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Abstract. Linear Feedback Shift Registers (LFSRs) are used as build-
ing blocks for many stream ciphers, wherein, an n-degree primitive con-
nection polynomial is used as a feedback function to realize an n-bit
LFSR. This paper shows that such LFSRs are susceptible to power anal-
ysis based Side Channel Attacks (SCA). The major contribution of this
paper is the observation that the state of an n-bit LFSR can be deter-
mined by making O(n) power measurements. Interestingly, neither the
primitive polynomial nor the value of n be known to the adversary launch-
ing the proposed attack. The paper also proposes a simple countermeasure
for the SCA that uses n additional flipflops.
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1 Introduction

Encryption algorithms are used to protect information from unauthorized access
or disclosure and are constructed using key controlled cryptographic primitives.
The security robustness of cryptographic primitives have traditionally been mea-
sured under three mathematical models, namely, (1) when an adversary is as-
sumed to have unlimited computational power (unconditional security); (2) when
it can be proved that if an adversary is successful in breaking the cryptographic
primitive under attack then, the adversary can also solve another mathematical
problem that is believed to be hard to solve (provable security); and, (3) when
the effort required to break a cryptographic primitive is so large that the crypto-
graphic primitive can be considered to be unbreakable (computational security).
However, it has been established in the recent past that even if a cryptographic
primitive is robust against attacks under the three mathematical models men-
tioned above, there exist a class of attacks against the real life implementations
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that must be considered to ensure the security robustness of a system implement-
ing the cryptographic primitives. These are referred to as Side Channel Attacks
(SCA) [1]. This class of attacks against implementations are rather powerful and
lead to system breaks with little effort. The adversary in this case exploits the
information leaked unintentionally from the system executing the cryptographic
primitive, into the environment, to attack the cryptographic system, often lead-
ing to catastrophic failure of security. This is possible even on a system whose
theoretical robustness has been established under the mathematical models men-
tioned above.

Stream ciphers are an important class of symmetric ciphers used extensively
for encryption by hardware-based cryptographic systems. They are popular be-
cause of their simplicity, efficiency and performance. The secure realization of
stream ciphers is crucial to guard against the SCAs. Some guidelines in this
direction are suggested in [2]. An overview on SCAs on stream ciphers and
countermeasures is provided in [3]. LFSRs are used as building blocks for many
stream ciphers because of their well defined structure and remarkable properties
like long period, ideal autocorrelation and statistical properties. The leakage
of information and vulnerability of stream ciphers based on Galois LFSRs is
investigated in [4].

Though side channel attacks have reportedly been successfully mounted for
many years [5], the publication of [6] by Kocher et.al. is a watershed in this area.
This spurred a flurry of research and development in the exploitation of and
safeguards against information leaked though side channels with an intention to
attack the cryptographic mechanisms built into various security systems. There
are several types of side channels through which information leaks inadvertently
into the environment. The most prominent of them includes the measurement
of the time taken or power consumed to perform a cryptographic function, the
argument(s) to the function being the secret cryptographic key/data. A number
of successful attacks using the above idea have been reported. These attacks
can be mounted by using some very standard test and measuring equipment
that are widely available. Typically power attacks can be mounted by measur-
ing the electrical current that flows through a small resistor (10 Ω to 50 Ω)
placed in series with the pin through which power is fed into a device perform-
ing a cryptographic computation. If the current being drawn is a function of
the cryptographic key/data then the measurements of current during the cryp-
tographic computation will be correlated with the cryptographic key/data. This
correlation can then be analyzed to either directly mount the attack to reveal
the key/data or be used in conjunction with a brute force attack to reduce the
search space. Similar power attacks can also be mounted by measuring the elec-
tromagnetic radiations in the vicinity of the device performing the cryptographic
computation.

This paper presents a power analysis based SCA technique to precisely de-
termine the state of an n-bit LFSR by measuring the power consumed by the
LFSR in each cycle over consecutive cycles linear in n.
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Fig. 1. An n-stage LFSR with a Non-linear filter

2 Preliminaries

2.1 LFSRs

LFSRs are used as primitives in building blocks in many stream ciphers because
of their simple structure, guaranteed period and near ideal statistical properties.
A general LFSR structure is shown in Figure 1.

The LFSR is a finite state machine that operates over some finite field Fq,
where q is a prime or positive power of a prime. For the purposes of this paper
we assume that q = 2r, and r = 1, i.e. we consider only binary LFSRs. An
n-stage binary LFSR consists of n consecutive storage elements, called stages.
Each stage is a flipflop that stores S(i), such that, S(i) ∈ {0, 1}, ∀i, 1 ≤ i ≤ n.
The content of the n-stages of the LFSR at time t is referred to as the state of
the LFSR at time t and denoted by STt. The state at time t + 1 is computed
by rightshifting the LFSR by one bit. The value shifted into the first (leftmost)
stage, denoted by S(n), is a linear combination of the contents of the n-stages
as defined by the feedback polynomial used to realize the LFSR. Therefore, if
STt = (S(n − 1), · · · , S(0)) then, STt+1 = (S(n), S(n − 1), S(n − 2), · · · , S(1)),
where,

S(n) = c(1)S(n−1)⊕c(2)S(n−2)⊕· · ·⊕c(n)S(0), c(i) ∈ {0, 1}, ∀i, 1 ≤ i ≤ n.

For more information and background on the LFSRs, the reader is referred to
[7]. We shall now present some new and interesting properties of LFSRs.
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Theorem 1. Let HDt be the Hamming Distance between the n-bit vectors, STt

and STt+1. Let PDt = (HDt − HDt+1). Then, PDt ∈ {−1, 0, 1}.

Proof. Let STt = (S(n − 1), · · · , S(1), S(0)). Then, STt+1 = (S(n), S(n − 1),
· · · , S(1)) and STt+2 = (S(n + 1), S(n), S(n − 1), · · · , S(2)). Let HW (V ) denote
the Hamming Weight (number of ones) of a bit-vector V . It is straightforward
to see the following:

HDt = HW ((S(n) ⊕ S(n − 1)), (S(n − 1) ⊕ S(n − 2)), · · · , (S(1) ⊕ S(0))) (1)

HDt+1 = HW ((S(n + 1) ⊕ S(n)), (S(n) ⊕ S(n − 1)), · · · , (S(2) ⊕ S(1))) (2)

Equations 1 and 2 imply the following:

PDt = HDt − HDt+1 (3)
= HW ((S(0) ⊕ S(1)) − HW ((S(n + 1) ⊕ S(n))) (4)
= {0, 1} − {0, 1} (5)
= {−1, 0, 1} (6)

Hence, the Theorem. �

Corollary 1. Let PD′
t be defined as follows: It is equal to 0 when, HDt =

HDt+1, else it is 1. Given S(n+1), S(n), S(1) and S(0) as defined in Theorem 1,

PD′
t = S(n + 1) ⊕ S(n) ⊕ S(1) ⊕ S(0).

Proof. The definition of PD′
t and equation 4 imply the corollary. �

2.2 Dynamic Power Consumption of an LFSR

The dynamic power consumed by a digital circuit is directly proportional to
the switching activity (number of components in the circuit that has a state-
transition from 0 to 1 or vice-versa) [9]. In the case of LFSRs the dynamic
power consumed during the transition in cycle t, that is, from time period t to
time period t + 1, is proportional to HDt (refer Theorem 1), as the computed
Hamming Distance is a measure of the total number of toggles in the state of
the LFSR during the time interval t to t + 1. This implies that the difference in
power consumed by the LFSR between cycle t and cycle t + 1 is proportional to
PDt (as defined in Theorem 1). This paper assumes the following:

Assumption 1. If the number of toggles in the state of an LFSR in cycle t is
different than that in cycle t+1 (in other words HDt �= HDt+1), then the power
consumed by the LFSR in the two cycles are also different, else they are the
same. Therefore, by measuring the power consumption at every cycle, the value
of PD′

t as defined in corollary 1, can be computed. �
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3 The Proposed SCA Model

We explain our attack approach for the case where the stream cipher is built
using an LFSR with a primitive feedback function and a nonlinear feed forward
function as shown in Figure 1. These generators have been widely studied and
often used as primitive building blocks in a number of stream ciphers [8]. The
n-stage LFSR is initialized with a nonzero state which is the cryptographic key.
Every time it is clocked a new key stream bit is generated by filtering the state
using a nonlinear Boolean function. The key stream bit is added mod 2 to the
plain text to produce the cipher text. The only assumption of the proposed SCA
model is that the adversary,

– can compute the values of PD′
t by measuring the power consumed by the

LFSR, as stated in Assumption 1 above.

It is worthwhile to note that as stated in Assumption 1, the measurement of the
power consumed is used not to compute the number of toggles during any cycle
but to just indicate whether the number of toggles between any two consecutive
cycles is same or different. Before proceeding further, the following properties
of sequences generated by LFSR with primitive connection polynomials are pre-
sented. Such sequences are called M -sequences in the literature.

Theorem 2. [10] The linear complexity of an infinite binary sequence s, de-
noted by L(s), is defined as follows:

1. if s is the zero sequence s = 0, 0, 0, . . . , then L(s) = 0;
2. if no LFSR generates s, then L(s) = ∞;
3. otherwise, L(s) is the length of the shortest LFSR that generates s.

Let t be a (finite) subsequence of s of length at least 2L(s). Then, the Berlekamp-
Massey algorithm on input t determines an LFSR of length L(s) which
generates s.

Theorem 3. [11] Given an n-bit LFSR F generating an M -sequence S, a linear
combination of the stages of F yields a delayed version (phase) of S. For every
delay d, 1 ≤ d ≤ 2n−1, there exists a linear combination of the stages that yields
a version of S that is delayed by d. �

Let (S(n−1), S(n−2), · · · , S(0)) be the initial unknown state of the given LFSR
at time instant 0. Let S(n + k) denote the bit shifted into the LFSR in the kth

cycle, 0 ≤ k ≤ n. From corollary 1, if the adversary obtains the values of PD′
k,

they can be related to the sequence generated by the LFSR as follows:

S(n + 1) ⊕ S(n) ⊕ S(1) ⊕ S(0) = PD′
0 (7)

S(n + 2) ⊕ S(n + 1) ⊕ S(2) ⊕ S(1) = PD′
1 (8)

· · · · · · · · · (9)
S(n + k + 1) ⊕ S(n + k) ⊕ S(k + 1) ⊕ S(k) = PD′

k (10)
· · · · · · · · · (11)
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The next theorem shows that the PD′
k values computed are a delayed M -

sequence generated by the LFSR.

Theorem 4. The sequence PD′
0, PD′

1, · is a delayed sequence of the M -sequence
generated by the given LFSR with initial state (S(n − 1), S(n − 2), · · · , S(0)).

Proof. Note that by the definition of the LFSR, S(n) is a linear combination of
the bits currently stored in the LFSR. Let S(n) = f0(S(n−1), S(n−2), · · · , S(0)).
Now, S(n + 1) = f0(S(n), S(n − 1), · · · , S(1)). Since S(n) is a linear combina-
tion of (S(n − 1), S(n − 2), · · · , S(0)), S(n + 1) can also be represented as a
linear combination of (S(n − 1), S(n − 2), · · · , S(0)) denoted by f1(S(n − 1),
S(n − 2), · · · , S(0)).

From equation 7 we see that

PD0 = f1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕ S(1) ⊕ S(0).

Hence, PD′
0 is a linear combination LC of the bits stored in the LFSR at time

instant 0.
From equation 10 we see that

PDk = f1(S(n + k − 1), · · · , S(k)) ⊕ f0(S(n + k − 1), · · · , S(k)) ⊕ S(k + 1) ⊕
S(k).

Note that PD′
k is the same linear combination, LC, (as in the case of PD′

0
mentioned above) of the bits stored in the LFSR at time instant k. This and
theorem 3 proves this theorem. �

Theorem 5. Given the length of the LFSR, the primitive connection polynomial
and the delayed sequence PD′

0, PD′
1, · · · , PD′

n−1, the initial state of the LFSR
can be determined.

Proof. As mentioned earlier, let S(n + k) denote the bit shifted into the LFSR
in the kth cycle, 0 ≤ k ≤ n. Note that by the definition of the LFSR, S(n)
is a linear combination of the bits currently stored in the LFSR. Let S(n) =
f0(S(n − 1), S(n − 2), · · · , S(0)). As the primitive polynomial and the length of
the LFSR, n, is known to the adversary imply that the function f0() is known
to the adversary. As mentioned earlier, S(n + 1) = f0(S(n), S(n − 1), · · · , S(1)).
Since S(n) is a linear combination of (S(n−1), S(n−2), · · · , S(0)), S(n+1) can be
represented as the function f1(S(n−1), S(n−2), · · · , S(0)). In a similar fashion,
S(n+k) = fk(S(n−1), S(n−2), · · · , S(0)). As the primitive polynomial is known
to the adversary, all the functions fk(S(n − 1), S(n − 2), · · · , S(0)), 0 ≤ k ≤ n
are known to the adversary.

Substituting S(n + k) by fk(S(n − 1), · · · , S(0)), 0 ≤ k ≤ n, in the equa-
tions 7 8 10, we get

f1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕ S(1) ⊕ S(0) = PD′
0

f2(S(n − 1), · · · , S(0)) ⊕ f1(S(n − 1), · · · , S(0)) ⊕ S(2) ⊕ S(1) = PD′
1

· · · · · · · · ·
fn(S(n − 1), · · · , S(0)) ⊕ fn−1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕

S(n − 1) = PD′
n−1
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Given that PD′
k, 0 ≤ k < n is known, the above forms a set of n simultane-

ous equations with n unknowns, namely, S(n − 1), S(n − 2), · · · , S(0). Solving
the above shall yield the values of S(n − 1), S(n − 2), · · · , S(0). Substituting
these values in fk(S(n − 1), S(n − 2), · · · , S(0)), 0 ≤ k ≤ n, gives the values of
S(2n), S(2n − 1), · · · , S(n + 1).

The fact that the sequence generated by the LFSR is an M -sequence and
Theorem 4 imply that the above set of simultaneous equations does have an
unique solution. This is true from the observation that there should exist states
(S(n − 1), S(n − 2), · · · , S(0)) which is at an unique delay distance from the se-
quence (PD′

0, PD′
1, · · ·); and, there can be only one (state of the LFSR) solution

to (S(n − 1), S(n − 2), · · · , S(0)). If there are more than one solution, it essen-
tially implies that the delayed sequence (PD′

0, PD′
1, · · ·) can be arrived at from

two different initial states of the LFSR, with the same amount of delay, which
contradicts the fact that the LFSR generates an M-sequence. �

3.1 The Proposed Attack

Let POW (k) denote the dynamic power consumed by the nonlinear filter gen-
erator at time instant k.

1. Measure POW (0), for time instant 0;
2. for each time instant k, k ≥ 1 do

(a) Measure the dynamic power, POW (k).
(b) PD′

k−1 = 1 if POW (k − 1) �= POW (k), else it is 0.
(c) Input PD′

k−1 into the Berlekamp-Massey (BM) Algorithm. If BM ter-
minates then exit this for loop; else repeat Step 2;

3. Result
(a) Berlekamp-Massey algorithm outputs the length n of the LFSR F and

the connection polynomial realized by F ; (as inferred from theorems 2
and 4).

(b) Now that the length of the LFSR and the connection polynomial realized
by the LFSR are known, compute the initial state of the LFSR at the
time of launch of the attack using Theorem 5.

4 Countermeasure to the SCA

Figure 2 shows the countermeasure for the SCA. In the circuit, for each flipflop
F in the LFSR, there is a corresponding toggle flipflop F ′ that toggles, if F does
not toggle; and, does not toggle, if F toggles. Note that the clock input to F ′

is the XNOR of the input and output of F AND-ed with the system clock. If
the input and output of F is same, that is F does not toggle in the next cycle,
the clock is fed into F ′ essentially toggling it. On the other hand, if the input
and output of F are different, that is F toggles in the next cycle, the clock is
not fed into F ′ preventing it from toggling. In this circuit, at each stage there
shall be uniformly n toggles, thereby countering the power attack. To avoid clock
skews between the LFSR flipflops and their toggle counterparts, the clock path
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Fig. 2. The Countermeasure to the SCA

to both are balanced by introducing a dummy gate in the clock path driving the
flipflops of the LFSR. The drawbacks of this approach are that it needs double
the number of flipflops and consumes more dynamic power.

5 Conclusions

We have shown an interesting property of LFSRs with respect to the hamming
distance between the state transitions of an LFSR with primitive feedback poly-
nomial. We exploit this property to determine the state of the LFSR by making
O(n) power measurements. In this paper, we have made an ideal assumption that
the power consumed by the LFSR in each of any two consecutive cycles shall re-
main the same if the number of toggles in the state of the LFSR are also equal in
the two cycles under consideration. A more practical assumption would be that if
the difference in power consumed across two cycles is less than a threshold then the
toggles are equal across the cycles, else they are different. Such type of thresholds
can be determined by simulating the model of the LFSR, using circuit simulators
like SPICE. The paper also presents a simple countermeasure for the attack.
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