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Abstract. We present optimized FPGA implementations of three tweak-
able enciphering schemes, namely, HCH, HCTR and EME using AES-128
as the underlying block cipher. We report performance timings and hard-
ware resources occupied by these three modes when using a fully pipelined
AES core and a sequential AES design. Our experimental results suggest
that in terms of area HCTR, HCH and HCHfp (a variant of HCH) require
more area than EME. However, HCTR performs the best in terms of speed
followed by HCHfp, EME and HCH.

1 Introduction

A tweakable enciphering scheme (TES) is a specific kind of block-cipher mode of
operation which provides a strong pseudorandom permutation (SPRP). A fully
defined TES for arbitrary length messages using a block cipher was first presented
in [9]. In [9] it was also stated that a possible application area for such encryption
schemes could be low level disc encryption, where the encryption/decryption
algorithm resides on the disc controller which has access to the disc sectors but
has no knowledge of the disk’s high level partitions such as directories, files,
etc. Furthermore, it was suggested in [9] that sector addresses could be used as
tweaks. Because of the specific nature of this application, a length preserving
enciphering scheme is required and under this scenario, a SPRP can provide the
highest possible security.

In the last few years there have been numerous proposals for TES. These pro-
posals fall in three basic categories: Encrypt-Mask-Encrypt type, Hash-ECB-
Hash type and Hash-Counter-Hash type. CMC [9], EME [10], EME∗ [7] falls
under the Encrypt-Mask-Encrypt group. PEP [3], TET [8], HEH [17] falls under
the Hash-ECB-Hash type and XCB [15], HCTR [19], HCH [4] falls under the
Hash-Counter-Hash type. Although about nine different constructions of differ-
ent TES have been proposed, we are not aware of any work reporting experi-
mental performance data of any of these schemes. A comparative performance
comparison of these modes is very necessary given the current efforts of IEEE
security in storage working group [12] towards standardization of TES.
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A speculative performance comparison of the EME∗, XCB, HCH and TET
modes of operation in hardware is provided in [8]. This comparison assumes
the same hardware implementation setting reported in [1], where a fully-parallel
GF(2n) field multiplier capable of performing one multiplication in one clock
cycle was implemented at a hardware cost in area of about three times the
cost associated with one AES round function. The AES core was implemented
through the computation of ten such modules. However, this analysis might
not be quite accurate because, as we will see in the rest of this paper, one can
implement a GF(2n) field multiplier with an efficiency comparable to the one of
an AES round function in terms of both, the critical path and the cost in area.

In this paper we present performance data for hardware implementation of
three TES. Our implementations are optimized for the application of low level
disc encryption. The modes we select for our comparative study are EME, HCH
and HCTR. Also we provide performance data for a variant of HCH which is
called HCHfp, which is particularly useful for disk encryption. We use AES-128
as the underlying block-cipher, and use a fully parallel Karatsuba-Ofman multi-
plier to compute the hash functions. We carefully analyze and present our design
decisions and finally report hardware performance data of the three modes. Due
to lack of space in this paper we discuss in detail the construction and im-
plementation of HCH only, but present performance data of all the modes we
implemented. The full implementation details of the three modes will appear in
the full version of the paper.

Notations. In the rest of the paper by EK( ) we shall mean a n bit block cipher
call with key K. By X ||Y we shall mean the concatenation of two binary strings
X and Y and binn(|X |) will denote the n-bit binary representation of |X |, which
denotes the length of X . By padr(X) we shall mean concatenation r zeros to
the end of X and dropr(X) will denote the r ≤ |X | most significant bits of
X . We will treat n bit strings as polynomials of degree less than n of the field
GF (2n). If X and Y are n bit strings then by X ⊕ Y and XY we shall mean
addition and multiplication in the field respectively. By xX we would represent
the multiplication of X by the polynomial x.

2 The Schemes

As mentioned earlier HCH falls under the category of Hash-Counter-Hash con-
structions. HCH uses an universal hash function of the form:

HR,Q(A1, . . . , Am) = Q ⊕ A1 ⊕ A2R
m−1 ⊕ · · · ⊕ Am−1R

2 ⊕ AmR (1)

Where A1, A2, . . . , Am, R, Q are n bit strings. In addition to the hash function
HCH requires a counter mode of operation. Given an n-bit string S, the counter
mode is defined as

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S1), . . . , Am ⊕ EK(Sm)). (2)
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Algorithm ET
K(P1, . . . , Pm)

1. R← EK(T ); Q← EK(R ⊕ binn(l));
2. Mm ← padn−r(Pm);
3. M1 ← HR,Q(P1, . . . , Pm−1, Mm);
4. U1 ← EK(M1); I ←M1 ⊕ U1; S ← EK(I);
5. (C2, . . . , Cm−1, Dm)

← CtrK,S(P2, . . . , Pm−1, Mm);
6. Cm ← dropn−r(Dm); Um ← padn−r(Cm);
7. C1 ← HR,xQ(U1, C2, . . . , Cm−1, Um);
8. return (C1, . . . , Cm).

Algorithm DT
K(C1, . . . , Cm)

1. R← EK(T ); Q← EK(R⊕ binn(l));
2. Um ← padn−r(Cm);
3. U1 ← HR,xQ(C1, . . . , Cm−1, Um);
4. M1 ← E−1

K (U1); I ←M1 ⊕ U1; S ← EK(I);
5. (P2, . . . , Pm−1, Vm)

← CtrK,S(C2, . . . , Cm−1, Um);
6. Pm ← dropn−r(Vm); Mm ← padn−r(Pm);
7. P1 ← HR,Q(M1, P2, . . . , Pm−1, Mm);
8. return (P1, . . . , Pm).

Fig. 1. Encryption and decryption using HCH. The tweak is T and the key is K. For
1 ≤ i ≤ m − 1, |Pi| = n and |Pm| = r where r ≤ n, and l is the length of the message.

Where Si = S ⊕ binn(i). The complete encryption and decryption algorithm of
HCH is given in Fig. 1.

HCH can encrypt arbitrary long messages greater than n bits. It uses a single
key which is same as the block-cipher key. It requires m+3 block cipher calls and
2m−2 finite field multiplications to encrypt a m block message. The key for the
universal hash is R, which is derived by encrypting the tweak. Thus R changes
across encryption calls and this does not allow the use of pre-computations for
computing the hash. HCH requires two passes over the data. In [5] a modification
of HCH is also proposed which is called HCHfp. HCHfp can only be used in those
applications where the message length is fixed. This construction simplifies the
general HCH construction and requires one less block-cipher call, but it requires
two separate keys for the hash and the block-cipher. As in HCHfp the hash key
is not dependent on the tweak so pre-computation for calculating the hash is
also possible. HCHfp is particularly of interest for disk encryption applications
as here the message length is fixed and same as the sector length. The encryption
decryption algorithm using HCHfp can be found in [5].

All variants of HCH are provably secure and the authors guarantee that the
advantage of any computationally bounded chosen plaintext chosen ciphertext
adversary in distinguishing HCH from a random permutation can be at most
O(σ2

n)/2n +δ where σn denotes the number of n bit plaintexts and/or ciphertext
blocks the adversary has access to, and δ denotes the advantage of an adversary
to distinguish the underlying block-cipher from a random permutation.

The structure of HCTR is similar to that of HCH with some important dif-
ferences. HCTR can also encrypt arbitrary long messages. It requires m block
cipher calls and 2m + 2 field multiplications to encrypt an m block message. It
utilizes two different keys and it is proved to be secure with a security bound of
O(σ3

n)/2n + δ. Thus it provides lesser security than HCH and it requires three
less block cipher calls than HCH and 2 less block cipher calls than HCHfp but it
needs four more multiplications than both HCH and HCHfp. A full description
of HCTR can be found in [19].

EME stands for ECB-Mask-ECB (EME)[10]. As the name suggests, the mode
consists of two electronic code-book layers with a masking layer in between. The
structure of EME is quite different from HCH and HCTR. EME falls under
the category of Encrypt-mask-Encrypt constructions. It does not use any hash
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function, but instead uses two layers of encryption. EME requires 2m + 2 block
cipher calls for encrypting a m block message. It requires no multiplication.
EME uses a single key same as the block-cipher key. EME has some message
length restrictions. If the block length of the underlying block cipher is n then the
message length should always be a multiple of n. Moreover, EME cannot encrypt
more than n blocks of messages. This means that if an AES-128 is used as the
underlying block-cipher then EME cannot encrypt more than 2048 bytes (2 KB)
of data. This message length restriction was removed in a construction called
EME∗ which requires more block-cipher calls than EME. But for the purpose of
disc encryption EME appears to be sufficient, as generally disk sectors lengths
are less than 2KB and their lengths are multiples of 128 bits. EME has a security
bound of O(σ2)/2n + δ. A full description of EME can be found in [10].

3 Design Decisions

For implementing all three schemes we chose the underlying block cipher as
AES-128. As mentioned earlier the designs that we present here are directed
towards the application of disk sector encryption. In particular, our designs are
optimized for applications where the sector length is fixed to 512 bytes. As the
sector address is considered to be the tweak, thus the tweak length itself is
considered to be fixed and equal to the block length of the block cipher.

The speed of a low level disk encryption algorithm must meet the current
possible data rates of disc controllers. With emerging technologies like serial
ATA and Native Command Queuing (NCQ) the modern day discs can provide
data rates around 3Giga-bits per second[18]. Thus, the design objective should
be to achieve an encryption/decryption speed which matches this data rate.

The modes HCH and HCTR use two basic building blocks, namely, a poly-
nomial universal hash and the block-cipher. EME requires only a block-cipher.
Since AES-128 was our selection for the underlying block-cipher, proper design
decisions for the AES design must meet the desired speed. Out of many possible
designs reported in the literature [13,6,2,11] we decided to design the AES core
so that a 10-stage pipeline architecture could be used to implement two different
functionalities: the counter mode, and the encryption of one single block that
we will call in the rest of this paper as single mode. This decision was taken
based on the fact that the structure of the AES algorithm admits to a natural
ten-stage pipeline design, where after 11 clock cycles one can get one encrypted
block in each subsequent clock-cycle. It is worth mentioning that in the litera-
ture, several ultra fast designs with up to 70 pipeline stages have been reported
[13], but such designs would increase the latency, i.e., the total delay before a
single block of cipher-text can be produced. As the message lengths in the target
application are specifically small, such pipeline designs are not suitable for our
target application.

The main building block needed for implementing the polynomial hash of
the HCH and HCTR modes is an efficient multiplier in GF (2128). Out of many
possible choices we selected a fully parallel Karatsuba-Ofman multiplier which



418 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

can multiply two 128-bit strings in a single clock-cycle at a sub-quadratic com-
putational cost [16]. This time efficient multiplier occupies about 2 times the
hardware resources required by one single AES round. Because of this, the total
hardware area required by HCTR and HCH are significantly more than EME
(which does not require multipliers). A more compact multiplier selection would
yield significantly lower speeds which violates the design objective of optimizing
for speed.

The specifications of both the HCTR and HCHfp algorithms imply that one
multiplicand is always fixed, thus allowing the usage of pre-computed look up
tables that can significantly speed up the multiplication operation. Techniques
to speed up multiplication by look-up tables in software are discussed in [14,1].
These techniques can be be extended to hardware implementations also. How-
ever, there is a tradeoff in the amount of speed that can be obtained by means of
pre-computation and the amount of data that needs to be stored in tables. Sig-
nificantly higher speeds can be obtained if one stores large tables. This speedup
thus comes with an additional cost of area and also the potentially devastating
penalty of secure storage. Moreover, if pre-computation is used in a hardware
design, then the key needs to be hardwired in the circuit which can lead to nu-
merous difficulties in key setup phases and result in lack of flexibility for changing
keys. Because of the above considerations, we chose not to store key related ta-
bles for our implementations. Thus the use of an efficient but large multiplier is
justified in the scenario under analysis.

We implemented the schemes on a FPGA device which operates at lower fre-
quencies than true VLSI circuits. Thus the throughput that we obtained prob-
ably can be much improved if we use the same design strategies on a different
technology. Our target device was a XILINX Virtex 4, xc4v1x100-12FF1148.

4 The Design Overviews

In this Section we give a carefully analysis of the data dependencies of HCH and
explain how we exploit the parallelism present in the algorithm. Similar analysis
for HCTR and EME can be found in the extended version of this paper.

In the analysis which follows we assume the message to be of 512 bytes
(32 AES blocks). Also, we assume a single AES core designed with a 10 stage
pipeline and a fully parallel single clock cycle multiplier. We also calculate the
key schedules for AES on the fly, this computation can be parallelized with the
AES rounds. The polynomial universal hash functions are computed using the
Horner’s rule.

Referring to the Algorithm of Fig. 1 the algorithm starts with the computation
of the parameter R in Step 1. For computing R the AES pipeline cannot be
utilized and must be accomplished in simple mode, implying that 11 clock cycles
will be required for computing R. At the same time, the AES round keys can be
computed by executing concurrently the AES key schedule algorithm. The hash
function of Step 3 can be written as

HR,Q(P1, P2, . . . P32) = P1 ⊕ Q ⊕ Z
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where Z = R31P2 ⊕ . . . ⊕ RP32. So, Z and Q can be computed in parallel. For
computing Z, 31 multiplications are required and computation of Q takes 11
clock cycles. So the computation of the hash in step 2 takes 31 clock cycles.
Then, the computation of Step 4 requires two simple mode encryption which
implies 22 more clock cycles. So we need to wait 64 clock cycles before the
counter mode starts. The counter mode in step 5 requires 31 block cipher calls
which can be pipelined. So computation of step 5 requires a total of 30+11 = 41
clock cycles. The first cipher block C2 is produced 11 clock cycles after the
counter starts. The second hash function computation of Step 7 can start as
soon as C2 is available in the clock cycle 75. Hence the computation of the hash
function can be completed at the same time that the last cipher block (Cm) of
Step 5 is produced. Figure 2 depicts above analysis. It can be seen that a valid
output will be ready after the cycle 75 and a whole disk sector will be ready in
the cycle 106. In case of HCHfp the computation of Q is not required, and it
uses a hash key which is different from R. Thus R and the hash function can be
computed in parallel, which gives rise to a savings of 11 clock cycles. So HCHfp
will produce a valid output in 64 clocks and it will take 95 clock-cycles to encrypt
the 32 block message.

Key Schedule

R

lR
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I
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1

C ,...,Cm2

1C

0 11 22 43 54 65 76 106

Clock cycles

Fig. 2. HCH Time Diagram

A similar analysis can be done in case of HCTR and EME. Exploiting the
parallelism present in these algorithms to the full extent we obtain that for
HCTR a valid output will be ready after the cycle 55 and a whole disk sector
will be ready in the cycle 88. For EME the first block of valid output would be
produced after 75 clock cycles and the whole sector would be ready after 106
clock-cycles.

5 Implementation

Due to lack of space, in this Section we only discuss the design details of the basic
control unit of HCH. The other implementation details along with the details for
HCTR and EME implementation will appear in the full version of this paper,
but we shall provide performance data for all the modes in Section 6.

Fig. 3 shows the general architecture of the HCH mode of operation. It can
be seen that AES must be implemented both, in counter and in simple mode.
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Additionally, a hash function is also required as one of the main building blocks.
The architecture operation is synchronized through a control unit that performs
the adequate sequence of operations in order to obtain a valid output.

cAES c/d mcms readyAES

inAES S

key

outh cH readyH inH

Control Unit

outAES

AES counter
and

Hash

simple

R Q

Fig. 3. HCH General Architecture

The HCH control unit architecture is shown in Fig. 4. It controls the AES
block by means of four 1-bit signals, namely: cAES that initializes the round
counter, the c/d signal that selects between encryption or decryption mode,
the msms signal that indicates whether one single block must be processed
or rather, multiple blocks by means of the counter mode. Finally, readyAES
indicates whenever the architecture has just computed a valid output. The AES
dataflow is carried out through the usage of three 128-bit busses, namely, inAES
that receives the blocks to be encrypted, outAES that sends the encrypted
blocks and S that receives the initialization parameter for the counter mode. The
communication with the hash function block is done using two signals: cH for
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Fig. 4. HCH Control Unit Architecture
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initializing the accumulator register and the counter of blocks already processed
and readyH that indicates that the hash function computation is ready. The
data input/output is carried by the inH and outH busses, respectively. The
parameters R and Q are calculated in the control unit and send through the
busses to the hash function.

The HCH control unit implements a finite state automaton that executes
the HCH sequence of operations. It uses eight states: RESET, AES1, AES2,
HASH1, AES3, AES4, ECOUNTER and HASH2. In each state, an appropriate
control word is generated in order to perform the required operations. The correct
algorithm execution requires storing the R, Q, S, I, U1 and M1 values. Thus,
six registers are needed. In particular the hash function input inH can come
from the system input or from the output of the AES counter mode. Therefore,
a multiplexer is needed for addressing the correct input, where the multiplexer
signals are handled by the state machine’s control word.

6 Results

In this section we provide the performance results obtained from our implemen-
tations. We will measure the performances based on the following criteria: time
taken for encrypting 32 blocks of data, the latency, i.e., the time required to
produce the first block of output, the size of the circuit in slices, the number
of B-RAMs used and the throughput. The performance/area tradeoff is eval-
uated using the Throughput per Area (TPA) metric, which is computed as,
TPA = [(slices + 128 · BRAMS) · time]−1

. For a given design, a high TPA
indicates high efficiency, i.e., a good performance/area tradeoff.

In Table 1 we show the performance of the basic building blocks of the ar-
chitectures, i.e, the performance of one AES round and one multiplier. Table 1
shows that considering the B-RAMs and slices the size of our multiplier circuit
is about two times the size of a AES round. The critical path delay of the AES
round is more than the multiplier, so the AES round determines the critical path
in all the implementations.

Table 1. Performance of AES round and multiplier

Design Slices B-RAM Critical Path(nS)
AES round 1215 8 10.998
multiplier 3223 - 9.85

Table 2 gives the performance of the full AES (both a sequential and pipelined
architecture), it also shows the performance of the two different hash functions
for HCH and HCTR. Column 5 of Table 2 shows the throughput. Throughput
does not carry the usual meaning in case of the hash functions, as they produce a
128 bit output irrespective of the input size. By throughput of the hash function
we mean the number of bits they can process per unit time. The sequential
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Table 2. Performance of the AES and Hash implementations

Method Slices B-RAM Frequency (MHz) Throughput (GBits/s)
AES-Sequential 1301 18 81.967 1.049
AES-Pipeline 6368 85 83.88 10.736
Hash-HCTR 3986 - 101.08 12.15
Hash-HCH 4014 - 101.45 12.98

AES gives significantly poor throughput and both hash functions have better
throughput than the AES-pipeline.

In Table 3 we show the experimental results for the four modes of operations
implemented using a pipelined AES core. As we implemented both encryption
and decryption functionalities in the same circuit and due to the symmetry of the
algorithms the timings for encryption and decryption operations are the same.
Note that the number of clock-cycles reported in Table 3 are one more than
those estimated in Section 4, this is because in the true implementations one
clock cycle is lost due to the initial reset operation. From Table 3 it is evident
that EME is the most economical mode in terms of area resources, mainly due
to the fact that this mode does not utilizes a hash function. The most costly
mode in terms of area is HCH since it requires 6 registers in contrast to the three
registers required by the HCTR. Additionally, HCH has more possible inputs for
its AES building block. In terms of speed, the fastest mode is HCTR since it only
utilizes one AES block cipher call in sequential mode, whereas HCH requires a
total of four such calls (although only three have consequences in terms of clock
cycles since the other one is masked with the computation of the hash function).
HCHfp is better than both EME and HCH in terms of speed.

Table 3. Hardware costs of the HCTR, HCH and EME modes with an underlying
AES full pipeline core: The time and clock-cycles are the time required to encrypt 32
blocks

Mode Slices B-RAM Frequency Clock Cycles Time Latency Throughput TPA
(MHz) Cycles (μS) (μS) GBits/Sec

HCH 13755 85 65.939 107 1.622 1.167 2.46 24.42
HCHfp 12970 85 66.500 96 1.443 0.992 2.83 29.05
HCTR 12068 85 79.65 89 1.117 0.703 3.66 39.81
EME 10120 87 67.835 107 1.576 1.120 2.64 29.85

In Table 4 we show the four modes of operation when using a sequential
implementation of the AES core. In a sequential architecture, EME is the most
inefficient mode in terms of latency due to the two costly block cipher passes
that require eleven clock cycles per block. Hence, a significant increment in the
required number of clock cycles is observed for the EME mode. This situation
does not occur in HCTR or in HCH since they only need one encryption pass. The
hash function computation is not affected in this scenario due to the fact that
we use a multiplier which is essentially a combinatorial circuit able to produce
a result in one clock cycle.
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Table 4. Hardware costs of the HCTR, HCH and EME modes with an underlying
sequential AES core: The times reported are for 32 blocks

Mode Slices B-RAM Frequency Clock Cycles Time Throughput TPA
(MHz) (μS) (Gbits/sec)

HCH 8688 18 64.026 416 6.497 0.631 14.00
HCHfp 7903 18 64.587 405 6.270 0.653 15.73
HCTR 7006 18 77.737 388 4.991 0.820 21.53
EME 5053 20 65.922 716 10.861 0.377 12.09

Discussion: As we stated in Section 3 the design objective would be to match
the data rates of modern day disk controllers which are of the order of 3Gbits/sec.
Table 4 shows that using a sequential design it is not possible to achieve such data
rates though this strategy provides more compact designs. If we are interested
in encrypting hard disks of desktop or laptop computers the area constraint is
not that high, but speed would be the main concern. So, a pipelined AES will
probably be the best choice for designing disk encryption schemes.

From Table 3 we see that the most efficient mode in terms of speed is HCTR
followed by HCHfp, EME and HCH. The full functionality of HCH is not needed
for disk encryption schemes as for this application messages would be of fixed
length. Thus we can conclude that HCTR and HCHfp are the best modes to use
for this application. But, the security guarantees that HCTR provides is quite
weak as it have a cubic security bound. Thus, among the different modes that
we implemented, and in view of all these constraints, HCHfp should probably
be the most preferred mode.

7 Conclusion

We presented optimized implementation of three TES. To our knowledge this is
the first work to report real performance data of any TES on hardware. There
are many other TES schemes which needs to be implemented and then a true
performance comparison would be possible. This performance comparison will
of course help in selection of the best mode. This work can be seen as a first step
towards this objective.

References

1. Bo Yang, R.K., Mishra, S.: A high speed architecture for galois/counter mode of
operation (gcm). Cryptology ePrint Archive, Report 2005/146 (2005),
http://eprint.iacr.org/

2. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

3. Chakraborty, D., Sarkar, P.: A New Mode of Encryption Providing a Tweakable
Strong Pseudo-random Permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

http://eprint.iacr.org/
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