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Abstract. This paper is on efficient implementation techniques of Ellip-
tic Curve Cryptography. In particular, we improve timings1 for Jacobi-
quartic (3M+4S) and Hessian (7M+1S or 3M+6S) doubling operations.
We provide a faster mixed-addition (7M+3S+1d) on modified Jacobi-
quartic coordinates. We introduce tripling formulae for Jacobi-quartic
(4M+11S+2d), Jacobi-intersection (4M+10S+5d or 7M+7S+3d), Ed-
wards (9M+4S) and Hessian (8M+6S+1d) forms. We show that Hessian
tripling costs 6M+4C+1d for Hessian curves defined over a field of char-
acteristic 3. We discuss an alternative way of choosing the base point
in successive squaring based scalar multiplication algorithms. Using this
technique, we improve the latest mixed-addition formulae for Jacobi-
intersection (10M+2S+1d), Hessian (5M+6S) and Edwards (9M+1S+
1d+4a) forms. We discuss the significance of these optimizations for el-
liptic curve cryptography.

Keywords: Elliptic curve, efficient point multiplication, doubling,
tripling, DBNS.

1 Introduction

One of the main challenges in elliptic curve cryptography is to perform scalar
multiplication efficiently. In the last decade, much effort has been spent in rep-
resenting the elliptic curves in special forms which permit faster point doubling
and addition. In particular,

– Cohen, Miyaji and Ono [1] showed fast implementation in Weierstrass form
on Jacobian coordinates.

– Smart [2], Joye and Quisquater [3], Liardet and Smart [4], Billet and Joye [5]
showed ways of doing point multiplication to resist side channel attacks.

– Doche, Icart and Kohel [6] introduced the fastest doubling2 and tripling in
Weierstrass form on two different families of curves.

1 M: Field multiplication, S: Field squaring, C: Field cubing on characteristic 3 fields,
d: Multiplication by a curve constant. a: Addition. For simplicity in our analysis,
we fix 1S=0.8M, 1C=0.1M, 1d=0M.

2 With the improvements of Bernstein, Birkner, Lange and Peters [7,8].
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– Negre [9], Kim, Kim and Choe [10], Smart [11] investigated the case of
efficient arithmetic for low odd characteristic curves.

– Dimitrov, Imbert and Mishra [12] showed the first efficient inversion free
tripling formula on Jacobian coordinates. Meloni [13] showed how special
addition chains can be used in point multiplication.

– Avanzi, Dimitrov, Doche and Sica [14] and Doche and Imbert [15] provided
an extended way of using DBNS3 in elliptic curve cryptography.

– Edwards [16] introduced a new representation of elliptic curves. Bernstein
and Lange [17,18] showed the importance of this new system for providing
fast arithmetic and side channel resistance. They have also built a database
[7] of explicit formulae that are reported in the literature together with their
own optimizations. Our work greatly relies on the formulae reported in this
database.

This paper is composed of several optimizations regarding elliptic curve arith-
metic operations. We improve some of the previously reported elliptic curve
group operations namely Jacobi-quartic doubling, Jacobi-quartic mixed addi-
tion and Hessian doubling. As well, we introduce elliptic curve point tripling
formulae for Jacobi-quartic, Jacobi-intersection, Hessian and Edwards forms.
We introduce a technique for successive squaring based point multiplication al-
gorithms which speeds-up mixed addition in some forms. This technique enables
faster mixed-addition for Jacobi-intersection, Hessian and Edwards curves. The
optimizations in this paper are solely efficiency oriented. Therefore, these results
do not cover side channel resistance. Some immediate outcomes are;

– Jacobi-quartic form becomes competitive in efficiency oriented applications.
For instance, successive squaring based point multiplications on modified/
extended Jacobi-quartic coordinates can be performed faster than standard4

Edwards coordinates for all S/M values.
– The tripling formulae that are introduced provide a wider background for

new comparisons on DBNS based point multiplications in different systems.
– Point multiplication in Hessian form can be performed faster than Jacobian

form whenever S/M is near to 1.
– Hessian tripling formula enables efficient implementation of DBNS based

point multiplication algorithms with Hessian curves defined over fields of
characteristic 3.

This paper is organized as follows. We show faster doubling formulae in Sec-
tion 2. We introduce new tripling formulae in Section 3. We provide a faster
Jacobi-quartic mixed addition in Section 4. We describe an alternative strategy
for the selection of base point for point multiplication in Section 5. We draw our
conclusions in Section 6.

3 DBNS: Double Base Number System.
4 Very recently, Bernstein and Lange [7] developed the inverted-Edwards coordinates

which requires less memory and bandwidth.
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2 New Doubling Formulae

We observe that output coordinates of an inversion-free formula can be repre-
sented alternatively by selecting congruent elements from K[E], i.e. the coor-
dinate ring of E over K. In other words, an inversion-free formula (which is
originally derived from its affine version) can be modified using the curve equa-
tion. We do not report the detail for finding all new explicit formulae since the
process is composed of fairly tedious steps. Nevertheless, a step-by-step deriva-
tion of doubling a formula for Jacobi-quartic form is given in the Appendix as
an example. Tripling formulae in Section 3 can be derived building on the same
ideas.

Let K be a field with char(K) �= 2, 3. An elliptic curve in Jacobi-quartic
form [5] is defined by E(K) : y2 = x4 + 2ax2 + 1 where a2 − 1 is nonzero.
The identity element is the point (0, 1). We do not give background material
on curves since it is well documented in the literature. Our optimization leads
to the following strategy for inversion-free Jacobi-quartic doubling. (See the
Appendix).

X3 = Y1((X1 − Z1)2 − (X2
1 + Z2

1)), Z3 = (X2
1 + Z2

1 )(X2
1 − Z2

1 ),

Y3 = 2(Y1(X2
1 + Z2

1 ))2 − (X2
3 + Z2

3 ).

The operation count shows that Jacobi-quartic doubling costs 3M+4S (pre-
vious best [7], 1M+9S) when the points are represented on the modified coordi-
nates, (X1 : Y1 : Z1 : X2

1 : Z2
1 ). This redundant representation will also be used

to improve the mixed-addition for Jacobi-quartic form in Section 4. The opera-
tions can be scheduled as follows. We denote the input cache registers as (X2

1 )
and (Z2

1 ). Re-caching is done on (X2
3 ) and (Z2

3 ).

X3 ← X1 + Z1 Y3 ← Z3 × Y1 Y3 ← Y 2
3 (Z2

3 ) ← Z2
3

X3 ← X2
3 X3 ← Y3 − X3 Y3 ← 2 ∗ Y3 Y3 ← Y3 − (Z2

3 )
X3 ← X3 × Y1 R0 ← (X2

1 ) − (Z2
1 ) (X2

3 ) ← X2
3

Z3 ← (X2
1 ) + (Z2

1 ) Z3 ← Z3 × R0 Y3 ← Y3 − (X2
3 )

Most applications overwrite (X2
1 ) and (Z2

1 ). In this case, temporary register
R0 can be replaced with (X2

1 ) or (Z2
1 ). In addition, (X2

3 ) and (Z2
3 ) can be the

same registers as (X2
1 ) and (Z2

1 ), respectively. This scheduling method uses 6
additions and 1 multiplication by 2. If the caching is performed more redundantly
as (X1 : Y1 : Z1 : X2

1 : Z2
1 : (X2

1 + Z2
1 )), it is possible to save one addition and to

avoid the use of R0.
Let K be a field with char(K) �= 2. An elliptic curve in Hessian form [2] is

defined by E(K) : x3 + y3 + 1 = cxy where (c/3)3 − 1 is nonzero. The identity
element is the point at infinity. The cost of inversion-free doubling was reported
as 6M+3S with respect to the following formula where each coordinate is cubed
and used in the obvious way [7].



New Formulae for Efficient Elliptic Curve Arithmetic 141

X3 = Y1(Z3
1 − X3

1 ), Y3 = X1(Y 3
1 − Z3

1 ), Z3 = Z1(X3
1 − Y 3

1 ).

However, the same formula costs 7M+1S when the following strategy is used.

A ← X2
1 , B ← Y1(X1 + Y1), C ← A + B, D ← Z1(Z1 + X1),

E ← A + D, F ← C(X1 − Y1), G ← E(Z1 − X1),

X3 ← GY1, Y3 ← −(F + G)X1, Z3 ← F Z1.

Furthermore, it is possible to save 1 reduction by delaying the reduction steps
after computing X2

1 , Y1(X1 + Y1) and Z1(Z1 + X1) whenever desired. Lazy re-
ductions effect the timings when arbitrary moduli are used for field reductions.
If fast reduction moduli (such as NIST primes) are used then this advantage
vanishes. Note, we do not include this optimization in our complexity analysis.
The operations for Hessian doubling can be scheduled as follows.

R0 ← X2
1 R2 ← Z1 × R2 R0 ← R1 × R0 X3 ← R1 × Y1

R1 ← X1 + Y1 R2 ← R0 + R2 Z3 ← R0 × Z1 R2 ← −(R0 + R1)
R1 ← Y1 × R1 R1 ← R0 + R1 R1 ← Z1 − X1 Y3 ← R2 × X1

R2 ← Z1 + X1 R0 ← X1 − Y1 R1 ← R2 × R1

An alternative layout is as follows.

X3 = (((X1 + Y1)2 − (X2
1 + Y 2

1 )) − ((Y1 + Z1)2 − (Y 2
1 + Z2

1 ))) ·
(((X1 + Z1)2 − (X2

1 + Z2
1 )) + 2(X2

1 + Z2
1 ))

Y3 = (((X1 + Z1)2 − (X2
1 + Z2

1 )) − ((X1 + Y1)2 − (X2
1 + Y 2

1 ))) ·
(((Y1 + Z1)2 − (Y 2

1 + Z2
1 )) + 2(Y 2

1 + Z2
1 ))

Z3 = (((Y1 + Z1)2 − (Y 2
1 + Z2

1 )) − ((X1 + Z1)2 − (X2
1 + Z2

1 ))) ·
(((X1 + Y1)2 − (X2

1 + Y 2
1 )) + 2(X2

1 + Y 2
1 ))

This strategy costs 3M+6S. There are no lazy reduction possibilities. It re-
quires more additions and more temporary registers. However, it will be faster
whenever 1S < 0.8M. It is known that 1S ≈ 0.66M when fast reduction moduli
are used. The operations can be scheduled as follows.

R0 ← X2
1 R0 ← R2

0 R2 ← R2
2 Y3 ← R0 − R1

R1 ← Y 2
1 R0 ← R0 − R3 R4 ← 2 ∗ R4 R5 ← R2 + R5

R2 ← Z2
1 R1 ← X1 + Z1 R2 ← R2 − R5 Y3 ← Y3 × R5

R3 ← R0 + R1 R1 ← R2
1 R5 ← 2 ∗ R5 Z3 ← R1 − R2

R4 ← R0 + R2 R1 ← R1 − R4 X3 ← R2 − R0 R0 ← R0 + R3

R5 ← R1 + R2 R2 ← Y1 + Z1 R4 ← R1 + R4 Z3 ← Z3 × R0

R0 ← X1 + Y1 R3 ← 2 ∗ R3 X3 ← X3 × R4

The comparison of doubling costs in different systems is depicted in Table 1.
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Table 1. Cost comparison of elliptic curve point doubling operations in different co-
ordinate systems. The bold values are the old and the new timings that are explained
in this section. We assume 1S=0.8M.

System Cost analysis Total

Hessian (OLD) [3] 6M + 3S 8.4M
Jacobi-quartic (OLD) [5] 1M + 9S + 1d 8.2M
Hessian (NEW-1) 7M + 1S 7.8M
Hessian (NEW-2) 3M + 6S 7.8M
Doche/Icart/Kohel(3) [7,6] 2M + 7S + 2d 7.6M
Jacobian [1,7] 1M + 8S + 1d 7.4M
Jacobian, a = −3 [1,7] 3M + 5S 7.0M
Jacobi-intersections [7,4] 3M + 4S 6.2M
Inverted Edwards [7,8] 3M + 4S + 1d 6.2M
Edwards [7,17,18] 3M + 4S 6.2M
Jacobi-quartic (NEW) 3M + 4S 6.2M
Doche/Icart/Kohel(2) [7,6] 2M + 5S + 2d 6.0M

3 New Tripling Formulae

Since DBNS based point multiplication algorithms [12,14,15] have been intro-
duced, there has been a demand for fast tripling formulae. We introduce tripling
formulae for Jacobi-quartic, Hessian, Jacobi-intersection and Edwards forms in
this section. Tripling formulae can be derived by the composition of doubling
and addition formulae. However, a straight forward derivation yields expensive
expressions. Nevertheless, it is possible to do simplifications using the curve
equation. To the best of our knowledge, no algorithm is known to guarantee the
best strategy. Therefore, one can expect further improvements in these formulae
in the future. At least, there should be multiplication/squaring tradeoffs.

Following the same notation in Section 2, we introduce Jacobi-quartic tripling.
The formula is as follows.

X3 = X1(X8
1 − 6X4

1Z4
1 − 8aX2

1Z6
1 − 3Z8

1)
Y3 = Y1(X16

1 + 8aX14
1 Z2

1 + 28X12
1 Z4

1 + 56aX10
1 Z6

1 + 6X8
1Z8

1 +
64a2X8

1Z8
1 + 56aX6

1Z10
1 + 28X4

1Z12
1 + 8aX2

1Z14
1 + Z16

1 )
Z3 = Z1(3X8

1 + 8aX6
1Z2

1 + 6X4
1Z4

1 − Z8
1)

The terms can be organized as follows.

A ← (X2
1 )2, B ← (Z2

1 )2, C ← 2(((X2
1 ) + (Z2

1 ))2 − (A + B)),

D ← (a2 − 1)C2, E ← 4(A − B), F ← 2(A + B) + aC, G ← E2,

H ← F 2, J ← (E + F )2 − (G + H), K ← 2(H − D),

X3 ← X1(J − K), Y3 ← Y1(K2 − 4GD), Z3 ← Z1(J + K),
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Jacobi-quartic tripling costs 4M+10S+2d in the modified Jacobi-quartic coor-
dinates. The formulae that will take advantage of the fast Jacobi-quartic addition
formula [19] require the addition of XY coordinate to modified coordinates

(X1 : Y1 : Z1 : X2
1 : Z2

1 : (X2
1 + Z2

1 )).

This modification fixes the complexity to 4M+11S+2d. We refer the reader to
EFD [7] for compatible versions developed by Bernstein and Lange.

Temporary registers R5 and R6 can be replaced with volatile cache registers
(X2

1 ) and (Z2
1 ). As well, (X2

3 ) and (X2
3 ) can be the same registers as (X2

1 ) and
(Z2

1 ), respectively.
In the same fashion, we introduce Hessian tripling. We follow the same nota-

tion for Hessian curves that is given in Section 2. Set k = c−1. One can treat k
as the curve constant confidently since addition and doubling formulae do not
depend on c. An efficient tripling can be performed using the following formula.

X3 = X3
1 (Y 3

1 − Z3
1 )(Y 3

1 − Z3
1) + Y 3

1 (X3
1 − Y 3

1 )(X3
1 − Z3

1 )
Y3 = Y 3

1 (X3
1 − Z3

1 )(X3
1 − Z3

1 ) − X3
1 (X3

1 − Y 3
1 )(Y 3

1 − Z3
1 )

Z3 = k(X3
1 + Y 3

1 + Z3
1 )((X3

1 − Y 3
1 )2 + (X3

1 − Z3
1 )(Y 3

1 − Z3
1 ))

The operations are organized as follows.

A ← X3
1 , B ← Y 3

1 , C ← Z3
1 , D ← A − B, E ← A − C,

H ← D2, J ← E2, K ← F 2, X3 ← 2AK − B(K − H − J),

Y3 ← 2BJ − A(J − H − K), Z3 ← k(A + B + C)(J + H + K).

This formula costs 8M+6S+1d. Furthermore, there exists 2 lazy reduction
points. (First, delay reduction when computing AK and B(K − H − J), then
delay reduction when computing BJ and A(J − H − K)). If the Hessian curve
is defined over a field of characteristic 3, the tripling formula simplifies to the
following. Note, it is enough to choose a nonzero k in this case.

X3 = (X1(Y1 − Z1)(Y1 − Z1) + Y1(X1 − Y1)(X1 − Z1))3

Y3 = (Y1(X1 − Z1)(X1 − Z1) − X1(X1 − Y1)(Y1 − Z1))3

Z3 = k((X1 + Y1 + Z1)3)3

It is easy to see that this formula costs 6M+4C+1d. (Reuse X1(Y1 − Z1)
and Y1(X1 − Z1)). Furthermore, 2 additional lazy reductions can be done in the
computation of X3 and Y3. It is interesting to note that the cost of 5P=2P+3P
is less than a point addition. Recently, Kim, Kim and Choe [10] introduced
4M+5C+2d tripling formula in Jacobian/ML coordinates which is faster than
the tripling introduced here.

Next, we introduce the tripling formula for Jacobi-intersection form [4]. Let
K be a field with char(K) �= 2, 3 and let a ∈ K with a(1 − a) �= 0. The elliptic
curve in Jacobi-intersection form is the set of points which satisfy the equations
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s2 + c2 = 1 and as2 + d2 = 1 simultaneously. The identity element is the point
(0, 1, 1). The inversion-free tripling formula is as follows. With k = a − 1,

S3 = S1(k(kS8
1 + 6S4

1C4
1 + 4S2

1C6
1 ) − 4S2

1C6
1 − 3C8

1 )
C3 = C1(k(3kS8

1 + 4kS6
1C2

1 − 4S6
1C2

1 − 6S4
1C4

1 ) − C8
1 )

D3 = D1(k(−kS8
1 + 4S6

1C2
1 + 6S4

1C4
1 + 4S2

1C6
1 ) − C8

1 )
T3 = T1(k(−kS8

1 − 4kS6
1C2

1 + 6S4
1C4

1 ) − 4S2
1C6

1 − C8
1 )

The operations can be organized as follows.

E ← S2
1 , F ← C2

1 , G ← E2, H ← F 2, J ← G2, K ← H2,

L ← ((E + F )2 − H − G), M ← L2, N ← (G + L)2 − J − M,

P ← (H + L)2 − K − M, R ← 2k2J, S ← 2kN,

T ← 3kM, U ← 2P, V ← 2K, W ← (k + 1)U, Y ← (k + 1)S,

S3 ← S1((R−V )+(T +W )−2(U+V )), C3 ← C1((R−V )−(T −Y )+2(R−S)),

D3 ← D1((T +W )−(R−S)−(U +V )), T3 ← T1((T −Y )−(R−S)−(U +V )).

This formula costs 4M+10S+5d. An alternative strategy costs 7M+7S+3d.
Here is the alternative organization of operations.

E ← S2
1 , F ← C2

1 , G ← E2, H ← F 2, J ← 2H, K ← 2J,

L ← (2F + E)2 − G − K, M ← kG, N ← K + J, P ← M2,

R ← NM, U ← ML, V ← H2, W ← HL,

S3 ←S1(R+kW+2(P−V )−W−P−V ), C3 ←C1(2(P−V )−U+P+V −R+kU),

D3 ← D1(U − P − V + R + kW ), T3 ← T1(R − kU − W − P − V ).

Finally, we introduce the tripling formula for Edwards curves [16,17,18]. Let
K be a field with char(K) �= 2 and let c, d ∈ K with cd(1 − c4d) �= 0. Then, the
Edwards curve, (x2 +y2) = c2(1+dx2y2), is birationally equivalent to an elliptic
curve [17,18]. The identity element is the point (0, c). The same formula was
independently developed by Bernstein, Birkner, Lange and Peters [8]. Edwards
tripling costs 9M+4S. For further results, we refer the reader to Bernstein,
Birkner, Lange and Peters [8]. The inversion-free tripling formula is as follows.

X3 = X1(X4
1 + 2X2

1Y 2
1 − 4c2Y 2

1 Z2
1 + Y 4

1 )(X4
1 − 2X2

1Y 2
1 + 4c2Y 2

1 Z2
1 − 3Y 4

1 )
Y3 = Y1(X4

1 + 2X2
1Y 2

1 − 4c2X2
1Z2

1 + Y 4
1 )(3X4

1 + 2X2
1Y 2

1 − 4c2X2
1Z2

1 − Y 4
1 )

Z3 = Z1(X4
1 − 2X2

1Y 2
1 + 4c2Y 2

1 Z2
1 − 3Y 4

1 )(3X4
1 + 2X2

1Y 2
1 − 4c2X2

1Z2
1 − Y 4

1 )

The cost comparison of tripling formulae in different systems is depicted in
Table 2. (Also see Table 3 in the Appendix).
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Table 2. Cost comparison of elliptic curve point tripling formulae in different coordi-
nate systems. The bold lines correspond to the complexities of the formulae that are
introduced in this section. We assume 1S=0.8M.

System Tripling Cost Total

Jacobian [12,7] 5M+10S+1d 13M
Hessian 8M+6S+1d 12.8M
Jacobi-quartic 4M+11S+2d 12.8M
Jacobi-intersection-2 7M+7S+3d 12.6M
Jacobian, a = −3 [12,7] 7M+7S 12.6M
Edwards [7,8] 9M+4S+1d 12.2M
Inverted Edwards [7,8] 9M+4S+1d 12.2M
Jacobi-intersection-1 4M+10S+5d 12M
Doche/Icart/Kohel(3) [6] 6M+6S+2d 10.8M
Hessian, char= 3 6M+4C+2d 6.4M

4 Mixed-Addition for Modified Jacobi-Quartic
Coordinates

Following the outline on modified Jacobi-quartic doubling (see Section 2), we
provide a mixed-addition which is faster than the previous best. The updated
formula [19,7] is as follows.

X3 = (Y1 + (X1 + Z1)2 − (X2
1 + Z2

1))(2X2 + Y2) −
2X2((X1 + Z1)2 − (X2

1 + Z2
1 )) − (Y1Y2)

Y3 = 4X2((X1 + Z1)2 − (X2
1 + Z2

1 ))(X2
1 + a(Z2

1 + X2
1X2

2 ) + Z2
1X2

2 ) +
4(Z2

1 + X2
1X2

2 )(Y1Y2)
Z3 = 2(Z2

1 − X2
1X2

2 )

The operations can be organized as follows.

A ← (X2
1 ) + (Z2

1 ), B ← (X1 + Z1)2 − A, C ← B + Y1, D ← (X2
1 )(X2

2 ),

E ← 2BX2, F ← (Z2
1 ) + D, G ← 2E, H ← Y1Y2,

X3 ← C(2X2 + Y2) − E − H, Y3 ← 4FH + ((Z2
1 )(X2

2 ) + aF + (X2
1 ))G,

Z3 ← 2((Z2
1 ) − D), (X2

3 ) ← X2
3 , (Z2

3 ) ← Z2
3 .

This formula costs 7M+3S+1d (previous best, 8M+3S+1d). Let C0 and C1
be static registers. C0 ← X2

2 and C1 ← 2X2 + Y2 are precomputed and stored
permanently. If C1 is not used, an extra addition and a multiplication by 2 is
to be performed for each mixed-addition. The operations can be scheduled as
follows.

The formulae that will take the advantage of the fast Jacobi-quartic addition
formula that is described by Duquesne [19] require the addition of XY coordinate
to modified coordinates,

(X1 : Y1 : Z1 : X2
1 : Z2

1 : (X2
1 + Z2

1 )).
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X3 ← X1 + Z1 Z3 ← (Z2
1 ) − R1 R1 ← R1 + (Z2

1 ) R1 ← R1 × R0

X3 ← X2
3 Z3 ← 2 ∗ Z3 Y3 ← Y3 × R1 R1 ← 2 ∗ R1

X3 ← X3 − (X2
1 ) X3 ← X3 × C1 Y3 ← 4 ∗ Y3 Y3 ← Y3 + R1

R0 ← X3 − (Z2
1 ) X3 ← X3 − Y3 R1 ← a ∗ R1 (X2

3 ) ← X2
3

X3 ← R0 + Y1 R0 ← R0 × X2 R1 ← R1 + (X2
1 ) (Z2

3 ) ← Z2
3

Y3 ← Y1 × Y2 R0 ← 2 ∗ R0 R2 ← (Z2
1 ) × C0

R1 ← (X2
1 ) × C0 X3 ← X3 − R0 R1 ← R1 + R2

We refer the reader to EFD [7] for compatible versions developed by Bern-
stein and Lange. This coordinate system is named as extended Jacobi-quartic
coordinates.

5 Alternative Base Points

In this section, we introduce a technique that is useful for successive squar-
ing based point multiplication algorithms. Our technique improves the mixed-
addition timings reported in the literature. We show how an affine point can
be represented alternatively in its projective version. Point addition with these
alternative points is faster for some of the forms. We will abuse the terminology
and call this type of addition as mixed-addition too since these points require
the same amount of storage as affine points and they are kept fixed during the
point multiplication.

We follow the same notation for Jacobi-intersection curves in Section 3. Let
(S1 : C1 : D1 : T1) and (s2, c2, d2) with s2 �= 0 be two points to be added. We can
observe that representing the base point (s2, c2, d2) as (1: (c2/s2): (d2/s2): (1/s2))
leads to a faster formulation. We rename this new representation as (1:C2: D2: T2).
With this setup we have,

S3 = (T1C2 + D1)(C1T2 + S1D2) − T1C2C1T2 − D1S1D2

C3 = T1C2C1T2 − D1S1D2

D3 = T1D1T2D2 − aS1C1C2

T3 = (T1C2)2 + D2
1

This formula is from Liardet and Smart [4]. The operations can be organized as
follows.

E ← T1C2, F ← S1D2, G ← C1T2, H ← EG, J ← D1F,

S3 ← (E + D1)(G + F ) − H − J, C3 ← H − J,

D3 ← T1D1(T2D2) − aS1C1C2, T3 ← E2 + D2
1,

If (T2D2) is cached permanently, this formula costs 10M+2S+1d (previous
best, 11M+2S+1d). The cost of computing the alternative base point
(1 : C2 : D2 : T2) can be omitted if it is directly selected as the base point itself.

We follow the same notation for Hessian curves in Section 2. Let (X1 : Y1 : Z1)
and (x2, y2) with x2 �= 0 be two points to be added. We can observe that
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representing the base point (x2, y2) as (1 : (y2/x2) : (1/x2)) leads to a faster
formulation. We rename this new representation as (1 : Y2 : Z2). Then, we have

X3 = Y 2
1 Z2 − X1Z1Y

2
2

Y3 = X2
1 (Y2Z2) − Y1Z1

Z3 = Z2
1Y2 − X1Y1Z

2
2

This formula costs 5M+6S. The operations can be organized as follows where
S0 ← Y 2

2 , S1 = Z2
2 and S2 ← 2(Y2 + Z2)2 − S0 − S1 are cached permanently.

A ← X2
1 , B ← Y 2

1 , C ← Z2
1 , D ← A + B, E ← A + C, F ← B + C,

G ← (X1 + Y1)2 − D, H ← (X1 + Z1)2 − E, J ← (Y1 + Z1)2 − F,

X3 ← 2BZ2 − HS0, Y3 ← AS2 − J, Z3 ← 2CY2 − GS1.

The same idea works for Edwards curves reducing the number of additions in
the mixed-addition formula. We follow the same notation for Edwards curves in
Section 3. The Edwards mixed-addition formula that is described by Bernstein
and Lange [17,18,7] costs 9M+1S+1d+7a. Let (X1 : Y1 : Z1) and (x2, y2) with
x2 �= 0 be two points to be added. We can observe that representing the base
point (x2, y2) as (1 : (y2/x2) : (1/x2)) leads to a slightly faster formulation. We
rename this new representation as (1 : Y2 : Z2). With this setup we have,

X3 = (X1Y2 + Y1)(Z1Z2)((Z1Z2)2 − d(X1Y1Y2))
Y3 = (Y1Y2 − X1)(Z1Z2)((Z1Z2)2 + d(X1Y1Y2))
Z3 = c((Z1Z2)2 + d(X1Y1Y2))((Z1Z2)2 − d(X1Y1Y2))

The operation count shows that the alternative Edwards mixed-addition costs
9M+1S+1d+4a. This formula invokes 3 fewer field additions. Note, the curve
parameter c can always be made 1. In this case, multiplication by c is elimi-
nated naturally. The operations for Edwards mixed-addition can be scheduled
as follows.

R0 ← X1 × Y2 Y3 ← Y3 − X1 R1 ← d ∗ R1 X3 ← X3 × R0

R0 ← R0 + Y1 Z3 ← Z1 × Z2 Z3 ← Z2
3 Y3 ← Y3 × Z3

Y3 ← Y1 × Y2 X3 ← R0 × Z3 R0 ← Z3 − R1 Z3 ← Z3 × R0

R1 ← Y3 × X1 Y3 ← Y3 × Z3 Z3 ← Z3 + R1 Z3 ← c ∗ Z3

6 Conclusion

We provided several optimizations for doing arithmetic on some special elliptic
curve representations. In particular, we have improved the group operations of
the Jacobi-quartic form which was initially recommended for providing side chan-
nel resistance. With our improvements, Jacobi-quartics became one of the fastest
special curves in the speed ranking. For instance, successive squaring based point
multiplication can be performed faster than standard Edwards coordinates for
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all possible scenarios because both coordinates shares the same complexity for
doubling and Jacobi-quartics is faster in addition and mixed-addition. Staying
in the same context, if the curve constants are large, extended Jacobi-quartic
coordinates provide better timings than inverted-Edwards coordinates.

We have developed tripling formulae for Jacobi-quartic, Jacobi-intersection,
Hessian and Edwards forms. These tripling formulae provide a wider background
for studying DBNS based applications.

Hessian curves were initially used for providing side channel resistance. We
improved Hessian doubling and mixed-addition formulae. With these improve-
ments, point multiplication in Hessian form can be performed faster than Jaco-
bian form if S/M is near to 1. In addition, we showed that the tripling can be
performed very efficiently in characteristic 3 case. This improvement enables effi-
cient implementation of DBNS based point multiplication with Hessian (char=3)
curves.

We described how the mixed-additions canbe done faster in Jacobi-intersection,
Hessian and Edwards forms.

One should expect further results in the near future. For example, not all
tripling formulae have been developed for all known systems yet. The quintupling
formulae are also likely to appear for various forms shortly. Furthermore, the
formulae that we introduced might be further improved in time.
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form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 391–401. Springer, Heidelberg (2001)

5. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC. LNCS, vol. 2643, pp.
34–42. Springer, Heidelberg (2003)



New Formulae for Efficient Elliptic Curve Arithmetic 149

6. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-
positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

7. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007), Accessible through:
http://hyperelliptic.org/EFD

8. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: INDOCRYPT. LNCS, Springer, Heidelberg
(2007)

9. Negre, C.: Scalar multiplication on elliptic curves defined over fields of small
odd characteristic. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) IN-
DOCRYPT 2005. LNCS, vol. 3797, pp. 389–402. Springer, Heidelberg (2005)

10. Kim, K.H., Kim, S.I., Choe, J.S.: New fast algorithms for arithmetic on ellip-
tic curves over fields of characteristic three. Cryptology ePrint Archive, Report,
2007/179 (2007), http://eprint.iacr.org/

11. Smart, N.P., Westwood, E.J.: Point multiplication on ordinary elliptic curves over
fields of characteristic three. Applicable Algebra in Engineering, Communication
and Computing 13(6), 485–497 (2003)

12. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

13. Meloni, N.: Fast and secure elliptic curve scalar multiplication over prime fields
using special addition chains. Cryptology ePrint Archive, Report, 2006/216 (2006),
http://eprint.iacr.org/

14. Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication us-
ing double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 130–144. Springer, Heidelberg (2006)

15. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

16. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the AMS 44(3),
393–422 (2007)

17. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. Cryp-
tology ePrint Archive, Report, 2007/286 (2007), http://eprint.iacr.org/

18. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)

19. Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model. Inf.
Process. Lett. 104(3), 101–105 (2007)

Appendix

We give a step by step derivation of the new doubling formula for Jacobi-quartic
form. The original formula, described by Billet and Joye [5], is as follows.

X3 = 2X1Y1Z1

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

Z3 = Z4
1 − X4

1

http://hyperelliptic.org/EFD
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
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Step 1: Modify the point (X3 : Y3 : Z3) to (−X3 : Y3 : −Z3). These two points
correspond to the same affine point.

X3 = −2X1Y1Z1

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

Z3 = X4
1 − Z4

1

Step 2: Organize X3 and Z3. Here, Y3 should be computed after X3 and Z3.

X3 = Y1((X2
1 + Z2

1)) − Y1(X1 + Z1)2

Z3 = (X2
1 + Z2

1 )(X2
1 − Z2

1 )
Y3 = 2aX2

1Z6
1 + 4X4

1Z4
1 + Y 2

1 Z4
1 + 2aX6

1Z2
1 + X4

1Y 2
1

Step 3: Use the curve equation, Y 2
1 = X4

1 + 2aX2
1Z2

1 + Z4
1 , to find a suitable

polynomial representation for Y3.

X3 = Y1((X2
1 + Z2

1 )) − Y1(X1 + Z1)2

Z3 = (X2
1 + Z2

1)(X2
1 − Z2

1 )

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

= 2aX2
1Z6

1 + 4X4
1Z4

1 + 2aX6
1Z2

1 + (X4
1 + Z4

1)Y 2
1

≡ 2aX2
1Z6

1 + 4X4
1Z4

1 + 2aX6
1Z2

1 + (X4
1 + Z4

1)(Z4
1 + 2aX2

1Z2
1 + X4

1 )
≡ Z8

1 + 4aX2
1Z6

1 + 6X4
1Z4

1 + 4aX6
1Z2

1 + X8
1

≡ 2(Y1Z
2
1 + X2

1Y1)2 − (Z8
1 − 2X4

1Z4
1 + X8

1 ) − (4X2
1Y 2

1 Z2
1 )

≡ 2(Y1(X2
1 + Z2

1 ))2 − X2
3 − Z2

3
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