
Efficient Window-Based Scalar Multiplication on
Elliptic Curves Using Double-Base Number

System

Rana Barua, Sumit Kumar Pandey, and Ravi Pankaj

Indian Statistical Institute
205, B.T. Road
Kolkata, India

{rana,mtc0518,mtc0520}@isical.ac.in

Abstract. In a recent paper [10], Mishra and Dimitrov have proposed
a window-based Elliptic Curve (EC) scalar multiplication using double-
base number representation. Their methods were rather heuristic. In this
paper, given the window lengths w2 and w3 for the bases 2 and 3, we first
show how to fix the number of windows, ρ, and then obtain a Double
Base Number System (DBNS) representation of the scalar n suitable for
window-based EC scalar multiplication. Using the DBNS representation,
we obtain our first algorithm that uses a small table of precomputed EC
points. We then modify this algorithm to obtain a faster algorithm by
reducing the number of EC additions at the cost of storing a larger
number of precomputed points in a table. Explicit constructions of the
tables are also given.

1 Introduction

The efficiency of Elliptic Curve Cryptography (ECC) implementation largely
depends upon how fast one can compute the point [n]P =

∑n
i=1 P , given a

point P on the curve and the integer (scalar) n. Several efficient algorithms for
computing [n]P have been proposed. See Avanzi et al [1] and Hankerson et al [8]
for detailed discussion on these methods. Several window-based methods have
also been proposed, of them w-NAF methods seem to be very efficient.

Recently, Mishra and Dimitrov[10] have proposed a new window-based scalar
multiplication algorithm by suitably representing the scalars in DBNS. The
DBNS has recently been exploited to compute exponentiation (or scalar multi-
plication) efficiently[5]. The sparseness of the representation leads to fewer point
additions than the usual double-and-add or NAF methods. In fact, one can have a
DBNS representation of n having O(logn/loglogn) terms. This together with the
fact that 2a3b[P], for an EC point P , can be computed efficiently([6]) gives rise
to some very efficient algorithms for scalar multiplication. However, the method
in [10] is quite heuristic and an explicit method for finding the partition length
ρ is not given, nor any explicit expression for the cost of scalar multiplication in
terms of EC addition, doubling or tripling.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 351–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

352 R. Barua, S.K. Pandey, and R. Pankaj

In this paper, we first show how to fix ρ, the length of the partition i.e. the
number of windows, given w2, w3, the lengths of the window corresponding to
the bases 2 and 3 respectively. We then obtain a DBNS representation of the
scalar n suitable for window-based scalar multiplication. We obtain the DBNS
representation more efficiently than in [10] using a much smaller search space.
Using our DBNS representation we obtain our scalar multiplication algorithm
using a table look-up that stores (w2+1)(w3+1) EC points. Explicit construction
of the table is also given. Using a larger table that stores (2w2 ×3w3)/2 points, we
modify the above algorithm that considerably reduces the number of EC point
additions. We also obtain an expression for the average number of EC additions,
doubling, tripling required for computing the scalar multiplication.

2 Double-Base Number System

The double base number system (DBNS) [6] is a representation scheme in which
every integer n is represented as the sum or difference of numbers of the form
2a3b(called {2, 3}-integers) i.e.

n =
m∑

i=1

si2bi3ti , with si ∈ {−1, 1} and bi, ti ≥ 0.

This representation is very short and the representation scheme is highly redun-
dant. It has been shown that (cf [5], every positive integer n can be represented as
the sum of at most O(logn/loglogn) {2, 3}-integers. A simple Greedy algorithm
ensures nearly shortest representation for a given integer. A modified Greedy
was proposed in [10] suitable for window-based scalar multiplication. Here we
propose a more efficient algorithm suitable for window-based method that uses
a search space consisting only of 2w23w3 integers.

3 Proposed Window-Based Method for Scalar
Multiplication

Unlike earlier proposed methods ([10], [6], [11]), by choosing the window sizes,
we obtain natural bounds on maximum exponents of bases 2 and 3, and propose
a window method so that it reduces the overall storage.

Let n be an r-bit integer. Let w2, w3 be the dimension of the window. Let
max2, max3 be integers satisfying 2max23max3 ≥ n and such that max2/w2 =
max3/w3 = ρ, say (as in [10]). Then, we have

max2 + max3log23 ≥ log2n (1)

Substituting max2 = ρw2, max3 = ρw3 in (1), we get

ρ ≥ log2n

w2 + w3log23
(2)

For fix window lengths, we can obtain the number ρ by choosing ρ to be the
least positive integer satisfying inequality (2). If n is r-bit, then we may also
choose ρ = �r/(w2 + w3log23)�. Henceforth, we fix such a number ρ.

Efficient Window-Based Scalar Multiplication on Elliptic Curves 353

3.1 Representation of n

There is no unique representation of n in double base number system. Finding
a canonical representation of n, i.e. having least number of terms, is extremely
difficult. A short and sparse representation of n results in less computation for
scalar multiplication. We propose a representation of n which can be obtained
very efficiently and will be suitable for our window-based method. Since we are
particularly interested in window method, we will first obtain a DBNS represen-
tation of integers m lying in the window i.e. 0 ≤ m ≤ 2w23w3 using (distinct)
terms in the window.

Proposition 3.1. Every integer 0 ≤ m ≤ 2w23w3 can be represented as∑
j sj2bj 3tj , where sj ∈ {−1, 1} and 0 ≤ bj ≤ w2, 0 ≤ tj ≤ w3.

To find a DBNS representation of m lying in a window, we will use a table T
such that T (a, b) = 2a3b where 0 ≤ a ≤ w2 and 0 ≤ b ≤ w3. With the help
of table T , we can easily find the nearest {2, 3}-integer lying in a window and
hence the double base representation of any integer m, lying in a window.

Algorithm 1 gives the method to find a DBNS representation of n by greedy
approach which is almost the same as in [10].

Algorithm 1. Conversion into DBNS
Input : an integer m such that 0 ≤ m ≤ 2w23w3 for a given window

lengths w2, w3 for 2, 3 respectively and table T , where T (a, b) = 2a3b

and 0 ≤ a ≤ w2, 0 ≤ b ≤ w3.
Output : The sequence (si, bi, ti) such that m =

∑l
i=1 si2bi3ti ,

where si ∈ {−1, 1}, 0 ≤ bi ≤ w2, 0 ≤ ti ≤ w3

1: i ← 1
2: si ← 1
3: A[i] ← (0, 0, 0)
4: while m > 0 do
5: define X = 2bi3ti , the best approximation of m in T with

0 ≤ bi ≤ w2 and 0 ≤ ti ≤ w3. If there are two choices,
choose nearest integer smaller to m.

6: A[i] ← (si, bi, ti)
7: if m < X then
8: si+1 ← −si

9: m ← |m − X|
10: i ← i + 1
11:return A.

Now, for any integer n, by our choice of ρ we have 0 ≤ n ≤ (2w23w3)ρ. The
propositon below gives a way to represent n suitable for our purpose.

Proposition 3.2. Every integer 0 ≤ n ≤ (2w23w3)ρ can be represented as n =
Mρ−1(2w23w3)ρ−1 ± Mρ−2(2w23w3)ρ−2 ± · · · ± M0 s.t. 0 ≤ Mρ−1 ≤ 2w23w3 and
0 ≤ Mj ≤ (2w23w3)/2 for 0 ≤ j ≤ ρ − 1.

354 R. Barua, S.K. Pandey, and R. Pankaj

Proof: If n = (2w23w3)ρ, then it is obvious. So let 0 ≤ n < (2w23w3)ρ. Then
n = M ′

ρ−1(2
w23w3)ρ−1 +R′

ρ−1, where 0 ≤ R′
ρ−1 < (2w23w3)ρ−1. Clearly M ′

ρ−1 <
2w23w3 ,for otherwise n ≥ (2w23w3)ρ. If R′

ρ−1 > (2w23w3)ρ−1/2, take Mρ−1 =
M ′

ρ−1 + 1 and Rρ−1 = R′
ρ−1 − (2w23w3)ρ−1, else Mρ−1 = M ′

ρ−1 and Rρ−1 =
R′

ρ−1. So, n = Mρ−1(2w23w3)ρ−1 + Rρ−1, where 0 ≤ Mρ−1 ≤ 2w23w3 and
−(2w23w3)ρ−1/2 < Rρ−1 ≤ (2w23w3)ρ−1/2.

Now, take |Rρ−1| so that 0 ≤ |Rρ−1| ≤ (2w23w3)ρ−1/2.
Let |Rρ−1| = Mρ−2(2w23w3)ρ−2 + Rρ−2, where 0 ≤ Mρ−2 ≤ 2w23w3/2 and
−(2w23w3)ρ−2/2 < Rρ−2 ≤ (2w23w3)ρ−2/2. Observe that Mρ−2 �> (2w23w3)/2,
for otherwise |Rρ−1| > (2w23w3)ρ−1/2.

Proceeding similarly, we have the result.

Algorithm 2 gives the method to find a representation of n.

Algorithm 2. To find representation of n

Input : an integer n, window dimension w2, w3 and ρ.
Output: a seq. of (si, Mi)i>0 such that n =

∑ρ
i=1 sρ−iMρ−i(2w23w3)ρ−i,

where si ∈ {−1, 1}, 0 ≤ Mρ−1 ≤ 2w23w3 and
0 ≤ Mρ−i ≤ (2w23w3)/2 for all 2 ≤ i ≤ ρ.

1: i ← 1
2: sρ−1 ← 1
3: R ← n
4: X ← (2w23w3)ρ−1

5: while i ≤ ρ do
6: Mρ−i ← �R/X�
7: R ← R − Mρ−iX
8: sρ−i−1 ← sρ−i

9: if R > X/2 then
10: Mρ−i ← Mρ−i + 1
11: R ← X − R
12: sρ−i−1 ← −sρ−i

13: X ← X/2w23w3

14: i ← i + 1
15: A[ρ − i] ← (sρ−1, Mρ−i)
16:return A

After getting a representation of n, we are in position to find [n]P , given an
EC point P , using Horner’s scheme. To calculate [n]P , we will use another table
T P which contains the precomputed values of [2a3b]P , where 0 ≤ a ≤ w2 and
0 ≤ b ≤ w3, i.e. T P (a, b) = [2a3b]P . Observe that, since negation of an EC point
can be obtained almost free, we omit its cost in our calculation. Using T P , we
can find [n]P as follows.

1. Compute ρ. Then we calculate M ′
js, where n =

∑ρ
j=1 sρ−jMρ−j(2w23w3)ρ−j ,

where Mj , sj’s are as in Proposition 3.2. (Algorithm 2).
2. Now, we find out [Mj]P , (Algorithm 3). To obtain this we first find represen-

tation of Mj in DBNS using Algorithm 2, say
∑l

j=1 sj2bj 3tj . Then looking

Efficient Window-Based Scalar Multiplication on Elliptic Curves 355

at table T P , we find the values of sj [2bj 3tj]P for all j = 1, . . . , l and adding
these points gives the value of [Mj]P .

3. After getting the values of all [Mj]P in the representation of n, we evaluate
[n]P by applying Horner’s scheme (Algorithm 4).

Algorithm 3. calculation of [m]P , for m in the window
Input : an integer m such that 0 ≤ m ≤ 2w23w3 , a point P

on an elliptic curve E, tables T and T P .
Output : [m]P
1: A ←Algorithm 1(m,w2, w3, T)
2: L ← length(A)
3: P ← O (point at infinity on elliptic curve E)
4: i ← 1
5: while i ≤ L do
6: (si, bi, ti) ← A[i]
7: P ← P + siT

P (bi, ti)
8: i ← i + 1
9:return P

It is not hard to check that the number of terms in the DBNS representation
of m lying in the window is at most c(w2 + log3w3) for c < 1. Perhaps a much
better estimate can be obtained. Thus we have.

Proposition 3.3. Algorithm 3 correctly computes [m]P for 0 ≤ m ≤ 2w23w3

using at most c(w2 + log3w3) additions. The table T P stores (w2 + 1)(w3 + 1)
EC points.

Algorithm 4 calculates [n]P .

Algorithm 4. Calculation of [n]P
Input : an integer n such that 0 ≤ n ≤ (2w23w3)ρ, a point P

on an elliptic curve E, partition length ρ, tables T and T P .
Output : [n]P
1: A ← Algorithm 2(n, w2, w3, ρ)
2: P ← O (point at infinity on elliptic curve E)
3: i ← 1
4: while i ≤ ρ do
5: (sρ−i, Mρ−i) ← A[ρ − i]
6: Q ← Algorithm 3(Mρ−i, w2, w3, P, T, T P)
7: P ← P + sρ−iQ
8: P ← [3w3]P
9: P ← [2w2]P
10: i ← i + 1
11: return P

The following is not very hard to check using Horner’s scheme, since the
probabily of each Mj being non-zero is (1 − 1

2w23w3).

356 R. Barua, S.K. Pandey, and R. Pankaj

Proposition 3.4. Algorithm 4 correctly computes [n]P using on an average
(t−1)(c(w2 + log3w3)−1) EC additons, (ρ−1)w2 point doublings and (ρ−1)w3

point triplings, where c < 1, ρ = � log2n

w2+w3log23
�, and t = (1 − 1

2w23w3)ρ. Table

T stores (w2 + 1)(w3 + 1) integers, while table T P stores (w2 + 1)(w3 + 1) EC
points.

We can reduce the cost of computation if more precomputed points are stored. For
that we construct T P

all instead of T P such that T P
all(i) = [i]P for 1 ≤ i ≤ 2w22w3/2.

Since in the representation of n, maximum value of Mj can be (2w23w3/2), except
Mρ−1 which can have maximum value 2w23w3 , the number of precomputed points
is (2w23w3/2). If Mρ−1 > 2w23w3/2 then [Mρ−1]P can be evaluated by calculating
first �[Mρ−1/2]	P and then doubling and adding P if Mρ−1 is odd. Hence, steps
for evaluating [n]P using table T P

all will be same except step 3. In modified step 3,
we will evaluate [Mj]P by just looking at table T P

all.

Algorithm 40. Calculation of [n]P
Input : an integer n such that 0 ≤ n ≤ (2w23w3)ρ, a point P

on an elliptic curve E, partition length ρ, table T P
all.

Output : [n]P
1: A ← Algorithm 3(n, w2, w3, ρ)
2: P ← O (point at infinity on elliptic curve E)
3: i ← 1
4: while i ≤ ρ do
5: (sρ−i, Mρ−i) ← A[ρ − i]
6: if Mρ−i = 0 then
7: Q ← O (point at infinity)
8: else
9: if i = 1 then
10: if Mρ−i > 2w23w3/2
11: Mρ−i ← �Mρ−i/2�
12: Q ← 2[T P

all(Mρ−i)]
13: if Mρ−i is odd then
14: Q ← Q + P
15: else
16: Q ← T P

all(Mρ−i)
17: else
18: Q ← T P

all(Mρ−i)
19: P ← P + sρ−iQ
20: P ← [3w3]P
21: P ← [2w2]P
22: i ← i + 1
23: return P

The following is now clear.

Proposition 3.5. Algorithm 40 correctly computes [n]P using (ρ − 1)w2 point
doublings, (ρ − 1)w3 point triplings and at most ρ point additions. Table T P

all

stores 2w23w3/2 EC points.

Efficient Window-Based Scalar Multiplication on Elliptic Curves 357

4 Computation of T P and T P
all

The algorithms described so far use one or more look-up tables. If the EC point P
is known in advance, then the tables can be precomputed and stored; otherwise
they have to be computed online. Formation of tables T , T P , and T P

all may take
much computation but it can be reduced if they are formed recursively.

Note that T (a, b) = 2a3b and T P (a, b) = [2a3b]P , so T P (a, b) = [T (a, b)]P .
By considering the lexicographic ordering of the tuples (a, b) we can form T, T P

as follows:

1. T (0, 0) = 1; T P (0, 0) = P
2. T (0, b) = 3T (0, b − 1); T P (0, b) = [3]T P (0, b − 1), b > 0.
3. T (a, b) = 2T (a − 1, b); T P (a, b) = [2]T P (a − 1, b), a > 0.

Algorithm 5 illustrates the method to form table T P .

Algorithm 5. Table construction for T P

Input : window lengths w2, w3 and an EC point P

Output : an array T P (a, b) such that T P (a, b) = [2a3b]P
where 0 ≤ a ≤ w2 and 0 ≤ b ≤ w3.

1: T P (0, 0) ← P
2: a ← 0
3: b ← 0
4: while b < w3 do
5: T P (a, b + 1) ← [3]T P (a, b)
6: b ← b + 1
7: b ← 0
8: while b < w3 + 1 do
9: while a < w2 do
10: T P (a + 1, b) ← [2]T P (a, b)
11: a ← a + 1
12: b ← b + 1
13:return T P

Proposition 4.1. Algorithm 5 correctly computes T P used in Algorithm 4 using
w3 triplings and w2(w3 + 1) doublings.

Remarks: If tripling is less expensive than doubling(as in the case of EC over
fields of characteristic 3), we form T P as follows:

1. T P (0, 0) = P
2. T P (a, 0) = 2[T P (a − 1, 0)], a > 0 T P (a, b) = 3[T P (a, b − 1)], b > 0.

One can then appropriately modify Algorithm 5, using the above recursive rela-
tion. This will involve w2 doubling and w3(w2 + 1) triplings

Finally, Table T P
all can be formed as follows, if T P is given:

1. T P
all(1) = P T P

all(m + 1) = T P (m + 1), if m + 1 is a {2, 3}-integer,
2. T P

all(m + 1) = T P
all(m) + P , otherwise.

Clearly this requires 2w23w3/2 − (w1w2 + w1 + w2) EC point additions.

358 R. Barua, S.K. Pandey, and R. Pankaj

5 Comparison

The present method for scalar multiplication is comparable or performs better
in terms of both storage and computation in many cases.

(a) Storage - Methods for scalar multiplication in [10], [11] and [6] use a table
T of large size to find the nearest representation of n, but in our method the table
size required to find nearest representation of n is comparatively very small.

(b) Computation - In this method, we use a table T P or T P
all of precomputed

points, which reduces the overall computation in scalar multiplication. We have
computed cost of [n]P using existing algorithm for [2w2]P ([4]) and [3]P ([2])
in affine coordinates for curves over characteristic 2. Since square is almost free
in affine coordinates, we have not taken the cost of squaring. On the other
hand, cost for computing [n]P has been calculated using algorithm for [2w2]P
([9]), [3w3]P ([6]) and mixed addition ([3]) in Jacobian coordinates. Table 1
summarizes the cost of operation required.

We calculated cost of field operations for different window lengths in Table 2.
We compared our results with some earlier methods in Table 3.

Table 1. Cost of operation required in different point addition algorithm. Here [I], [S]
and [M] denote cost of field inversion, squaring and multiplication respectively.

Operation cost
Affine Jacobian

P + Q 1[I] + 2[M] 4[S] + 12[M]
mixed-(P + Q) - 3[S] + 8[M] (cf [3])

[2w]P 1[I] + (4w − 2)[M] (cf [4]) (4w + 2)[S] + 4w[M] (cf [9])
[3]P 1[I] + 7[M] (cf [2]) 6[S] + 10[M] (cf [6])
[3w]P - (4w + 2)[S] + (11w − 1)[M] (cf [6])

Table 2. Cost of scalar multiplication for 160 bit scalar

using T P using T P
all

w2 w3 # Affine Jacobian # Affine Jacobian
storage [I]/[M] = 8 [S]/[M] = 0.8 storage [I]/[M] = 8 [S]/[M] = 0.8

1 1 4 2042.3 [M] 1973.7[M] 3 2066.7[M] 2000.5[M]
1 2 6 2030.0[M] 1966.8[M] 9 1878.9[M] 1809.6[M]
1 3 8 1993.5[M] 1932.9[M] 27 1750.0[M] 1674.6[M]
2 1 6 1716.0[M] 1812.8[M] 6 1679.3[M] 1774.7[M]
2 2 9 1775.0[M] 1823.2[M] 18 1665.4[M] 1708.4[M]
2 3 12 1800.3[M] 1822.7[M] 54 1584.9[M] 1598.6[M]
3 1 8 1578.7[M] 1766.9[M] 12 1490.4[M] 1678.8[M]
3 2 12 1637.8[M] 1760.3[M] 36 1504.4[M] 1623.8[M]
3 3 16 1689.4[M] 1774.6[M] 108 1459.1[M] 1535.0[M]
4 1 10 1485.2[M] 1732.7[M] 24 1310.2[M] 1550.7[M]
4 2 15 1584.4[M] 1764.8[M] 72 1362.5[M] 1534.0[M]
4 3 20 1632.3[M] 1768.1[M] 216 1385.6[M] 1511.6[M]

Efficient Window-Based Scalar Multiplication on Elliptic Curves 359

Table 3. Comparison among different proposed methods

Algorithm size of # Precomputed Affine Jacobian
Table T points [I]/[M] = 8 [S]/[M] = 0.8

for 160 bit scalar
Mishra-Dimitrov method [11] 48384 5 1469.0[M] 1502.0[M]
Mishra-Dimitrov method [10] 4332 26 - 1692.2[M]

for window length (3,2)
w−NAF (for w = 3) 0 3 2016[M] -
w−NAF (for w = 4) 0 5 1894[M] -

Our method (using T P) 10 10 1485.2[M] 1732.7[M]
for window length (4,1)
Our method (using T P

all) 10 24 1310.2[M] 1550.7[M]
for window length (4,1)
Our method (using T P) 15 15 1584.4[M] 1764.8[M]
for window length (4,2)
Our method (using T P

all) 15 72 1362.5[M] 1534.0[M]
for window length (4,2)

for 200 bit scalar
Doche-Imbert method [7] 313 3 - 2019[M]
for window length (1,1)
Our method (using T P) 10 10 - 2312.6[M]
for window length (4,1)
Our method (using T P) 15 15 - 2272.9[M]
for window length (4,2)
Our method (using T P

all) 10 24 - 1938.4[M]
for window length (4,1)

References

1. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Langue, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC press, Boca
Raton, USA (2005)

2. Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

3. Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using
Mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 51–65. Springer, Heidelberg (1998)

4. Dahab, R., Lopez, J.: An Improvement of Guajardo-Paar Method for Multipli-
cation on non-supersingular Elliptic Curves. In: SCCC 1998. Proceedings of the
XVIII International Conference of the Chilean Computer Science Society, Novem-
ber 12-14, pp. 91–95. IEEE Computer Society Press, Los Alamitos (1998)

5. Dimitrov, V., Gullien, G.A., Miller, W.C.: An algorithm for modular exponentia-
tion. Information Processing Letters 66(3), 155–159 (1998)

6. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Curve Point Multi-
plication Using Double Base Chain. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 59–79. Springer, Heidelberg (2005)

360 R. Barua, S.K. Pandey, and R. Pankaj

7. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

9. Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.: Fast implementation of
public-key cryptography on a DSP TMS320C6201. In: Koç, Ç.K., Paar, C. (eds.)
CHES 1999. LNCS, vol. 1717, p. 6172. Springer, Heidelberg (1999)

10. Mishra, P.K., Dimitrov, V.: Window-Based Elliptic Curve Scalar Multiplication
using Double Base Number Representation, Short Papers, Inscrypt (2007)

11. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation, ePrint
archive. In report 2007/040 (2007), http://www.iacr.org

http://www.iacr.org

	Efficient Window-Based Scalar Multiplication on Elliptic Curves Using Double-Base Number System
	Introduction
	Double-Base Number System
	Proposed Window-Based Method for Scalar Multiplication
	Representation of n

	Computation of T^P and ${T_{all}^{P}}$
	Comparison

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

