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Abstract. Public-key encryption schemes with searchable keywords are
useful to delegate searching capabilities on encrypted data to a third party,
who does not hold the entire secret key, but only an appropriate token
which allows searching operations but preserves data privacy. Such notion
was previously proved to imply identity-based public-key encryption [5]
and to be equivalent to anonymous (or key-private) identity-based
encryption which are useful for fully-private communication.

So far all presented public-key encryption with keyword search (PEKS)
schemes were based on bilinear forms and finding a PEKS that is not
based on bilinear forms has been an open problem since the notion of
PEKS was first introduced in [5]. We construct a public-key encryption
scheme with keyword search based on a variant of the quadratic
residuosity problem. We obtain our scheme using a non-trivial trans-
formation of Cocks’ identity-based encryption scheme [9]. Thus we show
that the primitive of PEKS can be based on additional intractability as-
sumptions which is a conventional desiderata about all cryptographic
primitives.

Keywords: Public-Key Encryption, Searchable Public-Key Encryption,
Quadratic Residuosity, Jacobi Symbol.

1 Introduction

A classical research area in Cryptography is that of designing candidates for
cryptographic primitives under different intractability assumptions, so to guar-
antee that the cryptographic primitive does not depend on the supposed hard-
ness of a single computational problem and its fortune against cryptanalytic
research. In this paper we concentrate on a recently introduced primitive, public-
key encryption with keyword search (PEKS) [5], for which all constructions in
the literature were based on assumptions related to bilinear forms. We present
a PEKS scheme based on a new assumption that can be seen as a variant of the
classical assumption on the hardness of deciding quadratic residuosity modulo
composite integers.
Motivation. PEKS allows a sender to compute an encrypted message, so that
the receiver can allow a third party to search keywords in the encrypted message
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without (additional) loss of privacy on the content of the message. The following
motivating example for PEKS is taken almost verbatim from [5]. Suppose user
Alice wishes to read her email on a number of devices: laptop, desktop, pager,
etc. Alice’s mail gateway is supposed to route email to the appropriate device
based on the keywords in the email. For example, when Bob sends email with
the keyword “urgent” the mail is routed to Alice’s pager. When Bob sends email
with the keyword “lunch” the mail is routed to Alice’s desktop for reading later.
One expects each email to contain a small number of keywords. For example, all
words on the subject line as well as the sender’s email address could be used as
keywords. Now, suppose Bob sends encrypted email to Alice using Alice’s public
key. Both the contents of the email and the keywords are encrypted. In this
case the mail gateway cannot see the keywords and hence cannot make routing
decisions. With public-key encryption with keyword search one can enable Alice
to give the gateway the ability to test whether “urgent” is a keyword in the email,
but the gateway should learn nothing else about the email. More generally, Alice
should be able to specify a few keywords that the mail gateway can search for,
but learn nothing else about incoming mail.

Previous work. In its non-interactive variant, constructions for this primi-
tive were showed to be at least as hard to obtain as constructions for identity-
based encryption (as proved in [5]). Moreover, the existence of PEKS was proved
to follow from the existence of “anonymous” or “key-private” identity-based
encryption (this was noted in [5] and formally proved in [1]); namely, encryption
where the identity of the recipient remains unknown. Anonymous encryption is
well-known to be an attractive solution to the problem of fully-private commu-
nication (i.e., sender-anonymous and receiver-anonymous ciphertexts, as well as
protection against traffic analysis, by using bulletin boards); see, e.g., discus-
sions in [2,8]). It is a natural goal then to try to convert the existing identity-
based public-key cryptosystems into their anonymous variant, so that a PEKS
is automatically obtained. In fact, the anonymity or key-privacy property for
a public-key encryption scheme (whether it is identity-based or not), is itself a
property of independent interest, as already discussed in [2], where this property
was defined and investigated for conventional (i.e., not identity-based) public-key
encryption schemes. So far, however, all presented public-key encryption schemes
with keyword search were transformations of identity-based cryptosystems based
on bilinear forms. Even the authors of [5] noted the difficulty of coming up with
other examples of public-key encryption schemes with keyword search, by ob-
serving that the only identity-based cryptosystem not based on bilinear forms
(namely, Cocks’ scheme [9]) does not seem to have a direct transformation into an
anonymous variant and thus into a public-key encryption scheme with keyword
search. Further work on PEKS (e.g., [17,15,13,1,8]) did not contribute towards
this goal, but further studied schemes and variations based on bilinear forms.

Our results. In this paper we construct the first public-key encryption scheme
with keyword search which is not based on bilinear forms but is based on a new
assumption that can be seen as a variant of the well-known hardness of deciding
quadratic residues modulo a large composite integer. Our scheme is obtained
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as a non-trivial transformation of Cocks’ identity-based encryption scheme [9].
By the known equivalence of public-key encryption scheme with keyword search
and anonymous identity-based encryption, our scheme immediately gives the
first anonymous identity-based encryption scheme which is not based on bilinear
forms, a problem left open in [5]. Our scheme essentially preserves the time effi-
ciency of the (not anonymous) identity-based encryption of Cocks’ scheme, which
was claimed in the original paper [9] to be satisfactory in a hybrid encryption
mode (that is, when used to encrypt first a short session key and then using this
key to produce a symmetric encryption of a large message). We do note however
that the decryption time of Cocks’ scheme (and thus of our scheme too) is less
efficient than the known schemes based on bilinear forms.

The construction of a new identity-based encryption scheme based on quad-
ratic residuosity [7] and having short ciphertexts was claimed very recently, and
after seeing our present work [3]. This scheme is also anonymous, like ours, but
is based on very different techniques. Although their scheme is quite elegant,
encryption and decryption operations are estimated [4] to be significantly less
efficient than in Cocks’ scheme. Instead, when used as an anonymous identity-
based encryption scheme, our scheme is only less efficient than the original (and
not anonymous) Cocks’ scheme [9] by a small constant factor.
Organization of the paper. In what follows, we start by reviewing in Section 2
the formal definitions related to the notion of interest in this paper: public-
key encryption with keyword search. In Section 3 we present our public-key
cryptosystem with keyword search and in Section 4 we prove its properties.

2 Definitions and Preliminaries

We recall the known notion and formal definition of public-key encryption with
keyword search (as defined in [5,1]). We assume familiarity with the notion of
identity-based public-key cryptosystems (as defined, for instance, in [6,9]).

An identity-based public-key cryptosystem can be defined as a 4-tuple of al-
gorithms (Setup, KeyGen, Encrypt, Decrypt), with the following semantics: Setup
is used by the trusted authority TA to generate public parameters PK and a
master secret key SK; KeyGen is used by the trusted authority TA to gener-
ate a trapdoor key tID given a party’s ID; Encrypt is used by a sender who
wants to encrypt a message to a receiving party and only uses the receiver’s
ID and the public parameters PK; Decrypt is used by a receiver to decrypt a
ciphertext and only uses the trapdoor tID and the public parameters PK. We de-
note the identity-based cryptosystem in [9] as CC-IBE = (CC-Setup, CC-KeyGen,
CC-Encrypt, CC-Decrypt):

2.1 Public-Key Encryption with Keyword Search

Informally speaking, in a public-key encryption scheme with keyword search, a
sender would like to send a message in encrypted form to a receiver, so that the
receiver can allow a third party to search keywords in the encrypted message
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without losing (additional) privacy on the message’s content. According to [5],
a non-interactive implementation of this task can be performed as follows. The
sender encrypts her message using a conventional public key cryptosystem, and
then appends to the resulting ciphertext a Public-key Encryption with Key-
word Search (PEKS) of each keyword. Specifically, to encrypt a message M with
searchable keywords W1, . . . , Wm, the sender computes and sends to the receiver

EApub
(M) ‖ ksEnc(Apub, W1) ‖ · · · ‖ ksEnc(Apub, Wm), (1)

where Apub is the receiver’s public key and E is the encryption algorithm of the
conventional public-key cryptosystem. Based on this encryption, the receiver
can give the third party a certain trapdoor TW which enables the third party
to test whether one of the keywords associated with the message is equal to
the word W of the receiver’s choice. Specifically, given ksEnc(Apub, W

′) and TW ,
the third party can test whether W = W ′; if W �= W ′ the third party learns
nothing more about W ′. Note that sender and receiver do not communicate
in this entire process, as the sender generates the searchable ciphertext for W ′

just given the receiver’s public key (thus, the term “public-key encryption with
keyword search” is used here).

More formally, we consider a setting with three parties: a sender, a receiver,
and a third party (representing the e-mail gateway in the application example
given in the introduction). In this setting, a public-key encryption with keyword
search is defined as follows.

Definition 1. A (non-interactive) public-key encryption scheme with keyword
search (PEKS) consists of the following polynomial time randomized algorithms:

1. KeyGen(1m): on input security parameter 1m in unary, it returns a pair
(Apub, Apriv) of public and private keys.

2. ksEnc(Apub, W ): on input a public key Apub and a keyword W , it returns a
ciphertext, also called the searchable encryption of W .

3. Trapdoor(Apriv , W ): on input Alice’s private key and a keyword W , it returns
a trapdoor TW .

4. Test(Apub, S, TW ): on input Alice’s public key, a searchable encryption S =
ksEnc(Apub, W

′), and a trapdoor TW = Trapdoor(Apriv, W ), it returns ‘yes’
or ‘no’.

Given the above definition, an execution of a public-key encryption scheme with
keyword search goes as follows. First, the receiver runs the KeyGen algorithm
to generate her public/private key pair. Then, she uses the Trapdoor algorithm
to generate trapdoors TW for any keywords W which she wants the third party
to search for. The third party uses the given trapdoors as input to the Test
algorithm to determine whether a given message encrypted by any sender using
algorithm ksEnc contains one of the keywords W specified by the receiver.

We now define three main properties which public-key encryption schemes
with keyword search may satisfy: (two variants of) consistency and security.
The following basic definition will be useful towards that: we say that a given
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function f : N → [0, 1] is negligible in n if f(n) < 1/p(n) for any polynomial p
and sufficiently large n.
Consistency. Next, we consider definitions of consistency for a PEKS (following
definitions in [5,1]). We consider two variants: right-keyword consistency and
adversary-based consistency for a PEKS in the random oracle model.

Informally, in right-keyword consistency, we require the success of the search
of any word W for which the encryption algorithm had computed a searchable
encryption.

Definition 2. We say that a PEKS is right-keyword consistent if it holds that
for any word W , the probability that Test(Apub, C, TW ) �= ‘yes’ is negligible in
m, where Apub was generated using the KeyGen algorithm and input 1m, C was
computed as ksEnc(Apub, W ) and TW was computed as Trapdoor(Apriv, W ).

Informally, in adversary-based consistency, one would like to ensure that even
an adversary that has access to the public parameters PK and to a (uniformly
distributed) random oracle cannot come up with two different keywords such
that the testing algorithm returns ‘yes’ on input a trapdoor for one word and
a public-key encryption with keyword search of the other. Formally, we define
consistency against an attacker A using the following game between a challenger
and an attacker. Here, we denote by m the security parameter, given in unary
as input to both players, and by k the length of the keywords, where we assume
that k = Θ(mc), for some constant c > 0 (this assumption is seen to be wlog
using simple padding).

PEKS Adversary-Based Consistency Game

1. The challenger runs the KeyGen(1m) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker returns two keywords W0, W1 ∈ {0, 1}k.
3. Encryption C = ksEnc(Apub, W0) and trapdoor TW1 = Trapdoor(Apriv, W1)

are computed.
4. The attacker wins the game if W0 �= W1 and Test(Apub, C, TW1) returns ‘yes’.

We define A’s advantage AdvA(m, k) in breaking the consistency of PEKS as
the probability that the attacker wins the above game.

Definition 3. We say that a PEKS satisfies (computational) adversary-based
consistency if for any attacker A running in time polynomial in m, we have that
the function AdvA(m) is negligible in m.

Security. Finally, we recall the definition of security for a PEKS (in the sense
of semantic-security). Here, one would like to ensure that an ksEnc(Apub, W )
does not reveal any information about W unless TW is available. This is done
by considering an attacker who is able to obtain trapdoors TW for any W of his
choice, and require that, even under such attack, the attacker should not be able
to distinguish an encryption of a keyword W0 from an encryption of a keyword
W1 for which he did not obtain the trapdoor. Formally, we define security against
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an active attacker A using the following game between a challenger and the
attacker. Here, we denote by m the security parameter, given in unary as input
to both players, and by k the length of the keywords, where we assume that
k = Θ(mc), for some constant c > 0 (this assumption is seen to be wlog using
simple padding).

PEKS Security Game

1. The challenger runs the KeyGen(1m) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TW for any
keyword W ∈ {0, 1}k of his choice.

3. At some point, the attacker A sends the challenger two keywords W0, W1 on
which it wishes to be challenged. The only restriction is that the attacker
did not previously ask for the trapdoors TW0 or TW1 . The challenger picks a
random b ∈ {0, 1} and gives the attacker C = ksEnc(Apub, Wb). We refer to
C as the challenge ciphertext.

4. The attacker can continue to ask for trapdoors TW for any keyword W of his
choice as long as W �= W0, W1.

5. Eventually, the attacker A outputs d ∈ {0, 1}.

Here, the attacker wins the game if its output differs significantly depending
on whether he was given the challenge ciphertext corresponding to W0 or W1.
This is formalized as follows. First, for b = 0, 1, let Ab = 1 denote the event
that A returns 1 given that C = ksEnc(Apub, Wb). Then, define A’s advantage in
breaking the PEKS scheme as

AdvA(m) =
∣
∣ Prob[ A0 = 1 ] − Prob[ A1 = 1 ]

∣
∣

Definition 4. We say that a PEKS is semantically secure against an adaptive
chosen-keyword attack if for any attacker A running in time polynomial in m,
we have that the function AdvA(m) is negligible in m.

Remarks. We defined right-keyword consistency as done in [5,1] (although
the name was first used in [1]). The (computational version of the) adversary-
based consistency was defined as a relaxed version of what is called just consis-
tency in [1]; the relaxation consisting in only restricting the adversary to return
keywords which have a known upper-bounded length. Although guaranteeing a
slightly weaker property, this is essentially not a limitation in practical scenarios
where a (small) upper bound on the length of keywords is known to all parties.
We also note that such a relaxation is always done, for instance, in the definition
of conventional public-key cryptosystems.

3 Our Construction

In this section we present our main construction: a public-key encryption with key-
word search under an intractability assumption related to quadratic residuosity
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modulo Blum-Williams integers. We first define the intractability assumption
which we use and formally state our main result; then, in Subsection 3.1 we give
an informal discussion where we sketch a preliminary (but flawed) construction,
explain why it does not work, and how we fix it; finally, in Subsection 3.2, we for-
mally describe our public-key cryptosystem with keyword search.

An intractability assumption. Our cryptosystem is based on the following
assumption which is a variation of the well-known quadratic residuosity problem.

Quadratic Indistinguishability Problem (QIP). Let m be a security parameter.
Let (p, q) ← BW(1m) denote the random process of uniformly and independently
choosing two m-bit primes p, q such that p = q = 3 mod 4. Let QR(n) denote the
set of quadratic residues modulo n and let Z

+1
n (resp. Z

−1
n ) be the set of positive

integers which are < n, coprime with n and have Jacobi symbol equal to +1
(resp. −1). Also, let s ← CS(n, α) denote the random process of randomly and
independently choosing an integer s in Z

+1
n such that the condition α holds. The

QIP problem consists of efficiently distinguishing the following two distributions:

D0(1m) = {(p, q) ← BW(1m); n ← p · q; h ← Z
+1
n ;

s ← CS(n, s2 − 4h ∈ Z
−1
n ∪ QR(n)) : (n, h, s)}

D1(1m) = {(p, q) ← BW(1m); n ← p · q; h ← Z
+1
n ; s ← Z

∗
n : (n, h, s)}.

We say that algorithm A has advantage ε in solving QIP if we have that:

∣
∣Pr[(n, h, s) ← D0(1m) : A(n, h, s) = 1]

− Pr[(n, h, s) ← D1(1m) : A(n, h, s) = 1]
∣
∣ = ε. (2)

We say that QIP is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP.

Our result. In the rest of the paper we prove the following.

Theorem 1. Assume that the QIP problem is intractable. Then there exists
(constructively) a public-key encryption scheme with keyword search.

3.1 An Informal Discussion

A first (not yet anonymous) construction. The first approach is a very nat-
ural one — we simply apply the Cocks’ IBE scheme in place of Boneh-Franklin
scheme as done in the public-key encryption scheme with keyword search pre-
sented in [5]. Given a security parameter 1m, for m ∈ Z

+, the user Alice uses algo-
rithm CC-Setup to generate two sufficiently large primes p, q such that both p and
q are congruent to 3 mod 4 and a cryptographic hash function H (assumed to
behave like a random oracle in the analysis); then she outputs the public param-
eters Apub = (n, H) and keeps secret the master secret key Apriv = (p, q). Alice
treats each keyword W as an identity and, using algorithm CC-KeyGen, computes
a square root g of h = H(W ) or −h depending on which one is a square modulo n,
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and supplies the mail server with TW = g as the trapdoor for W . A user Bob
wishing to send an encrypted email to Alice with the keyword W uses algorithm
CC-Encrypt to encrypt the string 1k, where k = |W |, using W as the necessary
input identity, thus obtaining ksEnc(Apub, W ) = s = (s1, . . . , sk, sk+1, . . . , s2k).
The server then decrypts s as in algorithm CC-Decrypt and outputs ‘yes’ if the
decryption returns 1k, or outputs ‘no’ otherwise.

The problem with the first approach. The above scheme does not satisfy
anonymity because Cocks’ IBE scheme is not public-key private or anonymous,
in the sense of Bellare et al. [2], and thus the ciphertext returned by algorithm
PEKS may reveal more information than desired about the searchable keyword.
This fact was already briefly mentioned in [5], but it is useful to analyze it in
greater detail here to understand how we will obtain our main construction.
Specifically, to clarify this fact, we note that for i = 1, . . . , k, it holds that

s2
i − 4h = (ti + h/ti)2 − 4h = (ti − h/ti)2 mod n

and therefore, except with negligible probability,
(

s2
i −4h

n

)

= +1 and, analo-
gously, for i = k + 1, . . . , 2k, it holds that

s2
i + 4h = (ti − h/ti)2 + 4h = (ti + h/ti)2 mod n

and therefore, except with negligible probability,
(

s2
i +4h

n

)

= +1.
On the other hand, for any other keyword W ′ �= W , if h′ = H(W ′), the

quantities s2
i − 4h′ and s2

i + 4h′ are not necessarily squares and their Jacobi
symbols

(
s2

i ±4h′

n

)

may be −1. In fact, when h′ is randomly chosen in Z
∗
n, for

each i ∈ {1, . . . , 2k}, it holds that
(

s2
i±4h′

n

)

= −1 exactly half the time s2
i ± 4h′

is in Z
∗
n. Thus, an outsider can easily find out whether a keyword W is in the

message or not with some non-negligible probability, which is not desirable.

Fixing the problems and ideas behind our construction. At a very high
level, we still would like to use the approach in [5]; which, very roughly speaking,
might be abstracted as follows: a searchable ciphertext is ‘carefully computed’
as the output of an identity-based encryption algorithm on input a plaintext
sent in the clear and a function of the keyword W as the identity; the com-
putation of the searchable ciphertext is such that (with high probability) the
plaintext sent in the clear is the actual decryption of this ciphertext if and only
if the trapdoor associated to the same keyword W is used to decrypt. However,
the main difficulty in implementing this approach with (a modification of) the
Cocks’ scheme CC-IBE is in obtaining a modification which additionally satis-
fies the ‘public-key privacy’ or ‘anonymity’ property. We solve this problem by
modifying the distribution of the ciphertext in CC-IBE, so that its modified distri-
bution is ‘properly randomized’, and, when used in the context of a ciphertext
associated with our public-key encryption scheme with keyword search, does
not reveal which keyword is being used. The randomization of the ciphertext
has to guarantee not only that the ciphertext does not reveal the identity used
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(or, in other words, the integer h = H(ID)), but also has to guarantee that the
distribution remains the same when it is matched with another identity (e.g.,
another integer h′ = H(ID′)). In this randomization process, we have to take
care of two main technical obstacles, one related to the distribution of the in-
tegers si with respect to the Jacobi symbols

(
s2

i±4h
n

)

; and another one, related
to efficiently guaranteeing that all values si are constructed using uniformly and
independently distributed hashes (or, functions of the keyword) playing as the
identity. We achieve this through two levels of randomization. First, the cipher-
text contains 4k integers si in Z

∗
n such that the Jacobi symbols of the related

expressions s2
i −4h are uniformly distributed in {−1, +1} whenever s2

i ±4h is in
Z
∗
n. Second, to make sure that these Jacobi symbols are also independently dis-

tributed, we do not use a single value h, but use a uniformly and independently
distributed hi for each index i.

3.2 Formal Description

We denote our public-key encryption with keyword search scheme as MainScheme
= (M-KeyGen, M-ksEnc, M-Trapdoor, M-Test). MainScheme uses a cryptographic
hash function H : {0, 1}k → Z

+1
n (which is assumed in the analysis to behave as

a random oracle). We denote by m the security parameter and by k the length
of keywords. We assume wlog that k = Θ(mc) for some constant c > 0 (concrete
values for m, k can be m = 1024 and k = 160). MainScheme can be described as
follows:

M-KeyGen(1m): On input security parameter 1m in unary, for m ∈ Z
+, do the

following:
1. randomly choose two primes p, q of length m/2, and such that both p

and q are congruent to 3 mod 4 and set n = pq;
2. Set Apub = (n, 1k) and Apriv = (p, q), and output: (Apub, Apriv).

M-ksEnc(Apub, W ): Let Apub = (n, 1k), W ∈ {0, 1}k, and do the following:
1. For each i = 1, . . . , 4k,

compute hi = H(W |i);
randomly and independently choose ui ∈ Z

∗
n;

if
(

u2
i−4hi

n

)

= +1 then

randomly and independently choose ti ∈ Z
+1
n ;

set si = (ti + hi/ti) mod n.
if

(
u2

i−4hi

n

)

∈ {−1, 0} then set si = ui.
2. Output s = (s1, . . . , s4k).

M-Trapdoor(Apriv, W ): Let Apriv = (p, q), W ∈ {0, 1}k, and do the following:
1. For i = 1, . . . , 4k;

compute hi = H(W |i);
use p, q to randomly choose gi ∈ Z

∗
n (if any) such that g2

i = hi mod n;
if hi has no square root modulo n, then set gi =⊥;

2. return: (g1, . . . , g4k).
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M-Test(Apub, s, TW ): Let TW = (g1, . . . , g4k) and s = (s1, . . . , s4k), and do the
following:
1. For i = 1, . . . , 4k,

if gi =⊥ then set t̄i =⊥;
if g2

i = hi mod n then
if

(
s2

i −4hi

n

)

= +1 then set t̄i =
(

si+2gi

n

)

;
otherwise set t̄i =⊥;

2. output ‘yes’ if t̄i ∈ {+1, ⊥} for all i = 1, . . . , 4k; otherwise output ‘no’.

Remarks: ciphertext distribution and scheme parameters. We note the
distribution of the ciphertext s = (s1, . . . , s4k) returned by algorithm M-ksEnc
has only negligible statistical distance from the distribution where each element
si is uniformly distributed among the integers such that s2

i − 4hi ∈ QR(n) with
probability 1/2, or s2

i − 4hi ∈ Z
−1
n with probability 1/2.

We note that it is essential to choose our scheme’s parameter k = Θ(mc),
for some c > 0, to guarantee that the consistency properties of MainScheme
are satisfied in an asymptotic sense. Good practical choices for parameters m, k
include setting m = 1024 and k = 160.

4 Properties of Our Construction

In Subsections 4.1 and 4.2 we prove the consistency and security properties of
our public-key encryption scheme with keyword search.

4.1 Proof of Consistency

We prove the right-keyword consistency here and omit the proof of adversary-
based consistency of MainScheme to meet space constraints.

Right-keyword consistency. For i = 1, . . . , 4k, whenever
(

s2
i −4hi

n

)

= +1, it

always holds that hi = g2
i mod n and it never holds that t̄i =

(
si+2gi

n

)

= −1.
The latter fact is proved by observing that, for i = 1, . . . , 4k, it holds that

si + 2gi = ti + hi/ti + 2gi = ti · (1 + g2
i /ti

2 + 2gi/ti) = ti · (1 + gi/ti)2 mod n,

and thus, except with negligible probability,

t̄i =
(

si + 2gi

n

)

=
(

ti
n

)

= +1.

Now, the above equalities do not hold only when si + 2gi mod n is not in Z
∗
n,

in which case it still holds that
(

si+2gi

n

)

= 0 �= −1. As a consequence of these
two facts, the right-keyword consistency property holds with probability 1.
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4.2 Proof of Security

Let A be a polynomial-time algorithm that attacks MainScheme and succeeds
in breaking with advantage ε, and while doing that, it makes at most qH > 0
queries to the random oracle H and at most qT > 0 trapdoor queries. We would
like to show that ε is negligible in m or otherwise A can be used to construct an
algorithm B that violates the intractability of the QIP problem. More precisely,
we will attempt to violate the intractability of one among two problems that we
call QIP1 and QIP2, and that are easily seen to be computationally equivalent
to QIP.

We prove this by defining a sequence of games, which we call ‘MainScheme
Security Game t’, for t = 0, . . . , 4k, which are all variations of the PEKS Security
Game defined in Section 2.

MainScheme Security Game t

1. Algorithm B takes as input (n, h0, h1, s), where n is a Blum-Williams integer,
and h0, h1 ∈ Z

+1
n and s ∈ Z

∗
n.

2. First of all B runs the M-KeyGen(1m) algorithm to generate Apub = (n, 1k)
and Apriv = (p, q); afterwards, it gives Apub to the attacker A.

3. A can adaptively ask for outputs from the random oracle H to any inputs
of its choice. To respond to H-queries, algorithm B maintains a list of tuples
〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 called the H-list. The list is initially empty.
When A queries the random oracle H at a point (Wi|j), for Wi ∈ {0, 1}k

and j ∈ {1, . . . , 4k}, algorithm B responds as follows.
If tuple 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 appears on the H-list then algo-

rithm B responds with H(Wi|j) = hi,j ∈ Z
+1
n .

Otherwise, B uniformly chooses d(i, j) ∈ {0, 1}, ri,j ∈ Z
∗
n, and randomly

choose c(i, j) ∈ {0, 1} such that c(i, j) = 0 with probability 1/(qT + 1) and
c(i, j) = 1 with probability 1 − 1/(qT + 1).

If c(i, j) = 1 then B computes hi,j = (−1)d(i,j) · r2
i,j mod n; sets gi,j =⊥

if d(i, j) = 1, or gi,j = ri,j if d(i, j) = 0; adds 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉
to the H-list and responds with hi,j to the H-query (Wi|j).

If c(i, j) = 0, then B sets d = d(i, j), computes hi,j = hd · r2
i,j mod n,

sets gi,j = ri,j , adds 〈Wi, j, hi,j , gi,j, d(i, j), c(i, j)〉 to the H-list and responds
with hi,j to the H-query (Wi|j).

4. A can adaptively ask for the trapdoor TW for any keyword W ∈ {0, 1}k of
his choice, to which B responds as follows.

If tuple 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 already appears on the H-list, for
some j ∈ {1, . . . , 4k} and Wi = W , then B responds with (gi,1, . . . , gi,4k) to
the trapdoor query W if c(i, j) = 1 or reports failures and halts if c(i, j) = 0.

Otherwise B randomly chooses d(i, j) ∈ {0, 1} and ri,j ∈ Z
∗
n; computes

hi,j = (−1)d(i,j) · r2
i,j mod n; sets gi,j =⊥ if d(i, j) = 1 or gi,j = ri,j oth-

erwise, responds with (gi,1, . . . , gi,4k) to the trapdoor query W and inserts
〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 in H-list.

5. The attacker A sends the two keywords W0, W1 on which it wishes to be
challenged (for which it did not previously ask for trapdoors TW0 or TW1).
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If the two tuples

〈Wu, j, hu,j , gu,j, d(u, j), c(u, j)〉 and 〈Wv, j, hv,j , gv,j , d(v, j), c(v, j)〉

satisfying Wu = W0, Wv = W1, j = t, and ((c(u, j) = 0) ∨ (c(v, j) = 0)), are
not in H-list, then B reports failures and halts.

Otherwise B computes (s1, . . . , s4k) as follows:
– s1, . . . , st−1 are computed as from algorithm M-ksEnc on input Apub, W0;
– st is set equal to s · ri,t mod n;
– st+1, . . . , s4k are computed as from algorithm M-ksEnc on input Apub, W1.

6. Given challenge (s1, . . . , s4k), A can continue to ask for random oracle H ’s
outputs for any input of its choice, and for trapdoors TW for any keyword
W of his choice as long as W �= W0, W1; these are answered as in items 3
and 4, respectively.

7. A outputs out ∈ {0, 1}.
By using a standard hybrid argument on our assumption that A breaks the secu-
rity of MainScheme with probability ε, we obtain that there exists t ∈ {1, . . . , 4k}
such that

| Prob[ At = 1 ] − Prob[ At+1 = 1 ] | ≥ ε/4k, (3)

where by At = 1 we denote the event that A returns 1 in the real attack game
given that the challenge ciphertext s had been computed as follows: s1, . . . , st

are computed as in algorithm M-ksEnc on input Apub, W0; and st+1, . . . , s4k are
computed as in algorithm M-ksEnc on input Apub, W1. Similarly, as in [5], we
can obtain that with probability at least ε/4k, A queries at least one of the two
H-queries (W0|t), (W1|t). (The proof is omitted for lack of space.)

The proof continues by considering two cases according to whether only one
of the two queries are made or both of them are made. In the first case, we
show that B violates the intractability of the QIP1 problem, and in the second
case we show that it violates the intractability of the QIP2 problem. Both the
QIP1 and QIP2 are minor variants of the QIP problem and easily seen to be
computationally equivalent to it.

Case (a). We now consider the case when only one of the two H-queries; say,
(W0|t), is made by algorithm A. We define the QIP1 problem as the problem of
efficiently distinguishing the following two distributions:

D1,0(1m) = {(p, q) ← BW(1m); n ← p · q; d ← {0, 1}; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4hd ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}

D1,1(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ; s ← Z

∗
n : (n, h0, h1, s)}

We say that algorithm A has advantage ε in solving QIP1 if we have that:
∣
∣Pr[(n, h0, h1, s) ← D1,0(1m) : A(n, h0, h1, s) = 1]

− Pr[(n, h0, h1, s) ← D1,1(1m) : A(n, h0, h1, s) = 1]
∣
∣ = ε. (4)

We say that QIP1 is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP1.



294 G. Di Crescenzo and V. Saraswat

By a simple simulation argument, we can prove the following theorem:

Theorem 2. The QIP1 problem is intractable if and only if the QIP problem
is so.

We continue the proof by noting that bit c(i, t) associated to the query (W0|t),
where the i-th queried keyword is W0, satisfies c(i, t) = 0 with probability
1/(qT + 1). Assuming that c(i, t) = 0, we evaluate the distribution of cipher-
text s in MainScheme Security Game t, for t = 1, . . . , 4k.

First, we let d = d(i, t) and observe that when (n, h0, h1, s) ∈ D1,0(1m),
the ciphertext s in MainScheme Security Game t appears to A to be distributed
exactly as if s1, . . . , st were computed as in algorithm M-ksEnc on input Apub, W0,
and st+1, . . . , s4k were computed as in algorithm M-ksEnc on input Apub, W1. This
can be seen by observing that we assumed that c(i, t) = 0 and thus H(W0|t) =
hd·r2

i,t; then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W0|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W0|t) = (sri,t)2 −4hdr
2
i,t =

r2
i,t(s

2 − 4hd), where s2 − 4hd is also randomly distributed among the integers
in Z

−1
n ∪ QR(n)) as (n, h0, h1, s) ∈ D1,0(1m). Therefore, the probability that A

returns 1 in MainScheme Security Game t when (n, h0, h1, s) ∈ D1,0(1m) is the
same as the probability that At = 1.

We now consider the case when (n, h0, h1, s) ∈ D1,1(1m), the ciphertext s
in MainScheme Security Game t appears to A to be distributed exactly as if
s1, . . . , st−1 were computed as in algorithm M-ksEnc on input Apub, W0, and
st, . . . , s4k were computed as in algorithm M-ksEnc on input Apub, W1. This can
be seen by observing that st is uniformly distributed in Z

∗
n by definition of D1,1,

and that if st were computed as in algorithm M-ksEnc on input Apub, W1, it
would appear to A to have the same distribution, as we assumed that (W1|t)
was not queried by A. Therefore, the probability that A returns 1 in MainScheme
Security Game t when (n, h0, h1, s) ∈ D1,1(1m) is the same as the probability
that At−1 = 1.

This implies that the probability that B distinguishes D1,0(1m) from D1,1(1m)
is the probability 1/(e · qT ) that B does not halt in MainScheme Security Game
t, times the probability ε/(4k · (qT +1)) that A makes only one H-queries among
(H0|t), (H1|t) and it holds that the associated bit c·,t = 0.

Since ε is assumed to be not negligible, then so is the quantity ε/(e·4k·(qT +1)),
and therefore B violates the intractability of the QIP1 problem.

Case (b). We now consider the case when both H-queries (W0|t), (W1|t) are
made by algorithm A. We define the QIP2 problem as the problem of efficiently
distinguishing the following two distributions:

D2,0(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4h0 ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}

D2,1(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4h1 ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}
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We say that algorithm A has advantage ε in solving QIP2 if we have that:

∣
∣Pr[(n, h0, h1, s) ← D2,0(1m) : A(n, h0, h1, s) = 1]

− Pr[(n, h0, h1, s) ← D2,1(1m) : A(n, h0, h1, s) = 1]
∣
∣ = ε. (5)

We say that QIP2 is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP2.

By a simple hybrid argument, we can prove the following theorem:

Theorem 3. The QIP2 problem is intractable if and only if the QIP problem
is so.

We continue the proof by noting that bits c(i, t), c(j, t) associated to the two
queries, where the i-th queried keyword is Wi and the j-th queried keyword is
W1, satisfy c(i, t) = c(j, t) = 0 with probability at least 1/(qT + 1)2. Under
this setting, we evaluate the distribution of ciphertext s in MainScheme Security
Game t, for t = 1, . . . , 4k.

First, we observe that when (n, h0, h1, s) ∈ D2,0(1m), the ciphertext s in
MainScheme Security Game t appears to A to be distributed exactly as if s1,. . ., st

were computed as in algorithm M-ksEnc on input Apub, W0, and st+1, . . . , s4k

were computed as in algorithm M-ksEnc on input Apub, W1. This can be seen
by observing that we assumed that c(i, t) = 0 and thus H(W0|t) = h0 · r2

i,t;
then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W0|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W0|t) = (sri,t)2 −4h0r
2
i,t =

r2
i,t(s

2 − 4h0), where s2 − 4h0 is also randomly distributed among the integers in
Z
−1
n ∪ QR(n)) as s ∈ D2,0(1m). Therefore, the probability that A returns 1 in

MainScheme Security Game t when (n, h0, h1, s) ∈ D2,0(1m) is the same as the
probability that At = 1.

Analogously, when (n, h0, h1, s) ∈ D2,1(1m), the ciphertext s in MainScheme
Security Game t appears to A to be distributed exactly as if s1, . . . , st−1 were
computed as in algorithm M-ksEnc on input Apub, W0, and st, . . . , s4k were com-
puted as in algorithm M-ksEnc on input Apub, W1. This can be seen as before by
again observing that we assumed that c(j, t) = 0 and thus H(W1|t) = h1 · r2

j,t;
then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W1|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W1|t) = (srj,t)2 −4h1r
2
j,t =

r2
j,t(s

2 − 4h1), where s2 − 4h1 is also randomly distributed among the integers
in Z

−1
n ∪QR(n)) as s ∈ D2,1(1m). Therefore, the probability that A returns 1 in

MainScheme Security Game t when (n, h0, h1, s) ∈ D2,1(1m) is the same as the
probability that At−1 = 1.

This implies that B distinguishes D2,0(1m) from D2,1(1m) is the probability
1/(e ·qT ) that B does not halt in MainScheme Security Game t, times the proba-
bility ε/(4k · (qT + 1)2) that A makes both H-queries (H0|t), (H1|t) and it holds
that ci,t = cj,t = 0.

Since ε is assumed to be not negligible, then so is the quantity ε/(e · 4k · qT

(qT + 1)2), and therefore B violates the intractability of the QIP2 problem.
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