
Secret Swarm Unit

Reactive k−Secret Sharing�

(Extended Abstract)

Shlomi Dolev1, Limor Lahiani1, and Moti Yung2

1 Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

{dolev,lahiani}@cs.bgu.ac.il
2 Department of Computer Science,

Columbia University, New York, and Google, USA
moti@cs.columbia.edu

Abstract. Secret sharing is a basic fundamental cryptographic task.
Motivated by the virtual automata abstraction and swarm computing,
we investigate an extension of the k-secret sharing scheme, in which the
secret components are changed on the fly, independently and without
(internal) communication, as a reaction to a global external trigger. The
changes are made while maintaining the requirement that k or more
secret shares may reveal the secret and no k − 1 or fewer reveal the
secret.

The application considered is a swarm of mobile processes, each main-
taining a share of the secret which may change according to common
outside inputs e.g., inputs received by sensors attached to the process.

The proposed schemes support addition and removal of processes from
the swarm as well as corruption of a small portion of the processes in
the swarm.

Keywords: secret sharing, mobile computing.

1 Introduction

Secret sharing is a basic and fundamental technique [13]. Motivated by the high
level of interest in the virtual automata abstraction and swarm computing, e.g.,
[3,2,1,4,5] we investigate an extension of the k-secret sharing scheme, in which
the secret shares are changed on the fly, while maintaining the requirement that
k or more shares reveal the secret and no k − 1 or fewer reveal the secret.

There is a great interest in pervasive ad hoc and swarm computing [14], and
in particular in swarming unmanned aerial vehicles (uav) [9,4]. A unit of uavs
that collaborate in a mission is more robust than a single uav that has to com-
plete a mission by itself. This is a known phenomenon in distributed computing
where a single point of failure has to be avoided. Replicated memory and state
� Partially supported by the Israeli Ministry of Science, Lynne and William Frankel

Center for Computer Sciences and the Rita Altura trust chair in Computer Sciences.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 123–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 S. Dolev, L. Lahiani, and M. Yung

machine abstractions are used as general techniques for capturing the strength
of distributed systems in tolerating faults and dynamic changes.

In this work we integrate cryptographic concerns into these abstractions. In
particular, we are interested in scenarios in which some of the participants of
the swarm are compromised and their secret shares are revealed. We would like
the participants to execute a global transition without communicating with each
other and therefore without knowing the secret, before or after the transition.
Note that secure function computation (e.g., [10]) requires communication when-
ever inputs should be processed, while we require transition with no internal
communication.

Our contributions. We define and present three reactive k-secret solutions.
The first solution is based on the Chinese remainder, the second is based on
polynomial representation, and the third uses replication of states. In the first
solution we allow the addition arithmetic operation as a possible transition,
where each share of the secret is modified according to the added value, without
collecting the global secret value. The second solution supports both arithmetic
addition and multiplication of the secret by a given input. The last solution
implements a general I/O automaton, where the transition to the next step is
performed according to the input event accepted by the swarm.

To avoid compromising the global secret of the swarm, the participants main-
tain only a share of the secret. In the Chinese remainder scheme, the participant
share of the global value reveals partial information on the secret value. The
polynomial based scheme assumes unbounded secret share values, which enable
it to ensure that no information is revealed to the swarm members. Note that
the shares of the polynomial based solution have number of bits that is approx-
imately the number of bits of the secret, while the total number of bits of the
shares of the Chinese remainder is approximately the number of bits required to
describe the secret. The third solution replicates states of a given automaton and
distributes several distinct replicas to each participant in the swarm. The relative
majority of the distributed replicas represent the state of the swarm. The partic-
ipant changes the states of all the replicas it maintains according to the global
input arriving to the swarm. In this case, general automaton can be implemented
by the swarm, revealing only partial knowledge on the secret of the swarm.

We remark that it is also possible to device Vandermonde matrix based scheme
that supports other operations such as the bitwise-xor operation of the secret
shares. In this case the secret is masked by a random number, and operations
over shares are according to the relevant portions of the global input.

Paper organization. The system settings are described in Section 2. The k-
secret addition implementation that is based on the Chinese remainder appears
in Section 3. The solution that supports addition and multiplication by a number
is the polynomial-based solution presented is Section 4. The I/O automaton
implementation appears in Section 5. Finally, conclusions appear in Section 6.
Some of the details are omitted from this extended abstract and can be found
in [6].

Secret Swarm Unit Reactive k−Secret Sharing 125

2 Swarm Settings

A swarm consists of at least n processes (executed by, say, unmanned aerial
vehicles uavs, mobile-sensors, processors) which receive inputs from the outside
environment simultaneously1. The swarm as a unit holds a secret, where shares
of the secret are distributed among the swarm members in a way that at least k
are required to reveal the secret (some of our schemes require more than k), and
any less than k shares can not reveal the secret. Yet, in some of our schemes the
shares may imply some information regarding the secret, namely, the secret can
be guessed with some positive probability < 1 greater than the probability of a
uniform guess over the secret domain. We consider both listening adversary and
Byzantine adversary, and present different schemes used by the processes to cope
with them. We assume that at most f < k of the n processes may be captured
and compromised by an adversary. Communication among the processes in the
swarm is avoided or performed in a safe land, alternatives of more expensive
secure communication techniques are also mentioned.

Reactive k-secret counting. Assume that we have a swarm, which consists of
n processes. The task of the swarm is to manage a global value called counter,
which is updated according to the swarm input events. The value of the counter
is the actual secret of the swarm. Each swarm member holds a share of the global
counter in a way that any k or more members may reveal the secret with some
positive probability Prk, yet any less than k members fail to reveal it.

Any event sensed by the processes is modeled as a system input. The swarm
receives inputs and sends outputs to the outside environment. An input to the
swarm arrives at all processes simultaneously. The output of the swarm is a
function of the swarm state. There are two possible assumptions concerning the
swarm output, the first, called threshold accumulated output, where the swarm
outputs only when at least a predefined number of processes have this output
locally. The second means to define the swarm output is based on secure internal
communication within the swarm, the communication takes place when the local
state of a process indicates that a swarm output is possible2. In the sequel we
assume the threshold accumulated output where the adversary cannot observe
outputs below the threshold. Whenever the output is above the threshold, the
adversary may observe the swarm output together with the outside environment,
and is “surprised” by the non anticipated output of the swarm.

We consider the following input actions, defined for our first solution:

• set(x): Sets the secret share with the value x. The value x is distributed in
a secure way to processes in the swarm, each process receives a secret share x.
This operation is either done in a safe land, or uses encryption techniques.

1 Alternatively, the processes can communicate the inputs to each other by atomic
broadcast or other weaker communication primitive.

2 In this case, one should add “white noise” of constant output computations to mask
the actual output computations.

126 S. Dolev, L. Lahiani, and M. Yung

• step(δ): Increments (or decrements in case δ is negative) the current counter
value by δ. The processes of the swarm independently receive the input δ.
• regain consistency: Ensures that the processes carry the current counter value
in a consistent manner. We view the execution of this command as an execution
in a safe land, where the adversary is not present. The commands are used for
reestablishing security level. Recovery and preparation for succeeding obstacles
is achieved, by redistributing the counter shares, in order to prepare the swarm
to cope with future joins, leaves, and state corruption.

The processes in the swarm communicate, if possible creating additional pro-
cesses instead of the processes that left, and redistribute the counter value. This
is the mechanism used to obtain a proactive security property.

We assume that the number of processes leaving the swarm between any two
successive regain consistency actions, is bounded by lp. The operation taken by
a leaving process is essentially an erase of its memory3.

• join request: A process requests to join the swarm.
• join reply: A process reply to a join request of another process, by sending the
joining process a secret share.

The adversary operations are:

• listening: Listening to all communication, but cannot send messages.
• capture a process: Remove a process from the swarm and reveal a snapshot
of the memory of a process4. The adversary can invoke this operation at most
f = k − 1 times between any two successive global resets of the swarm secret.
Reset is implemented by using the set input actions.
• corrupt process state: The adversary is capable of changing the state of a
process. In this case, the adversary is called a Byzantine adversary. Byzantine
adversary also models the case in which transient faults occur, e.g., causing
several of the processes not to get the same input sequence. We state for each
of our schemes the number of times the adversary can invoke this operation
between any two successive regain consistency operations.

3 Reactive k-Secret Counting – The Chinese Remainder
Solution

According to the Chinese Remainder Theorem (CRT), any positive integer m is
uniquely specified by its residue modulo relatively prime numbers p1 < ... < pl,
where

∏l−1
i=1 pi ≤ m <

∏l
i=1 pi and p1 < p2 < ... < pl. We use the CRT for

defining the swarm’s global counter, denoted by GC, which is the actual swarm
secret.
3 One may wish to design a swarm in which the members maintain the population

of the swarm, in this case, as an optimization for a mechanism based on secure
heart-bits, a leaving process may notify the other members on the fact it is leaving.

4 In the sequel we assume that a joining process reveals information equivalent to a
captured process, though, if it happen that the (listening) adversary is not presented
during the join no information is revealed.

Secret Swarm Unit Reactive k−Secret Sharing 127

Using a Chinese remainder counter. Let P = {p1, p2, . . . , pl}, such that
p1 < p2 < ... < pl, is the set of l relatively prime numbers which defines the
global counter GC. The integer values of GC run from 0 to GCmax, where
GCmax =

∏l
i=1 pi − 1.

A counter component is a pair 〈ri, pi〉, where ri = GC mod pi and pi ∈ P . The
swarm’s global counter GC can be denoted by a sequence of l counter components
〈〈r1, p1〉, 〈r2, p2〉, .., 〈rl, pl〉〉, the CRT-representation of GC, or 〈r1, r2, .., rl〉, when
P is known. Note that this representation implies that GC can hold up to

∏l
i=1 pi

distinct values. A counter share is simply a set of distinct counter components.
We assume that there is a lower bound pmin on the relatively prime numbers

in P such that pmin < p1 < p2 < ... < pl.
For a given P = {p1, p2, . . . , pl} and GC = 〈〈r1, p1〉, 〈r2, p2〉, .., 〈rl, pl〉〉, we

distribute the counter GC among the n processes in a way that (a) k or more
members may reveal the secret with some probability, yet (b) any fewer than k
members fail to reveal it.

In order to support simple join input actions, we use the CRT-representation
of GC in a way that each process holds a counter share of size s = � l

k �, namely,
s counter components out of l. Let Prm denote the probability that all the l
components of GC are present in a set of m distinct counter shares, each of
size s as specified. We now compute Prm. For any 0 ≤ m < k it holds that
Prm = 0, since at least one counter component is missing. For m ≥ k it holds
that Prm = [1 − (1 − p)m]l, where p is the probability of a counter component
to be chosen. As the components are chosen with equal probability out of the l
components of GC, it holds that p = s

l ≈ 1
k . Assuming k divides l, it holds that

p = s
l = 1

k . The probability that a certain counter component appears in one of
the m counter shares is 1 − (1 − p)m. Hence, the probability that no component
is missing is [1− (1−p)m]l. Therefore, Prm = [1− (1−p)m]l. Thus, the expected
number m of required partial counters is a function of n, l, and k.

Note that when the GC value is incremented (decremented) by δ, each counter
component 〈ri, pi〉 of GC is incremented (decremented) by δ modulo pi. For
example, let P = {2, 3, 5, 7} (p1 = 2, p2 = 3, p3 = 5, p4 = 7), l = 4 and GC = 0.
The CRT-representation of GC is 〈〈0, 2〉, 〈0, 3〉, 〈0, 5〉, 〈0, 7〉〉 or 〈0, 0, 0, 0〉 for the
given set of primes P . After incrementing the value of GC by one, it holds that
GC = 〈1, 1, 1, 1〉. Incrementing by one again, results in GC = 〈0, 2, 2, 2〉, then
〈1, 0, 3, 3〉, 〈0, 1, 4, 4〉, 〈1, 2, 0, 5〉, and so on.

Next we describe the way the Chinese remainder counter supports the required
input actions as appears in Figure 1.

Line-by-line code description. The code in Figure 1 describes input ac-
tions of process i. Each process i has a share of s counter components: s rela-
tively prime numbers primesi[1..s] and s relative residues residuesi[1..s], where
residuesi[j] = GC mod primesi[j] ∀j = 1..s.

Each input action includes a message of the form 〈type, srcid, destid,
parameters〉, where type is the message type indicating the input action type,
srcid is the identifier of the source process, destid the identifier of the destination

128 S. Dolev, L. Lahiani, and M. Yung

1 seti(〈set, srcid, i, share〉)
2 for j = 1..s
3 primesi [j]←− getPrime(share, j)
4 residuesi [j] ←− getResidue(share, j)

5 stepi(〈stp, srcid, i, δ〉)
6 for j = 1..s do
7 residuesi [j] ←− (residuesi [j] + δ) mod primesi[j]

8 regainConsistencyRequesti(〈rgn rqst, srcid, i〉)
9 leaderId←− leaderElection()
10 if leaderId = i then
11 globalCounterComponentsi ←− listenAll(〈rgn rply, i, j, share〉)
12 if size(globalCounterComponentsi) < l then
13 globalCounterComponentsi ←− initGlobalCounterComponents()
14 for every process id j in the swarm do:
15 share←− randomShare(globalCounterComponents)
16 send(〈set, i, j, share〉)
17 globalCounterComponentsi ←− ∅
18 else
19 send(〈rgn rply, i, leaderId, 〈primesi[1..s], residuesi [1..s]〉〉)

20 regainConsistencyReplyi(〈rgn rply, srcid, i, share〉)
21 if leaderId = i then
22 globalCounterComponentsi ←− globalCounterComponentsi ∪ {share}

23 joinRequesti(〈join rqst, srcid, i〉)
24 sentPrimes←− ∅
25 while |sentPrimes| < s do
26 waitingTime ←− random([1..maxWaiting(n)])
27 while waitingTime not elapsed do
28 listen(〈join rply, i, pid, p, r〉)
29 sentPrimes = sentPrimes ∪ {p}
30 if |sentPrimes| < s then
31 p′ ←− getRandom(primesi \ sentPrimes)
32 r′ ←− getAssociatedResidue(p′)
33 send(〈join rply, i, srcid, p′, r′〉)

34 joinReplyi(〈join rply, srcid, i, p, r〉)
35 shareSize←− size(primesi)
36 if shareSize < s then
37 if p /∈ primesi then
38 primesi [shareSize] ←− p
39 primesi [shareSize] ←− r

Fig. 1. Chinese Remainder, program for swarm member i

process and further parameters required for the actions executed as a result of
the input action.

• set: On set, process i receives a message of type set, indicating the set in-
put action and a counter share share, namely a set of s counter components
(line 1). Process i sets primesi and residuesi with the received primes and
relative residues of the received counter share share (lines 2–4).
• step: On step, process i receives a message of type stp, indicating the step
input action, and an increment value δ, which may be negative (line 5). See a
similar technique in [7]. The δ value indicates a positive or negative change in
the global counter that affects all the counter shares.

Incrementing (or decrementing) the global counter by δ is done by increment-
ing (or decrementing) each residue rij in the counter share of process i by δ

Secret Swarm Unit Reactive k−Secret Sharing 129

modulo pij such that residuesi[j] is set with (residuesi[j] + δ) mod primesi[j]
(lines 6,7).

• regainConsistencyRequest: On regainConsistancyRequest, the processes are
assumed to be in a safe place without the threat of any adversary (alternatively,
a global secure function computation technique is used).

Process i receives a message of type rgn rqst (line 8) which triggers a leader
election procedure (line 9). Once the leader is elected, it is responsible for dis-
tributing the global counter components to the swarm members. If process i is
the leader (line 10) it first listens to regain consistency reply messages, initial-
izing the set globalCounterComponents with the counter components received
from other swarm members (line 11).

If the number of distinct global counter components is smaller than s, i.e.,
some of the global counter components are missing, then process i initializes
globalCounterComponents with the set of components calculated by the method
initGlobalCounterComponents() (lines 12,13). This method sets the values of
the global counter GC by setting l distinct primes and l relative residues.

Having set the global counter components, process i (the leader) randomly
chooses a share of size s (out of l) components and sends it to a swarm member.
Note that there is also a straightforward deterministic way to distribute the
shares, or alternatively check the result of the random choice. The random share
is chosen with equal probability for every swarm member and sent in a message
of type set (lines 14-16).

After the shares are sent, the set globalCounterComponents is initialized as
an empty set, to avoid revealing the counter in case the leader is later compro-
mised (line 17). In case process i is not the leader, it sends its share to the leader
(lines 18,19).

• regainConsistencyReply: On regainConsistancyReply, the processes are as-
sumed to be in a safe place without the threat of any adversary.

Process i receives a message of type rgn rply with the counter share of a
process whose identifier is srcid (line 20). If process i is the leader, then it adds
the components of the received share to its own set of globalCounterComponents
(lines 21,22).

• joinRequest: An input message of type join rqst indicates a request by a new
process with identifier srcid to join the swarm (line 23). Process i holds a set
sentPrimes of primes which were sent by other processes in a join reply message.
This set is initially empty (line 24).

The join procedure is designed to restrict the shares the (listening) adver-
sary may reveal during the join procedure to the shares assigned to the joining
process. Thus, if the number of distinct primes which were sent to the joining
process is at least s, then process i should not reply to the join request (line 25).

Otherwise, it sets waitingT ime with a random period of time, which is a num-
ber of time units within the range 1 and maxWaiting(n); where maxWaiting
is a function which depends on the number of swarm members n and the time
unit size (line 26).

130 S. Dolev, L. Lahiani, and M. Yung

During the random period of time waitingT ime, process i listens to join
replies sent by other processes. Each reply includes a prime p and its relative
residue r. While listening, process i adds the sent prime p to the set of primes
sentPrimes (lines 27–29). After the waitingT ime elapsed, process i checks if
at least s distinct counter components were sent back to the joining process
(line 30). If not, it randomly chooses a prime number p′ out of the primes that
appears in its share but not in sentPrimes. It then sends back to process srcid
a join reply with the random counter component 〈p′, r′〉, where r′ is the residue
associated with p′, namely r′ = GC mod p′ (lines 31–33).

We assume that at most one sender may succeed in sending the reply. If one
has failed, process i knows which counter component was successfully sent. Note
that the counter components can be encrypted. In that case, the join rqst mes-
sage includes a public key. Otherwise, we regard each join as a process capture
by the adversary.

• joinReply: Process i receives an input message of type join rply, which indi-
cates a reply for a join request by a process joining the swarm. The message
includes a counter component: Prime p and its relative residue r (line 34).

Process i sets the shareSize with the size of primesi and indicates the current
size of its current share, which should eventually be s (line 35). If shareSize is
smaller than s (line 36), then process i should not ignore incoming join replies
since it is missing counter components. Process i checks whether the received
prime p was already received. If so, process i adds the received counter compo-
nents by adding p to primesi and r to residuesi (lines 37–39).

Theorem 1. In any execution in which the adversary captures at most k − 1
processes, the probability of the adversary guessing the secret, i.e., guessing the
value of the global counter, is bounded by 1

pmin
.

Byzantine adversary and error correcting. We now turn to considering
the case of the Byzantine adversary, in which some errors take place, such as
input not received by all swarm members. Let m be any positive integer, where∏l−1

i=1 pi ≤ m <
∏l

i=1 pi and p1 < p2 < ... < pl. By the CRT, m is uniquely
specified by its residues modulo relatively prime numbers p1 < ... < pl.

The integer m can be represented by l+ l0 (l0 > 0) residues modulo relatively
prime numbers p1 < ... < pl+l0 . Clearly, this representation is not unique and
uses l0 redundant primes. The integer m can be considered a code word, while
the extended representation (using l+l0 primes) yields a natural error-correcting
code [8].

The error correction is based on the property that for any two integers
m, m′ <

∏l+l0
i=1 pi the sequences {(m mod p1), ..., (m mod pl+l0)} and {(m′ mod

p1), ..., (m′ mod pl+l0)} differ in at least l0 coordinates.
On the presence of errors, the primes may also be faulty. For that, let us

assume that each process keeps the whole set P instead of only a share of it. Let
us also assume that P is of size l+ l0, where l0 primes are redundant. Under this
assumption, we can update the regainConsistency action, so that the processes
first agree on P by a simple majority function and only then agree on the residues

Secret Swarm Unit Reactive k−Secret Sharing 131

〈r1, r2, ..., rl+l0 〉 matching the relatively primes {p1 < p2 < ... < pl+l0} = P . In
that case, the number of Byzantine values or faults, modeled by f , is required
to be less than the majority and less than l0

2 .
Once P is agreed on, the received counter components 〈pj , rj〉 where pj /∈ P

are discarded, while the rest of the components are considered candidates to
be the real global counter components. The swarm then needs to agree on the
residues and again, it is done by a simple majority function executed for every
residue out of the l + l0 residues. After the swarm has agreed on the primes
and the residues (and in fact, on the counter), the consistency of the counter
components can be checked using Mandelbaum’s technique [12]. If f < l0 errors
have occurred, then they can be detected. Also, the number of errors which can
be corrected is �l0/2�.
Chinese remainder solution with single component share. In this case,
we have l relatively prime numbers in P and each secret share is a single pair
〈ri, pi〉, where pi ∈ P and ri = GC mod pi. Using Mandelbaum’s technique [12]
we may distribute l ≥ k shares that represent a value of a counter defined by
any k of them. So in case of the listening adversary with no joins, any k will
reveal the secret and less than k will not. This distribution also supports the
case of Byzantine/Transient faults, where more than k should be read in order to
reveal the correct value of the secret. In such a case, a join can be regarded as a
transient fault, having the joining process choose its share to be a random value.

4 Reactive k-Secret – Counting/Multiplying
Polynomial-Based Solution

Here we consider a global counter, where its value can be multiplied by some
factor, as well as increased (decreased) as described in Section 3. The global
counter is based on Shamir’s (k, n)-threshold scheme [13], according to which, a
secret is divided into n shares in a way that any k or more shares can reveal it
yet no fewer than k shares can imply any information regarding the secret. Given
k + 1 points in the 2-dimensional plane (x0, y0), . . . (xk, yk), where the values xi

are distinct, there is one and only one polynomial p(x) of degree k such that
p(xi) = yi for i = 0..k. The secret, assumed to be a number S, is encoded by
p(x) such that p(0) = S. In order to divide the secret S into n shares S1, . . . , Sn,
we first need to construct the polynomial p(x) by picking k random coefficients
a1, . . . , ak such that p(x) = S +a1x

1 +a2x
2 + . . .+akxk. The n shares S1, . . . , Sn

are pairs of the form Si = 〈i, p(i)〉. Given any subset of k shares, p(x) can be
found by interpolation and the value of S = p(0) can be calculated.

Our polynomial-based solution encodes the value of the global counter GC,
which is the actual secret shared by the swarm members. The global counter
GC is represented by a polynomial p(x) = GC + a1x

1 + a2x
2 + . . . + alx

l, where
a1, . . . , al are random. Now, the l counter components are the points 〈i, p(i)〉 for
i = 1..l. Instead of each secret share being a single point, a share is a tuple of s =⌊

l
k

⌋
such points. This way, compromising at most k−1 processes ensures that at

least one point is missing and therefore the polynomial p(x) cannot be calculated.

132 S. Dolev, L. Lahiani, and M. Yung

Having each process holding a single point as in Shamir’s scheme, implies a
complicated join action since it requires collecting all the swarm members’ shares
and computing the polynomial p(x) in order to calculate a new point for the new
joining process. Such action should be avoided under the threat of an adversary.
A tuple of s =

⌊
l
k

⌋
points implies a safe join action. The processes share their

own points with the new joining process and there is no need to collect all the
points.

Lemma 1. Let P (x) be a polynomial of degree d. Given a set of d + 1 points
(x0, y0), . . . (xd, yd), where P (xi) = yi for i = 0, .., d and a number δ. The poly-
nomial Q(x), also of degree d, where Q(xi) = yi + δ, equals to P (x) + δ.

Lemma 2. Let P (x) be a polynomial of degree d. Given a set of d + 1 points
(x0, y0), . . . (xd, yd), where P (xi) = yi for i = 0, .., d and a number μ. The poly-
nomial Q(x) of degree d, where Q(xi) = yi · μ, equals to P (x) · μ.

According to lemma 1 adding δ to y0, . . . yl, where P (i) = yi for i = 0, .., l, results
in a new polynomial Q(x) where Q(x) = P (x)+δ. Hence, increasing (decreasing)
the second coordinate of the counter shares by δ increases (decreases) the secret
by δ as well, since Q(0) = P (0)+δ. Similarly, according to lemma 2 multiplication
of the second coordinate in some factor μ implies the multiplication of the secret
value in μ.

The code for the polynomial based solution is omitted from this extended
abstract and cane be found in [6]. The procedure for each input actions are
very similar to the input actions in the Chinese remainder counter, see Fig-
ure 1. In this case, the secret shares are tuples of s points given in two arrays
xCoords[1..s] and yCoords[1..s], matching the x and y coordinates, respectively.
These arrays replace the primes[1..s] and residues[1..s] arrays in the Chinese re-
mainder counter. Another difference is that the step operation has an additional
parameter type, which defines whether to increment (decrement) or multiply the
counter components by δ.

Theorem 2. In any execution in which the adversary captures at most k − 1
processes, the adversary does not reveal any information concerning the secret.

Byzantine adversary and error correcting. Analogously to the Chinese re-
mainder case, we can design a scheme that is robust to faults. Having n distinct
points of the polynomial p(x) of degree l, the Berlekamp-Welch decoder [15] can
decode the secret as long as the number of errors e is less than (n − l)/2.

Polynomial-basedsolutionwithsinglecomponentshare.UsingBerlekamp-
Welch technique [15] we may distribute n ≥ k shares that represent a value of a
counter defined by any k of them. So in the case of the listening adversary with
no joins, any k will reveal the secret, and fewer than k will not. Similarly to the
Chinese remainder solution, this secret share distribution also supports the case
of Byzantine/Transient faults, where more than k should be read to reveal the
correct value of the secret. Again, a join can be regarded as a transient fault,
having the joining process choose its share to be a random value.

Secret Swarm Unit Reactive k−Secret Sharing 133

5 Virtual Automaton

We would like the swarm members to implement a virtual automaton where
the state is not known. Thus, if at most f , where f < n, swarm members are
compromised, the global state is not known and the swarm task is not revealed.

In this section we present the scheme assuming possible errors, as the error
free is a straightforward special case.

We assume that our automaton is modeled as an I/O automaton [11] and
described as a five-tuple:

• An action signature sig(A), formally a partition of the set acts(A) of actions
into three disjoint sets in(acts(A)), out(acts(A)) and int(acts(A)) of input ac-
tions, output actions, and internal actions, respectively. The set of local con-
trolled actions is denoted by local(A) = out(A) ∪ int(A).
• A set states(A) of states.
• A nonempty set start(A) ⊆ states(A) of initial states.
• A transition relation steps(A) : states(A) × acts(A) −→ states(A), where for
every state s ∈ states(A) and an input action π there is a transition (s, π, s′) ∈
steps(A).
• An equivalence relation part(A) partitioning the set local(A) into at most a
countable number of equivalence classes.

We assume that the swarm implements a given I/O automaton A. The swarm’s
global state is the current state in the execution of A. Each process i in the
swarm holds a tuple cur statei = 〈si1 , si2 , . . . , sim〉 of m distinct states, where
sij ∈ states(A) for all j = 1..m and at most one of the m states is the swarm’s
global state. Formally, the swarm’s global state is defined as the state which ap-
pears in at least threshold T out of n cur state tuples (T ≤ n). If there are more
than one such states, then the swarm’s global state is a predefined default state.

The output of process i is a tuple outi = 〈oi1 , oi2 , . . . , oim〉 of m output actions,
where oij ∈ out(acts(A)) for all j = 1..m. The swarm’s global output is defined
as the result of the output action which appears in at least threshold T out of n
members’ output.

We assume the existence of a devices (sensors, for example) which receives
the output of swarm members (maybe in the form of directed laser beams) and
thus can be exposed to identify the swarm’s global output by a threshold of the
members outputs.

We assume an adversary which can compromise at most f < n processes
between two successive global reset operations of the swarm’s global state. We
assume that the adversary knows the automaton A and the threshold T . There-
fore, when compromising f processes it can sample the cur state tuples of the
compromised processes and assume that the most common state, i.e., appears as
many times in the compromised cur state tuples, is most likely to be the global
state of the swarm.

Consider the case in which f = 1 and T = �n/2 + 1�. If |cur state| = 1 (i.e.,
there is a single state in cur state), then an adversary which compromises process
i, knows the state si1 ∈ cur statei. The probability that si1 is the swarm’s global

134 S. Dolev, L. Lahiani, and M. Yung

state is at least T
n and since T is a lower bound, the probability may reach 1 when

all shares are identical. If |cur state| = 2, then an adversary which compromises
process i, knows the state si1 , si2 ∈ cur statei. The probability that either of
the states si1 or si2 is the swarm’s global state is at least T

n . Since there is no
information on which state of the two is the most likely to be the swarm’s global
state, the only option for the adversary is to arbitrarily choose one of the two
states with equal probability. Therefore, the probability of revealing the swarm’s
global state is at least T

2n and at most T
n in case |cur state| = 2. Generally, if

|cur state| = m, then the probability of revealing the swarm’s global state is at
least T

m·n , and at most T
(m−1)·n for f = 1. As the number of states in cur state

increases, the probability to reveal the swarm’s global state decreases.
We consider the following input actions:

• set(〈si1 , . . . , sim〉): Sets cur states with the given tuple. The tuples are dis-
tributed in a way that at least T + f + lp of them contain the swarm’s global
state. Thus, even if f shares are corrupted and lp are missing because of the
leaving processes, the swarm threshold is respected. Moreover, in order to en-
sure uniqness of the global state in the presence of corruptions and joins, any
other state has less than T − f replicas.
• step(δ): Emulates a step of the automaton for each of the states in cur statei.
By the end of the emulation each process has output. Here, δ is any possible
input of the simulated automaton.
• regain consistency: Ensures that there are at least T + f + lp members, whose
cur states tuples include the current state of A. Any other state has less than
T − f replicas.
• join: A process joins the swarm, and constructs its cur states tuple by ran-
domly collecting states from other processes. Note that the scheme benefits from
smooth joins, since the number f that includes the join operations is taken in
consideration while calculating the swarm’s global state upon regain consistency
operation. That is, a threshold of T is required for a state in order to be the
swarm’s global state. Therefore, in case swarm members maintain the popula-
tion of the swarm (updated by joins, leaves and possibly by periodic heartbits)
a join may be simply done by sending a join request message, specifying the
identifier of the joining process. However, the consistency of the swarm will defi-
nitely benefit if shares are uniformly chosen for the newcomers. In this way, if the
adversary was not listening during the join procedure, there is high probability
that the joining processes will assist in encoding the current secret.

Line-by-line code description. The code in Figure 2 describes input actions
of process i. Each process i has an m-tuple cur statei of m states in states(A),
where at most one of them is the swarm’s global state.

• set: On input action set, process i receives a message of type set and an m-
tuple of distinct states in states(A) (line 1). It then sets its tuple cur statei with
the received tuple (line 2).
• step: On input action step, process i receives a message of type stp and δ,
which is an input parameter for the I/O automaton (line 3). For every state sij in

Secret Swarm Unit Reactive k−Secret Sharing 135

1 seti(〈set, srcid, i, 〈si1 , . . . , sim〉〉)
2 cur statei ←− 〈si1 , . . . , sim〉

3 stepi(〈stp, srcid, i, δ〉)
4 for j = 1..m do
5 〈s′

ij
, oij
〉 ←− follow the transaction in steps(A) for sij

and δ

6 next state←− 〈s′
i1

, . . . , s′
im
〉

7 output acts←− 〈o′
i1

, . . . , o′
im
〉

8 executeOutputActions(output acts)
9 cur statei ←− next state

10 regainConsistencyRequesti(〈rgn rqst, srcid, i〉)
11 leaderId←− leaderElection()
12 if leaderId = i then
13 allStateTuplesi ←− collectAllStates()
14 candidates←− mostPopularStates(allStateTuples)
15 if |candidates| == 1 then
16 globalState ←− first(candidates)
17 else
18 globalState ←− defaultGlobalState
19 distributeStateTuples(globalState)
20 allStateTuplesi ←− ∅
21 delete candidates
22 else
23 send(〈rgn rply, i, leaderId, curstatei, 〉)

24 regainConsistencyReplyi(〈rgn rply, srcid, i, stateTuple〉)
25 if leaderId = i then
26 allStateTuplesi ←− allStateTuplesi ∪ {stateTuple}

27 joinRequesti(〈join rqst, srcid, i〉)
28 addMember(srcid)

Fig. 2. Virtual automaton, program for swarm member i

cur statei process i emulates the automaton A by executing a single transaction
on sij and δ (line 5). As a result, there is a new state s′ij

and an output action
oij . Process i initializes a tuple next state of all the new states s′ij

for all j =
1..m (line 6) and the resulting output actions o′ij

for all j = 1..m (line 7). It
then executes the output actions in output acts (line 8) and finally, it updates
cur statei to be the tuple of new states next state (line 9).
• regainConsistencyRequest: On input action regainConsistency the processes
are assumed to be in a safe land with no threat of any adversary. Process i
receives a message of type rgn rqst from process identified by srcid (line 10).

The method leaderElection() returns the process identifier of the elected
leader (line 11). If process i is the leader, then it should distribute state tuples
using set input actions in a way that at least T + f swarm members have tuples
that include the global state and all other states appear no more than T times.
Possibly by randomly choosing shares to members, such that the probability for
assigning the global state share to a process is equal to, or slightly greater than,
T/n + f/n while the probability of any other state to be assigned to a process
is the same (smaller) probability.

First, the leader collects all the state tuples (line 13) and then executes the
method mostPopularStates() in order to find the candidates to be the swarm’s
global state (lines 14). If there is a single candidate (line 15), then it is the global

136 S. Dolev, L. Lahiani, and M. Yung

state and globalState is set with the first (and only) state in candidates (line 16).
In case there is more than one candidate (line 17), the leader sets globalState
with a predefined default global state (line 18).

The leader then distributes the state tuples (line 19) and deletes both the col-
lected tuples allStateTuples and the candidates for the global state candidates
(lines 20,21). If process i is not the leader, then it sends its cur statei tuple to
the leader (lines 22,23).

• regainConsistencyReply: On input action regainConsistencyReply the pro-
cesses are also assumed to be in a safe land. Process i receives a message of
type rgn rply, which is a part of the regain consistency procedure. The message
includes the identifier srcid of the sender and the sender’s state tuple (line 24).
If process i is the leader (line 25), then it adds the received tuple to the set
allStateTuplesi of already received tuples. Otherwise, it ignores the message.
• joinRequest: On input action, joinRequest process i receives a message of type
join rqst from a process identified by srcid, which is asking to join the swarm
(line 27). Process i executes the method addMember(srcid), which adds srcid,
the identifier of the joining process, to its population list of processes in the
swarm.

6 Conclusions

We have presented three (in fact four, including the Vandermonde matrix based
scheme) approaches for reactive k-secret sharing that require no internal com-
munication to perform a transition.

The two first solutions maybe combined as part of the reactive automaton
to define share of the state, for example to enable an output of the automaton
whenever a share value of the counter is prime. Thus the operator of the swarm
may control the output of each process by manipulating the counter value, e.g.,
making sure the counter secret shares are never prime, until a sufficient number
and combination of events occurs.

We believe that such a distributed manipulation of information without com-
municating the secret shares, that is secure even from the secret holders, should
be further investigated. At last, the similarity in usage of Mandelbaum and
Berlekamp-Welch techniques may call for arithmetic generalization of the
concepts.

References

1. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Virtual Stationary Au-
tomata for Mobile Networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R.
(eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg (2006) Also invited
paper in Forty-Third Annual Allerton Conference on Communication, Control,
and Computing. Also, Brief announcement. In: PODC 2005. Proc. of the 24th An-
nual ACM Symp. on Principles of Distributed Computing, p. 323 (2005) Technical
Report MIT-LCS-TR-979, Massachusetts Institute of Technology (2005)

Secret Swarm Unit Reactive k−Secret Sharing 137

2. Dolev, S., Gilbert, S., Lynch, A.N., Schiller, E., Shvartsman, A., Welch, J.: Virtual
Mobile Nodes for Mobile Ad Hoc Networks. In: DISC 2004. International Con-
ference on Principles of DIStributed Computing, pp. 230–244 (2004) Also Brief
announcement. In: PODC 2004. Proc. of the 23th Annual ACM Symp. on Princi-
ples of Distributed Computing (2004)

3. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A., Welch, J.: GeoQuorum: Im-
plementing Atomic Memory in Ad Hoc Networks. Distributed Computing 18(2),
125–155 (2003)

4. Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A., Welch, J.: Autonomous Virtual
Mobile Nodes. In: DIALM/POMC 2005. Third ACM/SIGMOBILE Workshop on
Foundations of Mobile Computing, pp. 62–69 (2005) Brief announcement. In: SPAA
2005. Proc. of the 17th International Conference on Parallelism in Algorithms and
Architectures, p. 215 (2005) Technical Report MIT-LCS-TR-992, Massachusetts
Institute of Technology (2005)

5. Dolev, S., Lahiani, L., Lynch, N., Nolte, T.: Self-Stabilizing Mobile Location Man-
agement and Message Routing. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS,
vol. 3764, pp. 96–112. Springer, Heidelberg (2005)

6. Dolev, S., Lahiani, L., Yung, M.: Technical Report TR-#2007-12, Department of
Computer Science, Ben-Gurion University of the Negev (2007)

7. Dolev, S., Welch, L.J.: Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM 51(5), 780–799 (2004)

8. Goldrich, O., Ron, D., Sudan, M.: Chinese Remaindering with Errors. In: Proc. of
31st STOC. ACM (1999)

9. Kivelevich, E., Gurfil, P.: UAV Flock Taxonomy and Mission Execution Perfor-
mance. In: Proc. of the 45th Israeli Conference on Aerospace Sciences (2005)

10. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and Completeness
In Multi-Party Private Computations. In: FOCS 1994. Proceedings of Thirty-fifth
Annual IEEE Symposium on the Foundations of Computer Science, Journal version
in SIAM J. Comput. 29(4), 1189-1208 (2000)

11. Lynch, N., Tuttle, M.: An introduction to Input/Output automata, Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands, 2(3), 219–246 (September
1989) Also Tech. Memo MIT/LCS/TM-373

12. Mandelbaum, D.: On a Class of Arithmetic and a Decoding Algorithm. IEEE
Transactions on Information Theory 21(1), 85–88 (1976)

13. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)
14. Weiser, M.: The Computer for the 21th Century. Scientific American (September

1991)
15. Welch, L., Berlekamp, E.R.: Error Correcting for Algebraic Block Codes, U.S.

Patent 4633470 (September 1983)

	SECRET SWARM UNIT Reactive k−Secret Sharing (Extended Abstract)
	Introduction
	Swarm Settings
	Reactive k-Secret Counting -- The Chinese Remainder Solution
	Reactive k-Secret -- Counting/Multiplying Polynomial-Based Solution
	Virtual Automaton
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

