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Abstract. In this paper, we prove that for any polynomial function
f of fixed degree without multiple roots, the probability that all the
(f(x + 1), f(x + 2), ..., f(x + κ)) are quadratic non-residue is ≈ 1

2κ . In
particular for f(x) = x3 +ax+ b corresponding to the elliptic curve y2 =
x3 + ax + b, it implies that the quadratic residues (f(x + 1), f(x + 2), . . .
in a finite field are sufficiently randomly distributed. Using this result
we describe an efficient implementation of El-Gamal Cryptosystem. that
requires efficient computation of a mapping between plain-texts and the
points on the elliptic curve.

1 Introduction

The distribution of quadratic residues is an interesting problem in Number the-
ory and has many practical applications including Cryptography and Random
number generation. In particular it is conjectured to be random and there are
many constructions based on this conjecture [1,2]. Peralta [2] proves that for any
randomly chosen x ∈ Fq, the probability of (x+ 1, x+ 2, ..., x+ κ) matching any
particular quadratic sequence of length κ is in the range 1

2κ ± κ
3+

√
q

q . In this
paper we prove a similar result for the sequence (f(x+1), f(x+2), ..., f(x+κ)),
for any polynomial function f of fixed degree without multiple roots. In partic-
ular for f(x) = x3 + ax + b corresponding to the elliptic curve y2 = x3 + ax + b,
it implies that the quadratic residues (f(x + 1), f(x + 2), . . . in a finite field are
sufficiently randomly distributed.

The main motivation for this work is Elliptic Curve El-Gamal Cryptosystem
and Koblitz’s mapping from the message units to points on an elliptic curve. In
the following sections we briefly describe these two methods.

1.1 El-Gamal Cryptosystem

We start with a fixed publicly known finite field K, an elliptic curve E/K defined
over it and a base point B ∈ E/K (we refer to [5] for basic definitions and
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notations). Each user chooses a random integer b, which is kept secret, and
computes the point x = bB which is the public key. To send a message P to Bob,
Alice chooses a random integer k and sends the pair of points (kB, P + k(bB))
(where bB is Bob’s public key) to Bob. To read the message, Bob multiplies the
first point in the pair by his secret key b and subtracts the result from the second
point: P + k(bB) − b(kB) that yields P .

One of the commonly used ECC, El-Gamal Cryptosystem requires a mapping
from the message units to points on an elliptic curve, i.e., we need an efficient
algorithm which computes a mapping between the points on an elliptic curve
and a plain-text which forms the basis of encryption and decryption routines.

To date no polynomial time deterministic algorithm is known for this problem.
However we do have polynomial time randomized algorithms. We sketch such
an algorithm due to Koblitz [5] that makes the following assumptions:

– Fq is a field with pn elements (p > 3, prime).
– κ is a large enough integer so that we are satisfied with the failure probability

1
2κ when we attempt to embed a plain text message m.

– Message units are integers between 0 and M − 1.
– The finite field is chosen in such a way that q > κ · M .
– An integer m =

∑n−1
i=0 aip

i is mapped to (a0, a1, ..., an−1) ∈ Fq.

Koblitz’s algorithm

1. Given m, find an element x ∈ Fq corresponding to mκ + 1 and compute
f(x) = x3 + ax + b and check whether f(x) is a quadratic residue.
(This can be easily done because an element α ∈ Fq is a quadratic residue
if and only if α(q−1)/2 = 1).

2. If f(x) is a quadratic residue then we can find a y such that y2 = x3+ax+b
and we map m to Pm = (x, y).
(There are polynomial time probabilistic algorithms to find the square roots
in finite fields of odd order [5]).

3. If f(x) is not a quadratic residue then we try points corresponding to mκ +
j, 1 < j ≤ κ till we find an x such that f(x) is a quadratic residue.

Suppose x1 is the integer corresponding to the point x ∈ Fq. We can recover m
from the point Pm = (x, y) by dividing x1−1 by κ (x1−1 = mκ+j, 0 ≤ j < κ).

It has been conjectured that the probability that the above algorithm would
fail to find an embedding of a given plain-text message is ≈ 1

2κ , where κ is the
number of repetitions of step 3. If quadratic residues in a finite field of odd
order are randomly distributed then in fact the κ events (in the above algo-
rithm) are independent and hence the probability that the algorithm would fail
is exactly 1

2κ . In section 4 we show the existence of such finite fields; however
we do not know of any efficient construction of finite fields in which quadratic
residues are randomly distributed. A naive modification would be to map a mes-
sage to a point on the curve by choosing a random field element; by Hasse’s
theorem [5,6], we will succeed with probability about 1/2. But the drawback
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of such an approach would be that we have to send the random element with
each message for decryption, thereby increasing the message expansion factor
considerably.

1.2 Previous Results

There is an extensive literature on the distribution of quadratic residues and
non residues over finite Fields [1,2]. In particular, Peralta [2] proves that for any
randomly chosen x ∈ Fq, the probability of (x + 1, x + 2, ..., x + κ) matching
any particular binary sequence of length κ is in the range 1

2κ ± κ
3+

√
q

q . We note
that we are interested in the sequence(f(x + 1), f(x + 2), ..., f(x + κ)) where
f(x) = x3 + ax+ b for an elliptic curve y2 = x3 + ax+ b. In the rest of the paper
χ(x) denote the characteristic function defined as

χ(x) =

⎧
⎪⎨

⎪⎩

−1 if x is a quadratic non-residue
0 if x is zero
1 if x is quadratic residue

To prove our main theorem we prove the following lemma,

Lemma 1. Let g(x) be any polynomial of degree d which don’t have multiple
roots and k be a positive integer such that dk < p. If i1, i2, ..., im (m ≤ k), be
any m distinct integers between 1 and k, then

|
∑

x∈Fq

χ(g′(x)) |≤ d′
√

q (1)

where g′(x) =
∏m

j=1 g(x + ij)) and d′ = dm − 1, the degree of g′.

We note that C. Mauduit and A. Sárközy [1] prove results on the pseudorandom
properties of distribution of quadratic residues of arithmetic progression (not ex-
actly for the sequence that we are looking at). In the process, they prove that for
any g(x) ∈ Fq[X ] polynomial of degree d that does not have multiple roots, then

|
∑

x∈Fq

χ(g(x)) |≤ 9d
√

q log q (2)

So with an additional constraint dk < p, our bound is better by a factor
O(log q).

1.3 Main Result

In this paper we address the following problem:
Let S = {(a0, a1, . . . , an−1) : ai ∈ Zp, 0 ≤ i < n, p prime > 3}. Order the

elements of S∗ in a reverse lexicographic order, that is,
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x1 = (1, 0, 0, . . . , 0).
x2 = (2, 0, 0, . . . , 0).
...
xp = (0, 1, 0, . . . , 0).
xp+1 = (1, 1, 0, . . . , 0).
...
x2p+1 = (1, 2, 0, . . . , 0).
...
xpn−1 = (p − 1, p − 1, p − 1, . . . , p − 1).

Let a, b ∈ S be two fixed elements. Given any κ ∈ N can we bound the number
of κ-sub-sequences

〈xl+1, xl+2, . . . , xl+κ〉, 0 ≤ l < pn − κ − 1

such that all of x3
l+i+axl+i+b, 1 ≤ i ≤ κ are quadratic non-residues by ≈ pn−1

2κ ?
If the answer to this question is yes, then in Koblitz’s algorithm, we can

begin with a random element xl, 0 ≤ l ≤ pn − κ. The probability that all of
x3

l+i + axl+i + b, 1 ≤ i ≤ κ are quadratic non-residues is ≈ 1
2κ which will mean

that the conjecture is correct.
In the following sections we prove a somewhat weaker version of this. We

prove that if we choose a random element x ∈ Fpn then the probability that all
of (x + i)3 + a(x + i) + b, 1 ≤ i ≤ κ are quadratic non-residues is ≈ 1

2κ . Note
that if x = xr and if p|(r + 1) then x + 1 = xr−p+1 else x + 1 = xr+1. Hence by
randomly picking an element in the above sequence and adding 1 to it repeatedly
we may be able to get at most p consecutive elements in the sequence.

By exploiting this result, we propose a provably efficient alternative to Koblitz
scheme in section 3 that requires similar computations as Koblitz’s original
method and the (expected) message expansion factor is also identical.

We formally prove the following theorem in next section,

Theorem 1. Let g(x) be any polynomial of degree d which don’t have multiple
roots. If κ is any positive integer < p

d then

| {x ∈ Fq | g(x + 1), g(x + 2), ..., g(x + κ)are quadratic non-residues} |

is between q−μκ(a,b)
2k − (dκ − 1)

√
q and q−μκ(a,b)

2k + (dκ − 1)
√

q, where q = pn and
0 ≤ μκ(a, b) ≤ 3.

2 Proof of the Main Result

Let Fpn be a field with q = pn (p is a prime > 3 ) elements. We define a
relation ∼ on Fpn as x ∼ y iff there is a non-negative integer k such that
x − y = 1+ 1 + . . . + 1, where 1 is added k times. This is an equivalence relation
on Fpn . Each equivalence class will have p (characteristic of Fpn) elements.
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Let α, β, γ be three distinct elements in the same equivalence class. We may
assume that if μ1 and μ2 are least positive integers such that α = β + μ1, α =
γ+μ2 then μ1 < μ2. Let kα, kβ , kγ be least positive integers such that α = β+kβ ,
β = γ + kγ , γ = α + kα. Now kα, kβ , kγ are such that α = kβ + kγ + kα + α and
kα + kβ + kγ = p (in general it can be any multiple of p, but the assumption
μ1 < μ2 makes it p). Hence one of kα, kβ , kγ is > p/3.

So we may assume that kα > p/3. Let k be any positive integer < p/3. Now
for any m integers, i1, i2, . . . , im such that 1 ≤ i1 < i2 < . . . < im ≤ k the
following should hold.

α − i1 /∈ {β − ij | 1 ≤ j ≤ m} ∪ {γ − ij | 1 ≤ j ≤ m}
Hence if α, β, γ are three distinct elements in the same equivalence class and

i1, i2, ..., im are any m integers such that 1 ≤ i1 < i2 < ... < im ≤ k < p/3 then
one of the following holds.

γ − i1 /∈ {α − ij | 1 ≤ j ≤ m} ∪ {β − ij | 1 ≤ j ≤ m}
α − i1 /∈ {β − ij | 1 ≤ j ≤ m} ∪ {γ − ij | 1 ≤ j ≤ m}
β − i1 /∈ {γ − ij | 1 ≤ j ≤ m} ∪ {α − ij | 1 ≤ j ≤ m}

This observation will be used to prove the following Lemma.

Lemma 2. Let g(x) be any polynomial of degree d which don’t have multiple
roots and k be a positive integer such that dk < p. If i1, i2, ..., im (m ≤ k), be
any m distinct integers between 1 and k, then

∏m
j=1 g(x + ij) cannot be written

as h(x)2 for some h(x) ∈ Fpn [X ].

Proof. Let α1, α2, . . . αd be the roots of g in the splitting field. From the defini-
tion these must be distinct. Also note that α1 − i, α2 − i, αd − i are the roots of
g(x + i) ∀i, 1 ≤ i ≤ k.

If there exists a polynomial h(x) ∈ Fpn [X ] such that

m∏

j=1

g(x + ij) = h(x)2 (3)

then m has to be even (as degree of
∏m

j=1 g(x + ij) is dm and degree of h(x)2

is even). So the multiplicity of any root of
∏m

j=1 g(x + ij) is even. As ij’s are
distinct αi − ia �= αi − ib for ∀a, b ≤ m , it follows that multiplicity of any root
of

∏m
j=1 g(x + ij) is ≤ d, hence should be 2.

From the arguments given before this lemma, at least one of α1 − i1, α2 − i1,
αd − i1 can not be of multiplicity 2 (if αi’s are not in the same equivalence class
then this is trivially true), which is a contradiction.

The proof of Lemma 1, follows from Lemma 2 and Weil’s theorem on finite
fields[6]. Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let A(x) =
∏κ

i=1(1 − χ(g(x + i)).1

S = {x ∈ Fq | g(x + 1), g(x + 2), ..., g(x + κ) are quadratic non-residues}
1 Similar idea was used in [3] and was suggested to us by Radhakrishnan[9].
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S′ = {x ∈ Fq |at least one of g(x + 1)., g(x + κ) is a quadratic residues}
S′′ = {x ∈ Fq | g(x + 1) = g(x + 2) =, ..., = g(x + κ) = 0}.

Clearly, Fq = S ∪ S′ ∪ S′′ and

A(x) =

⎧
⎪⎨

⎪⎩

2κ if x ∈ S,
0 if x ∈ S′

1 if x ∈ S′′

Let | S |= N and denote μκ(a, b) =| S′′ |. Note that α ∈ S′′ =⇒ g(α + 1) =
g(α + 2) =, ..., = g(α + κ) = 0 =⇒ α − 1, α − 2, ..., α − κ are roots of g(x) and
hence 0 ≤ μκ(a, b) ≤ d and μκ(a, b) = 0 if κ > d.

Now ∑

x∈Fq

A(x) = 2κN + μκ(a, b) (4)

Notice that

A(x) = 1 +
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

χ(g(x + i1)g(x + i2)...g(x + in))

Hence

N2κ+μκ(a, b)−q =
∑

x∈Fq

κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

χ(g(x+i1)g(x+i2)...g(x+in))

=
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

∑

x∈Fq

χ(g(x + i1)g(x + i2)...g(x + in))

By taking modulus,

| N2κ+μκ(a, b)−q |≤|
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

∑

x∈Fq

χ(g(x+i1)g(x+i2)...g(x+in)) |

By triangular inequality,

| N2κ+μκ(a, b)−q |≤
κ∑

m=1

∑

1≤i1<i2<...<in≤κ

|
∑

x∈Fq

χ(g(x+i1)g(x+i2)...g(x+in)) |

Applying Lemma 1

≤
κ∑

m=1

κCm(dm − 1)
√

q

< (dκ − 1)2κ√
q

Hence q−μκ(a,b)
2k − (dκ − 1)

√
q < N < q−μκ(a,b)

2k + (dκ − 1)
√

q
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Corollary 1. Let y2 = x3 + ax + b be an elliptic curve over Fpn (p is a prime
> 3). Let g(x) = x3 + ax + b. If κ is any positive integer < p

3 then for a
randomly chosen x ∈ Fq the probability that all of g(x + 1), g(x + 2), ..., g(x + κ)
are quadratic non-residues is ≈ 1

2κ

For g(x) = x3 + ax + b, the result follows from Theorem 1.

3 A Modified ECC

Here we propose a modification for El-Gamal Cryptosystem with Koblitz’s
method for Embedding plain-texts on to the points of elliptic curve which ex-
ploits the result of the previous section. More specifically, given a plain-text
message, we try to map it to a random point on the Elliptic Curve by choosing
an initial random shift in Koblitz’s algorithm.

3.1 Key Generation

We suppose that all parties have agreed upon an elliptic curve E/K : y2 =
x3 + ax + b over a finite field K = Fpn and p > 3, a point P of high order on
it and a failure factor κ(< p/3). Let r1, r2, . . . , rt be t randomly chosen integers
between 1 and pn and they are made public.

Each party A does the following:

– Choose a random integer a.
– a is A’s Secret Key.
– aP is A’s Public Key.

3.2 Encryption

To send a message m to Alice, Bob does the following:

– Choose a random integer μ and s, 1 ≤ s ≤ t.
– Obtain Alice’s public key aP and Compute μaP a point on the elliptic

curve.
– Find x ∈ Fq corresponding to mκ + rs + 1.

If x3 + ax + b is a quadratic residue (or zero) then find a y such that
y2 = x3 + ax + b and take P (m, rs) = (x, y) else try with points
corresponding to mκ + rs + j, 1 < j ≤ κ.

– Send (μP, P (m, rs) + μaP ) and s.

The probability that Bob fails to find P (m, rs) with the shift corresponding
to the random number rs is 1

2κ by Corollary 1. If he fails, then he tries with some
other random number s for 1 ≤ j ≤ t . If he fails with all the r1, r2, . . . , rt then
he would try with some random r’s until he succeeds and he would send this r
along with the message (This will happen with negligible probability (1/2)tκ).
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3.3 Decryption

To recover the message m, Alice does the following:

– Multiply the first point in the above pair by her secret key a and subtracts
the results from the second point to get the point

P (m, r) = (P (m, r) + μaP ) − aμP .
(Here r is one of the public ri’s or is sent with the message).
Let P (m, r) = (x, y).

– Find x1, the integer corresponding to x.
– m is obtained by dividing x1 − 1 − r by κ.

i.e. x1 − 1 − r = mκ + j, 0 ≤ j < κ.

Our modified encryption and decryption schemes require similar computations
as Koblitz’s original method and the (expected) message expansion factor is
also identical. Moreover, our method has following advantages over the original
method:

1. The probability that Bob fails to encrypt a message with the shift corre-
sponding to a random number μ is provably 1

2κ .
2. The failure factor κ can be small, because even if we fail with one randomshift

we can try with another random shift. Small failure factor κ implies that the
message units can be large, as Mκ < q where is message units m are such
that m < M .

3. Random Embedding: The point P (m, r) not only depends on m, it also
depends on r, so even for a fixed message the point corresponding to the
message will be different on different occasions. This prevents an eavesdrop-
per from guessing the message. The usual procedure is to pad random bits,
but strictly speaking it does not really make the message random.

4 Randomizing the Distribution of Quadratic Residues in
a Finite Field

In this section we would like to address the question: Can we Randomize the
distribution of quadratic residues in a finite field? The following theorem says
that the answer is yes.

Theorem 2. Let S be a set with pn elements, p an odd prime, n any natural
number. Given x1, x2, . . . , x pn−1

2
in S, there exists two binary operations ⊕ and

� such that (S, ⊕, �) is a field and the quadratic residues are precisely these xi’s.

Proof. Let (Fq, +, ∗) be a field with q elements where q = pn and β be a
fixed non-residue in Fq. Let ai, i = 1, 2, . . . , (pn − 1)/2 be the nonzero ele-
ments of Fq, written as n-tuples of elements of Fq, whose first nonzero co-
ordinate lies in {1, 2, . . . , (p − 1)/2}, listed reverse lexicographically. Let S =
{x1, x2, . . . , x pn−1

2
, y1, y2, . . . , y pn−1

2
, O}.
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We define a bijection φ from S to Fq as2,

O �→ 0
xi �→ a2

i

yi �→ βa2
i , 1 ≤ i ≤ pn−1

2 .

With this we define two binary operations ⊕ and � on S as

a ⊕ b=φ−1{φ(a) + φ(b)}
a � b = φ−1{φ(a) ∗ φ(b)}, ∀a, b ∈ S

It can be easily verified that (S, ⊕, �) is a field and the quadratic residues in
S(+, �) are xi’s.

Both φ and φ−1 can be found in polynomial time, however finding φ−1 involves
finding square roots, which is very costly (compared to addition , multiplication,
inversion) as it takes O(log pn) operations. We note that each elliptic curve op-
eration involves 6 additions, 3 multiplications and 1 inversion (field operations).
Since implementation of El-Gamal Cryptosystem involves computing scalar mul-
tiplication, kP which would take 2 log k elliptic curve operations, this method is
not practical.

5 Weil’s Theorem

Theorem 3. (Weil’s Theorem) Let f(x) ∈ Fq[X ] be any polynomial of pos-
itive degree that is not a square of any of polynomial.(f(x) �= h2(x) for all
h(x) ∈ Fq[X ]). Let d be the number of distinct roots of f(x) in splitting field
over Fq, then we have

|
∑

x∈Fq

χ(f(x))| ≤ (d − 1)
√

q (5)

where

χ(x) =

⎧
⎪⎨

⎪⎩

−1 if x is a quadratic non-residue
0 if x is zero
1 if x is quadratic residue

For proof, the reader is referred to [6]
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