 by employing a
Hidden Markov Model.

– March 2006, Design (at the Rump session of FSE 2006). A new
cipher, namely Pypy, was proposed by the designers to rule out the afore-
mentioned distinguishing attacks on Py [5].

– May 2006, Attack (presented at Asiacrypt 2006). Distinguishing at-
tacks were reported against Py6 with 268 data and comparable time by Paul
and Preneel [19].

– October 2006, Attack (presented at Eurocrypt 2007). Wu and Pre-
neel showed key recovery attacks against the ciphers Py, Pypy, Py6 with
chosen IVs. This attack was subsequently improved by Isobe et al. [11].

– January 2007, Design. Three new ciphers TPypy, TPy, TPy6 were pro-
posed by the designers [3]; the ciphers can very well be viewed as the
strengthened versions of the previous ciphers Py, Pypy and Py6 where the
above attacks should not apply. So far there exist no published attacks on
TPypy, TPy and TPy6.

– February 2007, Attack. Sekar, Paul and Preneel published distinguishing
attacks on Py, Pypy, TPy and TPypy with data complexities 2281 each [23].

– June 2007, Attack (to be presented at ISC 2007). Sekar, Paul and
Preneel showed new weaknesses in the stream ciphers TPy and Py. Exploit-
ing these weaknesses distinguishing attacks on the ciphers are constructed
where the best distinguisher requires 2275 data and comparable time.

– July 2007, Attack and Design (presented at WEWoRC 2007). Sekar,
Paul and Preneel mounted distinguishing attacks on TPy6 and Py6 with 2233

data and comparable time each [22]. Moreover, they have modified TPy6 to
design two new ciphers TPy6–A and TPy6–B which were claimed to be free
from all attacks excluding brute force ones.1

Contribution of the paper. The list that orders the Py-family of ciphers in
terms of increasing security is: Py6→Py→ Pypy → TPy6 → TPy → TPypy (the
strongest). The ciphers are normally used with 32-byte keys and 16-byte initial
values (or IV). However, the key size may vary from 1 to 256 bytes and the IV
from 1 to 64 bytes. The ciphers were claimed by the designers to be free from
related-key and distinguishing attacks [3,4,5].

(i) Related-key Weaknesses. One major contribution of the paper is the discov-
ery of related-key attacks due to weaknesses in the key scheduling algorithms of
the Py-family of ciphers. The main idea behind a related-key attack is that, the
attacker, who chooses a relation f between a pair of keys key1 and key2 (e.g.,
key1 = f(key2)) rather than the actual values of the keys, is able to extract

1 It has been reported very recently that Tsunoo et al. showed a distinguishing attack
on TPypy with a data complexity of 2199 [25].
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secret information from a cryptosystem using the relation f [2,13]. Related-key
weakness is a cause for concern in a protocol where key-integrity is not guaran-
teed or when the keys are generated manually rather than from a pseudorandom
number generator [12]. Related-key weaknesses are not new in the literature.
The usefulness of such type of attacks was first outlined by Knudsen in [14,15];
since then a good deal of research has been spent on related-key weaknesses on
block ciphers [2,12,13,16]. The related-key weaknesses of a block cipher can be
translated into attacking hash functions based on that particular block cipher
and vice versa [9,10,17,20,26,27].

On the other hand, discovery of related-key weaknesses of stream ciphers is not
very common in the literature, mainly due to the heavy operations executed in
one-time key-scheduling algorithms compared to the operations performed in it-
erative block ciphers. However, there is an example where related-key weaknesses
of the stream cipher RC4 are used to break the WEP protocol with practical
complexity [8]. Furthermore, there is a growing tendency by the designers nowa-
days to build hash functions from stream ciphers [6] instead of building them
from block ciphers. In such attempts, related-key weaknesses of stream ciphers
need to be addressed carefully.

In the paper, we show that, when used with the identical IVs of 16 bytes each,
if two long keys key1 and key2 of 256 bytes each, are related in the following
manner,

1. key1[16] ⊕ key2[16] = 1,
2. key1[17] �= key2[17] and
3. key1[i] = key2[i] ∀i �∈ {16, 17}

then the above relation, exploiting the weaknesses of the key setup algorithms
of Py-family of ciphers (i.e., TPypy, TPy, Pypy, Py), propagates through the
IV setup algorithms and finally induces biases in the outputs at the 1st and the
3rd rounds. Such related key pairs are used to build a distinguisher for each
of the aforementioned ciphers with 2193.7 output words and comparable time
(note that, in total, there are 22048 such pairs, while our distinguisher needs any
2193.7 randomly chosen pairs of keys). This result constitutes the best attack on
the strongest member of the Py-family of ciphers TPypy; they are also shown
to be effective on the other members TPy, Pypy and Py (see Table 1). These
related-key attacks work with any IV-size ranging from 16 to 64 bytes. However,
the attack complexities increase with shorter keys. Note that the usage of long
keys in the Py-family of ciphers makes it very attractive to be used as fast hash
functions (e.g., by replacing of the key with the message). In such cases, these
related-key weaknesses can turn out to be serious impediments.

(ii) The Ciphers RCR-32 and RCR-64. Finally, we make simple modifications
to the ciphers TPypy and TPy to build two new ciphers RCR-32 and RCR-64
respectively. In the modified designs, the key scheduling algorithms of RCR-32
and RCR-64 are identical with those of the TPypy and the TPy. The changes
are made only to the round functions where variable rotations are replaced with
constant rotations. Our extensive analyses show that the modifications not only
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Table 1. Attacks on the Py-family of stream ciphers (‘X’ denotes that the attack does
not work)

Attack Py6 Py Pypy TPy6 TPy TPypy

Crowley [7] X 272 X X 272 X

Isobe et al. [11] X 224 224 X X X

Paul et al. [18] X 288 X X 288 X

Paul-Preneel [19] 268 X X 268 X X

Sekar et al. [21] X 2275 X X 2275 X

Sekar et al. [22] 2233 X X 2233 X X

Sekar et al.[23] X 2281 2281 X 2281 2281

Wu-Preneel [29] X 224 224 X X X

Related key (this paper) X 2193.7 2193.7 X 2193.7 2193.7

free the Py-family ciphers from all the existing attacks, it also improves on
the performance of the ciphers without exposing them to new weaknesses (see
Sect. 5 for an elaborate security analysis). As a result, the cipher RCR-64 goes
on to become one of the the fastest stream ciphers published in the literature
(approximately 2.7 cycles per byte on Pentium III). The names are chosen to
reflect the functionalities involved in the ciphers. For example, RCR-64 denotes
Rolling, Constant Rotation and 64 bits output/round.

2 Description of the Stream Ciphers TPypy, TPy, Pypy
and Py

Each of the Py-family of ciphers is composed of three parts: (1) a key setup
algorithm, (2) an IV setup algorithm and (3) a round function or pseudorandom
bit generation algorithm (PRBG). The first two parts are used for the initial one-
time mixing of the secret key and the IV. These parts generate a pseudorandom
internal state composed of (1) a permutation P of 256 elements, (2) a 32-bit
array Y of 260 elements and (3) a 32-bit variable s. The key/IV setup uses
two intermediate variables: (1) a fixed permutation of 256 elements denoted by
internal permutation and (2) a variable EIV whose size is equal to that of the
IV. The round function, which is executed iteratively, is used to update the
internal state (i.e., P , Y and s) and to generate pseudorandom output bits. The
key setup algorithms of the TPypy, the TPy, the Pypy and the Py are identical.
Notation for different parts of the four ciphers is provided in Table 2.

Due to space constraints, the KS, the IV S1, the IV S2, the RF1 and the RF2,
as mentioned in Table 2, are described in the full version of the paper [24]. The
details of the algorithms can also be found in [3,4,5].
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Table 2. Description of the ciphers TPypy, TPy, Pypy and Py

TPypy TPy Pypy Py
Key Setup KS KS KS KS

IV Setup IV S1 IV S1 IV S2 IV S2

Round Function RF1 RF2 RF1 RF2

3 Notation and Convention

The notation and the convention followed in the paper are described below.

– The pseudorandom bit generation algorithm of a stream cipher is denoted
by PRBG.

– The outputs generated when key1 and key2 are used are denoted by O and
Z respectively.

– Oa
(b) (or Za

(b)) denotes the bth bit (b = 0 is the least significant bit or lsb) of
the second output word generated at round a when key1 (or key2) is used.
We do not use the first output word anywhere in our analysis.

– P a
1 , Y a+1

1 and sa
1 are the inputs to the PRBG at round a when key1 is used.

It is easy to see that when this convention is followed the Oa takes a simple
form: Oa = (s ⊕ Y a[−1]) + Y a[P a[208]]. The same applies to key2.

– Y a
1 [b], P a

1 [b] denote the bth elements of array Y a
1 and P a

1 respectively, when
key1 is used.

– Y a
1 [b]i, P a

1 [b]i denote the ith bit of Y a
1 [b], P a

1 [b] respectively.
– The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo

232 respectively, except when used with expressions which relate two elements
of array P . In this case they denote addition and subtraction over Z.

– The symbol ‘⊕’ denotes bitwise exclusive-or, ∩ denotes set intersection and
∪ denotes set union.

4 Related-Key Weaknesses in the Py-Family of Ciphers

We first choose two keys, key1 and key2 (each key is 256 bytes long), such that,

C1. key1[16] ⊕ key2[16] = 1 (without loss of generality, assume lsb of key1[16]
is 1),
C2. key1[17] �= key2[17] and C3. key1[i] = key2[i] ∀i �∈ {16, 17}.

Now we observe that the above relation between the keys can be traced through
various parts of the Py-family of ciphers.

4.1 Propagation of the Weaknesses Through the Key Setup
Algorithm

For key1 and key2, the values of the variable s through Algorithm A are tabulated
in Table 3. The Algorithm A is a part of the key setup algorithm KS (described
in the full version of the paper [24]).
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Algorithm A
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}

Table 3. The variable s after rounds 15, 16 and 17 of Algorithm A

End of
round

s (using key1) s (using key2)

15 sA
1,15 sA

2,15 = sA
1,15

16 sA
1,16 sA

2,16 = sA
1,16 − δ1 (say)

17 sA
1,17 sA

2,17 = sA
1,17 if key2[17] = key1[17] + δ1

If x is a 32-bit variable, let B(x) denote the least significant byte of x. In
Table 3,

δ1 = sA
1,16 − sA

2,16 (1)

= ROTL32((sA
1,15 + key1[16]), 8) ⊕ ip[B(sA

1,15 + key1[16])] (2)

− ROTL32((sA
2,15 + key2[16]), 8) ⊕ ip[B(sA

2,15 + key2[16])], (3)

where ip denotes internal permutation.

Now, if key2[17] = key1[17] + δ1 (call this the event D1), it is observed from
Algorithm A that the following equation is satisfied:

sA
1,17 = sA

2,17.

For event D1 to occur, δ1 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ1| = 8] ≈ 1
2
.

Hence,

Pr[D1] ≈ 2−9. (4)

If sA
1,17 = sA

2,17, then in the subsequent rounds of Algorithm A, the sA
1 and sA

2

remain the same, that is, sA
1,k = sA

2,k, where k = 18, 19, ..., 255.
Given that the D1 occurs, that is, sA

1 = sA
2 at the end of Algorithm A, or

sA
1,255 = sA

2,255, we now trace the values of s through Algorithm B which forms
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Algorithm B
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}

Table 4. s after rounds 15, 16 and 17 of Algorithm B given event D1 occurs

End of
round

s (using key1) s (using key2)

15 sB
1,15 sB

2,15 = sB
1,15

16 sB
1,16 sB

2,16 = sB
1,16 − δ2 (say)

17 sB
1,17 sB

2,17 = sB
1,17 if key2[17] = key1[17] + δ2

another part of the key setup. Table 4 compares the values of s after rounds 15,
16 and 17 of Algorithm B when key1 and key2 are used.

In Table 4,

δ2 = sB
1,16 − sB

2,16

= ROTL32((sB
1,15 + key1[16]), 8) ⊕ ip[B(sB

1,15 + key1[16])]

− ROTL32((sB
2,15 + key2[16]), 8) ⊕ ip[B(sB

2,15 + key2[16])]. (5)

Now, given event D1 occurs, i.e., sA
1 = sA

2 at the end of Algorithm A, if δ2 = δ1
(call this the event D2), we will have key2[17] = key1[17] + δ2 and hence from
Algorithm B, the following equation is satisfied:

sB
1,17 = sB

2,17.

For event D2 to occur, δ2 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ2| = 8] ≈ 1
22.4 .

Hence,

Pr[D2|D1] ≈ 2−10.4 ⇒ Pr[D2 ∩ D1] ≈ Pr[D1] · 2−10.4 ≈ 2−19.4. (6)

If sB
1,17 = sB

2,17, then in the subsequent rounds of Algorithm B, the sB
1 and sB

2

remain the same, that is, sB
1,k = sB

2,k, where k = 18, 19, ..., 255.
Given that the D2 ∩ D1 occurs, that is, sB

1 = sB
2 at the end of Algorithm B ,

or sB
1,255 = sB

2,255, the values of s and Y are traced through Algorithm C which
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forms the final part of the key setup. In the full version of the paper we compare
the values of s and Y after rounds 15, 16 and 17 of Algorithm C when key1 and
key2 are used [24]. Since Algorithm C and the corresponding table have striking
similarities with Algorithm A and Table 3, they are described in the full version
[24] and we provide only the results of our analysis. Now, given that the event
D2 ∩D1 occurs, i.e., sB

1 = sB
2 at the end of Algorithm B, if δ3 = δ1 (call this the

event D3), we will have key2[17] = key1[17] + δ3 and hence from Algorithm C,
the following equation is satisfied:

sC
1,17 = sC

2,17.

For event D3 to occur, δ2 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ3| = 8] ≈ 1
2
.

Hence,

Pr[D3|D2 ∩ D1] ≈ 2−9 ⇒ Pr[D3 ∩ D2 ∩ D1] ≈ Pr[D2 ∩ D1] · 2−9 ≈ 2−28.4.(7)

If sC
1,17 = sC

2,17, then in the subsequent rounds of Algorithm C, the sC
1 and sC

2

remain the same, that is, sC
1,k = sC

2,k, where k = 18, 19, ..., 255 and Y1[j] = Y2[j],
where j �= 13.

4.2 Propagation of the Weaknesses Through the IV Setup

Given that the D3 ∩ D2 ∩ D1 occurs, i.e., sC
1 = sC

2 at the end of Algorithm C,
or sC

1,255 = sC
2,255, and Y1[i] = Y2[i] (i �= 13), we now trace the variables s, Y , P

and EIV through the first part of the IV setup. We now consider Algorithm D
which is a part of the IV setup. It is to be noted that s, Y (obtained after the
key setup) and the iv are the basic elements used in the IV setup to define the
P and the EIV and to update the s and the Y . We now model our attack in
such a way that the same IV is used with both the keys. Prior to the execution
of Algorithm D, the only elements of array Y which are used in the first part of
the IV setup are Y [0], Y [1], Y [Y MININD] and Y [Y MAXIND]. Since Y [13]
is not used, it follows that P1 (that is, P when key1 is used) and P2 (that is, P
when key2 is used) are identical.

Algorithm D
for(i=0; i<ivsizeb; i++)
{
s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
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In Algorithm D as well, Y [13] is not used to update the s or define the EIV
when the IV is of the recommended size of 16 bytes. For longer IVs, we can
induce the first difference in the keys (that is, where the least significant bits
alone differ) according to the size of the IV. An example is provided in the full
version [24]. It is to be noted that, if the IV-size is N bytes, the first difference in
the keys should be induced nowhere: neither (1) in the first N −1 bytes (i.e., key
bytes 0 to N −1), nor (2) in the last N −3 bytes (i.e., key bytes 260−N to 256).
Otherwise, it is immaterial as to where the first difference is set (i.e., anywhere

Algorithm E
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
/*s = s + EIV((i+ivsizeb-1)mod ivsizeb) + Y(YMAXIND-i); for IVS1.*/
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

from byte N to 259 − N) – in all the cases, bias induced will be approximately
identical (this is established from a large number of experiments).

We now consider Algorithm E. Again, Y [13] is not used to update the s or
the EIV (for both IV S1 and IV S2). Hence, at the end of Algorithm E, we have
s1 = s2, EIV1 = EIV2, P1 = P2 and Y1[i] = Y2[i] (where i �= 13). With this
result, we now proceed to the second part of the IV setup.

In the second part of the IV setup (that is, for IV S2), when i = 16 (i = 17 for
IV S1), the s generated using key1 and key2 are different due to the difference
in Y [13]. This causes the EIV s to be different in the following round and hence
P1 �= P2. In the subsequent rounds, the mixing becomes more random with the
result that at the end of 260 rounds, we have Y1[j] = Y2[j] where j ∈ {−3, ..., 12}.

IV setup part-2
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0) ^ (s&0xFF);
rotate(EIV);
swap(P(0), P(x0));
rotate(P);
Y(YMININD)=s=(s ^ Y(YMININD))+Y(x0);
/*s=ROTL32(s,8)+Y(YMAXIND);
Y(YMININD)+=s^Y(x0); for IVS1.*/
rotate(Y);

}
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This result holds only if x0 �= 13 when i = 0, ..., 15. The probability that this
occurs is (255

256 )j+4 ≈ 1 when j ∈ {−3, ..., 12}. With this result, we now analyze
the keystream generation algorithm.

4.3 Propagation of the Weaknesses Through the Round Function

Here, we consider only the round function RF1 (see the full version [24]). The
formulas for the lsb of the outputs generated at rounds 1 and 3 when key1 (the
output words are denoted by O) and key2 (the output words are denoted by Z)
are used are given below.

O1
(0) = s1

1(0) ⊕ Y 1
1 [−1]0 ⊕ Y 1

1 [P 1
1 [208]]0, (8)

O3
(0) = s3

1(0) ⊕ Y 3
1 [−1]0 ⊕ Y 3

1 [P 3
1 [208]]0, (9)

Z1
(0) = s1

2(0) ⊕ Y 1
2 [−1]0 ⊕ Y 1

2 [P 1
2 [208]]0, (10)

Z3
(0) = s3

2(0) ⊕ Y 3
2 [−1]0 ⊕ Y 3

2 [P 3
2 [208]]0. (11)

Let C1, C2, C3 and C4 denote Y 1
1 [P 1

1 [208]]0, Y 3
1 [P 3

1 [208]]0, Y 1
2 [P 1

2 [208]]0 and
Y 3

2 [P 3
2 [208]]0 respectively. Each row in Table 5 gives the conditions on the ele-

ments of P1 and P2 which when simultaneously satisfied gives C1⊕C2⊕C3⊕C4 =
0. The corresponding probabilities are also given. From Table 5, it follows that
events G2, G3 and G4 can be ignored when compared to G1. We now state the
following theorem.

Theorem 1. s1
1 = s3

1 when the following conditions are simultaneously satisfied.

1. P 2
1 [116] ≡ −18 mod 32 (event E1),

2. P 3
1 [116] ≡ −18 mod 32 (event E2),

3. P 2
1 [72] = P 3

1 [239] + 1 (event E3),
4. P 2

1 [239] = P 3
1 [72] + 1 (event E4).

Proof. The formulas for s2
1 and s3

1 are given below:

s2
1 = ROTL32(s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]], P 2
1 [116] + 18 mod 32), (12)

s3
1 = ROTL32(s2

1 + Y 3
1 [P 3

1 [72]] − Y 3
1 [P 3

1 [239]], P 3
1 [116] + 18 mod 32). (13)

Condition 1 (i.e., P 2
1 [116] ≡ −18 mod 32) reduces (12) to

s2
1 = s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]].

Therefore, (13) becomes

s3
1 = ROTL32(s1

1 +
3∑

i=2

(Y i
1 [P i

1 [72]] − Y i
1 [P i

1[239]]), P 3
1 [116] + 18 mod 32).(14)

Now, condition 3 (i.e., P 2
1 [72]=P 3

1 [239]+1) and condition 4 (P 2
1 [239]=P 3

1 [72]+1)
together imply

∑3
i=2(Y

i
1 [P i

1 [72]] − Y i
1 [P i

1[239]]) = 0 and hence reduce (14) to

s3
1 = ROTL32(s1

1, P
3
1 [116] + 18 mod 32). (15)
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Table 5. When Gj (1 ≤ j ≤ 4) occurs, C1 ⊕ C2 ⊕ C3 ⊕ C4 = 0

Event Conditions Probability Result

G1 P 1
1 [208] = P 3

1 [208] + 2, P 1
2 [208] = P 3

2 [208] + 2 2−16 C1 = C2,C3 = C4

G2 P 1
1 [208] = P 1

2 [208], P 1
1 [208], P 1

2 [208] ≤ 12, P 3
1 [208] =

P 3
2 [208], P 3

1 [208], P 3
2 [208] ≤ 12

2−24.6 C1 = C3,C2 = C4

G3 P 1
1 [208] = P 3

2 [208] + 2, 2 ≤ P 1
1 [208] ≤ 12, P 3

2 [208] ≤
10, P 1

2 [208] = P 3
1 [208] + 2, 2 ≤ P 1

2 [208] ≤ 12,
P 3

1 [208] ≤ 10

2−25.4 C1 = C4,C2 = C3

G4 G2 ∩ G1 Negligible (<< 2−25) C1 = C2 = C3 = C4

Now, when event E2 (that is, P 3
1 [116] ≡ −18 mod 32) occurs, (15) becomes

s3
1 = ROTL32(s1

1, 0) = s1
1. (16)

This completes the proof. �
Now, s1

1 = s3
1 ⇒ s1

1(0) = s3
1(0) and Pr[E1] ≈ Pr[E2] ≈ 2−5 and Pr[E3] ≈

Pr[E4] ≈ 2−8. The four events E1, E2, E3 and E4 are assumed to be in-
dependent to facilitate calculation of bias. The actual value without indepen-
dence assumption is in fact more, making the attack marginally stronger. Hence,
Pr[E1 ∩ E2 ∩ E3 ∩ E4] = 2−26. Similarly, we have s1

2 = s3
2 when the following

conditions are simultaneously satisfied.

1. P 2
2 [116] ≡ −18 mod 32 (event E5), 2. P 3

2 [116] ≡ −18 mod 32 (event E6),
3. P 2

2 [72] = P 3
2 [239] + 1 (event E7), 4. P 2

2 [239] = P 3
2 [72] + 1 (event E8).

Again, s1
2 = s3

2 ⇒ s1
2(0) = s3

2(0) and

Pr[∩8
i=1Ei] =

1
252 . (17)

From the analysis in Sect. 4.1 and 4.2, when D3 ∩D2 ∩D1 occurs, Y 1
1 [j] = Y 1

2 [j]
where j ∈ {−3, ..., 12}. Y 1

1 [i] = Y 1
2 [i] ⇒ Y 1

1 [−1]0 = Y 1
2 [−1]0 and Y 3

1 [−1]0 =
Y 1

1 [1]0 = Y 1
2 [1]0 = Y 3

2 [−1]0. Therefore, from equations (8), (9), (10) and (11),
we observe that

O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0 (18)

holds when the following events simultaneously occur.

1. D3 ∩ D2 ∩ D1, 2. ∩8
i=1Ei and 3. G1.

In the following section, we calculate the probability that (18) is satisfied.

4.4 The Distinguisher

Let L denote the event (∩8
i=1Ei) ∩ (D3 ∩ D2 ∩ D1) ∩ (G1). From (7), (17) and

Table 5, we get: Pr[L] = 2−52 · 2−28.4 · 2−16 = 2−96.4. Assuming randomness
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of the outputs when event L does not occur (concluded from a large number of
experiments), we have:

Pr[O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0] =
1
2
(1 +

1
296.4 ). (19)

To compute the number of samples required to establish an optimal distinguisher
with advantage greater than 0.5, we use the following equation:

n = 0.4624 · 1
p2 (20)

from [1,18]. Here, p = 2−97.4. Therefore, the number of samples is 2193.7.

4.5 Attacks with Shorter Keys

The related-key attacks described in the previous sections can be applied with
shorter keys also. However, the data complexity of the distinguisher increases
exponentially as key size decreases. For example, when the key size is 128 bytes,
the distinguisher works with 2229.7 data and comparable time. For 64-byte key
size, the data complexity of the distinguisher is 2247.7.

5 New Stream Ciphers – RCR-32 and RCR-64

As mentioned in Sect. 1, in the last couple of years, the Py-family of ciphers have
come under several cryptanalytic attacks. In spite of the weaknesses, the ciphers
retain some attractive features such as modification of the internal states with
clever use of rolling arrays and fast mixing of several arithmetic operations. This
motivates us to explore the possibility of designing new ciphers that retain all
the good properties of the Py-family and yet are secure against all the existing
and new attacks.

In this section, we propose two new ciphers, RCR-32 (Rolling, Constant
Rotation, 32 -bit output per round) and RCR-64 derived from TPypy and Tpy,
which are shown to be secure against all the existing attacks on the TPypy and
TPy. The speeds of execution of the RCR-64 and the RCR-32 in software are
2.7 cycles and 4.45 cycles per byte which are better than the performances of
the TPy (2.8 cycles/byte) and the TPypy (4.58 cycles/byte) respectively.

The key/IV setup algorithms of the RCR-64 and the RCR-32 are identical
with those of the TPy and the TPypy. The PRBGs of the RCR-64 and the RCR-
32 are also very similar to those of the TPy and the TPypy. The only changes
in the PRBGs are that: the variable rotation of the quantity s is replaced by
a constant rotation of 19. Single round of RCR-32 and RCR-64 are shown in
Algorithm 1.

5.1 Security Analysis

Due to restrictions on the page limit, the security analysis has been provided in
the full version of the paper [24].
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Algorithm 1. Round functions of RCR-32 and RCR-64
Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output (for RCR-64) or 32-bit random output (for RCR-32)

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, 19); /*Tweak - the variable s undergoes a constant, non-zero

rotation.*/
/* Output 4 or 8 bytes (the least significant byte first)*/

5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);/* This step is skipped for RCR-
32.*/

6: output (( s ⊕Y [−1]) + Y [P [208]]);
/* Update and rotate Y */

7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );

6 Future Work and Conclusion

In this paper, for the first time, we detect weaknesses in the key scheduling
algorithms of several members of the Py-family. Precisely, we build distinguishing
attacks with data complexities 2193 each. Furthermore, we modify the ciphers
TPypy and TPy to generate two fast ciphers, namely RCR-32 and RCR-64,
in an attempt to rule out all the attacks against the Py-family of ciphers. We
conjecture that attacks lower than brute force are not possible on RCR ciphers.

Our present work leaves room for interesting future work. The usage of long
keys and IVs (e.g., possibility of 256-byte keys and 64-byte IVs) in RCR ciphers
makes them good candidates to be used as hash functions. One can also try to
combine a MAC and an encryption algorithm in a single primitive using RCR
ciphers. It seems worthwhile to address these issues in future.
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