

Lecture Notes in Computer Science 4859
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

K. Srinathan C. Pandu Rangan
Moti Yung (Eds.)

Progress in Cryptology –
INDOCRYPT 2007

8th International Conference on Cryptology in India
Chennai, India, December 9-13, 2007
Proceedings

13

Volume Editors

K. Srinathan
International Institute of Information Technology
Center for Security, Theory and Algorithmic Research (C-STAR)
Gachibowli, Hyderabad, 500032, India
E-mail: srinathan@iiit.ac.in

C. Pandu Rangan
Indian Institute of Technology Madras
Department of Computer Science and Engineering
Chennai, 600036, India
E-mail: prangan55@yahoo.com

Moti Yung
Columbia University
Computer Science Department
New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2007939973

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4, F.2.1-2, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-77025-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77025-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12196937 06/3180 5 4 3 2 1 0

Preface

INDOCRYPT 2007, the Eighth Annual International Conference on Cryptol-
ogy in India, was organized by Cryptology Research Society India (CRSI) in
cooperation with the Indian Institute of Technology, Madras. The conference
was held in IIT Madras, December 10–12, 2007. INDOCRYPT 2007 was chaired
by Vijayaraghavan, Executive Director, Society for Electronic Transactions and
Security (SETS) and we had the privilege of serving as PC Co-chairs.

The conference received 104 submissions. Each paper was assigned at least
three reviewers. After detailed discussions and deliberations, the PC identified 22
submissions for regular presentation and 11 submissions for short presentation.

The conference featured three invited lectures. S.V. Raghavan, IIT Madras,
India, spoke on “Security of Critical Information Infrastructure.” Venkatesan
Ramaratnam, Microsoft Redmond, USA, delivered a lecture on “Cryptographic
Applications of Rapid Mixing.” Jonathan Katz, University of Maryland, pre-
sented a talk on the “Recent Research Trends in Signature Schemes.” Besides
the events of the conference, several pre-and post-conference tutorials were or-
ganized for the benefit of researchers in India and attendees of the conference.
In the pre-conference tutorial Venkatesan Ramaratnam, Microsoft Redmond,
USA, presented a tutorial on “Recent Snapshots of Cryptanalysis” and Ingrid
Verbauwhede, Katholieke Universiteit Leuven, Belgium, conducted a tutorial on
“Side Channel Attacks – An Overview.” In the post-conference tutorial, Manoj
M. Prabhakaran, University of Illinois, Urbana-Champaign, USA, presented a
tutorial on “Theoretical Foundations of Public-Key Encryption” and Krzysztof
Pietrzak, Centrum Voor Wisukunde en Informatica (CWI), The Netherlands
conducted a tutorial on “Robust Combiners”.

The success of INDOCRYPT 2007 is due to the contributions and support we
received from several quarters. Our sincere thanks to many authors from around
the world for submitting their papers. We are deeply grateful to the PC for
their hard work, enthusiasm and continuous involvement in making a thorough
and fair review of so many submissions. We received comments and clarifications
instantly on several occasions, although the PC members and sub-reviewers were
spread across of the globe with over 20 hours of difference in their time zones!
Many thanks once again to the members for their great work. Thanks also to all
external reviewers, listed on the following pages, for sparing their valuable time;
We have already received several notes of appreciation from various authors for
the detailed and thorough job they carried out while refereeing the submissions.

We would like to thank SETS for mobilizing funds from various government
sectors and generously contributing to the smooth organization of the event. I
thank DRDO, Bangalore and the Head of the Department of Computer Science,
IIT Madras for supporting the travel and local hospitality for invited speakers
and tutorial speakers under MOC grants the department received from DRDO.

VI Preface

Microsoft Research, India (MSRI) was a constant source of support and encour-
agement for various activities in cryptology in India, and for INDOCRYPT 2007
they volunteered to be a Platinum Sponsor of the event. The generous support
from Hexaware and Prince Shri Venkateshwara Padmavathy Engineering Col-
lege is warmly acknowledged. Specifically, we wish to thank Dr. Vijayaraghavan,
Prof. S.V. Raghavan, Prof. Timothy A. Gonsalves, Mr. Eugene Xavier, Dr. K.
Vasudevan for the financial support we received in a timely manner.

We wish to extend our sincere thanks to Mr. V. Veeraraghavan, Mr. E. Boopal
and Mr. V.S. Balasundaram, who worked tiredlessly for three months attending
to numerous details related to the events of the conference. Hi Tours did a very
efficient job in providing tourism / stay-related logistics. It has been a pleasure
working with Anna Kramer and Alfred Hoffman, our key contacts at Springer.

Last but not the least, our sincere thanks to Easychair.org. It is indeed a
wonderful conference management system!

December 2007 K. Srinathan
C. Pandu Rangan

Moti Yung

INDOCRYPT 2007

December 10–12, 2007, IIT Madras, Chennai, India

Organized by
Cryptology Research Society of India (CRSI)

in cooperation with
Department of Computer Science and Engineering, IIT Madras, India.

General Chair

M.S. Vijayaraghavan, SETS, India

Program Co-chairs

K. Srinathan, IIIT, Hyderabad, India
C. Pandu Rangan, IIT Madras, Chennai, India
Moti Yung, Columbia University, New York, USA

Program Committee

Amit Sahai University of California at Los Angles, USA
Anish Mathuria Dhirubhai Ambani Ins. of Inf. & Comm. Tech.,

India
Bao Feng Institute for Infocomm Research, Singapore
Bimal Roy Indian Statistical Institute, Kolkotta, India
Debdeep Mukhopadhyay Indian Institute of Technology Madras, India
Duncan S. Wong City University, Hong Kong
Ed Dawson Information Security Institute, QUT, Australia
K. Gopalakrishnan East Carolina University, USA
Huaxiong Wang Nanyang Technological University, Singapore
Kaoru Kurosawa Ibaraki University, Japan
Krzysztof Pietrzak Centrum Voor Wisukunde en Informatica,

The Netherlands
Michel Abdalla Ecole Normale Superieure, France
Moti Yung Columbia University, USA
Pandu Rangan C. Indian Institute of Technology Madras, India
Rei Safavi-Naini University of Wollongong, Australia
Sanjit Chatterjee Indian Statistical Institute, Kolkotta, India
Shailesh Vaya Indian Institute of Technology Madras, India
Srinathan K. IIIT, Hyderabad, India
Tatsuaki Okamoto NTT Labs, Japan
Tsuyoshi Takagi Future University Hakodate, Japan
Vassil Dimitrov The University of Calgary, Canada

VIII Organization

Organizing Committee

Boopal E. Chennai, India
Veeraraghavan V. Chennai, India

Reviewers

Michel Abdalla
Karl Abrahamson
Kazumaro Aoki
Rana Barua
Gary Carter
Chris Charnes
Sanjit Chatterjee
Hung-Yu Chien
Joo Yeon Cho
Ashish Choudhary
Abhijit Das
Ed Dawson
Vassil Dimitrov
Ratna Dutta
Bao Feng
Matthieu Finiasz
Rosario Gennaro
K. Gopalakrishnan
M. Choudary Gorantla
Vipul Goyal
Kishan Chand Gupta
Yasuo Hatano
Keisuke Hakuta
Matt Henricksen
Kota Ideguchi
Tetsu Iwata

Tetsuya Izu
Gonzalez Nieto Juan
Shinsaku Kiyomoto
Kaoru Kurosawa
Hidenori Kuwakado
Gatan Leurent
Fagen Li
Yi Lu
Steve Lu
Anish Mathuria
Krystian Matusiewicz
Rob McEvoy
Pradeep Kumar Mishra
Shiho Moriai
Debdeep Mukhopadhyay
Mathew Musson
Wakaha Ogata
Tatsuaki Okamoto
C. Pandu Rangan
Krzysztof Pietrzak
David Pointcheval
Havard Raddum
Mohammad Reza

Reyhanitabar
Bimal Roy
Minoru Saeki

Rei Safavi-Naini
Amit Sahai
Somitra Sanadhya
Sumanta Sarkar
Taizo Shirai
Franscesco Sica
Michal Sramka
Kannan Srinathan
Makoto Sugita
Tsuyoshi Takagi
Yasuo Takahashi
Masahiko Takenaka
Hidema Tanaka
Qiang Tang
Christophe Tartary
Stefano Tessaro
Shigenori Uchiyama
Shailesh Vaya
Camille Vuillaume
Huaxiong Wang
Dai Watanabe
Duncan S. Wong
Mu-En Wu
Yongdong Wu
Moti Yung
Sbastien Zimmer

Sponsors

SETS, India
Microsoft Research, India
Prince Shri Venkateshwara Padmavathy Engineering College, India

Table of Contents

I Hashing

Linearization Attacks Against Syndrome Based Hashes 1
Markku-Juhani O. Saarinen

A Meet-in-the-Middle Collision Attack Against the New FORK-256 10
Markku-Juhani O. Saarinen

Multilane HMAC – Security Beyond the Birthday Limit 18
Kan Yasuda

II Elliptic Curve

On the Bits of Elliptic Curve Diffie-Hellman Keys . 33
David Jao, Dimitar Jetchev, and Ramarathnam Venkatesan

A Result on the Distribution of Quadratic Residues with Applications
to Elliptic Curve Cryptography . 48

Muralidhara V.N. and Sandeep Sen

III Cryptoanalysis

Related-Key Attacks on the Py-Family of Ciphers and an Approach to
Repair the Weaknesses . 58

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Related-Key Differential-Linear Attacks on Reduced AES-192 73
Wentao Zhang, Lei Zhang, Wenling Wu, and Dengguo Feng

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 86
Orr Dunkelman, Gautham Sekar, and Bart Preneel

IV Information Theoretic Security

Probabilistic Perfectly Reliable and Secure Message
Transmission – Possibility, Feasibility and Optimality 101

Kannan Srinathan, Arpita Patra, Ashish Choudhary, and
C. Pandu Rangan

Secret Swarm Unit Reactive k−Secret Sharing
(Extended Abstract) . 123

Shlomi Dolev, Limor Lahiani, and Moti Yung

X Table of Contents

V Elliptic Curve Cryptography

New Formulae for Efficient Elliptic Curve Arithmetic 138
Huseyin Hisil, Gary Carter, and Ed Dawson

A Graph Theoretic Analysis of Double Base Number Systems 152
Pradeep Kumar Mishra and Vassil Dimitrov

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 167
Daniel J. Bernstein, Peter Birkner, Tanja Lange, and
Christiane Peters

VI Signature

Transitive Signatures from Braid Groups . 183
Licheng Wang, Zhenfu Cao, Shihui Zheng, Xiaofang Huang, and
Yixian Yang

Proxy Re-signature Schemes Without Random Oracles 197
Jun Shao, Zhenfu Cao, Licheng Wang, and Xiaohui Liang

VII Side Channel Attack

First-Order Differential Power Analysis on the Duplication Method 210
Guillaume Fumaroli, Emmanuel Mayer, and Renaud Dubois

Solving Discrete Logarithms from Partial Knowledge of the Key 224
K. Gopalakrishnan, Nicolas Thériault, and Chui Zhi Yao

VIII Symmetric Cryptosystem

New Description of SMS4 by an Embedding over GF(28) 238
Wen Ji and Lei Hu

Tweakable Enciphering Schemes from Hash-Sum-Expansion 252
Kazuhiko Minematsu and Toshiyasu Matsushima

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 268
H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan

IX Asymmetric Cryptosystem

Public Key Encryption with Searchable Keywords Based on Jacobi
Symbols . 282

Giovanni Di Crescenzo and Vishal Saraswat

Table of Contents XI

A Certificate-Based Proxy Cryptosystem with Revocable Proxy
Decryption Power . 297

Lihua Wang, Jun Shao, Zhenfu Cao, Masahiro Mambo, and
Akihiro Yamamura

X Short Presentation

Computationally-Efficient Password Authenticated Key Exchange
Based on Quadratic Residues . 312

Muxiang Zhang

On the k-Operation Linear Complexity of Periodic Sequences
(Extended Abstract) . 322

Ramakanth Kavuluru and Andrew Klapper

Trade-Off Traitor Tracing . 331
Kazuto Ogawa, Go Ohtake, Goichiro Hanaoka, and Hideki Imai

X-FCSR – A New Software Oriented Stream Cipher Based Upon
FCSRs . 341

François Arnault, Thierry P. Berger, Cédric Lauradoux, and
Marine Minier

Efficient Window-Based Scalar Multiplication on Elliptic Curves Using
Double-Base Number System . 351

Rana Barua, Sumit Kumar Pandey, and Ravi Pankaj

Extended Multi-Property-Preserving and ECM-Construction 361
Lei Duo and Chao Li

Design of a Differential Power Analysis Resistant Masked AES S-Box . . . 373
Kundan Kumar, Debdeep Mukhopadhyay, and
Dipanwita RoyChowdhury

LFSR Based Stream Ciphers Are Vulnerable to Power Attacks 384
Sanjay Burman, Debdeep Mukhopadhyay, and
Kamakoti Veezhinathan

An Update on the Side Channel Cryptanalysis of MACs Based on
Cryptographic Hash Functions . 393

Praveen Gauravaram and Katsuyuki Okeya

Attacking the Filter Generator by Finding Zero Inputs of the Filtering
Function . 404

Frédéric Didier

Efficient Implementations of Some Tweakable Enciphering Schemes in
Reconfigurable Hardware . 414

Cuauhtemoc Mancillas-López, Debrup Chakraborty, and
Francisco Rodŕıguez-Henŕıquez

Author Index . 425

Linearization Attacks Against Syndrome Based Hashes

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
m.saarinen@rhul.ac.uk

Abstract. In MyCrypt 2005, Augot, Finiasz, and Sendrier proposed FSB, a fam-
ily of cryptographic hash functions. The security claim of the FSB hashes is based
on a coding theory problem with hard average-case complexity. In the ECRYPT
2007 Hash Function Workshop, new versions with essentially the same compres-
sion function but radically different security parameters and an additional final
transformation were presented. We show that hardness of average-case complex-
ity of the underlying problem is irrelevant in collision search by presenting a
linearization method that can be used to produce collisions in a matter of seconds
on a desktop PC for the variant of FSB with claimed 2128 security.

Keywords: FSB, Syndrome Based Hashes, Provably Secure Hashes, Hash Func-
tion Cryptanalysis, Linearization Attack.

1 Introduction

A number of hash functions have been proposed that are based on “hard problems” from
various branches of computer science. Recent proposals in this genre of hash function
design include VSH (factoring) [3], LASH (lattice problems) [2], and the topic of this
paper, Fast Syndrome Based Hash (FSB), which is based on decoding problems in the
theory of error-correcting codes [1,6].

In comparison to dedicated hash functions designed using symmetric cryptanalysis
techniques, “provably secure” hash functions tend to be relatively slow and do not al-
ways meet all of criteria traditionally expected of cryptographic hashes. An example of
this is VSH, where only collision resistance is claimed, leaving the hash open to various
other attacks [8].

Another feature of “provably secure” hash functions is that the proof is often a re-
duction to a problem with asymptotically hard worst-case or average-case complexity.
Worst-case complexity measures the difficulty of solving pathological cases rather than
typical cases of the underlying problem. Even a reduction to a problem with hard av-
erage complexity, as is the case with FSB, offers only limited security assurance as
there still can be an algorithm that easily solves the problem for a subset of the problem
space.

This common pitfall of provably secure cryptographic primitives is clearly demon-
strated in this paper for FSB – it is shown that the hash function offers minimal pre-
image or collision resistance when the message space is chosen in a specific way.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 1–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M.-J.O. Saarinen

The remainder of this paper is structured as follows. Section 2 describes the FSB
compression function. Section 3 gives the basic linearization method for finding pre-
images and extends it to “alphabets”. This is followed by an improved collision attack
in Section 4 and discussion of attacks based on larger alphabets in Section 5.

Appendix A gives a concrete example of pre-image and collision attacks on a pro-
posed variant of FSB with claimed 128-bit security.

2 The FSB Compression Function

The FSB compression function can be described as follows [1,6].

Definition 1. Let H be an r × n binary matrix. The FSB compression function is a
mapping from message vector s that contains w characters, each satisfying 0 ≤ si < n

w ,
to an r bit result as follows:

FSB(s) =
w⊕

i=1

H(i−1) n
w +si+1 ,

where Hi denotes column i of the matrix.

The FSB compression function is operated in Merkle–Damgård mode to process a large
message [7,5]. The exact details of padding and chaining of internal state across com-
pression function iterations are not specified.1

With most proposed variants of FSB, the character size n
w is chosen to be 28, so that s

can be treated as an array of bytes for practical implementation purposes. See Appendix
A for an implementation example.

For the purposes of this paper, we shall concentrate on finding collisions and pre-
images in the compression function. These techniques can be easily applied for finding
full collisions of the hash function. The choice of H is taken to be a random binary
matrix in this paper, although quasi-cyclic matrices are considered in [6] to reduce
memory usage.

The final transformation proposed in [6] does not affect the complexity of finding
collisions or second pre-images, although it makes first pre-image search difficult (equal
to inverting Whirlpool [9]). Second pre-images can be easily found despite a strong final
transform.

The security parameter selection in the current versions of FSB is based primarily
on Wagner’s generalized birthday attack [10,4]. The security claims are summarized in
Table 1.

3 Linearization Attack

To illustrate our main attack technique, we shall first consider hashes of messages with
binary values in each character: si ∈ {0, 1} for 1 ≤ i ≤ w. This message space is a
small subset of all possible message blocks.

1 Ambiguous definitions of algorithms makes experimental cryptanalytic work depend on guess-
work on algorithm details. However, the attacks outlined in this paper should work, regardless
of the particular details of chaining and padding.

Linearization Attacks Against Syndrome Based Hashes 3

Table 1. Parameterizations of FSB, as given in [6]. Line 6 (in bold) with claimed 2128 security
was proposed for practical use. Pre-images and collisions can be found for this variant in a matter
of seconds on a desktop PC.

Security r w n n/w

64-bit 512 512 131072 256
512 450 230400 512
1024 217 225 256

80-bit 512 170 43520 256
512 144 73728 512

128-bit 1024 1024 262144 256
1024 904 462848 512
1024 816 835584 1024

We define a constant vector c,

c =
w⊕

i=1

H(i−1) n
w +1,

and an auxiliary r × w binary matrix A, whose columns Ai, 1 ≤ i ≤ w are given by

Ai = H(i−1) n
w +1 ⊕ H(i−1) n

w +2.

By considering how the XOR operations cancel each other out, it is easy to see that
for messages of this particular type the FSB compression function is entirely linear:

FSB(s) = A · s ⊕ c.

Note that in this paper s and c and other vectors are column vectors unless otherwise
stated.

Furthermore, let us consider the case where r = w, and therefore A is a square
matrix. If detA �= 0 the inverse exists and we are able to find a pre-image s from the
Hash h = FSB(s) simply as

s = A−1 · (h ⊕ c).

If r is greater than w, the technique can still be applied to force given w bits of the
final hash to some predefined value. Since the order of the rows is not relevant, we can
simply construct a matrix that contains only the given w rows (i.e.. bits of the hash
function result) of A that we are are interested in.

3.1 The Selection of Alphabet in a Preimage Attack

We note that the selection of {0, 1} as the set of allowable message characters (“the
alphabet”) is arbitrary. We can simply choose any pair of values for each i so that si ∈
{xi, yi} and map each xi �→ 0 and yi �→ 1, thus creating a binary vector for the attack.

The constant is then given by

c =
w⊕

i=1

H(i−1) n
w +xi

,

4 M.-J.O. Saarinen

and columns of the A matrix are given by

Ai = H(i−1) n
w +xi+1 ⊕ H(i−1) n

w +yi+1.

To invert a hash h we first compute

b = A−1(h ⊕ c)

and then apply the mapping si = xi + bi(yi − xi) on the binary result b to obtain a
message s that satisfies FSB(s) = h.

3.2 Invertibility of Random Binary Matrices

The binary matrices are essentially random for each arbitrarily chosen alphabet. Since
the success of a pre-image attack depends upon the invertibility of the binary matrix A,
we note (without a proof) that the probability that an n × n random binary matrix has
non-zero determinant and is therefore invertible in GF(2) is given by

p =
n∏

i=1

(1 − 2−i) ≈ 0.28879 ≈ 2−1.792

when n is even moderately large.
Two trials with two distinct alphabets are on the average enough to find an invertible

matrix (total probability for 2 trials is 1 − (1 − p)2 ≈ 0.49418).

4 Finding Collisions When r = 2w

We shall expand our approach for producing collisions in 2w bits of the hash function
result by controlling w message characters. This is twice the number compared to pre-
image attack of Section 3.1. The complexity of the attack remains negligible – few
simple matrix operations.

Assume that by selection of two distinct alphabets, {xi, yi} and {x′
i, y

′
i}, there are

two distinct linear presentations for FSB, one containing the matrix A and constant
c and the other one A′ and c′ correspondingly. To find a pair of messages s, s′ that
produces a collision we must find a solution for b and b′ in the equation

A · b ⊕ c = A′ · b′ ⊕ c′.

This basic collision equation can be manipulated to the form

(
A | A′) ·

(
b
b′

)
=

(
c
c′

)
.

The solution of the inverse (A | A′)−1 will allow us to compute the message pair
(b | b′)T that yields the same hash in 2w different message bits (since r = 2w yields a
square matrix in this case).

(A | A′)−1 ·
(

c
c′

)
=

(
b
b′

)
.

Linearization Attacks Against Syndrome Based Hashes 5

The binary vector (b | b′)T can then be split into two messages s and s′ that produce
the collision. For 1 ≤ i ≤ w we apply the alphabet mapping as follows:

si = xi + bi(yi − xi),
s′i = x′

i + b′
i(y′

i − x′
i).

Here xi, yi and x′
i, y

′
i represent the alphabets for si and s′i, respectively.

5 Larger Alphabets

Consider an alphabet of cardinality three, {xi, yi, zi}. We can construct a linear equa-
tion in GF(2) that computes the FSB compression function in this message space by
using two columns for each message character si. The linear matrix therefore has size
r × 2w. The constant c is computed as before as:

c =
w⊕

i=1

H(i−1) n
w +xi

,

and the odd and even columns are given by

A2i−1 = H(i−1) n
w +xi+1 ⊕ H(i−1) n

w +yi+1,

A2i = H(i−1) n
w +xi+1 ⊕ H(i−1) n

w +zi+1.

The message s must also be transformed into a binary vector b of length 2w via a
selection function v:

si v(si)
xi (0, 0)
yi (1, 0)
zi (0, 1)

The binary vector b is constructed by concatenating the selection function outputs:

b = (v(s1) ‖ v(s2) ‖ · · · ‖v(sw))T .

We again arrive at a simple linear equation for the FSB compression function:

FSB(s) = A · b ⊕ c.

The main difference is that the message space is much larger, 3w ≈ 21.585w. This
construction is easy to generalize for alphabets of any size: r × (k − 1)w size linear
matrix is required for an alphabet of size k. However, we have not found cryptanalytic
advantages in mapping hashes back to message spaces with alphabets larger than three.

5.1 Pre-image Search

It is easy to see that even if A is invertible, not all hash results are, since the solution of
b may contain v(si) = (1, 1) pairs. These do not map back to the message space in the
selection function.

Given a random binary b, the fraction of valid messages in the message space (al-
phabet of size 3) is given by (3/4)w = 2−0.415w. Despite this disadvantage, larger
alphabets can be useful in attacks. We will illustrate this with an example.

6 M.-J.O. Saarinen

Example. FSB parameters with w = 64, n = 256× 64 = 16384 and r = 128 is being
used; 64 input bytes are processed into a 128 bit result. What is the complexity of a
pre-image attack?2

Solution. We will use an alphabet of size 3. Considering both matrix invertibility (Sec-
tion 3.2) and the alphabet mapping, the probability of successfully mapping the hash
back to the alphabet is 0.28879 × (3/4)64 = 2−28.4. We can precompute 227 inverses
A−1 for various message spaces offline, hence speeding up the time required to find an
individual pre-image. There are also early-abort strategies that can be used to speed up
the search.

Using these techniques, the pre-image search requires roughly 228 steps in this case,
compared to the theoretical 2128.

5.2 Collision Search

Three-character alphabets can be used in conjunction with the collision attack outlined
in Section 4. It is easy to see that it is possible to mix 3-character alphabets with binary
alphabets. Each character position si that is mapped to a 3-character alphabet requires
two columns in the linear matrix, whereas those mapped to a 2-character alphabet re-
quire only one column.

Generally speaking, the probability for finding two valid messages in each trial is
(3/4)2k = 2−0.830k when k characters in s and s′ are mapped to 3-character alphabets.

Example. FSB parameters with w = 170, n = 256 × 170 = 43520 and r = 512 is
being used; 170 input bytes are processed into a 512-bit result. What is the complexity
of collision search?3

Solution. We use a mixed alphabet; k = 86 characters are mapped to a 3-character
alphabet and the remaining 84 characters are mapped to a binary alphabet. The linear
matrix A therefore has 2 × 86 + 84 = 256 columns, and the combined matrix

(
A | A′)

in the collision attack (similarly to 4) has size 512 × 512. Success of matrix inversion
is 2−1.792. The probability of success in each trial is 2−0.830k−1.792 = 2−73.2, collision
search has complexity of roughly 273.

6 Conclusions

We have shown that Fast Syndrome Based Hashes (FSB) are not secure against pre-
image or collision attacks under the proposed security parameters. The attacks have
been implemented and collisions for a variant with claimed 128-bit security can be
found in less than a second on a low-end PC.

We feel that the claim of “provable security” is hollow in the case of FSB, where the
security proof is based on a problem with hard average-case complexity, but which is
almost trivially solvable for special classes of messages.

2 The complexity of a collision attack in this case is negligible, as r = 2w and the technique
from Section 4 can be used.

3 These security parameters are proposed for 80-bit security in [6] and reproduced in Table 1.

Linearization Attacks Against Syndrome Based Hashes 7

Acknowledgements

The author is thankful to N. Sendrier and A. Canteaut for hosting him during his visit to
INRIA-Rocquencourt in June 2006, where this work was originated (although it took a
year to mature to publishable form). The author would also like to thank Keith Martin
and the INDOCRYPT Program Committee members for helpful comments. Financial
support for this work was provided by INRIA, Nixu Ltd., and Academy of Finland.

References

1. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic hash
functions. In: Dawson, E., Vaudenay, S. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp.
64–83. Springer, Heidelberg (2005)

2. Bentahar, K., Page, D., Saarinen, M.-J.O., Silverman, J.H., Smart, N.: LASH. In: Proc. 2nd
NIST Cryptographic Hash Workshop (2006)

3. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provably collision-resistant
hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182.
Springer, Heidelberg (2006)

4. Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash function. IACR
ePrint 2004 / 013 (2004), Available at http://www.iacr.org/eprint

5. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

6. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash
functions. In: ECRYPT Hash Function Workshop 2007 (2007)

7. Merkle, R.C.: A fast software one-way hash function. Journal of Cryptology 3, 43–58 (1990)
8. Saarinen, M.-J.O.: Security of VSH in the real world. In: Barua, R., Lange, T. (eds.) IN-

DOCRYPT 2006. LNCS, vol. 4329, pp. 95–103. Springer, Heidelberg (2006)
9. Rijmen, V., Barreto, P.: ”Whirlpool”. Seventh hash function of ISO/IEC 10118-3:2004 (2004)

10. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

A Appendix: A Collision and Pre-image Example

For parameter selection r = 1024, w = 1024, n = 262144, s = 8192, n/w = 256, the
FSB compression function can be implemented in C as follows.

typedef unsigned char u8; // u8 = single byte
typedef unsigned long long u64; // u64 = 64-bit word

void fsb(u64 h[0x40000][0x10], // "random" matrix
u8 s[0x400], // 1k message block
u64 r[0x10]) // result

{
int i, j, idx;

for (i = 0; i < 0x10; i++) // zeroise result
r[i] = 0;

http://www.iacr.org/eprint

8 M.-J.O. Saarinen

for (i = 0; i < 0x400; i++) // process a block
{
idx = (i << 8) + s[i]; // index in H
for (j = 0; j < 0x10; j++)

r[j] ˆ= h[idx][j]; // xor over result
}

}

Since the FSB specification does not offer any standard way of defining the “ran-
dom” matrix H (or h[][] above), we will do so here using the Data Encryption
Standard. Each 64-bit word h[i][j] is created by encrypting the 64-bit input value
(i << 4) ˆ j under an all-zero 56-bit key (00 00 00 00 00 00 00 00).
The input and output values are handled in big-endian fashion. Some of the values
are:4

Input to DES Table Index Value
0x0000000000000000 h[0x00000][0x0] = 0x8CA64DE9C1B123A7
0x0000000000000001 h[0x00000][0x1] = 0x166B40B44ABA4BD6
0x0000000000000002 h[0x00000][0x2] = 0x06E7EA22CE92708F

....
0x0000000000000010 h[0x00001][0x0] = 0x5B711BC4CEEBF2EE
0x0000000000000011 h[0x00001][0x1] = 0x799A09FB40DF6019
0x0000000000000012 h[0x00001][0x2] = 0xAFFA05C77CBE3C45

....
0x00000000003FFFFD h[0x3FFFF][0xD] = 0x313C4BDBE2F7156A
0x00000000003FFFFE h[0x3FFFF][0xE] = 0x19F32D6B2D9B57F5
0x00000000003FFFFF h[0x3FFFF][0xF] = 0x804DB568319F4F8B

We shall define two 1024-byte message blocks that produce the same 1024-bit chosen
output value in the FSB compression function, hence demonstrating the ease of pre-
image and collision search on a variant with claimed 2128 security. They were found in
less than a second on an iBook G4 laptop.

The first message block uses the ASCII alphabet {A, C} or {0x41, 0x42}:

CAACACACCACAACACACACCACAACCCCCCACCAACACCAAACAAACACCAACACCACACCAA
ACACACCCCCAACCCAAAAAACCCACCACCCACCAAACACACCCCCCAACCACACCCAACACCA
AACCCACCCCCAACCCAAACAAAAACCCACAAAACACACCACCACCCCCACAACCCCACACAAA
AACCCCACCCCAACAACAAAAACAAAACCACACACACACCCCCAAACCCCCAAAAACCCACAAC
CAAACAACCCAAACACCAACCCCACACCCCAAAACCCAAAAAACACAAACCCCAACAAAACCAA
ACACCCCCCCCCAACAAAAACACCCACCCAACAAAAAAACACACCCCCCCAACCCACCCCAACA
AAAACCAACAACACCACCCCACCCCCACCACAAACACCCACCACCCAACCCCACCCAACAAAAC
ACCACCCCAACCCACAACCACCCAACACCAACACCAAAACACACCAAAACACCCAACACACCCC
CAAACACACACCACCACCACCCAAAAAAACCACACACCCCAAAAAAACCCAAACCACCACCCCA
CACAAACCCCAACCCAACCCAACCAACCACCAAAACCCAACCCCCAAAAAACAACCAAACCCCA
AACACCCACAAACACCACCACAACAAAAACCAAACCCAAAAACCCACCACACCCACACACAAAA
CCACCCCAACCCCCAACAACCCCACACAACACAAACCACCCAACCCCAACCACAAAAACCCACC
ACAACCCAAACACACCCCAACAAACCAAACCCCACACCCAAAACCCCACACCACACACAAACAC

4 Please note that x86 platforms are little-endian. Bi-endian gcc source code for producing pre-
images can be downloaded from: http://www.m-js.com/misc/fsb test.tar.gz

Linearization Attacks Against Syndrome Based Hashes 9

CACCCAAAAAACAACAACCACACACAACAAACCAAACAAAAAAAAAACCAAAAAACCCCCAACC
CACCCACCCACAAACAAAACCAAAAAAAACCCAAAAAAACCCAAAACCACAACCACCCCAACCA
CCCACCAAACAACAACCACACAAAAACACCCCACACCCCCCCACCAACACAAAACCAAAAACCA

The second message block uses ASCII alphabet {A, H} or {0x41, 0x48}:

AHHHHAAAAAHAAAHAHAAAHAHHAHHAAHAAHHAHHHAAAAAHHAAHHHAHAHAAHAAAHHAA
AAAAHAHHAAAHAHHAHAAAHAAHAHAAAAHHHHHHHAAHAHAAAAAHAHHHHHAAHHHHAHAH
AAHAAAHAHAHHHHHAHHAHAHAAAHAHAAHAHHAAAAHAAHAAAHAAHHHHHAHAAHHAAHAH
HHAHAAHHHAAHAAAHHHHAHHHHAAHAAHAAAAAHAAHHAAAHAAHHHAAHAHAHHHAHAAHA
AHHAAAHHAAAAAHHAHAAAAAHAHAHHAHHAHAAHHAHAHAAHHHHAAHAHHHAAHHAHAAHH
AAHAHAAAHAHAAAHHAAAHAHHAHAHHAAAAAHHHHAAHAHAHHAHHHHHAAHHAAHHHHAHH
HHHAAAAAAAHHHAHAAAAHAAAHAAAAAAAHAAHHAHHAHHAHHAHHHAAAAAAAHAHAAAHH
HAHHHHHHAHAAAHHAHAAHHHHAAHHAHHAHHAAHHHAHHAHHHAAHHAAAHHAHAAHAHHHA
AAHAHAAAHAAHAAAAHHHHAHHHHHAAHHHAAHHHAHHAAAHHHAHHAHAHHHHAAHAHHAHH
AAHAHAAHHAHHAAAAHHAHAHHHHHAAHHHAAHAAAHAAAHAAHHAHHAHHHAHHHHHAHHHA
AHAHAAAAHHAAAAHHAAHHHHHAAHAAHAAHHAAAHAHHAAAAAHHAAHAHHAHHHAAHHHAA
HHHAHHAAHAAHAAHAAHHHHHAAHAHHAHHAAHAAAAHHAHHHHHAHAHHHHHAHHHHHAAAA
HHHHHAAAAHHHAHHHHAHAAAHHAHAAAHHAAAHAHAHAAAHHHHHHHAHAAHAAHAAAAHAA
HAAAHAHAHHHAHHAHHAHAAHAHHAAAAHAAAAHHAAHHHHAHHAAHHHAHAAAHAAAHHHAA
HAAHAAHAAAHAHHHAAHAHAAHAAAHAHHAHAAHHHAAHAAAAAHHAAAAHHHAHAHAAAAAH
AAAHAHAHHAAAAHHHAAHHAHAAHHHHAHAAHHAHHHAAHAHHAHHHAAAAHHHAAHAAAAHH

The 1024-bit / 128-byte result of compressing either one of these blocks is:

Index Hex ASCII
00000000 5468697320697320 6120636f6c6c6973 |This is a collis|
00000010 696f6e20616e6420 7072652d696d6167 |ion and pre-imag|
00000020 6520666f72204661 73742053796e6472 |e for Fast Syndr|
00000030 6f6d652042617365 6420486173682e20 |ome Based Hash. |
00000040 4172626974726172 79207072652d696d |Arbitrary pre-im|
00000050 616765732063616e 20626520666f756e |ages can be foun|
00000060 6420696e20612066 72616374696f6e20 |d in a fraction |
00000070 6f66206120736563 6f6e642120202020 |of a second! |

A Meet-in-the-Middle Collision Attack
Against the New FORK-256

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
m.saarinen@rhul.ac.uk

Abstract. We show that a 2112.9 collision attack exists against the FORK-256
Hash Function. The attack is surprisingly simple compared to existing published
FORK-256 cryptanalysis work, yet is the best known result against the new,
tweaked version of the hash. The attack is based on “splitting” the message sched-
ule and compression function into two halves in a meet-in-the-middle attack. This
in turn reduces the space of possible hash function results, which leads to signifi-
cantly faster collision search. The attack strategy is also applicable to the original
version of FORK-256 published in FSE 2006.

Keywords: FORK-256, Hash Function Cryptanalysis, Meet-in-the-middle
Attack.

1 Introduction

FORK-256 is a dedicated hash function that produces a 256-bit hash from a message of
arbitrary size. The original version of FORK-256 was presented in the first NIST hash
workshop and at FSE 2006 [1]. Several attacks have been outlined against this original
version, namely:

– Matusiewicz, Contini, and Pieprzyk attacked FORK-256 by using the fact that the
functions f and g in the step function were not bijective in the original version.
They used microcollisions to find collisions of 2-branch FORK-256 and collisions
of full FORK-256 with complexity of 2126.6 in [3].

– Independently, Mendel, Lano, and Preneel published the collision-finding attack on
2-branch FORK-256 using microcollisions and raised possibility of its expansion
[5].

– At FSE 2007 [4], Matusiewicz et al. published the result of [3] and another attack
which finds a collision with complexity of 2108 and memory of 264.

In response to these attacks the authors of FORK-256 have recently proposed a
new, tweaked version of FORK-256 [2], which is supposedly resistant to all before-
mentioned attacks. We will present a simple attack which is the best currently known
against the new version of FORK-256, and also applicable to the previous version.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 10–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Meet-in-the-Middle Collision Attack Against the New FORK-256 11

2 Description of New FORK-256

New FORK-256 (hereafter FORK-256) is a Merkle-Damgård hash with a 256-bit
(8-word) internal state and a 512-bit (16-word) message block. Padding and chaining
details are similar to those of the SHA and the MD families of hash functions.

FORK-256 is entirely built on shift, exlusive-or, and addition operations on 32-bit
words. In this paper we use the following notation for these operations:

x ⊕ y Bitwise exclusive-or between x and y.
x � y Equal to (x + y) mod 232.
x � y Equal to (x − y) mod 232.

x ≪ y Circular left shift of 32-bit word x by y bits.

The compression function of FORK-256 consists of four independent “branches”.
Each one these branches takes in the 256-bit (8-word) chaining value and a 512-bit
(16-word) message block to produce a 256-bit result. These four branch results are
combined with the chaining value to produce the final compression function result.
Figure 1 illustrates the branch structure.

CV i−1

CV i

Branch
1

Branch
2

Branch
3

Branch
4

Fig. 1. Overall structure of four branches of FORK-256. Note that the lines are 256 bits wide; the
addition symbols represent eight 32-bit modular additions in parallel.

The four branches are structurally equivalent, but differ in scheduling of the message
words and round constants. Each branch is computed in eight steps, 0 ≤ s ≤ 7. Each
step utilizes two message words and two round constants.

The scheduling of the message block words M [0 . . .15] in each branch is given
in Table 1. Round constants δ[0 . . . 15] are given in Table 2 and their schedule in
Table 3. The original description uses auxiliary tables σ and ρ; for convenience we

12 M.-J.O. Saarinen

Table 1. Message word schedule for FORK-256. It is easy to observe that in branch 2 and
branch 3, M [1] only affects the result in the last step. M [14] is used in the last and next-to-last
steps in branches 1 and 4, correspondingly. These observations are used in the attack.

Step Branch 1 Branch 2 Branch 3 Branch 4
s a

(s)
1 b

(s)
1 a

(s)
2 b

(s)
2 a

(s)
3 b

(s)
3 a

(s)
4 b

(s)
4

0 M [0] M [1] M [14] M [15] M [7] M [6] M [5] M [12]
1 M [2] M [3] M [11] M [9] M [10] M [14] M [1] M [8]
2 M [4] M [5] M [8] M [10] M [13] M [2] M [15] M [0]
3 M [6] M [7] M [3] M [4] M [9] M [12] M [13] M [11]
4 M [8] M [9] M [2] M [13] M [11] M [4] M [3] M [10]
5 M [10] M [11] M [0] M [5] M [15] M [8] M [9] M [2]
6 M [12] M [13] M [6] M [7] M [5] M [0] M [7] M [14]
7 M [14] M [15] M [12] M [1] M [1] M [3] M [4] M [6]

Table 2. Round constants

δ[0] = 0x428a2f98 δ[1] = 0x71374491
δ[2] = 0xb5c0fbcf δ[3] = 0xe9b5dba5
δ[4] = 0x3956c25b δ[5] = 0x59f111f1
δ[6] = 0x923f82a4 δ[7] = 0xab1c5ed5
δ[8] = 0xd807aa98 δ[9] = 0x12835b01

δ[10] = 0x243185be δ[11] = 0x550c7dc3
δ[12] = 0x72be5d74 δ[13] = 0x80deb1fe
δ[14] = 0x9bdc06a7 δ[15] = 0xc19bf174

use a (“left word”), b (“right word”), α (“left constant”), and β (“right constant”) in this
description as follows:

a
(s)
j = M [σj(2s)]

b
(s)
j = M [σj(2s + 1)]

α
(s)
j = δ[ρj(2s)]

β
(s)
j = δ[ρj(2s + 1)]

FORK-256 uses two 32-bit Boolean functions f and g, which were redefined for the
New FORK-256 to avoid microcollisions.

f(x) = x ⊕ (x ≪ 15) ⊕ (x ≪ 27)
g(x) = x ⊕ ((x ≪ 7) � (x ≪ 25)).

Following the convention of the FORK-256 specification, let CV i[0..7] be the result
of the compression function iteration i and CV 0[0..7] the Initialization Vector, given in
Table 4.

A Meet-in-the-Middle Collision Attack Against the New FORK-256 13

Table 3. Round constant schedule

Step Branch 1 Branch 2 Branch 3 Branch 4
s α

(s)
1 β

(s)
1 α

(s)
2 β

(s)
2 α

(s)
3 β

(s)
3 α

(s)
4 β

(s)
4

0 δ[0] δ[1] δ[15] δ[14] δ[1] δ[0] δ[14] δ[15]
1 δ[2] δ[3] δ[13] δ[12] δ[3] δ[2] δ[12] δ[13]
2 δ[4] δ[5] δ[11] δ[10] δ[5] δ[4] δ[10] δ[11]
3 δ[6] δ[7] δ[9] δ[8] δ[7] δ[6] δ[8] δ[9]
4 δ[8] δ[9] δ[7] δ[6] δ[9] δ[8] δ[6] δ[7]
5 δ[10] δ[11] δ[5] δ[4] δ[11] δ[10] δ[4] δ[5]
6 δ[12] δ[13] δ[3] δ[2] δ[13] δ[12] δ[2] δ[3]
7 δ[14] δ[15] δ[1] δ[0] δ[15] δ[14] δ[0] δ[1]

Table 4. Initialization Vector

CV 0[0] = 0x6a09e667 CV 0[1] = 0xbb67ae85
CV 0[2] = 0x3c6ef372 CV 0[3] = 0xa54ff53a
CV 0[4] = 0x510e527f CV 0[5] = 0x9b05688c
CV 0[6] = 0x1f83d9ab CV 0[7] = 0x5be0cd19

Each branch j processes eight input words R
(0)
j [t] = CV i[t] to eight output words

R
(8)
j [t], 0 ≤ t ≤ 7. Figure 2 illustrates the step function. For 0 ≤ s ≤ 7:

t1 = f(R(s)
j [0] � a

(s)
j)

t2 = g(R(s)
j [0] � a

(s)
j � α

(s)
j)

t3 = g(R(s)
j [4] � b

(s)
j)

t4 = f(R(s)
j [4] � b

(s)
j � β

(s)
j)

R
(s+1)
j [0] = R

(s)
j [7] ⊕ (t4 ≪ 8)

R
(s+1)
j [1] = R

(s)
j [0] � a

(s)
j � α

(s)
j

R
(s+1)
j [2] = R

(s)
j [1] � t1

R
(s+1)
j [3] = (R(s)

j [2] � (t1 ≪ 13)) ⊕ t2

R
(s+1)
j [4] = R

(s)
j [3] ⊕ (t2 ≪ 17)

R
(s+1)
j [5] = R

(s)
j [4] � b

(s)
j � β

(s)
j

R
(s+1)
j [6] = R

(s)
j [5] � t3

R
(s+1)
j [7] = (R(s)

j [6] � (t3 ≪ 3)) ⊕ t4

The final result of the compression function for each word 0 ≤ t ≤ 7 is

CV i+1[t] = CV i[t] � ((R(8)
1 t � R

(8)
2 [t]) ⊕ (R(8)

3 [t] � R
(8)
4 [t])).

If i is the final iteration, CV i+1 is the final hash value.

14 M.-J.O. Saarinen

3 Observations

Each branch of the compression function uses each message word M [0 . . . 15] exactly
once. Due to diffusion properties of the step function, message words that are scheduled
for the last steps do not affect all output words.

Consider the sixth output word of each branch, R(8)
j [5]. The last step is defined as:

R
(8)
j [5] = R

(7)
j [4] � b

(7)
j � β

(7)
j .

Furthermore we “open up” R
(7)
j [4] in the previous step:

R
(7)
j [4] = R

(6)
j [3] ⊕ (g(R(6)

j [0] � a
(6)
j � β

(6)
j) ≪ 17).

Ignoring the round constants α
(s)
j and β

(s)
j , we can observe that the only message

words in steps 6 and 7 affecting R
(8)
j [5] are a

(6)
j and b

(7)
j , the latter having a linear

effect. Constants b
(6)
j and a

(7)
j have no effect in the computation of this word.

By thus inspecting the step function and the message word schedule in Table 1, it is
easy to verify that Rj [5] satisfies the following properties:

Branch 1: R
(8)
1 [5] is independent of M [14] = a

(7)
1 .

Branch 2: R
(8)
2 [5] is linearly dependent on M [1] = b

(7)
2 .

Branch 3: R
(8)
3 [5] is independent of M [1] = a

(7)
3 .

Branch 4: R
(8)
4 [5] is independent of M [14] = b

(6)
4 .

R
(s)
j [0]

R
(s+1)
j [1]

R
(s)
j [1]

R
(s+1)
j [2]

R
(s)
j [2]

R
(s+1)
j [3]

R
(s)
j [3]

R
(s+1)
j [4]

R
(s)
j [4]

R
(s+1)
j [5]

R
(s)
j [5]

R
(s+1)
j [6]

R
(s)
j [6]

R
(s+1)
j [7]

R
(s)
j [7]

R
(s+1)
j [0]

a
(s)
j

f

≪13

α
(s)
j

g

≪17

b
(s)
j

g

≪ 3

β
(s)
j

f

≪ 8

Fig. 2. The new FORK-256 step iteration

A Meet-in-the-Middle Collision Attack Against the New FORK-256 15

We shall use these simple observations to construct an attack against FORK-256.
We note that due to the fact the message word schedule is shared between the old and
new versions of FORK-256, the same four observations – and the same general attack –
apply to both versions, although there are important technical differences between the
old and the new version. The complexity of the attack is the same for both.

4 A Collision Attack

The main strategy of the attack is to use a fast method for finding messages that hash
into a significantly smaller subset of possible hash values. We do this by forcing the
sixth word of the compression function to remain constant over the hash function itera-
tion, CV 1[5] = CV 0[5], thereby generating hashes in a subset of size 2224. Assuming
uniform distribution, a full collision can be expected after

√
π
2 × 2

224
2 ≈ 2112.3 hashes

in the small subset have been found.
The value of CV 1[5] is combined from the four branches and the initialization vector

as follows:

CV 1[5] = CV 0[5] � ((R(8)
1 [5] � R

(8)
2 [5]) ⊕ (R(8)

3 [5] � R
(8)
4 [5])).

By substituting CV 1[5] = CV 0[5] and regrouping branches 2 and 3 on the left side
and branches 1 and 4 on the right side, we obtain the following necessary and sufficient
condition for CV 1[5] = CV 0[5]:

R
(8)
2 [5] � R

(8)
3 [5] = R

(8)
1 [5] � R

(8)
4 [5].

Our attack is based on choosing two message words M [1] and M [14] in a specific
way to satisfy CV 1[5] = CV 0[5], which is possible due to the observations given in
the previous section. The values of the fourteen other message words are arbitrary and
can be chosen at random (as long as they remain constant through the two phases of
the attack). The two phases can be repeated any number of times to produce sufficient
amount of hashes in the subset.

4.1 First Phase

Set M [1] = 0 and loop over M [14] = 0, 1, 2, · · · , 232 − 1. Compute branches 2 and 3
for each M [14] to obtain x = R

(8)
2 [5]�R

(8)
3 [5]. Place x and M [14] into a look-up table

so that the value of M [14] can be immediately retrieved based on the corresponding x
value (i.e. M [14] is indexed by x).

Note that since the mapping from M [14] to x is not surjective, about 1/e ≈ 36.8%
of the values of x will never occur (when the mapping is modeled as random). On
the other hand, many x can be obtained with more than one value of M [14]. Using
a straightforward lookup cannot handle the latter situation, but simple data structures
with negligible expansion exist that can be used for these cases. The table does not need
to be larger than 16 gigabytes (32 bits ×232 entries).

16 M.-J.O. Saarinen

4.2 Second Phase

Loop over the 232 values of M [1]. Compute branches 1 and 4 for each M [1] to obtain

y = R
(8)
1 [5] � R

(8)
4 [5] � M [1]. The M [1] term is included due to the linear dependence

of R
(8)
2 [5] on it (this is also why M [1] is set to zero in the first phase).

In each step, perform a look-up. If a match or matches x = y are found, the necessary
and sufficient condition is satisfied and we have found a message (or rather, a pair
of M [1] and M [14] values) that produces one or more hashes that satisfy CV 1[5] =
CV 0[5].

4.3 Runtime Analysis

Each loop step in the second phase produces one match in the lookup table on average.
This is due to the fact that even though the mapping is not surjective, there is a total of
232 M [14] entries in the table. Hence approximately 232 hashes with the property are
produced in the second phase.

Since computation of only two branches out of four are needed, the computational
effort in the first and second phases is roughly equivalent to 231 full hash computations
each, or 232 total. If the full 8 words in phase 1 are not stored, branches 2 and 3 need
to be computed again to reproduce a full hash, bringing the total number to 3 ∗ 231.
The average cost of producing a hash in the 2224 subset therefore is 3

2 hash function
invocations.

Unfortunately we have been unable to come up with a method of utilizing “mem-
oryless” random-walk collision search methods such as those discussed in [6]. This
is due to the fact that the algorithm outlined above only works in “batches” of 232

to obtain a favorable average cost for each hash with the desired property CV 1[5] =
CV 0[5]. The memory requirement is therefore equivalent to running time requirement,
3
2

√
π
2 × 2

224
2 = 2112.9.

5 Further Work

The same observations about the effects of M [1] and M [14] on the final hash can be
easily be adopted into a pre-image attack that recovers the values of these two message
words with 232 effort, rather than 264 as expected in a brute-force search.

It may be possible to “fix” more than 32 bits by using additional words of keying
material besides M [1] and M [14] in the attack. This would naturally lead to a more
effective overall collision attack. Terms M [0] and M [5] appear to be good candidates
as they are only used in steps 5 and 6 of branches 2 and 3, respectively, and are therefore
not fully diffused at the end of step 7.

6 Conclusion

We have presented a 2112.9 collision attack against the new, improved version of the
hash function FORK-256. This represents a speed improvement of factor 215.4 over a
straightforward collision search. The attack strategy is surprisingly simple, and can also
be applied against the original version of FORK-256 in slightly modified form.

A Meet-in-the-Middle Collision Attack Against the New FORK-256 17

Acknowledgements

The author would thank Keith Martin and the INDOCRYPT Program Committee mem-
bers for essential quality control and helpful comments. Financial support for this work
was provided by Nixu Ltd. and Academy of Finland.

References

1. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A New Dedicated
256-Bit Hash Function: FORK-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp.
195–209. Springer, Heidelberg (2006)

2. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: New FORK-256.
Cryptology ePrint Archive 2007/185 (July 2007)

3. Matusiewicz, K., Contini, S., Pieprzyk, J.: Weaknesses of the FORK-256 Compression Func-
tion. Cryptology ePrint Archive 2006/317 (Second version) (November 2006)

4. Matusiewicz, K., Peyrin, T., Billet, O., Contini, S., Pieprzyk, J.: Cryptanalysis of FORK-256.
In: Preproceeding of FSE 2007 (2007)

5. Mendel, F., Lano, J., Preneel, B.: Cryptanalysis of Reduced Variants of the FORK-256 Hash
Function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 85–100. Springer, Heidelberg
(2006)

6. van Oorschot, P., Wiener, M.: Parallel collision search with cryptanalytic applications. Journal
of Cryptology 12, 1–28 (1999)

Multilane HMAC—

Security beyond the Birthday Limit

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. HMAC is a popular MAC (Message Authentication Code)
that is based on a cryptographic hash function. HMAC is provided with
a formal proof of security, in which it is proven to be a PRF (Pseudo-
Random Function) under the condition that its underlying compression
function is a PRF. Nonetheless, the security of HMAC is limited by a
birthday attack, that is, HMAC using a compression function with n-
bit output gets forged after about 2n/2 queries. In this paper we resolve
this problem by introducing novel construction we call L-Lane HMAC.
Our construction is provided with concrete-security reduction accom-
plishing a security guarantee well beyond the birthday limit. L-Lane
HMAC requires more invocations to the compression function than the
conventional HMAC, but the performance decline is smaller than those
of previous constructs. In addition, L-Lane HMAC inherits the design
principles of the original HMAC, such as single-key usage and off-the-
shelf hash-function calls.

Keywords: message authentication code, hash function, birthday at-
tack, multilane, NMAC, HMAC, failure-friendly.

1 Introduction

Birthday Attack on HMAC. The birthday paradox is a powerful principle
that influences many sorts of cryptographic algorithms. Among those algorithms
that are affected, MACs (Message Authentication Codes) of iterated structure
are known to be vulnerable to birthday attacks [15]. The birthday attack on a
MAC scheme detects an internal collision of the MAC algorithm and utilizes an
“extension trick” to produce a forgery. For instance, HMAC [3] using a com-
pression function f : {0, 1}n+m → {0, 1}n can be broken (forged) after O(2n/2)
queries to its generation oracle. This is known as the birthday limit, for the
quantity n corresponds to security parameters as explained below.

The value n determines the (maximum) size of the final output of HMAC
algorithm. The final output for a given message M is called the tag. Note that
a pair (M, tag) with a random value tag ∈ {0, 1}n gets verified as a valid one
with a probability 2−n. This means that an adversary who outputs such a pair
would succeed in forgery with a probability 2−n. This also implies that this type

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 18–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multilane HMAC—Security beyond the Birthday Limit 19

of adversary needs O(2n) trials to the verification oracle in order to succeed in
forgery with a good probability.

Moreover, the parameter n also specifies a key space. The keyed compression
function fk : {0, 1}m → {0, 1}n, with k ∈ {0, 1}n, appears in the known security
reduction [2] of HMAC, regardless of an actual size of HMAC key. The security
proof states that HMAC relies on the pseudo-randomness of fk. The pseudo-
randomness is measured by the prf-advantage function Advprf

f (t, q), where t and
q are upper bounds of time resource and query numbers, respectively. If fk is a
“good” PRF (Pseudo-Random Function), then we expect Advprf

f (t, 2) ≈ 2−n for
small t; the key exhaustive search would require O(2n) computations of f .

Limited Security of NMAC/HMAC. HMAC is a derivative of more general
construction called NMAC [3]. The security of NMAC is based on the cAU-PRF
paradigm,1 whose proof can be found in [2]. There, in an upper bound of the
NMAC security, a term of order

O
(

�q2

2n

)

appears,2 where � is the maximum length of queries (the length is in blocks, and
a block is m bits.)

So, for example, consider the case of n = 128, m = 512 and authenticating
Blu-ray Discs (50GB ≈ 238.6 bits). In such a case we have � ≈ 229.6, and con-
sequently the security guarantee of NMAC becomes vacuous when q ≥ 249.2.
While this number may be large enough in practice, it is far from being 128-bit
security.

Bad news is that the security of NMAC is explicitly degraded when its un-
derlying compression function fk fails to be collision-resistant (thus increasing
the quantity Advprf

f (t, 2)). In such a case the birthday attacks become collision
attacks, as recently reported for NMAC/HMAC with “weak” compression func-
tions [9,6]. These shortcomings of the NMAC/HMAC designs are one of our
motives for developing new construction that is birthday-resistant and hence
failure-friendly.

We could, of course, start with a “wide-pipe” [10] compression function f :
{0, 1}2n+m → {0, 1}2n, use HMAC construction with an n-bit key and truncate
its tag size from 2n to n bits. This would indeed yield a birthday-resistant MAC
with full n-bit security, but it would be wasting f ’s capacity for resisting attacks.
Such a function f deserves full 2n-bit security, not n-bit.

Our Contributions: L-Lane NMAC/HMAC. We are interested in con-
structing a MAC scheme from a compression function f : {0, 1}n+m → {0, 1}n

via a mode of operation that accomplishes (close to) full n-bit security. This
goal is reached by our L-lane NMAC/HMAC construction. The basic idea of our
1 The cAU-PRF construction can be viewed as a computational version of Carter-

Wegman paradigm [17], as already pointed out by [2].
2 Here, we are assuming that Advprf

f (t, 2) ≈ 2−n.

20 K. Yasuda

construction is to utilize multiple internal “lanes” of Merkle-Damg̊ard iteration,
where each lane is kept of short length for maintaining reasonable performance.
More precisely, the scheme works in the following ways:

1. Security beyond the Birthday Limit. L-Lane NMAC is provided with a proof
of security, with a bound well beyond the birthday limit. That is, the prob-
lematic term changes to being of order3

O
((

�q

2n

)2
)

.

So in the above Blu-ray Disc example the vacuous limit changes to q ≥ 298.4,
much closer to 128-bit security. Also, the better bound gives us more “room”
for q even if the compression function fk fails to be a secure PRF, ensuring
more resistance to collision attacks. In this sense, our construction is provided
with failure-friendliness [10].

2. Stateless and Deterministic Algorithms. L-lane NMAC preserves an impor-
tant notion of a conventional MAC: It avoids the use of counters or coins.
Introducing a nonce element or randomness in a MAC scheme would also
introduce inconvenience and troublesomeness to its system in practice.

3. “More-than-Half” Efficiency. L-lane NMAC requires more numbers of invoca-
tions to the compression function f than the original NMAC. This increase,
however, is kept small. Roughly speaking, we construct a scheme that uti-
lizes L-many lanes, where the length of each lane is about 1/(L − 1)-times
the message length |M |. Therefore, L-Lane NMAC requires about

(
1 +

1
L − 1

)

-times as many invocations to f as the original NMAC. For example, it
becomes twice with L = 2, 1.5-times with L = 3 and 1.33-times with L = 4.

4. “Independent” Parallelism. L-Lane NMAC contains L-many lanes in its de-
sign. These lanes are “independently” parallelizable, that is, the output of
the i-th block of a lane does not depend on the output of the (i−1)-th block
of any other lane but does depend only on the message input to the i-th
block itself and the output of the (i − 1)-th block of the same lane. This
“independence” gives us freedom of choosing an order of computation. For
example, consider the case L = 3. We can:
– compute the three lanes in parallel at once,
– compute two of the three lanes in parallel first, and then compute the

remaining one lane later, or
– compute the three lanes one-by-one without any parallelism.

We also provide L-Lane HMAC construction. This is a derivative of L-Lane
NMAC, with the following additional features:

3 Again, we assume that Advprf
f (t, 2) ≈ 2−n.

Multilane HMAC—Security beyond the Birthday Limit 21

5. Single-Key Usage. L-Lane NMAC requires (L+3)-many keys, an undesirable
property in practice. In L-Lane HMAC construction, these keys are derived
from a single key k ∈ {0, 1}n using the pseudo-randomness of f .

6. Fixed IV and Merkle-Damg̊ard Strengthening. L-Lane HMAC can call off-the-
shelf hash functions that are implemented in the keyless Merkle-Damg̊ard
style, along with a fixed IV (Initial Vector) and a designated padding method
(called the Merkle-Damg̊ard strengthening.)

The only limitation by L-lane NMAC/HMAC, which is not present in the original
NMAC/HMAC, is on the choice of a compression function f : {0, 1}n+m →
{0, 1}n with the condition m ≥ 2n. This restriction, however, is not a critical
drawback in practice. In fact, most of existing compression functions, including
md5, sha-1 and sha-256, clear this condition.

Previous Constructs. There are several known constructs of birthday-resistant
MACs. These include XOR-MAC [5] based on a finite PRF, MACRX [4] based
on universal hashing (with a finite PRF), and RMAC [8] based on a block cipher.
These algorithms, however, are either nonce-based or randomized.

There are several approaches without counters nor coins. One is to construct a
PRF f ′

k′ : {0, 1}2n → {0, 1}2n from a PRF fk : {0, 1}n → {0, 1}n in a birthday-
resistant way. Such construction includes Benes [1], Ωt [13] and Feistel-6 [14].
These however require too many (4 or more) invocations to f , and consequently
HMAC based on such an f ′ would be inefficient.

A more efficient approach relies on usage of two or more “streams” of data
processing. This idea dates back to the design of the compression function
RIPEMD and its application to Two-Track MAC [7]. A similar approach appears
in the context of keyless hash functions as “Double-Pipe” hash [10] and “�-Pipe”
hash [16]. These constructs above come close to our L-Lane approach but dif-
fer in two points. One is that their performance degrades by a factor of two or
more, as compared to their “single” versions. The other is that their two (or
more) tracks/pipes are dependant each other, disabling out-of-order execution.

We also note that there are differences in reduction methodology. For example,
the proofs in [10] are based on the assumption that the underlying compression
functions are random functions. We take advantage of the presence of “secret”
keys and avoid such usage of random oracles ; our proofs are based on the sole
assumption that the underlying compression function f is a PRF.

Outline of This Paper. In the following section we give notation, terminology
and definitions that are necessary in this paper. We then give a general frame-
work based on Doubly Injective Lengthening (DIL) in Sect. 3. This general
framework, DIL-cAU-PRF construction, is applied to its simple instantiation we
call “Two-Lane NMAC” in Sect. 4. We proceed to describing L-Lane NMAC for
L ≥ 3 in Sect. 5 and L-Lane HMAC in Sect. 6. Section 7 is devoted to discussions
on the performance of our construction. Section 8 concludes this paper.

22 K. Yasuda

2 Preliminaries

Notation. Let m be a positive integer. The notation {0, 1}m represents the set
of m-bit strings, and {0, 1}m∗ denotes the set of finite bit strings whose lengths
in bits are multiples of m. Accordingly we write {0, 1}∗ for the set of all finite
bit strings. Note that the set {0, 1}m∗ includes the empty string ε.

Given a finite bit string x ∈ {0, 1}∗, |x| stands for the length in bits of x.
Given x, y ∈ {0, 1}∗, x‖y denotes the concatenation of x and y. Sometimes x‖y
is written simply xy. For x, y ∈ {0, 1}∗ with |x| = |y|, we define x⊕y to be the
bitwise exclusive-or of x and y. Given x1, . . . , xL ∈ {0, 1}∗ with |x1| = · · · = |xL|,
we write

⊕L
i=1 xi for x1⊕ · · · ⊕xL. When L = 1, we let

⊕L
i=1 xi

def= x1.
If x and y are two variables, the notation x ← y indicates the operation of

assigning the value of y to variable x. For a set X , x
$← X indicates the operation

of selecting an element uniformly at random from set X and assigning its value
to variable x. We write x1, x2, . . .

$← X to mean the sequence of operations
x1

$← X , x2
$← X ,

Given non-negative integers i and m, the notation 〈i〉m denotes the canonical
m-bit encoding of integer i. The size m is assumed to be large enough in order
for this symbol to make sense. Also, often m is omitted from the notation, and
it is simply written as 〈i〉.

An adversary A is a probabilistic algorithm that may have access to one or
more oracles. We use the symbol A ⇒ x to indicate the event that adversary A
outputs a value x. The notation AO ⇒ x means that adversary A, having access
to an oracle O, outputs value x.

Security Definitions. We use the notions of PRF and cAU function. Recall
that a secure PRF is a secure MAC.

1. Pseudo-Random Function (PRF). Let fk : X → Y be a keyed function with
k ∈ K. A prf-adversary A outputs either 0 or 1, having access to either
the “real” oracle f or the “random” oracle $. The real oracle chooses a key
k

$← K at the beginning of the overlying experiment and returns fk(x) upon
a query x. The random oracle chooses a random function ϕ : X → Y at the
beginning and upon a query x returns ϕ(x). We then define

Advprf
f (A) def= Pr

[
Af ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
.

Also, define
Advprf

f (t, q, μ) def= max
A

Advprf
f (A),

where max runs over all adversaries A having time complexity at most t,
asking at most q queries to the oracle, each query being at most μ bits.
By convention the time complexity includes the total execution time of the
overlying experiment plus the code size of A. Also, the resource parameter
μ is omitted when the domain X consists of fixed-length elements.

Multilane HMAC—Security beyond the Birthday Limit 23

2. Computationally Almost Universal (cAU) Function. Again, let fk : X → Y be
a keyed function with k ∈ K. An au-adversary A simply outputs a pair of
messages (x, x′). Define

Advau
f (A) def= Pr

[
fk(x) = fk(x′) ∧ x = x′

∣∣∣A ⇒ (x, x′), k $← K
]
.

Also, define
Advau

f (μ) def= max
A

Advau
f (A),

where max runs over all adversaries A that outputs a pair of messages, each
message being at most μ bits. Note that time complexity t is omitted from
the notation, for it is irrelevant in this context [2].

Lastly, we introduce the notation time(f). This represents the time resource
needed to perform one computation of function f . We remark that in order for
these definitions to make sense, we need to fix a model of computation, which is
assumed to be the case throughout the paper.

3 General Framework

We introduce the notion of Doubly Injective Lengthening (DIL), which plays
an important role in this work. It gives us a mechanism for resisting birthday
attacks while maintaining reasonable performance.

Doubly Injective Lengthening (DIL). Fix an integer L ≥ 2. Let

Φ = {ϕi}1≤i≤L

be a family of functions ϕi : M → Xi. We say that Φ is doubly injective if
M = M ′ (M, M ′ ∈ M) implies “ϕi(M) = ϕi(M ′) and ϕj(M) = ϕj(M ′) for
some 1 ≤ i < j ≤ L.” Equivalently, Φ is doubly injective if “ϕi(M) = ϕi(M ′)
for at least (L − 1)-many values of i ∈ {1, . . . , L}” implies M = M ′.

Given a DIL Φ = {ϕi}1≤i≤L, define a function

ρΦ(μ) def= max
M,i

|ϕi(M)|,

where max is taken over M ∈ M with |M | = μ and over i ∈ {1, . . . , L}. Note
that the domain M and ranges Xi are assumed to be subsets of {0, 1}∗ so that
|M | and |ϕi(M)| are well-defined.

With abuse of notation, we sometimes identify the above Φ = {ϕi}1≤i≤L with
the function Φ : M → X1×· · ·×XL in the obvious way. We treat Φ as a function
family or a function interchangeably.

DIL-cAU-PRF Construction. Given a DIL Φ = {ϕi}1≤i≤L with ϕi : M →
X , a cAU function H : K ×X → Y and a PRF G : K ′ ×Y L → T , we construct
their compositions HL ◦Φ : KL ×M → Y L and G◦HL ◦Φ : KL ×K ′×M → T
as follows:

24 K. Yasuda

Function
(
HL ◦ Φ

)
k1,...,kL

(M) Function
(
G ◦ HL ◦ Φ

)
k1,...,kL,k′(M)

xi ← ϕi(M) for i = 1, . . . , L (y1, . . . , yL) ← (
HL ◦ Φ

)
k1,...,kL

(M)
yi ← Hki(xi) for i = 1, . . . , L tag ← Gk′ (y1, . . . , yL)
Output (y1, . . . , yL) Output tag

See also Fig. 1 for a pictorial description of the latter composition. We show
that this composition G ◦ HL ◦ Φ is a secure PRF with such reduction as avoids
birthday attacks:

HkL
xL

x1

tagΦM

y1

yL

Hk1

Gk′

Fig. 1. DIL-cAU-PRF construction

Theorem 1. We have

Advprf
G◦HL◦Φ

(t, q, μ) ≤ Advprf
G (t, q) +

(
q

2

)
·
(
Advau

H (μ′)
)2

,

where q ≥ 2 and μ′ = ρΦ(μ).

Proof. This theorem immediately follows from the two lemmas below. ��
Lemma 1. We have

Advprf
G◦HL◦Φ

(t, q, μ) ≤ Advprf
G (t, q) +

(
q

2

)
· Advau

HL◦Φ(μ),

where q ≥ 2.

Proof. This is just a direct application of the cAU-PRF construction, whose
proof can be found in [2]. ��
Lemma 2. We have

Advau
HL◦Φ(μ) ≤

(
Advau

H (μ′)
)2

,

where μ′ = ρΦ(μ).

Proof. Let A be an au-adversary attacking HL ◦ Φ, that outputs a pair of mes-
sages, each message being at most μ bits. Without loss of generality we assume
that A always outputs a fixed pair (M, M ′), with M, M ′ ∈ M and M = M ′.
The condition M = M ′ implies that there exist 1 ≤ α < β ≤ L such that
ϕα(M) = ϕα(M ′) and ϕβ(M) = ϕβ(M ′), because Φ is doubly injective. Write

Multilane HMAC—Security beyond the Birthday Limit 25

xi ← ϕi(M), x′
i ← ϕi(M ′), yi ← Hki(xi) and y′

i ← Hki(x′
i). Then the au-

advantage of A attacking HL ◦ Φ can be bounded as:

Advau
HL◦Φ(A) = Pr

[
yi = y′

i for i = 1, . . . , L
∣∣∣ k1, . . . , kL

$← K
]

≤ Pr
[
yα = y′

α ∧ yβ = y′
β

∣∣∣ k1, . . . , kL
$← K

]

= Pr
[
Hkα(xα) = Hkα(x′

α) ∧ Hkβ
(xβ) = Hkβ

(x′
β)

∣∣∣ kα, kβ
$← K

]
.

The last line above clarifies the fact that the two events “yα = y′
α” and “yβ = y′

β”
are independent:

Pr
[
yα = y′

α ∧ yβ = y′
β

∣∣∣ kα, kβ
$← K

]
= Pr

[
yα = y′

α

∣∣∣ kα
$← K

]

× Pr
[
yβ = y′

β

∣∣∣ kβ
$← K

]
.

Here the first probability in the product can be bounded as

Pr
[
yα = y′

α

∣∣∣ kα
$← K

]
= Pr

[
Hkα(xα) = Hkα(x′

α)
∣∣∣ kα

$← K
]

≤ Advau
H (μ′),

owing to the conditions xα = x′
α and |xα|, |x′

α| ≤ μ′ def= ρΦ(μ). Similarly for the

second term we obtain Pr
[
yβ = y′

β

∣∣ kβ
$← K

] ≤ Advau
H (μ′), which together gives

us the desired bound Advau
HL◦Φ(A) ≤ (

Advau
H (μ′)

)2. ��

4 Two-Lane NMAC

Two-Lane NMAC is one of the simplest instantiations of the DIL-cAU-PRF
paradigm, using a compression function f : {0, 1}n+m → {0, 1}n with m ≥ 2n.
Two-Lane NMAC is also used as a building component of L-Lane NMAC (L ≥ 3)
in Sect. 5.

Description of Two-Lane NMAC. See Fig. 2 for an illustration. In the fol-
lowing we describe how each component Φ, H or G is instantiated in Two-Lane
NMAC.

1. Trivial Instantiation of DIL Φ. The diagonal map Φ : M �→ (M, M) is used in
Two-Lane NMAC. This corresponds to a trivial instantiation of DIL with
L = 2 and ϕ1, ϕ2 : M → M being the identity map. In such a case the
condition M = M ′ immediately yields ϕ1(M) = ϕ2(M) = M = M ′ =
ϕ1(M ′) = ϕ2(M ′).

2. Merkle-Damg̊ard Iteration for cAU H. Given a compression function f :
{0, 1}n+m → {0, 1}n, we obtain a keyed function fk : {0, 1}m → {0, 1}n with
k ∈ {0, 1}n by defining fk(x) def= f(k‖x) for x ∈ {0, 1}m. We then iterate f in
the Merkle-Damg̊ard style to obtain the component Hk : {0, 1}m∗ → {0, 1}n,
as follows:

26 K. Yasuda

y1‖y2‖0
m−2n

k2

k′ f

M�

f k1

tag

M1

f

f

M1

f

M2

M2

f

f

M�

Fig. 2. Two-Lane NMAC

Function Hk(M)
Divide M = M1‖M2‖ · · · ‖M� with Mi ∈ {0, 1}m

v1 ← fk(M1)
vi ← f(vi−1‖Mi) for i = 2, . . . , �
Output v�.

We set Hk(ε) def= k. The only problem of this construction is that its domain
is restricted to {0, 1}m∗. We can make it accept an arbitrary-length message
M ∈ {0, 1}∗ by an appropriate padding. Any one-to-one padding works
here, because the composition of a cAU function and a one-to-one padding
is again a cAU function. For example, the canonical 10∗ works, and the
popular Merkle-Damg̊ard strengthening 10∗‖ 〈|μ|〉 works as well.

3. Compression Function f in Place of PRF G. For the component Gk′ , we simply
use the compression function fk′ : {0, 1}m → {0, 1}n with k′ ∈ {0, 1}n as is.
This is feasible owing to the assumption that f is a PRF with m ≥ 2n. More
precisely, we define

Gk′(y1, y2)
def= fk′(y1‖y2‖0m−2n)

for y1, y2 ∈ {0, 1}n, so that Advprf
G (t, q) = Advprf

f (t, q).

Security of Two-Lane NMAC. We first point out a well-known result that the
function H constructed from f via Merkle-Damg̊ard is indeed a cAU function:

Lemma 3. If f is a PRF, then H, constructed from f via the Merkle-Damg̊ard
iteration as above, is cAU. More concretely, we have

Advau
H (μ) ≤ (2� − 1) · Advprf

f (t, 2) +
1
2n

,

where � = �μ/m� and t = 4� · time(f).

Proof. This result is given in [2]. ��

We are now ready to show our security result of Two-Lane NMAC:

Multilane HMAC—Security beyond the Birthday Limit 27

k2

M2λ−1

f k1

M2

f

f

M1

f

M3

M4

f

f

M2λ

k3

M1⊕M2

f f f

M3⊕M4 M2λ−1⊕M2λ

y1

y2

y3

tagG

Fig. 3. L-Lane NMAC, case L = 3

Theorem 2. The upper-bound security of Two-Lane NMAC is given by

Advprf
Two-Lane NMAC(t, q, μ) ≤ Advprf

f (t, q) + 2q2
(
� · Advprf

f (t′, 2) + 2−n−1
)2

,

where � = �μ/m� and t′ = 4� · time(f).

Proof. By Theorem 1 and the above lemma, we get

Advprf
Two-Lane NMAC(t, q, μ) ≤ Advprf

f (t, q) +
(

q

2

)
·
(

(2� − 1) · Advprf
f (t′, 2) +

1
2n

)2

≤ Advprf
f (t, q) +

q2

2
·
(
2� · Advprf

f (t′, 2) + 2−n
)2

= Advprf
f (t, q) + 2 · q2

(
� · Advprf

f (t′, 2) + 2−n−1
)2

,

where � = �μ/m� and t′ = 4� · time(f). ��

5 L-Lane NMAC (L ≥ 3)

A disadvantage of Two-Lane NMAC is its performance. It requires about twice
as many invocations to f as the conventional NMAC does. This becomes prob-
lematic especially with long messages. We resolve this problem by increasing the
number of lanes from 2 to L ≥ 3 but making each lane 1/(L − 1)-times shorter
at the same time. See Fig. 3 for the case L = 3.

Description of L-Lane NMAC. In L-Lane NMAC, each component Φ, H or
G is instantiated in the following ways:

1. Instantiation of DIL via Parity Code. Intuitively, this DIL works as follows: a
message M is divided into (L − 1)-many pieces ϕ1(M), . . ., ϕL−1(M), each

28 K. Yasuda

being about |M |/(L − 1) bits. Then the checksum ϕL(M) =
⊕L−1

i=1 ϕi(M)
is constructed. More precisely, the DIL Φ : {0, 1}m∗ → ({0, 1}m∗)L is con-
structed as follows:
Function Φ(M)

Divide M = M1M2 · · · M� with Mi ∈ {0, 1}m

Define M
(i)
j

def= Mi+(j−1)(L−1) for 1 ≤ i ≤ L − 1, i + (j − 1)(L − 1) ≤ �

Define λ(i) def= �(� − i)/(L − 1)� + 1 so that j runs 1 ≤ j ≤ λ(i)
Define ϕi(M) def= M

(i)
1 M

(i)
2 · · · M (i)

λ(i) for 1 ≤ i ≤ L − 1

Define ϕL(M) def= C1C2 · · · Cλ(1) where Cj
def=

⊕L−1
i=1 M

(i)
j

Output
(
ϕ1(M), . . . , ϕL−1(M), ϕL(M)

)
.

A problem of the DIL Φ above is that its domain is restricted to {0, 1}m∗. It
can be resolved by applying the canonical padding 10∗ to message M before
inputting it to Φ. Observe that the composition of a DIL and a one-to-one
padding is again a DIL.

2. cAU H via Merkle-Damg̊ard. There is nothing new in the construction of H ;
the cAU function H is constructed from the compression function f , via the
Merkle-Damg̊ard iteration, as in Two-Lane NMAC. Also, note that we do
not have to deal with padding here, for it is taken care of by the DIL Φ.

3. PRF G from f or Two-Lane NMAC. The construction varies depending on
two cases:
– If m ≥ Ln, then we can use fk in place of Gk′ , just as in Two-Lane

NMAC.
– If m < Ln, then we cannot use fk as is anymore. Making the condition

m ≥ Ln an assumption (as we do for m ≥ 2n) is not realistic. This obsta-
cle is solved by building Gk′ via Two-Lane NMAC from f . This method
is feasible, because the resulting scheme is still birthday-resistant, and
the performance decline is not sharp, for the Two-Lane NMAC G pro-
cesses only Ln-bit data. Note, though, that now G requires three keys
internally (not just the single key k′.)

Security of L-Lane NMAC. Our upper-bound security result of L-Lane
NMAC is essentially the same as that of Two-Lane NMAC. We just need to
verify that the function family Φ via parity code is indeed doubly injective:

Lemma 4. The function family Φ = {ϕi}1≤i≤L constructed above via parity
code is doubly injective.

Proof. Let M, M ′ ∈ {0, 1}m∗. Suppose we know that the condition ϕi(M) =
ϕi(M ′) holds for all i = 1, . . . , L except for some α ∈ [1, L] (i.e., we do not
know if the condition ϕα(M) = ϕα(M ′) holds). We show that ϕα(M) = ϕα(M ′)
indeed holds, which implies M = M ′. For, write ϕi(M) = M

(i)
1 · · ·M (i)

λ(i) and

ϕi(M ′) = M
′(i)
1 · · · M ′(i)

λ′(i). It can be directly verified that λ(α) = λ′(α). Also,

we have M
(α)
j =

⊕
i�=α M

(i)
j =

⊕
i�=α M

′(i)
j = M

′(α)
j for all j = 1, . . . , λ(α).

Therefore we obtain ϕα(M) = ϕα(M ′), as desired. ��

Multilane HMAC—Security beyond the Birthday Limit 29

Therefore, just as in Two-Lane NMAC, we obtain

Advprf
L-Lane NMAC(t, q, μ) ≤ Advprf

G (t, q) + 2q2
(
λ · Advprf

f (t′, 2) + 2−n−1
)2

,

where λ =
⌈
μ/

(
m(L − 1)

)⌉
and t′ = 4λ · time(f). If m ≥ Ln, then we use f

in place of G, so in the above formula we also replace “G” with “f .” On the
other hand, if m < Ln, then we use Two-Lane NMAC in place of G, which takes
Ln-bit data as its input. Consequently, in such a case we have

Advprf
G (t, q) = Advprf

Two-Lane NMAC(t, q, Ln)

≤ Advprf
f (t, q) + 2q2

(
λ′ · Advprf

f (t′, 2) + 2−n−1
)2

,

where λ′ = �Ln/m� and t′ the same as before. Overall, the upper bound security
of L-Lane NMAC (m < Ln) is given by

Advprf
L-Lane NMAC(t, q, μ) ≤ Advprf

f (t, q) + 4q2
(
λ · Advprf

f (t′, 2) + 2−n−1
)2

,

where λ = max
{⌈

μ/
(
m(L − 1)

)⌉
, �Ln/m�} and t′ the same as before. So in all

the cases the construction is birthday-resistant.

6 L-Lane HMAC

L-Lane NMAC significantly improves performance over Two-Lane NMAC but
still has two problematic features. One is that it requires too many keys (either
L + 1 or L + 3). To manage so many keys (even when L = 2, 3) is usually
troublesome and unwelcome in practical cryptographic applications. The other
problem is that hash functions are most often available in software libraries as a
form of keyless Merkle-Damg̊ard style with a fixed IV, disabling us from keying
directly the compression function via its chaining variable.

In this section we introduce slightly modified version we call L-Lane HMAC,
in which the above two problems are resolved. Also, L-Lane HMAC allows hash
functions to be implemented with so called the Merkle-Damg̊ard strengthening,
and we analyze how this padding method does (not) affect the security.

Single Key. A non-desirable feature of L-Lane NMAC is that it utilizes L + 1
(or L + 3) keys. These keys can be derived from a single key k ∈ {0, 1}n, as

ki
def= f(IV‖k‖ 〈i〉m−n)

for i = 1, . . . , L + 1 (or L + 3). Here IV ∈ {0, 1}n denotes the initial vec-
tor defined by an implementation of hash function, and we are assuming the
pseudo-randomness of the function f∗

k : {0, 1}m−n → {0, 1}n defined by f∗
k (x) def=

f(IV‖k‖x). This would add a term Advprf
f∗ (t, L + 1) (or Advprf

f∗ (t, L + 3)) to the
upper bound formula. Clearly this does not affect the birthday-attack resistance.

30 K. Yasuda

Merkle-Damg̊ard Implementation. Hash functions are usually implemented
with a padding function of the form 10∗‖ 〈|μ|〉, called the Merkle-Damg̊ard
strengthening. This would introduce L-many extra blocks of computation (one in
each lane). The reduction proof still works through, because the Merkle-Damg̊ard
strengthening can be incorporated into cAU function H (to create another cAU
function.) It would only affect the coefficient λ (increase by 1.)

Also, the very last invocation of f (that outputs the tag) may have to be
iterated via the Merkle-Damg̊ard iteration due to this padding, if there is not
enough room for padding in {0, 1}m−2n. However, since the input to the last
block is just (part of) padding, it would still be birthday-resistant. See [18] for
an analysis of this type of construction and its security.

Security of L-Lane HMAC. The above modifications do not lose a formal
proof of security. For example, consider the case G is just f and there is enough
room in {0, 1}m−2n for the Merkle-Damg̊ard strengthening. Then, an upper
bound of such L-Lane HMAC is given by

Advprf
L-Lane HMAC(t, q, μ) ≤ Advprf

f (t, q) + 2q2
(
λ · Advprf

f (t′, 2) + 2−n−1
)2

+ Advprf
f∗ (t, L + 1),

where λ = �μ/m� + 1 and t′ the same as before. This still guarantees that such
L-Lane HMAC is birthday-resistant. Also, upper bounds for other cases can be
obtained similarly.

7 Performance Issues

The problem of multilane construction is its performance. In this section we
briefly discuss issues upon implementing L-Lane NMAC/HMAC.

Choosing Optimal Value of L. Theoretically, increasing the value of L would
decrease the number of invocations to f , especially with long messages. However,
increasing value L could cause various drawbacks.

One is inefficiency with short messages. In L-Lane HMAC, L-many lanes are
invoked regardless of the size of a message. Also, the number of invocations to f
in Two-Lane NMAC G would become consuming (Note that with such a large
L the component G is most likely built via Two-Lane NMAC.)

Another is that increasing L would require more registers in its implementa-
tion. Since current CPUs are equipped with a limited number of registers, value
L should be chosen accordingly.

The value L = 3 (150%) seems to be adequate for many purposes. The value
L = 4 (133%) may fit in some scenarios, but increasing the value more than
L ≥ 5 would probably cause more troubles than benefit. Plus, the (theoretical)
increase in performance becomes relatively small with L ≥ 5 (125%, 120%,)

Multilane HMAC—Security beyond the Birthday Limit 31

Table 1. Parallel implementation of hash functions [12,11]

par. cycles/byte rel. par. cycles/byte rel.

1 5.53 100% 1 23.73 100%
MD5 2 4.31 78% SHA-256 2 20.59 87%

3 3.66 66% 3 22.14 93%

1 9.73 100% 1 36.5 100%
SHA-1 2 8.30 85% SHA-512 2 22.1 61%

3 8.73 90%

Parallelism. Table 1 lists figures from previous results of implementing hash
functions, with Pentium III (for MD5, SHA-1 and SHA-256) [12] and with Pen-
tium 4 (for SHA-512) [11], showing the performance gain by parallel implemen-
tation. From these numbers we expect that it should be feasible to suppress
the increase of computational cost in L-Lane NMAC/HMAC, especially when
L = 2, 3.

8 Concluding Comments

In this paper we introduce a new paradigm we call DIL-cAU-PRF construc-
tion that is quite effective to accomplish resistance to birthday attacks. By its
structure and security reduction, it also makes collision attacks difficult, thus
providing a failure-friendly design. Extra cost to pay is the decrease in perfor-
mance, but it is significantly small as compared to previous constructs.

Acknowledgments. The author would like to express his gratitude to the
INDOCRYPT 2007 referees for their valuable comments. The author is also
grateful to Kazumaro Aoki for having discussions on material for writing Sect. 7.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transfor-
mations — Benes: A non-reversible alternative to Feistel. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

4. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom
functions: Security beyond the birthday barrier. In: Wiener, M.J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)

32 K. Yasuda

5. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

6. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

7. den Boer, B., Rompay, B.V., Preneel, B., Vandewalle, J.: New (two-track-)MAC
based on the two trails of RIPEMD. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 314–324. Springer, Heidelberg (2001)

8. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

9. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

10. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

11. Matsui, M., Fukuda, S.: How to maximize software performance of symmetric prim-
itives on Pentium III and 4 processors. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 398–412. Springer, Heidelberg (2005)

12. Nakajima, J., Matsui, M.: Performance analysis and parallel implementation of
dedicated hash functions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 165–180. Springer, Heidelberg (2002)

13. Patarin, J.: Improved security bounds for pseudorandom permutations. In: ACM
Conference on Computer and Communications Security, pp. 142–150 (1997)

14. Patarin, J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)

15. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

16. Speirs, W.R., Molloy, I.: Making large hash functions from small compression func-
tions. Cryptology ePrint Archive, 2007/239 (2007)

17. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

18. Yasuda, K.: “Sandwich” is indeed secure: How to authenticate a message with just
one hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

On the Bits of Elliptic Curve

Diffie-Hellman Keys

David Jao1, Dimitar Jetchev2, and Ramarathnam Venkatesan3,4

1 University of Waterloo, Waterloo ON N2L3G1, Canada
djao@math.uwaterloo.ca

2 Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720
jetchev@math.berkeley.edu

3 Microsoft Research India Private Limited, ”Scientia”, No:196/36,
2nd Main Road, Sadashivnagar, Bangalore – 560080, India

4 Microsoft Research, 1 Microsoft Way, Redmond WA 98052
venkie@microsoft.com

Abstract. We study the security of elliptic curve Diffie-Hellman secret
keys in the presence of oracles that provide partial information on the
value of the key. Unlike the corresponding problem for finite fields, little is
known about this problem, and in the case of elliptic curves the difficulty
of representing large point multiplications in an algebraic manner leads
to new obstacles that are not present in the case of finite fields. To
circumvent this obstruction, we introduce a small multiplier version of
the hidden number problem, and we use its properties to analyze the
security of certain Diffie-Hellman bits. We suggest new character sum
conjectures that guarantee the uniqueness of solutions to the hidden
number problem, and provide some evidence in support of the conjectures
by showing that they hold on average in certain cases. We also present
a Gröbner basis algorithm for solving the hidden number problem and
recovering the Diffie-Hellman secret key when the elliptic curve is defined
over a constant degree extension field and the oracle is a coordinate
function in the polynomial basis.

1 Introduction

The Diffie-Hellman scheme is a fundamental protocol for public key exchange
between two parties. Its original definition over finite fields is based on the hard-
ness of computing the map g, ga, gb �→ gab for g ∈ F

∗
p, while its elliptic curve

analogue depends on the difficulty of computing P, aP, bP �→ abP for points P
on an elliptic curve.

A natural question in this context is whether an adversary can compute some
partial information about gab (resp. abP) for the finite field (resp. the elliptic
curve) case. In studying this problem for the finite field case, Boneh and Venkate-
san [4] formulated the hidden number problem (HNP) and showed that a solution
to the HNP allows one to reduce the question of computing partial information
to the question of computing the key itself (see also [24,15]). For example, us-
ing these techniques one can show that computing MSBk(gab) is tantamount to

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 33–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 D. Jao, D. Jetchev, and R. Venkatesan

computing gab itself for k ≥ 5
√

log p. In addition, the hidden number problem
has turned out to be of cryptanalytic interest in its own right. For attacks on
cryptosystems using partial information, see [20,23,21,16,24,17,22]. Thus an im-
portant motivation for the problem we consider is to find elliptic curve analogues
of these attacks.

It is natural to ask the analogous question for elliptic curve Diffie-Hellman
bits, namely, can we prove that partial information about elliptic curve Diffie-
Hellman keys over a fixed curve E is unpredictable if we assume that the Diffie-
Hellman problem for E is hard? Unfortunately, very little is known about this
question. If one is allowed to look for a related curve with a hard Diffie-Hellman
problem, then Boneh and Shparlinksi [3] provide an affirmative answer. While
having formal proofs of the security of Diffie-Hellman bits is the most important
application, it is also desirable from a cryptanalytic point of view to have prac-
tical algorithms for solving the corresponding hidden number problem (defined
in Section 2.1). However, there are two fundamental obstructions which render
the question much more difficult in the case of elliptic curves.

In the finite field case, one views elements of Fp as integers, embeds them in
lattices equipped with the Euclidean metric and applies lattice reduction algo-
rithms. In the elliptic curve case, no useful metrics are available; this represents
the first fundamental obstruction. Furthermore, point multiplication on ellip-
tic curves transforms the coordinates of a point via rational polynomials whose
degrees grow exponentially in the size of the multiplier. This means that in
general one can only write down explicit algebraic expressions in the case of
small multipliers. This complexity constraint introduces the second fundamen-
tal obstruction—it is not even clear if the hidden number problem has a unique
solution at all when the random multipliers are constrained to lie within small
intervals. (By contrast, if one is allowed to use arbitrary multipliers, it is very
easy to establish uniqueness in both the finite field and elliptic curve cases.) To
deal with this obstruction, we introduce new character sums, conjecture some
non-trivial estimates which are sufficient to prove uniqueness, and prove that
our conjecture holds on average in the case of quadratic residuosity of the x
coordinate. We also prove an upper bound on the number of solutions for any
uniformly distributed output function, under the assumption of the Generalized
Riemann Hypothesis. Although this approach falls short of the goal of actually
recovering the value of abP via partial information, we feel that it remains a
valuable first step given the lack of other results in this area.

We present a complete recovery algorithm for the hidden number problem in
the case of curves over constant degree extensions, using Gröbner bases and elim-
ination ideals. At present we are only able to implement our solution using oracles
that provide outputs of length approximately 1/3 that of the (compressed) input
point itself, e.g. 50 bits of output in the case of a 160-bit base field. Given recent
progress and widespread interest in Gröbner bases algorithms, we may in the near
future be able to recover Diffie-Hellman keys using less information (e.g. 32 bits
of output for a 160-bit base field). However, obtaining results comparable to the

On the Bits of Elliptic Curve Diffie-Hellman Keys 35

the finite field case (where we output O(
√

log p) bits) seems to be fundamentally
out of reach., and in certain cases is even presumed to be infeasible (see [2]).

2 Preliminaries

Let q = pk where p is a prime. We view Fq as a vector space over Fp and identify
Fq with F

k
p using a polynomial basis. For a point P on an elliptic curve E over Fq,

let x(P) and y(P) be the x and y-coordinates of P , respectively, and let x0(P)
denote the first coordinate in the vector representation of x(P).

2.1 Partial Diffie-Hellman Bits

To extract partial information about points on elliptic curves, we consider a map
Bits� : E(Fq) → {0, 1}� which will assume one of the following three types:

1. Algebraic: Bits�(P) = x0(P);
2. Analytic: Bits�(P) = χ(x(P)) for a suitable character χ : F

×
q → C

×;
3. MSB: Bits�(P) = MSB�(x(P)), which is the � most significant bits of x(P)

expressed in binary.

Given a point P ∈ E(Fq) and two multiples aP and bP , let

PDHE(P, aP, bP) = Bits�(abP).

To study the security of the function PDHE , we assume that there is a hidden
point Q on E and an oracle A to compute the function r �→ Bits�(rQ). We refer
to r as the multiplier. One can then state the general Multiplier Elliptic Curve
Hidden Number Problem (M-EC-HNP).

Multiplier-EC-Hidden-Number-Problem: Given an oracle A to compute
the map r �→ Bits�(rQ), recover the point Q.

Here the value of r may be chosen either by an adversary or randomly. In our
setting, one queries the oracle many times so that one gets a total of ck log p output
bits, for some c > 1. The hidden number problem is related to the problem of
showing that PDHE is secure, because a solution to the hidden number problem
allows an adversary to determine abP given an oracle for PDHE .

To solve the M-EC-HNP problem, one needs to address the following two
questions:

Uniqueness: Is the underlying solution unique? If not, can the solutions at least
be narrowed down to a small list?

Reconstruction: Is there an efficient algorithm to solve M-EC-HNP?
In most cases, one can easily show uniqueness if the queries are allowed to use

large multipliers r. Unfortunately, these multipliers lead to division polynomials of
exponentially large degree applied to Q, which cannot be handled using the tech-
niques of Section 3. For this reason, any reconstruction algorithm based on these
methods will be limited to small multipliers r with r < O((log p)d). By contrast,

36 D. Jao, D. Jetchev, and R. Venkatesan

large multipliers for the analogous HNP over Fp pose no critical problems, and
this difference represents a fundamental new restriction in the elliptic curve con-
text. To analyze the statistical behavior of the output values for general oracles,
we can apply the techniques of [18] which make use of the Generalized Riemann
Hypothesis (see Section 5). However, these methods turn out to be insufficient
for establishing uniqueness. To show uniqueness for the analytic case (only), we
present a new character sum conjecture (and supporting evidence). Note that our
algebraic map is significantly different from the finite field trace map used for bit
extraction (see [13]) because the multipliers act via rational polynomial functions
on the hidden point.

In the finite field case, the statistical properties and the pseudorandom num-
ber generators can be studied via estimates of character sums over large intervals
(see [9,10,6,7,8,12]).

Remark 2.1. In the finite field case, one can use metrics and the LLL lattice re-
duction algorithm (see [19]) to reconstruct the secret efficiently (see [4] and [5]).
However, without such metrics, there are no analogous reconstruction algorithms
in the elliptic curve case. Nonetheless, we give a reconstruction algorithm using
Gröbner bases algorithms in the algebraic case when k is small (see Section 3). In
the analytic case, we use our character sum conjectures mentioned above to link
the problem of solving M-EC-HNP to that of decoding certain error-correcting
codes (see Section 4.2).

Remark 2.2. A detailed account on the general hidden number problem is given
in [25]. The slightly more general hidden number problem for elliptic curves (as
discussed in [2]) is the following:

EC-HNP: Let E be an elliptic curve over a finite field Fq. Recover a point P ∈
E(Fq) given k pairs (Qi, MSB�(x(P + Qi))) for some � > 0 and for k points
Q1, . . . , Qk ∈ E(Fq) chosen independently and at random.

3 Algebraic Case with Low Degree Extensions

In this section we outline an efficient reconstruction algorithm for the elliptic curve
hidden number problem in the case of Bits�(P) = x0(P) over field extensions of
constant degree. Since the technique is more transparent in the case of low degree
extensions, we first illustrate the algorithm for degree 2 and degree 3 extensions
before addressing the general case. Our method makes use of small multipliers and
for this reason is limited to constant degree extensions.

3.1 Elliptic Curves over Finite Field Extensions of Degree 2

Suppose E is an elliptic curve over Fp2 given by a Weierstrass equation y2 = x3 +
αx +β with α, β ∈ Fp2 . We will solve the M-EC-HNP in the algebraic case where
Bits�(P) = x0(P) and � = �log2 p�.
Proposition 3.1. Let � = �log2 p� and Bits�(P) = x0(P). There exists an effi-
cient algorithm (polynomial in log p) for solving the M-EC-HNP.

On the Bits of Elliptic Curve Diffie-Hellman Keys 37

Proof. Let w be a generator for Fp2/Fp, where w2 = u for some non-square el-
ement u ∈ F

×
p . Let Q ∈ E(Fp2) be the point which we are about to recover. It

suffices to recover x = (x0, x1). The key ingredient for the proof is the observa-
tion that the coordinate x(2Q) is expressible as a rational function purely of the
coordinate x. More precisely, we have the point doubling formula [26, III.2.3]

x(2Q) =
x4 − 2αx3 − 8βx − α2

4(x3 + αx + β)
.

We substitute x = x0 + wx1 into the right hand side and use w2 = u to write
down

x(2Q) =
P0(x0, x1) + wP1(x0, x1)
Q0(x0, x1) + wQ1(x0, x1)

,

where P0(x0, x1) and P1(x0, x1) are polynomials defined over Fp of degrees at most
4 and Q0(x0, x1) and Q1(x0, x1) are rational polynomials of degrees 3. Next, we
rationalize the denominators to obtain

x(2Q) =
P0Q0 − uP1Q1

Q2
0 − uQ2

1

+ w
P1Q0 − P0Q1

Q2
0 − uQ2

1

.

If x(2Q) = (x′
0, x

′
1) for some x′

0 ∈ Fp and x′
1 ∈ Fp then

x′
0 =

P0(x0, x1)Q0(x0, x1) − uP1(x0, x1)Q1(x0, x1)
Q2

0(x0, x1) − uQ2
1(x0, x1)

.

This formula provides a way of patching together the partial data. Indeed, x0 is
recovered directly as x0 = MSB�log2 p�(x(Q)). One also knows the value of x′

0 =
MSB�log2 p�(x(2Q)), so in order to recover x1 one needs to find a zero over Fp of
the polynomial

F (X) =

P0(x0, X)Q0(x0, X) − uP1(x0, X)Q1(x0, X) − x′
0Q0(x0, X)2 − ux′

0Q1(x0, X)2.

The explicit formula for P0, P1, Q0, Q1 show that F has constant degree (indepen-
dent of E and p) and non-zero leading coefficient. Since we know that the hidden
point Q exists, the polynomial must have a solution over Fp. Computing the Fp-
roots can be solved in polynomial time using standard algorithms. This solves the
M-EC-HNP in this particular case.

Remark 3.1. The solution of the M-EC-HNP in this case implies the security of
the Diffie-Hellman bits for algebraic output functions on degree 2 field extensions.
Indeed, if A is an oracle which computes x0(abP) from an input (P, aP, bP) then
solving M-EC-HNP means that one could reconstruct the secret abP .

3.2 Elliptic Curves over Extensions of Degree 3

Let E be an elliptic curve over Fp3 given by a Weierstrass equation

E : y2 = x3 + αx + β, α, β ∈ Fp3 .

38 D. Jao, D. Jetchev, and R. Venkatesan

We will show how to solve efficiently the M-EC-HNP in the algebraic case. The
proof will be similar to the previous case of extensions of degree two, except that it
will involve more technicalities. In what follows, x0(P) may be naturally extended
by considering trace(x(P)).

Proposition 3.2. Let � = �log2 p� and Bits�(P) = x0(P). There exists an effi-
cient algorithm (polynomial in log p) for solving the M-EC-HNP.

We first fix some choice for representing elements of the finite field. Let w be a
generator for the field extension Fp3/Fp. Without loss of generality (and to avoid
some technical difficulties), choose w so that it is a root of an irreducible polyno-
mial (over Fp) whose quadratic term is zero, i.e., w3 − uw − v = 0.

Proof. Let Q be the hidden point which we wish to recover. We write x(Q) =
(x0, x1, x2) and y(Q) = (y0, y1, y2). Let A be an oracle which computes the func-
tion r �→ x0(rQ) for any P ∈ E(Fp3). We make three queries to A with P = Q, 2Q
and 3Q, respectively. We use the fact that x(2Q) and x(3Q) are both rational func-
tions of x = x(Q). Let

x0(Q) = s1, x0(2Q) = s2, x0(3Q) = s3.

We will show how to put this information together, so that we can recover a finite
(constant in p) list of candidates for the point Q.

The query x0(3Q). According to [26, Ex.3.7], the multiplication-by-3 map on E
is given (as a rational function on the coordinates of Q) by

x(3Q) =
φ3(x, y)
ψ2

3(x, y)
,

where
ψ3(x, y) = 3x4 + 6αx2 + 12βx − α2

and

φ3(x, y) = 8y2(x6 + 5αx4 + 20βx3 − 5α2x2 − 4αβx − 8β2 − α3) =

= 8(x3 + αx + β)(x6 + 5αx4 + 20βx3 − 5α2x2 − 4αβx − 8β2 − α3).

Writing α = α0 +wα1 +w2α2, β = β0 +wβ1 +w2β2 and x = x0 +wx1 +w2x2

we can express

φ3

ψ2
3

=
P0(x0, x1, x2) + wP1(x0, x1, x2) + w2P2(x0, x1, x2)
Q0(x0, x1, x2) + wQ1(x0, x1, x2) + w2Q2(x0, x1, x2)

, (3.1)

where the Pi’s and Qi’s are polynomials with coefficients in Fp. The next step is
to write the above rational function as

φ3

ψ2
3

= r0(x0, x1, x2) + wr1(x0, x1, x2) + w2r2(x0, x1, x2),

On the Bits of Elliptic Curve Diffie-Hellman Keys 39

where ri’s are rational functions over Fp which are explicitly computable in terms
of α, β and w. To do this, we need to multiply the numerator and denominator of
(3.1) by a suitable factor so that the denominator becomes a polynomial in x0, x1

and x2 with coefficients in Fp. Since w is a root of the polynomial z3 −uz − v = 0
defined over Fp the rationalizing factor will be

F = (Q0 + w1Q1 + w2
1Q2)(Q0 + w2Q1 + w2

2Q2)

= Q2
0 + Q0Q1(w1 + w2) + Q0Q2(w2

1 + w2
2) + Q2

1w1w2

+ Q1Q2w1w2(w1 + w2) + Q2
2w

2
1w

2
2

= (Q2
0 + 2uQ0Q2 + uQ2

1 + 2vQ1Q2 + u2Q2
2)

+ w(−Q0Q1 + 2uQ1Q2 + vQ2
2) + w2(−Q0Q2 + Q2

1 − uQ2
1),

where w1 and w2 are the other two roots of the above polynomial of degree 3 and
for obtaining the last equality we have used w + w1 + w2 = 0, w1w2w3 = v
and w3 − uw − v = 0. Notice that Fψ2

3 is a polynomial in x0, x1, x2 of degree
24 defined over Fp, and Fφ3 (defined over Fp3) has degree 25. Thus, if we write
Fφ3 = p0 + wp1 + w2p2 where pi’s are polynomials in x0, x1, x2 defined over Fp

then we have ri = si/(Fψ2
3) and the degree of the denominator of r0 is at most

25, whereas the degree of its numerator is 24. The query x0(3Q) = s3 gives us
the value of the function r0(x0, x1, x2) at the triple (x0, x1, x2) ∈ F

3
p which we are

looking for.

The query x0(2Q). The point doubling formula reads as

x(2Q) =
x4 − 2αx3 − 8βx − α2

4(x3 + αx + β)
.

Since α = α0 + wα1 + w2α2, β = β0 + wβ1 + w2β2 and x = x0 + wx1 + w2x2, we
can express

x(2Q) =
R0(x0, x1, x2) + wR1(x0, x1, x2) + w2R2(x0, x1, x2)
T0(x0, x1, x2) + wT1(x0, x1, x2) + w2T2(x0, x1, x2)

.

As in the case of multiplication by 3, we rationalize the above function by multi-
plying the numerator and denominator by

F = (T 2
0 + 2uT0T2 + uT 2

1 + 2vT1T2 + u2T 2
2)+

+ w(−T0T1 + 2uT1T2 + vT 2
2) + w2(−T0Q2 + T 2

1 − uT 2
2)

and write it in the form

q0(x0, x1, x2) + wq1(x0, x1, x2) + w2q2(x0, x1, x2),

where the qi are Fp-rational functionswhose denominators have degree 9 andwhose
numerators have degree at most 10. As in the previous case, the query x0(2Q) = s2

gives us the value of the function q0(x0, x1, x2) at the triple (x0, x1, x2) ∈ F
3
p.

40 D. Jao, D. Jetchev, and R. Venkatesan

Recovering x(Q). We recover x0 = s1 from the query x0(Q) = s1. The query
x0(2Q) = s2 gives us a polynomial relation G(x1, x2) = 0 over Fp between the
(yet) unknown x1 and x2 coming from

q0(s1, x1, x2) = s2.

Note that the degree of G is at most 10. Similarly, the query x0(3Q) gives us a
polynomial relation H(x1, x2) = 0 over Fp coming from

r0(s1, x1, x2) = s3

of degree at most 25. Thus, (x1, x2) is a simultaneous solution over Fp of G and H .
We determine the solutions by taking the resultant Res(G, H), which is a polyno-
mial in a single variable of degree at most 250. Since we are only interested in
the Fp-solutions, it suffices to factor the resultant over Fp and look up the linear
factors. Thus, we obtain a finite (constant in p) set of possible solutions (x1, x2),
which proves the proposition.

3.3 Elliptic Curves over Fq

Let q = pk. Let E be an elliptic curve over Fq given by a Weierstrass equation

E : y2 = x3 + αx + β, α, β ∈ Fq.

We will describe an algorithm to solve the M-EC-HNP for � = �log2 p� and
Bits�(P) = x0(P) which will generalize the previous cases of extensions of de-
grees two and three.

Let w be a generator for the field extension Fq/Fp and let

f(z) = zk − u1z
k−1 − · · · − uk

be the minimal polynomial for w over Fp. As before, suppose that we have an oracle
A which computes x0(P ′) given P ′, aP ′, bP ′. Our goal is to recover x(Q) given

〈x0(mQ) : m = 1, 2, . . . , k〉.

Let x = x(Q) = x0 + wx1 + · · · + wk−1xk−1. The main idea is to interpret the
above data as a system of polynomial equations with coefficients in Fp and degrees
bounded independently of log p, and to use a Gröbner basis algorithm to solve the
system and thereby compute x0, x1, . . . , xk−1. To compute the equations in the
system, we use the division polynomials from [26, §III, Ex.3.7] to find x(mQ) =
ϕm(Q)/ψm(Q)2. Next, we observe that ϕm/ψ2

m is a rational function on x defined
over Fq, and we write it (after rationalizing the denominators) as

r
(m)
0 (x0, x1, . . . , xk−1) + wr

(m)
1 (x0, x1, . . . , xk−1) + · · ·

+ wk−1r
(m)
k−1(x0, x1, . . . , xk−1),

On the Bits of Elliptic Curve Diffie-Hellman Keys 41

where r
(m)
i (x0, x1, . . . , xk−1) are rational functions defined over Fp whose denom-

inators have degrees k deg(ψ2
m) = 2k(m2 −1) and whose numerators have degrees

m2 +(k − 1)(m2 − 1) = 2k(m2 − 1)+1 (here, we are using that the single-variate
polynomial ψm has degree m2 − 1 and φm has degree m2). Next, if x0(mQ) = sm

then we obtain the equation

r
(m)
0 (x0, x1, . . . , xk−1) = sm, ∀m = 1, . . . , k,

which gives us a polynomial equation over Fp

gm(x0, x1, . . . , xk−1) = 0,

whose degree is bounded by 2k(m2−1)+1. We then use a Gröbner basis algorithm
to try to compute a Gröbner basis for the ideal

I = 〈g1, . . . , gk〉 ⊂ Fp[x0, . . . , xk−1],

which will allow us to solve for x0, x1, . . . , xk−1.
Wide practical interest in Gröbner bases and continued improvements in algo-

rithmic implementations have pushed the limits of what can be solved by these
systems. For a 160-bit EC system it may soon be possible to solve the problem
using outputs of � ∈ [16, 32] bits per iteration (for example, by using a degree ten
extension, and outputting one co-ordinate of x(P)).

4 Analytic Case

We now consider the case of an output function which is equal to a group character
(such as the quadratic residuosity character). Let χ : F

×
q → C

× be a nontrivial
character of the multiplicative group F

×
q . Given a point P , we will look at the

values χ(x(P)) defined by the character χ. For completeness, if x(P) = 0 we set
χ(0) = 0.

4.1 Our Conjecture on Character Sums

Our conjecture is the following:

Conjecture 4.1. Let P, P ′ ∈ E(Fq) be two points, such that x(P) = x(P ′). There
exists ε > 0, such that for every B = Ω((log q)2),

∣∣∣∣∣∣

∑

r≤B

χ(x(rP))χ(x(rP ′))

∣∣∣∣∣∣
= O(B1−ε).

Although this bound suffices for our needs, the actual bound may be closer to
B0.5. Note that classical character sums over finite fields traditionally take the
form

∑
x∈Fq

χ(f(x)) for some polynomial f(x). General character sums over Fq

have been considered by Deligne in [11], but very little is known over short inter-
vals. Viewed as a sum over some function field, the above sum does not include all
polynomials of small degree, but only those that correspond to the map P �→ rP .

We obtain the following immediate corollary of the above conjecture.

42 D. Jao, D. Jetchev, and R. Venkatesan

Corollary 4.2. Assuming Conjecture 4.1, let P and P ′ be two points in E(Fq)
with x(P) = x(P ′) and let χ be the quadratic character. Let B = Ω((log q)2) For
randomly a chosen r ∈ {1, . . . , B}

∣∣∣∣Probr [χ(x(rP)) = χ(x(rP ′))] − 1
2

∣∣∣∣ = O(B−ε).

Remark 4.1. The purpose of this conjecture is to show that knowing enough of the
values of partial bits (namely, character values) of x(riP) for small multipliers
suffices to uniquely identify the point. If we assume Conjecture 4.1, and choose
P, P ′ ∈ E(Fq) such that x(P) = x(P ′), then for B and χ as above and random
integers r1, . . . , rt ∈ {1, B}, the values {χ(x(riP))}t

i=1 and {χ(x(riP
′))}t

i=1 will
be distinct with high probability.

4.2 Relationship to an Error-Correcting Code

Proofs of many hard-core bit theorems involve problems related to error correct-
ing codes, and the hard core property of the bit is equivalent to finding efficient
decoding algorithms for certain codes (see [1]). In our case this connection exists as
well, but it is unclear if the code admits an efficient decoding algorithm. However,
if decoding should turn out to be intractable then the code may be of independent
interest in cryptography. Therefore, it seems worthwhile to mention the resulting
code here.

We define a binary code that uses small multiples of points on elliptic curves
for encoding. We fix a finite field Fq and a bound B ≤ O(log q)2. Our choice of
code corresponds to a selection of a random sequence c = c1, . . . , ct with 1 ≤
ci ≤ B and a character χ : F

×
q → {±1}. The parameter t will be the length of the

code words, and Fq will roughly correspond to the message space in the following
manner. Given an easily invertible map m �→ P to map messages into points on
elliptic curves, our algorithm to encode m works as follows: let P be its image
on the curve and let P, P1, . . . , Pt be the sequence of nodes visited by the walk
specified by c. Our encoding of m is the sequence χ(x(P1)), . . . , χ(x(Pt)).

Our character sum assumptions imply that the minimum distance of the code
is (1

2 −ε)t. It is clear that any decoding algorithm that maps an uncorrupted code-
word into the point P can be used to solve the hidden number problem using the
analytic bit extractor, while correcting a corrupted codeword will yield a proof for
the pseudo-randomness of Diffie-Hellman bits.

4.3 Proof of Our Conjecture on Average

We provide some evidence in support of Conjecture 4.1 by showing that the con-
jecture holds on average for the quadratic character of Corollary 4.2, in the sense
that ∣∣∣∣∣∣

∑

P∈E

∑

r≤B

χ(x(rP))χ(x(rP ′))

∣∣∣∣∣∣
≤ (#E) · O(B1/2)

On the Bits of Elliptic Curve Diffie-Hellman Keys 43

for a fixed P ′ ∈ E when χ : F
×
q → {±1} is the quadratic character. We start with

the identity
∣∣∣∣∣∣

∑

P∈E

∑

r≤B

χ(x(rP))χ(x(rP ′))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

r≤B

χ(x(rP ′))

∣∣∣∣∣∣
·
∣∣∣∣∣
∑

P∈E

χ(x(P))

∣∣∣∣∣ ,

and we will prove that
∣∣∣∣∣
∑

P∈E

χ(x(P))

∣∣∣∣∣ = O(
√

#E).

Clearly this bound is sufficient to finish the proof. To prove it, observe that

∣∣∣∣∣
∑

P∈E

χ(x(P))

∣∣∣∣∣ =

∣∣∣∣∣∣

∑

x∈Fq

(1 + χ(x3 + αx + β))χ(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x∈Fq

χ(x4 + αx2 + βx)

∣∣∣∣∣∣
,

where y2 = x3 + αx + β is the equation for E. Let C denote the curve y2 =
x4 + αx2 + βx. Then C is singular if and only if β = 0 or 4α3 + 27β2 = 0. The
latter possibility may be excluded since E is nonsingular. Hence we are left with
two cases to consider. If C is nonsingular, then the claim follows from the work of
Deligne [11]. On the other hand, if β = 0, then α = 0, and

∣∣∣∣∣∣

∑

x∈Fq

χ(x4 + αx2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x∈Fq

χ(x2 + α)

∣∣∣∣∣∣
.

Now the curve C′ given by y2 = x2 + α is again nonsingular, so [11] again gives
the desired bound.

5 Expander Graphs and Character Sums

In this section we formalize the small multiplier hidden number problem in terms
of graph theory by defining a graph whose edges correspond to pairs of points
related by small multipliers. This graph is isomorphic (as a graph) to a certain
Cayley graph for (Z/NZ)×. Under the assumption of the Generalized Riemann
Hypothesis, we establish its eigenvalue separation. Our graph is directed, but stan-
dard techniques allow us to infer the rapid mixing of directed graphs by analyz-
ing its undirected version. The rapid mixing of the graph implies, on average and
with high probability, an upper bound on the number of solutions to the small
multiplier hidden number problem, for any function Bits� whose output values
are uniformly distributed over the points of the elliptic curve.

Let q = pk and assume that the number of points N = #E(Fq) is prime (this
is a reasonable cryptographic assumption).

44 D. Jao, D. Jetchev, and R. Venkatesan

5.1 Constructing the Graph GE and the Subgraph G′

Let m = O((log q)d) for d > 2 and some sufficiently large (but absolute) implied
constant, and Sm be the set of all prime numbers less than or equal to m. Define
a directed graph GE with nodes consisting of the points Q ∈ E(Fq) and edges of
the form {Q, rQ} for every prime r ∈ Sm.

Consider the subgraph G′ with vertices consisting of all points P = OE . Since
N is prime, this graph is isomorphic (only as a graph) to the Cayley graph of
(Z/NZ)× with respect to Sm. To establish such an isomorphism, choose a gen-
erator Q of E(Fq) and a primitive element g ∈ (Z/NZ)× and map each ver-
tex via sQ �→ gs and each edge via {Q, sQ} �→ {g, gs}. Using the arguments
of [18], one shows under GRH that the graph G′ is #Sm-regular and connected.
Specifically, the eigenvalues of the adjacency matrix are the character sums λχ =∑

p∈Sm
χ(p̄) =

∑
p≤m χ(p̄), where χ : (Z/NZ)× → C

× varies over the characters
of (Z/NZ)× and p̄ denotes the image of the prime p in (Z/NZ)×. The eigenvector
corresponding to the eigenvalue λχ is eχ = (χ(x))x∈(Z/NZ)× . The largest eigen-
value, corresponding to the trivial character, is λtriv = π(m). Hence, to show that
G′ has good expansion properties, we need an estimate on λχ. Such an estimate
can be obtained using the methods of [18]. More precisely, under the Generalized
Riemann Hypothesis, one can show that λχ < C(N)

√
π(m) for some constant

C(N) (depending only on N) with limN→∞ C(N) = 0, whenever χ is a non-trivial
character.

5.2 Distributional Properties

Consider a pseudorandom number generator that initializes P0 to some random
point on E and then performs the following steps:

1. Choose ri ∈ [1, B] at random (where B = O((log p)2).
2. Set Pi+1 = riPi.
3. Output Bits�(x(Pi+1)).

Given a sequence of �-bit strings h1, h2, . . . , hL, what is the probability that the
generator will output this sequence? Using the methods of [14], suitably adapted
to our situation, we prove the following proposition, which provides a satisfactory
bound as long as the second eigenvalue of the normalized adjacency matrix of the
graph G′ is small (which is the case for large enough N). This bound implies a cor-
responding upper bound on the number of solutions to the related hidden number
problem under the GRH assumption (although it would take some effort to work
out what exactly the corresponding bound is).

Proposition 5.1. Let h1, h2, . . . , hL be a sequence of values of the function

Bits� : E(Fq) \ {OE} → {0, 1}�,

such that the sets Fi := Bits−1
� (hi) have size μiv, where v = #V (GE). Let A be the

normalized adjacency matrix of G′, with second largest eigenvalue λ2. The number
of random walks on G′ of length L, such that the i-th node in the walk is equal to
hi is bounded by

∏L
i=1 Mi, where Mi =

√
μ2

i + λ2
2 + 2μi

√
1 − μiλ2.

On the Bits of Elliptic Curve Diffie-Hellman Keys 45

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λv be the eigenvalues of A. We denote by e1, . . . , ev

the corresponding eigenvectors. The eigenvalue λ1 = 1 is the trivial eigenvalue
and its eigenvector is e1 = (1, 1, . . . , 1). Let V1 ⊂ R

v be the subspace spanned by
e1 and V2 ⊂ R

v be the subspace spanned by e2, . . . , ev. The spaces V1 and V2 are
orthogonal to each other and are both preserved by A.

One can then write a given vector X ∈ R
v as X = X1 + X2, where X1 ∈ V1

and X2 ∈ V2. For each i = 1, . . . , L, denote by Pi the projection operator to the
set Fi. In other words, PiX is the vector Y ∈ R

v, whose coordinates Yj for each
1 ≤ j ≤ v are given by Yj = Xj if the j-th node of G′ is a point in Fi and Yj = 0
otherwise.

The proof is based on the observation that if X = e1/v, then the j-th com-
ponent of the vector Y =

∏L
i=1(PAi)X is exactly the probability that a random

walk of length L ends in the j-th node of G′ in such a way that for each i = 1, . . . , L
the walk has passed through Fi at the i-th step. Therefore, the probability that a
random walk lands in the set Fi at the i-th step is given by

P (walk passes through F1, . . . , FL) =
v∑

j=1

|Yj | ≤ √
v‖Y ‖ =

√
v

∥∥∥∥∥

L∏

i=1

(PAi)X

∥∥∥∥∥ ,

where ‖Y ‖ is the L2-norm of Y , i.e. ‖Y ‖ =
√∑v

i=1 |Yi|2.
We will be done if we find an upper bound for ‖PiAU‖/‖U‖ for arbitrary vectors

U ∈ R
v and projection operators Pi. Let U = U1 + U2 for U1 ∈ V1 and U2 ∈ V2.

Since AU1 = U1 and P 2
i = Pi, we obtain

‖PiAU‖ = ‖Pi(PiU1 + AU2)‖ ≤ ‖PiU1 + AU2‖.

Our goal is to give an upper bound of ‖PiU1+AU2‖ in terms of ‖U‖ = ‖U1+U2‖.
Since PiU1 is no longer a vector in V1 = (V2)⊥, we need to estimate the cosine of
the angle between PiU1 and AU2 and then use the law of cosines to express the
sum in terms of this estimate. Let θi be the angle between U1 and PiU1. Then

cos θi =
U1 · PiU1

‖U1‖‖PiU1‖ =
|Fi|√|Fi|

√|G| =

√
|Fi|
|G| =

√
μi.

In particular, we have 0 ≤ θi ≤ π
2 . Let φi be the angle between PiU1 and AU2.

Since φi ≤ π
2 + θi ≤ π, it follows that − cosφi ≤ − cos

(
π
2 + θi

)
and therefore

‖PiU1 + AU2‖2 = ‖PiU1‖2 + ‖AU2‖2 − 2‖PiU1‖‖AU2‖ cosφi

≤ ‖PiU1‖2 + ‖AU2‖2 − 2‖PiU1‖‖AU2‖ cos
(π

2
+ θi

)
.

But
− cos

(π

2
+ θi

)
= sin θi =

√
1 − cos2 θi =

√
1 − μi.

Moreover, ‖PiU1‖ ≤ μi|G| and ‖AU2‖ ≤ λ2|G|, so

‖PiU1 + AU2‖2 ≤ (μ2
i + λ2

2 + 2μi

√
1 − μiλ2)|G|.

46 D. Jao, D. Jetchev, and R. Venkatesan

Thus,

P (walk passes through F1, . . . , FL) ≤
L∏

i=1

√
μ2

i + λ2
2 + 2μi

√
1 − μiλ2.

References

1. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: FOCS 2003. Proceedings of the 44th Annual IEEE Symposium on Founda-
tions of Computer Science, p. 146. IEEE Computer Society, Washington, DC (2003)

2. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001)

3. Boneh, D., Shparlinski, I.: On the unpredictability of bits of the elliptic curve Diffie-
Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212.
Springer, Heidelberg (2001)

4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret
keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

5. Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic applications.
In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 675–681. ACM, New York (1997)

6. Bourgain, J.: New bounds on exponential sums related to the Diffie-Hellman distri-
butions. C.R. Math. Acad. Sci. Paris 338(11), 825–830 (2004)

7. Bourgain, J.: Estimates on exponential sums related to the Diffie-Hellman distribu-
tions. Geom. Funct. Anal. 15(1), 1–34 (2005)

8. Bourgain, J.: On an exponential sum related to the Diffie-Hellman cryptosystem.
Int. Math. Res. Not., pages Art. ID 61271, 15 (2006)

9. Canetti, R., Friedlander, J., Konyagin, S., Larsen, M., Lieman, D., Shparlinski, I.:
On the statistical properties of Diffie-Hellman distributions. Israel J. Math. 120,
23–46 (2000)

10. Canetti, R., Friedlander, J., Shparlinski, I.: On certain exponential sums and the dis-
tribution of Diffie-Hellman triples. J. London Math. Soc (2), 59(3), 799–812 (1999)

11. Deligne, P.: Cohomologie étale. In: de Boutot, J.F., Grothendieck, A., Illusie, L.,
Verdier, J.L. (eds.) Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1

2 ,
Avec la collaboration. Lecture Notes in Mathematics, vol. 569, Springer, Berlin
(1977)

12. Friedlander, J., Shparlinski, I.: On the distribution of the power generator. Math.
Comp (electronic) 70(236), 1575–1589 (2001)

13. Galbraith, S., Hopkins, H., Shparlinski, I.: Secure bilinear Diffie-Hellman bits. In:
Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp.
370–378. Springer, Heidelberg (2004)

14. Goldreich, O., Impagliazzo, R., Levin, L., Venkatesan, R., Zuckerman, D.: Security
preserving amplification of hardness. In: 31st Annual Symposium on Foundations of
Computer Science, vol. I, II, pp. 318–326. IEEE Comput. Soc. Press, Los Alamitos,
CA (1990)

15. González Vasco, M.I., Shparlinski, I.: On the security of Diffie-Hellman bits. In:
Cryptography and computational number theory, Progr. Comput. Sci. Appl. Logic,
vol. 20, pp. 257–268. Birkhäuser, Basel (2001)

On the Bits of Elliptic Curve Diffie-Hellman Keys 47

16. González Vasco, M.I., Shparlinski, I.: Security of the most significant bits of the
Shamir message passing scheme. Math. Comp (electronic) 71(237), 333–342 (2002)

17. Howgrave-Graham, N., Nguyen, P., Shparlinski, I.: Hidden number problem with
hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comp
(electronic) 72(243), 1473–1485 (2003)

18. Jao, D., Miller, S.D., Venkatesan, R.: Do all elliptic curves of the same order have the
same difficulty of discrete log? In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 21–40. Springer, Heidelberg (2005)

19. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

20. Nguyen, P.: The dark side of the hidden number problem: lattice attacks on DSA. In:
Cryptography and computational number theory, Progr. Comput. Sci. Appl. Logic,
Birkhäuser, Basel, vol. 20, pp. 321–330 (2001)

21. Nguyen, P., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology 15(3), 151–176 (2002)

22. Nguyen, P., Shparlinski, I.: The insecurity of the elliptic curve digital signature al-
gorithm with partially known nonces. Des. Codes Cryptogr. 30(2), 201–217 (2003)

23. Shparlinski, I.: On the generalised hidden number problem and bit security of XTR.
In: Bozta, S., Sphparlinski, I. (eds.) Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes. LNCS, vol. 2227, pp. 268–277. Springer, Heidelberg (2001)

24. Shparlinski, I.: Cryptographic applications of analytic number theory. In: Progress
in Computer Science and Applied Logic, Complexity lower bounds and pseudoran-
domness, vol. 22, Birkhäuser Verlag, Basel (2003)

25. Shparlinski, I.: Playing ‘hide-and-seek’ with numbers: the hidden number problem,
lattices and exponential sums. In: Public-key cryptography, Proc. Sympos. Appl.
Math., vol. 62, pp. 153–177. Amer. Math. Soc., Providence, RI (2005)

26. Silverman, J.: The arithmetic of elliptic curves. In: Graduate Texts in Mathematics,
vol. 106, Springer, New York (1992) Corrected reprint of the 1986 original

A Result on the Distribution of Quadratic

Residues with Applications to Elliptic Curve
Cryptography

Muralidhara V.N. and Sandeep Sen

Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi
Hauz Khas, New Delhi 110 016, India
{murali,ssen}@cse.iitd.ernet.in

Abstract. In this paper, we prove that for any polynomial function
f of fixed degree without multiple roots, the probability that all the
(f(x + 1), f(x + 2), ..., f(x + κ)) are quadratic non-residue is ≈ 1

2κ . In
particular for f(x) = x3 +ax+ b corresponding to the elliptic curve y2 =
x3 + ax + b, it implies that the quadratic residues (f(x + 1), f(x + 2), . . .
in a finite field are sufficiently randomly distributed. Using this result
we describe an efficient implementation of El-Gamal Cryptosystem. that
requires efficient computation of a mapping between plain-texts and the
points on the elliptic curve.

1 Introduction

The distribution of quadratic residues is an interesting problem in Number the-
ory and has many practical applications including Cryptography and Random
number generation. In particular it is conjectured to be random and there are
many constructions based on this conjecture [1,2]. Peralta [2] proves that for any
randomly chosen x ∈ Fq, the probability of (x+ 1, x+ 2, ..., x+ κ) matching any
particular quadratic sequence of length κ is in the range 1

2κ ± κ
3+

√
q

q . In this
paper we prove a similar result for the sequence (f(x+1), f(x+2), ..., f(x+κ)),
for any polynomial function f of fixed degree without multiple roots. In partic-
ular for f(x) = x3 + ax + b corresponding to the elliptic curve y2 = x3 + ax + b,
it implies that the quadratic residues (f(x + 1), f(x + 2), . . . in a finite field are
sufficiently randomly distributed.

The main motivation for this work is Elliptic Curve El-Gamal Cryptosystem
and Koblitz’s mapping from the message units to points on an elliptic curve. In
the following sections we briefly describe these two methods.

1.1 El-Gamal Cryptosystem

We start with a fixed publicly known finite field K, an elliptic curve E/K defined
over it and a base point B ∈ E/K (we refer to [5] for basic definitions and

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 48–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Result on the Distribution of Quadratic Residues 49

notations). Each user chooses a random integer b, which is kept secret, and
computes the point x = bB which is the public key. To send a message P to Bob,
Alice chooses a random integer k and sends the pair of points (kB, P + k(bB))
(where bB is Bob’s public key) to Bob. To read the message, Bob multiplies the
first point in the pair by his secret key b and subtracts the result from the second
point: P + k(bB) − b(kB) that yields P .

One of the commonly used ECC, El-Gamal Cryptosystem requires a mapping
from the message units to points on an elliptic curve, i.e., we need an efficient
algorithm which computes a mapping between the points on an elliptic curve
and a plain-text which forms the basis of encryption and decryption routines.

To date no polynomial time deterministic algorithm is known for this problem.
However we do have polynomial time randomized algorithms. We sketch such
an algorithm due to Koblitz [5] that makes the following assumptions:

– Fq is a field with pn elements (p > 3, prime).
– κ is a large enough integer so that we are satisfied with the failure probability

1
2κ when we attempt to embed a plain text message m.

– Message units are integers between 0 and M − 1.
– The finite field is chosen in such a way that q > κ · M .
– An integer m =

∑n−1
i=0 aip

i is mapped to (a0, a1, ..., an−1) ∈ Fq.

Koblitz’s algorithm

1. Given m, find an element x ∈ Fq corresponding to mκ + 1 and compute
f(x) = x3 + ax + b and check whether f(x) is a quadratic residue.
(This can be easily done because an element α ∈ Fq is a quadratic residue
if and only if α(q−1)/2 = 1).

2. If f(x) is a quadratic residue then we can find a y such that y2 = x3+ax+b
and we map m to Pm = (x, y).
(There are polynomial time probabilistic algorithms to find the square roots
in finite fields of odd order [5]).

3. If f(x) is not a quadratic residue then we try points corresponding to mκ +
j, 1 < j ≤ κ till we find an x such that f(x) is a quadratic residue.

Suppose x1 is the integer corresponding to the point x ∈ Fq. We can recover m
from the point Pm = (x, y) by dividing x1−1 by κ (x1−1 = mκ+j, 0 ≤ j < κ).

It has been conjectured that the probability that the above algorithm would
fail to find an embedding of a given plain-text message is ≈ 1

2κ , where κ is the
number of repetitions of step 3. If quadratic residues in a finite field of odd
order are randomly distributed then in fact the κ events (in the above algo-
rithm) are independent and hence the probability that the algorithm would fail
is exactly 1

2κ . In section 4 we show the existence of such finite fields; however
we do not know of any efficient construction of finite fields in which quadratic
residues are randomly distributed. A naive modification would be to map a mes-
sage to a point on the curve by choosing a random field element; by Hasse’s
theorem [5,6], we will succeed with probability about 1/2. But the drawback

50 V.N. Muralidhara and S. Sen

of such an approach would be that we have to send the random element with
each message for decryption, thereby increasing the message expansion factor
considerably.

1.2 Previous Results

There is an extensive literature on the distribution of quadratic residues and
non residues over finite Fields [1,2]. In particular, Peralta [2] proves that for any
randomly chosen x ∈ Fq, the probability of (x + 1, x + 2, ..., x + κ) matching
any particular binary sequence of length κ is in the range 1

2κ ± κ
3+

√
q

q . We note
that we are interested in the sequence(f(x + 1), f(x + 2), ..., f(x + κ)) where
f(x) = x3 + ax+ b for an elliptic curve y2 = x3 + ax+ b. In the rest of the paper
χ(x) denote the characteristic function defined as

χ(x) =

⎧
⎪⎨

⎪⎩

−1 if x is a quadratic non-residue
0 if x is zero
1 if x is quadratic residue

To prove our main theorem we prove the following lemma,

Lemma 1. Let g(x) be any polynomial of degree d which don’t have multiple
roots and k be a positive integer such that dk < p. If i1, i2, ..., im (m ≤ k), be
any m distinct integers between 1 and k, then

|
∑

x∈Fq

χ(g′(x)) |≤ d′
√

q (1)

where g′(x) =
∏m

j=1 g(x + ij)) and d′ = dm − 1, the degree of g′.

We note that C. Mauduit and A. Sárközy [1] prove results on the pseudorandom
properties of distribution of quadratic residues of arithmetic progression (not ex-
actly for the sequence that we are looking at). In the process, they prove that for
any g(x) ∈ Fq[X] polynomial of degree d that does not have multiple roots, then

|
∑

x∈Fq

χ(g(x)) |≤ 9d
√

q log q (2)

So with an additional constraint dk < p, our bound is better by a factor
O(log q).

1.3 Main Result

In this paper we address the following problem:
Let S = {(a0, a1, . . . , an−1) : ai ∈ Zp, 0 ≤ i < n, p prime > 3}. Order the

elements of S∗ in a reverse lexicographic order, that is,

A Result on the Distribution of Quadratic Residues 51

x1 = (1, 0, 0, . . . , 0).
x2 = (2, 0, 0, . . . , 0).
...
xp = (0, 1, 0, . . . , 0).
xp+1 = (1, 1, 0, . . . , 0).
...
x2p+1 = (1, 2, 0, . . . , 0).
...
xpn−1 = (p − 1, p − 1, p − 1, . . . , p − 1).

Let a, b ∈ S be two fixed elements. Given any κ ∈ N can we bound the number
of κ-sub-sequences

〈xl+1, xl+2, . . . , xl+κ〉, 0 ≤ l < pn − κ − 1

such that all of x3
l+i+axl+i+b, 1 ≤ i ≤ κ are quadratic non-residues by ≈ pn−1

2κ ?
If the answer to this question is yes, then in Koblitz’s algorithm, we can

begin with a random element xl, 0 ≤ l ≤ pn − κ. The probability that all of
x3

l+i + axl+i + b, 1 ≤ i ≤ κ are quadratic non-residues is ≈ 1
2κ which will mean

that the conjecture is correct.
In the following sections we prove a somewhat weaker version of this. We

prove that if we choose a random element x ∈ Fpn then the probability that all
of (x + i)3 + a(x + i) + b, 1 ≤ i ≤ κ are quadratic non-residues is ≈ 1

2κ . Note
that if x = xr and if p|(r + 1) then x + 1 = xr−p+1 else x + 1 = xr+1. Hence by
randomly picking an element in the above sequence and adding 1 to it repeatedly
we may be able to get at most p consecutive elements in the sequence.

By exploiting this result, we propose a provably efficient alternative to Koblitz
scheme in section 3 that requires similar computations as Koblitz’s original
method and the (expected) message expansion factor is also identical.

We formally prove the following theorem in next section,

Theorem 1. Let g(x) be any polynomial of degree d which don’t have multiple
roots. If κ is any positive integer < p

d then

| {x ∈ Fq | g(x + 1), g(x + 2), ..., g(x + κ)are quadratic non-residues} |

is between q−μκ(a,b)
2k − (dκ − 1)

√
q and q−μκ(a,b)

2k + (dκ − 1)
√

q, where q = pn and
0 ≤ μκ(a, b) ≤ 3.

2 Proof of the Main Result

Let Fpn be a field with q = pn (p is a prime > 3) elements. We define a
relation ∼ on Fpn as x ∼ y iff there is a non-negative integer k such that
x − y = 1+ 1 + . . . + 1, where 1 is added k times. This is an equivalence relation
on Fpn . Each equivalence class will have p (characteristic of Fpn) elements.

52 V.N. Muralidhara and S. Sen

Let α, β, γ be three distinct elements in the same equivalence class. We may
assume that if μ1 and μ2 are least positive integers such that α = β + μ1, α =
γ+μ2 then μ1 < μ2. Let kα, kβ , kγ be least positive integers such that α = β+kβ ,
β = γ + kγ , γ = α + kα. Now kα, kβ , kγ are such that α = kβ + kγ + kα + α and
kα + kβ + kγ = p (in general it can be any multiple of p, but the assumption
μ1 < μ2 makes it p). Hence one of kα, kβ , kγ is > p/3.

So we may assume that kα > p/3. Let k be any positive integer < p/3. Now
for any m integers, i1, i2, . . . , im such that 1 ≤ i1 < i2 < . . . < im ≤ k the
following should hold.

α − i1 /∈ {β − ij | 1 ≤ j ≤ m} ∪ {γ − ij | 1 ≤ j ≤ m}
Hence if α, β, γ are three distinct elements in the same equivalence class and

i1, i2, ..., im are any m integers such that 1 ≤ i1 < i2 < ... < im ≤ k < p/3 then
one of the following holds.

γ − i1 /∈ {α − ij | 1 ≤ j ≤ m} ∪ {β − ij | 1 ≤ j ≤ m}
α − i1 /∈ {β − ij | 1 ≤ j ≤ m} ∪ {γ − ij | 1 ≤ j ≤ m}
β − i1 /∈ {γ − ij | 1 ≤ j ≤ m} ∪ {α − ij | 1 ≤ j ≤ m}

This observation will be used to prove the following Lemma.

Lemma 2. Let g(x) be any polynomial of degree d which don’t have multiple
roots and k be a positive integer such that dk < p. If i1, i2, ..., im (m ≤ k), be
any m distinct integers between 1 and k, then

∏m
j=1 g(x + ij) cannot be written

as h(x)2 for some h(x) ∈ Fpn [X].

Proof. Let α1, α2, . . . αd be the roots of g in the splitting field. From the defini-
tion these must be distinct. Also note that α1 − i, α2 − i, αd − i are the roots of
g(x + i) ∀i, 1 ≤ i ≤ k.

If there exists a polynomial h(x) ∈ Fpn [X] such that

m∏

j=1

g(x + ij) = h(x)2 (3)

then m has to be even (as degree of
∏m

j=1 g(x + ij) is dm and degree of h(x)2

is even). So the multiplicity of any root of
∏m

j=1 g(x + ij) is even. As ij’s are
distinct αi − ia �= αi − ib for ∀a, b ≤ m , it follows that multiplicity of any root
of

∏m
j=1 g(x + ij) is ≤ d, hence should be 2.

From the arguments given before this lemma, at least one of α1 − i1, α2 − i1,
αd − i1 can not be of multiplicity 2 (if αi’s are not in the same equivalence class
then this is trivially true), which is a contradiction.

The proof of Lemma 1, follows from Lemma 2 and Weil’s theorem on finite
fields[6]. Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let A(x) =
∏κ

i=1(1 − χ(g(x + i)).1

S = {x ∈ Fq | g(x + 1), g(x + 2), ..., g(x + κ) are quadratic non-residues}
1 Similar idea was used in [3] and was suggested to us by Radhakrishnan[9].

A Result on the Distribution of Quadratic Residues 53

S′ = {x ∈ Fq |at least one of g(x + 1)., g(x + κ) is a quadratic residues}
S′′ = {x ∈ Fq | g(x + 1) = g(x + 2) =, ..., = g(x + κ) = 0}.

Clearly, Fq = S ∪ S′ ∪ S′′ and

A(x) =

⎧
⎪⎨

⎪⎩

2κ if x ∈ S,
0 if x ∈ S′

1 if x ∈ S′′

Let | S |= N and denote μκ(a, b) =| S′′ |. Note that α ∈ S′′ =⇒ g(α + 1) =
g(α + 2) =, ..., = g(α + κ) = 0 =⇒ α − 1, α − 2, ..., α − κ are roots of g(x) and
hence 0 ≤ μκ(a, b) ≤ d and μκ(a, b) = 0 if κ > d.

Now ∑

x∈Fq

A(x) = 2κN + μκ(a, b) (4)

Notice that

A(x) = 1 +
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

χ(g(x + i1)g(x + i2)...g(x + in))

Hence

N2κ+μκ(a, b)−q =
∑

x∈Fq

κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

χ(g(x+i1)g(x+i2)...g(x+in))

=
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

∑

x∈Fq

χ(g(x + i1)g(x + i2)...g(x + in))

By taking modulus,

| N2κ+μκ(a, b)−q |≤|
κ∑

m=1

(−1)m
∑

1≤i1<i2<...<in≤κ

∑

x∈Fq

χ(g(x+i1)g(x+i2)...g(x+in)) |

By triangular inequality,

| N2κ+μκ(a, b)−q |≤
κ∑

m=1

∑

1≤i1<i2<...<in≤κ

|
∑

x∈Fq

χ(g(x+i1)g(x+i2)...g(x+in)) |

Applying Lemma 1

≤
κ∑

m=1

κCm(dm − 1)
√

q

< (dκ − 1)2κ√
q

Hence q−μκ(a,b)
2k − (dκ − 1)

√
q < N < q−μκ(a,b)

2k + (dκ − 1)
√

q

54 V.N. Muralidhara and S. Sen

Corollary 1. Let y2 = x3 + ax + b be an elliptic curve over Fpn (p is a prime
> 3). Let g(x) = x3 + ax + b. If κ is any positive integer < p

3 then for a
randomly chosen x ∈ Fq the probability that all of g(x + 1), g(x + 2), ..., g(x + κ)
are quadratic non-residues is ≈ 1

2κ

For g(x) = x3 + ax + b, the result follows from Theorem 1.

3 A Modified ECC

Here we propose a modification for El-Gamal Cryptosystem with Koblitz’s
method for Embedding plain-texts on to the points of elliptic curve which ex-
ploits the result of the previous section. More specifically, given a plain-text
message, we try to map it to a random point on the Elliptic Curve by choosing
an initial random shift in Koblitz’s algorithm.

3.1 Key Generation

We suppose that all parties have agreed upon an elliptic curve E/K : y2 =
x3 + ax + b over a finite field K = Fpn and p > 3, a point P of high order on
it and a failure factor κ(< p/3). Let r1, r2, . . . , rt be t randomly chosen integers
between 1 and pn and they are made public.

Each party A does the following:

– Choose a random integer a.
– a is A’s Secret Key.
– aP is A’s Public Key.

3.2 Encryption

To send a message m to Alice, Bob does the following:

– Choose a random integer μ and s, 1 ≤ s ≤ t.
– Obtain Alice’s public key aP and Compute μaP a point on the elliptic

curve.
– Find x ∈ Fq corresponding to mκ + rs + 1.

If x3 + ax + b is a quadratic residue (or zero) then find a y such that
y2 = x3 + ax + b and take P (m, rs) = (x, y) else try with points
corresponding to mκ + rs + j, 1 < j ≤ κ.

– Send (μP, P (m, rs) + μaP) and s.

The probability that Bob fails to find P (m, rs) with the shift corresponding
to the random number rs is 1

2κ by Corollary 1. If he fails, then he tries with some
other random number s for 1 ≤ j ≤ t . If he fails with all the r1, r2, . . . , rt then
he would try with some random r’s until he succeeds and he would send this r
along with the message (This will happen with negligible probability (1/2)tκ).

A Result on the Distribution of Quadratic Residues 55

3.3 Decryption

To recover the message m, Alice does the following:

– Multiply the first point in the above pair by her secret key a and subtracts
the results from the second point to get the point

P (m, r) = (P (m, r) + μaP) − aμP .
(Here r is one of the public ri’s or is sent with the message).
Let P (m, r) = (x, y).

– Find x1, the integer corresponding to x.
– m is obtained by dividing x1 − 1 − r by κ.

i.e. x1 − 1 − r = mκ + j, 0 ≤ j < κ.

Our modified encryption and decryption schemes require similar computations
as Koblitz’s original method and the (expected) message expansion factor is
also identical. Moreover, our method has following advantages over the original
method:

1. The probability that Bob fails to encrypt a message with the shift corre-
sponding to a random number μ is provably 1

2κ .
2. The failure factor κ can be small, because even if we fail with one randomshift

we can try with another random shift. Small failure factor κ implies that the
message units can be large, as Mκ < q where is message units m are such
that m < M .

3. Random Embedding: The point P (m, r) not only depends on m, it also
depends on r, so even for a fixed message the point corresponding to the
message will be different on different occasions. This prevents an eavesdrop-
per from guessing the message. The usual procedure is to pad random bits,
but strictly speaking it does not really make the message random.

4 Randomizing the Distribution of Quadratic Residues in
a Finite Field

In this section we would like to address the question: Can we Randomize the
distribution of quadratic residues in a finite field? The following theorem says
that the answer is yes.

Theorem 2. Let S be a set with pn elements, p an odd prime, n any natural
number. Given x1, x2, . . . , x pn−1

2
in S, there exists two binary operations ⊕ and

� such that (S, ⊕, �) is a field and the quadratic residues are precisely these xi’s.

Proof. Let (Fq, +, ∗) be a field with q elements where q = pn and β be a
fixed non-residue in Fq. Let ai, i = 1, 2, . . . , (pn − 1)/2 be the nonzero ele-
ments of Fq, written as n-tuples of elements of Fq, whose first nonzero co-
ordinate lies in {1, 2, . . . , (p − 1)/2}, listed reverse lexicographically. Let S =
{x1, x2, . . . , x pn−1

2
, y1, y2, . . . , y pn−1

2
, O}.

56 V.N. Muralidhara and S. Sen

We define a bijection φ from S to Fq as2,

O �→ 0
xi �→ a2

i

yi �→ βa2
i , 1 ≤ i ≤ pn−1

2 .

With this we define two binary operations ⊕ and � on S as

a ⊕ b=φ−1{φ(a) + φ(b)}
a � b = φ−1{φ(a) ∗ φ(b)}, ∀a, b ∈ S

It can be easily verified that (S, ⊕, �) is a field and the quadratic residues in
S(+, �) are xi’s.

Both φ and φ−1 can be found in polynomial time, however finding φ−1 involves
finding square roots, which is very costly (compared to addition , multiplication,
inversion) as it takes O(log pn) operations. We note that each elliptic curve op-
eration involves 6 additions, 3 multiplications and 1 inversion (field operations).
Since implementation of El-Gamal Cryptosystem involves computing scalar mul-
tiplication, kP which would take 2 log k elliptic curve operations, this method is
not practical.

5 Weil’s Theorem

Theorem 3. (Weil’s Theorem) Let f(x) ∈ Fq[X] be any polynomial of pos-
itive degree that is not a square of any of polynomial.(f(x) �= h2(x) for all
h(x) ∈ Fq[X]). Let d be the number of distinct roots of f(x) in splitting field
over Fq, then we have

|
∑

x∈Fq

χ(f(x))| ≤ (d − 1)
√

q (5)

where

χ(x) =

⎧
⎪⎨

⎪⎩

−1 if x is a quadratic non-residue
0 if x is zero
1 if x is quadratic residue

For proof, the reader is referred to [6]

References

1. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences 1: Measure of
pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)

2. Peralta, R.: On the distribution of quadratic residues and nonresidues modulo a
prime number. Mathematics of Computation 58(197), 433–440 (1992)

2 This construction was pointed out by an anonymous reviewer for an earlier version
of the paper.

A Result on the Distribution of Quadratic Residues 57

3. Babai, L., G’al, A., Koll’ar, J., R’onyai, L., Szab’o, T., Wigderson, A.: Extremal Bi-
partite Graphs and Superpolynomial Lowerbounds for Monotone Span Programs.
In: Proc. ACM STOC 1996, pp. 603–611 (1996)

4. Gallant, R., Lambert, R., Vanstone, S.: Improving the parallelized Pollard lambda
search on binary anomalous curves. Mathematics of Computation 69, 1699–1705
(2000)

5. Koblitz, N.: A Course in Number theory and Cryptography. Springer, New York
(1994)

6. Lidl, R., Niederreiter, H., Cohn, P.M.: Encyclopedia of Mathematics and its
Applications20-Finite Fields. Cambridge University Press, Cambridge (1997)

7. Menezes, A.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-
ers, Dordrecht (1996)

8. Pollard, J.: Monte Carlo methods for index computation mod p. Mathematics of
computation 32, 918–924 (1978)

9. Radhakrishnan, J.: Private Communication
10. Van Oorschot, P., Wiener, M.: Parallel collision search with cryptanalytic applica-

tions. Journal of Cryptology 12, 1–28 (1999)
11. Wiener, M., Zuccherato, R.: Faster attacks on elliptic curve cryptosystems. In:

Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

Related-Key Attacks on the Py-Family of

Ciphers and
an Approach to Repair the Weaknesses�

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{gautham.sekar,souradyuti.paul,bart.preneel}@esat.kuleuven.be

Abstract. The stream cipher TPypy has been designed by Biham and
Seberry in January 2007 as the strongest member of the Py-family ci-
phers, after weaknesses in the other members Py, Pypy, Py6 were discov-
ered. One main contribution of the paper is the detection of related-key
weaknesses in the Py-family of ciphers including the strongest member
TPypy. Under related keys, we show a distinguishing attack on TPypy
with data complexity 2192.3 which is lower than the previous best known
attack on the cipher by a factor of 288. It is shown that the above attack
also works on the other members TPy, Pypy and Py. A second contribu-
tion of the paper is design and analysis of two fast ciphers RCR-64 and
RCR-32 which are derived from the TPy and the TPypy respectively.
The performances of the RCR-64 and the RCR-32 are 2.7 cycles/byte
and 4.45 cycles/byte on Pentium III (note that the speeds of the ciphers
Py, Pypy and RC4 are 2.8, 4.58 and 7.3 cycles/byte). Based on our se-
curity analysis, we conjecture that no attacks lower than brute force are
possible on the RCR ciphers.

1 Introduction

Timeline – The Py-Family of Ciphers

– April 2005, Design. The ciphers Py and Py6, designed by Biham and
Seberry, were submitted to the ECRYPT project for analysis and evaluation
in the category of software based stream ciphers [4]. The impressive speed

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT. The first
author is supported by an IWT SoBeNeT project. The second author is supported
by an IBBT (Interdisciplinary Institute for Broadband Technology) project. The in-
formation in this document reflects only the authors’ views, is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 58–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Related-Key Attacks on the Py-Family of Ciphers 59

of the cipher Py in software (about 2.5 times faster than the RC4) made it
one of the fastest and most attractive contestants.

– March 2006, Attack (at FSE 2006). Paul, Preneel and Sekar reported
distinguishing attacks with 289.2 data and comparable time against the cipher
Py [18]. Crowley [7] later reduced the complexity to 272 by employing a
Hidden Markov Model.

– March 2006, Design (at the Rump session of FSE 2006). A new
cipher, namely Pypy, was proposed by the designers to rule out the afore-
mentioned distinguishing attacks on Py [5].

– May 2006, Attack (presented at Asiacrypt 2006). Distinguishing at-
tacks were reported against Py6 with 268 data and comparable time by Paul
and Preneel [19].

– October 2006, Attack (presented at Eurocrypt 2007). Wu and Pre-
neel showed key recovery attacks against the ciphers Py, Pypy, Py6 with
chosen IVs. This attack was subsequently improved by Isobe et al. [11].

– January 2007, Design. Three new ciphers TPypy, TPy, TPy6 were pro-
posed by the designers [3]; the ciphers can very well be viewed as the
strengthened versions of the previous ciphers Py, Pypy and Py6 where the
above attacks should not apply. So far there exist no published attacks on
TPypy, TPy and TPy6.

– February 2007, Attack. Sekar, Paul and Preneel published distinguishing
attacks on Py, Pypy, TPy and TPypy with data complexities 2281 each [23].

– June 2007, Attack (to be presented at ISC 2007). Sekar, Paul and
Preneel showed new weaknesses in the stream ciphers TPy and Py. Exploit-
ing these weaknesses distinguishing attacks on the ciphers are constructed
where the best distinguisher requires 2275 data and comparable time.

– July 2007, Attack and Design (presented at WEWoRC 2007). Sekar,
Paul and Preneel mounted distinguishing attacks on TPy6 and Py6 with 2233

data and comparable time each [22]. Moreover, they have modified TPy6 to
design two new ciphers TPy6–A and TPy6–B which were claimed to be free
from all attacks excluding brute force ones.1

Contribution of the paper. The list that orders the Py-family of ciphers in
terms of increasing security is: Py6→Py→ Pypy → TPy6 → TPy → TPypy (the
strongest). The ciphers are normally used with 32-byte keys and 16-byte initial
values (or IV). However, the key size may vary from 1 to 256 bytes and the IV
from 1 to 64 bytes. The ciphers were claimed by the designers to be free from
related-key and distinguishing attacks [3,4,5].

(i) Related-key Weaknesses. One major contribution of the paper is the discov-
ery of related-key attacks due to weaknesses in the key scheduling algorithms of
the Py-family of ciphers. The main idea behind a related-key attack is that, the
attacker, who chooses a relation f between a pair of keys key1 and key2 (e.g.,
key1 = f(key2)) rather than the actual values of the keys, is able to extract

1 It has been reported very recently that Tsunoo et al. showed a distinguishing attack
on TPypy with a data complexity of 2199 [25].

60 G. Sekar, S. Paul, and B. Preneel

secret information from a cryptosystem using the relation f [2,13]. Related-key
weakness is a cause for concern in a protocol where key-integrity is not guaran-
teed or when the keys are generated manually rather than from a pseudorandom
number generator [12]. Related-key weaknesses are not new in the literature.
The usefulness of such type of attacks was first outlined by Knudsen in [14,15];
since then a good deal of research has been spent on related-key weaknesses on
block ciphers [2,12,13,16]. The related-key weaknesses of a block cipher can be
translated into attacking hash functions based on that particular block cipher
and vice versa [9,10,17,20,26,27].

On the other hand, discovery of related-key weaknesses of stream ciphers is not
very common in the literature, mainly due to the heavy operations executed in
one-time key-scheduling algorithms compared to the operations performed in it-
erative block ciphers. However, there is an example where related-key weaknesses
of the stream cipher RC4 are used to break the WEP protocol with practical
complexity [8]. Furthermore, there is a growing tendency by the designers nowa-
days to build hash functions from stream ciphers [6] instead of building them
from block ciphers. In such attempts, related-key weaknesses of stream ciphers
need to be addressed carefully.

In the paper, we show that, when used with the identical IVs of 16 bytes each,
if two long keys key1 and key2 of 256 bytes each, are related in the following
manner,

1. key1[16] ⊕ key2[16] = 1,
2. key1[17] �= key2[17] and
3. key1[i] = key2[i] ∀i �∈ {16, 17}

then the above relation, exploiting the weaknesses of the key setup algorithms
of Py-family of ciphers (i.e., TPypy, TPy, Pypy, Py), propagates through the
IV setup algorithms and finally induces biases in the outputs at the 1st and the
3rd rounds. Such related key pairs are used to build a distinguisher for each
of the aforementioned ciphers with 2193.7 output words and comparable time
(note that, in total, there are 22048 such pairs, while our distinguisher needs any
2193.7 randomly chosen pairs of keys). This result constitutes the best attack on
the strongest member of the Py-family of ciphers TPypy; they are also shown
to be effective on the other members TPy, Pypy and Py (see Table 1). These
related-key attacks work with any IV-size ranging from 16 to 64 bytes. However,
the attack complexities increase with shorter keys. Note that the usage of long
keys in the Py-family of ciphers makes it very attractive to be used as fast hash
functions (e.g., by replacing of the key with the message). In such cases, these
related-key weaknesses can turn out to be serious impediments.

(ii) The Ciphers RCR-32 and RCR-64. Finally, we make simple modifications
to the ciphers TPypy and TPy to build two new ciphers RCR-32 and RCR-64
respectively. In the modified designs, the key scheduling algorithms of RCR-32
and RCR-64 are identical with those of the TPypy and the TPy. The changes
are made only to the round functions where variable rotations are replaced with
constant rotations. Our extensive analyses show that the modifications not only

Related-Key Attacks on the Py-Family of Ciphers 61

Table 1. Attacks on the Py-family of stream ciphers (‘X’ denotes that the attack does
not work)

Attack Py6 Py Pypy TPy6 TPy TPypy

Crowley [7] X 272 X X 272 X

Isobe et al. [11] X 224 224 X X X

Paul et al. [18] X 288 X X 288 X

Paul-Preneel [19] 268 X X 268 X X

Sekar et al. [21] X 2275 X X 2275 X

Sekar et al. [22] 2233 X X 2233 X X

Sekar et al.[23] X 2281 2281 X 2281 2281

Wu-Preneel [29] X 224 224 X X X

Related key (this paper) X 2193.7 2193.7 X 2193.7 2193.7

free the Py-family ciphers from all the existing attacks, it also improves on
the performance of the ciphers without exposing them to new weaknesses (see
Sect. 5 for an elaborate security analysis). As a result, the cipher RCR-64 goes
on to become one of the the fastest stream ciphers published in the literature
(approximately 2.7 cycles per byte on Pentium III). The names are chosen to
reflect the functionalities involved in the ciphers. For example, RCR-64 denotes
Rolling, Constant Rotation and 64 bits output/round.

2 Description of the Stream Ciphers TPypy, TPy, Pypy
and Py

Each of the Py-family of ciphers is composed of three parts: (1) a key setup
algorithm, (2) an IV setup algorithm and (3) a round function or pseudorandom
bit generation algorithm (PRBG). The first two parts are used for the initial one-
time mixing of the secret key and the IV. These parts generate a pseudorandom
internal state composed of (1) a permutation P of 256 elements, (2) a 32-bit
array Y of 260 elements and (3) a 32-bit variable s. The key/IV setup uses
two intermediate variables: (1) a fixed permutation of 256 elements denoted by
internal permutation and (2) a variable EIV whose size is equal to that of the
IV. The round function, which is executed iteratively, is used to update the
internal state (i.e., P , Y and s) and to generate pseudorandom output bits. The
key setup algorithms of the TPypy, the TPy, the Pypy and the Py are identical.
Notation for different parts of the four ciphers is provided in Table 2.

Due to space constraints, the KS, the IV S1, the IV S2, the RF1 and the RF2,
as mentioned in Table 2, are described in the full version of the paper [24]. The
details of the algorithms can also be found in [3,4,5].

62 G. Sekar, S. Paul, and B. Preneel

Table 2. Description of the ciphers TPypy, TPy, Pypy and Py

TPypy TPy Pypy Py

Key Setup KS KS KS KS

IV Setup IV S1 IV S1 IV S2 IV S2

Round Function RF1 RF2 RF1 RF2

3 Notation and Convention

The notation and the convention followed in the paper are described below.

– The pseudorandom bit generation algorithm of a stream cipher is denoted
by PRBG.

– The outputs generated when key1 and key2 are used are denoted by O and
Z respectively.

– Oa
(b) (or Za

(b)) denotes the bth bit (b = 0 is the least significant bit or lsb) of
the second output word generated at round a when key1 (or key2) is used.
We do not use the first output word anywhere in our analysis.

– P a
1 , Y a+1

1 and sa
1 are the inputs to the PRBG at round a when key1 is used.

It is easy to see that when this convention is followed the Oa takes a simple
form: Oa = (s ⊕ Y a[−1]) + Y a[P a[208]]. The same applies to key2.

– Y a
1 [b], P a

1 [b] denote the bth elements of array Y a
1 and P a

1 respectively, when
key1 is used.

– Y a
1 [b]i, P a

1 [b]i denote the ith bit of Y a
1 [b], P a

1 [b] respectively.
– The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo

232 respectively, except when used with expressions which relate two elements
of array P . In this case they denote addition and subtraction over Z.

– The symbol ‘⊕’ denotes bitwise exclusive-or, ∩ denotes set intersection and
∪ denotes set union.

4 Related-Key Weaknesses in the Py-Family of Ciphers

We first choose two keys, key1 and key2 (each key is 256 bytes long), such that,

C1. key1[16] ⊕ key2[16] = 1 (without loss of generality, assume lsb of key1[16]
is 1),
C2. key1[17] �= key2[17] and C3. key1[i] = key2[i] ∀i �∈ {16, 17}.

Now we observe that the above relation between the keys can be traced through
various parts of the Py-family of ciphers.

4.1 Propagation of the Weaknesses Through the Key Setup
Algorithm

For key1 and key2, the values of the variable s through Algorithm A are tabulated
in Table 3. The Algorithm A is a part of the key setup algorithm KS (described
in the full version of the paper [24]).

Related-Key Attacks on the Py-Family of Ciphers 63

Algorithm A
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}

Table 3. The variable s after rounds 15, 16 and 17 of Algorithm A

End of
round

s (using key1) s (using key2)

15 sA
1,15 sA

2,15 = sA
1,15

16 sA
1,16 sA

2,16 = sA
1,16 − δ1 (say)

17 sA
1,17 sA

2,17 = sA
1,17 if key2[17] = key1[17] + δ1

If x is a 32-bit variable, let B(x) denote the least significant byte of x. In
Table 3,

δ1 = sA
1,16 − sA

2,16 (1)

= ROTL32((sA
1,15 + key1[16]), 8) ⊕ ip[B(sA

1,15 + key1[16])] (2)

− ROTL32((sA
2,15 + key2[16]), 8) ⊕ ip[B(sA

2,15 + key2[16])], (3)

where ip denotes internal permutation.

Now, if key2[17] = key1[17] + δ1 (call this the event D1), it is observed from
Algorithm A that the following equation is satisfied:

sA
1,17 = sA

2,17.

For event D1 to occur, δ1 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ1| = 8] ≈ 1
2
.

Hence,

Pr[D1] ≈ 2−9. (4)

If sA
1,17 = sA

2,17, then in the subsequent rounds of Algorithm A, the sA
1 and sA

2

remain the same, that is, sA
1,k = sA

2,k, where k = 18, 19, ..., 255.
Given that the D1 occurs, that is, sA

1 = sA
2 at the end of Algorithm A, or

sA
1,255 = sA

2,255, we now trace the values of s through Algorithm B which forms

64 G. Sekar, S. Paul, and B. Preneel

Algorithm B
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}

Table 4. s after rounds 15, 16 and 17 of Algorithm B given event D1 occurs

End of
round

s (using key1) s (using key2)

15 sB
1,15 sB

2,15 = sB
1,15

16 sB
1,16 sB

2,16 = sB
1,16 − δ2 (say)

17 sB
1,17 sB

2,17 = sB
1,17 if key2[17] = key1[17] + δ2

another part of the key setup. Table 4 compares the values of s after rounds 15,
16 and 17 of Algorithm B when key1 and key2 are used.

In Table 4,

δ2 = sB
1,16 − sB

2,16

= ROTL32((sB
1,15 + key1[16]), 8) ⊕ ip[B(sB

1,15 + key1[16])]

− ROTL32((sB
2,15 + key2[16]), 8) ⊕ ip[B(sB

2,15 + key2[16])]. (5)

Now, given event D1 occurs, i.e., sA
1 = sA

2 at the end of Algorithm A, if δ2 = δ1

(call this the event D2), we will have key2[17] = key1[17] + δ2 and hence from
Algorithm B, the following equation is satisfied:

sB
1,17 = sB

2,17.

For event D2 to occur, δ2 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ2| = 8] ≈ 1
22.4

.

Hence,

Pr[D2|D1] ≈ 2−10.4 ⇒ Pr[D2 ∩ D1] ≈ Pr[D1] · 2−10.4 ≈ 2−19.4. (6)

If sB
1,17 = sB

2,17, then in the subsequent rounds of Algorithm B, the sB
1 and sB

2

remain the same, that is, sB
1,k = sB

2,k, where k = 18, 19, ..., 255.
Given that the D2 ∩ D1 occurs, that is, sB

1 = sB
2 at the end of Algorithm B ,

or sB
1,255 = sB

2,255, the values of s and Y are traced through Algorithm C which

Related-Key Attacks on the Py-Family of Ciphers 65

forms the final part of the key setup. In the full version of the paper we compare
the values of s and Y after rounds 15, 16 and 17 of Algorithm C when key1 and
key2 are used [24]. Since Algorithm C and the corresponding table have striking
similarities with Algorithm A and Table 3, they are described in the full version
[24] and we provide only the results of our analysis. Now, given that the event
D2 ∩D1 occurs, i.e., sB

1 = sB
2 at the end of Algorithm B, if δ3 = δ1 (call this the

event D3), we will have key2[17] = key1[17] + δ3 and hence from Algorithm C,
the following equation is satisfied:

sC
1,17 = sC

2,17.

For event D3 to occur, δ2 should be an 8-bit integer. Running simulation, it is
determined that

Pr[|δ3| = 8] ≈ 1
2
.

Hence,

Pr[D3|D2 ∩ D1] ≈ 2−9 ⇒ Pr[D3 ∩ D2 ∩ D1] ≈ Pr[D2 ∩ D1] · 2−9 ≈ 2−28.4.(7)

If sC
1,17 = sC

2,17, then in the subsequent rounds of Algorithm C, the sC
1 and sC

2

remain the same, that is, sC
1,k = sC

2,k, where k = 18, 19, ..., 255 and Y1[j] = Y2[j],
where j �= 13.

4.2 Propagation of the Weaknesses Through the IV Setup

Given that the D3 ∩ D2 ∩ D1 occurs, i.e., sC
1 = sC

2 at the end of Algorithm C,
or sC

1,255 = sC
2,255, and Y1[i] = Y2[i] (i �= 13), we now trace the variables s, Y , P

and EIV through the first part of the IV setup. We now consider Algorithm D
which is a part of the IV setup. It is to be noted that s, Y (obtained after the
key setup) and the iv are the basic elements used in the IV setup to define the
P and the EIV and to update the s and the Y . We now model our attack in
such a way that the same IV is used with both the keys. Prior to the execution
of Algorithm D, the only elements of array Y which are used in the first part of
the IV setup are Y [0], Y [1], Y [Y MININD] and Y [Y MAXIND]. Since Y [13]
is not used, it follows that P1 (that is, P when key1 is used) and P2 (that is, P
when key2 is used) are identical.

Algorithm D
for(i=0; i<ivsizeb; i++)
{
s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

66 G. Sekar, S. Paul, and B. Preneel

In Algorithm D as well, Y [13] is not used to update the s or define the EIV
when the IV is of the recommended size of 16 bytes. For longer IVs, we can
induce the first difference in the keys (that is, where the least significant bits
alone differ) according to the size of the IV. An example is provided in the full
version [24]. It is to be noted that, if the IV-size is N bytes, the first difference in
the keys should be induced nowhere: neither (1) in the first N −1 bytes (i.e., key
bytes 0 to N −1), nor (2) in the last N −3 bytes (i.e., key bytes 260−N to 256).
Otherwise, it is immaterial as to where the first difference is set (i.e., anywhere

Algorithm E
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
/*s = s + EIV((i+ivsizeb-1)mod ivsizeb) + Y(YMAXIND-i); for IVS1.*/
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

from byte N to 259 − N) – in all the cases, bias induced will be approximately
identical (this is established from a large number of experiments).

We now consider Algorithm E. Again, Y [13] is not used to update the s or
the EIV (for both IV S1 and IV S2). Hence, at the end of Algorithm E, we have
s1 = s2, EIV1 = EIV2, P1 = P2 and Y1[i] = Y2[i] (where i �= 13). With this
result, we now proceed to the second part of the IV setup.

In the second part of the IV setup (that is, for IV S2), when i = 16 (i = 17 for
IV S1), the s generated using key1 and key2 are different due to the difference
in Y [13]. This causes the EIV s to be different in the following round and hence
P1 �= P2. In the subsequent rounds, the mixing becomes more random with the
result that at the end of 260 rounds, we have Y1[j] = Y2[j] where j ∈ {−3, ..., 12}.

IV setup part-2
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0) ^ (s&0xFF);
rotate(EIV);
swap(P(0), P(x0));
rotate(P);
Y(YMININD)=s=(s ^ Y(YMININD))+Y(x0);
/*s=ROTL32(s,8)+Y(YMAXIND);
Y(YMININD)+=s^Y(x0); for IVS1.*/
rotate(Y);

}

Related-Key Attacks on the Py-Family of Ciphers 67

This result holds only if x0 �= 13 when i = 0, ..., 15. The probability that this
occurs is (255

256)j+4 ≈ 1 when j ∈ {−3, ..., 12}. With this result, we now analyze
the keystream generation algorithm.

4.3 Propagation of the Weaknesses Through the Round Function

Here, we consider only the round function RF1 (see the full version [24]). The
formulas for the lsb of the outputs generated at rounds 1 and 3 when key1 (the
output words are denoted by O) and key2 (the output words are denoted by Z)
are used are given below.

O1
(0) = s1

1(0) ⊕ Y 1
1 [−1]0 ⊕ Y 1

1 [P 1
1 [208]]0, (8)

O3
(0) = s3

1(0) ⊕ Y 3
1 [−1]0 ⊕ Y 3

1 [P 3
1 [208]]0, (9)

Z1
(0) = s1

2(0) ⊕ Y 1
2 [−1]0 ⊕ Y 1

2 [P 1
2 [208]]0, (10)

Z3
(0) = s3

2(0) ⊕ Y 3
2 [−1]0 ⊕ Y 3

2 [P 3
2 [208]]0. (11)

Let C1, C2, C3 and C4 denote Y 1
1 [P 1

1 [208]]0, Y 3
1 [P 3

1 [208]]0, Y 1
2 [P 1

2 [208]]0 and
Y 3

2 [P 3
2 [208]]0 respectively. Each row in Table 5 gives the conditions on the ele-

ments of P1 and P2 which when simultaneously satisfied gives C1⊕C2⊕C3⊕C4 =
0. The corresponding probabilities are also given. From Table 5, it follows that
events G2, G3 and G4 can be ignored when compared to G1. We now state the
following theorem.

Theorem 1. s1
1 = s3

1 when the following conditions are simultaneously satisfied.

1. P 2
1 [116] ≡ −18 mod 32 (event E1),

2. P 3
1 [116] ≡ −18 mod 32 (event E2),

3. P 2
1 [72] = P 3

1 [239] + 1 (event E3),
4. P 2

1 [239] = P 3
1 [72] + 1 (event E4).

Proof. The formulas for s2
1 and s3

1 are given below:

s2
1 = ROTL32(s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]], P 2
1 [116] + 18 mod 32), (12)

s3
1 = ROTL32(s2

1 + Y 3
1 [P 3

1 [72]] − Y 3
1 [P 3

1 [239]], P 3
1 [116] + 18 mod 32). (13)

Condition 1 (i.e., P 2
1 [116] ≡ −18 mod 32) reduces (12) to

s2
1 = s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]].

Therefore, (13) becomes

s3
1 = ROTL32(s1

1 +
3∑

i=2

(Y i
1 [P i

1 [72]] − Y i
1 [P i

1[239]]), P 3
1 [116] + 18 mod 32).(14)

Now, condition 3 (i.e., P 2
1 [72]=P 3

1 [239]+1) and condition 4 (P 2
1 [239]=P 3

1 [72]+1)
together imply

∑3
i=2(Y

i
1 [P i

1 [72]] − Y i
1 [P i

1[239]]) = 0 and hence reduce (14) to

s3
1 = ROTL32(s1

1, P
3
1 [116] + 18 mod 32). (15)

68 G. Sekar, S. Paul, and B. Preneel

Table 5. When Gj (1 ≤ j ≤ 4) occurs, C1 ⊕ C2 ⊕ C3 ⊕ C4 = 0

Event Conditions Probability Result

G1 P 1
1 [208] = P 3

1 [208] + 2, P 1
2 [208] = P 3

2 [208] + 2 2−16 C1 = C2,C3 = C4

G2 P 1
1 [208] = P 1

2 [208], P 1
1 [208], P 1

2 [208] ≤ 12, P 3
1 [208] =

P 3
2 [208], P 3

1 [208], P 3
2 [208] ≤ 12

2−24.6 C1 = C3,C2 = C4

G3 P 1
1 [208] = P 3

2 [208] + 2, 2 ≤ P 1
1 [208] ≤ 12, P 3

2 [208] ≤
10, P 1

2 [208] = P 3
1 [208] + 2, 2 ≤ P 1

2 [208] ≤ 12,
P 3

1 [208] ≤ 10

2−25.4 C1 = C4,C2 = C3

G4 G2 ∩ G1 Negligible (<< 2−25) C1 = C2 = C3 = C4

Now, when event E2 (that is, P 3
1 [116] ≡ −18 mod 32) occurs, (15) becomes

s3
1 = ROTL32(s1

1, 0) = s1
1. (16)

This completes the proof. �
Now, s1

1 = s3
1 ⇒ s1

1(0) = s3
1(0) and Pr[E1] ≈ Pr[E2] ≈ 2−5 and Pr[E3] ≈

Pr[E4] ≈ 2−8. The four events E1, E2, E3 and E4 are assumed to be in-
dependent to facilitate calculation of bias. The actual value without indepen-
dence assumption is in fact more, making the attack marginally stronger. Hence,
Pr[E1 ∩ E2 ∩ E3 ∩ E4] = 2−26. Similarly, we have s1

2 = s3
2 when the following

conditions are simultaneously satisfied.

1. P 2
2 [116] ≡ −18 mod 32 (event E5), 2. P 3

2 [116] ≡ −18 mod 32 (event E6),
3. P 2

2 [72] = P 3
2 [239] + 1 (event E7), 4. P 2

2 [239] = P 3
2 [72] + 1 (event E8).

Again, s1
2 = s3

2 ⇒ s1
2(0) = s3

2(0) and

Pr[∩8
i=1Ei] =

1
252

. (17)

From the analysis in Sect. 4.1 and 4.2, when D3 ∩D2 ∩D1 occurs, Y 1
1 [j] = Y 1

2 [j]
where j ∈ {−3, ..., 12}. Y 1

1 [i] = Y 1
2 [i] ⇒ Y 1

1 [−1]0 = Y 1
2 [−1]0 and Y 3

1 [−1]0 =
Y 1

1 [1]0 = Y 1
2 [1]0 = Y 3

2 [−1]0. Therefore, from equations (8), (9), (10) and (11),
we observe that

O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0 (18)

holds when the following events simultaneously occur.

1. D3 ∩ D2 ∩ D1, 2. ∩8
i=1Ei and 3. G1.

In the following section, we calculate the probability that (18) is satisfied.

4.4 The Distinguisher

Let L denote the event (∩8
i=1Ei) ∩ (D3 ∩ D2 ∩ D1) ∩ (G1). From (7), (17) and

Table 5, we get: Pr[L] = 2−52 · 2−28.4 · 2−16 = 2−96.4. Assuming randomness

Related-Key Attacks on the Py-Family of Ciphers 69

of the outputs when event L does not occur (concluded from a large number of
experiments), we have:

Pr[O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0] =
1
2
(1 +

1
296.4

). (19)

To compute the number of samples required to establish an optimal distinguisher
with advantage greater than 0.5, we use the following equation:

n = 0.4624 · 1
p2

(20)

from [1,18]. Here, p = 2−97.4. Therefore, the number of samples is 2193.7.

4.5 Attacks with Shorter Keys

The related-key attacks described in the previous sections can be applied with
shorter keys also. However, the data complexity of the distinguisher increases
exponentially as key size decreases. For example, when the key size is 128 bytes,
the distinguisher works with 2229.7 data and comparable time. For 64-byte key
size, the data complexity of the distinguisher is 2247.7.

5 New Stream Ciphers – RCR-32 and RCR-64

As mentioned in Sect. 1, in the last couple of years, the Py-family of ciphers have
come under several cryptanalytic attacks. In spite of the weaknesses, the ciphers
retain some attractive features such as modification of the internal states with
clever use of rolling arrays and fast mixing of several arithmetic operations. This
motivates us to explore the possibility of designing new ciphers that retain all
the good properties of the Py-family and yet are secure against all the existing
and new attacks.

In this section, we propose two new ciphers, RCR-32 (Rolling, Constant
Rotation, 32 -bit output per round) and RCR-64 derived from TPypy and Tpy,
which are shown to be secure against all the existing attacks on the TPypy and
TPy. The speeds of execution of the RCR-64 and the RCR-32 in software are
2.7 cycles and 4.45 cycles per byte which are better than the performances of
the TPy (2.8 cycles/byte) and the TPypy (4.58 cycles/byte) respectively.

The key/IV setup algorithms of the RCR-64 and the RCR-32 are identical
with those of the TPy and the TPypy. The PRBGs of the RCR-64 and the RCR-
32 are also very similar to those of the TPy and the TPypy. The only changes
in the PRBGs are that: the variable rotation of the quantity s is replaced by
a constant rotation of 19. Single round of RCR-32 and RCR-64 are shown in
Algorithm 1.

5.1 Security Analysis

Due to restrictions on the page limit, the security analysis has been provided in
the full version of the paper [24].

70 G. Sekar, S. Paul, and B. Preneel

Algorithm 1. Round functions of RCR-32 and RCR-64
Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output (for RCR-64) or 32-bit random output (for RCR-32)

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, 19); /*Tweak - the variable s undergoes a constant, non-zero

rotation.*/
/* Output 4 or 8 bytes (the least significant byte first)*/

5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);/* This step is skipped for RCR-
32.*/

6: output ((s ⊕Y [−1]) + Y [P [208]]);
/* Update and rotate Y */

7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y);

6 Future Work and Conclusion

In this paper, for the first time, we detect weaknesses in the key scheduling
algorithms of several members of the Py-family. Precisely, we build distinguishing
attacks with data complexities 2193 each. Furthermore, we modify the ciphers
TPypy and TPy to generate two fast ciphers, namely RCR-32 and RCR-64,
in an attempt to rule out all the attacks against the Py-family of ciphers. We
conjecture that attacks lower than brute force are not possible on RCR ciphers.

Our present work leaves room for interesting future work. The usage of long
keys and IVs (e.g., possibility of 256-byte keys and 64-byte IVs) in RCR ciphers
makes them good candidates to be used as hash functions. One can also try to
combine a MAC and an encryption algorithm in a single primitive using RCR
ciphers. It seems worthwhile to address these issues in future.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

3. Biham, E., Seberry, J.: Tweaking the IV Setup of the Py Family of Ciphers – The
Ciphers Tpy, TPypy, and TPy6 (January 25, 2007), Published on the author’s
webpage at http://www.cs.technion.ac.il/∼biham/

4. Biham, E., Seberry, J.: Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays. ecrypt submission (2005)

5. Biham, E., Seberry, J.: Pypy (Roopy): Another Version of Py. ecrypt submission
(2006)

http://www.cs.technion.ac.il/~biham/

Related-Key Attacks on the Py-Family of Ciphers 71

6. Chang, D., Gupta, K., Nandi, M.: RC4-Hash: A New Hash Function based on RC4
(Extended Abstract). In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, Springer, Heidelberg (2006)

7. Crowley, P.: Improved Cryptanalysis of Py. In: Workshop Record of SASC 2006 -
Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryptology, Leuven,
Belgium, pp. 52–60 (February 2006)

8. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

9. Handschuh, H., Knudsen, L., Robshaw, M.: Analysis of SHA-1 in Encryption Mode.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Hei-
delberg (2001)

10. Handschuh, H., Naccache, D.: SHACAL. In: First Nessie Workshop, Leuven (2000)

11. Isobe, T., Ohigashi, T., Kuwakado, H., Morii, M.: How to Break Py and Pypy by a
Chosen-IV Attack. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/060

12. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

13. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

14. Knudsen, L.R.: Cryptanalysis of LOKI. In: Matsumoto, T., Imai, H., Rivest, R.L.
(eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 22–35. Springer, Heidelberg (1993)

15. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

16. Knudsen, L.: A key-schedule weakness in SAFER K-64. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 274–286. Springer, Heidelberg (1995)

17. Dunkelman, O., Biham, E., Kellar, N.: A Simple Related-Key Attack on the Full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, Springer, Heidelberg
(2006)

18. Paul, S., Preneel, B., Sekar, G.: Distinguishing Attacks on the Stream Cipher Py. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 405–421. Springer, Heidelberg
(2006)

19. Paul, S., Preneel, B.: On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 69–83.
Springer, Heidelberg (2006)

20. Research and Development in Advanced Communication Technologies in Europe,
RIPE Integrity Primitives: Final Report of RACE Integrity Primitives Evaluation
(R1040), RACE (June 1992)

21. Sekar, G., Paul, S., Preneel, B.: New Weaknesses in the Keystream Generation
Algorithms of the Stream Ciphers TPy and Py. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) Information Security Conference 2007. LNCS,
vol. 4779, pp. 249–262. Springer, Heidelberg (2007)

22. Sekar, G., Paul, S., Preneel, B.: Attacks on the Stream Ciphers TPy6 and Py6 and
Design of New Ciphers TPy6-A and TPy6-B. In: WEWoRC-Western European
Workshop on Research in Cryptology (2007)

23. Sekar, G., Paul, S., Preneel, B.: Weaknesses in the Pseudorandom Bit Generation
Algorithms of the Stream Ciphers TPypy and TPy, available at
http://eprint.iacr.org/2007/075.pdf

http://eprint.iacr.org/2007/075.pdf

72 G. Sekar, S. Paul, and B. Preneel

24. Sekar, G., Paul, S., Preneel, B.: Related-key Attacks on the Py-family of Ciphers
and an Approach to Repair the Weaknesses, available at
http://www.cosic.esat.kuleuven.be/publications/article-932.pdf

25. Tsunoo, Y., Saito, T., Kawabata, T., Nakashima, H.: Distinguishing Attack against
TPypy. Selected Areas in Cryptography (to appear, 2007)

26. Wang, X., Yao, A., Yao, F.: Cryptanalysis on SHA-1. Cryptographic Hash Work-
shop, NIST, Gaithersburg (2005)

27. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

28. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

29. Wu, H., Preneel, B.: Differential Cryptanalysis of the Stream Ciphers Py, Py6 and
Pypy. In: Naor, M. (ed.) Eurocrypt 2007. LNCS, vol. 4515, pp. 276–290. Springer,
Heidelberg (2007)

http://www.cosic.esat.kuleuven.be/publications/article-932.pdf

Related-Key Differential-Linear Attacks on

Reduced AES-192

Wentao Zhang1, Lei Zhang2, Wenling Wu2, and Dengguo Feng2

1 State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

zhangwt06@yahoo.com
2 State Key Laboratory of Information Security,

Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
{zhanglei1015,wwl,feng}@is.iscas.ac.cn

Abstract. In this paper, we study the security of AES-192 against
related-key differential-linear cryptanalysis, which is the first attempt
using this technique. Among our results, we present two variant attacks
on 7-round AES-192 and one attack on 8 rounds using a 5-round related-
key differential-linear distinguisher. One key point of the construction of
the distinguisher is the special property of MC operation of AES. Com-
pared with the best known results of related-key impossible differential
attacks and related-key rectangle attacks on AES-192, the results pre-
sented in this paper are not better than them, but the work is a new
attempt, and we hope further work may be done to derive better results
in the future.

Keywords: AES, cryptanalysis, related-key, differential-linear attack.

1 Introduction

AES [11] supports 128-bit block size with three different key lengths (128, 192
and 256 bits). Because of the importance of AES, it is very necessary to con-
stantly reevaluate its security under various cryptanalytic techniques. In this
paper, we study the security of 192-bit key version of AES (AES-192) against
related-key differential-linear cryptanalysis.

Related-key attacks [1] allow an attacker to obtain plaintext-ciphertext pairs
by using related (but unknown) keys. The attacker first searches for possible
weaknesses of the encryption and key schedule algorithms, then choose an ap-
propriate relation between keys and make two encryptions using the related keys
expecting to derive the unknown key information. We can see that the attacker
is authorized more power in a related-key environment than in a non-related-key
environment. Therefore, for many block ciphers which have some weaknesses in
its key schedule, including AES, IDEA and Shacal-1 etc, better cryptanalytic
results have been derived in related-key environments compared with the known
results in non-related-key environments.

If we view the expanded keys as a sequence of words, then the key schedule
of AES-192 applies a non-linear transformation once every six words, whereas

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 73–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 Z. Wentao et al.

the key schedules of AES-128 and AES-256 apply non-linear transformations
once every four words. This property brings better and longer related-key differ-
entials of AES-192, so directly makes AES-192 more susceptible to related-key
differential-sort attacks than AES-128 and AES-256.

In the last few years, the security of AES-192 against related-key differential-
sort attacks has drawn much attention from cryptology researchers [7,2,13,3,8].
In [7], Jakimoski et al. presented related-key differential attacks on 6-round AES-
192 using a 4-round differential. In [7,2,13], impossible differential attacks on
7- and 8-round AES-192 were presented using almost the same impossible differ-
ential distinguisher, but the attack complexity is improved one by one. In [3,8],
the security of AES-192 against the related-key boomerang attack were studied
or improved. Hitherto, the best known related-key attack on AES-192 is due to
Jongsung Kim et al.[8], which can attack up to 10-round AES-192.

Modern block ciphers try to avoid good long statistical properties in order
to resist traditional attacks such as differential [4] and linear cryptanalysis [10],
but usually good short properties still exist. Thus, assuming the attacker can
construct two consecutive short distinguishers both with good statistical prop-
erties, and the two distinguishers can be combined together to form a long sta-
tistical property, then the attacker can attack more rounds using this combined
long distinguisher. Up to now, there are mainly three combined attacks among
cryptanalytic techniques of block ciphers (only considering non-related-key envi-
ronment), they are impossible-differential attack [5], boomerang attack [12] and
differential-linear attack [9]. Impossible differential attack and boomerang attack
can both be regarded as combined differential-sort attacks. When mounting an
impossible differential attack, the attacker needs to construct two segments of
differentials both with probability 1, one in the forward direction, and the other
in the reverse direction, where the intermediate differences contradict each other.
While when mounting a boomerang attack, the attacker also needs to construct
two segments of differentials with some probability (not always 1), then com-
bines two suits of the two differentials (thus four short differentials) in a certain
manner to derive a long distinguisher. Differential-linear attack is a combination
of differential and linear attacks. When mounting a differential-linear attack, the
attacker first constructs a differential with probability 1, then constructs a linear
approximation, in which the differential segment creates the linear approxima-
tion also with probability 1.

As we mentioned above, there are several research results on the security
of AES-192 against related-key impossible differential attack and related-key
boomerang attack. But we have not see any research result on the security of
AES-192 against differential-linear attack. Therefore, we study this problem in
this paper.

Amongst our results, we can attack up to 8-round AES-192. We summarize
our results along with the best known ones under related-key boomerang attack
[8] and related-key impossible differential attack of AES-192 [13] in Table 1.

Here is the outline. In Section 2, we present a formalized description of
differential-linear cryptanalysis. In Section 3, we give a brief description of AES

Related-Key Differential-Linear Attacks on Reduced AES-192 75

and some notations. In Section 4, we construct a 5-round related-key differential-
linear distinguisher. Using this distinguisher, Section 5 presents an attack on
7-round AES-192; Section 6 presents an attacks on 8 rounds; And Section 7
presents a second attack on 7 rounds. Finally, Section 8 summarizes this paper.

Table 1. Comparison of Some Previous Attacks with Our Attacks

Source Number of Data Time Number of Attack
Rounds Complexity Complexity Keys Type

Ref [8] 8 294RK-CP 2120 2

9 285RK-CP 2182 64 RK Boomerang
10 2125RK-CP 2182 256
10 2124RK-CP 2183 64

Ref [13] 7 252RK-CP 280 2

8 264.5RK-CP 2177 2 RK Imp.Diff
8 288RK-CP 2153 2
8 2112RK-CP 2136 2

This paper 7 222RK-CP 2187 2

8 2118RK-CP 2165 2 RK Diff-Linear
7 270RK-CP 2130 2

RK – Related-key, CP – Chosen plaintext,
Time complexity is measured in encryption units.

2 Differential-Linear Cryptanalysis

In this section, we give a formalized description of differential-linear cryptanal-
ysis. As for related-key differential-linear cryptanalysis, we only need to modify
the corresponding variables.

Differential-linear cryptanalysis can also be regarded as linear cryptanalysis
whose scenario is modified from known plaintext attack into chosen plaintext
attack. For a r-round block cipher, first applying a r1-round differential charac-
teristic from the first to the r1-th round, then applying a r2-round linear approx-
imation from the (r1 + 1)-th round to the (r1 + r2)-th round, as to 1R-attack,
note that r1 + 1 + r2 = r.

In the following, we give a formalization of differential-linear cryptanalysis in
the framework of linear cryptanalysis using the concepts above. The following
r2-round linear approximation with bias ε is applied from the (r1 + 1)-th round
to the (r − 1)-th round:

Inr1+1 · ΓIr1+1 ⊕ Outr−1 · ΓOr−1 ⊕ K · ΓK = 0 (1)

where Ini, Outi denote the input and output of the i-th round, K is the cipher
key, and ΓIi, ΓOi, ΓK represent their masks respectively.

76 Z. Wentao et al.

Assuming that the subkey of the last round kr is known, then we can get
Outr−1 from kr and the ciphertext C. Let Outr−1 = Dec(C, kr), then we have:

Inr1+1 · ΓIr1+1 ⊕ Dec(C, kr) · ΓOr−1 ⊕ K · ΓK = 0 (2)

Let equation (2) and another (2) for two different plaintexts be XORed, then:

(Inr1+1 ⊕ In∗
r1+1) · ΓIr1+1 ⊕ (Dec(C, kr) ⊕ Dec(C∗, kr)) · ΓOr−1 = 0 (3)

If the two plaintexts are chosen appropriately and make

(Inr1+1 ⊕ In∗
r1+1) · ΓIr1+1 = 0 (4)

Then we have the following linear approximation:

(Dec(C, kr) ⊕ Dec(C∗, kr)) · ΓOr−1 = 0 (5)

Equation (5) has a bias of 2ε2 as calculated by Piling-up Lemma. Thus, from
Ref.[10] , 8 × (2ε2)−2 chosen plaintext pairs are required for a high success rate
attack.

Now, let us look at equation (4). In Langford and Hellman’s original paper
[9] and many other related papers, the difference in the bits (or bytes) of Inr1+1

masked by ΓIr1+1 are chosen to be zero, thus obviously equation (4) holds. But
notice that equation (4) only requires that the parity of the bits difference masked
by ΓIr1+1 equals to zero, rather than directly fixing the bits difference to zero. In
[6], the authors also expressed this observation, but their work did not use such
a point. In this paper, we use this point to construct a 4-round differential and
a 1-round linear approximation which make equation (4) hold, otherwise only a
3-round differential can be reached because of the good diffusion of AES. More-
over, the key point of the construction of the 4-round differential is the use of one
special property of MC operation of AES, which will be explained in detail later.

3 Description of AES

The AES algorithm encrypts or decrypts data blocks of 128 bits by using keys
of 128, 192 or 256 bits. The 128-bit plaintexts and the intermediate state are
treated as byte matrices of size 4 × 4, which is shown as follows:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Each round is composed of four operations:

• SubBytes(SB): applying the S-box on each byte.
• ShiftRows(SR): cyclically shifting each row (the i ’th row is shifted by i bytes

to the left, i = 0, 1, 2, 3).

Related-Key Differential-Linear Attacks on Reduced AES-192 77

• MixColumns(MC): multiplication of each column by a constant 4×4 matrix
M over the field GF (28), where M is

⎛

⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟⎠

• AddRoundKey(ARK): XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional
AddRoundKey operation is performed before the first round. We also assume
that the MixColumns operation is omitted in the last round of the reduced-round
variants.

The number of rounds is dependent on the key size, 10 rounds for 128-bit
keys, 12 for 192-bit keys and 14 for 256-bit keys.

The key schedule of AES-192 takes the 192-bit secret key and expands it to
thirteen 128-bit subkeys. The expanded key is a linear array of 4-byte words and
is denoted by G[4 × 13]. Firstly, the 192-bit secret key is divided into 6 words
G[0], G[1] . . .G[5]. Then, perform the following:

For i = 6, . . . 51, do
If (i ≡ 0 mod 6), then G[i] = G[i − 6] ⊕ SB(G[i − 1] ≪ 8) ⊕ RCON [i/6]
Else G[i] = G[i − 6] ⊕ G[i − 1]

where RCON [·] is an array of predetermined constants, ≪ denotes rotation of
a word to the left by 8 bits.

3.1 Notations

In the rest of this paper, we will use the following notations: xI
i denotes the

input of the i’th round, while xS
i , xR

i , xM
i and xO

i respectively denote the inter-
mediate values after the application of SubBytes, ShiftRows, MixColumns and
AddRoundKey operations of the i’th round. Obviously, xO

i−1 = xI
i holds.

Let ki denote the subkey in the i’th round, and the initial whitening subkey is
k0. In some cases, the order of the MixColumns and the AddRoundKey operation
in the same round is changed, which is done by replacing the subkey ki with an
equivalent subkey wi, where wi = MC−1(ki).

Let (xi)Col(l) denote the l’th column of xi, where l = 0, 1, 2, 3. And (xi)j

the j’th byte of xi(j = 0, 1, . . . 15), here Column(0) includes bytes 0,1,2 and 3,
Column(1) includes bytes 4,5,6 and 7, etc.

Let λ denote a 8-bit mask, which specifies the bits involved in a linear ap-
proximation. The symbol “ · ” denote a bitwise AND operation.

4 A 5-Round Related-Key Differential-Linear
Distinguisher

In our following attacks, we use two kinds of differences between the two
related keys. Choosing the first one, we can apply the 5-round related-key

78 Z. Wentao et al.

differential-linear distinguisher from the very beginning. While choosing the sec-
ond one, we will apply the distinguisher from the second round.

In this section, we only consider the first case, and deal with the second one
later.

We choose the difference between the two related keys as follows:
((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)).

Hence, the subkey differences in the first 8 rounds are as presented in Table 2
according to the key schedule of AES-192.

Table 2. The first Subkey Differences

Round(i) Δki,Col(0) Δki,Col(1) Δki,Col(2) Δki,Col(3)

0 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
1 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
2 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
3 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
4 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, b) (0, 0, 0, b)
5 (a, 0, 0, b) (0, 0, 0, b) (a, 0, 0, b) (0, 0, 0, b)
6 (0, 0, c, b) (0, 0, c, 0) (a, 0, c, b) (a, 0, c, 0)
7 (0, 0, c, b) (0, 0, c, 0) (0, d, c, b) (0, d, 0, b)
8 (a, d, c, 0) (0, d, 0, 0) (0, d, c, b) (0, d, 0, b)

a, b, c and d are non-zero byte differences.

Now, assuming the subkey differences are as presented in Table 2, we will build
a 5-round related-key differential-linear distinguisher in the following. Firstly, a
4-round related-key differential, then a 1-round related-key linear approximation.

Choosing plaintext pairs (P, P ∗) with difference (0, 0, 0, 0), (0, 0, 0, 0), (a, 0,
0, 0), (a, 0, 0, 0). Then, the input difference ΔxI

1 is canceled by the whitening
subkey difference. The zero difference ΔxI

1 is preserved through all the op-
erations until the AddRoundKey operation of the second round, as the sub-
key difference of the first round is zero. Thus, we can get ΔxI

3 = Δk2 =
((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), where only one byte is active. Then
the next three operations in the third round will convert the active byte to a com-
plete column of active bytes, and after the AddRoundKey operation with k3, we
will get ΔxO

3 = ((N, N, N, N), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)), where N denotes
a non-zero byte (possibly distinct). Applying the SubBytes and ShiftRows oper-
ations of the 4’th round, ΔxO

3 will evolve into ΔxR
4 = ((δ, 0, 0, 0), (0, 0, 0, N),

(N, 0, N, 0), (N, N, 0, 0)), where δ specially denotes the non-zero byte in po-
sition 0 of ΔxR

4 , we can find that only one byte is active both in Column
0 and Column 1. Hence, after the following MC operation, we get ΔxM

4 =
((02 ·δ, δ, δ, 03 ·δ), (N, N, N, N), (?, ?, ?, ?), (?, ?, ?, ?)). Finally, applying the key
addition with k4, we get ΔxO

4 = ((?, δ, δ, N), (?, N, N, N), (?, ?, ?, ?), (?, ?, ?, ?)).
Notice that the byte difference is equal in byte position 1 and 2 of ΔxO

4 , ie., the
following equation holds with probability 1:

Δ(xO
4)1 = Δ(xO

4)2 �= 0 (6)

Related-Key Differential-Linear Attacks on Reduced AES-192 79

In the following SB operation of the 5’th round, we use a linear approximation.
δ is a non-zero byte, so there are (224 − 216) possible values for the 4-byte
element ((xO

4)1, (x∗O
4)1, (xO

4)2, (x∗O
4)2) which satisfies (xO

4)1 ⊕ (x∗O
4)1 = (xO

4)2 ⊕
(x∗O

4)2 �= 0. Through calculation, we find that for every possible 8-bit linear
mask λ ∈ {1, 2, . . . , 255}, 8389632 elements satisfy the following relation out of
all the (224 − 216) 4-byte elements:

λ · {(xS
5)1 ⊕ (x∗S

5)1 ⊕ (xS
5)2 ⊕ (x∗S

5)2} = 0 (7)

Thus, the bias of the above equation is 8389632
224−216 − 1

2 ≈ 2−9.
For convenience, we write equation (7) as follows:

λ · {Δ(xS
5)1 ⊕ Δ(xS

5)2} = 0 (8)

Because the value of subkeys keep unchanged in the attacks, after the SR
operation and AR operation (XOR with w5) in the 5’th round, we finally get
the following 5-round differential-linear distinguisher with a bias of about 2−9:

λ · {Δ(xW
5)13 ⊕ Δ(xW

5)10} = 0 (9)

In the following attacks, we will fix λ = 0x01.
Using this 5-round related-key differential-linear distinguisher, we will present

some attacks on 7- and 8-round AES-192 in the following sections.

5 Attacking 7-Round

At first, we assume the values of a, b, c, and d are all known, ie., we have two
related keys K1 and K2 with the required subkey differences listed in Table 2.
We will deal with the conditions on the related keys to achieve these subkey
differences at the end of this section.

In order to calculate the difference in the position of bytes 10 and 13 of xW
5 ,

we need to know 8 bytes in positions 2,3,5,6,8,9,12,15 of w6 and all the 16 bytes
of k7. According to the key schedule of AES-192, we can calculate the first two
columns of k6 (thus the first two columns of w6) if k7 is known. So we only need
to guess 4 bytes in positions 8,9,12,15 of w6 and all the 16 bytes of k7.

The attack procedure is as follows:

5.1 The Attack Procedure

1. Generate m plaintext pairs, for each plaintext pair (P, P ∗), P ⊕ P ∗ =
(0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0).

2. Ask for the encryption of the plaintext pairs, one plaintext P under K1, and
the other plaintext P ∗ under K2.

3. Initialize an array of 2160 counters to zeroes.
4. Guess the value of the subkey bytes in positions 8,9,12,15 of w6 and all

the 16 bytes of k7, then perform the followings: For each ciphertext pair,
decrypt to get the intermediate two bytes (xW

5)10 and (xW
5)13. Calculate

(0x01) · {Δ(xW
5)13 ⊕ Δ(xW

5)10}, if it equals to 0, increment the counter in
the array which relates to the 20 guessing bytes of the subkeys.

80 Z. Wentao et al.

5. Assume the highest entry is Tmax, and the lowest entry Tmin, if |Tmax −
m/2| > |Tmin − m/2|, then adopt the key candidate corresponding to Tmax.
If |Tmax −m/2| < |Tmin −m/2|, then adopt the key candidate corresponding
to Tmin.

5.2 Analysis of the Attack Complexity

Based on Matsui’s rule of thumb, approximately m = 23 × (2−9)−2 = 221 plain-
text pairs are needed. So the data complexity is 222 chosen plaintexts. And the
time complexity is about 2160 × 222 × 2/7 ≈ 2180 7-round AES encryptions.

In the above attack, we assumed that the values of a, b, c and d are known.
Here, the value a can be chosen by the attacker. The value c can be calculated
from b and (k5)15 = (k7)3 ⊕ (k7)7. And the value d can be calculated from c and
(k7)6. The value b is the result of application of SubBytes operation, so there
are 127 possible values of b given the value of a. Hence, we only need to repeat
the attack for all the possible values of b. Therefore, the total time complexity
is multiplied by 27, ie. 2187, and the data complexity remains unchanged.

6 Attacking 8-Round

To attack 8-round AES-192, we adopt another key difference between the two
related keys as follows: ((a, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),
(0, 0, 0, 0)). The corresponding subkey differences in the first 8 rounds are as
presented in Table 3, which will be used in the attacks in this section.

Table 3. The Second Subkey Differences

Round(i) Δki,Col(0) Δki,Col(1) Δki,Col(2) Δki,Col(3)

0 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
1 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
2 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
3 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
5 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
6 (a, 0, 0, b) (0, 0, 0, b) (a, 0, 0, b) (0, 0, 0, b)
7 (a, 0, 0, b) (0, 0, 0, b) (a, 0, c, b) (a, 0, c, 0)
8 (0, 0, c, b) (0, 0, c, 0) (a, 0, c, b) (a, 0, c, 0)

a, b and c are non-zero byte differences.

As in section 3, we can construct a 5-round differential-linear distinguisher
between rounds 2-6 using a very similar approach. Assume the input difference
ΔxM

1 = (0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0), then the following relation
holds with a bias of about 2−9:

λ · {Δ(xW
6)13 ⊕ Δ(xW

6)10} = 0 (10)

Related-Key Differential-Linear Attacks on Reduced AES-192 81

In the following attack, we need to guess the corresponding subkey bytes in
round 1, 7 and 8. In order to decrease the amount of guessing subkey bytes,
we make two restrictions on the data pairs which are finally used in counting.
First, we restrict that the byte difference in positions 8,10,11,12,13,15 of xO

6 are
all zero. Thus, to calculate Δ(xW

6)13 and Δ(xW
6)10, we only need to know the

values of (xO
6)9 and (xO

6)14 because of the linearity of MC operation. Also if
this first restriction holds, then the byte difference in positions 2,3,8,9,12,15 of
xW

6 are all known, which is equal to the corresponding byte of Δw7. Second,
we restrict that the byte difference in positions 0,3,9,10,14,15 of xO

7 are all zero.
Thus, to meet the condition on the 6 bytes of ΔxW

6 , we only need to know the
value in byte positions 1,2,8,11,12,13 of xO

7 . Also if this second restriction holds,
then the byte difference in positions 0,2,3,5,6,7 of ciphertexts are all known. The
attack procedure is also illustrated in Figure 1, where ? denotes an unknown
byte, ∗ denotes a byte we need to know.

⎛

⎜⎝

a 0 ? ?
? 0 0 ?
? ? 0 0
0 ? ? 0

⎞

⎟⎠ AR−−→

⎛

⎜⎝

0 0 ? ?
? 0 0 ?
? ? 0 0
0 ? ? 0

⎞

⎟⎠ −→

Round 1 :
SB−−→

⎛

⎜⎝

0 0 ? ?
? 0 0 ?
? ? 0 0
0 ? ? 0

⎞

⎟⎠ SR−−→

⎛

⎜⎝

0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?

⎞

⎟⎠ MC−−−−→
Prob.

⎛

⎜⎝

0 0 a a
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠ AR−−→

⎛

⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠ −→

−→ · · · · · · · · · · · · · · · · · · the 5-round differential-linear distinguisher · · · · · · · · · · · · · · · · · · ←−

Round 6 : . ←−

⎛

⎜⎝

? ? ? ?
? ? ? ∗
? ? ∗ ?
? ? ? ?

⎞

⎟⎠ MC−1
←−−−−−
Prob.

⎛

⎜⎝

? ? 0 0
? ? ∗ 0
? ? 0 ∗
? ? 0 0

⎞

⎟⎠ ←−

Round 7 :
SB−1
←−−−−

⎛

⎜⎝

? ? 0 0
? ? ∗ 0
? ? 0 ∗
? ? 0 0

⎞

⎟⎠ SR−1
←−−−−

⎛

⎜⎝

? ? 0 0
? ∗ 0 ?
0 ∗ ? ?
0 ? ? 0

⎞

⎟⎠ AR←−−

⎛

⎜⎝

? ? Δ(w7)8 Δ(w7)12
? ∗ Δ(w7)9 ?

Δ(w7)2 ∗ ? ?
Δ(w7)3 ? ? Δ(w7)15

⎞

⎟⎠ MC−1
←−−−−−
Prob.

⎛

⎜⎝

0 ∗ ∗ ∗
∗ ∗ 0 ∗
∗ ∗ 0 0
0 ∗ ∗ 0

⎞

⎟⎠ ←−

Round 8 :
SB−1
←−−−−

⎛

⎜⎝

0 ∗ ∗ ∗
∗ ∗ 0 ∗
∗ ∗ 0 0
0 ∗ ∗ 0

⎞

⎟⎠ SR−1
←−−−−

⎛

⎜⎝

0 ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟⎠ AR←−−

⎛

⎜⎝

0 ∗ ∗ ∗
∗ 0 ∗ ∗
c c ∗ ∗
b 0 ∗ ∗

⎞

⎟⎠

Fig. 1. Related-key Differential-linear Attack on 8-round AES-192

The attack procedure is as follows:

1. Choose a structure of 264 plaintexts, which have certain fixed values in 8
byte positions 0,3,4,5,9,10,14,15 and take all the 264 possible values in the
other 8 byte positions. Generate n structures S1, S2, . . . , Sn.

2. Compute n structures S∗
1 , S∗

2 , . . . , S∗
n by XORing the plaintexts in S1, S2,

. . . , Sn with a 128-bit value ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)).

82 Z. Wentao et al.

3. Ask for the encryption of the pool Si under K1, and of the pool S∗
i under

K2 (i = 1, 2, . . . , n). Denote the ciphertexts of the pool Si by Ti, and the
ciphertexts of the pool S∗

i by T ∗
i .

4. For all ciphertexts Ci ∈ Ti, compute Di = Ci ⊕ ((0, 0, c, b), (0, 0, c, 0), (0, 0, 0,
0), (0, 0, 0, 0)). Select all the ciphertext pairs (Di, C

∗
i), where C∗

i ∈ T ∗
i , sat-

isfying that Di and C∗
i have equal values in byte positions 0,2,3,5,6 and 7.

5. Guess the 8 byte values in positions 1,2,6,7,8,11,12 and 13 of k0, and perform
the followings:

(a) For each pair remained after step 4, encrypt the corresponding plaintexts
to get the difference of column 2 of xM

1 using the guess of bytes 2,7,8,13
of k0. If the column difference is (a, 0, 0, 0), then keep the pair remained.
If not, discard the pair.

(b) For each pair remained after step 5.a, calculate the difference of column
3 of xM

1 using the guess of bytes 1,6,11,12 of k0. If the column difference
is (a, 0, 0, 0), then keep the pair remained. If not, discard the pair.

(c) Initialize an array of 2144 counters to zeroes.
(d) Guess the 10 byte values in positions 1,4,8,9,10,11,12,13,14 and 15 of k8,

and perform the followings:

i. For each pair remained after step 5.b, decrypt the ciphertexts to get
the difference in positions 2 and 3 of xW

7 using the guess of (k8)10 and
(k8)13. And check if both Δ(xW

7)2=Δ(w7)2 and Δ(xW
7)3=Δ(w7)3

hold. If not, then discard the data pair.
ii. For each pair remained after step 5.d.i, decrypt to get the difference

in positions 8 and 9 of xW
7 using the guess of (k8)8 and (k8)15. And

check if both Δ(xW
7)8=Δ(w7)8 and Δ(xW

7)9=Δ(w7)9 hold. If not,
then discard the data pair.

iii. For each pair remained after step 5.d.ii, decrypt to get the difference
in positions 12 and 15 of xW

7 using the guess of (k8)9 and (k8)12.
And check if both Δ(xW

7)12=Δ(w7)12 and Δ(xW
7)15=Δ(w7)15 hold.

If not, then discard the data pair.
iv. From (k8)col(2) and (k8)col(3), we can calculate (k7)col(1), then we can

know (w7)5 and (w7)6. Together with the guess of (k8)1, (k8)4, (k8)11
and (k8)14, we can do the followings: for each pair remained after
step 5.d.iii, decrypt to get the two bytes in positions 9 and 14 of xO

6 .
Because the byte difference in the other three bytes are all zero in the
last two columns of xO

6 , we can calculate the difference in positions
10 and 13 of xW

6 , and calculate (0x01) · {Δ(xW
6)13 ⊕ Δ(xW

6)10}, if it
equals to 0, increment the counter in the array which relates to the
18 bytes of the subkeys.

v. Assume the highest entry is Tmax, and the lowest entry Tmin, if
|Tmax − m/2| > |Tmin − m/2|, then adopt the key candidate corre-
sponding to Tmax. If |Tmax − m/2| < |Tmin − m/2|, then adopt the
key candidate corresponding to Tmin.

Related-Key Differential-Linear Attacks on Reduced AES-192 83

6.1 Analysis of the Attack Complexity

For each plaintext pair P ∈ Si and P ∗ ∈ S∗
i , we have P ⊕P ∗ = ((a, ?, ?, 0), (0, 0,

?, ?), (?, 0, 0, ?), (?, ?, 0, 0)), where ? denotes any byte value. Thus, from the two
pools of Si and S∗

i , 2128 plaintext pairs can be derived, therefore we can derive
2128m plaintext pairs in all. After the filtering in step 4, there remains about
280m pairs. Then, after the filtering in step 5.a and 5.b, about 216m pairs will
remain for the 8 bytes guess of k0, and all the remained pairs satisfy the required
input difference of the 5-round differential-linear distinguisher. After step 5.d.i,
about m pairs will remain for the 8 bytes guess of k0 and 2 bytes guess of k8.
After step 5.d.ii, about 2−16m pairs will remain for the 8 bytes guess of k0 and
4 bytes guess of k8. After step 5.d.iii, about 2−32m pairs will remain for the 8
bytes guess of k0 and 6 bytes guess of k8. Now, the remaining pairs can be used
to do counting, 2−32m = 221 pairs are needed, so m = 253. Therefore, the data
complexity is about 2118 plaintexts.

The time complexity is dominated by step 5.a, step 5.b and step5.d.iv. Step 5.a
requires about 280+53+32+1 = 2166 one-round encryptions. Step 5.b requires
about 248+53+64+1 = 2166 one-round encryptions. Step 5.d.iv requires about
2−32+53+64+80+1 = 2166 two-round decryptions. Therefore, the whole time com-
plexity is about 2165 8-round AES encryptions.

In the above attack, we assumed that the values of a, b and c are known. Here,
the value a can be chosen by the attacker. The value b can be calculated from a
and (k5)12 = (k7)0 ⊕ (k7)4 = (k8)4 ⊕ (k8)12. And the value c can be calculated
from b and (k7)7 = (k8)11 ⊕ (k8)15. Hence, we need not to guess the values of b
and c.

7 Another Attack on 7-Round AES-192

From the 8-round attack in section 5, we can naturally get a truncated attack
on 7 rounds.

In this truncated 7-round attack, we restrict that the 6 byte difference in
positions 2,3,8,9,12 and 15 take certain fixed values. And we need to guess two
subkey bytes in positions 5 and 6 of k7, and decrypt to get (xM

6)10 and (xM
6)13.

We need to repeat this attack for all the possible values of b given a, and all
the possible values of c given a and b. In all, the data complexity is about 270

plaintexts, the time complexity is about 2130 7-round AES encryptions.

8 Summary

We applied the related-key differential-linear cryptanalysis to AES-192. Amongst
our results, we presented two variant attacks on 7-round AES-192, and an attack
on 8 rounds. The comparison of our attack results and other related-key attack
results on AES-192 are summarized in Table 1. The best known related-key im-
possible differential attacks also can reach up to 8 rounds, and the attack com-
plexity is better than that in our paper. Moreover, the best known related-key

84 Z. Wentao et al.

boomerang attacks can reach up to 10 rounds! However, our attack in this pa-
per is a new try, it is the first investigation on the strength of AES-192 against
differential-linear cryptanalysis in related-key environments.

We stress that the key point of our 5-round distinguisher is the special prop-
erty of MC operation of AES, ie., the coefficients in two bytes of one column
are equal. The same property is used in the related-key differential attack on
AES-192 [13], but the attack can only reach 7 rounds.

Finally, we point out that maybe longer effective related-key differential-linear
distinguisher exists for AES, or using some auxiliary techniques (eg., enhanced
differential-linear attack [6], multi-linear approximation), better attack results
may be derived. And we expect further research on related-key differential-linear
cryptanalysis of AES.

Acknowledgment

We would like to thank anonymous referees for their helpful comments and sug-
gestions. The research presented in this paper is supported by the National Nat-
ural Science Foundation of China (No. 90604036, 60603018); the National Basic
Research 973 Program of China (No. 2004CB318004); the National High Tech-
nology Research and Development 863 Program of China (No. 2007AA01Z470).

References

1. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

2. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 21–33. Springer, Heidelberg (2006)

3. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle At-
tacks. In: EUROCRYPT 2005. LNCS, vol. 3557, pp. 507–525. Springer, Heidelberg
(2005)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23.
Springer, Heidelberg (1999)

6. Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanaly-
sis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

7. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

8. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Encryption 2007. LNCS, vol. 4593, pp. 225–241. Springer,
Heidelberg (2007)

9. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

Related-Key Differential-Linear Attacks on Reduced AES-192 85

10. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

11. National Institute of Standards and Technology. Advanced Encryption Standard
(AES), FIPS Publication 197 (November 26, 2001),
Available at http://csrc.nist.gov/encryption/aes

12. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

13. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-192. In: Cryptography 2006. LNCS,
vol. 4356, pp. 15–27 (2007)

http://csrc.nist.gov/encryption/aes

Improved Meet-in-the-Middle Attacks on

Reduced-Round DES�

Orr Dunkelman, Gautham Sekar, and Bart Preneel

1 Katholieke Universiteit Leuven
Department of Electrical Engineering ESAT/SCD-COSIC

2 Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{orr.dunkelman,gautham.sekar,bart.preneel}@esat.kuleuven.be

Abstract. The Data Encryption Standard (DES) is a 64-bit block ci-
pher. Despite its short key size of 56 bits, DES continues to be used to
protect financial transactions valued at billions of Euros. In this paper,
we investigate the strength of DES against attacks that use a limited
number of plaintexts and ciphertexts. By mounting meet-in-the-middle
attacks on reduced-round DES, we find that up to 6-round DES is sus-
ceptible to this kind of attacks. The results of this paper lead to a better
understanding on the way DES can be used.

1 Introduction

The Data Encryption Standard (DES) is a well known and widely deployed
cipher since its standardization in 1977. Its wide deployment, even today, makes
it a target for repeated analyses, as the security of many electronic transactions
still relies on DES. The cipher is a Feistel block cipher with 16 rounds, 64-bit
block and 56-bit key.

Due to its importance, DES has received a great deal of cryptanalytic at-
tention. However, besides using the complementation property, there were no
short-cut attacks against the cipher until differential cryptanalysis was applied
to the full DES in 1991 [2].

In [3], Chaum and Evertse presented several meet in the middle attacks on
reduced variants of DES. They showed that the first six round of DES are sus-
ceptible to meet-in-the-middle attacks, such as rounds 2–8. They also showed
that their approach cannot be extended to more than seven rounds of DES.

In 1987 Davies described a known plaintext attack on DES [6]. The attack
obtains 16 linear equations of the key bits given sufficiently many known plain-
texts by examining the bits that are shared by neighboring S-boxes. Davies’ on
the full DES requires more plaintexts than the entire code book. For 8-round

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government and by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy). The second author is supported by an
IWT SoBeNeT project.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 86–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 87

DES, the attack requires about 240 known plaintexts. In [7] these results were
slightly improved but still could not attack the full DES faster than exhaustive
key search. In 1994 Biham and Biryukov [1] improved the attack to be applica-
ble to the full DES. Their variant of the attack requires 250 known plaintexts
and has a running time of 249 encryptions on an average. A chosen ciphertext
variant of the attack is presented in [13]; it has a data complexity of 245 chosen
plaintexts.

The first attack on DES that is faster than exhaustive key search was pre-
sented in [2]. The attack, differential cryptanalysis, requires 247 chosen plain-
texts. The attack examines pairs of plaintexts and ciphertexts, trying to find
a pair that satisfies some differential (i.e., given some input difference between
the two plaintexts, the output difference of the two ciphertexts is as predicted).
Once such a pair is found, the key can be deduced.

In [14] another attack on DES is presented, linear cryptanalysis. The linear at-
tack on DES uses 243 known plaintexts and deduces the key by checking whether
some linear relation between the plaintext and the ciphertext is satisfied. This
attack was later improved by Shimoyama and Kaneko by exploiting nonlinear
relations as well [19]. The improved attack has a data complexity of 242.6 known
plaintexts. Using chosen plaintexts, Knudsen and Mathiassen reduced the data
complexity in [14] by a factor of 2.

Even after DES was theoretically broken, it was claimed that DES was still
secure, as it was not possible to mount these attacks in practice. RSA Data
Security Inc. has issued several “DES Challenges” during the mid ’90s. In each
such challenge, RSA published a plaintext and its ciphertext encrypted using
DES under some unknown key, and offered a prize of several thousand US dol-
lars for whoever finds the secret key [4]. The first exhaustive key search took
about 75 days and the key was found using 14,000–80,000 computers over the
Internet [20]. Ever since, the time required for each new DES challenge has been
reduced. In 1997 the Electronic Frontier Foundation (EFF) built a special pur-
pose machine that costs 250,000 US dollars which retrieved the key in 56 hours
by means of exhaustive key search [9]. Today, using a COPACOBANA machine
an exhaustive key search of DES can be performed in 17 days for the cost of less
than 9000 Euros [12].

A new approach was presented by Raddum and Semaev for solving sparse
systems of non-linear equations in [17] and used them to attack up to 4 rounds
of DES. With 16 known plaintext-ciphertext pairs, their techniques produce
an equation system with 1080 variables and 2048 non-linear equations from 4-
round DES. While their methods work on 5 or more rounds of DES, they are
too complex to consider in practice.

Recently, Courtois and Bard claimed that practical algebraic attacks are pos-
sible for reduced-round versions of DES [5]. Their attack represents DES as a
system of multivariate equations with the key bits as unknowns and tries to solve
the system using SAT solvers. Their technique can find the key with up to six
rounds of DES faster than exhaustive key search.

88 O. Dunkelman, G. Sekar, and B. Preneel

Motivation behind our work: Despite the well known weaknesses of DES,
the cipher is still widely deployed and used. Besides, DES-like ciphers are being
suggested as a solution for encryption in RFID systems [16].

All the existing attacks on DES either use a long time (exhaustive key search)
or use a very large number of plaintexts. This motivated us to investigate how
many rounds of DES can be broken using the meet-in-the-middle technique,
using one (or very few) plaintexts. We aimed at finding the best attacks on
reduced-round DES. The results of this paper shed more light on the security of
DES, leading to a better understanding on the way DES can be used.

Contribution of this paper: We improve the attacks due to Chaum and
Evertse [3] by performing the meet-in-the-middle in a slightly different manner
than done earlier. Rather than guessing all the key bits that are required to
produce some value, our approach guesses actual intermediate encryption values,
thus saving the need to guess many key bits to obtain the value of an intermediate
encryption bit.

The new approach reduces the time complexity of the meet-in-the-middle at-
tacks, as it allows for guessing significantly less number of key bits. Moreover, by
obtaining several known plaintexts, one can increase the number of intermediate
encryption bits that are guessed. This follows from the fact that even if with only
one of the known plaintexts, a specific key guess has no possible intermediate
encryption value which fits the meet-in-the-middle condition, then the key guess
is necessarily wrong.

Another possible use of our approach is in the chosen text scenario, where
by fixing some bits of the plaintext (or the ciphertext), it is possible to force
the intermediate values of several plaintext/ciphertext pairs to a specific value.
This leads to a reduction in the number of bits that the attacker needs to guess
(across several plaintext/ciphertext pairs).

This approach may be used to improve other meet in the middle attacks.
To the best of our knowledge this is the first case where the attacker guesses
intermediate encryption values rather than keys in a meet-in-the-middle attack.
In this paper, we also provide insights into how our attacks might be extended
to attack DES with more than 6 consecutive rounds using a similar approach as
described above.

We compare the results of our attack with other attacks in in Table 1. We note
that for differential and linear cryptanalysis we used a lower bound based on a
linear attack with one active S-box in the round before and a round after the
approximation is used. We used a similar lower bound for a differential attack
on DES (taking into consideration a 3R attack). We also note that these attacks
have two properties which make them inferior to our results: first of all, these
attacks are statistical, i.e., while our approach ensures finding the key, statistical
attacks may fail. In the table we mentioned the complexities of these attacks
with at least 90% success rate. The second property is that the mentioned time
complexities for these attacks is the time complexity required to retrieve several
key bits, while our complexities are mentioned for finding the entire key.

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 89

Table 1. Comparison of Attacks on Reduced-Round DES

Rounds Attack Data Complexity Time Complexity
4 Differential 16 CP Negligible†

Linear 52 KP > 213.7 †

Algebraic ([5]) 1 KP 246

MitM ([3]) 1 KP 235 †

MitM (Section 4.1) 1 KP 232.0

MitM (Section 4.2) 15 KP 220.0

MitM (Section 4.3) 6 CC 219.3

5 Differential 64 CP > 211.7 †

Linear 72 KP > 213.8 †

Algebraic ([5]) 3 KP 254.3

MitM ([3]) 1 KP 245.5 †

MitM (Section 5) 51 KP 235.5

MitM (Section 5) 28 KP 237.9

MitM (Section 5.1) 8 CP 230

6 Differential 256 CP 213.7

Linear > 104 KP 213.9 †

Algebraic ([5]) N/A 250.1

MitM ([3]) 1 KP 252.9 †

MitM (Section 6) 1 KP 251.8

KP — Known Plaintexts, CP — Chosen Plaintexts,
CC — Chosen Ciphertexts, N/A — Not Available
Time complexity is given in full encryption units.
† — The attack retrieves only parts of the key.

The paper is organized as follows: Section 2 describes DES. In Sect. 3 we give
an alternative description of DES and give the notations used in this paper. Our
attack on 4-round DES is described in Sect. 4. Our results on 5-round and 6-
round DES are described in Sect. 5 and Sect. 6, respectively. Finally, we present
our conclusions and a few open problems in Sect. 7.

2 Description of DES

The Data Encryption Standard (DES) was accepted as the American standard
in 1977 and became a de-facto standard for most protocols around the world [15].
DES is a 16-round Feistel block cipher, which accepts a 64-bit block and encrypts
it under a 56-bit key. The input is divided into two halves, left and right, each
consisting of 32 bits. The round function is applied 16 times to the two halves. In
each round, the right half enters the F -function of DES along with the round’s
subkey. The output of F is XORed to the left half. Then, the two halves are
swapped. We give the outline of DES in Figure 1.

Let IP (x) be the operation of permuting a vector x ∈ {0, 1}64 according to the
initial permutation, and let FP (x) be the final permutation. These permutations
satisfy FP = IP−1. As both IP (·) and FP (·) have no cryptographic effect in
block modes such as ECB or CBC, we disregard their existence. Let Lin, Rin

90 O. Dunkelman, G. Sekar, and B. Preneel

L 0 R 0

f

L R

L

R L

1 1

15 R 15

16 16

f

f

K

K

K

1

16

i

O U T P U T

Fig. 1. General structure of the Data Encryption Standard

be the left and right halves, respectively, entering the round, and let Lout, Rout

be the left and right halves that the round outputs. Then, the round function
is denoted by (Lout, Rout) = RoundKr(Lin, Rin) and Kr ∈ {0, 1}48 is the round
subkey. Given this setting, one round of DES (without the swap of the Feistel
construction) is represented by Rout = Rin, Lout = Lin ⊕ F (Rin, Kr).

Note that the Initial Permutation and the Final Permutation are omitted in
Figure 1. The F -function of DES accepts an input of 32 bits along with a 48-bit
subkey. The input is expanded into 48 bits (by duplicating 16 of the 32 input
bits), and the expanded input is XORed with the subkey. The 48-bit outcome is
divided into eight groups of six bits each. Each group enters a 6x4 S-box which is

E

R (32 bits)

48 bits K (48 bits)

S 1 2 S 3
S S 4 S 5 S 6 S 7 S 8

P

32 bit output

Fig. 2. F -function of DES

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 91

R (32 bits)

48 bits K (48 bits)

S 1 2 S 3
S S 4 S 5 S 6 S 7 S 8

32 bit output

EP

Fig. 3. An alternative description of DES F -function

a nonlinear look up table. The same eight S-boxes S1, S2, . . . , S8 are applied in
the same order in each round. The output of the S-boxes is permuted according
to some permutation table P , and becomes the output of F . The outline of F is
given in Fig. 2.

The key schedule algorithm of DES takes as an input the 56-bit user supplied
key, K, and produces 16 subkeys, K1, . . . , K16, where each subkey is 48 bits
long. The algorithm uses two tables namely, Permuted Choice-1 (PC-1) and
Permuted Choice-2 (PC-2). For most applications discussed in this paper, the
details of how the subkeys are derived are not important, therefore, we omit its
full description and refer the reader to [15].

3 An Alternative Description of DES and Notations Used

Since this paper is based on [3], we retain the same alternative description of DES
used by Chaum and Evertse. In their alternative description of DES, IP , FP ,
PC-1 are not used and E, P are combined into one table EP . This model makes
the description of the results more clear, while not affecting the correctness of
the result. The F -function of the alternative description is illustrated in Fig. 3.

Let K denote the full 56-bit user supplied key. Following [15], we use the big
endian notations, i.e., ‘bit 1’ is the most significant bit of the key, and ‘bit 56’ is
the least significant bit of the key. We denote the i-th subkey by Ki. Finally, let
Y be some variable (an intermediate encryption value or a key). We use Y [a–b]
to denote bits a, . . . , b of Y .

4 Meet-in-the-Middle Attack on 4-Round DES

We now describe our attack on 4-round DES. First, we start with a short de-
scription of meet-in-the-middle attacks. Let M denote the message space and
K denote the key space. Suppose that GK , HK : M × K → M are two block
ciphers and let FK = HK ◦ GK . In a meet-in-the-middle attack, the attacker

92 O. Dunkelman, G. Sekar, and B. Preneel

LR

f K

L R

R 0L 0

f K 1

L 1
R 1

f K

f

2

4

K 3

L R2 2

3 3

44

O U T P U T

 The meet

in the middle

α

d’[1 − 32]

d’’[1 − 32]

Fig. 4. 4-Round DES

tries to deduce K from a given plaintext ciphertext pair c = FK(p) by trying to
solve

GK(p) = H−1
K (c). (1)

In some of the cases, the equation is not tested for all the bits of the intermediate
encryption value, but rather to only some of them.

Let d′[1–m] = GK(p) and d′′[1–m] = H−1
K (p). In our attack on 4-round DES,

GK consists of the first 2 rounds of DES and HK contains of rounds 3 and 4.
Let us consider d′[9–12] and d′′[9–12] as illustrated in Fig. 4.

It was observed in [3] that in order to compute d′[9–12] and d′′[9–12], it is
sufficient to guess only 37 key bits. Thus, if for a key guess the computed values
of d′[9–12] and d′′[9–12] disagree, then the key guess cannot be correct (as it
leads to contradiction) and can be discarded.

Our main observation is the fact that the values of d′[9–12] and d′′[9–12] can
be computed by guessing less key bits in exchange for guessing internal bits.
Consider d′[9–12], this value is equal to:

d′[9–12] = L0[9–12] ⊕ S3[EP (R0)[13–18] ⊕ K1[13–18]] (2)

and d′′[9–12] is equal to

d′′[9–12] = L4[9–12] ⊕ S3[EP (L3)[13–18] ⊕ K3[13–18]]. (3)

Let L3 = [α1–α32], then

EP (L3)[13–18] = [α17α1α15α23α26α5]. (4)

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 93

If we guess K1[13–18] and K3[13–18], the only remaining unknowns in the com-
putation of d′′[9–12] are [α17α1α15α23α26α5].

Consider α17. In order to compute this bit we can either guess key bits
K4[25–30] or guess α17 directly. Thus, a different attack algorithm for the meet-
in-the-middle attack would be to guess all the 37 key bits suggested by Chaum
and Evertse, besides the 6 bits which compose K4[25–30]. For each guess of the
31 key bits, the attacker tries the two possibilities of α17. If for both values
the equality d′[9–12] = d′′[9–12] is not achieved, then the guess of the 31 bits
is necessarily wrong. As for a specific (wrong) guess of the key and of α17 the
probability of equality is 1/16, the probability that a wrong 31-bit key guess
has at least one α17 for which the equality is satisfied is 1 − (15/16)2 ≈ 1/8.
Hence, the attacker can guess 31 bits, and by trying the two possibilities of
α17 reduce the number of remaining candidates to 228. From this point, the
attacker can either repeat Chaum and Evertse’s original attack or use a more
advanced approach. In Table 2 we list the required key bits for determining
d′[9–12] and d′′[9–12], and note which of the key bits determine only one of
them.

For example, the attacker can guess several αi values simultaneously, thus
reducing the number of possible keys (in exchange for increasing the probability
that a wrong key remains). For example, if the attacker guesses two intermediate
encryption bits, the probability that a key remains is 1 − (15/16)4 ≈ 2−2.1. For
three and four intermediate bits the remaining probabilities are 2−1.3 and 2−0.6,
respectively. This approach can lead, in the extreme, to the following meet-in-
the-middle attack:

4.1 A Meet-in-the-Middle Attack with One Known Plaintext

We first define a procedure to analyze a meet-in-the-middle attack on a specific
S-box. Attacking Sx in round 2 means that we guess the key which enters this
S-box, as well as Sx in round 4 (in order to determine their outputs). We also
need to know the 6 bits which enter this S-box, i.e., we need to know the output
of 6 S-boxes in round 1. For example, performing a meet-in-the-middle on S3 of
round 2 involves guessing K1[1–12], K1[19–24], K2[13–18], K4[13–18] (a total of
19 bits), and guessing 3 intermediate encryption values (α17, α23, α26). Thus,
it is expected that after such an analysis, of the 219 possible values for the 19-
bit key, only 217.7 values remain. Similarly, one can define a meet-in-the-middle
attack on Sx in round 3 (while guessing the key of Sx in round 1, and the output
of 6 S-boxes in round 4).

To describe the attack algorithm, we give the sequence of attacked S-boxes.
For each step, we give the number of additional key bits to be guessed, along
with the number of intermediate bits that the attacker has to guess, and the
number of remaining key guesses after the S-box is attacked. The attacker can
retrieve the full key using about 232.0 4-round DES encryptions by attacking the
following sequence of S-boxes:

94 O. Dunkelman, G. Sekar, and B. Preneel

Round S-box Number of Guessed Number of Remaining
Key Bits Intermediate Bits Key Guess

2 S3 19 3 219 · 2−1.3 = 217.7

3 S2 +3 4 217.7 · 23 · 2−0.6 = 220.1

2 S1 +2 4 220.1 · 22 · 2−0.6 = 221.5

3 S4 +3 3 221.5 · 23 · 2−1.3 = 223.2

2† S4 +1 3 223.2 · 21 · 2−1.3 = 222.9

3 S3 - 3 222.9 · 2−1.3 = 221.6

2 S2 - 4 221.6 · 2−0.6 = 221.0

3 S1 - 4 221.0 · 2−0.6 = 220.4

2 S8 +9 2 (-2)‡ 220.4 · 29 · 2−4 = 225.4

3 S5 +5 1 (-5)‡ 225.4 · 25 · 2−8 = 222.4

3 S6 +4 2 (-5)‡ 222.4 · 24 · 2−7 = 219.4

2 S7 +4 1 (-4)‡ 219.4 · 24 · 2−7 = 216.4

3 S7 +3 2 (-5)‡ 216.4 · 23 · 2−7 = 212.4

3 S8 +2 1 (-9)‡ 212.4 · 22 · 2−12 = 22.4

Exhaustively search the remaining 23.4 keys.
† — At this point the entire half of the key is known.
‡ — The (−i) means that there i bits that were earlier guessed are
now known (and can be used to discard wrong guesses).

4.2 Using Multiple Known Plaintexts

If several plaintext/ciphertext pairs are at the disposal of the attacker, they can
be used to deduce the value of the first 19 guessed bits in a more efficient way.
The attacker uses the first plaintext/ciphertext pair to reduce the number of
possible keys to 217.7. Then, using the next plaintext/ciphertext pair, he repeats
the analysis (with less candidates for the 19 bits of the key). As the probability
that a key remains after each iteration of the analysis is 1 − (15/16)8 ≈ 0.4, the
number of trials t required for discarding all the wrong keys satisfies: 219·0.4t < 1.
Thus, after 15 plaintext/ciphertext pairs, we expect to have only the right value
for 19 key bits, which can then be used to retrieve the remaining key bits in a
similar manner.

The time complexity of the attack in this case is about 220 full 4-round DES
encryptions (there are 219 keys, and 23 intermediate values to check for each of
them).

4.3 Using Chosen Ciphertexts

It is also possible to use chosen ciphertexts to improve the data complexity of the
known plaintext attack. If we choose the ciphertexts in such a way that the inter-
mediate encryption bits which are guessed are the same for all the ciphertexts,
we actually improve the filtering each new plaintext/ciphertext pair offers. This
follows the fact that in the known plaintext scenario, each plaintext/ciphertext
pair may “allow” a key guess to pass due to a different value in the intermediate

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 95

Table 2. Key bits determining the ‘middle’ bits of 4-round DES

Round/S-box Key bits Bit determined Bits appearing once †

1/3 5, 9, 13, 20, 24, 27 24
1/8 30, 33, 37, 43, 47, 51 α17 30, 33, 37, 43, 47, 53
3/3 2, 8, 12, 16, 23, 27
4/1 2, 7, 11, 17, 20, 23 α1 7, 11, 17
4/2 6, 9, 12, 16, 21, 27 α5 6, 21
4/4 5, 8, 13, 19, 22, 26 α15 19, 22, 26
4/6 29, 36, 39, 46, 51, 54 α23 29, 36, 39, 46, 51, 54
4/7 31, 34, 40, 45, 50, 55 α26 31, 34, 40, 45, 50, 55

Bits of K
not affecting (1) 1,3,4,10,14,15,18,25,28,32,38,41,42,44,48,49,52,56
† — These bits appear only once in computing d′ and d′′.

encryption values. In the chosen ciphertext scenario, the attacker guesses the 19
key bits. A key which is not discarded, but has less than 8 possible interme-
diate encryption values (which is the case for most of the keys), is tested with
the next plaintext/ciphertext pair only with the intermediate encryption values
which satisfied the meet-in-the-middle condition earlier.

Thus, a given key has probability 0.6 to be discarded with the first plain-
text/ciphertext pair, probability 0.32 to pass to the next pair with only one
candidate value for the intermediate encryption bits, probability 0.074 to pass
to the next pair with two possible values in the intermediate encryption values,
and so forth. Thus, it is expected that the next pair discards 15 out of 16 re-
maining keys with one value, and about 14 out of 16 keys remaining with one
value (while reducing the number of possible intermediate encryption values of
most of them to 1). We conclude that 6 chosen ciphertexts are sufficient to find
the first 19 key bits (from where by repeating the previous attacks we can find
the rest of the key). The running time of the attack is 219.3 encryptions.

5 Attack on 5-Round DES

In this case, GK is a block cipher consisting of the first 2 rounds and HK contains
rounds 3, 4 and 5 of DES. Let us consider the intermediary bits d′[41–44] and
d′′[41–44].

We present the results of our analysis of 5-round DES in Table 3. It was
observed in [3] that in order to compute d′[41–44] and d′′[41–44], it is sufficient
to guess only 47 key bits. Thus, if for a key guess the computed values of d′[41–44]
and d′′[41–44] disagree, then the key is necessarily wrong, and can be discarded.

Again, the values of d′[41–44] and d′′[41–44] can be computed by guessing
less key bits in exchange for guessing the values of intermediate bits. Consider
d′[41–44], this value is equal to:

d′[41–44] = R0[9–12] ⊕ S3[EP (R1)[13–18] ⊕ K2[13–18]] (5)

96 O. Dunkelman, G. Sekar, and B. Preneel

Table 3. Key bits determining the ‘middle’ bits of 5-round DES

Round/S-box Key bits Bit determined Bits appearing once †

1/1 2,6,12,15,18,25 β1 2, 12
1/2 1,4,7,11,16,22 β5 16
1/4 3,8,14,17,21,28 β15 3, 17
1/5 32,38,42,48,53,56 β17

1/6 31,34,41,46,49,52 β23 34, 46
1/7 29,35,40,45,50,54 β26 40, 50, 54
2/3 6,10,14,21,25,28
4/3 1,4,10,14,18,25
5/1 4,9,13,19,22,25 γ1 9, 13, 19
5/2 1,8,11,14,18,23 γ5 23
5/4 7,10,15,21,24,28 γ15 24
5/5 32,35,39,45,49,55 γ17 39,55
5/6 31,38,41,48,53,56 γ23

5/7 29,33,36,42,47,52 γ26 33, 36, 47

Bits of K
not affecting (1) 5,20,26,27,30,37,43,44,51
† — These bits appear only once in computing d′ and d′′.

and d′′[41–44] is equal to

d′′[41–44] = L5[9–12] ⊕ S3[EP (L4)[13–18] ⊕ K4[13–18]]. (6)

Let R1 = [β1–β32], L4 = [γ1–γ32]. Then,

EP (R1)[13–18] = [β17β1β15β23β26β5], (7)

EP (L4)[13–18] = [γ17γ1γ15γ23γ26γ5]. (8)

If we guess K2[13–18] and K4[13–18], the only unknowns left in the computations
of d′[41–44] and d′′[41–44] are [β17β1β15β23β26β5] and [γ17γ1γ15γ23γ26γ5].

Consider β1. In order to compute this bit we can either guess 2 key bits
(of K1[1–6]) or guess β1 directly. Thus, a different attack algorithm for the
meet-in-the-middle attack would be to guess all the 47 key bits suggested by
Chaum and Evertse, besides the 2 key bits. For each guess of the 45 key bits,
the attacker tries the two possibilities of β1. If for both values the equality
d′[41–44] = d′′[41–44] is not achieved, then the guess of the 45 bits is necessarily
wrong. As for a specific (wrong) guess of the key and of β1 the probability of
equality is 1/16, the probability that a wrong 45-bit key has at least one β1 for
which the equality is satisfied is 1 − (15/16)2 ≈ 1/8. Hence, the attacker can
guess the 45 bits, and by trying the two possibilities of β1 reduce the number
of remaining candidates to 242. From this point, the attacker can either repeat
Chaum and Evertse’s original attack or use a more advanced approach along
similar lines as the method described in Sect. 4.2.

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 97

However, a more efficient attack exists. We note that there are many bits
which are used twice in determining the values of β17, β23, β26 and γ17, γ23, and
γ26. However, it is still more efficient to guess the value of β23, β26, γ17, and γ26

than guessing these bits directly. More precisely, to determine β17 and γ23 it is
sufficient to guess 8 key bits, that along with the 24 bits required for the S-boxes
affected by bits 1–28 of the key, are sufficient to determine the values of d′[41–44]
and d′′[41–44] up to the value of the four intermediate bits.

Thus, we can optimize the known plaintext attack to guess 32 bits of the key,
along with 4 intermediate encryption bits. The data complexity of the attack in
that case is 51 known plaintexts, with time complexity of about 235.5 5-round
DES encryptions. It is possible to guess 4 more key bits in order to determine
the value of β23, thus reducing the data complexity of the attack to 28 known
plaintexts while the time complexity is increased to 237.9.

5.1 Using Chosen Plaintexts

The attacker can choose the plaintexts such that the values of β17, β23 and β26

are the same for all the plaintexts. Then, the attacker guesses these bits as part of
the key, but can now correlate between the various plaintexts in a much stronger
way.

By guessing for each possible guess of the 24 key bits affecting S-boxes S1, S2,
S3, and S4, and of the three fixed bits β17, β23 and β26, the attacker tries the 8
possibilities for the unknown γ bits. The data complexity of this attack is 8 cho-
sen plaintexts, and the time complexity is about 230 5-round DES encryptions.

6 Attack on 6-Round DES

In this case, GK is a block cipher consisting of the first 3 rounds and HK contains
rounds 4, 5 and 6 of DES. Let us consider the intermediary bits d′[5–8] and
d′′[5–8].

The analysis of 6-round DES proceeds along the same lines as the analysis
of 4-round DES presented in Sect. 4. We present the results of our analysis of
6-round DES in Table 4.

It was observed in [3] that in order to compute d′[5–8] and d′′[5–8], it is
sufficient to guess 54 key bits. Thus, if for a key guess the computed values
of d′[5–8] and d′′[5–8] disagree, then the key is necessarily wrong, and can be
discarded.

Here again, the values of d′[5–8] and d′′[5–8] can be computed by guessing
less key bits in exchange for guessing internal bits. We have,

d′[5–8] = R0[5–8] ⊕ S2[EP (R1)[7–12] ⊕ K2[7–12]] (9)

and d′′[5–8] is equal to

d′′[5–8] = R6[5–8] ⊕ S2[EP (L4)[7–12] ⊕ K4[7–12]]
⊕ S2[EP (L6)[7–12] ⊕ K6[7–12]]. (10)

98 O. Dunkelman, G. Sekar, and B. Preneel

Table 4. Key bits determining the ‘middle’ bits of 6-round DES

Round/S-box Key bits Bit determined Bits appearing once †

1/1 2,6,12,15,18,25 β1

1/3 5,9,13,20,24,27 β12

1/5 32,38,42,48,53,56 β17

1/6 31,34,41,46,49,52 β21

1/7 29,35,40,45,50,54 β28

1/8 30,33,37,43,47,51 β29

2/2 2,5,8,12,17,23
4/2 6,9,12,16,21,27
5/1 4,9,13,19,22,25 γ1 4, 19
5/3 3,6,12,16,20,27 γ12

5/5 32,35,39,45,49,55 γ17

5/6 31,38,41,48,53,56 γ21

5/7 29,33,36,42,47,52 γ28 36
5/8 30,37,40,44,50,54 γ29

There are no key bits of round 6 that appear only once in computing d′ and d′′.

Bits of K
not affecting (1) 7,28
† — These bits appear only once in computing d′ and d′′.

We have,

EP (R1)[7–12] = [β21β29β12β28β17β1], (11)

EP (L4)[7–12] = [γ21γ29γ12γ28γ17γ1]. (12)

If we guess K2[7–12], K4[7–12] and K6[7–12], the unknowns left in the compu-
tations of d′[5–8] and d′′[5–8] are [β21β29β12β28β17β1] and [γ21γ29γ12γ28γ17γ1].

Consider γ1. In order to compute this bit we can either guess 2 key bits (of
K5[1–6]) or guess γ1 directly. Thus, a different attack algorithm for the meet-in-
the-middle attack would be to guess all the 54 key bits suggested by Chaum and
Evertse, besides the 2 key bits. For each guess of the 52 key bits, the attacker
tries the two possibilities of γ1. If for both values the equality d′[5–8] = d′′[5–8]
is not achieved, then the guess of the 52 bits is necessarily wrong. As for a
specific (wrong) guess of the key and of γ1 the probability of equality is 1/16,
the probability that a wrong 52-bit key has at least one γ1 for which the equality
is satisfied is 1 − (15/16)2 ≈ 1/8. Hence, the attacker can guess the 52 bits, and
by trying the two possibilities of γ1 reduce the number of remaining candidates
to 249. Now, using similar techniques as in Sect. 4.1, the number of 6-round DES
encryptions to retrieve the full key can be calculated to be 251.8.

7 Conclusions and Open Problems

In this paper, we have found hitherto unknown weaknesses in block ciphers with
up to 6 rounds of DES. We use the meet-in-the-middle technique and improve

Improved Meet-in-the-Middle Attacks on Reduced-Round DES 99

the time complexities (at the cost of few plaintexts) of similar attacks on DES by
Chaum and Evertse [3]. We obtained that the time complexities for key search
in the case of 4, 5 and 6-round DES are 220, 235.5 and 251.8 using 15, 51 and 1
known plaintexts respectively. With 6 chosen ciphertexts and 8 chosen plaintexts
the time complexities in the case of 4-round and 5-round attacks are 219.3 and
230 respectively.

Our research leaves room for alluring open problems. It can be seen from
Table 2, Table 3 and Table 4 that Chaum and Evertse have considered bits
of the key K that do not appear in the first columns of these tables; we have
considered bits of K that appear only once (and sometimes twice) in the first
columns. Hence, a natural extension will be to experiment with bits which appear
more times in the first columns of these tables. This technique could be tried on
DES with higher number of rounds. Another extension of the attacks described
in this paper follows a suggestion in [3] by which one may try to change the
tables defining the S-boxes. By either of these methods, it could be possible to
cryptanalyse DES variants consisting of 8 or more rounds.

Acknowledgments

The authors wish to thank the anonymous reviewers of Indocrypt-2007 for their
constructive comments on our work.

References

1. Biham, E., Biryukov, A.: An Improvement of Davies’ Attack on DES. Journal of
Cryptology 10(3), 195–206 (1997)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

3. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of
Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

4. CNET News.com, Users take crack at 56-bit crypto (1997), Available on-line at
http://news.com.com/2100-1023-278658.html?legacy=cnet

5. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard (2006), Available on-line at http://eprint.iacr.org/2006/402.pdf

6. Davies, D.W.: Investigation of a Potential Weakness in the DES Algorithm, private
communications (1987)

7. Davies, D.W., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of Cryptol-
ogy 8(1), 1–25 (1995)

8. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer 10(6), 74–84 (1977)

9. Electronic Frontier Foundation, Cracking DES, Secrets of Encryption Research,
Wiretap Politics & Chip Design, O’reilly (1998)

10. Hellman, M.E.: A Cryptanalytic Time-Memory Tradeoff. IEEE Transactions on
Information Theory 26(4), 401–406 (1980)

11. Knudsen, L.R., Mathiassen, J.E.: A Chosen-Plaintext Linear Attack on DES. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 262–272. Springer, Heidelberg
(2001)

http://news.com.com/2100-1023-278658.html?legacy=cnet
http://eprint.iacr.org/2006/402.pdf

100 O. Dunkelman, G. Sekar, and B. Preneel

12. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

13. Kunz-Jacques, S., Muller, F.: New Improvements of Davies-Murphy Cryptanaly-
sis. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 425–442. Springer,
Heidelberg (2005)

14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. National Bureau of Standards, Data Encryption Standard, Federal Information
Processing Standards Publications No. 46 (1977)

16. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Light-Weight DES Vari-
ants Suited for RFID Applications. In: Proceedings of Fast Software Encryption
14. LNCS, Springer, Heidelberg (to appear, 2007)

17. Raddum, H., Semaev, I.: New Technique for Solving Sparse Equation Systems
(2006), Available on-line at http://eprint.iacr.org/2006/475.pdf

18. Shamir, A.: On the Security of DES. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 280–281. Springer, Heidelberg (1986)

19. Shimoyama, T., Kaneko, T.: Quadratic Relation of S-box and Its Application to
the Linear Attack of Full Round DES. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 200–211. Springer, Heidelberg (1998)

20. RSA Data Security, Team of Universities, Companies and Individual Computer
Users Linked Over the Internet Crack RSA’s 56-Bit DES Challenge (1997), Avail-
able on-line at http://www.rsasecurity.com/news/pr/970619-1.html

21. Wiener, M.J.: Efficient DES Key Search, Technical Report TR-244, Carleton Uni-
versity. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, Springer, Heidel-
berg (1994)

http://eprint.iacr.org/2006/475.pdf
 http://www.rsasecurity.com/news/pr/970619-1.html

Probabilistic Perfectly Reliable and Secure

Message Transmission – Possibility, Feasibility
and Optimality

Kannan Srinathan2, Arpita Patra1, Ashish Choudhary1,�,
and C. Pandu Rangan1,��

1 Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in, rangan@iitm.ernet.in
2 Center for Security, Theory and Algorithmic Research

International Institute of Information Technology
Hyderabad India 500032

shankar@research.iiit.ac.in, srinathan@iiit.ac.in

Abstract. We study the interplay of network connectivity and the is-
sues related to feasibility and optimality for probabilistic perfectly reli-
able message transmission (PPRMT) and probabilistic perfectly secure
message transmission (PPSMT) in a synchronous network under the in-
fluence of a mixed adversary who possesses unbounded computing power
and can corrupt different set of nodes in Byzantine, omission, failstop
and passive fashion simultaneously. Our results show that that random-
ness helps in the possibility of multiphase PPSMT and significantly im-
proves the lower bound on communication complexity for both PPRMT
and PPSMT protocols!!

Keywords: Probabilistic Reliability, Information Theoretic Security,
Fault Tolerance.

1 Introduction

We study the fundamental problem of probabilistic perfectly reliable message
transmission (PPRMT), where two non-faulty players, the sender S and the re-
ceiver R are part of a synchronous network modeled as a undirected graph, a
part of which may be under the influence of a unbounded computational power-
ful mixed adversary which is denoted by three tuple (tb, to, tf , tp) and can corrupt
tb, to, tf and tp nodes in Byzantine, omission, failstop and passive fashion respec-
tively. S intends to transmit a message m chosen from a finite field F to R using
� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

�� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 101–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

102 K. Srinathan et al.

some protocol such that R should correctly obtain S’s message with probability
at least (1 − δ) for arbitrarily small 0 < δ < 1/2. The problem of probabilistic
perfectly secure message transmission (PPSMT) is same as PPRMT except that
the adversary should not get any information about the message.

Intuitively, the allowance of a small probability of error in the transmission
should result in improvements in both the fault tolerance as well as the efficiency
aspects of reliable and secure protocols. What exactly is the improvement? —
this is the central question addressed in this paper. More specifically, we address
the following in the context of PPRMT and PPSMT: (i) When is a protocol
possible in the given network (Possibility) (ii) Once the existence of a protocol
is ensured, what is the minimum communication complexity required by any
protocol to reliably/securely send a message (Optimality), (iii) Finally, how to
design such protocol which satisfies the proven minimum communication com-
plexity bound (Feasibility). Finally, we compare our results with the existing
results for perfectly reliable message transmission (PRMT) and perfectly secure
message transmission (PSMT) and show that randomness and probabilistic ap-
proaches lead to improved communication, phase1 and computational complex-
ities. Moreover results on mixed adversaries reveal higher level of fault tolerance
in the underlying network.

The problem of PPRMT and PPSMT in the presence of static2 threshold
Byzantine adversary was first defined and solved by Franklin et al [4]. As one
of the key results, they have proved, that over undirected graphs PPRMT
(PPSMT) is possible if and only if PRMT (PSMT) is possible!!! Subsequent
works on PPRMT and PPSMT include [14,5].

1.1 Our Contribution

Any reliable/secure protocol is analyzed by the following parameters: the connec-
tivity requirement of the network, the number of phases required by the protocol,
the total number of field elements communicated by S and R throughout the pro-
tocol and the computation done by S and R. There is a trade-off among these
parameter which is well studied in the literature for PRMT and PSMT [9,13]. In
this paper we try to understand this trade-off for PPRMT and PPSMT in the
presence of a mixed adversary, which is done for the first time in the literature
of PPRMT and PPSMT3. The contribution of our paper is four-fold and can be
summarized as follows: (a) We characterize single phase PPRMT and multiphase
PPSMT protocols in the presence of mixed adversary and show that in many prac-
tical scenarios, our characterization shows higher level of fault tolerance in the un-
derlying network, while the extant results offer no such insight. (b) We prove the
lower bound on the communication complexity of any single phase PPRMT and
multiple phase PPSMT protocol tolerating mixed adversary. (c) We also design

1 A phase is a send from S to R or vice-versa.
2 By static adversary, we mean an adversary that decides on the set of players to

corrupt before the start of the protocol.
3 PRMT and PSMT in the presence of mixed adversary is studied in [7].

Probabilistic Perfectly Reliable and Secure Message Transmission 103

polynomial time bit optimal single phase PPRMT and four phase PPSMT proto-
cols whose communication complexity satisfy our proven lower bounds. Our sin-
gle phase PPRMT protocol has a special property that it achieves reliability with
constant overhead when considered with only Byzantine adversary. Similarly our
four phase PPSMT protocol has a special property that it achieves secrecy with
constant overhead when considered with only Byzantine adversary. (d) Finally, we
also compare our bit optimal PPRMT and PPSMT protocols with the existing bit
optimal PRMT and PSMT protocols and cite many practical scenarios where no
bit optimal PRMT or PSMT protocol exist but bit optimal PPRMT and PPSMT
protocol do exists thus showing the power of allowing negligible error probability
in the reliability of the protocols (without sacrificing secrecy).

1.2 Network Model

Following [3], we abstract away the network and concentrate on solving PPRMT
and PPSMT problem for a single pair of processors, the sender S and the re-
ceiver R, connected by n parallel bi-directional channels w1, w2, . . . , wn called
wires such that an adversary having unbounded computing power can corrupt
upto tb, to, tf and tp wires in Byzantine, omission4, failstop5 and passive fashion
respectively. Moreover, we assume that the wires that are under the control of
the adversary in Byzantine, omission, failstop and passive fashion are mutually
disjoint. Note that there is a difference between fail-stop and omission error6. If
some value is sent over all the wires then it is said to be “broadcast”7.

2 Probabilistic Perfectly Reliable Message Transmission

Here we completely characterize the set of tolerable adversaries, prove the lower
bound for communication complexity of any single phase PPRMT protocol and
present efficient/optimal protocol for single phase PPRMT.
4 We say that a player P is under the control of an adversary in omission fashion, if

the adversary can block the working of P at will at any time during the execution of
the protocol. Also, as long as P is alive, it will follow the instructions of the protocol
honestly. The adversary can eavesdrop the data/computation by P but cannot make
P to deviate from the proper execution of the protocol. However, a blocked P can
again become alive at some later stage of the protocol.

5 We say that a player P is under the control of an adversary in a fail-stop manner,
if the adversary can force P to crash at will at any time during the execution of the
protocol. However, as long as P is alive, it will honestly follow the protocol. Also
once P is crashed, it will not become alive again.

6 The fail-stop error models a hardware failure caused by any natural calamity or
manual shutdown. Also the nodes which are fail-stop corrupted cannot be passively
listened by the adversary. On the other hand, nodes corrupted by omission adversary
has listening capability. Thus omission adversary can be considered as a combination
of fail-stop and passive adversary with the exception that unlike fail-stop error, a
node which is crashed once by omission error may become alive during later stages
of the protocol.

7 Any information which is “broadcast” over at least 2tb + to + tf + 1 wires will be
recovered correctly at the receiving end (the receiver can output the majority).

104 K. Srinathan et al.

2.1 Characterization for PPRMT

The existing characterization for PPRMT tolerating Byzantine adversary is:

Theorem 1 ([4]). PPRMT between S and R against a tb active Byzantine
adversary is possible iff the network is (2tb + 1)-(S,R)-connected.

The characterization for PPRMT tolerating mixed adversary is as follows:

Theorem 2. PPRMT between S and R against a mixed adversary (tb, to, tp, tf)
is possible iff the network is (2tb + to + tf + 1)-(S,R)-connected.

Proof: If part: Consider a network which is (2tb + to + tf +1)-(S,R)-connected.
To send a message m, S simply broadcasts m to R over 2tb + to + tf + 1 wires.
It is easy to see that R will receive m with probability one by taking majority8.
Only if part: Assume that a PPRMT protocol Π exists in a network N that is
not (2tb + to + tf + 1)-(S,R)-connected. Consider the network N ′, induced by
N , on deleting (to + tf) vertices from a minimal vertex cutset of N (this can
be viewed as an adversary blocking the communication over to + tf wires). It
follows that N ′ is not (2tb + 1)-(S,R)-connected. Evidently, if Π is a PPRMT
protocol on N , then Π ′ is a PPRMT protocol on N ′, where Π ′ is the protocol
Π restricted to the players in N ′. However, from Theorem 1, Π ′ is non-existent.
Thus Π is impossible too. �

Significance of Theorem 2: Theorem 2 strictly generalizes Theorem 1 because
we obtain the latter by substituting to = tf = 0. Now consider a network, which
is 4-(S,R)-connected. From Theorem 1, on this network, any PPRMT protocol
can tolerate one Byzantine fault. However, according to Theorem 2, it is possible
to tolerate one additional faulty player, which can be either omission or fail-stop
faulty. Thus our characterization shows more fault tolerance in comparison to
the existing results.

In the sequel, we show that allowance of negligible error probability in trans-
mission reduces the communication lower bound markedly in comparison to
perfect transmission.

2.2 Lower Bound on Communication Complexity of Single Phase
PPRMT Protocol

We now prove the lower bound on the communication complexity of any single
phase PPRMT protocol tolerating mixed adversary.

Theorem 3. Any single phase PPRMT protocol, from S to R over n wires,
communicates Ω(n�

n−(tb+to+tf)) field elements to reliably transmit (with high prob-
ability) � field elements.

Proof: In any single phase PPRMT protocol, the concatenation of the informa-
tion sent over n wires can be viewed as a (probabilistic) error correcting code
8 The protocol described here is a naive protocol which does not take the advantage

of allowing small error probability in the reliability.

Probabilistic Perfectly Reliable and Secure Message Transmission 105

which can correct tb Byzantine errors and to + tf erasures with an arbitrarily
high probability. Without loss of generality, the domain of the set of possible
values of the data sent along the wire can be assumed to be the same for all
the wires. Let S be the set of possible values of the data sent along the wires.
Thus, each codeword can be viewed as concatenation of n elements from S which
can be represented by n log |S| bits. Now, the removal of any (tb + to + tf) ele-
ments from each of the codewords which corresponds to an adversary blocking
tb + to + tf wires (a Byzantine adversary can also block communication) should
result in shortened codewords that are all distinct. For if any two were iden-
tical, the original codewords could have differed only in at most (tb + to + tf)
elements implying that there exist two codewords c1 and c2 and an adversarial
strategy such that the receiver’s view is the same on the receipt of c1 and c2.
Specifically, without loss of generality assume that c1 and c2 differ only in their
last (tb + to + tf) elements. That is, c1 = α ◦ β and c2 = α ◦ γ, where ◦ denotes
concatenation and |β| = |γ| = (tb + to + tf) elements. Now, consider the two
cases: (a) c1 is sent and the adversary corrupts it to α◦ ⊥ by completely block-
ing the last (tb + to + tf) elements (wires) and (b) c2 is sent and the adversary
again corrupts it to α◦ ⊥. Thus, R can not distinguish between the receipt of
c1 and c2 with probability greater than 1

2 , which violates the PPRMT commu-
nication property (in any PPRMT protocol, receiver should be able to receive
the message with probability more than 1

2). Therefore, all shortened codewords
containing n − (tb + to + tf) elements from S are distinct. This implies that
there are same number of shortened and original codewords. But the number of
shortened codewords can be at most C = |S|(n−(tb+to+tf). Now each shortened
codeword can be represented by log C = (n − (tb + to + tf)) log |S| bits. Since,
for error-correcting we need to communicate the longer codeword containing
n log |S|, reliable communication of shortened codeword of k = log C bits incurs
a communication cost of at least n log |S| bits. Hence communicating a single bit
incurs communicating n

(n−(tb+to+tf) bits. So to communicate � elements from a

field F, represented by � log |F| bits, Ω(n�
(n−(tb+to+tf)) log |F|) bits need to be sent.

Since log |F| bits represents one field element from F, communicating � elements
from F requires a communication complexity of Ω(n�

(n−(tb+to+tf)) field elements.

Note: In any PPRMT protocol designed in a field F, the size of the field depends
upon the error probability δ of the protocol (we show this in next section)9.

Single Phase PRMT vs Single Phase PPRMT: While the lower bound
on the communication complexity of any single phase PRMT tolerating mixed

9 From Theorem 3, any PPRMT protocol to send � field elements from F need to
communicate Ω(n�

(n−(tb+to+tf)) log|F|) bits. Thus the communication complexity of

any single phase PPRMT protocol is a function of δ (since |F| is a function of δ),
though it is not explicitly mentioned in the expression derived in Theorem 3. It
should also be noted that communication complexity explicitly depends upon the
message size �.

106 K. Srinathan et al.

adversary is Ω(n�
(n−(2tb+to+tf)) [11], the same for PPRMT is Ω(n�

(n−(tb+to+tf))
(Theorem 3). This clearly brings forth the power of randomization.

2.3 Single Phase Bit Optimal PPRMT Protocol

We now present an optimal single phase PPRMT protocol PPRMT Single
Phase, which delivers (tb +1)n field elements by communicating O(n2) field ele-
ments in single phase with (arbitrarily) high probability where n=2tb+to+tf +1.
PPRMT Single Phase achieves reliability with constant overhead, when con-
sidered with only Byzantine adversary. The message block is represented by
M = [m1 m2 . . . mn mn+1 mn+2 . . . m2n . . . mtbn+1 mtbn+2 . . . mtbn+n]. Before
the protocol, we describe a novel technique, called as Extrapolation Tech-
nique which we use in designing single phase PPRMT protocol PPRMT
Single Phase.

Extrapolation Technique: We visually represent M as a rectangular array
A of size (tb + 1) × n where the jth, 1 ≤ j ≤ tb + 1 row contains the elements
m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+n. For each column i of A, 1 ≤ i ≤ n we do the
following: we construct the unique tb degree polynomial qi(x) passing through the
points (1, mi), (2, mn+i), . . . , (tb + 1, mtbn+i) where mi, mn+i, . . . , mtbn+i belong
to the ith column A. Then qi(x) is evaluated at tb + to + tf points namely,
x = tb + 2, tb + 3, . . . n to obtain c1i, c2i, . . . , c(tb+to+tf)i. Finally, we obtain a
square array D of size n × n containing n2 elements, where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 . . . mi . . . mn

.
m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+i . . . m(j−1)n+n

.
mtbn+1 mtbn+2 . . . mtbn+i . . . mtbn+n

c11 c12 . . . c1i . . . c1n

.
cj1 cj2 . . . cji . . . cjn

.
c(tb+to+tf)1 c(tb+to+tf)2 . . . c(tb+to+tf)i . . . c(tb+to+tf)n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
A
C

]
where

C is the sub-matrix of D containing last tb + to + tf rows. Thus D is the row
concatenation of A of size (tb +1)×n (containing elements of M) and matrix C,
whose elements are obtained from A by Extrapolation Technique. We now
prove certain properties of the array D.

Lemma 1. In D, all the n elements of any column can be uniquely generated
from any tb + 1 elements of the same column.

Proof: Without loss of generality, we prove this for ith column of D. The elements
in the ith column are mi, mn+i, . . . , mtbn+i, c1i, c2i, . . . , cji, , . . . c(tb+to+tf)i. From
the construction, the points (1, mi), (2, mn+i), . . . , (tb + 1, mtbn+i),
(tb + 2, c1i), (tb + 3, c2i), . . . , (n, c(tb+to+tf)i) lie on a unique tb degree polyno-
mial qi(x). Any tb +1 points uniquely determines qi(x) and hence the remaining
tb+to+tf points. �

Lemma 2. The elements of message M can be uniquely determined from any
tb + 1 rows of D.

Probabilistic Perfectly Reliable and Secure Message Transmission 107

Proof: From the construction of D, the elements of M are arranged in the first
tb+1 rows. If the first tb+1 rows are known then the lemma holds trivially. On the
other hand, if some other tb+1 rows are known, then from Lemma 1, ith 1 ≤ i ≤ n
column of D can be completely generated from tb + 1 elements of the same
column. Hence, knowledge of any tb + 1 rows can reconstruct the whole matrix
D and hence the message (first tb+1 rows of D). �

Lemma 3. Modification of at most tb elements along any column of D is de-
tectable.

Proof: Recall that in D, the points (corresponds to ith column of D) (1, mi),
(2, mn+i), . . . , (tb + 1, mtbn+i), (tb + 2, c1i), . . . , (n, c(tb+to+tf)i) lie on a unique tb
degree polynomial qi(x). Now suppose tb values are changed in such a manner
that they lie on some other tb degree polynomial q′i(x) where qi(x) �= q′i(x). Since
both qi(x) and q′i(x) are of degree tb, they can match on additional tb common
points. But still there are at least n − 2tb = to + tf + 1 points still passing only
the original polynomial qi(x) (but not through q′i(x)). Hence any attempt to
interpolate a tb degree polynomial passing through the elements of a column (in
which at most tb values has been changed) will clearly indicate that at most tb
values are changed along the column. Hence the lemma holds. �

We are now ready to describe our protocol. Let the set of n wires be denoted as
W = {w1, w2, . . . , wn}. Let δ be a bound on the probability that the protocol fails
to deliver the correct message. We require the size of the field F be Ω(Q(n)

δ), for

Protocol PPRMT Single Phase - The Single Phase PPRMT Protocol
1. S generates a rectangular array D containing n2 field elements, from the (tb + 1) × n elements of
message M using Extrapolation Technique. S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of

degree n− 1 where pj(x) is formed using the jth row of D as follows: the coefficient of xi, 0 ≤ i ≤ n− 1

in pj(x) is the (i + 1)th element of jth row of D.

2. S chooses another n2 field elements at random, say rji, 1 ≤ i, j ≤ n. Over wj , S sends the fol-
lowing to R: the polynomial pj(x) and the n ordered pairs (rji, pi(rji)), for 1 ≤ i ≤ n. Let vji = pi(rji).

3. Let F denotes the set of wires that delivered nothing and let B denotes the set of wires that delivered
invalid information (like higher degree polynomials etc.). Note that the wires in B are Byzantine
corrupted because omission or fail-stop adversary is not allowed to modify the contents. R removes all
the wires in (F ∪B) from W to work on the remaining wires in W\ (F ∪B) out of which at most tb −|B|
could be Byzantine corrupted. Let R receives p′

j(x) and (r′
ji, v′

ji) 1 ≤ i ≤ n over wj ∈ W \ (F ∪ B).

We say that wj contradicts wi if: v′
ji �= p′

i(r
′
ji) where wi, wj ∈ W \ (F ∪ B) . Among all the wires in

W \ (F ∪ B), R checks if there is a wire contradicted by at least (tb − |B|) + 1 wires. All such wires are
Byzantine corrupted and removed (see Lemma 4).

4. To retrieve M, R tries to reconstruct the array D as generated originally by S as follows: Corre-
sponding to each wj ∈ W \ (F ∪ B), which is not removed in step 3, R fills the jth row of D in the

following manner: coefficient of xi, 0 ≤ i ≤ n − 1 in p′
j(x) occupies (i + 1)th column in the jth row of

D; i.e., the coefficients of p′
j(x) are inserted in jth row of D such that the coefficient of xi in p′

j(x)

occupies (i + 1)th column in the jth row of D.

5. After doing the above step for each wj ∈ W \ (F ∪ B), which is not removed in step 3, R has at
least tb + 1 rows inserted in D (see Lemma 6). R then checks the validity of these rows as follows:

corresponding to the ith, 1 ≤ i ≤ n column, R checks whether the points corresponding to the inserted
elements of ith column lie on a tb degree polynomial.

6. If the above test fails for at least one column of D, then R outputs “FAILURE” and halts. Otherwise,
R regenerates the complete D correctly and recovers M from the first tb + 1 rows (see Lemma 6).

108 K. Srinathan et al.

some polynomial Q(n), but this is acceptable because complexity of the protocol
increases logarithmically with field size.

Lemma 4. In PPRMT Single Phase, if any wj ∈ W\(F∪B) is contradicted
by at least (tb−|B|)+1 wires, then the polynomial pj(x) over wj has been changed
by adversary or in effect wj is faulty.

Proof: The wires in B are already identified to be Byzantine corrupted and hence
neglected by R. Also the wires in F delivers nothing and hence neglected by R.
So among the remaining W \(F ∪B) wires, at most (tb −|B|) could be Byzantine
corrupted. Also there cannot be any contradiction between two honest wires and
hence any honest wire can be contradicted by at most (tb − |B|) wires. Thus if a
wire is contradicted by at least (tb−|B|)+1 wires then it is faulty. �

Lemma 5. In the protocol, if the adversary corrupts a polynomial over wire wj

in such a way that wj is not removed during step 3, then R will always be able
to detect it at the end of step 5 and outputs “FAILURE”.

Proof: At the beginning of step 5, there are at least tb + 1 rows present in the
partially reconstructed D. This follows from the fact there always exist tb +
1 honest wires which will deliver correct polynomials to R. As mentioned in
Lemma 4, any honest wire can be contradicted by at most (tb − |B|) wires and
hence is not be removed by R during step 4. So the coefficients of the polynomials
corresponding to these honest wires will be present in partially reconstructed D.

Now if wj (which has delivered a faulty polynomial) is not removed during
step 3, then during step 4, the coefficients of p′j(x) are inserted in the jth row
of partially reconstructed D. Since pj(x) �= p′j(x), there is at least one coef-
ficient in p′j(x) which is different from the corresponding coefficient in pj(x).
Let pj(x) differs from p′j(x) in the coefficient of xi. Then (i + 1)th column of
partially reconstructed D differs from the (i + 1)th column of original D at jth

position. The proof now follows from Lemma 3. Hence R outputs “FAILURE”. �

Lemma 6. In PPRMT Single Phase, if the test in step 5 succeeds for all
the n columns of partially constructed D, then R will never output “FAILURE”
and always recovers M correctly.

Proof: As explained in previous Lemma, at the beginning of step 5, there will be
at least tb + 1 rows present in the partially reconstructed D. Now if the test in
step 5 succeeds for all the n columns of partially constructed D, it implies that all
the rows present in the partially reconstructed D are same as the corresponding
rows in the original D. From Lemma 1, R will be able to completely regenerate
all the n columns of original D. The proof now follows from Lemma 2. It is easy
to see that R does not outputs “FAILURE” in this case.

Theorem 4. PPRMT Single Phase terminates with a non-“FAILURE”
output with high probability.

Proof: Since no honest wire contradicts another honest wire, from Lemma 4, all
the wires removed by R during step 3 are indeed faulty. We need to show that

Probabilistic Perfectly Reliable and Secure Message Transmission 109

if a wire is corrupted (the polynomial over the wire is changed), then it will
be contradicted by all the honest players with high probability. Let πij be the
probability that a corrupted wire wj will not be contradicted by a honest wire
wi. This means that the adversary can ensure that pj(rij) = p′j(rij) with a prob-
ability of πij . Since there are only n − 1 points at which these two polynomials
intersect, this allows the adversary to guess the value of rij with a probability
of at least πij

n−1 . But since rij was selected uniformly in F, the probability of
guessing it is at most 1

|F| . Therefore we have πij ≤ n−1
|F| for each i, j. Thus the

total probability that the adversary can find wi, wj such that corrupted wire wj

will not be contradicted by wi is at most
∑

i,j πij ≤ n2(n−1)
|F| . Since F is chosen

such that |F| ≥ Q(n)
δ , it follows that the protocol outputs a non-“FAILURE”

value with probability ≥ 1 − δ if we set Q(n) = n3. �

Note. PPRMT Single Phase is a special kind of a probabilistic reliable
message transmission protocol where R actually knows whether he outputs the
correct message. But according to our definition of PPRMT, inability of R to
“detect” every occurrence of an error is acceptable. Thus, our protocol has a
strictly stronger property than that of necessary.

Lemma 7. PPRMT Single Phase reliably sends n(tb + 1) field elements by
communicating O(n2) field elements. In terms of bits, the protocol sends
n(tb + 1) log |F| bits by communicating O(n2 log |F|) bits.

Proof: Over each wire, S sends a polynomial of degree n − 1 and n ordered pair.
Thus the total communication complexity is O(n2). Since each element from
field F can be represented by log |F| bits, the communication complexity of the
protocol is O(n2log|F|) bits. �

Achieving PPRMT in Constant Factor Overhead in Single Phase
In the presence of Byzantine fault, � field elements can be transmitted by com-
municating O(�) field elements in three phases [9] with perfect reliability. Also,
achieving the same in single phase in the presence of Byzantine adversary is
impossible [12]. However it is attainable in case of probabilistic reliability. In
PPRMT Single Phase, if to = tf = 0, then (tb + 1)n = O(n2) field elements
(when to = 0, tf = 0, n = 2tb + 1 and so tb = O(n)) can be sent by communi-
cating O(n2) field elements. Thus, by allowing a small error probability in the
reliability we can send � field elements by communicating O(�) field elements in
only single phase.

In Theorem 3, substituting n = 2tb + to + tf + 1 and � = n(tb + 1), we find
that any single phase PPRMT protocol must communicate Ω(n2) elements to
send n(tb + 1) elements. Now, from Lemma 7, the communication complexity
of PPRMT Single Phase is O(n2). Hence our protocol has optimal com-
munication complexity. In terms of bits, PPRMT Single Phase sends
n(tb+1) log |F| bits by communicating n2 log |F| bits where F = Q(n)

δ , Q(n) = n3

and 1 − δ is the least probability with which the protocol terminates without
”FAILURE”. So, our protocol is bit-optimal.

110 K. Srinathan et al.

Finally, we would like to point out that single phase PPRMT protocols can
also be designed using the idea of check vectors proposed by Rabin and Ben-
Or [10] for VSS. However, simple extension of their idea does not leads to a
bit-optimal single phase PPRMT protocol.

3 Multiphase PPSMT Protocol in Undirected Networks

In this section, we provide characterization, lower bound on the communication
complexity of any multiphase PPSMT protocol and also design one such protocol
whose communication complexity matches with the lower bound.

3.1 Characterization for Multiphase PPSMT Protocol

In the previous section, we have shown how randomization affects the possibility
and optimality of PPRMT protocol in the presence of a mixed adversary. We now
explore the effect of randomization on the possibility and optimality of PPSMT
protocol tolerating a mixed adversary. Our first step towards this exploration is
to characterize the possibility of any multiphase PPSMT protocol.

Theorem 5. Multiphase PPSMT between S and R in an undirected network
tolerating a mixed adversary characterized by 4-tuple (tb, to, tf , tp) is possible if
and only if the network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-connected.

Proof: Necessity: We consider two cases for proving the necessity.

• Case 1: tp ≤ tb: In this case, the network is (2tb + to + tf +1)-(S,R) connected
which is necessary for PPRMT (Theorem 2) and hence obviously for PPSMT.

• Case 2: tp > tb: Here, the network is (tb+tp+to+tf+1)-(S,R)-connected. This
condition is necessary for PPSMT because, if the network is (tb + tp + to + tf)-
(S,R)-connected, then the adversary may strategize to simply block all message

Protocol SECURE - A Three Phase PPSMT Protocol
Phase I: S to R
• Along wi, 1 ≤ i ≤ n, S sends to R two randomly picked elements ρi1 and ρi2 chosen from F.

Phase II: R to S
• Suppose R receives values in syntactically correct form along n′ ≤ n wires. R neglects the remaining
(n − n′) wires. Let R receives ρ′

i1 and ρ′
i2 along wire wi, where wi is not neglected by R.

• R chooses uniformly at random an element K ∈ F. R then broadcasts to S the following: identities of
the (n − n′) wires neglected by him, the secret K and the values (Kρ′

i1 + ρ′
i2) for all i such that wi is

not neglected by R.

Phase III: S to R
• S correctly receives the identities of (n − n′) wires neglected by R during Phase II (because
irrespective of the value of tb and tp, n is at least 2tb + to + tf + 1. So any information which is
broadcast over n wires will be received correctly). S eliminates these wires. S also correctly receives K
and the values, say ui = (Kρ′

i1 + ρ′
i2) for each i, such that wire wi is not eliminated by R.

• S then computes the set H such that H = {wi|ui = (Kρi1 + ρi2)}. Furthermore, S calculates the
secret key ρ where: ρ =

∑
wi∈H ρi2. S then broadcasts the set H and the blinded message M⊕ ρ to R,

where M is a single field element.

Message Recovery by R
• R correctly receives H and computes his version of ρ′. If z′ is the blinded message received, R outputs
M = z′ ⊕ ρ′.

Probabilistic Perfectly Reliable and Secure Message Transmission 111

through (tb + to + tf) vertex disjoint paths and thereby ensure that every value
received by R is also listened by the adversary.
Sufficiency: Suppose that network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-
connected. Then from Menger’s theorem [6], there exist at least n = (tb +
max(tb, tp) + to + tf + 1) vertex disjoint paths from S to R. We model these
paths as wires w1, w2, . . . , wn. We design a three phase PPSMT protocol called
SECURE to securely send a single field element.

It can be shown that with a probability of at least
(
1 − 1

|F|
)
, ρ′ = ρ and

hence R almost always learns the correct message (Proof is similar to that of
the correctness and security of the information-checking protocol of [10]). Since
n = tb + max(tb, tp) + to + tf + 1, there exists at least one wire say wi, which is
not controlled by the adversary. So, the corresponding ρi2 is unknown to adver-
sary implying information theoretic security for ρ =

∑
wi∈H ρi2 and hence for

M. It is easy to see that the communication complexity of SECURE is O(n2). �

MultiPhase PSMT vs MultiPhase PPSMT: From [7], for any multiphase
Perfectly Secure Message Transmission (PSMT) protocol, the network should be
(2tb + to + tf + tp + 1)-(S, R) connected. Thus, except when either tb or tp = 0,
Theorem 5 shows that allowing a negligible error probability in the reliability of
the protocol (without sacrificing the secrecy) significantly helps in the possibility
of multiphase secure message transmission protocol.

Note: Theorem 5 characterizes multiphase PPSMT protocol. A single phase
PPSMT protocol tolerating Byzantine adversary is given in [5]. The character-
ization, lower bound on the communication complexity and an optimal single
phase PPSMT tolerating mixed adversary is given in [8]. The connectivity re-
quirement for single phase PPSMT is more10 than multiphase PPSMT [8].

3.2 Lower Bound on Communication Complexity of Multiphase
PPSMT Protocol

We now prove the lower bound on the communication complexity of any r-
phase (r ≥ 2) PPSMT protocol which sends � field elements tolerating a mixed
adversary (tb, to, tf , tp). Let n ≥ tb + max(tb, tp) + to + tf + 1.

Theorem 6. Any r-phase (r ≥ 2) PPSMT protocol which securely sends � field
elements in the presence of a threshold adversary (tb, to, tf , tp) needs to commu-

nicate at least Ω
(

n�
n−(tb+to+tf+tp)

)
field elements.

Proof: The proof follows from Lemma 8 and Lemma 9, which are proved below.

Lemma 8. The communication complexity of any multi-phase PPSMT protocol
to send a message against an adversary corrupting up to b(≤ tb), F (≤ tf) and
P (≤ tb + to + tp) of the wires in Byzantine, Fail-stop and passive manner respec-
tively is not less than the communication complexity of distributing n shares for
10 In [8], it is shown that for the existence of single phase PPSMT protocol the network

should be 2tb + 2to + tf + tp + 1-(S, R)-connected.

112 K. Srinathan et al.

the message such that any set of n −F correct shares has full information about
the message while any set of P shares has no information.

To prove the lemma, we begin with defining a weaker version of single-phase
PPSMT called PPSMT with Error Detection (PPSMTED). We then prove the
equivalence of communication complexity of PPSMTED protocol to send mes-
sage M and the share complexity of distributing n shares for M such that any
set of n − F correct shares has full information about M while any set of P
shares has no information about M. To prove the aforementioned statement, we
first show their equivalence (Claim 1). Finally, we will show the equivalence of
single-phase protocol PPSMTED and multiphase PPSMT protocol in terms of
communication complexity and also answer the question: why it is weaker than
multiphase PPSMT protocol (Claim 3). These two equivalence will prove the
desired equivalence as stated in this lemma. Note that b, F and P are bounded
by tb, tf and tb + to + tp respectively.

Definition 1. A single phase PPSMT protocol is called PPSMTED if it satisfies
the following:

1. If the adversary is passive on all the P (P ≤ tb+to+tp which is the maximum
limit on the number of passive adversaries) corrupted wires then R securely
receives the message sent by S.

2. If the adversary corrupts information over some b wires (b ≤ tb), then R
detects it, and aborts.

3. If adversary blocks some F ≤ tf wires, without doing any other modification,
then R recovers message correctly. Else if adversary blocks more than tf wires
or do some modification (or both), then R aborts.

4. The adversary obtains no information about the transmitted message.

We next show that the properties of PPSMTED protocol for sending message
M is equivalent to the problem of distributing n shares for M such that any set
of n − F correct shares has full information about M while any set of P shares
has no information about the message.

Claim 1. Let Π be a PPSMTED protocol tolerating an adversary that can cor-
rupt up to any b, F and P of the n wires connecting S and R in Byzantine,
fail-stop and passive manner respectively. In an execution of Π for sending a
message M, the data si, 1 ≤ i ≤ n sent by the S along wires wi, 1 ≤ i ≤ n form
n shares for M such that any set of n − F correct shares has full information
about M while any set of P shares has no information.

Proof: The fact that any set of P shares have no information about M follows
directly from property 1 and 4 of definition of PPSMTED. We now show that
any set of n − F correct shares has full information about M. The proof is
by contradiction. For a set of wires A ⊆ W , let Message(M, A), denotes the
set of messages sent along the wires in A during the execution of PPSMTED
to send M. Now for any set C, |C| ≥ n − F of honest wires, Message(M, C)
should uniquely determine the message M. Suppose not, then there exists an-
other message M′ such that Message(M, C) = Message(M′, C). By definition

Probabilistic Perfectly Reliable and Secure Message Transmission 113

the fail-stop adversary can block all the messages sent along the F wires not in
C. Thus for two different executions of PPSMTED to send two distinct message
M and M′, there exists an adversary strategy such that view of R at the end
of two executions is exactly same. This is a contradiction to the property 3 of
PPSMTED protocol Π which outputs the correct message if at most F fail-stop
errors take place. �

The above claim also says that the communication complexity of PPSMTED
protocol to send M is same as the share complexity (length of the sum of all
shares) of distributing n shares for a message M such that any set of n−F correct
shares has full information about M while any set of P shares has no information
about the message. Now we step forward to show the communication complexity
of PPSMTED protocol is the lower bound on the communication complexity of
any multiphase PPSMT protocol.

Before that we take a closer look at the execution of any multi-phase PPSMT
protocol. S and R are modeled as polynomial time Turing machines with ac-
cess to a random tape. The number of random bits used by the S and R are
bounded by a polynomial q(n). Let r1, r2 ∈ {0, 1}q(n) denote the contents of the
random tapes of S and R respectively. The message M is an element from the
set {0, 1}p(n), where p(n) is a polynomial. A transcript for an execution of a
multiphase PPSMT protocol Π is the concatenation of all the messages sent by
S and R along all the wires.

Definition 2. A passive transcript T (Π,M, r1, r2) is a transcript for the exe-
cution of the multiphase protocol Π with M as the message to be sent, r1, r2 as
the contents of the random tapes of sender S and the receiver R and the adver-
sary remaining passive throughout the execution. Let T (Π,M, r1, r2, wi) denote
the passive transcript restricted to messages exchanged along the wire wi. When
Π,M, r1, r2 are obvious from the context, we drop them and denote the passive
transcript restricted to a wire wi by Twi . Similarly, TB denotes the set of passive
transcripts over the set of wires in B.

Given (M, r1, r2) it is possible for S to compute T (Π,M, r1, r2) by simulating R
with random tape r2. Similarly given (M, r1, r2) R can compute T (Π,M, r1, r2)
by simulating S. Note that although S and receiver require both r1, r2 to generate
the transcript, R requires only r2 in order to obtain the message M from the
transcript. This is clear since R does not have access to r1 during the execution
of Π but still can retrieve the message M from the messages exchanged.

Definition 3. A transcript TB, with n−F ≤ |B| ≤ n is said to be a valid fault-
free transcript with respect to R if there exists random string r2 and message M
such that protocol Π at R with r2 as the contents of the random tape and TB as
the messages exchanged, terminates by outputting the message M.

Definition 4. Two transcripts TB and T ′
B, where n − F ≤ B ≤ n are said to

be adversely close if the two transcripts differ only on a set of wires A such that
|A| ≤ b+(|B|− (n−F)). Formally |{wi ∈ W |Twi �= T ′

wi
}| ≤ b+(|B|− (n−F)).

114 K. Srinathan et al.

Claim 2. Two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M′, r′1, r
′
2)

with two different message inputs M,M′, cannot be adversely close to each other,
where n − F ≤ B ≤ n.

Proof: Suppose two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M
′
,

r
′

1, r
′

2) are adversely close, then there is a set of wires A, |A| ≤ b+(|B|−(n−F))
such that the two transcripts differ only on messages sent along the wires in A.
Without loss of generality, assume last b + (|B| − (n − F)) wires belong to A
with A = X ◦Y where |X | = b and |Y | = (|B|− (n−F)). Consider the following
two executions of Π where the contents of S’s and R’s random tapes are r1, r2

respectively.

• S wants to send M. S and R executes Π while the adversary stop the wires
in Y to deliver any message. As TB−Y (Π,M, r1, r2) is a valid transcript with
respect to M, R terminates with output M.

• S wants to send M. S and R executes Π . The adversary blocks messages
over Y and changes the messages along wires in X such that the view of S is
TB−Y (Π,M, r1, r2) but the view of R is TB−Y (Π,M′, r′1, r

′
2). Since TB−Y (Π,M′,

r′1, r
′
2) is a valid transcript with respect to M′, R will terminate with output M′.

The two scenarios differ only in the adversarial behavior and in the contents of
R’s random tape. In both the scenarios S wanted to send message M. But the
message received by receiver R in the second case is an incorrect message M′.
Thus, with only probability 1/2, R will output the correct message M. This is
a contradiction because Π is a PPSMT protocol. �

Till now, we have shown that a transcript over at least n−F correct wires allows
R to output M correctly. We now show how to reduce a multiphase PPSMT
protocol into a single phase PPSMTED protocol.

Protocol PPSMTED
• S computes the passive transcript T (Π, M, r1, r2) for some random r1 and r2 and sends
T (Π, M, r1, r2, wi) to R along wi.

• If R does not receives information through at least n − F wires then R outputs ERROR and stop.
Otherwise, let R receives information over the set of wires B = {wi1 , wi2 , . . . , wiα} where n − F ≤
|B| ≤ n. R concatenates the values received along these wires to obtain a transcript TB (which may be
corrupted along tb wires) and does the following:

– for each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n) do:
If TB is a valid transcript with random tape contents r2 for message M then output M and

stop.
Output ERROR.

Claim 3. The Communication complexity of any multiphase PPSMT protocol
Π is at least the communication complexity of PPSMTED protocol. Also Π has
stronger properties than PPSMTED. Finally, PPSMTED does not reveals M
to the adversary.

Probabilistic Perfectly Reliable and Secure Message Transmission 115

Proof: The communication complexity of any multiphase PPSMT protocol Π
assuming the adversary to be passive during the complete execution is triv-
ially a lower bound for any multiphase PPSMT protocol with corruption in
any phases. In PPSMTED, S communicates the transcript generated by him
assuming adversary to be passive throughout the execution of Π to R. The
cost of communicating such a transcript by PPSMTED is same as of Π with
the assumption that adversary remain passive throughout the execution of Π .
PPSMTED is weaker than Π for the following reason: under the passive ad-
versary assumption Π always outputs M but PPSMTED does not output M
for certain adversarial behavior . But in that case it detects it and aborts.

The message sent along the wire wi in PPSMTED is the concatenation of
the messages sent along wi in an execution of Π . Hence the adversary cannot
obtain any information about the message M. From Claim 2, we know that valid
transcripts of two different messages cannot be adversely close to each other. So
irrespective of the actions of the adversary, the transcript received by R cannot
be a valid transcript for any message other than M for any value of r2. Hence if
R outputs a message M then it is the same message sent by S. �

This completes the proof of Lemma 8. We now prove the share complexity of
distributing n shares for a message such that any set of n−F correct shares has
full information while any set of P shares has no information about the message.

Lemma 9. The share-complexity (that is the length of the sum of all shares) of
distributing n shares for a message of size � field elements from F such that any
set of n − F correct shares has full information about the message while any set
of P shares has no information about the message is Ω(n�

(n−F−P)).

Proof: Let Xi denotes the ith share. For any subset A ⊆ {1, 2 . . . n} let XA denote
the set of variables {Xi|i ∈ A}. Let M be a value drawn uniformly at random
from F

l. Then the secret M and the shares Xi are random variables. Let H(X)
for a random variable denote its entropy. Let H(X |Y) denotes the entropy of X
conditional on Y . The conditional entropy measures how much entropy a random
variable X has remaining if we have already learned completely the value of a
second random variable Y [2]. Since M is a value drawn uniformly at random
from F

�, we have H(M) = �. Since any set B consisting of n − F correct shares
has full information about M, we have H(M|XB) = 0. Consider any subset
A ⊂ B such that |A| = P . Since any set of P shares has no information about
M, we have H(M|XA) = H(M). It is clear that

H(M|XA) = H(M|XA|XB−A) + H(XB−A) ≤ H(M|XA, XB−A)) + H(XB−A) = H(XB−A)

So H(M) ≤ H(XB−A) { since H(M|XA) = H(M)}

Since |B| = n − F and |A| = P , |B − A| = n − F − P . So for any set C of size
|B − A| = n − F − P ,

H(XC) ≥ H(M) ⇒
∑

i∈C

H(Xi) ≥ H(M)

116 K. Srinathan et al.

Since there are
(

n
n−F−P

)
possible subsets of cardinality n−F −P , summing the

above equation over all possible subsets of cardinality n − F − P we get

∑

C

∑

i∈C

H(Xi) ≥
(

n

n − F − P

)
H(M)

Now in all the possible
(

n
n−F−P

)
subsets of size n − F − P , each of the term

H(Xi) appears
(

n−1
n−F−P−1

)
times. So

(
n − 1

n − F − P − 1

)
n∑

i=1

H(Xi)≥
(

n

n − F − P

)
H(M) ⇒

n∑

i=1

H(Xi)≥ n

n − F − P
H(M)

which is equal to n�
n−F−P . Thus the share-complexity for any M ∈ F

� is

Ω
(

n�
n−F−P

)
. �

Since P ≤ tb + to + tb and F ≤ tf , Ω
(

n�
n−F−P

)
= Ω

(
n�

n−(tb+to+tf +tp)

)
. Theo-

rem 6 now follows from Lemma 8 and Lemma 9. �

Note. In terms of bits, any multiphase PPSMT protocol must communicate
Ω

(
n�

n−(tb+to+tf +tp) log |F|
)

bits to send � log |F| bits, where |F| is a function of
δ. In the next section, we give a concrete PPSMT protocol satisfying this bound
and show how to set |F| as a function of δ.

Randomization Helps in Reducing the Communication Complexity of
Multiphase Secure Protocols: In [7], it is shown that any multiphase PSMT
protocol has a communication complexity of Ω

(
n�

n−(2tb+to+tf+tp)

)
to securely

send � field elements. Comparing this bound with Theorem 6, we find that al-
lowing a negligible error probability in reliability (without sacrificing the privacy)
significantly reduces the communication complexity of multiphase secure protocol.
We support this claim by designing a four phase PPSMT protocol whose total
communication complexity matches the bound proved in Theorem 6.

3.3 Constant Phase Bit Optimal PPSMT Protocol

Here we design a bit optimal multiphase PPSMT protocol called PPSMT Mixed
tolerating mixed adversary. The protocol terminates in four phases and uses the
three phase SECURE protocol (described in Theorem 5) as a black-box11. The
four phase protocol PPSMT Mixed securely sends � field elements by commu-
nicating O(�) field elements against only Byzantine adversary, thus achieving se-
crecy with constant overhead.

11 Since n = tb + max(tb, tp) + to + tf + 1, we can execute SECURE protocol as a
black-box. We cannot use any single phase PPSMT protocol as a black-box because
the connectivity requirement for single phase and multi phase PPSMT are different.

Probabilistic Perfectly Reliable and Secure Message Transmission 117

If tp ≥ tb, then the protocol securely sends n2 field elements by communi-
cating O(n3) field elements and if tb > tp, then (tb − tp)n2 field elements by
communicating O(n3) field elements. Let, n = tb + max(tb, tp) + to + tf + 1. In
the protocol, depending upon whether tb ≤ tp or tp < tb, the field size |F| is set
to at least 3n2

δ or 4n4(tb−tp)
δtb

respectively, where δ is the error probability of the
protocol. Before describing the protocol, we first recall an algorithm from [12].

Consider the following problem: Suppose S and R by some means agree on
a sequence of n numbers x = [x1x2 . . . xn] ∈ F

n such that the adversary knows
n − f components of x, but the adversary has no information about the other
f components of x, however, S and R do not necessarily know which values
are known to the adversary. The goal is for S and R to agree on a sequence
of f numbers y1y2 . . . yf ∈ F such that the adversary has no information about
y1y2 . . . yf . This is achieved by the following algorithm [12]:

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde matrix with members in F. This
matrix is published as a part of the protocol specification. S and R both locally compute the product
[y1 y2 . . . yf] = [x1 x2 . . . xn]V .

Lemma 10 ([12]). The adversary gets no information about [y1 y2 . . . yf]
computed in EXTRAND.

Theorem 7. By setting |F| ≥ 3n2

δ (if tp ≥ tb) or |F| ≥ 4n4(tb−tp)
δtb

(if tb > tp)
the protocol PPSMT Mixed securely transmits the message M with an error
probability bounded by δ.

Proof: For better understanding, we first prove the theorem when tb > tp. So
|F| ≥ 4n4(tb−tp)

δtb
. It is evident from the protocol construction that the theorem

holds if the following are true:

1. For all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1 − δ
4).

2. For all 1 ≤ i ≤ n, y′
i = yi with probability ≥ (1 − δ

4).
3. If the wire wi were indeed corrupt (i.e., the n2 tuple sent over wi is changed

by the adversary), then wi ∈ Lfault with probability ≥ (1 − δ
4).

4. The protocol PPRMT Single Phase to send the vector d fails with prob-
ability of at most δ

4 .
5. The adversary learns no (additional) information about the transmitted mes-

sage M.

The error probability of the protocol depends upon the error probability of the
first four events. If each of the above are true, then the protocol’s failure prob-
ability is bounded by δ. We prove now each of the above four claims separately.

Claim 4. In PPSMT Mixed, for all 1 ≤ i ≤ n, ρ′i = ρi with probability
≥ (1 − δ

4).

118 K. Srinathan et al.

Protocol PPSMT Mixed
A Bit Optimal 4-Phase PPSMT Protocol Tolerating Mixed Adversary

The message M is a sequence of n2 field elements if tb ≤ tp, otherwise it is a sequence of (tb − tp)n2

field elements.

Phase I (R to S)

• R selects at random n3 elements, rij, 1 ≤ i ≤ n, 1 ≤ j ≤ n2 from field F. R also randomly selects
ρ1, ρ2, . . . ρn from F.

• R computes yi =
∑ n2

j=1 ρj
i rij , 1 ≤ i ≤ n. Note that ρj

i is jth power of ρi.

• R sends to S over wi, 1 ≤ i ≤ n, the n2 field elements rij , 1 ≤ j ≤ n2. R also sends ρi, yi, 1 ≤ i ≤ n
to S using 2n parallel invocations of the three phase SECURE protocol (described in
Theorem 5) as there are total 2n elements to send. Hence Phase I, II and Phase III are used to do
2n parallel executions of SECURE protocol.

Phase IV (S to R)

• Let S receives r′
ij , 1 ≤ j ≤ n2 along wi, 1 ≤ i ≤ n. S adds wi to a list Lerasure, if S does not receive

any information over wi.

• Let S receives ρ′
i and y′

i, 1 ≤ i ≤ n after the 2n parallel executions of the three phase SECURE

protocol initiated by R. For each i, such that wi �∈ Lerasure, S verifies whether y′
i

?
=

∑n2
j=1 ρ′

i
jr′

ij .

If false, then S adds the wire wi to the set of faulty wires, denoted by Lfaulty . S sets Lhonest =

W \ (Lfaulty ∪ Lerasure). If tp ≥ tb, then S computes a random pad Z = (z1, z2, . . . , zn2) of size n2

field elements as follows:

Z = EXTRANDn2|Lhonest|,n2(r′
ij |wi ∈ Lhonest)

However, if tb > tp, S computes a random pad Z of length (tb − tp)n2 from n2|Lhonest| elements using
the above method.
• S computes d = M ⊕ Z. If tp ≥ tb then d is of size n2, so S broadcasts d to R. On the other hand,

if if tb > tp then d consists of (tb − tp)n2 field elements and S reliably sends d to R by invoking
(tb−tp)

tb
∗ n parallel executions of single phase PPRMT Single Phase protocol (This is possible

because n is at least 2tb + to + tf + 1, which is necessary and sufficient for single phase PPRMT. Since

PPRMT Single Phase protocol reliably sends ntb field elements, d consisting of (tb − tp)n2 field

elements can be communicated by S by invoking the single phase PPRMT protocol
(tb−tp)

tb
∗ n times).

S also broadcasts the set Lfaulty and Lerasure to R.

Message recovery by R.
• R correctly receives Lfaulty and Lerasure and sets Lhonest = W \ (Lfaulty ∪Lerasure). R receives d
with certainty (probability one) when tp ≥ tb and with high probability when tb > tp. If tb ≤ tp, then

R computes ZR = (z1, z2, . . . , zn2) of size n2 field elements as follows:

ZR = EXTRANDn2|Lhonest|,n2(rij |wi ∈ Lhonest)

If tb > tp, then R computes ZR of length (tb − tp)n2 using the above method and recovers M by

computing M = ZR ⊕ d.

Proof: In PPSMT Mixed, ρi’s are sent using n parallel execution of the three
phase SECURE protocol. From Theorem 5, the error probability of a single
execution of SECURE protocol is bounded by 1

|F| . Hence the total error prob-
ability of n parallel executions of SECURE to communicate ρi, 1 ≤ i ≤ n, is
bounded by n

|F| . If |F| ≥ 4n
δ , then the total error probability of n parallel exe-

cutions of SECURE is bounded by δ
4 . Since, |F| ≥ 4n4(tb−tp)

δtb
> 4n

δ , the claim
holds. �

Claim 5. In PPSMT Mixed, for all 1 ≤ i ≤ n, y′
i = yi with probability

≥ (1 − δ
4).

Proof: Similar to the proof of the above claim. �

Probabilistic Perfectly Reliable and Secure Message Transmission 119

Claim 6. In PPSMT Mixed, if wire wi is corrupted (i.e., at least one of the
value rij , 1 ≤ j ≤ n2 is changed by the adversary) and for all i, ρ′i = ρi then
wi ∈ Lfault with probability ≥ (1 − δ

4).

Proof: From the security argument of SECURE protocol, the adversary gains
no information about ρi, yi for all 1 ≤ i ≤ n. Assume that adversary has changed
the n2 tuple over some wire wi and it is not marked as faulty by S. This implies
that yi =

∑n2

j=1 ρj
i rij =

∑n2

j=1 ρj
i r

′
ij = y′

i. As inferred by the expression, yi

and y′
i are the y-values (evaluated at x = ρi) of the polynomials of degree n2

constructed using rij , 1 ≤ j ≤ n2 and r′ij , 1 ≤ j ≤ n2 as coefficients. Since the
polynomials are of degree n2, there are at most n2 points of intersection between
the two. The point ρi is chosen uniformly by R in F. Thus, with probability at
most n2

|F| , the protocol fails to detect the faulty wire. In order to bound this error

probability by δ
4 , we require |F| to be at least 4n2

δ . Since, |F| ≥ 4n4(tb−tp)
δtb

> 4n2

δ ,
the claim holds. �

Claim 7. In PPSMT Mixed, the single phase PPRMT protocol PPRMT
Single Phase which is executed parallely n(tb−tp)

tb
times to reliably send d, fails

with probability of at most δ
4 .

Proof: In PPSMT Mixed, d is sent during Phase IV using n(tb−tp)
tb

parallel
executions of PPRMT Single Phase protocol. If δ′ is the failure probability
of a single execution of PPRMT Single Phase, the total failure probabil-
ity to send d is bounded by n(tb−tp)δ′

tb
. To obtain n(tb−tp)δ′

tb
≤ δ

4 , we require

δ′ ≤ δtb

4n(tb−tp) . Now from Theorem 4, if |F| = n3

δ′ then the error probability of
PPRMT Single Phase is bounded by δ′. So to bound the error probability of
PPRMT Single Phase by δ′ ≤ δtb

4n(tb−tp) , we require |F| ≥ 4n4(tb−tp)
δtb

which is
true in this case. Hence the claim follows. �

Thus Theorem 7 is true if tb > tp and |F| ≥ 4n4(tb−tp)
δtb

. If tp ≥ tb, then
PPSMT Mixed will have an error probability of δ if the error probability
of each of first three events mentioned in Theorem 7 is bounded by δ

3 . This is
because 4th event does not occur, as d is broadcast in this case during Phase
IV, instead of sending by single phase PPRMT. It is easy to check that by set-
ting |F| ≥ 3n2

δ , the theorem holds for tb ≤ tp. �

Note: From Theorem 7, the field size should be either 3n2

δ or 4n4(tb−tp)
δtb

. However,
in PPSMT Mixed, during Phase I, R needs to select at least n3 random field
elements from F. So depending upon δ, we will set the field size as max(n3, 3n2

δ).
Setting field size like this will not affect the working of the protocol.

Theorem 8. In PPSMT Mixed, the adversary learns no information about
the transmitted message M.

120 K. Srinathan et al.

Proof: The proof is divided into the following two cases:

1. Case I: If tp ≥ tb: In this case, n = tb + tp + to + tf + 1. In the worst case,
the adversary can passively listen the contents over tb + to + tp wires and block
tf wires. So there will be only one honest wire wi and hence the adversary will
have no information about the n2 random elements sent over wi. In this case, S
generates a random pad of length n2 and sends M containing n2 field elements,
using this pad. The proof follows from the correctness of EXTRAND algorithm.
2. Case II: If tb > tp: In this case, n = 2tb + to + tf + 1. In the worst case, the
adversary can passively listen the contents of at most tb + tp + to wires and block
tf wires. So there are at least (tb − tp) honest wires and hence the adversary
will have no information about the n2 random elements sent over these honest
wires. In this case, S generates a random pad of length (tb − tp)n2 and sends M
containing (tb − tp)n2 field elements, using this pad. The proof now follows from
the correctness of EXTRAND algorithm. �

Theorem 9. The communication complexity of PPSMT Mixed is O(n3).

Proof: During Phase I, R sends n2 random field elements over each of the n
wires causing a communication complexity of O(n3). R also invokes 2n paral-
lel executions of SECURE protocol with communication complexity of O(n2).
This incurs total communication overhead of O(n3). During Phase IV, S sends
d to R. If tp ≥ tb, then d will consist of n2 field elements and hence broadcast-
ing it to R incurs a communication complexity of O(n3). On the other hand,
if tb > tp, d consist of (tb − tp)n2 field elements. In this case, S will send d

by invoking (tb−tp)
tb

∗ n parallel executions of single phase PPRMT protocol.
Since, each execution of the single phase PPRMT protocol has a communica-
tion complexity of O(n2), total communication complexity is O

(
(tb−tp)∗n3

tb

)
,

which is O(n3). Thus, overall communication complexity of PPSMT Mixed
is O(n3). �

Finally to comment on the communication complexity of PPSMT Mixed in
terms of bits, we state the following: PPSMT Mixed sends (tb−tp)n2 log |F| (if
tb > tp) or n2 log |F| bits (if tb ≤ tp) by communicating O(n3 log |F|) bits, where
|F| is either 4n4(tb−tp)

δtb
or 3n2

δ respectively. From Theorem 6, if tb ≥ tp (n will
2tb + to + tf + 1), then any four phase PPSMT protocol needs to communicate
Ω(n3 log |F|) bits to securely send (tb − tp)n2 log |F| bits. Similarly, if tp ≥ tb
(n will be tb + tp + to + tf + 1), then any four phase PPSMT protocol need to
communicate Ω(n3 log |F|) bits in order to securely send n2 log |F| bits. Since to-
tal communication complexity of PPSMT Mixed in both cases is O(n3 log |F|)
bits, our protocol is bit optimal.

Significance of the Protocol: In [7], the authors have designed a PSMT proto-
col achieving optimum communication complexity in O(log(to + tf)) phases. Our
PPSMT protocol achieves optimum communication complexity in four phases,

Probabilistic Perfectly Reliable and Secure Message Transmission 121

which shows the power of randomization. However, our protocol does not sacri-
fice security in any sense for gaining optimality.

Achieving Probabilistic Reliability and Perfect Security with Con-
stant Overhead in Four Phases: In [13], the lower bound on the commu-
nication complexity of any multiphase PSMT protocol has been proved to be
Ω

(
n�

n−2tb

)
in the presence of Byzantine adversary. Hence, communicating any

message secretly with constant overhead is impossible by any PSMT protocol.
However protocol PPSMT Mixed achieves this bound. In PPSMT Mixed,
if to = tp = tf = 0, then it sends tbn

2 = O(n3) field elements in four phases
by communicating O(n3) field elements (when to = tf = tp = 0, n = 2tb + 1
and so tb = O(n)). Thus we get secrecy with constant overhead in four phases
when PPSMT Mixed is executed considering only Byzantine adversary. Like
PPRMT Single Phase, PPSMT Mixed is also a special kind of a PPSMT
protocol in that R actually knows if the protocol outputs the correct message
or not.

4 Conclusion

We have studied the problem of PPRMT and PPSMT in the presence of mixed
adversary. The paper shows considerably strong effect of randomization in the
possibility, feasibility and optimality of reliable and secure message transmission
protocols. We summarize our results in Table 1 and Table 2.

Table 1. Connectivity Requirement for the Existence of Protocol

Model Single Phase Multiple Phase
PRMT(Mixed Adversary) n ≥ 2tb + to + tf + 1 [7] n ≥ 2tb + to + tf + 1 [7]
PPRMT(Mixed Adversary) n ≥ 2tb + to + tf + 1, Theorem 2 n ≥ 2tb + to + tf + 1, Theorem 2
PSMT(Mixed Adversary) n ≥ 3tb + 2to + 2tf + tp + 1 [11] n ≥ 2tb + to + tf + tp + 1 [7]
PPSMT(Mixed Adversary) n ≥ 2tb + 2to + tf + tp + 1 [8] n ≥ tb + max(tb, tp) + to + tf + 1, Theorem 5

Table 2. Protocols with Optimum Communication Complexity. � is the message size.

Model Communication Complexity Number of Phases Remarks

PRMT (Byzantine
Adversary)

O(�) 3 � = n2 [9].

PPRMT (Byzantine
Adversary)

O(�) 1 � = O(n2) (Protocol PPRMT Single Phase

given in this paper by substituting to = tf = 0).

PSMT (Byzantine
Adversary)

O

(
n�

n−3tb

)
1 � = O(n) [11].

O

(
n�

n−2tb

)
2 Exponential computation [1].

O

(
n�

n−2tb

)
3 Polynomial computation [9].

PPSMT (Byzantine
Adversary)

O

(
n�

n−tb

)
1 � = O(n) [8].

O(�) 4 � = O(n3) (by substituting to = tf = tp = 0
in PPSMT Mixed)

PSMT (Mixed Adver-
sary)

O

(
n�

n−(2tb+to+tf +tp)

)
O(log(to + tf)) � = n log(to + tf) [7]

PPSMT (Mixed Ad-
versary)

O

(
n�

n−(tb+to+tf +tp)

)
4 � = n2 or � = (tb − tp)n2

Protocol PPSMT Mixed given in this paper

122 K. Srinathan et al.

References

1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly
secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394–408. Springer, Heidelberg (2006)

2. Cover, T.H., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Chichester (2004)

3. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17–47 (1993)

4. Franklin, M., Wright, R.N.: Secure communication in minimal connectivity models.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 346–360. Springer,
Heidelberg (1998)

5. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmis-
sion scheme. Cryptology ePrint Archive, Report 2007/076 (2007),
http://eprint.iacr.org/

6. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115
(1927)

7. Patra, A., Choudhary, A., Srinathan, K., Rangan, P.C.: Bit optimal protocols
for perfectly reliable and secure message transmission in the presence of mixed
adversary. Manuscript

8. Patra, A., Choudhary, A., Srinathan, K., Rangan, P.C.: Does randomization helps
in reliable and secure communication. Manuscript

9. Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Constant phase bit optimal
protocols for perfectly reliable and secure message transmission. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235. Springer,
Heidelberg (2006)

10. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proc. of twenty-first annual ACM symposium on Theory of
computing, pp. 73–85. ACM Press, New York (1989)

11. Srinathan, K.: Secure Distributed Communication. PhD thesis, Indian Institute of
Technology Madras (2006)

12. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004)

13. Srinathan, K., Prasad, N.R., Rangan, C.P.: On the optimal communication com-
plexity of multiphase protocols for perfect communication. In: IEEE Symposium
on Security and Privacy, pp. 311–320 (2007)

14. Wang, Y., Desmedt, Y.: Secure communication in multicast channels: The answer
to Franklin and Wright’s question. Journal of Cryptology 14(2), 121–135 (2001)

http://eprint.iacr.org/

Secret Swarm Unit

Reactive k−Secret Sharing�

(Extended Abstract)

Shlomi Dolev1, Limor Lahiani1, and Moti Yung2

1 Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

{dolev,lahiani}@cs.bgu.ac.il
2 Department of Computer Science,

Columbia University, New York, and Google, USA
moti@cs.columbia.edu

Abstract. Secret sharing is a basic fundamental cryptographic task.
Motivated by the virtual automata abstraction and swarm computing,
we investigate an extension of the k-secret sharing scheme, in which the
secret components are changed on the fly, independently and without
(internal) communication, as a reaction to a global external trigger. The
changes are made while maintaining the requirement that k or more
secret shares may reveal the secret and no k − 1 or fewer reveal the
secret.

The application considered is a swarm of mobile processes, each main-
taining a share of the secret which may change according to common
outside inputs e.g., inputs received by sensors attached to the process.

The proposed schemes support addition and removal of processes from
the swarm as well as corruption of a small portion of the processes in
the swarm.

Keywords: secret sharing, mobile computing.

1 Introduction

Secret sharing is a basic and fundamental technique [13]. Motivated by the high
level of interest in the virtual automata abstraction and swarm computing, e.g.,
[3,2,1,4,5] we investigate an extension of the k-secret sharing scheme, in which
the secret shares are changed on the fly, while maintaining the requirement that
k or more shares reveal the secret and no k − 1 or fewer reveal the secret.

There is a great interest in pervasive ad hoc and swarm computing [14], and
in particular in swarming unmanned aerial vehicles (uav) [9,4]. A unit of uavs
that collaborate in a mission is more robust than a single uav that has to com-
plete a mission by itself. This is a known phenomenon in distributed computing
where a single point of failure has to be avoided. Replicated memory and state
� Partially supported by the Israeli Ministry of Science, Lynne and William Frankel

Center for Computer Sciences and the Rita Altura trust chair in Computer Sciences.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 123–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 S. Dolev, L. Lahiani, and M. Yung

machine abstractions are used as general techniques for capturing the strength
of distributed systems in tolerating faults and dynamic changes.

In this work we integrate cryptographic concerns into these abstractions. In
particular, we are interested in scenarios in which some of the participants of
the swarm are compromised and their secret shares are revealed. We would like
the participants to execute a global transition without communicating with each
other and therefore without knowing the secret, before or after the transition.
Note that secure function computation (e.g., [10]) requires communication when-
ever inputs should be processed, while we require transition with no internal
communication.

Our contributions. We define and present three reactive k-secret solutions.
The first solution is based on the Chinese remainder, the second is based on
polynomial representation, and the third uses replication of states. In the first
solution we allow the addition arithmetic operation as a possible transition,
where each share of the secret is modified according to the added value, without
collecting the global secret value. The second solution supports both arithmetic
addition and multiplication of the secret by a given input. The last solution
implements a general I/O automaton, where the transition to the next step is
performed according to the input event accepted by the swarm.

To avoid compromising the global secret of the swarm, the participants main-
tain only a share of the secret. In the Chinese remainder scheme, the participant
share of the global value reveals partial information on the secret value. The
polynomial based scheme assumes unbounded secret share values, which enable
it to ensure that no information is revealed to the swarm members. Note that
the shares of the polynomial based solution have number of bits that is approx-
imately the number of bits of the secret, while the total number of bits of the
shares of the Chinese remainder is approximately the number of bits required to
describe the secret. The third solution replicates states of a given automaton and
distributes several distinct replicas to each participant in the swarm. The relative
majority of the distributed replicas represent the state of the swarm. The partic-
ipant changes the states of all the replicas it maintains according to the global
input arriving to the swarm. In this case, general automaton can be implemented
by the swarm, revealing only partial knowledge on the secret of the swarm.

We remark that it is also possible to device Vandermonde matrix based scheme
that supports other operations such as the bitwise-xor operation of the secret
shares. In this case the secret is masked by a random number, and operations
over shares are according to the relevant portions of the global input.

Paper organization. The system settings are described in Section 2. The k-
secret addition implementation that is based on the Chinese remainder appears
in Section 3. The solution that supports addition and multiplication by a number
is the polynomial-based solution presented is Section 4. The I/O automaton
implementation appears in Section 5. Finally, conclusions appear in Section 6.
Some of the details are omitted from this extended abstract and can be found
in [6].

Secret Swarm Unit Reactive k−Secret Sharing 125

2 Swarm Settings

A swarm consists of at least n processes (executed by, say, unmanned aerial
vehicles uavs, mobile-sensors, processors) which receive inputs from the outside
environment simultaneously1. The swarm as a unit holds a secret, where shares
of the secret are distributed among the swarm members in a way that at least k
are required to reveal the secret (some of our schemes require more than k), and
any less than k shares can not reveal the secret. Yet, in some of our schemes the
shares may imply some information regarding the secret, namely, the secret can
be guessed with some positive probability < 1 greater than the probability of a
uniform guess over the secret domain. We consider both listening adversary and
Byzantine adversary, and present different schemes used by the processes to cope
with them. We assume that at most f < k of the n processes may be captured
and compromised by an adversary. Communication among the processes in the
swarm is avoided or performed in a safe land, alternatives of more expensive
secure communication techniques are also mentioned.

Reactive k-secret counting. Assume that we have a swarm, which consists of
n processes. The task of the swarm is to manage a global value called counter,
which is updated according to the swarm input events. The value of the counter
is the actual secret of the swarm. Each swarm member holds a share of the global
counter in a way that any k or more members may reveal the secret with some
positive probability Prk, yet any less than k members fail to reveal it.

Any event sensed by the processes is modeled as a system input. The swarm
receives inputs and sends outputs to the outside environment. An input to the
swarm arrives at all processes simultaneously. The output of the swarm is a
function of the swarm state. There are two possible assumptions concerning the
swarm output, the first, called threshold accumulated output, where the swarm
outputs only when at least a predefined number of processes have this output
locally. The second means to define the swarm output is based on secure internal
communication within the swarm, the communication takes place when the local
state of a process indicates that a swarm output is possible2. In the sequel we
assume the threshold accumulated output where the adversary cannot observe
outputs below the threshold. Whenever the output is above the threshold, the
adversary may observe the swarm output together with the outside environment,
and is “surprised” by the non anticipated output of the swarm.

We consider the following input actions, defined for our first solution:

• set(x): Sets the secret share with the value x. The value x is distributed in
a secure way to processes in the swarm, each process receives a secret share x.
This operation is either done in a safe land, or uses encryption techniques.

1 Alternatively, the processes can communicate the inputs to each other by atomic
broadcast or other weaker communication primitive.

2 In this case, one should add “white noise” of constant output computations to mask
the actual output computations.

126 S. Dolev, L. Lahiani, and M. Yung

• step(δ): Increments (or decrements in case δ is negative) the current counter
value by δ. The processes of the swarm independently receive the input δ.
• regain consistency: Ensures that the processes carry the current counter value
in a consistent manner. We view the execution of this command as an execution
in a safe land, where the adversary is not present. The commands are used for
reestablishing security level. Recovery and preparation for succeeding obstacles
is achieved, by redistributing the counter shares, in order to prepare the swarm
to cope with future joins, leaves, and state corruption.

The processes in the swarm communicate, if possible creating additional pro-
cesses instead of the processes that left, and redistribute the counter value. This
is the mechanism used to obtain a proactive security property.

We assume that the number of processes leaving the swarm between any two
successive regain consistency actions, is bounded by lp. The operation taken by
a leaving process is essentially an erase of its memory3.

• join request: A process requests to join the swarm.
• join reply: A process reply to a join request of another process, by sending the
joining process a secret share.

The adversary operations are:

• listening: Listening to all communication, but cannot send messages.
• capture a process: Remove a process from the swarm and reveal a snapshot
of the memory of a process4. The adversary can invoke this operation at most
f = k − 1 times between any two successive global resets of the swarm secret.
Reset is implemented by using the set input actions.
• corrupt process state: The adversary is capable of changing the state of a
process. In this case, the adversary is called a Byzantine adversary. Byzantine
adversary also models the case in which transient faults occur, e.g., causing
several of the processes not to get the same input sequence. We state for each
of our schemes the number of times the adversary can invoke this operation
between any two successive regain consistency operations.

3 Reactive k-Secret Counting – The Chinese Remainder
Solution

According to the Chinese Remainder Theorem (CRT), any positive integer m is
uniquely specified by its residue modulo relatively prime numbers p1 < ... < pl,
where

∏l−1
i=1 pi ≤ m <

∏l
i=1 pi and p1 < p2 < ... < pl. We use the CRT for

defining the swarm’s global counter, denoted by GC, which is the actual swarm
secret.
3 One may wish to design a swarm in which the members maintain the population

of the swarm, in this case, as an optimization for a mechanism based on secure
heart-bits, a leaving process may notify the other members on the fact it is leaving.

4 In the sequel we assume that a joining process reveals information equivalent to a
captured process, though, if it happen that the (listening) adversary is not presented
during the join no information is revealed.

Secret Swarm Unit Reactive k−Secret Sharing 127

Using a Chinese remainder counter. Let P = {p1, p2, . . . , pl}, such that
p1 < p2 < ... < pl, is the set of l relatively prime numbers which defines the
global counter GC. The integer values of GC run from 0 to GCmax, where
GCmax =

∏l
i=1 pi − 1.

A counter component is a pair 〈ri, pi〉, where ri = GC mod pi and pi ∈ P . The
swarm’s global counter GC can be denoted by a sequence of l counter components
〈〈r1, p1〉, 〈r2, p2〉, .., 〈rl, pl〉〉, the CRT-representation of GC, or 〈r1, r2, .., rl〉, when
P is known. Note that this representation implies that GC can hold up to

∏l
i=1 pi

distinct values. A counter share is simply a set of distinct counter components.
We assume that there is a lower bound pmin on the relatively prime numbers

in P such that pmin < p1 < p2 < ... < pl.
For a given P = {p1, p2, . . . , pl} and GC = 〈〈r1, p1〉, 〈r2, p2〉, .., 〈rl, pl〉〉, we

distribute the counter GC among the n processes in a way that (a) k or more
members may reveal the secret with some probability, yet (b) any fewer than k
members fail to reveal it.

In order to support simple join input actions, we use the CRT-representation
of GC in a way that each process holds a counter share of size s = � l

k �, namely,
s counter components out of l. Let Prm denote the probability that all the l
components of GC are present in a set of m distinct counter shares, each of
size s as specified. We now compute Prm. For any 0 ≤ m < k it holds that
Prm = 0, since at least one counter component is missing. For m ≥ k it holds
that Prm = [1 − (1 − p)m]l, where p is the probability of a counter component
to be chosen. As the components are chosen with equal probability out of the l
components of GC, it holds that p = s

l ≈ 1
k . Assuming k divides l, it holds that

p = s
l = 1

k . The probability that a certain counter component appears in one of
the m counter shares is 1 − (1 − p)m. Hence, the probability that no component
is missing is [1− (1−p)m]l. Therefore, Prm = [1− (1−p)m]l. Thus, the expected
number m of required partial counters is a function of n, l, and k.

Note that when the GC value is incremented (decremented) by δ, each counter
component 〈ri, pi〉 of GC is incremented (decremented) by δ modulo pi. For
example, let P = {2, 3, 5, 7} (p1 = 2, p2 = 3, p3 = 5, p4 = 7), l = 4 and GC = 0.
The CRT-representation of GC is 〈〈0, 2〉, 〈0, 3〉, 〈0, 5〉, 〈0, 7〉〉 or 〈0, 0, 0, 0〉 for the
given set of primes P . After incrementing the value of GC by one, it holds that
GC = 〈1, 1, 1, 1〉. Incrementing by one again, results in GC = 〈0, 2, 2, 2〉, then
〈1, 0, 3, 3〉, 〈0, 1, 4, 4〉, 〈1, 2, 0, 5〉, and so on.

Next we describe the way the Chinese remainder counter supports the required
input actions as appears in Figure 1.

Line-by-line code description. The code in Figure 1 describes input ac-
tions of process i. Each process i has a share of s counter components: s rela-
tively prime numbers primesi[1..s] and s relative residues residuesi[1..s], where
residuesi[j] = GC mod primesi[j] ∀j = 1..s.

Each input action includes a message of the form 〈type, srcid, destid,
parameters〉, where type is the message type indicating the input action type,
srcid is the identifier of the source process, destid the identifier of the destination

128 S. Dolev, L. Lahiani, and M. Yung

1 seti(〈set, srcid, i, share〉)
2 for j = 1..s
3 primesi [j] ←− getPrime(share, j)
4 residuesi [j] ←− getResidue(share, j)

5 stepi(〈stp, srcid, i, δ〉)
6 for j = 1..s do
7 residuesi [j] ←− (residuesi [j] + δ) mod primesi[j]

8 regainConsistencyRequesti(〈rgn rqst, srcid, i〉)
9 leaderId ←− leaderElection()
10 if leaderId = i then
11 globalCounterComponentsi ←− listenAll(〈rgn rply, i, j, share〉)
12 if size(globalCounterComponentsi) < l then
13 globalCounterComponentsi ←− initGlobalCounterComponents()
14 for every process id j in the swarm do:
15 share ←− randomShare(globalCounterComponents)
16 send(〈set, i, j, share〉)
17 globalCounterComponentsi ←− ∅
18 else
19 send(〈rgn rply, i, leaderId, 〈primesi[1..s], residuesi [1..s]〉〉)

20 regainConsistencyReplyi(〈rgn rply, srcid, i, share〉)
21 if leaderId = i then
22 globalCounterComponentsi ←− globalCounterComponentsi ∪ {share}

23 joinRequesti(〈join rqst, srcid, i〉)
24 sentPrimes ←− ∅
25 while |sentPrimes| < s do
26 waitingTime ←− random([1..maxWaiting(n)])
27 while waitingTime not elapsed do
28 listen(〈join rply, i, pid, p, r〉)
29 sentPrimes = sentPrimes ∪ {p}
30 if |sentPrimes| < s then
31 p′ ←− getRandom(primesi \ sentPrimes)
32 r′ ←− getAssociatedResidue(p′)
33 send(〈join rply, i, srcid, p′, r′〉)

34 joinReplyi(〈join rply, srcid, i, p, r〉)
35 shareSize ←− size(primesi)
36 if shareSize < s then
37 if p /∈ primesi then
38 primesi [shareSize] ←− p
39 primesi [shareSize] ←− r

Fig. 1. Chinese Remainder, program for swarm member i

process and further parameters required for the actions executed as a result of
the input action.

• set: On set, process i receives a message of type set, indicating the set in-
put action and a counter share share, namely a set of s counter components
(line 1). Process i sets primesi and residuesi with the received primes and
relative residues of the received counter share share (lines 2–4).
• step: On step, process i receives a message of type stp, indicating the step
input action, and an increment value δ, which may be negative (line 5). See a
similar technique in [7]. The δ value indicates a positive or negative change in
the global counter that affects all the counter shares.

Incrementing (or decrementing) the global counter by δ is done by increment-
ing (or decrementing) each residue rij in the counter share of process i by δ

Secret Swarm Unit Reactive k−Secret Sharing 129

modulo pij such that residuesi[j] is set with (residuesi[j] + δ) mod primesi[j]
(lines 6,7).

• regainConsistencyRequest: On regainConsistancyRequest, the processes are
assumed to be in a safe place without the threat of any adversary (alternatively,
a global secure function computation technique is used).

Process i receives a message of type rgn rqst (line 8) which triggers a leader
election procedure (line 9). Once the leader is elected, it is responsible for dis-
tributing the global counter components to the swarm members. If process i is
the leader (line 10) it first listens to regain consistency reply messages, initial-
izing the set globalCounterComponents with the counter components received
from other swarm members (line 11).

If the number of distinct global counter components is smaller than s, i.e.,
some of the global counter components are missing, then process i initializes
globalCounterComponents with the set of components calculated by the method
initGlobalCounterComponents() (lines 12,13). This method sets the values of
the global counter GC by setting l distinct primes and l relative residues.

Having set the global counter components, process i (the leader) randomly
chooses a share of size s (out of l) components and sends it to a swarm member.
Note that there is also a straightforward deterministic way to distribute the
shares, or alternatively check the result of the random choice. The random share
is chosen with equal probability for every swarm member and sent in a message
of type set (lines 14-16).

After the shares are sent, the set globalCounterComponents is initialized as
an empty set, to avoid revealing the counter in case the leader is later compro-
mised (line 17). In case process i is not the leader, it sends its share to the leader
(lines 18,19).

• regainConsistencyReply: On regainConsistancyReply, the processes are as-
sumed to be in a safe place without the threat of any adversary.

Process i receives a message of type rgn rply with the counter share of a
process whose identifier is srcid (line 20). If process i is the leader, then it adds
the components of the received share to its own set of globalCounterComponents
(lines 21,22).

• joinRequest: An input message of type join rqst indicates a request by a new
process with identifier srcid to join the swarm (line 23). Process i holds a set
sentPrimes of primes which were sent by other processes in a join reply message.
This set is initially empty (line 24).

The join procedure is designed to restrict the shares the (listening) adver-
sary may reveal during the join procedure to the shares assigned to the joining
process. Thus, if the number of distinct primes which were sent to the joining
process is at least s, then process i should not reply to the join request (line 25).

Otherwise, it sets waitingT ime with a random period of time, which is a num-
ber of time units within the range 1 and maxWaiting(n); where maxWaiting
is a function which depends on the number of swarm members n and the time
unit size (line 26).

130 S. Dolev, L. Lahiani, and M. Yung

During the random period of time waitingT ime, process i listens to join
replies sent by other processes. Each reply includes a prime p and its relative
residue r. While listening, process i adds the sent prime p to the set of primes
sentPrimes (lines 27–29). After the waitingT ime elapsed, process i checks if
at least s distinct counter components were sent back to the joining process
(line 30). If not, it randomly chooses a prime number p′ out of the primes that
appears in its share but not in sentPrimes. It then sends back to process srcid
a join reply with the random counter component 〈p′, r′〉, where r′ is the residue
associated with p′, namely r′ = GC mod p′ (lines 31–33).

We assume that at most one sender may succeed in sending the reply. If one
has failed, process i knows which counter component was successfully sent. Note
that the counter components can be encrypted. In that case, the join rqst mes-
sage includes a public key. Otherwise, we regard each join as a process capture
by the adversary.

• joinReply: Process i receives an input message of type join rply, which indi-
cates a reply for a join request by a process joining the swarm. The message
includes a counter component: Prime p and its relative residue r (line 34).

Process i sets the shareSize with the size of primesi and indicates the current
size of its current share, which should eventually be s (line 35). If shareSize is
smaller than s (line 36), then process i should not ignore incoming join replies
since it is missing counter components. Process i checks whether the received
prime p was already received. If so, process i adds the received counter compo-
nents by adding p to primesi and r to residuesi (lines 37–39).

Theorem 1. In any execution in which the adversary captures at most k − 1
processes, the probability of the adversary guessing the secret, i.e., guessing the
value of the global counter, is bounded by 1

pmin
.

Byzantine adversary and error correcting. We now turn to considering
the case of the Byzantine adversary, in which some errors take place, such as
input not received by all swarm members. Let m be any positive integer, where∏l−1

i=1 pi ≤ m <
∏l

i=1 pi and p1 < p2 < ... < pl. By the CRT, m is uniquely
specified by its residues modulo relatively prime numbers p1 < ... < pl.

The integer m can be represented by l+ l0 (l0 > 0) residues modulo relatively
prime numbers p1 < ... < pl+l0 . Clearly, this representation is not unique and
uses l0 redundant primes. The integer m can be considered a code word, while
the extended representation (using l+l0 primes) yields a natural error-correcting
code [8].

The error correction is based on the property that for any two integers
m, m′ <

∏l+l0
i=1 pi the sequences {(m mod p1), ..., (m mod pl+l0)} and {(m′ mod

p1), ..., (m′ mod pl+l0)} differ in at least l0 coordinates.
On the presence of errors, the primes may also be faulty. For that, let us

assume that each process keeps the whole set P instead of only a share of it. Let
us also assume that P is of size l+ l0, where l0 primes are redundant. Under this
assumption, we can update the regainConsistency action, so that the processes
first agree on P by a simple majority function and only then agree on the residues

Secret Swarm Unit Reactive k−Secret Sharing 131

〈r1, r2, ..., rl+l0 〉 matching the relatively primes {p1 < p2 < ... < pl+l0} = P . In
that case, the number of Byzantine values or faults, modeled by f , is required
to be less than the majority and less than l0

2 .
Once P is agreed on, the received counter components 〈pj , rj〉 where pj /∈ P

are discarded, while the rest of the components are considered candidates to
be the real global counter components. The swarm then needs to agree on the
residues and again, it is done by a simple majority function executed for every
residue out of the l + l0 residues. After the swarm has agreed on the primes
and the residues (and in fact, on the counter), the consistency of the counter
components can be checked using Mandelbaum’s technique [12]. If f < l0 errors
have occurred, then they can be detected. Also, the number of errors which can
be corrected is �l0/2�.
Chinese remainder solution with single component share. In this case,
we have l relatively prime numbers in P and each secret share is a single pair
〈ri, pi〉, where pi ∈ P and ri = GC mod pi. Using Mandelbaum’s technique [12]
we may distribute l ≥ k shares that represent a value of a counter defined by
any k of them. So in case of the listening adversary with no joins, any k will
reveal the secret and less than k will not. This distribution also supports the
case of Byzantine/Transient faults, where more than k should be read in order to
reveal the correct value of the secret. In such a case, a join can be regarded as a
transient fault, having the joining process choose its share to be a random value.

4 Reactive k-Secret – Counting/Multiplying
Polynomial-Based Solution

Here we consider a global counter, where its value can be multiplied by some
factor, as well as increased (decreased) as described in Section 3. The global
counter is based on Shamir’s (k, n)-threshold scheme [13], according to which, a
secret is divided into n shares in a way that any k or more shares can reveal it
yet no fewer than k shares can imply any information regarding the secret. Given
k + 1 points in the 2-dimensional plane (x0, y0), . . . (xk, yk), where the values xi

are distinct, there is one and only one polynomial p(x) of degree k such that
p(xi) = yi for i = 0..k. The secret, assumed to be a number S, is encoded by
p(x) such that p(0) = S. In order to divide the secret S into n shares S1, . . . , Sn,
we first need to construct the polynomial p(x) by picking k random coefficients
a1, . . . , ak such that p(x) = S +a1x

1 +a2x
2 + . . .+akxk. The n shares S1, . . . , Sn

are pairs of the form Si = 〈i, p(i)〉. Given any subset of k shares, p(x) can be
found by interpolation and the value of S = p(0) can be calculated.

Our polynomial-based solution encodes the value of the global counter GC,
which is the actual secret shared by the swarm members. The global counter
GC is represented by a polynomial p(x) = GC + a1x

1 + a2x
2 + . . . + alx

l, where
a1, . . . , al are random. Now, the l counter components are the points 〈i, p(i)〉 for
i = 1..l. Instead of each secret share being a single point, a share is a tuple of s =⌊

l
k

⌋
such points. This way, compromising at most k−1 processes ensures that at

least one point is missing and therefore the polynomial p(x) cannot be calculated.

132 S. Dolev, L. Lahiani, and M. Yung

Having each process holding a single point as in Shamir’s scheme, implies a
complicated join action since it requires collecting all the swarm members’ shares
and computing the polynomial p(x) in order to calculate a new point for the new
joining process. Such action should be avoided under the threat of an adversary.
A tuple of s =

⌊
l
k

⌋
points implies a safe join action. The processes share their

own points with the new joining process and there is no need to collect all the
points.

Lemma 1. Let P (x) be a polynomial of degree d. Given a set of d + 1 points
(x0, y0), . . . (xd, yd), where P (xi) = yi for i = 0, .., d and a number δ. The poly-
nomial Q(x), also of degree d, where Q(xi) = yi + δ, equals to P (x) + δ.

Lemma 2. Let P (x) be a polynomial of degree d. Given a set of d + 1 points
(x0, y0), . . . (xd, yd), where P (xi) = yi for i = 0, .., d and a number μ. The poly-
nomial Q(x) of degree d, where Q(xi) = yi · μ, equals to P (x) · μ.

According to lemma 1 adding δ to y0, . . . yl, where P (i) = yi for i = 0, .., l, results
in a new polynomial Q(x) where Q(x) = P (x)+δ. Hence, increasing (decreasing)
the second coordinate of the counter shares by δ increases (decreases) the secret
by δ as well, since Q(0) = P (0)+δ. Similarly, according to lemma 2 multiplication
of the second coordinate in some factor μ implies the multiplication of the secret
value in μ.

The code for the polynomial based solution is omitted from this extended
abstract and cane be found in [6]. The procedure for each input actions are
very similar to the input actions in the Chinese remainder counter, see Fig-
ure 1. In this case, the secret shares are tuples of s points given in two arrays
xCoords[1..s] and yCoords[1..s], matching the x and y coordinates, respectively.
These arrays replace the primes[1..s] and residues[1..s] arrays in the Chinese re-
mainder counter. Another difference is that the step operation has an additional
parameter type, which defines whether to increment (decrement) or multiply the
counter components by δ.

Theorem 2. In any execution in which the adversary captures at most k − 1
processes, the adversary does not reveal any information concerning the secret.

Byzantine adversary and error correcting. Analogously to the Chinese re-
mainder case, we can design a scheme that is robust to faults. Having n distinct
points of the polynomial p(x) of degree l, the Berlekamp-Welch decoder [15] can
decode the secret as long as the number of errors e is less than (n − l)/2.

Polynomial-basedsolutionwithsinglecomponentshare.UsingBerlekamp-
Welch technique [15] we may distribute n ≥ k shares that represent a value of a
counter defined by any k of them. So in the case of the listening adversary with
no joins, any k will reveal the secret, and fewer than k will not. Similarly to the
Chinese remainder solution, this secret share distribution also supports the case
of Byzantine/Transient faults, where more than k should be read to reveal the
correct value of the secret. Again, a join can be regarded as a transient fault,
having the joining process choose its share to be a random value.

Secret Swarm Unit Reactive k−Secret Sharing 133

5 Virtual Automaton

We would like the swarm members to implement a virtual automaton where
the state is not known. Thus, if at most f , where f < n, swarm members are
compromised, the global state is not known and the swarm task is not revealed.

In this section we present the scheme assuming possible errors, as the error
free is a straightforward special case.

We assume that our automaton is modeled as an I/O automaton [11] and
described as a five-tuple:

• An action signature sig(A), formally a partition of the set acts(A) of actions
into three disjoint sets in(acts(A)), out(acts(A)) and int(acts(A)) of input ac-
tions, output actions, and internal actions, respectively. The set of local con-
trolled actions is denoted by local(A) = out(A) ∪ int(A).
• A set states(A) of states.
• A nonempty set start(A) ⊆ states(A) of initial states.
• A transition relation steps(A) : states(A) × acts(A) −→ states(A), where for
every state s ∈ states(A) and an input action π there is a transition (s, π, s′) ∈
steps(A).
• An equivalence relation part(A) partitioning the set local(A) into at most a
countable number of equivalence classes.

We assume that the swarm implements a given I/O automaton A. The swarm’s
global state is the current state in the execution of A. Each process i in the
swarm holds a tuple cur statei = 〈si1 , si2 , . . . , sim〉 of m distinct states, where
sij ∈ states(A) for all j = 1..m and at most one of the m states is the swarm’s
global state. Formally, the swarm’s global state is defined as the state which ap-
pears in at least threshold T out of n cur state tuples (T ≤ n). If there are more
than one such states, then the swarm’s global state is a predefined default state.

The output of process i is a tuple outi = 〈oi1 , oi2 , . . . , oim〉 of m output actions,
where oij ∈ out(acts(A)) for all j = 1..m. The swarm’s global output is defined
as the result of the output action which appears in at least threshold T out of n
members’ output.

We assume the existence of a devices (sensors, for example) which receives
the output of swarm members (maybe in the form of directed laser beams) and
thus can be exposed to identify the swarm’s global output by a threshold of the
members outputs.

We assume an adversary which can compromise at most f < n processes
between two successive global reset operations of the swarm’s global state. We
assume that the adversary knows the automaton A and the threshold T . There-
fore, when compromising f processes it can sample the cur state tuples of the
compromised processes and assume that the most common state, i.e., appears as
many times in the compromised cur state tuples, is most likely to be the global
state of the swarm.

Consider the case in which f = 1 and T = �n/2 + 1�. If |cur state| = 1 (i.e.,
there is a single state in cur state), then an adversary which compromises process
i, knows the state si1 ∈ cur statei. The probability that si1 is the swarm’s global

134 S. Dolev, L. Lahiani, and M. Yung

state is at least T
n and since T is a lower bound, the probability may reach 1 when

all shares are identical. If |cur state| = 2, then an adversary which compromises
process i, knows the state si1 , si2 ∈ cur statei. The probability that either of
the states si1 or si2 is the swarm’s global state is at least T

n . Since there is no
information on which state of the two is the most likely to be the swarm’s global
state, the only option for the adversary is to arbitrarily choose one of the two
states with equal probability. Therefore, the probability of revealing the swarm’s
global state is at least T

2n and at most T
n in case |cur state| = 2. Generally, if

|cur state| = m, then the probability of revealing the swarm’s global state is at
least T

m·n , and at most T
(m−1)·n for f = 1. As the number of states in cur state

increases, the probability to reveal the swarm’s global state decreases.
We consider the following input actions:

• set(〈si1 , . . . , sim〉): Sets cur states with the given tuple. The tuples are dis-
tributed in a way that at least T + f + lp of them contain the swarm’s global
state. Thus, even if f shares are corrupted and lp are missing because of the
leaving processes, the swarm threshold is respected. Moreover, in order to en-
sure uniqness of the global state in the presence of corruptions and joins, any
other state has less than T − f replicas.
• step(δ): Emulates a step of the automaton for each of the states in cur statei.
By the end of the emulation each process has output. Here, δ is any possible
input of the simulated automaton.
• regain consistency: Ensures that there are at least T + f + lp members, whose
cur states tuples include the current state of A. Any other state has less than
T − f replicas.
• join: A process joins the swarm, and constructs its cur states tuple by ran-
domly collecting states from other processes. Note that the scheme benefits from
smooth joins, since the number f that includes the join operations is taken in
consideration while calculating the swarm’s global state upon regain consistency
operation. That is, a threshold of T is required for a state in order to be the
swarm’s global state. Therefore, in case swarm members maintain the popula-
tion of the swarm (updated by joins, leaves and possibly by periodic heartbits)
a join may be simply done by sending a join request message, specifying the
identifier of the joining process. However, the consistency of the swarm will defi-
nitely benefit if shares are uniformly chosen for the newcomers. In this way, if the
adversary was not listening during the join procedure, there is high probability
that the joining processes will assist in encoding the current secret.

Line-by-line code description. The code in Figure 2 describes input actions
of process i. Each process i has an m-tuple cur statei of m states in states(A),
where at most one of them is the swarm’s global state.

• set: On input action set, process i receives a message of type set and an m-
tuple of distinct states in states(A) (line 1). It then sets its tuple cur statei with
the received tuple (line 2).
• step: On input action step, process i receives a message of type stp and δ,
which is an input parameter for the I/O automaton (line 3). For every state sij in

Secret Swarm Unit Reactive k−Secret Sharing 135

1 seti(〈set, srcid, i, 〈si1 , . . . , sim〉〉)
2 cur statei ←− 〈si1 , . . . , sim〉

3 stepi(〈stp, srcid, i, δ〉)
4 for j = 1..m do
5 〈s′

ij
, oij

〉 ←− follow the transaction in steps(A) for sij
and δ

6 next state ←− 〈s′
i1

, . . . , s′
im

〉
7 output acts ←− 〈o′

i1
, . . . , o′

im
〉

8 executeOutputActions(output acts)
9 cur statei ←− next state

10 regainConsistencyRequesti(〈rgn rqst, srcid, i〉)
11 leaderId ←− leaderElection()
12 if leaderId = i then
13 allStateTuplesi ←− collectAllStates()
14 candidates ←− mostPopularStates(allStateTuples)
15 if |candidates| == 1 then
16 globalState ←− first(candidates)
17 else
18 globalState ←− defaultGlobalState
19 distributeStateTuples(globalState)
20 allStateTuplesi ←− ∅
21 delete candidates
22 else
23 send(〈rgn rply, i, leaderId, curstatei, 〉)

24 regainConsistencyReplyi(〈rgn rply, srcid, i, stateTuple〉)
25 if leaderId = i then
26 allStateTuplesi ←− allStateTuplesi ∪ {stateTuple}

27 joinRequesti(〈join rqst, srcid, i〉)
28 addMember(srcid)

Fig. 2. Virtual automaton, program for swarm member i

cur statei process i emulates the automaton A by executing a single transaction
on sij and δ (line 5). As a result, there is a new state s′ij

and an output action
oij . Process i initializes a tuple next state of all the new states s′ij

for all j =
1..m (line 6) and the resulting output actions o′ij

for all j = 1..m (line 7). It
then executes the output actions in output acts (line 8) and finally, it updates
cur statei to be the tuple of new states next state (line 9).
• regainConsistencyRequest: On input action regainConsistency the processes
are assumed to be in a safe land with no threat of any adversary. Process i
receives a message of type rgn rqst from process identified by srcid (line 10).

The method leaderElection() returns the process identifier of the elected
leader (line 11). If process i is the leader, then it should distribute state tuples
using set input actions in a way that at least T + f swarm members have tuples
that include the global state and all other states appear no more than T times.
Possibly by randomly choosing shares to members, such that the probability for
assigning the global state share to a process is equal to, or slightly greater than,
T/n + f/n while the probability of any other state to be assigned to a process
is the same (smaller) probability.

First, the leader collects all the state tuples (line 13) and then executes the
method mostPopularStates() in order to find the candidates to be the swarm’s
global state (lines 14). If there is a single candidate (line 15), then it is the global

136 S. Dolev, L. Lahiani, and M. Yung

state and globalState is set with the first (and only) state in candidates (line 16).
In case there is more than one candidate (line 17), the leader sets globalState
with a predefined default global state (line 18).

The leader then distributes the state tuples (line 19) and deletes both the col-
lected tuples allStateTuples and the candidates for the global state candidates
(lines 20,21). If process i is not the leader, then it sends its cur statei tuple to
the leader (lines 22,23).

• regainConsistencyReply: On input action regainConsistencyReply the pro-
cesses are also assumed to be in a safe land. Process i receives a message of
type rgn rply, which is a part of the regain consistency procedure. The message
includes the identifier srcid of the sender and the sender’s state tuple (line 24).
If process i is the leader (line 25), then it adds the received tuple to the set
allStateTuplesi of already received tuples. Otherwise, it ignores the message.
• joinRequest: On input action, joinRequest process i receives a message of type
join rqst from a process identified by srcid, which is asking to join the swarm
(line 27). Process i executes the method addMember(srcid), which adds srcid,
the identifier of the joining process, to its population list of processes in the
swarm.

6 Conclusions

We have presented three (in fact four, including the Vandermonde matrix based
scheme) approaches for reactive k-secret sharing that require no internal com-
munication to perform a transition.

The two first solutions maybe combined as part of the reactive automaton
to define share of the state, for example to enable an output of the automaton
whenever a share value of the counter is prime. Thus the operator of the swarm
may control the output of each process by manipulating the counter value, e.g.,
making sure the counter secret shares are never prime, until a sufficient number
and combination of events occurs.

We believe that such a distributed manipulation of information without com-
municating the secret shares, that is secure even from the secret holders, should
be further investigated. At last, the similarity in usage of Mandelbaum and
Berlekamp-Welch techniques may call for arithmetic generalization of the
concepts.

References

1. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Virtual Stationary Au-
tomata for Mobile Networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R.
(eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg (2006) Also invited
paper in Forty-Third Annual Allerton Conference on Communication, Control,
and Computing. Also, Brief announcement. In: PODC 2005. Proc. of the 24th An-
nual ACM Symp. on Principles of Distributed Computing, p. 323 (2005) Technical
Report MIT-LCS-TR-979, Massachusetts Institute of Technology (2005)

Secret Swarm Unit Reactive k−Secret Sharing 137

2. Dolev, S., Gilbert, S., Lynch, A.N., Schiller, E., Shvartsman, A., Welch, J.: Virtual
Mobile Nodes for Mobile Ad Hoc Networks. In: DISC 2004. International Con-
ference on Principles of DIStributed Computing, pp. 230–244 (2004) Also Brief
announcement. In: PODC 2004. Proc. of the 23th Annual ACM Symp. on Princi-
ples of Distributed Computing (2004)

3. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A., Welch, J.: GeoQuorum: Im-
plementing Atomic Memory in Ad Hoc Networks. Distributed Computing 18(2),
125–155 (2003)

4. Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A., Welch, J.: Autonomous Virtual
Mobile Nodes. In: DIALM/POMC 2005. Third ACM/SIGMOBILE Workshop on
Foundations of Mobile Computing, pp. 62–69 (2005) Brief announcement. In: SPAA
2005. Proc. of the 17th International Conference on Parallelism in Algorithms and
Architectures, p. 215 (2005) Technical Report MIT-LCS-TR-992, Massachusetts
Institute of Technology (2005)

5. Dolev, S., Lahiani, L., Lynch, N., Nolte, T.: Self-Stabilizing Mobile Location Man-
agement and Message Routing. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS,
vol. 3764, pp. 96–112. Springer, Heidelberg (2005)

6. Dolev, S., Lahiani, L., Yung, M.: Technical Report TR-#2007-12, Department of
Computer Science, Ben-Gurion University of the Negev (2007)

7. Dolev, S., Welch, L.J.: Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM 51(5), 780–799 (2004)

8. Goldrich, O., Ron, D., Sudan, M.: Chinese Remaindering with Errors. In: Proc. of
31st STOC. ACM (1999)

9. Kivelevich, E., Gurfil, P.: UAV Flock Taxonomy and Mission Execution Perfor-
mance. In: Proc. of the 45th Israeli Conference on Aerospace Sciences (2005)

10. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and Completeness
In Multi-Party Private Computations. In: FOCS 1994. Proceedings of Thirty-fifth
Annual IEEE Symposium on the Foundations of Computer Science, Journal version
in SIAM J. Comput. 29(4), 1189-1208 (2000)

11. Lynch, N., Tuttle, M.: An introduction to Input/Output automata, Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands, 2(3), 219–246 (September
1989) Also Tech. Memo MIT/LCS/TM-373

12. Mandelbaum, D.: On a Class of Arithmetic and a Decoding Algorithm. IEEE
Transactions on Information Theory 21(1), 85–88 (1976)

13. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)
14. Weiser, M.: The Computer for the 21th Century. Scientific American (September

1991)
15. Welch, L., Berlekamp, E.R.: Error Correcting for Algebraic Block Codes, U.S.

Patent 4633470 (September 1983)

New Formulae for Efficient Elliptic Curve

Arithmetic

Huseyin Hisil, Gary Carter, and Ed Dawson

Information Security Institute, Queensland University of Technology
{h.hisil, g.carter, e.dawson}@qut.edu.au

Abstract. This paper is on efficient implementation techniques of Ellip-
tic Curve Cryptography. In particular, we improve timings1 for Jacobi-
quartic (3M+4S) and Hessian (7M+1S or 3M+6S) doubling operations.
We provide a faster mixed-addition (7M+3S+1d) on modified Jacobi-
quartic coordinates. We introduce tripling formulae for Jacobi-quartic
(4M+11S+2d), Jacobi-intersection (4M+10S+5d or 7M+7S+3d), Ed-
wards (9M+4S) and Hessian (8M+6S+1d) forms. We show that Hessian
tripling costs 6M+4C+1d for Hessian curves defined over a field of char-
acteristic 3. We discuss an alternative way of choosing the base point
in successive squaring based scalar multiplication algorithms. Using this
technique, we improve the latest mixed-addition formulae for Jacobi-
intersection (10M+2S+1d), Hessian (5M+6S) and Edwards (9M+1S+
1d+4a) forms. We discuss the significance of these optimizations for el-
liptic curve cryptography.

Keywords: Elliptic curve, efficient point multiplication, doubling,
tripling, DBNS.

1 Introduction

One of the main challenges in elliptic curve cryptography is to perform scalar
multiplication efficiently. In the last decade, much effort has been spent in rep-
resenting the elliptic curves in special forms which permit faster point doubling
and addition. In particular,

– Cohen, Miyaji and Ono [1] showed fast implementation in Weierstrass form
on Jacobian coordinates.

– Smart [2], Joye and Quisquater [3], Liardet and Smart [4], Billet and Joye [5]
showed ways of doing point multiplication to resist side channel attacks.

– Doche, Icart and Kohel [6] introduced the fastest doubling2 and tripling in
Weierstrass form on two different families of curves.

1 M: Field multiplication, S: Field squaring, C: Field cubing on characteristic 3 fields,
d: Multiplication by a curve constant. a: Addition. For simplicity in our analysis,
we fix 1S=0.8M, 1C=0.1M, 1d=0M.

2 With the improvements of Bernstein, Birkner, Lange and Peters [7,8].

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 138–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

New Formulae for Efficient Elliptic Curve Arithmetic 139

– Negre [9], Kim, Kim and Choe [10], Smart [11] investigated the case of
efficient arithmetic for low odd characteristic curves.

– Dimitrov, Imbert and Mishra [12] showed the first efficient inversion free
tripling formula on Jacobian coordinates. Meloni [13] showed how special
addition chains can be used in point multiplication.

– Avanzi, Dimitrov, Doche and Sica [14] and Doche and Imbert [15] provided
an extended way of using DBNS3 in elliptic curve cryptography.

– Edwards [16] introduced a new representation of elliptic curves. Bernstein
and Lange [17,18] showed the importance of this new system for providing
fast arithmetic and side channel resistance. They have also built a database
[7] of explicit formulae that are reported in the literature together with their
own optimizations. Our work greatly relies on the formulae reported in this
database.

This paper is composed of several optimizations regarding elliptic curve arith-
metic operations. We improve some of the previously reported elliptic curve
group operations namely Jacobi-quartic doubling, Jacobi-quartic mixed addi-
tion and Hessian doubling. As well, we introduce elliptic curve point tripling
formulae for Jacobi-quartic, Jacobi-intersection, Hessian and Edwards forms.
We introduce a technique for successive squaring based point multiplication al-
gorithms which speeds-up mixed addition in some forms. This technique enables
faster mixed-addition for Jacobi-intersection, Hessian and Edwards curves. The
optimizations in this paper are solely efficiency oriented. Therefore, these results
do not cover side channel resistance. Some immediate outcomes are;

– Jacobi-quartic form becomes competitive in efficiency oriented applications.
For instance, successive squaring based point multiplications on modified/
extended Jacobi-quartic coordinates can be performed faster than standard4

Edwards coordinates for all S/M values.
– The tripling formulae that are introduced provide a wider background for

new comparisons on DBNS based point multiplications in different systems.
– Point multiplication in Hessian form can be performed faster than Jacobian

form whenever S/M is near to 1.
– Hessian tripling formula enables efficient implementation of DBNS based

point multiplication algorithms with Hessian curves defined over fields of
characteristic 3.

This paper is organized as follows. We show faster doubling formulae in Sec-
tion 2. We introduce new tripling formulae in Section 3. We provide a faster
Jacobi-quartic mixed addition in Section 4. We describe an alternative strategy
for the selection of base point for point multiplication in Section 5. We draw our
conclusions in Section 6.

3 DBNS: Double Base Number System.
4 Very recently, Bernstein and Lange [7] developed the inverted-Edwards coordinates

which requires less memory and bandwidth.

140 H. Hisil, G. Carter, and E. Dawson

2 New Doubling Formulae

We observe that output coordinates of an inversion-free formula can be repre-
sented alternatively by selecting congruent elements from K[E], i.e. the coor-
dinate ring of E over K. In other words, an inversion-free formula (which is
originally derived from its affine version) can be modified using the curve equa-
tion. We do not report the detail for finding all new explicit formulae since the
process is composed of fairly tedious steps. Nevertheless, a step-by-step deriva-
tion of doubling a formula for Jacobi-quartic form is given in the Appendix as
an example. Tripling formulae in Section 3 can be derived building on the same
ideas.

Let K be a field with char(K) �= 2, 3. An elliptic curve in Jacobi-quartic
form [5] is defined by E(K) : y2 = x4 + 2ax2 + 1 where a2 − 1 is nonzero.
The identity element is the point (0, 1). We do not give background material
on curves since it is well documented in the literature. Our optimization leads
to the following strategy for inversion-free Jacobi-quartic doubling. (See the
Appendix).

X3 = Y1((X1 − Z1)2 − (X2
1 + Z2

1)), Z3 = (X2
1 + Z2

1)(X2
1 − Z2

1),

Y3 = 2(Y1(X2
1 + Z2

1))2 − (X2
3 + Z2

3).

The operation count shows that Jacobi-quartic doubling costs 3M+4S (pre-
vious best [7], 1M+9S) when the points are represented on the modified coordi-
nates, (X1 : Y1 : Z1 : X2

1 : Z2
1). This redundant representation will also be used

to improve the mixed-addition for Jacobi-quartic form in Section 4. The opera-
tions can be scheduled as follows. We denote the input cache registers as (X2

1)
and (Z2

1). Re-caching is done on (X2
3) and (Z2

3).

X3 ← X1 + Z1 Y3 ← Z3 × Y1 Y3 ← Y 2
3 (Z2

3) ← Z2
3

X3 ← X2
3 X3 ← Y3 − X3 Y3 ← 2 ∗ Y3 Y3 ← Y3 − (Z2

3)
X3 ← X3 × Y1 R0 ← (X2

1) − (Z2
1) (X2

3) ← X2
3

Z3 ← (X2
1) + (Z2

1) Z3 ← Z3 × R0 Y3 ← Y3 − (X2
3)

Most applications overwrite (X2
1) and (Z2

1). In this case, temporary register
R0 can be replaced with (X2

1) or (Z2
1). In addition, (X2

3) and (Z2
3) can be the

same registers as (X2
1) and (Z2

1), respectively. This scheduling method uses 6
additions and 1 multiplication by 2. If the caching is performed more redundantly
as (X1 : Y1 : Z1 : X2

1 : Z2
1 : (X2

1 + Z2
1)), it is possible to save one addition and to

avoid the use of R0.
Let K be a field with char(K) �= 2. An elliptic curve in Hessian form [2] is

defined by E(K) : x3 + y3 + 1 = cxy where (c/3)3 − 1 is nonzero. The identity
element is the point at infinity. The cost of inversion-free doubling was reported
as 6M+3S with respect to the following formula where each coordinate is cubed
and used in the obvious way [7].

New Formulae for Efficient Elliptic Curve Arithmetic 141

X3 = Y1(Z3
1 − X3

1), Y3 = X1(Y 3
1 − Z3

1), Z3 = Z1(X3
1 − Y 3

1).

However, the same formula costs 7M+1S when the following strategy is used.

A ← X2
1 , B ← Y1(X1 + Y1), C ← A + B, D ← Z1(Z1 + X1),

E ← A + D, F ← C(X1 − Y1), G ← E(Z1 − X1),

X3 ← GY1, Y3 ← −(F + G)X1, Z3 ← F Z1.

Furthermore, it is possible to save 1 reduction by delaying the reduction steps
after computing X2

1 , Y1(X1 + Y1) and Z1(Z1 + X1) whenever desired. Lazy re-
ductions effect the timings when arbitrary moduli are used for field reductions.
If fast reduction moduli (such as NIST primes) are used then this advantage
vanishes. Note, we do not include this optimization in our complexity analysis.
The operations for Hessian doubling can be scheduled as follows.

R0 ← X2
1 R2 ← Z1 × R2 R0 ← R1 × R0 X3 ← R1 × Y1

R1 ← X1 + Y1 R2 ← R0 + R2 Z3 ← R0 × Z1 R2 ← −(R0 + R1)
R1 ← Y1 × R1 R1 ← R0 + R1 R1 ← Z1 − X1 Y3 ← R2 × X1

R2 ← Z1 + X1 R0 ← X1 − Y1 R1 ← R2 × R1

An alternative layout is as follows.

X3 = (((X1 + Y1)2 − (X2
1 + Y 2

1)) − ((Y1 + Z1)2 − (Y 2
1 + Z2

1))) ·
(((X1 + Z1)2 − (X2

1 + Z2
1)) + 2(X2

1 + Z2
1))

Y3 = (((X1 + Z1)2 − (X2
1 + Z2

1)) − ((X1 + Y1)2 − (X2
1 + Y 2

1))) ·
(((Y1 + Z1)2 − (Y 2

1 + Z2
1)) + 2(Y 2

1 + Z2
1))

Z3 = (((Y1 + Z1)2 − (Y 2
1 + Z2

1)) − ((X1 + Z1)2 − (X2
1 + Z2

1))) ·
(((X1 + Y1)2 − (X2

1 + Y 2
1)) + 2(X2

1 + Y 2
1))

This strategy costs 3M+6S. There are no lazy reduction possibilities. It re-
quires more additions and more temporary registers. However, it will be faster
whenever 1S < 0.8M. It is known that 1S ≈ 0.66M when fast reduction moduli
are used. The operations can be scheduled as follows.

R0 ← X2
1 R0 ← R2

0 R2 ← R2
2 Y3 ← R0 − R1

R1 ← Y 2
1 R0 ← R0 − R3 R4 ← 2 ∗ R4 R5 ← R2 + R5

R2 ← Z2
1 R1 ← X1 + Z1 R2 ← R2 − R5 Y3 ← Y3 × R5

R3 ← R0 + R1 R1 ← R2
1 R5 ← 2 ∗ R5 Z3 ← R1 − R2

R4 ← R0 + R2 R1 ← R1 − R4 X3 ← R2 − R0 R0 ← R0 + R3

R5 ← R1 + R2 R2 ← Y1 + Z1 R4 ← R1 + R4 Z3 ← Z3 × R0

R0 ← X1 + Y1 R3 ← 2 ∗ R3 X3 ← X3 × R4

The comparison of doubling costs in different systems is depicted in Table 1.

142 H. Hisil, G. Carter, and E. Dawson

Table 1. Cost comparison of elliptic curve point doubling operations in different co-
ordinate systems. The bold values are the old and the new timings that are explained
in this section. We assume 1S=0.8M.

System Cost analysis Total

Hessian (OLD) [3] 6M + 3S 8.4M
Jacobi-quartic (OLD) [5] 1M + 9S + 1d 8.2M
Hessian (NEW-1) 7M + 1S 7.8M
Hessian (NEW-2) 3M + 6S 7.8M
Doche/Icart/Kohel(3) [7,6] 2M + 7S + 2d 7.6M
Jacobian [1,7] 1M + 8S + 1d 7.4M
Jacobian, a = −3 [1,7] 3M + 5S 7.0M
Jacobi-intersections [7,4] 3M + 4S 6.2M
Inverted Edwards [7,8] 3M + 4S + 1d 6.2M
Edwards [7,17,18] 3M + 4S 6.2M
Jacobi-quartic (NEW) 3M + 4S 6.2M
Doche/Icart/Kohel(2) [7,6] 2M + 5S + 2d 6.0M

3 New Tripling Formulae

Since DBNS based point multiplication algorithms [12,14,15] have been intro-
duced, there has been a demand for fast tripling formulae. We introduce tripling
formulae for Jacobi-quartic, Hessian, Jacobi-intersection and Edwards forms in
this section. Tripling formulae can be derived by the composition of doubling
and addition formulae. However, a straight forward derivation yields expensive
expressions. Nevertheless, it is possible to do simplifications using the curve
equation. To the best of our knowledge, no algorithm is known to guarantee the
best strategy. Therefore, one can expect further improvements in these formulae
in the future. At least, there should be multiplication/squaring tradeoffs.

Following the same notation in Section 2, we introduce Jacobi-quartic tripling.
The formula is as follows.

X3 = X1(X8
1 − 6X4

1Z4
1 − 8aX2

1Z6
1 − 3Z8

1)
Y3 = Y1(X16

1 + 8aX14
1 Z2

1 + 28X12
1 Z4

1 + 56aX10
1 Z6

1 + 6X8
1Z8

1 +
64a2X8

1Z8
1 + 56aX6

1Z10
1 + 28X4

1Z12
1 + 8aX2

1Z14
1 + Z16

1)
Z3 = Z1(3X8

1 + 8aX6
1Z2

1 + 6X4
1Z4

1 − Z8
1)

The terms can be organized as follows.

A ← (X2
1)2, B ← (Z2

1)2, C ← 2(((X2
1) + (Z2

1))2 − (A + B)),

D ← (a2 − 1)C2, E ← 4(A − B), F ← 2(A + B) + aC, G ← E2,

H ← F 2, J ← (E + F)2 − (G + H), K ← 2(H − D),

X3 ← X1(J − K), Y3 ← Y1(K2 − 4GD), Z3 ← Z1(J + K),

New Formulae for Efficient Elliptic Curve Arithmetic 143

Jacobi-quartic tripling costs 4M+10S+2d in the modified Jacobi-quartic coor-
dinates. The formulae that will take advantage of the fast Jacobi-quartic addition
formula [19] require the addition of XY coordinate to modified coordinates

(X1 : Y1 : Z1 : X2
1 : Z2

1 : (X2
1 + Z2

1)).

This modification fixes the complexity to 4M+11S+2d. We refer the reader to
EFD [7] for compatible versions developed by Bernstein and Lange.

Temporary registers R5 and R6 can be replaced with volatile cache registers
(X2

1) and (Z2
1). As well, (X2

3) and (X2
3) can be the same registers as (X2

1) and
(Z2

1), respectively.
In the same fashion, we introduce Hessian tripling. We follow the same nota-

tion for Hessian curves that is given in Section 2. Set k = c−1. One can treat k
as the curve constant confidently since addition and doubling formulae do not
depend on c. An efficient tripling can be performed using the following formula.

X3 = X3
1 (Y 3

1 − Z3
1)(Y 3

1 − Z3
1) + Y 3

1 (X3
1 − Y 3

1)(X3
1 − Z3

1)
Y3 = Y 3

1 (X3
1 − Z3

1)(X3
1 − Z3

1) − X3
1 (X3

1 − Y 3
1)(Y 3

1 − Z3
1)

Z3 = k(X3
1 + Y 3

1 + Z3
1)((X3

1 − Y 3
1)2 + (X3

1 − Z3
1)(Y 3

1 − Z3
1))

The operations are organized as follows.

A ← X3
1 , B ← Y 3

1 , C ← Z3
1 , D ← A − B, E ← A − C,

H ← D2, J ← E2, K ← F 2, X3 ← 2AK − B(K − H − J),

Y3 ← 2BJ − A(J − H − K), Z3 ← k(A + B + C)(J + H + K).

This formula costs 8M+6S+1d. Furthermore, there exists 2 lazy reduction
points. (First, delay reduction when computing AK and B(K − H − J), then
delay reduction when computing BJ and A(J − H − K)). If the Hessian curve
is defined over a field of characteristic 3, the tripling formula simplifies to the
following. Note, it is enough to choose a nonzero k in this case.

X3 = (X1(Y1 − Z1)(Y1 − Z1) + Y1(X1 − Y1)(X1 − Z1))3

Y3 = (Y1(X1 − Z1)(X1 − Z1) − X1(X1 − Y1)(Y1 − Z1))3

Z3 = k((X1 + Y1 + Z1)3)3

It is easy to see that this formula costs 6M+4C+1d. (Reuse X1(Y1 − Z1)
and Y1(X1 − Z1)). Furthermore, 2 additional lazy reductions can be done in the
computation of X3 and Y3. It is interesting to note that the cost of 5P=2P+3P
is less than a point addition. Recently, Kim, Kim and Choe [10] introduced
4M+5C+2d tripling formula in Jacobian/ML coordinates which is faster than
the tripling introduced here.

Next, we introduce the tripling formula for Jacobi-intersection form [4]. Let
K be a field with char(K) �= 2, 3 and let a ∈ K with a(1 − a) �= 0. The elliptic
curve in Jacobi-intersection form is the set of points which satisfy the equations

144 H. Hisil, G. Carter, and E. Dawson

s2 + c2 = 1 and as2 + d2 = 1 simultaneously. The identity element is the point
(0, 1, 1). The inversion-free tripling formula is as follows. With k = a − 1,

S3 = S1(k(kS8
1 + 6S4

1C4
1 + 4S2

1C6
1) − 4S2

1C6
1 − 3C8

1)
C3 = C1(k(3kS8

1 + 4kS6
1C2

1 − 4S6
1C2

1 − 6S4
1C4

1) − C8
1)

D3 = D1(k(−kS8
1 + 4S6

1C2
1 + 6S4

1C4
1 + 4S2

1C6
1) − C8

1)
T3 = T1(k(−kS8

1 − 4kS6
1C2

1 + 6S4
1C4

1) − 4S2
1C6

1 − C8
1)

The operations can be organized as follows.

E ← S2
1 , F ← C2

1 , G ← E2, H ← F 2, J ← G2, K ← H2,

L ← ((E + F)2 − H − G), M ← L2, N ← (G + L)2 − J − M,

P ← (H + L)2 − K − M, R ← 2k2J, S ← 2kN,

T ← 3kM, U ← 2P, V ← 2K, W ← (k + 1)U, Y ← (k + 1)S,

S3 ← S1((R−V)+(T +W)−2(U+V)), C3 ← C1((R−V)−(T −Y)+2(R−S)),

D3 ← D1((T +W)−(R−S)−(U +V)), T3 ← T1((T −Y)−(R−S)−(U +V)).

This formula costs 4M+10S+5d. An alternative strategy costs 7M+7S+3d.
Here is the alternative organization of operations.

E ← S2
1 , F ← C2

1 , G ← E2, H ← F 2, J ← 2H, K ← 2J,

L ← (2F + E)2 − G − K, M ← kG, N ← K + J, P ← M2,

R ← NM, U ← ML, V ← H2, W ← HL,

S3 ←S1(R+kW+2(P−V)−W−P−V), C3 ←C1(2(P−V)−U+P+V −R+kU),

D3 ← D1(U − P − V + R + kW), T3 ← T1(R − kU − W − P − V).

Finally, we introduce the tripling formula for Edwards curves [16,17,18]. Let
K be a field with char(K) �= 2 and let c, d ∈ K with cd(1 − c4d) �= 0. Then, the
Edwards curve, (x2 +y2) = c2(1+dx2y2), is birationally equivalent to an elliptic
curve [17,18]. The identity element is the point (0, c). The same formula was
independently developed by Bernstein, Birkner, Lange and Peters [8]. Edwards
tripling costs 9M+4S. For further results, we refer the reader to Bernstein,
Birkner, Lange and Peters [8]. The inversion-free tripling formula is as follows.

X3 = X1(X4
1 + 2X2

1Y 2
1 − 4c2Y 2

1 Z2
1 + Y 4

1)(X4
1 − 2X2

1Y 2
1 + 4c2Y 2

1 Z2
1 − 3Y 4

1)
Y3 = Y1(X4

1 + 2X2
1Y 2

1 − 4c2X2
1Z2

1 + Y 4
1)(3X4

1 + 2X2
1Y 2

1 − 4c2X2
1Z2

1 − Y 4
1)

Z3 = Z1(X4
1 − 2X2

1Y 2
1 + 4c2Y 2

1 Z2
1 − 3Y 4

1)(3X4
1 + 2X2

1Y 2
1 − 4c2X2

1Z2
1 − Y 4

1)

The cost comparison of tripling formulae in different systems is depicted in
Table 2. (Also see Table 3 in the Appendix).

New Formulae for Efficient Elliptic Curve Arithmetic 145

Table 2. Cost comparison of elliptic curve point tripling formulae in different coordi-
nate systems. The bold lines correspond to the complexities of the formulae that are
introduced in this section. We assume 1S=0.8M.

System Tripling Cost Total

Jacobian [12,7] 5M+10S+1d 13M
Hessian 8M+6S+1d 12.8M
Jacobi-quartic 4M+11S+2d 12.8M
Jacobi-intersection-2 7M+7S+3d 12.6M
Jacobian, a = −3 [12,7] 7M+7S 12.6M
Edwards [7,8] 9M+4S+1d 12.2M
Inverted Edwards [7,8] 9M+4S+1d 12.2M
Jacobi-intersection-1 4M+10S+5d 12M
Doche/Icart/Kohel(3) [6] 6M+6S+2d 10.8M

Hessian, char= 3 6M+4C+2d 6.4M

4 Mixed-Addition for Modified Jacobi-Quartic
Coordinates

Following the outline on modified Jacobi-quartic doubling (see Section 2), we
provide a mixed-addition which is faster than the previous best. The updated
formula [19,7] is as follows.

X3 = (Y1 + (X1 + Z1)2 − (X2
1 + Z2

1))(2X2 + Y2) −
2X2((X1 + Z1)2 − (X2

1 + Z2
1)) − (Y1Y2)

Y3 = 4X2((X1 + Z1)2 − (X2
1 + Z2

1))(X2
1 + a(Z2

1 + X2
1X2

2) + Z2
1X2

2) +
4(Z2

1 + X2
1X2

2)(Y1Y2)
Z3 = 2(Z2

1 − X2
1X2

2)

The operations can be organized as follows.

A ← (X2
1) + (Z2

1), B ← (X1 + Z1)2 − A, C ← B + Y1, D ← (X2
1)(X2

2),

E ← 2BX2, F ← (Z2
1) + D, G ← 2E, H ← Y1Y2,

X3 ← C(2X2 + Y2) − E − H, Y3 ← 4FH + ((Z2
1)(X2

2) + aF + (X2
1))G,

Z3 ← 2((Z2
1) − D), (X2

3) ← X2
3 , (Z2

3) ← Z2
3 .

This formula costs 7M+3S+1d (previous best, 8M+3S+1d). Let C0 and C1

be static registers. C0 ← X2
2 and C1 ← 2X2 + Y2 are precomputed and stored

permanently. If C1 is not used, an extra addition and a multiplication by 2 is
to be performed for each mixed-addition. The operations can be scheduled as
follows.

The formulae that will take the advantage of the fast Jacobi-quartic addition
formula that is described by Duquesne [19] require the addition of XY coordinate
to modified coordinates,

(X1 : Y1 : Z1 : X2
1 : Z2

1 : (X2
1 + Z2

1)).

146 H. Hisil, G. Carter, and E. Dawson

X3 ← X1 + Z1 Z3 ← (Z2
1) − R1 R1 ← R1 + (Z2

1) R1 ← R1 × R0

X3 ← X2
3 Z3 ← 2 ∗ Z3 Y3 ← Y3 × R1 R1 ← 2 ∗ R1

X3 ← X3 − (X2
1) X3 ← X3 × C1 Y3 ← 4 ∗ Y3 Y3 ← Y3 + R1

R0 ← X3 − (Z2
1) X3 ← X3 − Y3 R1 ← a ∗ R1 (X2

3) ← X2
3

X3 ← R0 + Y1 R0 ← R0 × X2 R1 ← R1 + (X2
1) (Z2

3) ← Z2
3

Y3 ← Y1 × Y2 R0 ← 2 ∗ R0 R2 ← (Z2
1) × C0

R1 ← (X2
1) × C0 X3 ← X3 − R0 R1 ← R1 + R2

We refer the reader to EFD [7] for compatible versions developed by Bern-
stein and Lange. This coordinate system is named as extended Jacobi-quartic
coordinates.

5 Alternative Base Points

In this section, we introduce a technique that is useful for successive squar-
ing based point multiplication algorithms. Our technique improves the mixed-
addition timings reported in the literature. We show how an affine point can
be represented alternatively in its projective version. Point addition with these
alternative points is faster for some of the forms. We will abuse the terminology
and call this type of addition as mixed-addition too since these points require
the same amount of storage as affine points and they are kept fixed during the
point multiplication.

We follow the same notation for Jacobi-intersection curves in Section 3. Let
(S1 : C1 : D1 : T1) and (s2, c2, d2) with s2 �= 0 be two points to be added. We can
observe that representing the base point (s2, c2, d2) as (1: (c2/s2): (d2/s2): (1/s2))
leads to a faster formulation. We rename this new representation as (1:C2: D2: T2).
With this setup we have,

S3 = (T1C2 + D1)(C1T2 + S1D2) − T1C2C1T2 − D1S1D2

C3 = T1C2C1T2 − D1S1D2

D3 = T1D1T2D2 − aS1C1C2

T3 = (T1C2)2 + D2
1

This formula is from Liardet and Smart [4]. The operations can be organized as
follows.

E ← T1C2, F ← S1D2, G ← C1T2, H ← EG, J ← D1F,

S3 ← (E + D1)(G + F) − H − J, C3 ← H − J,

D3 ← T1D1(T2D2) − aS1C1C2, T3 ← E2 + D2
1,

If (T2D2) is cached permanently, this formula costs 10M+2S+1d (previous
best, 11M+2S+1d). The cost of computing the alternative base point
(1 : C2 : D2 : T2) can be omitted if it is directly selected as the base point itself.

We follow the same notation for Hessian curves in Section 2. Let (X1 : Y1 : Z1)
and (x2, y2) with x2 �= 0 be two points to be added. We can observe that

New Formulae for Efficient Elliptic Curve Arithmetic 147

representing the base point (x2, y2) as (1 : (y2/x2) : (1/x2)) leads to a faster
formulation. We rename this new representation as (1 : Y2 : Z2). Then, we have

X3 = Y 2
1 Z2 − X1Z1Y

2
2

Y3 = X2
1 (Y2Z2) − Y1Z1

Z3 = Z2
1Y2 − X1Y1Z

2
2

This formula costs 5M+6S. The operations can be organized as follows where
S0 ← Y 2

2 , S1 = Z2
2 and S2 ← 2(Y2 + Z2)2 − S0 − S1 are cached permanently.

A ← X2
1 , B ← Y 2

1 , C ← Z2
1 , D ← A + B, E ← A + C, F ← B + C,

G ← (X1 + Y1)2 − D, H ← (X1 + Z1)2 − E, J ← (Y1 + Z1)2 − F,

X3 ← 2BZ2 − HS0, Y3 ← AS2 − J, Z3 ← 2CY2 − GS1.

The same idea works for Edwards curves reducing the number of additions in
the mixed-addition formula. We follow the same notation for Edwards curves in
Section 3. The Edwards mixed-addition formula that is described by Bernstein
and Lange [17,18,7] costs 9M+1S+1d+7a. Let (X1 : Y1 : Z1) and (x2, y2) with
x2 �= 0 be two points to be added. We can observe that representing the base
point (x2, y2) as (1 : (y2/x2) : (1/x2)) leads to a slightly faster formulation. We
rename this new representation as (1 : Y2 : Z2). With this setup we have,

X3 = (X1Y2 + Y1)(Z1Z2)((Z1Z2)2 − d(X1Y1Y2))
Y3 = (Y1Y2 − X1)(Z1Z2)((Z1Z2)2 + d(X1Y1Y2))
Z3 = c((Z1Z2)2 + d(X1Y1Y2))((Z1Z2)2 − d(X1Y1Y2))

The operation count shows that the alternative Edwards mixed-addition costs
9M+1S+1d+4a. This formula invokes 3 fewer field additions. Note, the curve
parameter c can always be made 1. In this case, multiplication by c is elimi-
nated naturally. The operations for Edwards mixed-addition can be scheduled
as follows.

R0 ← X1 × Y2 Y3 ← Y3 − X1 R1 ← d ∗ R1 X3 ← X3 × R0

R0 ← R0 + Y1 Z3 ← Z1 × Z2 Z3 ← Z2
3 Y3 ← Y3 × Z3

Y3 ← Y1 × Y2 X3 ← R0 × Z3 R0 ← Z3 − R1 Z3 ← Z3 × R0

R1 ← Y3 × X1 Y3 ← Y3 × Z3 Z3 ← Z3 + R1 Z3 ← c ∗ Z3

6 Conclusion

We provided several optimizations for doing arithmetic on some special elliptic
curve representations. In particular, we have improved the group operations of
the Jacobi-quartic form which was initially recommended for providing side chan-
nel resistance. With our improvements, Jacobi-quartics became one of the fastest
special curves in the speed ranking. For instance, successive squaring based point
multiplication can be performed faster than standard Edwards coordinates for

148 H. Hisil, G. Carter, and E. Dawson

all possible scenarios because both coordinates shares the same complexity for
doubling and Jacobi-quartics is faster in addition and mixed-addition. Staying
in the same context, if the curve constants are large, extended Jacobi-quartic
coordinates provide better timings than inverted-Edwards coordinates.

We have developed tripling formulae for Jacobi-quartic, Jacobi-intersection,
Hessian and Edwards forms. These tripling formulae provide a wider background
for studying DBNS based applications.

Hessian curves were initially used for providing side channel resistance. We
improved Hessian doubling and mixed-addition formulae. With these improve-
ments, point multiplication in Hessian form can be performed faster than Jaco-
bian form if S/M is near to 1. In addition, we showed that the tripling can be
performed very efficiently in characteristic 3 case. This improvement enables effi-
cient implementation of DBNS based point multiplication with Hessian (char=3)
curves.

We described how the mixed-additions canbe done faster in Jacobi-intersection,
Hessian and Edwards forms.

One should expect further results in the near future. For example, not all
tripling formulae have been developed for all known systems yet. The quintupling
formulae are also likely to appear for various forms shortly. Furthermore, the
formulae that we introduced might be further improved in time.

Acknowledgements

The authors wish to thank Daniel Bernstein and Tanja Lange for announcing
our formulae on EFD [7]. This study would not have been possible without their
support and freely available scripts. The authors also wish to thank Christophe
Doche for his corrections and suggestions on the preprint version of this paper.

References

1. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

2. Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

3. Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–
410. Springer, Heidelberg (2001)

4. Liardet, P.Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 391–401. Springer, Heidelberg (2001)

5. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC. LNCS, vol. 2643, pp.
34–42. Springer, Heidelberg (2003)

New Formulae for Efficient Elliptic Curve Arithmetic 149

6. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-
positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

7. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007), Accessible through:
http://hyperelliptic.org/EFD

8. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: INDOCRYPT. LNCS, Springer, Heidelberg
(2007)

9. Negre, C.: Scalar multiplication on elliptic curves defined over fields of small
odd characteristic. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) IN-
DOCRYPT 2005. LNCS, vol. 3797, pp. 389–402. Springer, Heidelberg (2005)

10. Kim, K.H., Kim, S.I., Choe, J.S.: New fast algorithms for arithmetic on ellip-
tic curves over fields of characteristic three. Cryptology ePrint Archive, Report,
2007/179 (2007), http://eprint.iacr.org/

11. Smart, N.P., Westwood, E.J.: Point multiplication on ordinary elliptic curves over
fields of characteristic three. Applicable Algebra in Engineering, Communication
and Computing 13(6), 485–497 (2003)

12. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

13. Meloni, N.: Fast and secure elliptic curve scalar multiplication over prime fields
using special addition chains. Cryptology ePrint Archive, Report, 2006/216 (2006),
http://eprint.iacr.org/

14. Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication us-
ing double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 130–144. Springer, Heidelberg (2006)

15. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

16. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the AMS 44(3),
393–422 (2007)

17. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. Cryp-
tology ePrint Archive, Report, 2007/286 (2007), http://eprint.iacr.org/

18. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)

19. Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model. Inf.
Process. Lett. 104(3), 101–105 (2007)

Appendix

We give a step by step derivation of the new doubling formula for Jacobi-quartic
form. The original formula, described by Billet and Joye [5], is as follows.

X3 = 2X1Y1Z1

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

Z3 = Z4
1 − X4

1

http://hyperelliptic.org/EFD
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

150 H. Hisil, G. Carter, and E. Dawson

Step 1: Modify the point (X3 : Y3 : Z3) to (−X3 : Y3 : −Z3). These two points
correspond to the same affine point.

X3 = −2X1Y1Z1

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

Z3 = X4
1 − Z4

1

Step 2: Organize X3 and Z3. Here, Y3 should be computed after X3 and Z3.

X3 = Y1((X2
1 + Z2

1)) − Y1(X1 + Z1)2

Z3 = (X2
1 + Z2

1)(X2
1 − Z2

1)
Y3 = 2aX2

1Z6
1 + 4X4

1Z4
1 + Y 2

1 Z4
1 + 2aX6

1Z2
1 + X4

1Y 2
1

Step 3: Use the curve equation, Y 2
1 = X4

1 + 2aX2
1Z2

1 + Z4
1 , to find a suitable

polynomial representation for Y3.

X3 = Y1((X2
1 + Z2

1)) − Y1(X1 + Z1)2

Z3 = (X2
1 + Z2

1)(X2
1 − Z2

1)

Y3 = 2aX2
1Z6

1 + 4X4
1Z4

1 + Y 2
1 Z4

1 + 2aX6
1Z2

1 + X4
1Y 2

1

= 2aX2
1Z6

1 + 4X4
1Z4

1 + 2aX6
1Z2

1 + (X4
1 + Z4

1)Y 2
1

≡ 2aX2
1Z6

1 + 4X4
1Z4

1 + 2aX6
1Z2

1 + (X4
1 + Z4

1)(Z4
1 + 2aX2

1Z2
1 + X4

1)
≡ Z8

1 + 4aX2
1Z6

1 + 6X4
1Z4

1 + 4aX6
1Z2

1 + X8
1

≡ 2(Y1Z
2
1 + X2

1Y1)2 − (Z8
1 − 2X4

1Z4
1 + X8

1) − (4X2
1Y 2

1 Z2
1)

≡ 2(Y1(X2
1 + Z2

1))2 − X2
3 − Z2

3

New Formulae for Efficient Elliptic Curve Arithmetic 151

T
ab

le
3.

T
h
is

ta
b
le

co
n
ta

in
s

th
e

b
es

t
sp

ee
d
s

in
d
iff

er
en

t
sy

st
em

s.
T

h
e

ro
w

s
a
re

so
rt

ed
w

it
h

re
sp

ec
t

to
d
o
u
b
li
n
g

co
st

s
(t

h
en

m
ix

ed
-

a
d
d
it
io

n
).

T
o
ta

l
co

m
p
le

x
it
y

is
co

m
p
u
te

d
fo

r
co

m
m

o
n
ly

a
cc

ep
te

d
ra

ti
o
s;

1
S
=

0
.8

M
a
n
d

1
d
=

0
M

.
I

is
u
se

d
to

d
es

cr
ib

e
th

e
co

st
o
f

a
fi
el

d
in

v
er

si
o
n
.
T

h
e

b
o
ld

va
lu

es
a
re

o
u
r
co

n
tr

ib
u
ti
o
n
s.

T
h
e

u
n
d
er

li
n
ed

va
lu

es
a
re

th
e

fa
st

es
t
sp

ee
d
s.

T
h
e

d
o
u
b
le

li
n
es

a
re

u
se

d
fo

r
th

e
a
lt
er

n
a
ti
v
e

fo
rm

u
la

e.

S
y
s
t
e
m

D
o
u
b
le

T
o
t
a
l

T
r
ip

le
T
o
t
a
l

A
d
d

T
o
t
a
l

M
ix

e
d
-A

d
d

T
o
t
a
l

D
o
ch

e
/
Ic

a
rt

/
K

o
h
e
l(

3
)

[6
,7

]
4
M

+
5
S
+

2
d

8
M

6
M

+
6
S
+

2
d

1
0
.8

M
1
1
M

+
6
S
+

1
d

1
5
.8

M
7
M

+
4
S
+

1
d

1
0
.2

M

H
e
s
s
ia

n
[3

]
7
M

+
1
S

7
.8

M
8
M

+
6
S
+

1
d

1
2
.8

M
1
2
M

1
2
M

1
0
M

1
0
M

3
M

+
6
S

7
.8

M
5
M

+
6
S

9
.8

M

J
a
c
o
b
ia

n
[1

,
1
2
,
7
]

1
M

+
8
S
+

1
d

7
.4

M
5
M

+
1
0
S
+

1
d

1
3
M

1
0
M

+
4
S

1
3
.2

M
7
M

+
4
S

1
0
.2

M

J
a
c
o
b
ia

n
,

a
=

−
3

[1
,
1
2
,
7
]

3
M

+
5
S

7
M

7
M

+
7
S

1
2
.6

M
1
0
M

+
4
S

1
3
.2

M
7
M

+
4
S

1
0
.2

M

J
a
c
o
b
i-
in

t
e
r
s
e
c
t
io

n
[4

,7
]

3
M

+
4
S

6
.2

M
4
M

+
1
0
S
+

5
d

1
2
M

1
3
M

+
2
S
+

1
d

1
4
.6

M
1
1
M

+
2
S
+

1
d

1
2
.6

M
7
M

+
7
S
+

3
d

1
2
.6

M
1
0
M

+
2
S
+

1
d

1
1
.6

M

E
d
w

a
r
d
s

[7
,
1
7
,
1
8
]

3
M

+
4
S

6
.2

M
9
M

+
4
S

1
2
.2

M
1
0
M

+
1
S
+

1
d

1
0
.8

M
9
M

+
1
S
+

1
d
+

7
a

9
.8

M
7
M

+
7
S

1
2
.6

M
9
M

+
1
S
+

1
d
+

4
a

9
.8

M

E
x
t
e
n
d
e
d

J
a
c
o
b
i-
q
u
a
r
t
ic

[5
,
1
9
,
7
]

3
M

+
4
S

6
.2

M
4
M

+
1
1
S
+

2
d

1
2
.8

M
8
M

+
3
S
+

1
d

1
0
.4

M
7
M

+
3
S
+

1
d

9
.4

M

In
v
e
rt

e
d

E
d
w

a
rd

s
[7

,
8
]

3
M

+
4
S
+

1
d

6
.2

M
9
M

+
4
S
+

1
d

1
2
.2

M
9
M

+
1
S
+

1
d

9
.8

M
8
M

+
1
S
+

1
d

8
.8

M

D
o
ch

e
/
Ic

a
rt

/
K

o
h
e
l(

2
)

[6
,7

]
2
M

+
5
S
+

2
d

6
M

-
-

1
2
M

+
5
S

1
6
M

8
M

+
4
S
+

1
d

1
1
.2

M

H
e
s
s
ia

n
,
c
h
a
r
=

3
[1

1
]

3
M

+
2
C

3
.2

M
6
M

+
4
C

+
1
d

6
.4

M
1
2
M

1
2
M

9
M

+
1
C

9
.1

M

A Graph Theoretic Analysis of Double Base

Number Systems

Pradeep Kumar Mishra and Vassil Dimitrov

University of Calgary,
Calgary, AB, Canada

pradeep@math.ucalgary.ca, dimitrov@atips.ca

Abstract. Double base number systems (DBNS) provide an elegant way
to represent numbers. These representations also have many interesting
and useful properties, which have been exploited to find many appli-
cations in Cryptography and Signal Processing. In the current article
we present a scheme to represent numbers in double (and multi-) base
format by combinatorial objects like graphs and diagraphs. The combi-
natorial representation leads to proof of some interesting results about
the double and multibase representation of integers. These proofs are
based on simple combinatorial arguments. In this article we have pro-
vided a graph theoretic proof of the recurrence relation satisfied by the
number of double base representations of a given integer. The result has
been further generalized to more than 2 bases. Also, we have uncovered
some interesting properties of the sequence representing the number of
double base representation of a positive integer n. It is expected that the
combinatorial representation can serve as a tool for a better understand-
ing of the double (and multi-) base number systems.

Keywords: Double base number system, DBNS-graphs, MB-graphs.

1 Introduction

For last couple of years, there have been many papers emphasizing the use of
double base number system (DBNS) in cryptography ([1,2,7,9,10,11,14,17,18]).
In [6] and [15], authors have discussed elliptic curve scalar multiplication using a
representation of the scalar in more than one bases. Double base number system,
first time proposed in [13], is a non-traditional way of representing numbers.
Unlike traditional systems, which use only one radix to represent numbers, DBNS
uses 2 radii to represent a number. For example, if 2 and 3 are used as the
radii, an integer n is expressed as sum of terms like ±2bi3ti , where bi, ti are
integers. Recently, in [17] an elliptic curve scalar multiplication scheme has been
presented which uses 3 bases to represent the scalar. The proposed algorithm
performs even better than its 2 base counterparts. This indicates that the DBNS
can be easily generalized to more than 2 bases, which will greatly enhance their
applicability to real life situations. The current article is devoted to analyse and
explore some interesting propeties of double (and multi) base number system
using combinatorial and graph theoretic arguments.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 152–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Graph Theoretic Analysis of Double Base Number Systems 153

Graphs are very interesting combinatorial objects widely used in discrete
mathematics and computer science. In the current article we will represent a
number in DBNS by means of a bipartite graph or a diagraph. We will prove
some interesting results about DBNS representations using simple combinatorial
arguments on these objects. Usual arithmetic operations like addition, multipli-
cation can now be described by graph theoretic operations. This representation
may be of interest to people working in various areas of computer science.

Two most interesting properties of DBNS are: (i) sparsity and (ii) redundan-
cies. Sparsity means that a number can be represented as a sum of very few
terms of the form ±2bi3ti . This is important in cryptographic applications like
exponentiation or scalar multiplication. In fact, it is the number of point addi-
tion operation needed to compute the scalar multiplication. In [2], it has been
proved that in certain DBNS representations, the number of addition could be
sublinear in the size of the scalar. Redundancy means that such representation is
not unique. Redundancy implies that one can choose a particular representation
a given number depending upon the application in which it is used. Also, these
properties raise some interesting questions about the DBNS representations.
Given a number n, what is the shortest DBNS representation for n requiring
the minimum number of summands? Such representations are called cannonical
representations. A number can have several cannonical representations. Comput-
ing a cannonical representation is again a very difficult computational problem.
Also, given an integer n, exactly how many DBNS representationcan help in
finding solutions to these problems.

In the current article, we tackle the problem of redundancy. Let pn represent
the number of DBNS representation of the integer n. Then the sequence pn

satisifies an interesting recurrence relation. In the current article, we will provide
a graph theoretic proof of the recurrence relation. The relation can be proved
using other mathematical tools. In [10], authors have provided one proof using
generating functions. However, the proof can not be extended to more than 2
bases. The beauty of the proof given in this article is that it can be generalized
to any number of radii. In the current article we have also provided a general
version of the recurrence relation and proved it using a special type of graphs
and combinatorial arguments.

2 Background: Double Base Number System

For the last decade, a new number representation scheme has been a subject of
intensive studies, due to its applicability to digital signal processing and cryp-
tography. This number representation is called double base number system. We
start with the following definition from B.M.M. de Weger [8].

Definition 1. Given a set P of primes, a P -integer is a positive integer all of
whose prime divisors are in P .

The double base number system is a representation scheme in which every pos-
itive integer k is represented as the sum or difference of {2, 3}-integers (i.e.,
numbers of the form 2b3t) as

154 P.K. Mishra and V. Dimitrov

k =
m∑

i=1

si 2bi3ti , with si ∈ {−1, 1}, and bi, ti ≥ 0. (1)

The term 2-integer is also used for terms of the form 2b3t. This number rep-
resentation scheme is highly redundant. If one considers the DBNS with only
positive signs (si = 1), then it is seen that, 10 has exactly five different DBNS
representations, 100 has exactly 402 different DBNS representations and 1000
has exactly 1 295 579 different DBNS representations. Probably, the most im-
portant theoretical result about the double base number system is the following
theorem from [12].

Theorem 1. Every positive integer k can be represented as the sum of at most

O

(
log k

log log k

)
{2, 3}-integers.

��
The proof is based on Baker’s theory of linear forms of logarithms and more
specifically on a result by R. Tijdeman [21].

Table 1. Table indicating sparseness of DBNS representation

range of n maximum #2-integers in the
canonical represention of n

1 ≤ n ≤ 22 2
23 ≤ n ≤ 431 3

432 ≤ n ≤ 18, 431 4
18432 ≤ n ≤ 3 448 733 5

Some of these representations are of special interest, most notably the ones
that require the minimal number of {2, 3}-integers; i.e., an integer can be rep-
resented as the sum of m terms ({2, 3}-integers), but cannot be represented as
the sum of m − 1 or less. These representations are called canonical representa-
tions. Even such representations are not unique for numbers greater than 8. For
example, 10 has two canonical representations, 2+8, 1+9. In Table 1, we present
some numerical figures to demonstrate sparseness of DBNS.

Finding one of the canonical DBNS representations, especially for very large
integers, seems to be a very difficult task. One can apply a greedy algorithm to
find a fairly sparse representation very quickly: given k > 0, find the largest
number of the form z = 2b3t less than or equal to k, and apply the same
procedure with k − z until reaching zero. The greedy algorithm returns near
canonical solutions, but not the real canonical ones. A small example is 41.
Greedy returns 36 + 4 + 1, a 3-term representation, where as the canonical so-
lution is 32 + 9. However, greedy algorithm is easy to implement and it guar-
antees a representation satisfying the asymptotic bound given by Theorem 1
(see [12]).

A Graph Theoretic Analysis of Double Base Number Systems 155

3 Graphical Representation of Numbers: The DBNS
Graphs

We can represent natural numbers by means of a special type of bipartite graphs,
we call DBNS-graphs. Let V1 = {1, 2, 22, · · · } and let V2 = {1, 3, 32, · · · } be two
sets of vertices. A DBNS-graph is a bipartite graph whose vertex set is V1

⋃
V2

and the set of edges is a subset of {(2a, 3b) : a ≥ 0, b ≥ 0}. In practice, we will
take V1 and V2 to be finite sets.

Let n be a natural number and let n = 2a13b1 + · · ·+2ak3bk be a DBNS repre-
sentation of n. We can represent n by a DBNS-graph Dn defined as follows: Let
a = max1≤i≤k{ai} and let b = max1≤i≤k{bi}. Then the vertex set of Dn is V =
{1, 2, · · ·2a} ⋃{1, 3, · · · , 3b} and the edge set is E = {(2a1 , 3b1), · · · , (2ak , 3bk)}.
Due to redundancy of the DBNS, for every natural number n, there are several
DBNS graphs representing n. We can represent 0 by the null bipartite graph.
Thus, the null graph is also a DBNS-graph.

0 0

00

0 0

0 0

 1 1

 3 1

 3
2

33
2

3

22

21

0 0

00

0 0

0 0

1

 3 1

 3
2

33
2

3

22

21

 1

Fig. 1. A DBNS-graph representing 33 = 2331+2032 and a DBNS-digraph representing
80 = 2332 + 2231 − 2130 − 2031 + 2030

To accommodate negative integers, we can use bipartite digraphs. We use
the following convention: the arcs of the type (2i, 3j) are taken to be positive
(represent the summand 2i3j in the DBNS representation of the number) and
the arcs of type (3j , 2i) to be negative (represent −2i3j). We use this convention
throughout this paper, although one can use the other sign convention too. Thus
any integer, positive, negative or zero can be represented by a DBNS-digraph.
If n is represented by a DBNS digraph Dn, then −n can be represented by the
digraph −Dn, obtained from Dn by just reversing the directions of the arcs of Dn.
In Figure 1, a DBNS-graph representing 33 and a DBNS-digraph representing
80 have been shown. Same types of graphs can be used to represent numbers
with more than 2 bases. We defer the discussion of such graphs to Section 4 and
concentrate on 2 bases here, 2 and 3 only.

3.1 Some Special DBNS-Graphs

It is simple to see that the binary and ternary representation are special cases
of DBNS. In fact, if we restrict the vertex set to V2 to be {30 = 1} only, then

156 P.K. Mishra and V. Dimitrov

we get the binary number system. The DBNS-digraphs with this restriction will
represent the signed binary system with both positive and negative coefficients.
The NAF representation [20] is a further restriction, in which no two consecutive
vertices in V1 (like 2a and 2a+1) are of positive degree.

If we impose the restriction V1 = {1, 2} on the DBNS-graphs (resp digraph),
the representations obtained are the (resp signed) ternary representations.

In [9], the authors use a special type of DBNS representation, in which the
binary and ternary indices form two monotonic sequences. Such representations
have DBNS-graphs with non-intersecting edges.

It is an interesting question to see which numbers are represented by complete
DBNS-graphs. A DBNS-graph is complete if its vertex set is V1 = {1, 2, · · · , 2m}⋃{1, 3, · · · , 3n} and it contains all the edges (2i, 3j), 0 ≤ i ≤ m, 0 ≤ j ≤ n. It is
simple to see that these graphs represent the numbers

(1 + 2 + · · · + 2m)(1 + 3 + · · · + 3n) =
(2m+1 − 1)(3n+1 − 1)

2

For m = n = 0, the corresponding complete DBNS-graph represents 1, for
m = n = 1 it represents 12 and so on. If we take m = 0, and allow n
to vary, the complete DBNS-graphs so obtained will represent the numbers
1, 4, 13, 40, · · · . On the other hand if we take n = 0 and allow m to vary,
then we get the numbers 1, 3, 7, 15, 31, · · · , which are the binary numbers
(1)2, (11)2, (111)2, (1111)2, · · · .

3.2 Operations on DBNS-Graphs

We assume that all DBNS-graphs are simple, i.e. without any parallel edges. If
during any graph theoretic operation on a DBNS-graph a pair of parallel edges
appear in it, we use the following rule to resolve the parallel edges:

D-Rule: If some operation on a DBNS-graph Dn creates a pair of parallel edges
between the vertices 2a and 3b, then replace the pair of edges by a single edge
between 2a+1 and 3b. The rationale behind the rule is trivial. If the DBNS
representation of a number has 2a3b + 2a3b then we can replace these two terms
by a single term 2a+13b.

In case of digraphs, the D-rule has to be slightly modified:

Modified D-Rule: If there are parallel edges between the vertices 2a and 3b

then

1. If the edges are in opposite directions (i.e. edges are (2a, 3b) and (3b, 2a)),
just eliminate them.

2. If they are in the direction (2a, 3b), then replace them by (2a+1, 3b).
3. If they are in the direction (3b, 2a), then replace them by (3b, 2a+1).

Digression: NAF representation [20] is extensively used in cryptography due
to the fact that it is the signed binary representation of an integer with minimal

A Graph Theoretic Analysis of Double Base Number Systems 157

Hamming weight [5]. In the last Section we have indicated that NAF represen-
tations are DBNS-digraphs with V2 = {1} with the restriction that no two con-
secutive vertices in V1 are of degree one. We can obtain the NAF representation
of a number n with the following simple operations. Let Dn be the DBNS-graph
representing the binary expansion of n. Then starting from the vertex 1 ∈ V1,
see if any two consecutive vertices are of degree 1. If such a pair of vertices found
with edges (2a, 30) and (2a+1, 30), then replace the edges by the arcs (2a+2, 30)
and (30, 2a). This may lead to parallel edges. If so, remove them using modified
D-rule. Repeat the process till the last vertex in V1 is reached.

Note that, if both the last two vertices (say, 2m−1 and 2m) in V1 have degree 1,
then one has to extend V1 to one more vertex (namely 2m+1). This explains, why
the length NAF representation of n is at most 1 more than that of the binary
representation.

We define the following simple operations on a DBNS-graph.

SUCC: If Dn is a DBNS-graph, then SUCC(Dn) is the graph obtained by
adding the edge (20, 30) = (1, 1) to Dn. Note that addition of this new edge may
introduce a pair of parallel edges in Dn. In that case the parallel edge has to
be avoided using the D-rule, may be once or more than once. Also, note that
SUCC(Dn) is a DBNS-graph representing n + 1.

RT-operation: Let Dn be a DBNS-graph. Then RT (Dn) is a graph obtained by
replacing each edge (2a, 3b) ∈ Dn by (2a, 3b+1). Note that RT operation always
creates a isolated vertex at 30. RT stands for right-twist. The operation twists
the graph in the right side. It is simple to show that if the graph Dn stands for
the number n, then RT (Dn) stands for 3n.

Similarly we can define the LT-operation, where LT stands for left-twist and
it is the inverse operation of RT. If in Dn, the vertex 30 is an isolated vertex,
then LT (Dn) is the graph obtained by replacing each edge (2a, 3b) of Dn by
(2a, 3b−1). LT (Dn) is undefined if the vertex 30 is not an isolated vertex in Dn.
It is obvious that if the graph Dn stands for n, then LT (Dn) stands for n/3.

Also, we define the following notation. If S is a set of DBNS-graphs and X is
one of the above operations, then by X(S), we mean the set of graphs obtained
by applying operation X to each member of the set S, provided such application
is possible, otherwise X(S) is undefined. For example, SUCC(S) = {SUCC(G) :
G ∈ S}.

Due to high redundancy of DBNS, every integer n > 3 can be represented by
several DBNS-graphs. Let Sn represent the set of all DBNS-graphs representing
n. Clearly, S1 is {D1} = {(20, 30)}. Also, S2 = SUCC(S1) = {D2} = {(21, 30)}.
We know, 1 and 2 have unique DBNS representations. These representations are
given by the singleton sets S1 and S2 respectively.

What is S3? We know 3 has 2 DBNS representations, namely 1 + 2 and 3. So
SUCC(S2) is a proper subset of S3. It is simple to see that S3 = SUCC(S2)

⋃

RT (S1). That is the second graph representing 3 can be obtained by applying
RT-operation to the graph representing 1. In fact, we have the following general
theorem.

158 P.K. Mishra and V. Dimitrov

Theorem 2. For any positive integer n,

Sn = SUCC(Sn−1)
⋃

RT (Sn/3) if 3 | n

= SUCC(Sn−1) otherwise
(2)

Proof: We use induction to prove the theorem. Clearly, it is true for n = 1, 2, 3.
Let it be true for all integers less than n. Now let us consider the case of n.
Obviously, the set in the right hand side is a subset of the set in the left hand
side. We need to prove the other inclusion only. Let D ∈ Sn. We wish to show
that D is in the set in the RHS. If D has the edge 1 = (20, 30), then removing this
edge from D, we get a member D′ of Sn−1. Hence D = SUCC(D′) is in the sets
in RHS. If D does not contain the edge 1, let it contain some edge 2j = (2j , 30).
Let us consider the graph D′′ ∈ Sn−1 obtained from D by removing the edge
2j and introducing the edges 1 = (20, 30), 2 = (21, 30), · · · , 2j−1 = (2j−1, 30).
Clearly, D′′ ∈ Sn−1 and SUCC(D′′) = D, hence D is in the set in right-hand
side also. Suppose, D has no edge of the form 2j = (2j , 30). Then, 30 must be
an isolated vertex in D. Then n must be a multiple of 3. Let us consider the
graph D′′′ = LT (D). It is in Sn/3 and D = RT (D′′′). Hence, in this case also D
belongs to the set in the RHS. This completes the proof. ��

Theorem 2 has two implications. It gives us a methodology to compute the sets
Sn iteratively from Sn−1 and Sn/3 (if n is a multiple of 3). If these latter sets
are unknown, then we can start from S1 and compute all Si upto n to obtain
Sn. Another important implication of this theorem is the following corollary.

Corollary 1. For any positive integer n, let P (n) denote the number of distinct
DBNS representation of n. Then P (1) = 1 and for n > 1, P (n) satisfies the
following recurrence relation:

P (n) = P (n − 1) + P (n/3) if 3 | n

= P (n − 1) otherwise
(3)

Proof: Clearly, |Sj | = P (j) for all j ≥ 1. We only need to prove that there is
no duplicate in the sets SUCC(Sn−1)

⋃
RT (Sn/3) if 3|n or in SUCC(Sn−1) if

n is not a multiple of 3. Clearly SUCC operation on Sn−1 can not generate any
duplicate. Also RT on Sn/3 can not generate any duplicate. The only question
is, can any element of SUCC(Sn−1) be equal to one in RT (Sn/3)? The answer
is obviously no. Because SUCC operation adds one edge (20, 30) and eliminates
any parallel edges using the D-rule. So SUCC operation always adds one edge of
the type (2i, 30). But, the RT operation creates an isolated vertex at 30. Hence
no DBNS-graph generated by an SUCC operation can be equal to any graph
generated by an RT operation. This completes the proof. ��

We note that, the recurrence (3) has been extensively studied in connection
with partition of integers for last six decades. In this article we have estab-
lished the connection of the recurrence relation with the number of double base

A Graph Theoretic Analysis of Double Base Number Systems 159

representation of a positive integer n. Unfortunately, the recurrence can not be
solved as an explicit function in n. There has been many attempts for approxi-
mate solutions.

Note that the above results can be generalized to any base {2, s}. Taking
powers of 2 and powers of s in the vertex sets of DBNS graphs and redefining
the RT operation, one can prove that,

Corollary 2. For any positive integer n, let Ps(n) denote the number of distinct
DBNS representation of n using the bases 2 and s. Then Ps(1) = 1 and for n > 1,
Ps(n) satisfies the following recurrence relation:

Ps(n) = Ps(n − 1) + Ps(n/s) if s | n

= Ps(n − 1) otherwise
(4)

��

It is worth mentioning here that the authors have also found alternative proofs
of Equation 3 and 4 using generating functions and Mehler’s functional equa-
tion [16]. However, those proofs can not be generalized to more than two bases.
The proofs provided in this article using the DBNS graphs can be easily ex-
tended to more than 2 bases, which has been dealt with in the next section.
This justifies the use of the graph theoretic representation.

4 Generalization to More Than 2 Bases

In this section we will generalize the results obtained in last section to more
than two bases. Let us first consider the simple case of 3 bases, namely, 2, 3
and 5. A graph representing an integer in three or more bases will be called a
multi-base graph (MB-graph). An MB-graph, like a DBNS-graph, is a bipartite
graph, with the usual vertex sets V1 = {20, 21, · · · } and V2 = {30, 31, · · · }. To
accommodate each of the base elements other than 2 and 3, we will add an
attribute to the edges. For example in the case of bases 2, 3 and 5, the edges
will have one attribute. This attribute can be something like colour and we use
an integer variable to represent it. We will refer to the value of this attribute
variable as the intensity of the attribute or simply intensity of the edge. If a
particular representation has k bases, then the corresponding MB-graphs will
have edges with k − 2 attributes.

In an MB-graph with bases 2, 3 and 5, an edge of intensity c joining two
vertices 2a and 3b will represent the summand 2a3b5c in the multi-base repre-
sentation of an integer. We can represent such an edge by an ordered triple,
(2a, 3b, c), where the third component is the intensity of the edge. Note that if in
an MB-graph all the edges are of intensity 0, then it is a DBNS-graph. Two edges
with different intensities between the same pair of vertices will not be treated
as parallel edges. In other words we will allow parallel edges between a pair of
vertices if the edges are of different intensity (e.g. colour). If the parallel edges
are of same intensity then they are to be eliminated by D-rule.

160 P.K. Mishra and V. Dimitrov

We define a new operation σ on MB-graphs as follows. Let D be a MB-graph.
Then σ(D) is the graph obtained from D by increasing intensity of each of its
edges by 1. For example, if D has edges {(2a1, 3b1 , c1), (2a2 , 3b2 , c2), · · · } then
σ(D) has edges {(2a1, 3b1 , c1 + 1), (2a2 , 3b2 , c2 + 1), · · · }. Clearly, if D represents
n, then σ(D) represents 5n.

Let Tn denote the set of all MB-graphs representing an integer n using the
bases 2, 3 and 5 and let Q(n) be the cardinality of the set Tn. Then obviously
Sn = Tn and P (n) = Q(n) for n = 1, 2, 3, 4. To illustrate how Q(n) differs
from P (n) for n ≥ 5, let us define Un and R(n) as follows. Let Un be the set of
MB-graphs representing n such that each edge in each of the graphs in Un has
intensity at least one. Let R(n) denote the size of Un. In other words, R(n) is
the number of representation of n using terms of the form 2a3b5c, where c ≥ 1.
Clearly, each of these terms is a multiple of 5. So, n has such a representation if
and only if 5 | n. Thus we have the following result:

For any n ≥ 5, we have

Un = σ(Tn/5) if 5 | n

= φ if 5 � n
(5)

Hence, taking cardinalities in both sides, we obtain,

R(n) = Q(n/5) if 5 | n

= 0 if 5 � n
(6)

We define a binary operation ⊕ as follows. Let A and B be two sets of graphs.
Then,

A ⊕ B = {G1

⋃
G2 | G1 ∈ A ∧ G2 ∈ B}

Let us now look at the graphs in Tn. Clearly, Sn ⊂ Tn. What else are there in
Tn? Let k =
n/5�. Let i ≤ k and let us consider the graphs in the set

Sn−5i ⊕ U5i

Clearly each graph in this set represents n. Hence Sn−5i ⊕ U5i ⊂ Tn. So,

Sn

⋃
(

k⋃

i=0

Sn−5i ⊕ U5i) ⊂ Tn

Conversely, let Mn be a multi-base graph in Tn. If the intensity of each of its edges
is zero, then it is a DBNS-graph in Sn. Otherwise, the non-DBNS component of
Mn (i.e. the set of edges with nonzero intensities) can be 5 or 10 or · · · or 5k. If
it is 5i for some 1 ≤ i ≤ k, then Mn ∈ Sn−5i ⊕ U5i. Thus the other inclusion is
also true. Thus we have proved the following theorem:

A Graph Theoretic Analysis of Double Base Number Systems 161

Theorem 3. For any positive integer n,

Tn = Sn

⋃
(Sn−5 ⊕ U5)

⋃
· · ·

⋃
(Sn−5k ⊕ U5k)

=
k⋃

i=1

(Sn−5i ⊕ U5i)

=
k⋃

i=1

(Sn−5i ⊕ σ(Ti)) (usingEq(5))

(7)

where k =
n/5� and U0 = T0 = the set containing the null MB-graph only. ��

As the graphs in Sn−5i⊕U5i have non-DBNS component 5i, Sn−5i⊕U5i, 0 ≤ i ≤ k
is a union of pairwise disjoint sets. Taking the cardinality of the sets in Equation 7
we get,

Corollary 3. Let Q(n) be the number of multibase expansion of an integer n
using a bases 2, 3 and 5. Then Q(1) = 1 and

Q(n) = P (n) + P (n − 5)R(5) + · · · + P (n − 5k)R(5k)
= P (n) + P (n − 5)Q(1) + · · · + P (n − 5k)Q(k) (usingEq(6))

= Σk
i=0P (n − 5i)Q(i)

(8)

where k =
n/5�. ��

In other words, is P (x), Q(x) and R(x) are the generating functions of P (n),
Q(n) and R(n) respectively, then we have,

Q(x) = P (x) ⊕ R(x)

where ⊕ is the convolution operator.
Let us now consider the more general case, i.e. the case of any number of

bases. We choose our bases from the set of primes {2, 3, 5, 7, · · · }. Let Bk be the
set of first k primes. Let S(k)

n be the set of multi-base graphs representing n using
the set of bases Bk. Let P (k)(n) be the number of multi-base representation of
n using the base set Bk. The correspondence between this new notation and the
older one is:

Sn = S(2)
n

P (n) = P (2)(n)

Tn = S(3)
n

Q(n) = P (3)(n)

Moreover, we have now these notations for the binary representations also. The
number of binary representation of an integer n is P (1)(n), which is 1 for all n.

The following theorem can be proved by induction on l.

162 P.K. Mishra and V. Dimitrov

Theorem 4. For any positive integer n,

S(l)
n = S(l−1)

n

⋃
(S(l−1)

n−bl
⊕ S(l)

1)
⋃

· · ·
⋃

(S(l−1)
n−blk

⊕ S(l)
k) (9)

where bl is the l-th prime base and k =
n/bl�.
Also,

P (l)(n) =P (l−1)(n) + P (l−1)(n − bl)P (l)(1) + · · · + P (l−1)(n − blk)P (l)(k)

= Σk
i=0P

(l−1)(n − 5i)P (l)(i)
(10)

��
For example, if we use 4 bases, namely, the base set B4 = {2, 3, 5, 7}, then the
sequence P (4)(n) of number of multi-base representations of an integer n using
B4, satisfies the following recurrence relation:

P (4)(n) = P (3)(n) + P (3)(n − 7)P (4)(1) + · · · + P (3)(n − 7k)P (4)(k)

= Σk
i=0P

(3)(n − 7i)P (4)(i)
(11)

where k =
n/7�.
We have carried out numerous experiments using the above relations. The

number of representations of n grows very fast in the number of base elements.
For example 100 has 402 DBNS representation (base 2 and 3), 8425 representa-
tions using the bases 2, 3 and 5 and has 43777 representations using the bases
2, 3, 5, and 7. The number of representations for some values of P (l)(n) for
l = 2, 3, 4 for various n have been given in Table 2. This gives some idea about
the degree of redundancy of multi-base representations.

Table 2. Values of P (n), P5(n), P (3)(n) and P (4)(n) for some small values of n

n P (n) P5(n) P (3)(n) P (4)(n)

10 5 3 8 10
20 12 5 32 48
50 72 18 489 1266
100 402 55 8425 43777
150 1296 119 63446 586862
200 3027 223 316557 4827147
300 11820 569 4016749 142196718

5 A Partition of Sn

Let us consider the DBNS-graphs in Sn. We can partition Sn into the following
subsets: Let Si

n be the set of DBNS-graphs in Sn, which are obtained by ap-
plication of i, i ≥ 0, RT-operations on graphs of the sets Sj , j < n. In S1, we
have only one graph, which is not obtained by any RT-operation. Hence S0

1 = S1

A Graph Theoretic Analysis of Double Base Number Systems 163

Table 3. Sizes of the sets Si
n

n 0-RT 1-RT 2-RT 3-RT n 0-RT 1-RT 2-RT 3-RT 4-RT

1 1 45 1 15 35 12
3 1 1 48 1 16 40 15
6 1 2 51 1 17 45 18
9 1 3 1 54 1 18 51 23
12 1 4 2 57 1 19 57 28
15 1 5 3 60 1 20 63 33
18 1 6 5 63 1 21 70 40
21 1 7 7 66 1 22 77 47
24 1 8 9 69 1 23 84 54
27 1 9 12 1 72 1 24 92 63
30 1 10 15 2 75 1 25 100 72
33 1 11 18 3 78 1 26 108 81
36 1 12 22 5 81 1 27 117 93 1
39 1 13 26 7 84 1 28 126 105 2
42 1 14 30 9 87 1 29 135 117 3

and Si
1 = φ for all i ≥ 1. Similarly for S2. In S3, there are two graphs, one is

obtained by SUCC(S2) and other is obtained by RT(S1). Hence |S0
3 | = |S1

3 | = 1
and Si

3 = φ for all i > 1.
In Table 3 we have tabulated the size of these sets for various values of n. Note

that, by Theorem 2, the size of Sn remains the same for n = 3k, 3k + 1, 3k + 2.
Hence we do not list these sets for all values of n, but only for multiples of 3.
Also, in Table 3, the first column represents n. The second column represents the
size of S0

n, the third column represents S1
n and so on. To be brief, these columns

have been entitled as 0-RT (2nd column), 1-RT (3rd), etc.
Observe that in S1 there is only one element, namely {(20, 30)}. The other

Sn are generated from S1 by application of SUCC and RT operations. If we
repeatedly apply SUCC operation on S1 (and no RT-operation), each time we
get only one graph. Hence, S0

n will always contain only one graph. This graph
represents the unique binary representation of n. This is the reason why all the
entries in the second column (0-RT) of Table 3 are 1’s.

The third column in Table 3 represents the size of the subset S1
n of in Sn. S1

n

contains the graphs, which are obtained by just one application of RT-operation.
Note that S1

n contains SUCC(S1
n−1). If n is a multiple of 3, then it also contains

RT(S0
n/3), which is a singleton set. Hence the size of S1

n increases by 1 each time
n increases by 3. Thus, we have, |S1

n| =
n/3�.
The fourth column of Table 3 gives the sizes of S2

n. Obviously, |S2
n| = 0 for

n = 1, · · · , 8. We have |S2
9 | = 1. Also, |S2

10| = |SUCC(S2
9)| = 1 and |S2

11| =
|SUCC(S2

10)| = 1. But |S2
12| = |SUCC(S2

11)| + |RT (S1
4)| = 2. When n is a

multiple of 3, |S2
n| = |SUCC(S2

n−1)|+ |RT (S1
n/3)|. Hence, the size of S2

n is given
by the sequence 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, for n = 9, 12, 15, 18, 21,

Let us see how Table 3 can be constructed without actually constructing the
sets Si

n. Let Ai,j denote the entry in the ith row and jth column of Table 3.

164 P.K. Mishra and V. Dimitrov

The first column which represents n, contains 1 and then multiples of 3 only. We
have,

– Ai,2 = 1, ∀ i. Also, A1,j = 0, ∀ j ≥ 3.
– For i > 1 and j > 2, we have Aij = Ai−1,j + A1+�(i−1)/3�,j−1

If we add all elements in the kth row of this table, starting from the second
column, we get |Sk|, i.e. the numbers of DBNS-graph representing k. In the last
section, we had denoted it by P (k). Thus we get an explicit value for P (k) if we
add kth row of Table 3 (except the first column entry).

6 Integer Arithmetic Using DBNS-Graphs

Arithmetic operation on integers can be carried out using DBNS-graphs (or
DBNS-digraphs). For example, addition of two integers can be carried out by
taking the union of the DBNS-graphs representing them. Ofcourse, such union
may introduce parallel edges, which are to be removed using the D-rule or mod-
ified D-rule (for digraphs).

More formally, let n1 and n2 be two integers represented by the DBNS-graphs
Dn1 and Dn2 respectively. Let vertex set of Dn1 be V1 = {1, 2, · · · , 2a1} ⋃

{1, 3, · · ·3b1} and edge set be E1 = {(2ai1 , 3bi1), · · · , (2ail , 3bil)}. Let vertex set of
Dn2 be V2 = {1, 2, · · · , 2a2} ⋃{1, 3, · · ·3b2} and edge set be E2 ={(2aj1 , 3bj1), · · · ,
(2ajm , 3bjm)}. Let max{a1, a2} = a and max{b1, b2} = b. Then, the sum Dn1 +
Dn2 of Dn1 and Dn2 is the graph on the vertex set V1

⋃
V2 ={1, 2, · · · , 2a} ⋃{1, 3,

· · · 3b} and edge set is E1

⋃
E2, subject to D-rule.

Subtraction can be carried out very similarly. For subtraction we have to use
DBNS-digrahs. It has been mentioned earlier that if the DBNS-digraph Dn2 rep-
resents n2, then the DBNS-digraph −Dn2 , obtained by reversing the orientation
of edges of Dn2 represents −n2. Hence, we define Dn1 − Dn2 as Dn1 + (−Dn2).
Clearly, Dn1 − Dn2 represents the number n1 − n2.

Multiplication is slightly tricky. We define the following operation. For integers
c and d, we define an operation SHc,d on the edges of a DBNS-graph as follows.
Let e = (2a, 3b) be an edge. We define,

SHc,d(e) = SHc,d((2a, 3b)) = (2a+c, 3b+d)

If E is an set of edges, then we define SHc,d(E) = {SHc,d(e) : e ∈ E}.
Now we define multiplication of two DBNS-graphs as follows: If the vertex
sets of Dn1 and Dn2 are as given above, then the vertex set of the product
graph Dn1 ∗ Dn2 is V = {1, 2, · · · , 2a1+a2} ⋃{1, 3, · · ·3b1+b2} and the edge set is
SHai1 ,bi1

(E2)
⋃ · · · ⋃ SHail

,bil
(E2) subject to D-rule.

Division is a restrictive operation. Given any two integers n1 and n2 we can
not always divide n1 by n2. This restriction escalates in case of DBNS-graphs.
We can divide Dn1 by Dn2 only if

1. Dn2 has only one edge (2c, 3d), i.e. n2 is only a DBNS term 2c3d.

A Graph Theoretic Analysis of Double Base Number Systems 165

2. Dn1 has a nice representation, i.e., if edge set of Dn1 is E1 = {(2ai1 , 3bi1),
· · · , (2ail , 3bil)}, then aik

> c, bik
> d, ∀k, 1 ≤ k ≤ l. Note that this is not

true for all DBNS-graph representing n1 even if n2|n1.

If these two conditions are met, then a DBNS-graph representing n1/n2 has the
vertex set V ′ = {1, 2, · · · , 2a1−c} ⋃{1, 3, · · ·3b1−d} and edge set SH−c,−d(E1).

DBNS numbers can be represented in the computer by the adjacency matrix or
adjacency list of the corresponding DBNS-graph. Also, arithmetic operations on
the numbers can be carried out by matrix operation on the adjacency matrices of
corresponding DBNS graphs. The scheme of representing an integer by means of
the adjacency matrix of a DBNS-graph does not seem to be efficient in memory.
But as the DBNS representation is very sparse, these matrices will be very sparse
too. Also, the number of basic computational operations, like XOR (for addition)
and Shift (for multiplication) per arithmetic operation will be very few. This may
lead to efficient integer arithmetic.

Without going for details, which is more or less trivial, we mention here that
the integer arithmetic defined above can be implemented in a computer using
adjacency matrices of the DBNS-graphs. The addition operation is a generaliza-
tion of the usual XORing algorithm used for integer addition in case of binary
representation of the numbers. The multiplication algorithm can be seen as a gen-
eralization of the traditional shift and add algorithm for integer multiplication.
It can be an interesting work to calculate complexity of these new algorithms
and compare them with the existing ones.

7 Conclusion

In the current article, we have proposed a graph theoretic representation of in-
tegers using double and multi-base number system. The representation can be
a powerful tool to study the structure of these system of representation. These
number representations are highly redundant. We have proposed and proved
some interesting relations satisfied by the number of double/multi- base repre-
sentation of an integer n. Most of the proofs are based on simple graph theoretic
arguments.

References

1. Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves using Double Bases.
Available at http://eprint.iacr.org/2006/067.pdf

2. Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending Scalar Multiplication
to Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 130–144. Springer, Heidelberg (2006)

3. Berth é, V., Imbert, L.: On converting numbers to the double-base number sys-
tem. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and
Implementations XIV, Proceedings of SPIE, vol. 5559, pp. 70–78. SPIE, San Jose,
CA (2004)

http://eprint.iacr.org/2006/067.pdf

166 P.K. Mishra and V. Dimitrov

4. Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

5. Bosma, W.: Signed bits and fast exponentiation. J. Theor. Nombres Bordeaux 13,
27–41 (2001)

6. Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

7. Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear
Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005.
LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)

8. de Weger, B.M.M.: Algorithms for Diophantine equations of CWI Tracts. In: Cen-
trum voor Wiskunde en Informatica, Amsterdam (1989)

9. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

10. Dimitrov, V.S., Imbert, L., Mishra, P.K.: The Double Base Number System and
Its Applications to Elliptic Curve Cryptography. Research Report LIRMM #06032
(May 2006)

11. Dimitrov, V., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: FPGA Im-
plementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer,
Heidelberg (2006)

12. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponenti-
ation. Information Processing Letters 66(3), 155–159 (1998)

13. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-
base number system. IEEE Transactions on Computers 48(10), 1098–1106 (1999)

14. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

15. Doche, C., Icart, T., Kohel, D.: Efficient Scalar Multiplication by Isogeny Decom-
positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

16. Mahler, K.: On a Special Functional Equation. J of London Math Soc. 15, 115–123
(1939)

17. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas and Efficient Elliptic
Curve Scalar Multiplication using Multibase Number Representation. In ISC (to
appear, 2007)

18. Mishra, P.K., Dimitrov, V.: WIndow-based Elliptic CUrve Scalar Multiplication
Using Double Base Number Representation. In Inscrypt (to appear, 2007)

19. Pennington, W.B.: On Mahler’s partition problem. Annals of Math. 57, 531–546
(1953)

20. Reitwiesner, G.: Binary Arithmetic. Adv. Comput. 1, 231–308 (1962)
21. Tijdeman, R.: On the maximal distance between integers composed of small primes.

Compositio Mathematica 28, 159–162 (1974)

Optimizing Double-Base Elliptic-Curve

Single-Scalar Multiplication�

Daniel J. Bernstein1, Peter Birkner2, Tanja Lange2, and Christiane Peters2

1 Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
p.birkner@tue.nl, tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. This paper analyzes the best speeds that can be obtained
for single-scalar multiplication with variable base point by combining a
huge range of options:

– many choices of coordinate systems and formulas for individual group
operations, including new formulas for tripling on Edwards curves;

– double-base chains with many different doubling/tripling ratios, in-
cluding standard base-2 chains as an extreme case;

– many precomputation strategies, going beyond Dimitrov, Imbert,
Mishra (Asiacrypt 2005) and Doche and Imbert (Indocrypt 2006).

The analysis takes account of speedups such as S − M tradeoffs and
includes recent advances such as inverted Edwards coordinates.

The main conclusions are as follows. Optimized precomputations and
triplings save time for single-scalar multiplication in Jacobian coordi-
nates, Hessian curves, and tripling-oriented Doche/Icart/Kohel curves.
However, even faster single-scalar multiplication is possible in Jacobi in-
tersections, Edwards curves, extended Jacobi-quartic coordinates, and
inverted Edwards coordinates, thanks to extremely fast doublings and
additions; there is no evidence that double-base chains are worthwhile
for the fastest curves. Inverted Edwards coordinates are the speed leader.

Keywords: Edwards curves, double-base number systems, double-base
chains, addition chains, scalar multiplication, tripling, quintupling.

1 Introduction

Double-base number systems have been suggested as a way to speed up scalar
multiplication on elliptic curves. The idea is to expand a positive integer n as
a sum of very few terms ci2ai3bi with ci = 1 or ci = −1, and thus to express
� Permanent ID of this document: d721c86c47e3b56834ded945c814b5e0. Date of this

document: 2007.10.03. This work has been supported in part by the European Com-
mission through the IST Programme under Contract IST–2002–507932 ECRYPT.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 167–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 D.J. Bernstein et al.

a scalar multiple nP as a sum of very few points ci2ai3biP . Unfortunately, the
time to add these points is only one facet of the time to compute nP ; computing
the points in the first place requires many doublings and triplings. Minimizing
the number of additions is minimizing the wrong cost measure.

At Asiacrypt 2005, Dimitrov, Imbert, and Mishra [9] introduced double-base
chains

∑
ci2ai3bi , where again ci = 1 or −ci = 1, with the new restrictions

a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥ b3 ≥ · · · allowing a Horner-like evaluation
of nP with only a1 doublings and only b1 triplings. But the new restrictions
introduced by double-base chains substantially increase the number of additions.

At Indocrypt 2006, Doche and Imbert [11] improved double-base chains by
introducing an analogue of signed-sliding-window methods, keeping the restric-
tions a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥ b3 ≥ · · · but allowing ci and −ci to
be chosen from a coefficient set S larger than {1}, leading to shorter chains
and thus fewer additions. Doche and Imbert studied in detail the sets {1},
{1, 2, 3, 4, 9}, {1, 2, . . . , 24, 3, . . . , 34}, {1, 5, 7}, {1, 5, 7, 11, 13, 17, 19, 23, 25}. For
each set they counted (experimentally) the number of additions, doublings, and
triplings in their chains, compared these to the number of additions and dou-
blings in the standard single-base sliding-window methods, and concluded that
these new double-base chains save time in scalar multiplication. However, there
are several reasons to question this conclusion:

• The comparison ignores the cost of precomputing all the cP for c ∈ S. These
costs are generally lower for single-base chains, and are incurred for every
scalar multiplication (unless P is reused, in which case there are much faster
scalar-multiplication methods).

• The comparison relies on obsolete addition formulas. For example, [11] uses
mixed-addition formulas that take 8M + 3S: i.e., 8 field multiplications and
3 squarings. Faster formulas are known, taking only 7M + 4S; this speedup
has a larger benefit for single-base chains than for double-base chains.

• The comparison relies on obsolete curve shapes. For example, [11] uses dou-
bling formulas that take 4M+6S, but the standard choice a4 = −3 improves
Jacobian-coordinate doubling to 3M + 5S, again making single-base chains
more attractive. Recent work has produced extremely fast doubling and ad-
dition formulas for several non-Jacobian curve shapes.

In this paper we carry out a much more comprehensive comparison of elliptic-
curve scalar-multiplication methods. We analyze a much wider variety of coor-
dinate systems, including the most recent innovations in curve shapes and the
most recent speedups in addition formulas; see Section 3. In particular, we in-
clude Edwards curves in our comparison; in Section 2 we introduce new fast
tripling formulas for Edwards curves, and in the appendix we introduce quintu-
pling formulas. Our graphs include the obsolete addition formulas for Jacobian
coordinates (“Std-Jac” and “Std-Jac-3”) to show how striking the advantage of
better group operations is. We account for the cost of precomputations, and we
account for the difference in speeds between addition, readdition, and mixed ad-
dition. We include more choices of chain parameters, and in particular identify

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 169

better choices of S for double-base chains. We cover additional exponent lengths
of interest in cryptographic applications.

We find, as in [11], that double-base chains achieve significant improvements
for curves in Jacobian coordinates and for tripling-oriented Doche-Icart-Kohel
curves; computing scalar multiples with the {2, 3}-double-base chains is faster
than with the best known single-base chains. For integers of bit-length � about
0.22� triplings and 0.65� doublings are optimal for curves in Jacobian coordi-
nates; for the Doche-Icart-Kohel curves the optimum is about 0.29� triplings
and 0.54� doublings. For Hessian curves we find similar results; the optimum is
about 0.25� triplings and 0.6� doublings.

On the other hand, for Edwards curves it turns out that the optimum for
base-{2, 3} chains uses very few triplings. This makes the usefulness of double-
base chains for Edwards curves questionable. The same result holds for {2, 5}-
double-base chains. Based on our results we recommend traditional single-base
chains for implementors using Edwards curves. Similar conclusions apply to Ja-
cobi intersections, extended Jacobi-quartic coordinates, and inverted Edwards
coordinates.

In the competition between coordinate systems, inverted Edwards coordi-
nates are the current leader, followed closely by extended Jacobi-quartic coor-
dinates and standard Edwards coordinates, and then by Jacobi intersections.
Jacobian coordinates with a4 = −3, despite double-base chains and all the other
speedups we consider, are slower than Jacobi intersections. Tripling-oriented
Doche/Icart/Kohel curves are competitive with Jacobian coordinates—but not
nearly as impressive as they seemed in [11]. For the full comparison see Section 5.

2 Edwards Curves

Edwards [14] introduced a new form for elliptic curves over fields of characteristic
different from 2 and showed that – after an appropriate field extension – every
elliptic curve can be transformed to this normal form. Throughout this paper
we focus on fields k of characteristic at least 5. We now briefly review arithmetic
on Edwards curves and then develop new tripling formulas. Hisil, Carter, and
Dawson independently developed essentially the same tripling formulas; see [16].

Background on Edwards curves. We present Edwards curves in the slightly
generalized version due to Bernstein and Lange [5]. An elliptic curve in Edwards
form, or simply Edwards curve, over a field k is given by an equation

x2 + y2 = 1 + dx2y2, where d ∈ k \ {0, 1}.

Two points (x1, y1) and (x2, y2) are added according to the Edwards addition
law

(x1, y1), (x2, y2) �→
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1 − dx1x2y1y2

)
. (2.1)

The neutral element of this addition is (0, 1). The inverse of any point (x1, y1)
on E is (−x1, y1). Doubling can be performed with exactly the same formula as

170 D.J. Bernstein et al.

addition. If d is not a square in k the addition law is complete, i.e., it is defined
for all pairs of input points on the Edwards curve over k and the result gives the
sum of the input points.

Bernstein and Lange [5] study Edwards curves for cryptographic applications
and give efficient explicit formulas for the group operations. To avoid inversions
they work with the homogenized equation in which a point (X1 : Y1 : Z1)
corresponds to the affine point (X1/Z1, Y1/Z1) on the Edwards curve. Their
newer paper [4] proposes using (X1 : Y1 : Z1) to represent (Z1/X1, Z1/Y1).
These inverted Edwards coordinates save 1M in addition. For contrast we refer
to the former as standard Edwards coordinates.

Doubling on Edwards curves. If both inputs are known to be equal the result
of the addition can be obtained using fewer field operations. We briefly describe
how the the special formulas for doubling were derived from the general addition
law (2.1) in [5]. The same approach will help in tripling.

Since (x1, y1) is on the Edwards curve one can substitute the coefficient d by
(x2

1 + y2
1 − 1)/(x2

1y
2
1) as follows:

(x1, y1), (x1, y1) �→
(

2x1y1

1 + dx2
1y

2
1

,
y2
1 − x2

1

1 − dx2
1y

2
1

)
=

(
2x1y1

x2
1 + y2

1

,
y2
1 − x2

1

2 − (x2
1 + y2

1)

)
.

This reduces the degree of the denominator from 4 to 2 which is reflected in
faster doublings.

Tripling on Edwards curves. One can triple a point by first doubling it and
then adding the result to itself. By applying the curve equation as in doubling
we obtain

3(x1, y1) =
(

((x2
1 + y2

1)
2 − (2y1)2)

4(x2
1 − 1)x2

1 − (x2
1 − y2

1)2
x1,

((x2
1 + y2

1)
2 − (2x1)2)

−4(y2
1 − 1)y2

1 + (x2
1 − y2

1)2
y1

)
.

We present two sets of formulas to do this operation in standard Edwards
coordinates. The first one costs 9M + 4S while the second needs 7M + 7S. If
the S/M ratio is very small, specifically below 2/3, then the second set is better
while for larger ratios the first one is to be preferred.

The explicit formulas were verified to produce the 3-fold of the input point
(X1 : Y1 : Z1) by symbolically computing 3(X1 : Y1 : Z1) using the addition and
doubling formulas from [5] and comparing it with (X3 : Y3 : Z3).

Here are our 9M + 4S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = (2Z1)
2; D = A + B; E = D2; F = 2D · (A − B);

G = E − B · C; H = E − A · C; I = F + H ; J = F − G;

X3 = G · J · X1; Y3 = H · I · Y1; Z3 = I · J · Z1.

Here are our 7M + 7S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B; E = D2; F = 2D · (A − B);

K = 4C; L = E − B · K; M = E − A · K; N = F + M ; O = N2; P = F − L;

X3 = 2L · P · X1; Y3 = M · ((N + Y1)
2 − O − B); Z3 = P · ((N + Z1)

2 − O − C).

Appendix A contains formulas for quintupling on Edwards curves.

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 171

3 Fast Addition on Elliptic Curves

There is a vast literature on elliptic curves. See [12,6,15] for overviews of efficient
group operations on elliptic curves, and [5, Section 6] for an analysis of scalar-
multiplication performance without triplings.

Those overviews are not a satisfactory starting point for our analysis, because
they do not include the most recent improvements in curve shapes and in ad-
dition formulas. Fortunately, all of the latest improvements have been collected
into the Bernstein/Lange “Explicit-Formulas Database” (EFD) [3], with Magma
scripts verifying the correctness of the formulas. For example, this database now
includes our tripling formulas, the tripling formulas from [4] (modeled after ours)
for inverted Edwards coordinates, and the formulas from [16] for other systems.

Counting operations. In Section 5 we assume S = 0.8M, but in this section
we record the costs separately. We ignore costs of the cheaper field operations
such as field additions, field subtractions, and field doublings.

We also ignore the costs of multiplications by curve parameters (for example,
d in Edwards form). We assume that curves are sensibly selected with small
parameters so that these multiplications are easy.

Jacobian coordinates. Recall that k is assumed to be a field of characteristic
at least 5. Every elliptic curve over k can then be written in Weierstrass form
E : y2 = x3 + a4x + a6, a4, a6 ∈ k, where f(x) = x3 + a4x + a6 is squarefree.
The set E(k) of k-rational points of E is the set of tuples (x1, y1) satisfying the
equation together with a point P∞ at infinity.

The most popular representation of an affine point (x1, y1) ∈ E(k) is as Ja-
cobian coordinates (X1 : Y1 : Z1) satisfying Y 2

1 = X3
1 + a4X1Z

2
1 + a6Z

6
1 . An

addition of generic points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) in Jacobian coor-
dinates costs 11M + 5S. A readdition—i.e., an addition where (X2 : Y2 : Z2)
has been added before—costs 10M+ 4S, because Z2

2 and Z3
2 can be cached and

reused. A mixed addition—i.e., an addition where Z2 is known to be 1—costs
7M + 4S. A doubling—i.e., an addition where (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
are known to be equal—costs 1M + 8S. A tripling costs 5M + 10S.

If a4 = −3 then the cost for doubling changes to 3M+5S and that for tripling
to 7M+7S. Not every curve can be transformed to allow a4 = −3 but important
examples such as the NIST curves [18] make this choice. We refer to this case as
Jacobian-3.

Most of the literature presents slower formulas producing the same output,
and correspondingly reports higher costs for arithmetic in Jacobian coordinates.
See, for example, the P1363 standards [18] and the aforementioned overviews.
We include the slower formulas in our experiments to simplify the comparison of
our results to previous results in [11] and [9] and to emphasize the importance of
using faster formulas. We refer to the slower formulas as Std-Jac and Std-Jac-3.

More coordinate systems. Several other representations of elliptic curves have
attracted attention because they offer faster group operations or extra features
such as unified addition formulas that also work for doublings. Some of these

172 D.J. Bernstein et al.

representations can be reached through isomorphic transformation for any curve
in Weierstrass form while others require, for example, a point of order 4. Our
analysis includes all of the curve shapes listed in the following table:

Curve shape ADD reADD mADD DBL TRI

3DIK 11M + 6S 10M + 6S 7M + 4S 2M + 7S 6M + 6S
Edwards 10M + 1S 10M + 1S 9M + 1S 3M + 4S 9M + 4S
ExtJQuartic 8M + 3S 8M + 3S 7M + 3S 3M + 4S 4M + 11S
Hessian 12M + 0S 12M + 0S 10M + 0S 7M + 1S 8M + 6S
InvEdwards 9M + 1S 9M + 1S 8M + 1S 3M + 4S 9M + 4S
JacIntersect 13M + 2S 13M + 2S 11M + 2S 3M + 4S 4M + 10S
Jacobian 11M + 5S 10M + 4S 7M + 4S 1M + 8S 5M + 10S
Jacobian-3 11M + 5S 10M + 4S 7M + 4S 3M + 5S 7M + 7S
Std-Jac 12M + 4S 11M + 3S 8M + 3S 3M + 6S 9M + 6S
Std-Jac-3 12M + 4S 11M + 3S 8M + 3S 4M + 4S 9M + 6S

The speeds listed here, and the speeds used in our analysis, are the current
speeds in EFD.

“ExtJQuartic” and “Hessian” and “JacIntersect” refer to the latest addition
formulas for Jacobi quartics Y 2 = X4 +2aX2Z2 +Z4, Hessian curves X3 +Y 3 +
Z3 = 3dXY Z, and Jacobi intersections S2 + C2 = T 2, aS2 + D2 = T 2. EFD
takes account of the improvements in [13] and [16].

“3DIK” is an abbreviation for “tripling-oriented Doche-Icart-Kohel curves,”
the curves Y 2 = X3 + a(X + Z2)2Z2 introduced last year in [10]. (The same
paper also introduces doubling-oriented curves that do not have fast additions
or triplings and that are omitted from our comparison.) We note that [10] states
incorrect formulas for doubling. The corrected and faster formulas are:

B = X2
1 ; C = 2A · Z12 · (X1 + Z12); D = 3(B + C); E = Y 2

1 ; F = E2;
Z3 = (Y1 + Z1)2 − E − Z12; G = 2((X1 + E)2 − B − F);
X3 = D2 − 3A · Z2

3 − 2G; Y3 = D · (G − X3) − 8F ;

which are now also included in the EFD.

4 Background: Double-Base Chains for Single-Scalar
Multiplication

This section reviews the previous state of the art in double-base chains for com-
puting nP given P .

The non-windowing case. The “base-2” equation

314159P

=2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(P))+P))−P)))+P)+P))−P)))+P)+P))))−P

can be viewed as an algorithm to compute 314159P , starting from P , with a
chain of 18 doublings and 8 additions of P ; here we count subtractions as addi-
tions. One can express this chain more concisely—with an implicit application
of Horner’s rule—as

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 173

314159P = 218P + 216P − 214P + 211P + 210P − 28P + 25P + 24P − 20P.

The slightly more complicated “double-base-2-and-3” equation

314159P = 21532P + 21132P + 2831P + 2431P − 2030P

= 3(2(2(2(2(2(2(2(2(3(2(2(2(2(2(2(2(P)))) + P)))) + P)))) + P))))) − P

can be viewed as a better algorithm to compute 314159P , starting from P , with
a chain of 2 triplings, 15 doublings, and 4 additions of P . If 1 tripling has the
same cost as 1 doubling and 1 addition then this chain has the same cost as
17 doublings and 6 additions which is fewer operations than the 18 doublings
and 8 additions of P needed in the base-2 expansion. One can object to this
comparison by pointing out that adding mP for m > 1 is more expensive than
adding P—typically P is provided in affine form, allowing a mixed addition of P ,
while mP requires a more expensive non-mixed addition—so a tripling is more
expensive than a doubling and an addition of P . But this objection is amply
answered by dedicated tripling formulas that are less expensive than a doubling
and an addition. See Sections 2 and 3 for references and the new tripling formulas
for Edwards curves.

Double-base chains were introduced by Dimitrov, Imbert, and Mishra in a
paper [9] at Asiacrypt 2005. There were several previous “double-base number
system” papers expanding nP in various ways as

∑
ci2ai3biP with ci ∈ {−1, 1};

the critical advance in [9] was to require a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥
b3 ≥ · · · , allowing a straightforward chain of doublings and triplings without the
expensive backtracking that plagued previous papers.

Issues in comparing single bases to double bases. One can object that tak-
ing advantage of triplings requires considerable extra effort in finding a double-
base chain for nP : finding the integer 2a3b closest to n, for a range of several
b’s, is clearly more difficult than finding the integer 2a closest to n. Perhaps
this objection will be answered someday by an optimized algorithm that finds a
double-base chain in less time than is saved by applying that chain. We rely on
a simpler answer: we focus on cryptographic applications in which the same n is
used many times (as in [8, Section 3]), allowing the chain for n to be constructed
just once and then reused. Our current software has not been heavily optimized
but takes under a millisecond to compute an expansion of a cryptographic-size
integer n.

A more troubling objection is that the simple base-2 chains described above
were obsolete long before the advent of double-base chains. Typical speed-oriented
elliptic-curve software instead uses “sliding window” base-2 chains that use
marginally more temporary storage but considerably fewer additions—see be-
low. Even if double-base chains are faster than obsolete base-2 chains, there is
no reason to believe that they are faster than state-of-the-art sliding-window
base-2 chains. This objection is partly answered by an analogous improvement
to double-base chains—see below—but the literature does not contain a careful
comparison of optimized double-base chains to optimized single-base chains.

174 D.J. Bernstein et al.

The sliding-windows case. The “sliding-windows base-2” equation

314159P = 2165P − 2117P + 283P + 243P − 20P

= 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(5P))))) − 7P))) + 3P)))) + 3P)))) − P

can be viewed as an algorithm to compute 314159P , starting from {P, 3P, 5P, 7P},
with a chain of 16 doublings and 4 additions. It can therefore be viewed as
an algorithm to compute 314159P , starting from P , with 17 doublings and 7
additions; this operation count includes the obvious chain of 1 doubling and 3
additions to produce 2P, 3P, 5P, 7P from P .

The idea of starting with {P, 2P, 3P, 4P, . . . , (2w − 1)P} (“fixed length-w win-
dows”) was introduced by Brauer long ago in [7]. By optimizing the choice of
w as a function of the bitlength �, Brauer showed that one can compute nP
for an �-bit integer n using ≈ � doublings and at most ≈ �/ lg � additions (even
without subtractions). The idea to start with {P, 2P, 3P, 5P, 7P, . . . , (2w − 1)P}
(“sliding length-w windows”) was introduced by Thurber in [20], saving some
additions. For comparison, the simple base-2 chains considered earlier use ≈ �
doublings and ≈ �/3 additions (on average; as many as �/2 in the worst case).
The benefit of windows increases slowly with �.

Doche and Imbert, in their paper [11] at Indocrypt 2006, introduced an
analogous improvement to double-base chains. Example: The “sliding-windows
double-base-2-and-3” equation

314159P = 212333P − 27335P − 24317P − 2030P

= 3(2(2(2(2(3(3(2(2(2(2(2(2(2(2(3P))))) − 5P))))) − 7P))))) − P

can be viewed as an algorithm to compute 314159P , starting from {P, 3P, 5P, 7P},
with a chain of 3 triplings, 12 doublings, and 3 additions. It can therefore be
viewed as an algorithm to compute 314159P , starting from P , with 3 triplings,
13 doublings, and 6 additions.

Doche and Imbert state an algorithm to compute double-base chains for ar-
bitrary coefficient sets S containing 1. In their experiments they focus on sets of
the form {1, 2, 3, 22, 32, . . . , 2k, 3k} or sets of odd integers co-prime to 3. In this
paper we study several coefficient sets including all sets considered in [11] and
additional sets such as {P, 2P, 3P, 5P, 7P}.

Computing a chain. Finding the chain 314159 = 218 + 216 − 214 + 211 +
210 − 28 + 25 + 24 − 20 is a simple matter of finding the closest power of 2 to
314159, namely 218 = 262144; then finding the closest power of 2 to the difference
|314159 − 262144| = 52015, namely 216 = 65536; and so on.

Similarly, by inspecting the first few bits of a nonzero integer n one can easily
see which of the integers

± 1, ± 2, ± 22, ± 23, ± 24, . . .

± 3, ± 2 · 3, ± 223, ± 233, ± 243, . . .

± 5, ± 2 · 5, ± 225, ± 235, ± 245, . . .

± 7, ± 2 · 7, ± 227, ± 237, ± 247, . . .

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 175

is closest to n. By subtracting that integer from n and repeating the same process
one expands n into Thurber’s base-2 sliding-window chain

∑
i ci2ai with ci ∈

{−7, −5, −3, −1, 1, 3, 5, 7} and a1 > a2 > a3 > · · · . For example, 216 ·5 = 327680
is closest to 314159; −211 · 7 = −14336 is closest to 314159 − 327680 = −13521;
continuing in the same way one finds the chain 314159 = 2165P −2117P +283P +
243P −20P shown above. Similar comments apply to sets other than {1, 3, 5, 7}.

Dimitrov, Imbert, and Mishra in [9, Section 3] proposed a similar algorithm
to find double-base chains with ci ∈ {−1, 1}; Doche and Imbert in [11, Sec-
tion 3.2] generalized the algorithm to allow a wider range of ci. For example,
given n and the set {1, 3, 5, 7}, the Doche-Imbert algorithm finds the prod-
uct c12a13b1 closest to n, with c1 ∈ {−7, −5, −3, −1, 1, 3, 5, 7}, subject to lim-
its on a1 and b1; it then finds the product c22a23b2 closest to n − c12a13b1 ,
with c2 ∈ {−7, −5, −3, −1, 1, 3, 5, 7}, subject to the chain conditions a1 ≥ a2

and b1 ≥ b2; continuing in this way it expands n as
∑

i ci2ai3bi with ci ∈
{−7, −5, −3, −1, 1, 3, 5, 7}, a1 ≥ a2 ≥ · · · , and b1 ≥ b2 ≥ · · · .

(The algorithm statements in [9] and [11] are ambiguous on the occasions that
n is equally close to two or more products c2a3b. Which (c, a, b) is chosen? In
our new experiments, when several c2a3b are equally close to n, we choose the
first (c, b, a) in lexicographic order: we prioritize a small c, then a small b, then
a small a.)

The worst-case and average-case chain lengths produced by this double-base
algorithm are difficult to analyze mathematically. However, the average chain
length for all n’s can be estimated with high confidence as the average chain
length seen for a large number of n’s. Dimitrov, Imbert, and Mishra used 10000
integers n for each of their data points; Doche and Imbert used 1000; our new
experiments use 10000. We also plan to compute variances but have not yet done
so.

5 New Results

This section describes the experiments that we carried out and the multiplication
counts that we achieved. The results of the experiments are presented as a table
and a series of graphs.

Parameter space. Our experiments included several bit sizes �, namely 160,
200, 256, 300, 400, and 500. The choices 200, 300, 400, 500 were used in [11] and
we include them to ease comparison. The choices 160 and 256 are common in
cryptographic applications.

Our experiments included the eight curve shapes described in Section 3:
3DIK, Edwards, ExtJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, and
Jacobian-3. For comparison with previous results, and to show the importance
of optimized curve formulas, we also carried out experiments for Std-Jac and
Std-Jac-3.

Our experiments includedmanychoices of theparametera0 in [11, Algorithm 1].
The largest power of 2 allowed in the algorithm is 2a0 , and the largest power
of 3 allowed in the algorithm is 3b0 where b0 = �(� − a0)/ lg 3�. Specifically, we

176 D.J. Bernstein et al.

tried each a0 ∈ {0, 10, 20, . . . , 10	�/10
}. This matches the experiments reported
in [11] for � = 200. We also tried all integers a0 between 0.95� and 1.00�.

Our experiments included several coefficient sets S, i.e., sets of coefficients c al-
lowed in c2a3b: the set {1} used in [9]; the sets {1, 2, 3}, {1, 2, 3, 4, 8, 9, 16, 27, 81},
{1, 5, 7}, {1, 5, 7, 11, 13, 17, 19, 23, 25} appearing in the graphs in [11, Appendix
B] with labels “(1, 1)” and “(4, 4)” and “S2” and “S8”; and the sets {1, 2, 3, 4, 9},
{1, 2, 3, 4, 8, 9, 27}, {1, 5}, {1, 5, 7, 11}, {1, 5, 7, 11, 13}, {1, 5, 7, 11, 13, 17, 19} ap-
pearing in the tables in [11, Appendix B]. We also included the sets {1, 2, 3, 5},
{1, 2, 3, 5, 7}, and so on through {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25}; these sets
are standard in the base-2 context but do not seem to have been included in pre-
vious double-base experiments.

(We have considered additional sets such as {1, 2, 3, 4, 5, 7, 9}. Multiples of 6
are not worthwhile but we see some potential for coefficients 4, 8, 10, . . . in the
context of 3DIK coordinates. However, those sets are not yet included in our
experiments.)

We used straightforward combinations of additions, doublings, and triplings
for the initial computation of cP for each c ∈ S. We have considered, but not yet
included in our experiments, the use of quintuplings, merged operations, etc. for
this computation. Reader beware: as mentioned in Section 1, the costs of these
computations are ignored in [11], allowing arbitrarily large sets S for free and
allowing arbitrarily small costs of computing nP ; the costs in [11] thus become
increasingly inconsistent with the costs in this paper (and in reality) as S grows.

We follow the standard (although debatable) practice of counting S = 0.8M
and disregarding other field operations. We caution the reader that other weight-
ings of field operations can easily change the order of two systems with similar
levels of performance.

Experiments and results. There are 8236 combinations of �, a0, and S de-
scribed above. For each combination, we

• generated 10000 uniform random integers n ∈ {
0, 1, . . . , 2� − 1

}
,

• converted each integer into a chain as specified by a0 and S,
• checked that the chain indeed computed n starting the chain from 1, and
• counted the number of triplings, doublings, additions, readditions, and mixed

additions for those 10000 choices of n.

We converted the results into multiplication counts for 3DIK, Edwards, Ex-
tJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, Jacobian-3, Std-Jac,
and Std-Jac-3, obtaining a cost for each of the 82360 combinations of �, curve
shape, a0, and S.

Figure 1 shows, for each � (horizontal axis) and each curve shape, the minimum
cost per bit obtained when a0 and S are chosen optimally. The implementor can
easily read off the ranking of coordinate systems from this graph. Table 1 displays
the same information in tabular form, along with the choices of a0 and S.

There is no unique optimal choice of a0 and S for every curve shape which
gives rise to the fastest computation of a given �-bit integer. For example, using
Jacobian coordinates the best result is achieved by precomputing odd coefficients

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 177

Table 1. Optimal parameters for each curve shape and each �

� Curve shape Mults Mults/� a0 a0/� S

160 3DIK 1502.393800 9.389961 80 0.5 {1}
200 3DIK 1879.200960 9.396005 100 0.5 {1, 2, 3, 5, 7}
256 3DIK 2393.193800 9.348413 130 0.51 {1, 2, 3, 5, . . . , 13}
300 3DIK 2794.431020 9.314770 160 0.53 {1, 2, 3, 5, . . . , 13}
400 3DIK 3706.581360 9.266453 210 0.53 {1, 2, 3, 5, . . . , 13}
500 3DIK 4615.646620 9.231293 270 0.54 {1, 2, 3, 5, . . . , 17}
160 Edwards 1322.911120 8.268194 156 0.97 {1, 2, 3, 5, . . . , 13}
200 Edwards 1642.867360 8.214337 196 0.98 {1, 2, 3, 5, . . . , 15}
256 Edwards 2089.695120 8.162872 252 0.98 {1, 2, 3, 5, . . . , 15}
300 Edwards 2440.611880 8.135373 296 0.99 {1, 2, 3, 5, . . . , 15}
400 Edwards 3224.251900 8.060630 394 0.98 {1, 2, 3, 5, . . . , 25}
500 Edwards 4005.977080 8.011954 496 0.99 {1, 2, 3, 5, . . . , 25}
160 ExtJQuartic 1310.995340 8.193721 156 0.97 {1, 2, 3, 5, . . . , 13}
200 ExtJQuartic 1628.386660 8.141933 196 0.98 {1, 2, 3, 5, . . . , 15}
256 ExtJQuartic 2071.217580 8.090694 253 0.99 {1, 2, 3, 5, . . . , 15}
300 ExtJQuartic 2419.026660 8.063422 299 1 {1, 2, 3, 5, . . . , 21}
400 ExtJQuartic 3196.304940 7.990762 399 1 {1, 2, 3, 5, . . . , 25}
500 ExtJQuartic 3972.191800 7.944384 499 1 {1, 2, 3, 5, . . . , 25}
160 Hessian 1560.487660 9.753048 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Hessian 1939.682780 9.698414 120 0.6 {1, 2, 3, 5, . . . , 13}
256 Hessian 2470.643200 9.650950 150 0.59 {1, 2, 3, 5, . . . , 13}
300 Hessian 2888.322160 9.627741 170 0.57 {1, 2, 3, 5, . . . , 13}
400 Hessian 3831.321760 9.578304 240 0.6 {1, 2, 3, 5, . . . , 17}
500 Hessian 4772.497740 9.544995 300 0.6 {1, 2, 3, 5, . . . , 19}
160 InvEdwards 1290.333920 8.064587 156 0.97 {1, 2, 3, 5, . . . , 13}
200 InvEdwards 1603.737760 8.018689 196 0.98 {1, 2, 3, 5, . . . , 15}
256 InvEdwards 2041.223320 7.973529 252 0.98 {1, 2, 3, 5, . . . , 15}
300 InvEdwards 2384.817880 7.949393 296 0.99 {1, 2, 3, 5, . . . , 15}
400 InvEdwards 3152.991660 7.882479 399 1 {1, 2, 3, 5, . . . , 25}
500 InvEdwards 3919.645880 7.839292 496 0.99 {1, 2, 3, 5, . . . , 25}
160 JacIntersect 1438.808960 8.992556 150 0.94 {1, 2, 3, 5, . . . , 13}
200 JacIntersect 1784.742200 8.923711 190 0.95 {1, 2, 3, 5, . . . , 15}
256 JacIntersect 2266.135540 8.852092 246 0.96 {1, 2, 3, 5, . . . , 15}
300 JacIntersect 2644.233000 8.814110 290 0.97 {1, 2, 3, 5, . . . , 15}
400 JacIntersect 3486.773860 8.716935 394 0.98 {1, 2, 3, 5, . . . , 25}
500 JacIntersect 4324.718620 8.649437 492 0.98 {1, 2, 3, 5, . . . , 25}
160 Jacobian 1558.405080 9.740032 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian 1937.129960 9.685650 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian 2466.150480 9.633400 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian 2882.657400 9.608858 180 0.6 {1, 2, 3, 5, . . . , 13}
400 Jacobian 3819.041260 9.547603 250 0.62 {1, 2, 3, 5, . . . , 17}
500 Jacobian 4755.197420 9.510395 310 0.62 {1, 2, 3, 5, . . . , 19}
160 Jacobian-3 1504.260200 9.401626 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian-3 1868.530560 9.342653 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian-3 2378.956000 9.292797 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian-3 2779.917220 9.266391 200 0.67 {1, 2, 3, 5, . . . , 17}
400 Jacobian-3 3681.754460 9.204386 260 0.65 {1, 2, 3, 5, . . . , 17}
500 Jacobian-3 4583.527180 9.167054 330 0.66 {1, 2, 3, 5, . . . , 21}

178 D.J. Bernstein et al.

Fig. 1. Multiplications per bit (all bits, all shapes)

Fig. 2. Importance of doubling/tripling ratio (200 bits, all shapes)

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 179

Fig. 3. Importance of parameter choices (200 bits, Jacobian-3)

up to 13 for an integer of bit length at most 300. For 400-bit integers the optimum
uses S = {1, 2, 3, 5, . . . , 17} and in the 500-bit case also 19 is included.

None of the optimal results for � ≥ 200 uses a set of precomputed points
discussed in [9] or [11]. Independent of the ratio between doubling and tripling
cost and the cost of doubling the optimal coefficient sets were those used in
(fractional) sliding-window methods, i.e. the sets {1, 2, 3, 5, . . .}.

Figure 2 shows, for each a0 (horizontal axis) and each curve shape, the cost
for � = 200 when S is chosen optimally. This graph demonstrates the impor-
tance of choosing the right bounds for a0 and b0 depending on the ratio of the
doubling/tripling costs. We refer to Table 1 for the best choices of a0 and S for
each curve shape.

The fastest systems are Edwards, ExtJQuartic, and InvEdwards. They need
the lowest number of multiplications for values of a0 very close to �. These
systems are using larger sets of precomputations than slower systems such as
Jacobian-3 or Jacobian, and fewer triplings. The faster systems all come with par-
ticularly fast addition laws, making the precomputations less costly, and partic-
ularly fast doublings, making triplings less attractive. This means that currently
double-base chains offer no or very little advantage for the fastest systems. See [5]
for a detailed description of single-base scalar multiplication on Edwards curves.

Not every curve can be represented by one of these fast systems. For curves
in Jacobian coordinates values of a0 around 0.6� seem optimal and produce
significantly faster scalar multiplication than single-base representations.

180 D.J. Bernstein et al.

Fig. 4. Importance of parameter choices (200 bits, Edwards)

Figure 3 shows, for a smaller range of a0 (horizontal axis) and each choice of S,
the cost for Jacobian-3 coordinates for � = 200. This graph demonstrates several
interesting interactions between the doubling/tripling ratio, the choice of S, and
the final results. Figure 4 is a similar graph for Edwards curves. The optimal
scalar-multiplication method in that graph uses a0 ≈ 195 with coefficients in the
set ±{1, 2, 3, 5, 7, 11, 13, 15}. The penalty for using standard single-base sliding-
window methods is negligible.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC, Boca
Raton, USA (2005)

2. Barua, R., Lange, T. (eds.): INDOCRYPT 2006. LNCS, vol. 4329. Springer, Hei-
delberg (2006)

3. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD

4. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: AAECC 2007 (to
appear, 2007)

5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Asiacrypt 2007 [17], pp. 29–50 (2007), http://cr.yp.to/newelliptic/

http://www.hyperelliptic.org/EFD
http://cr.yp.to/newelliptic/

Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication 181

6. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. London
Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press,
Cambridge (1999)

7. Brauer, A.: On addition chains. Bulletin of the American Mathematical Society 45,
736–739 (1939)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

9. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: ASIACRYPT 2005 [19], pp. 59–78
(2005)

10. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-
positions. In: PKC 2006 [21], pp. 191–206 (2006)

11. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Indocrypt 2006 [2], pp. 335–348 (2006)

12. Doche, C., Lange, T.: Arithmetic of Elliptic Curves, Ch. 13 in [1], pp. 267–302.
CRC Press, Boca Raton, USA (2005)

13. Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model.
Information Processing Letters 104, 101–105 (2007)

14. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Math-
ematical Society 44, 393–422 (2007),
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html

15. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to elliptic curve cryptography.
Springer, Berlin (2003)

16. Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arith-
metic. In: Indocrypt 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg
(2007)

17. Kurosawa, K. (ed.): Advances in cryptology–ASIACRYPT 2007. LNCS, vol. 4833.
Springer, Heidelberg (2007)

18. IEEE P1363. Standard specifications for public key cryptography. IEEE (2000)
19. Roy, B. (ed.): ASIACRYPT 2005. LNCS, vol. 3788. Springer, Heidelberg (2005)
20. Thurber, E.G.: On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r).

Duke Mathematical Journal 40, 907–913 (1973)
21. Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.): PKC 2006. LNCS, vol. 3958.

Springer, Heidelberg (2006)

A Appendix: Quintupling on Edwards Curves

In this section we give formulas to compute the 5-fold of a point on an Edwards
curve. We present two different versions which lead to the same result but have
a different complexity. The first version needs 17M + 7S while version 2 needs
14M + 11S.

The question which version to choose for a specific platform can be answered
by looking at the S/M-ratio. If S/M = 0.75 both sets of formulas have the same
complexity, namely 17M+ 5.25M = 14M+ 8.25M = 22.25M. For a S/M-ratio
less than 0.75 one should use version 2; if the S/M-ratio is greater 0.75, then
version 1 of the quintupling formulas achieves best performance.

Both versions were verified to produce the 5-fold of the input point (X1 : Y1 :
Z1) by symbolically computing 5(X1 : Y1 : Z1) using the addition and doubling
formulas from [5] and comparing it with (X5 : Y5 : Z5).

http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html

182 D.J. Bernstein et al.

It is interesting to note that the formulas do not have minmal degree. The
new variables X5, Y5, Z5 have total degree 33 in the initial variables even though
one would expect expect degree 52. Indeed, X5, Y5, Z5 are all divisible by the
degree 8 polynomial ((X2

1 −Y 2
1)2 +4Y 2

1 (Z2
1 −Y 2

1))((X2
1 −Y 2

1)2 +4X2
1(Z2

1 −X2
1)).

Minimizing the number of operations lead to better results for our extended
polynomials.

The 17M + 7S-formulas for quintupling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B;

E = 2C − D; F = D · (B − A); G = E · ((X1 + Y1)2 − D);
H = F 2; I = G2; J = H + I; K = H − I; L = J · K;
M = D · E; N = E · F ; O = 2M2 − J ; P = 4N · O;
Q = 4K · N · (D − C); R = O · J ; S = R + Q; T = R − Q;

X5 = X1 · (L + B · P) · T ; Y5 = Y1 · (L − A · P) · S; Z5 = Z1 · S · T ;

The 14M + 11S-formulas for quintupling:

A = X2
1 ; B=Y 2

1 ; C =Z2
1 ; D=A+B; E=2C−D; F =A2; G=B2; H =F +G;

I = D2−H ; J =E2; K =G−F ; L=K2; M =2I · J ; N =L + M ; O=L−M ;
P = N · O; Q = (E + K)2 − J − L; R = ((D + E)2 − J − H − I)2 − 2N ;
S = Q · R; T = 4Q · O · (D − C); U = R · N ; V = U + T ; W = U − T ;

X5 = 2X1 · (P + B · S) · W ; Y5 = 2Y1 · (P − A · S) · V ; Z5 = Z1 · V · W.

Note, that only variables A . . . E have the same values in the two versions.

Transitive Signatures from Braid Groups

Licheng Wang1, Zhenfu Cao2, Shihui Zheng1, Xiaofang Huang1,
and Yixian Yang1

1 Information Security Center, State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications,

Beijing 100876, P.R. China
2 Dept. Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, P.R. China

Abstract. Transitive signature is an interesting primitive due to Micali
and Rivest. During the past years, many constructions of transitive sig-
natures have been proposed based on various assumptions. In this paper,
we provide the first construction of transitive signature schemes by using
braid groups. In the random oracle model, our proposals are proved to
be transitively unforgeable against adaptively chosen message attack un-
der the assumption of the intractability of one-more matching conjugate
problem (OM-MCP) over braid groups. Moreover, the proposed schemes
are invulnerable to currently known quantum attacks.

Keywords: Transitive signature, braid group, one-more matching con-
jugate problem, provable security, random oracle model.

1 Introduction

1.1 Primitive of Transitive Signature and Related Constructions

The primitive of transitive signature was firstly proposed by Micali and Rivest[25]
in 2002. Transitive signature aims to dynamically build an authenticated graph,
edge by edge[4]. In other words, the message space of a transitive signature
scheme is the set of all potential edges of the authenticated graph. The signer,
having secret key tsk and public key tpk, can at any time pick a pair i, j of
nodes and create a signature for (i, j), thereby adding edge (i, j) to the graph[4].
The most remarkable characteristic of transitive signature is the newly conceived
property — composability, which requires that given a signature of an edge (i, j)
and a signature of an edge (j, k), anyone in possession of the public key can
create a signature of the edge (i, k). Security of transitive signature asks that
without the secret key tsk, it should be hard to create a valid signature of
edge (i, j) unless i, j are connected by a path whose edges have been explicitly
authenticated by the signer[4].

In 2002, Micali and Rivest[25] proposed the first transitive signature scheme
based on discrete logarithm (DL) assumption; In the end of this paper, they also
conceived another transitive signature scheme based on RSA assumption. The
former was proved unforgeable against adaptive chosen-message attacks, while

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 183–196, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 L. Wang et al.

the latter was merely proved to be secure under non-adaptive chosen-message
attacks1. Shortly afterwards, Bellare and Neven[4] proposed new transitive sig-
nature schemes based on factoring and RSA assumptions. Transitive signature
based on bilinear maps was also proposed in 2004 [28]. In 2005, Bellare and
Neven[5] gave a good survey on research of transitive signatures and proposed
some new schemes, as well as some new proofs. Their paper shows that transi-
tive signature schemes can be constructed based on lots of assumptions, such
as RSA assumption, one-more RSA-inversion assumption, factoring assump-
tion, DL assumption, one-more DL assumption and one-more gap Diffie-Hellman
assumption.

Meanwhile, research on transitive signatures also made progress along another
parallel direction. The original primitive introduced in [25] was defined over a
graph G which was modeled under general scenario, i.e., without the limitation
that G should be undirected. The implementation in [25], however, was merely
suitable for signing data with undirected graph structure. The subsequent works
in [4,5,35] were all concerned with undirected graphs. Finding a transitive sig-
nature scheme for a directed graph had been remained open until the published
of [21], in which a transitive signature scheme for a directed tree was proposed.
Since the directed tree is a special case of the directed graph, the proposed
scheme in [21] was a partial solution for the open problem. The authors of [21]
also showed that a transitive signature scheme for the undirected graph can
be constructed from a bundling homomorphism. This means that the transitive
signature scheme for the undirected graph is closely related with a fail-stop sig-
nature scheme[21]. Unfortunately, the scheme in [21] was proved insecure about
a year later [34]. In 2005, Huang et al.[14] proposed an efficient directed transi-
tive signature scheme, in which the basic technique in [25] was improved to suite
for chains, and then signing a directed transitive binary relation G by combining
the proposed scheme with the undirected transitive signature schemes whenever
G can be partitioned into several chains such that these chains can be connected
by some small equivalence relations. Most recently, Yi[33] also proposed a RSA-
based directed transitive signature scheme for directed graphs of which transitive
reductions are directed trees. As far as we know, Huang’s method [14] and Yi’s
method[33] are the nearest, though not perfect, answers for directed transitive
signatures.

1.2 Background of Braid-Based Public Key Cryptography

Today, most public key cryptosystems that remain unbroken are based on the
perceived difficulty of certain problems in particular large finite (abelian) groups.
The theoretical foundations for these cyrptosystems lie in the intractability of
problems closer to number theory than group theory[24]. On quantum computer,
most of these problems turned out to be efficiently solved by algorithms due to
Shor[29], Kitaev[17] and Proos-Zalka [27]. Although practical quantum comput-
ers are as least 10 years away, their potential will soon create distrust in current
1 Later, it was also proved unforgeable against adaptive chosen-message attacks under

a stronger assumption—one-more RSA-inversion assumption[5].

Transitive Signatures from Braid Groups 185

cryptographic methods[22]. In order to enrich cryptography as well as not to put
all eggs in one basket[22], there have been many attempts to develop alternative
public key cryptography (PKC) based on different kinds of problems [2,19,22,24].

With this background, some non-abelian groups attracted many researchers’
attention. The most popular group lies in this area is braid group. In 1999, An-
shel et al.[2] proposed an algebraic method for PKC. In their pioneering work,
braid groups go upon the stage of modern cryptography. Also, Ko et al.[19] pub-
lished their paper on braid-based PKC in 2000. From then, the subject has met
with a quick success [1,7,18,23]. However, from 2001 to 2003, repeated crypt-
analytic success[8,15,16,26] also diminished the initial optimism on the subject
significantly. In 2004, Dehornoy[9] gave a good survey on the state of the subject,
and suggested that significant research is still needed to reach a definite conclu-
sion on cryptographic potential of braid groups. Most recently, Ko et al.[20] also
analyzed the current attacks and proposed new methods for generating secure
keys for braid cryptography.

1.3 Contributions and Organizations

Just as claimed in [4], it is standard practice in cryptography to seek new and
alternative realizations of primitives of potential interest, both to provide firmer
theoretical foundations for the existence of the primitive by basing it on alter-
native conjectured hard problems and to obtain performance improvements. In
order to accomplish both of these objectives, we present new transitive signa-
ture schemes by using braid groups. In the random oracle model, the proposed
schemes are proved to be transitively unforgeable against adaptively chosen mes-
sage attack assuming that the one-more matching conjugate problem over braid
groups is intractable. Of course, our schemes are only suite for undirected graphs.
Therefore, the possible improvements on our construction include at least three
aspects: The first is to design braid-based transitive signatures for directed graph;
The second is to remove the necessary of “one-more” flavor assumption; And the
third is to prove the security of our design in the standard model.

The rest of the paper is organized as follows: Necessary preliminaries on braid
cryptography are presented in Section 2; The basic notations and models of
transitive signatures are given in Section 3; Then we propose two braid-based
transitive signature schemes in Section 4, and give performance analysis and
security level evaluation in Section 5. Finally, concluding remarks are presented
in Section 6. Meanwhile, all corresponding proofs are arranged in appendices.

2 Preliminaries

2.1 Braid Group and Related Cryptographic Assumptions

The n-braid group Bn is presented by the Artin generators σ1, · · · , σn−1 and
relations σiσj = σjσi for |i − j| > 1 and σiσjσi = σjσiσj for |i − j| = 1. Two
braids x, y are conjugate, written x ∼ y, if y = axa−1 for some a ∈ Bn. The

186 L. Wang et al.

conjugator search problem (CSP) defined as: Find a ∈ Bn such that y = axa−1

for a given instance (x, y) ∈ Bn × Bn with x ∼ y. So far, most PKC using
braid groups are based on variants of CSP. Although there are some algorithms
for solving CSP in braid groups [10,11,12,13], none of them has been proved
that can solve CSP in polynomial time (with respect to the braid index n).
According to [9] and[20], most of current attacks against braid-based PKC take
advantage of the way the keys are generated and at present we see no serious
reason for doubting that braid groups are and will remain a promising platform
for cryptography[9].

In [18], Ko et al. introduced the concept of CSP-hard pair. Suppose that
S1 and S2 are two subgroups of Bn, a pair (x, x′) ∈ S1 × S2 is said to be
CSP-hard if x ∼ x′ and CSP is intractable in the group Bn for the instance
(x, x′). Clearly, if (x, x′) is CSP-hard, so is (x′, x)[18]. In fact, we think it is
more meaningful to define similar concept as a special sampling algorithm than
to define CSP-hardness for one particular pair. Therefore, we say that a CSP-
hard pair generator Kcsp is a probabilistic polynomial-time algorithm defined as
follows:

– Kcsp(n): On inputs the security parameter n, outputs a triple (p, q, w) ∈ B3
n,

where q = wpw−1 and the LCF-lengths of p, q and w are bounded by O(n2),
while finding a conjugator for the pair (p, q) is intractable.

In general, given a triple (p, q, w) generated by CSP-hard pair generated Kcsp

and a random braid c ∈ Bn, it is difficult to produce wpcw−1 without knowing
w. This kind of problem is defined as conjugate adjoin problem (CAP), which is
also seems as hard as CSP[30].

As for how to construct such a CSP-hard pair generator, please refer to [9],[18]
and[20]. In particular in [20], Ko et al. proposed several alternate ways of gen-
erating hard instances of the conjugacy problem for use braid cryptography.
Choosing good parameters and CSP-hard pair generators are non-trivial prob-
lems outside the scope of this paper.

Enlightened by the idea of “One-More-RSA-Inversion Problems” [6],
Wang et al. [31] defined the so-called One-More Matching Conjugate Problem
(OM-MCP) as follows.

Suppose that the braid index n is viewed as the security parameter. An om-
mcp attacker is a probabilistic polynomial-time algorithm A that gets input p, q
and has access to two oracles: the matching conjugate oracle Omc(·) and the
challenge oracle Och(). The attacker A wins the game if it succeeds in matching
conjugates with all η(n) braids output by the challenge oracle, but submits
strictly less than η(n) queries to the matching conjugate oracle, where η : N → N

is arbitrary polynomials over N. More formally, A is invoked in the following
experiment.

Experiment Expom−mcp
Kcsp,A (n)

(p, q, w) $←−− Kcsp(n); k ← 0; l ← 0;

(r1, · · · , rk′) $←−− AOmc,Och(p, q, n);

Transitive Signatures from Braid Groups 187

If k′ = k and l < k and ∀ i = 1, · · · , k : (ri ∼ ci) ∧ (qri ∼ pci)
Then return 1 else return 0

where the oracles are defined as

Oracle Omc(b) Oracle Och()

l ← l + 1; k ← k + 1; ck
$←−− Bn;

Return wbw−1 Return ck

The om-mcp advantage of A, denoted by Advom−mcp
Kcsp,A (n), is the probability

that the above experiment returns 1, taken over the coins of Kcsp, the coins of
A, and the coins used by the challenge oracle across its invocations. The one-
more matching conjugate assumption says that the one-more matching conjugate
problem associated to Kcsp is hard, i.e., the function Advom−mcp

Kcsp,A (n) is negligible
with respect to the security parameter n for all probabilistic polynomial-time
adversaries A.

Note that in one-more type experiments, the adversaries are not permitted
to choose challenges by themselves. But they can submit queries on their own
choices. Only if the number of the submitted queries is strictly less than the
number of challenges that they answered correctly, they won the experiments.
Please refer to [6] and[31] for more details about this issue.

2.2 Notations and Definitions

Let N = {1, 2, · · · } denote the set of positive integers. The notation x
$←−− S

denotes that x is selected randomly from set S. If A is a randomized algorithm,
then the notation x

$←−− AO1,··· ,Om(a1, a2, · · · , an) denotes that x is assigned
the outcome of the experiment of running A, which is permitted to access the
oracles O1, · · · , Om, on inputs a1, a2, · · · , an.

A graph G = 〈V, E〉 has a finite set V ⊆ N of vertices and a finite set E ⊆ V ×V
of edges. We write an edge between u and v as the pair (u, v) in any case,
whether the graph is directed or undirected. G’s transitive closure is the graph
cl(G) = 〈V, cl(E)〉, where (u, v) ∈ cl(E) if and only if there is a path from u
to v in G. Considering that E is a binary relation defined over the set V , its
transitive closure cl(E) can be calculated efficiently by using Warshall algorithm
and its improved variants[32].

Definition 1 (Transitive Signature[25,33]). A transitive signature scheme
T S is defined by four polynomial-time algorithms as follows:

– TKG, the key generation algorithm, is a probabilistic algorithm that takes
1k as input and returns a pair (tpk, tsk), where k is viewed as the security
parameter.

– TSign, the signature algorithm, is a deterministic or probabilistic algorithm
that takes as inputs the secret key tsk and an edge (i, j), and returns an
original signature σij of (i, j) relative to tsk, where i, j ∈ N .

188 L. Wang et al.

– TVf , the verification algorithm, is a deterministic algorithm that takes as
inputs tpk, an edge (i, j), and a candidate signature σij, and returns either
1 or 0. If the output is 1, σij is said to be valid or pass the verification.

– Comp, the composition algorithm, is a deterministic algorithm that takes
as inputs tpk, two edges (i, j) and (j, k), and corresponding signatures σij

and σjk, and returns either a composed signature σik of edge (i, k) or ⊥ to
indicate failure.

For a transitive signature scheme, formulating its correctness is indeed a delib-
erate task[5]. Briefly, a signature σ (�=⊥) is said to be

– original, if it is one of the output of the signing algorithm TSign;
– valid, if it passes the verification;
– legitimate, if it is either original or one of output of the composition algorithm

Comp.

In this paper, we follow the concept in [5] and define the correctness only
for legitimate signatures. In Fig.1, we describe an experiment Expcorrect

T S,A (k), by
which the correctness of transitive signature is defined. This kind of method for
defining correctness of transitive signatures was firstly introduced by Bellare et
al.[4] and widely used in [5,33,35].

In this experiment, the boolean value Legit is set to false if A ever makes
an illegitimate oracle query. And the boolean value NotOK is set to true if one
of the following events happens:

– A signature is claimed to be original, but cannot pass the verification.
– A signature is composed legitimately, but cannot pass the verification.
– A signature is composed legitimately, and passes the verification, but is dif-

ferent from the original signature the signer would sign.

We assume that A wins in this experiment if the output is true. Then, the
correctness of T S can be formally defined as follows.

Definition 2 (Correctness). A transitive signature scheme T S is correct if,
for any k, any (even computationally unbounded) attacker A wins the experiment
Expcorrect

T S,A (k) with the probability 0.

In order to give a rigid definition of the security of a transitive signature, we
employing the method used in [33]. For a transitive signature scheme T S, we
associate it to any polynomial-time forger F (called tu-cma2 adversary) and
security parameter k ∈ N the experiment Exptu−cma

T S,F (k) of Fig.2, which provides
F with input tpk and an oracle TSign(tsk, ·, ·). Meanwhile, the oracle is assumed
to maintain states. The advantage of F in this experiment is defined by

Advtu−cma
T S,F (k) = Pr[Exptu−cma

T S,F (k) = 1]. (1)

Then, the security of T S can be formally defined as follows.
2 Abbr. of “transitive unforgeable under adaptive chosen-message attack”.

Transitive Signatures from Braid Groups 189

Experiment Expcorrect
T S,A (k)

1: (tpk, tsk)
$←− TKG(1k);

2: S ← ∅; Legit ← true; NotOK ← false;
3: Run A with its oracles until it halts, replying to its oracle queries as follows:
4: if A makes TSign query on i, j then
5: if i = j then
6: Legit ← false;
7: else
8: Let σ be the output of the TSign oracle;
9: S ← S ∪ {((i, j), σ)};

10: if TVf(tpk, i, j, σ) = 0 then
11: NotOK ← true;
12: end if
13: end if
14: end if
15: if A makes Comp query on i, j, k, σ1, σ2 then
16: if TVf(tpk, i, j, σ1) = 0 or TVf(tpk, j, k, σ2) = 0 or |{i, j, k}| < 3 then
17: Legit ← false;
18: else
19: Let σ be output of the Comp oracle;
20: S ← S ∪ {((j, k), σ)};
21: if TVf(tpk, i, k, σ) = 0 then
22: NotOK ← true;
23: end if
24: τ ← TSign(tsk, i, k);
25: if σ �= τ then
26: NotOK ← true;
27: end if
28: end if
29: end if
30: When A halts, output (Legit ∧ NotOK) and halt.

Fig. 1. Experiment for Correctness Definition

Experiment Exptu−cma
T S,A (k)

1: (tpk, tsk)
$←− TKG(1k);

2: (i′, j′, σ′)
$←− FTSign(tsk,·,·)(tpk);

3: S = {(i, j, σ) : whenever σ is output by TSign(tsk, i, j) and given to F};
4: E = {(i, j) : ∃(i, j, σ) ∈ S};
5: if (i′, j′) ∈ cl(E) or TVf(tpk, i′, j′, σ′) = 0 then
6: return 0;
7: else
8: return 1;
9: end if

Fig. 2. Experiment for Security Definition

190 L. Wang et al.

Definition 3 (Security). A transitive signature scheme T S is unforgeable
against adaptive chosen-message attacks if the advantage function Advtu−cma

T S,F (k)
is negligible (with respect to the security parameter k) for any attacker F whose
running time is polynomial in k.

Remark 1. Many transitive signature schemesuse thenode certificationparadigm,
i.e., containing a underlying standard signature schemesSS=(SKG, SSign, SV f)
for creating node certificates [4,25,28,33,35]. Although Micali and Rivest[25] gave
concrete description for SS in their pioneering paper, almost all subsequent re-
searchers provided only abstract definitions for SS[4,28,33]. On the one hand,
the involved underlying standard signatures are a significant factor in the cost of
the transitive signature schemes. On the other hand, Bellare et al.[5] showed that
for many schemes, node certificates can be eliminated by specifying the public
label of a node i as the output of a hash function applied to i. Furthermore,
the edge label provides an “implicit authentication” of the associated node la-
bel that allows us to prove that the revised scheme is transitively unforgeable
under adaptive chosen-message attacks, in a model where the hash function is
random oracle[5]. In fact, the semantic of “transitivity” is fully manifested by
the edge authentication process, but little concerning with the node certificates.
Therefore, in this paper, we directly omit the description of the underlying node
authentication signature scheme and pay more attention to edge authentication
signature schemes. If someone requests a underlying signature scheme for our
proposed braid-based transitive signature schemes, then any standard signature
scheme that is existentially unforgeable against adaptively chosen message attack
(EUF-CMA) is a good candidate. For example, he can employ the braid-based
signature schemes SCSS, TCSS or ECSS (See [31] for more details).

3 Transitive Signatures from Braid Groups

Now, we try to sketch out two transitive signature schemes by using braid groups.
Suppose that G = (V, E) is the given authentication graph, where V ⊂ N and
E ⊂ V × V are node set and edge set, respectively. Let H : V → Bn be an
one-way and collision-resistent hash function which maps a given node in V
to a braid in Bn (See [9,18,19] for detail of how to construct the desired hash
functions by using braids).

The first braid-based transitive signature scheme, denoted by BBT S1 consists
of the following four algorithms:

– TKG(n): Suppose that n is the system security parameter. Let

(p, q, w) $←−− Kcsp(n) (2)

and return the public key tpk = (p, q) and the private key tsk = w, where
p, q, w ∈ Bn and (p, q) is a CSP-hard pair.

– TSign(w, i, j): For a given edge (i, j) ∈ E, its signature is a braid

σij = wbib
−1
j w−1, (3)

Transitive Signatures from Braid Groups 191

where bi = H(i), bj = H(j). Here, we assume without loss of generality that
i < j. If this is not the case, one can swap i and j.

– TVf (p, q, i, j, σij): A signature σij for an edge (i, j) ∈ E is valid (or accept-
able equivalently) if and only if

(σij ∼ bib
−1
j) ∧ (q · σij ∼ p · bib

−1
j) (4)

holds, where bi = H(i), bj = H(j).
– Comp(p, q, i, j, k, σij , σjk): Given two signatures σij (for the edge (i, j) ∈ E)

and σjk (for the edge (j, k) ∈ E), if

Tvf (p, q, i, j, σij) = 0 or Tvf (p, q, j, k, σjk) = 0, (5)

then return ⊥ as an indication of failure; Otherwise, the signature on the
edge (i, k) would be a braid

σik = σij · σjk . (6)

Here, we again assume that i < j < k. If this is not the case, one can resort
them.

Remark 2. In TSign algorithm, if we do not consider wether i < j hold, then
we have σij �= σji in general. But this fact never means that we reach a directed
transitive signature scheme, since one can get σji easily by computing the inverse
braid of σij .

Before proving the correctness and the security of the above scheme, let us
describe another braid-based transitive signature scheme, denoted by BBT S2:

– TKG(n): Suppose that n is the system security parameter. Let

(p, q, w) $←−− Kcsp(n). (7)

Pick another complex braid c ∈ Bn and compute d = wpcw−1. Then, re-
turn the public key tpk = (p, q, c; d) and the private key tsk = w, where
p, q, c, d, w ∈ Bn and both (p, q) and (pc, d) are CSP-hard pairs.

– TSign(w, i, j): For a given edge (i, j) ∈ E, its signature is a braid

σij = wpbib
−1
j cw−1, (8)

where bi = H(i), bj = H(j). We also assume that i < j.
– TVf (p, q, c, i, j, σij): A signature σij for an edge (i, j) ∈ E is valid (or ac-

ceptable equivalently) if and only if

(σij ∼ pbib
−1
j c) ∧ (q−1 · σij ∼ bib

−1
j c), (9)

where bi = H(i), bj = H(j).

192 L. Wang et al.

– Comp(p, q, c, d, i, j, k, σij , σjk): Given two signatures σij (for the edge (i, j)∈
E) and σjk (for the edge (j, k) ∈ E), if

Tvf (p, q, c, i, j, σij) = 0 or Tvf (p, q, c, j, k, σjk) = 0, (10)

then return ⊥ as an indication of failure; Otherwise, the signature on the
edge (i, k) would be a braid

σik = σij · d−1 · σjk. (11)

We also assume that i < j < k.

Remark 3. To some extend, BBT S2 is a simple variant of BBT S1. On the one
hand, BBT S2 has a bit less efficient than BBT S1: In Tvf and Comp, BBT S2
needs an additional multiplication (Note that both wp and cw−1 can be pre-
computed). On the other hand, BBT S2 has a remarkable new trait: one cannot
perform the composition work without possession of d or w. We know that w is
the private key to which nobody, except the signer himself, can fetch. However,
we can send d to a semi-trusted party who will fulfil the composition work. Note
that d is not involved into the verification process. This does not violate with
the standard definition of transitive signature, since d is also a component of
public key tpk.

Now, it is time to consider the correctness and the security of the proposed
schemes. For space limitation, we just list the results as follows. All corresponding
proofs would be found in the journal version.

Theorem 1. Both the proposed braid-based transitive signature schemes, BBT S1
and BBT S2 meet the correctness requirement of Definition 2.

Theorem 2. In the random oracle model, the first braid-based transitive signa-
ture scheme BBT S1 is transitively unforgeable against adaptively chosen mes-
sage attack assuming that the one-more matching conjugate problem (OM-MCP)
is intractable. More specifically, suppose that there is a tu-cma forger F that
makes at most qh hash queries and at most qs signing queries, and finally breaks
BBT S1 with a non-negligible advantage ε within time t, then there exists an
om-mcp attacker A can win the one-more matching conjugate experiment with
the probability at least ε′ within the time t′, where

ε′ = ε, (12)

and
t′ = t + ts · qs + th · qh + tmc · (|V | − 1), (13)

where |V | is the number of node of authentication graph, while ts, th and tmc are
time for answering a signing oracle query, a hash oracle query and a matching
conjugate oracle query, respectively.

Theorem 3. The second braid-based transitive signature scheme BBT S2 is
transitively unforgeable against adaptively chosen message attack assuming that
the first braid-based transitive signature scheme BBT S1 is secure in the same
sense.

Transitive Signatures from Braid Groups 193

4 Security Level, Performance Evaluation and
Parameters Suggestion

Since the birth of braid group cryptography, it has fascinated many cryptologists
with its hard problems and efficient algorithms for parameter generation and
group operations[20]. In [18], the upper bound of canonical length for working
braids, denoted by l, is very small. Ko et al. set l = 3 and n = 20, 24, 28
respectively. Their evaluation results3 say that key generation time and signing
time are about 22ms, while verifying time is ranging from 30ms to 60ms. This
performance seems not bad. However, we think setting l = 3 is maybe insecure.
According to Myasnikov et al.’s suggestions in [26], setting l = n2 may be a
better choice. Of course, with a larger l, the performance of braid operations has
to be re-evaluated.

In 2001, Cha et al. [7] gave an efficient implementation of all required opera-
tions of braid groups for cryptographic applications. The complexities of all these
operations are bounded by O(l2n logn). In this paper, we use the braid index n
as the sole parameter and adopt the setting of l = n2. Thus, the complexities of
all operations in our proposals are bounded by O(n5 log n).

According to [18], the security level of the proposed schemes against cur-
rently known heuristic attacks is about (n/4)n(n−1)/4. Taking the complexity
O(n5 log n) into consideration, this seems a shade worse than RSA-based tran-
sitive signature schemes[5], in which the complexities are bounded by O(k2 log k)
and the security level is evaluated with 2O(k) (where k is the bit-length of the
RSA modular). However, we know that at current secure RSA modular requires
that k is at least 1024, then O(k2 log k) ≈ O(107); As for braid-based scheme,
if we set n = 16, then (n/4)n(n−1)/4 = 2120, which overwhelms current conven-
tional attacks, and O(n5 log n) ≈ O(106), which says that in practice, braid-
based schemes maybe are a shade better than those RSA-based schemes in [5].

According to [19], the security level of braid-based schemes against brute force
attacks is at least (�n−1

2 �!)l, where n and l are the index of the braid group and
the upper bound of the canonical length of the working braids, respectively. Thus,
when the setting l = n2 is adopted, the security level of braid-based schemes can
be evaluated by exp(O(n3 log n)), according to Stirling’s approximation. Appar-
ently, this result shows that braid-based schemes have huge potential advantages
in security level against brute force attacks over RSA-based ones. For example,
if we set n = 16 and k = 1024 for the braid-based schemes and RSA-based ones
respectively, then we have exp(n3 log n) = exp(214) > 216384 � 2k = 21024.

In addition, braid-based schemes are invulnerable to currently known quan-
tum attacks. At present, quantum algorithms fall roughly into three categories[3]:
quantum search algorithms, hidden subgroup finding techniques, and hybrid
quantum algorithms. None of these algorithms can solve the conjugator search
problem over braid groups in polynomial time. In 2003, Michael Anshel[3] sug-
gested: by employing Lawrence-Krammer representation[8] with suitable choice
of braid group parameters, the number of elementary field operations required to

3 Their experiment was done on a computer with a Pentium III 866MHz processor[18].

194 L. Wang et al.

solve the associated systems of linear equations overwhelms current conventional
attacks and provides a challenge for quantum cryptanalysis.

5 Conclusions

In this paper, we design two transitive signature schemes by using braid groups.
As far as we known, this is the first attempt toward braid-based transitive sig-
natures. In the random oracle model, our proposals are proved to be transi-
tively unforgeable against adaptively chosen message attack assume under the
assumption of the intractability of one-more matching conjugate problem (OM-
MCP) over braid group. Performance analysis and security evaluation show that
our proposals have potential advantages over RSA-based transitive signatures.
Moreover, the proposed schemes are invulnerable to currently known quantum
attacks.

Acknowledgments

This work is supported by Sony (China) research laboratory, National Nat-
ural Science Foundation of China under grant Nos. 90604022 and 60673098,
and National Basic Research Program of China (973 Program) under grant No.
2007CB310704.

The author Cao is also supported by National Natural Science Foundation of
China under grant Nos: 60673079, 60773086 and 60572155.

References

1. Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New Key Agreement Protocols in
Braid Group Cryptography. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 13–27. Springer, Heidelberg (2001)

2. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptog-
raphy. Math. Research Letters 6, 287–291 (1999)

3. Anshel, M.: Braid Group Cryptography and Quantum Cryptoanalysis. In: 8th In-
ternational Wigner Symposium, May 27-30, 2003, GSUC-CUNY 365 Fifth Avenue,
NY, NY 10016, USA (2003)

4. Bellare, M., Neven, G.: Transitive signaures based on factoring and RSA. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Heidelberg
(2002)

5. Bellare, M., Neven, G.: Transitive signatures: New schemes and proofs. IEEE
Transactions on Information Theory 51(6), 2133–2151 (2005)

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal
of Cryptology 16(3), 185–215 (2003)

7. Cha, J.C., Ko, K.H., Lee, S.J., Han, J.W., Cheon, J.H., et al.: An efficient imple-
mentation of braid groups. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248,
pp. 144–156. Springer, Heidelberg (2001)

Transitive Signatures from Braid Groups 195

8. Cheon, J.H., Jun, B.: A Polynomial Time Algorithm for the Braid Diffie-Hellman
Conjugacy Problem. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
212–225. Springer, Heidelberg (2003)

9. Dehornoy, P.: Braid-based cryptography. Contemp. Math., Amer. Math. Soc. 360,
5–33 (2004)

10. Elrifai, E., Morton, H.R.: Algorithms for positive braids. Quart. J. Math. Oxford
Ser. 45(2), 479–497 (1994)

11. Franco, N., Gonzales-Menses, J.: Conjugacy problem for braid groups and garside
groups. Journal of Algebra 266, 112–132 (2003)

12. Gebhardt, V.: A new approach to the conjugacy problem in garside groups. Journal
of Algebra 292, 282–302 (2005)

13. Gonzales-Meneses, J.: Improving an algorithm to solve the multiple simultaneous
conjugacy problems in braid groups, Preprint, math.GT/0212150 (2002)

14. Huang, Z.-J., Hao, Y.-H., Wang, Y.-M., Chen, K.-F.: Efficient directed transitive
signature scheme. Acta Electronica Sinica 33(8), 1497–1501 (2005)

15. Hughes, J.: The left SSS attack on Ko-Lee-Cheon-Han-Kang-Park key agreement
scheme in B45, Rump session Crypto (2000)

16. Hughes, J.: A linear algebraic attack on the AAFG1 braid group cryptosystem.
In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 176–189.
Springer, Heidelberg (2002)

17. Kitaev, A.: Quantum measurements and the abelian stabilizer problem. Preprint,
quant-ph/9511026 (1995)

18. Ko, K.H., Choi, D.H., Cho, M.S., Lee, J.W.: New signature scheme using conjugacy
problem (preprint 2002), http://eprint.iacr.org/2002/168

19. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W.: New public-key cryptosystem using
braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183.
Springer, Heidelberg (2000)

20. Ko, K.H., Lee, J.W., Thomas, T.: Towards generating secure keys for braid cryp-
tography, Designs, Codes and Cryptography (to appear, 2007)

21. Kuwakado, H., Tanaka, H.: Transitive Signature Scheme for Directed Trees. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E86-A(5), 1120–1126 (2003)

22. Lee, E.: Braig groups in cryptography. IEICE Trans. Fundamentals E87-A(5), 986–
992 (2004)

23. Lee, E., Lee, S.-J., Hahn, S.-G.: Pseudorandomness from Braid Groups. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 486–502. Springer, Heidelberg (2001)

24. Magliveras, S., Stinson, D., van Trung, T.: New approaches to designing public key
cryptosystems using one-way functions and trapdoors in finite groups. Journal of
Cryptography 15, 285–297 (2002)

25. Micali, S., Rivest, R.L.: Transitive signaure schemes. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)

26. Myasnikov, A., Shpilrain, V., Ushakov, A., Practical, A.: Attack on a Braid
Group Based Cryptographic Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 86–96. Springer, Heidelberg (2005)

27. Proos, J., Zalka, C.: Shors discrete logarithm quantum algorithm for elliptic curves.
Quantum Information and Computation 3, 317–344 (2003)

28. Shahandashti, S.F., Salmasizadeh, M., Mohajeri, J.: A provably secure short tran-
sitive signature scheme from bilinear group Pairs. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 60–76. Springer, Heidelberg (2005)

29. Shor, P.: Polynomail-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 5, 1484–1509 (1997)

http://eprint.iacr.org/2002/168

196 L. Wang et al.

30. Wang, L.: PhD. Disseration. Shanghai Jiao Tong University (June 2007)
31. Wang, L., Cao, Z., Zeng, P., Li, X.: One-more matching conjugate problem and

security of braid-based signatures. In: ASIACCS 2007, pp. 295–301. ACM, New
York (2007)

32. Warren Jr., Henry, S.: A modification of Warshall’s algorithm for the transitive
closure of binary relations. Communications of the ACM 18(4), 218–220 (1975)

33. Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)

34. Yi, X., Tan, C.-H., Okamoto, E.: Security of Kuwakado-Tanaka transitive signature
scheme for directed trees. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E87-A(4), 955–957 (2004)

35. Zhu, H.: Model for undirected transitive signatures. IEE Proceedings: Communi-
cations 151(4), 312–315 (2004)

Proxy Re-signature Schemes Without Random

Oracles�

Jun Shao, Zhenfu Cao��, Licheng Wang, and Xiaohui Liang

Department of Computer Science and Engineering
Shanghai Jiao Tong University
200240, Shanghai, P.R. China

chn.junshao@gmail.com, zfcao@cs.sjtu.edu.cn, wanglc@sjtu.edu.cn,
liangxh127@sjtu.edu.cn

Abstract. To construct a suitable and secure proxy re-signature scheme
is not an easy job, up to now, there exist only three schemes, one is pro-
posed by Blaze et al. [6] at EUROCRYPT 1998, and the others are
proposed by Ateniese and Hohenberger [2] at ACM CCS 2005. However,
none of these schemes is proved in the standard model (i.e., do not rely on
the random oracle heuristic). In this paper, based on Waters’ approach
[20], we first propose a multi-use bidirectional proxy re-signature scheme,
denoted as Smb, which is existentially unforgeable in the standard model.
And then, we extend Smb to be a multi-use bidirectional ID-based proxy
re-signature scheme, denoted by Sid−mb, which is also existentially un-
forgeable in the standard model. Both of these two proposed schemes are
computationally efficient, and their security bases on the Computational
Diffie-Hellman (CDH) assumption.

Keywords: proxy re-signature, standard model, ID-based, bilinear
maps, existential unforgeability.

1 Introduction

Proxy re-signature schemes, introduced by Blaze, Bleumer, and Strauss [6], and
formalized later by Ateniese and Hohenberger [2], allow a semi-trusted proxy to
transform a delegatee’s signature into a delegator’s signature on the same mes-
sage by using some additional information. The proxy, however, cannot generate
arbitrary signatures on behalf of either the delegatee or the delegator. Generally
speaking, a proxy re-signature scheme has eight desirable properties [2], though
none of existing schemes satisfies all properties, see Table 1.

1. Unidirectional: In an unidirectional scheme, a re-signature key allows the
proxy to transform A’s signature to B’s but not vice versa. In a bidirectional

� Supported by National Natural Science Foundation of China, No. 60673079 and
No. 60572155, Research Fund for the Doctoral Program of Higher Education, No.
20060248008.

�� Corresponding author.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 197–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

198 J. Shao et al.

scheme, on the other hand, the re-signature key allows the proxy to transform
A’s signature to B’s as well as B’s signature to A’s.

2. Multi-use: In a multi-use scheme, a transformed signature can be
re-transformed again by the proxy. In a single-use scheme, the proxy can
transform only the signatures that have not been transformed.

3. Private Proxy: The re-signature key can be kept secret by the proxy in
a private proxy scheme, but can be recomputed by observing the proxy
passively in a public proxy scheme.

4. Transparent: In a transparent scheme, a signature on the same message
signed by the delegator is computationally indistinguishable from a signature
transformed by a proxy.

5. Key-Optimal: In a key-optimal scheme, a user is required to protect and
store only a small constant amount of secrets no matter how many signature
delegations the user gives or accepts.

6. Non-interactive: The delegatee is not required to participate in a delega-
tion process.

7. Non-transitive: A re-signing right cannot be re-delegated by the proxy
alone.

8. Temporary: A re-signing right is temporary.

Table 1. The properties that the existing proxy re-signature schemes and ours satisfy

Property BBS [6] Sbi [2] Suni [2] Smb Sid−mb

1. No No Yes No No
2. Yes Yes No Yes Yes
3. No Yes No Yes Yes
4. Yes Yes Yes Yes Yes
5. Yes Yes Yes Yes Yes
6. No No Yes No No
7. No No Yes No No
8. No No Yes No No

Due to the transformation function, proxy re-signature schemes are very use-
ful and can be applied in many applications, including simplifying key manage-
ment [6], providing a proof for a path that has been taken, managing group
signatures, simplifying certificate management [2], constructing a Digital Rights
Management (DRM) interoperable system [19]. However, as mentioned in [2],
“Finding suitable and secure proxy re-signature schemes required a substantial
effort. Natural extensions of several standard signatures were susceptible to the
sort of problems.” To our best knowledge, there are only three proxy re-signature
schemes, the first one is a bidirectional, multi-use, and public proxy scheme, pro-
posed by Blaze, Bleumer and Strauss at Eurocrypt 1998 [6], and the left two are
both proposed by Ateniese and Hohenberger at ACM CCS 2005 [2]. One of them
is a multi-use bidirectional scheme, and the other is a single-use unidirectional
scheme.

Proxy Re-signature Schemes Without Random Oracles 199

However, there exist two disadvantages in the above three schemes.

– All of these three schemes are only proven secure in the random oracle model,
i.e., the proof of security relies on the random oracle heuristic. However, it
has been shown that some schemes are proven secure in the random oracle
model, but are trivially insecure under any instantiation of the oracle [9,5].
Up to now, there are many signatures proven secure in the standard model,
such as [10,12,3,4,20,21]. It is natural to ask whether we can construct a new
proxy re-signature scheme which can be proved in the standard model.

– The public keys in these three schemes are arbitrary strings unrelated to
their owner’s identity. A certificate issued by an authority is needed to bind
the public key to its owner’s identity before the public key is used by oth-
ers. This creates complexity of certificate management, though proxy re-
signature schemes can be used to simplify certificate management. A natural
solution to this disadvantage is to apply ID-based cryptography [17]. In ID-
based cryptography, a user’s unique ID such as an email address is also the
user’s public key. The corresponding private key is computed from the public
key by a Private Key Generator (PKG) who has the knowledge of a master
secret. As a result, complexity of certificate management can be eliminated.
We can use the method in [11] to convert any proxy re-signature into an
ID-based proxy re-signature. However, as mentioned in [15], this method ex-
pands the size of signature, and increases the complexity of verification. We
hope that we get an ID-based proxy re-signature by a direct construction.

In this paper, we attempt to propose a new proxy re-signature scheme which
recovers the above two disadvantages.

1.1 Our Contribution

In this paper, based on Waters’ approach [20], we first propose the first proxy
re-signature scheme which is existentially unforgeable in the standard model,
we denote it as Smb. Smb satisfies bidirectional, multi-use, private proxy, trans-
parent properties. And then we proposed the first ID-based proxy re-signature
which is existentially unforgeable in the standard model, we denote it as Sid−mb.
Sid−mb also satisfies bidirectional, multi-use, private proxy, transparent proper-
ties. Actually, Sid−mb can be considered as an ID-based extension of Smb. As the
schemes in [20], both of our proposed schemes are constructed in bilinear groups,
and proven secure under the Computational Diffie-Hellman (CDH) assumption.
The only drawback of our proposed schemes is the relatively large size of its
public parameters inheriting from Waters’ approach [20]. However, we can use
the techniques of Naccache [14] and Sarkar and Chatterjee [16] to reduce the
size of the public parameters.

1.2 Paper Organization

The remaining paper is organized as follows. In Section 2, we review the defini-
tions of (ID-based) proxy re-signatures and their security. And then we present

200 J. Shao et al.

Smb, Sid−mb and their security proofs in Section 3. Finally, We conclude the
paper in Section 4.

2 Definitions

The security notions in this section are all for existential unforgeablility under
an adaptive chosen message (and identity) attack. That is, a valid forgery should
be a valid signature on a new message, which is not signed by the singer before.
These security models can be easily extended to cover strong unforgeability [1],
where a valid forgery should be a valid signature which is not computed by the
signer. However, our concrete schemes do not enjoy security in this stronger
sense, since an adversary can easily modify existing signatures into new signa-
tures on same message.

2.1 Bidirectional Proxy Re-signature

In this subsection, we briefly review the definitions about bidirectional proxy re-
signatures. The security notion in this subsection is for existential unforgeability
under an adaptive chosen message attack, which is weaker than that in [2]. We
refer the reader to [2] for details.

Definition 2.1. A bidirectional proxy re-signature scheme is a tuple of (pos-
sibly probabilistic) polynomial time algorithms (KeyGen, ReKey, Sign, ReSign,
Verify), where:

– (KeyGen, Sign, Verify) are the same as those in the standard digital
signatures1.

– On input (skA, skB), the re-signature key generation algorithm, ReKey, out-
puts a key rkA↔B for the proxy, where skA and skB are the secret key of A
and B, respectively.

– On input rkA↔B , a public key pkA, a message m, and a signature σ, the
re-signature function, ReSign, outputs a new signature σ′ on message m
corresponding to pkB, if Verify(pkA, m, σ) = 1 and ⊥ otherwise.

Correctness. For any message m in the message space and any key pairs
(pk, sk), (pk′, sk′) ← KeyGen(1k), let σ = Sign(sk, m) and rk ← ReKey(sk, sk′).
Then the following two conditions must hold:

Verify(pk, m, σ) = 1 and Verify(pk′, m, ReSign(rk, pk, m, σ)) = 1.

Unlike the security notion in [2], we define security for bidirectional proxy
re-signature schemes by the following game between a challenger and an adver-
sary: (Note that we adopt the method in [8] to define the security notion of
bidirectional proxy re-encryption schemes: static corruption, i.e., in this security
notion, the adversary has to determine the corrupted parties before the com-
putation starts, and it does not allow adaptive corruption of proxies between
corrupted and uncorrupted parties.)
1 For the definition of standard digital signatures, we refer the reader to [13].

Proxy Re-signature Schemes Without Random Oracles 201

Queries. The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.
– Uncorrupted Key Generation OUKeyGen: Obtain a new key pair as

(pk, sk) ← KeyGen(1k). The adversary is given pk.
– Corrupted Key Generation OCKeyGen: Obtain a new key pair as

(pk, sk) ← KeyGen(1k). The adversary is given pk and sk.
– Re-Signature key Generation OReKey : On input (pk, pk′) by the adver-

sary, where pk, pk′ were generated before by KeyGen, return the re-
signature key rkpk↔pk′ = ReKey(sk, sk′), where sk, sk′ are the secret
keys that correspond to pk, pk′. Like the security notion in [8], here, we
also require that both pk and pk′ are corrupted, or both are uncorrupted.

– Re-signature OReSign: On input (pk, pk′, m, σ), where pk, pk′ were gen-
erated before by KeyGen. The adversary is given the re-signed signature
σ′ = ReSign(ReKey(sk, sk′), pk, m, σ), where sk, sk′ are the secret keys
that correspond to pk, pk′.

– Signature OSign: On input a public key pk, a message m, where pk was
generated before by KeyGen. The adversary is given the corresponding
signature σ = Sign(sk, m), where sk is the secret key that correspond
to pk.

Forgery. The adversary outputs a message m∗, a public key pk∗, and a string
σ∗. The adversary succeeds if the following hold true:
1. Verify(pk∗, m∗, σ∗) = 1.
2. pk∗ is not from OCKeyGen.
3. (pk∗, m∗) is not a query to OSign.
4. (♦, pk∗, m∗, �) is not a query to OReSign, where ♦ denotes any public

key, and � denotes any signature.

The advantage of an adversary A in the above game is defined to be AdvA =
Pr[A succeeds], where the probability is taken over all coin tosses made by the
challenger and the adversary.

2.2 Bidirectional ID-Based Proxy Re-signature

Definition 2.2 (Bidirectional ID-based Proxy Re-Signature). A Bidirec-
tional ID-based proxy re-signature scheme S consists of the following six random
algorithms: Setup, Extract, ReKey, Sign, ReSign, and Verify where:

– (Setup, Extract, Sign, Verify) are the same as those in a standard ID-
based signature2.

– On input (dA, dB), the re-signature key generation algorithm, ReKey, outputs
a key rkA↔B for the proxy, where dA (dB) is A’s (B’s) secret key.

– On input rkA↔B , an identity IDA, a message m, and a signature σ, the
re-signature algorithm, ReSign, outputs a new signature σ′ on message m
corresponding to IDB, if Verify(IDA, m, σ) = 1 and ⊥ otherwise.

2 For the definition of ID-based signatures, we refer the reader to [17].

202 J. Shao et al.

Correctness: This is the same as that in standard proxy re-signature schemes.
The following property must be satisfied for the correctness of a proxy re-
signature: For any message m in the message space and any two key pairs
(IDA, dA), and (IDB, dB), let σA = Sign(dA, m) and rkA↔B ← Rekey(dA, dB),
the following two equations must hold:

Verify(IDA, m, σA)=1, and Verify(IDB, m, ReSign(rkA↔B , IDA, m, σA))=1.

We also define the security notion of bidirectional ID-based proxy re-signature
with static corruption by a game between a challenger and an adversary.

Setup. The challenger runs Setup and obtains both the public parameters
params and the master secret mk. The adversary is given params but the
master secret mk is kept by the challenger.

Queries. The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.
– Extract oracle for corrupted parties OExtract: On input an identity ID

by the adversary, the challenger responds by running Extract(mk, ID).
and sends the resulting private key dID to the adversary.

– Re-Signature key Generation OReKey : On input (IDA, IDB) by the ad-
versary, the challenger returns the re-signature key

rkA↔B = ReKey(Extract(mk, IDA), Extract(mk, IDB)).

Here, we also require that both IDA and IDB are corrupted, or both
are uncorrupted.

– Re-signature OReSign: On input (IDA, IDB, m, σ), the adversary is given
the re-signed signature

σ′=ReSign(ReKey(Extract(mk, IDA), Extract(mk, IDB)), IDA, m, σ).

– Signature OSign: On input an identity ID, a message m. The adversary
is given the corresponding signature σ = Sign(Extract(mk, ID), m).

Forgery. The adversary outputs a message m∗, an identity ID∗, and a string
σ∗. The adversary succeeds if the following hold:
1. Verify(pk∗, m∗, σ∗) = 1.
2. ID∗ is uncorrupted.
3. (ID∗, m∗) is not a query to OSign.
4. (♦, ID∗, m∗, �) is not a query to OReSign, where ♦ denotes any identity,

and � denotes any signature.

The advantage of an adversary A in the above game is defined to be AdvA =
Pr[A succeeds], where the probability is taken over all coin tosses made by the
challenger and the adversary.

Proxy Re-signature Schemes Without Random Oracles 203

2.3 Bilinear Maps

In this subsection, we briefly review definitions about bilinear maps and bilinear
map groups, which follow that in [7].

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G1;
3. e is a bilinear map e : G1 × G1 → G2.

Let G1 and G2 be two groups as above. An admissible bilinear map is a map
e : G1 × G1 → G2 with the following properties:

1. Identity: For all P ∈ G1, e(P, P) = 1;
2. Alternation: For all P, Q ∈ G1, e(P, Q) = e(Q, P)−1;
3. Bilinearity: For all P, Q, R ∈ G1, e(P · Q, R) = e(P, R) · e(Q, R) and e(P, Q ·

R) = e(P, Q) · e(P, R).
4. Non-degeneracy: If e(P, Q) = 1 for all Q ∈ G1, then P = O, where O is a

point at infinity.

We say that G1 is a bilinear group if the group action in G1 can be computed
efficiently and there exists a group G2 and an efficiently computable bilinear
map as above.

2.4 The Computational Diffie-Hellman Assumption (CDH)

Computational Diffie-Hellman Problem. Let G be a group of prime order
p and let g be a generator of G. The CDH problem is as follows: Given 〈g, ga, gb〉
for some a, b ∈ Z

∗
p compute gab. An algorithm A has advantage ε in solving CDH

in G if
Pr[A(g, ga, gb) = gab] ≥ ε

where the probability is over the random choice of a, b in Z
∗
p, the random choice

of g ∈ G
∗, and the random bits of A.

Definition 2.3. We say that the (ε, t)-CDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the CDH problem in G.

3 Bidirectional Proxy Re-signature Schemes

3.1 Smb: Multi-use Bidirectional Scheme

We now present a new multi-use bidirectional proxy re-signature scheme, denoted
as Smb, using the signature scheme due to Waters [20]. This scheme requires a
bilinear map, as discussed in Section 2. We assume that the messages can be
represented as bit strings of length nm, which is unrelated to p. We can achieve
this by a collision-resistant hash function H : {0, 1}∗ → {0, 1}nm.

204 J. Shao et al.

KeyGen: On input the security parameter 1k, it chooses two groups G1 and G2

of prime order p = Θ(2k), such that an admissible pairing e : G1 × G1 → G2

can be constructed and chooses a generator g of G1. Furthermore, it selects
a random a from Zp, and nm + 2 random number (g2, u

′, u1, · · · , unm) from
G1, and output the key pair pk = g1 = ga and sk = a, the public parameters
(G1, G2, e, g2, u

′, u1, · · · , unm).
ReKey: On input two secret keys skA = a, skB = b, output the re-signature key

rkA→B = b/a mod p.
(Note that we make use of the same method and assumptions in [2] to

get the re-signature key, we refer the reader to [2][Section 3.3] for details.)
Sign: On input a secret key sk = a and a nm-bit message m, output σ =

(A, B) = (ga
2 · wr, gr), where r is chosen randomly from Zp, and w = u′ ·∏

i∈U ui, U ⊂ {1, . . . , nm} is the set of indices i such that m[i] = 1, and m[i]
is the i-th bit of m.

ReSign: On input a re-signature key rkA→B , a public key pkA, a signature σA,
and a nm-bit message m, check that Verify(pkA, m, σA) = 1. If σA does
not verify, output ⊥; otherwise, output σB = σrkA→B

A = (gb
2 · wrb/a, grb/a) =

(gb
2w

r′
, gr′

), where r′ = rb/a mod p.
Verify: On input a public key pk, a nm-bit message m, and a purported signa-

ture σ = (A, B), output 1, if e(pk, g2)e(B, w) = e(A, g) and 0 otherwise.

Theorem 3.1 (Security of Smb). In the standard model, bidirectional proxy
re-signature scheme Smb is correct and existentially unforgeable under the Com-
putational Diffie-Hellman (CDH) assumption in G1; that is, for random g ∈ G1,
and x, y ∈ Z

∗
p, given (g, gx, gy), it is hard to compute gxy.

Proof. The correctness property is easily observable. We show security following
the approaches in [20,15], especially the one in [15].

If there exists an adversary A that can break the above proxy re-signature
scheme with non-negligible probability ε in time t after making at most qS sign
queries, qRS resign queries, qK (un)corrupted key queries, and qRK rekey queries,
then there also exists an adversary B that can solve the CDH problem in G1 with
probability ε

4(qS+qRS)(nm+1) in time t + O((qS + qRS)nmρ + (qS + qRS + qK)τ),
where ρ and τ are the time for a multiplication and an exponentiation in G1,
respectively.

On input (g, ga, gb), the CDH adversary B simulates a bidirectional proxy
re-signature security game for A as follows:

To prepare the simulation, B first sets lm = 2(qS+qRS), and randomly chooses
a number km, such that 0 ≤ km ≤ nm, and lm(nm + 1) < p. B then chooses
nm+1 random numbers x′, xi(i = 1, . . . , nm) from Zlm . Lastly, B chooses nm +1
random numbers y′, yi(i = 1, . . . , nm) from Zp.

To make expression simpler, we use the following notations:

F (m) = x′ +
∑

i∈U
xi − lmkm and J(m) = y′ +

∑

i∈U
yi.

Proxy Re-signature Schemes Without Random Oracles 205

Now, B sets the public parameters:

g2 = gb, u′ = gx′−lmkm
2 gy′

, ui = gxi
2 gyi(1 ≤ i ≤ nm).

Note that for any message m, there exists the following equation:

w = u′ ∏

i∈U
ui = g

F (m)
2 gJ(m).

Queries: B builds the following oracles:

OUKeyGen: B chooses a random xi ∈ Z∗
p , and outputs pki = (ga)xi .

OCKeyGen: B chooses a random xi ∈ Z∗
p , and outputs (pki, ski) = (gxi , xi).

OSign: On input (pki, m), if pki is corrupted, B returns the signature σ =
(gxj

2 wr, gr), where w = u′ ∏
i∈U ui. Otherwise, B performs as follows.

– If F (m) �≡ 0 mod p, B picks a random r ∈ Zp and computes the
signature as,

σ = (g−J(m)/F (m)
1 (u′ ∏

i∈U
ui)r, g

−1/F (m)
1 gr).

For r̃ = r − a/F (m), we have that

g
−J(m)/F (m)
1 (u′ ∏

i∈U ui)r

= g
−J(m)/F (m)
1 (gJ(m)g

F (m)
2)r

= ga
2 (gF (m)

2 gJ(m))−a/F (m)(gJ(m)g
F (m)
2)r

= ga
2 (gF (m)

2 gJ(m))r−a/F (m)

= gab(u′ ∏n
i=1 umi

i)r̃,

and
g
−1/F (m)
1 gr = gr−a/F (m)

= gr̃,

which shows that σ has the correct signature as in the actual scheme.
– If F (m) ≡ 0(modp), B is unable to compute the signature σ and

must abort the simulation.
OReKey: On input (pki, pkj), if pki and pkj are both corrupted or both

uncorrupted, B returns rki→j = (xj/xi) mod p; else, this input is illegal.
OReSign: On input (pki, pkj , m, σ). If Verify(pki, m, σ) �= 1, B outputs ⊥.

Otherwise, B does:
– If pki and pkj are both corrupted or both uncorrupted, output

ReSign(OReKey(pki, pkj), pki, m, σ).

– else, output OSign(pkj , m).

Forgery: If B does not abort as a consequence of one of the queries above, A
will, with probability at least ε, return a message m∗ and a valid forgery

206 J. Shao et al.

σ∗ = (A∗, B∗) on m∗. If F (m∗) �≡ 0 mod p, B aborts. Otherwise, the forgery
must be of the form, for some r∗ ∈ Zp,

σ∗ = (gab(u′ ∏
i∈U ui)r∗

, gr∗
)

= (gab(gF (m∗)
2 gJ(m∗))r∗

, gr∗
)

= (gab+J(m∗)r∗
, gr∗

)
= (A∗, B∗).

To solve the CDH instance, B outputs (A∗) · (B∗)−J(m∗) = gab.

To conclude, we bound the probability that B completes the simulation with-
out aborting. For the simulation to complete without aborting, we require that
all sign and resign queries on a message m have F (m) �≡ 0 mod p, and that
F (m∗) ≡ 0 mod p.

Let m1, . . . , mqQ be the messages appearing in sign queries or resign queries
not involving the message m∗. Clearly, qQ ≤ qS + qRS . We define the events Ei,
E′

i, and E∗ as:

Ei : F (mi) �≡ 0 mod p, E′
i : F (mi) �≡ 0 mod lm, E∗ : F (m∗) ≡ 0 mod p.

The probability of B not aborting is Pr[¬abort] ≥ Pr[
∧qQ

i=1 Ei ∧ E∗ ∧ E].
It is easy to see that the events (

∧qQ

i=1 Ei), E∗, and E are independent, and
Pr[E] = 1/qK .

From lm(nm + 1) < p and x′ and xi(i = 1, . . . , nm) are all from Zlm , we have
0 ≤ lmkm < p and 0 ≤ x′ +

∏
i∈U xi < p. Then it is easy to see that F (m) ≡

0 mod p implies that F (m) ≡ 0 mod lm. We can get that F (m) �≡ 0 mod lm
implies that F (m) �≡ 0 mod p. Hence, we have: Pr[Ei] ≥ Pr[E′

i],

Pr[E∗]
= Pr[F (m∗) ≡ 0 mod p ∧ F (m∗) ≡ 0 mod lm]
= Pr[F (m∗) ≡ 0 mod lm]

Pr[F (m∗) ≡ 0 mod p|F (m∗) ≡ 0 mod lm]
= 1

lm
1

nm+1

and
Pr[

∧qQ

i=1 Ei] ≥ Pr[
∧qQ

i=1 E′
i]

= 1 − Pr[
∨qQ

i=1 ¬E′
i]

≥ 1 − ∑qQ

i=1 Pr[¬E′
i]

= 1 − qQ

lm

≥ 1 − qS+qRS

lm
.

and lm = 2(qS + qRS) as in the simulation.
Hence, we get that

Pr[¬abort]
≥ Pr[

∧qQ

i=1 Ei]Pr[E∗]
≥ 1

lm(nm+1) · (1 − qS+qRS

lm
)

≥ 1
2(qS+qRS)(nm+1) · 1

2

= 1
4(qS+qRS)(nm+1)

Proxy Re-signature Schemes Without Random Oracles 207

Since there are O(nm) and O(nm) multiplications in sign queries and resign
queries, respectively, and O(1), O(1), and O(1) exponentiations in sign queries,
resign queries and (un)corrupted key queries, respectively, hence the time com-
plexity of B is t + O((qS + qRS)nmρ + (qS + qRS + qK)τ).

Thus, the theorem follows. ��
Discussion of Scheme Smb: This scheme is transparent, since the signature from
Sign algorithm is the same of that from ReSign algorithm. This fact also implies
that this scheme is multi-use. Furthermore, it is easy to see that rkA→B =
1/rkB→A, which shows the scheme is bidirectional. Last, since each user just
stores one signing key, the scheme is also key optimal.

3.2 Sid−mb: ID-Based Multi-use Bidirectional Scheme

In this subsection, we will extend Smb to an ID-based multi-use bidirectional
scheme, denoted as Sid−mb. The scheme is consisted of six algorithms. In the
following we assume that all identities and messages are nid-bit and nm-bit
strings, respectively. We can achieve this by applying two collision-resistant hash
functions, Hid : {0, 1}∗ → {0, 1}nid , and Hm : {0, 1}∗ → {0, 1}nm .

Setup: On input the security parameter 1k, it chooses groups G1 and G2 of
prime order p = Θ(2k), such that an admissible pairing e : G1×G1 → G2 can
be constructed and pick a generator g of G1. Furthermore, choose a random
number α from Zp, compute g1 = gα, and then choose u′, ui (i = 1, · · · , nid),
v′, and vi (i = 1, · · · , nm) from G1.

The public parameters are (G1, G2, e, g, g1, g2, u
′, ui(i = 1, · · · , nid), v′,

vi(i = 1, · · · , nm)) and the master secret key is α.
Extract: On input an nid-bit identity ID, output the corresponding private

key did,
did = (d(1)

id , d
(2)
id) = (gα

2 (u′ ∏

i∈U
ui)rid , grid),

where rid is a random number from Zp, U ⊂ {1, · · · , nid} is the set of indices
i such that u[i] = 1, and u[i] is the i-th bit of ID.

Rekey: On input two private keys dA = (d(1)
A , d

(2)
A) and dB = (d(1)

B , d
(2)
B), output

the re-signature key

rkA→B =
dB

dA
= (

d
(1)
B

d
(1)
A

,
d
(2)
B

d
(2)
A

).

(Note that we make use of the same method and assumptions in [2] to get
the re-signature key.)

Sign: On input a private key did = (d(1)
id , d

(2)
id) and a nm-bit message m, output

σ = (A, B, C) = (d(1)
id (v′

∏

i∈V
vi)rm , d

(2)
id , grm),

where rm is a random number from Zp, V ⊂ {1, · · · , nm} is the set of indices
i such that m[i] = 1, and m[i] is the i-th bit of m.

208 J. Shao et al.

ReSign: On input a re-signature key rkA→B=(d
(1)
B

d
(1)
A

,
d
(2)
B

d
(2)
A

), an nid-bit identity IDA,

a signature σA, and an nm-bit message, check that Verify(IDA, m, σA)=1.
If σA = (AA, BA, CA) does not verify, output ⊥; otherwise, output

σB = (AA · d
(1)
B

d
(1)
A

· (v′ ∏i∈V vi)Δr , BA
d
(2)
B

d
(2)
A

, CA · gΔr)

= (d(1)
B (v′

∏
i∈V vi)rm+Δr , d

(2)
B , grm+Δr),

where Δr is a random number from Zp.
Verify: On input an nid-bit identity ID, an nm-bit message m, and a purported

signature σ = (A, B, C), output 1, if

e(A, g) = e(g2, g1)e(u′ ∏

i∈U
ui, B)e(v′

∏

i∈V
vi, C)

and 0 otherwise.

Theorem 3.2 (Security of Sid−mb). In the standard model, ID-based bidirec-
tional proxy re-signature scheme Sid−mb is correct and existentially unforgeable
under the Computational Diffie-Hellman (CDH) assumption in G1; that is, for
random g ∈ G1, and x, y ∈ Z

∗
p, given (g, gx, gy), it is hard to compute gxy.

Due to the limited space, we give the proof of above theorem in the full version
[18].

Discussion of Scheme Sid−mb: As Smb, Sid−mb is bidirectional, multi-use, trans-
parent, and key optimal.

4 Conclusions

We have presented the first two proxy re-signature schemes which are proven
secure in the standard model. Especially, the second one is an ID-based proxy
re-signature scheme. Both of them are computational efficient, only two exponen-
tiations in G1 in Sign and ReSign algorithms. However, their public parameters’
size is relatively large. We can make a tradeoff between the public parameters’
size and the security reduction by using the techniques of Naccache [14] and
Sarkar and Chatterjee [16] to reduce its size. Note that, our proposals are only
proven secure with static corruption not the adaptive corruption, we left it as
the future work.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encrp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Ateniese, G., Hohenberger, S.: Proxy Re-Signatures: New Definitions, Algorithms,
and Applications. In: ACM CCS 2005, pp. 310–319 (2005)

Proxy Re-signature Schemes Without Random Oracles 209

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
443–459. Springer, Heidelberg (2004)

5. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

6. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. Cryp-
tology ePrint Archieve: Report 2007/171(2007)

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998, pp. 209–218 (1998)

10. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM TISSEC 3(3), 161–185 (2000)

11. Galindo, D., Herranz, J., Kiltz, E.: On the Generic Construction of Identity-Based
Signatures with Additional Properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

12. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

14. Naccache, D.: Secure and Practical Identity-based encryption. Cryptology ePrint
Archive, Report 2005/369

15. Paterson, K.G., Schuldt, J.C.N.: Efficient Identity-based Signatures Secure in the
Standard Model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

16. Sarkar, P., Chatterjee, S.: Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

18. Shao, J., Cao, Z., Wang, L., Liang, X.: Proxy Re-signature Scheme without Random
Oracles. Cryptology ePrint Archive, Report (2007)

19. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a Secure and Interoperable DRM
Architecture. In: ACM DRM 2006, pp. 69–78 (2006)

20. Waters, B.: Efficient Identity-based Encryption Without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

21. Zhang, F., Chen, X., Susilo, W., Mu., Y.: A New Short Signature Scheme without
Random Oracles from Bilinear Pairings. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006.
LNCS, vol. 4341, pp. 67–80. Springer, Heidelberg (2006)

First-Order Differential Power Analysis on the

Duplication Method

Guillaume Fumaroli1, Emmanuel Mayer2, and Renaud Dubois1

1 Thales Communications
160 Boulevard de Valmy – BP 82
92704 Colombes cedex – France

firstname.lastname@fr.thalesgroup.com
2 DGA/CELAR

BP 57419
35174 Bruz cedex – France

firstname.lastname@dga.defense.gouv.fr

Abstract. Cryptographic embedded systems are vulnerable to Differ-
ential Power Analysis (DPA). In particular, the S-boxes of a block cipher
are known to be the most sensitive parts with respect to this very kind of
attack. While many sound countermeasures have been proposed to with-
stand this weakness, most of them are too costly to be adopted in real-life
implementations of cryptographic algorithms. In this paper, we focus on
a widely adopted lightweight variation on the well-known Duplication
Method. While it is known that this design is vulnerable to higher-order
DPA attacks, we show that it can also be efficiently broken by first-order
DPA attacks. Finally, we point out ad hoc costless countermeasures that
circumvent our attacks.

Keywords: Side-channel analysis, differential power analysis, zero at-
tack, spectral analysis.

1 Introduction

The formal definition of an algorithm along with its inputs and outputs are
conventionally considered to be the only elements available to an attacker in
traditional cryptography. This assumption becomes unfortunately inacurrate in
most applications where the attacker also has access to the physical implemen-
tation of the algorithm. Sensitive information stored in electronic components
can indeed be obtained from passive or active side-channels such as timing of
operation, power consumption or fault injection.

In 1998, Kocher et al. introduce the framework of Differential Power Analy-
sis (DPA) [8]. Since then, DPA has been extensively studied in the cryptographic
community. DPA leverages statistical properties in the side-channel leakage of
targeted implementations, for example electrical consumption or electromagnetic
radiation, in order to obtain information about processed sensitive data. Both
symmetric and asymmetric embedded cryptographic systems are known to be
potentially vulnerable to this kind of attack.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 210–223, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

First-Order Differential Power Analysis on the Duplication Method 211

Most countermeasures against DPA attacks consist in masking all the inter-
mediate data processed by the device and rewriting its operations in the masked
domain [6,3,1,10]. In this paper, we analyse a widely adopted lightweight vari-
ation on the so-called Duplication Method that is suggested in [6]. While it is
known that masking countermeasures are still vulnerable to higher order at-
tacks [9], we show that the design presented in [6] can be efficiently broken by
first-order DPA attacks.

The remainder of the paper is organized as follows. Section 2 presents the
general Duplication Method and its lightweight variation in the context of block
ciphers. Section 3 introduces the analytical canvas used in the sequel. Section 4
and 5 present and analyse our attacks. Section 6 describes adapted low-cost
countermeasures to these attacks. Section 7 concludes this contribution.

2 The Duplication Method

Goubin et al. [6] suggest that any intermediate variable y ∈ S′ occuring in
a cryptographic algorithm be split in its actual implementation as k variables
y1, y2, . . . , yk ∈ S′ allowing to reconstruct y. If we assume that the variables y1,
y2, . . . or yk are uniformely distributed, the knowledge of at most k − 1 values in
the set {y1, . . . , yk} at each computation gives no information about y. Hence,
the countermeasure withstands any order k − 1 attack, where at most k − 1
variables in the set {y1, . . . , yk} can be obtained by the attacker.

In the context of block ciphers, the variables yi are randomly picked along with
the property y = y1 ⊕ y2 ⊕ · · · ⊕ yk where “⊕” denotes the usual exclusive-or
operator.

The overall transformation achieved by a block cipher can be seen as the
composition of several affine and non-affine transformations.

Let us first consider that y is the input to some affine transformation y �→
Ay ⊕ b. Such a transformation can be adapted in a straightforward way by
applying A and adding bi to each yi where b = b1 ⊕ b2 ⊕· · ·⊕ bk, i.e. by replacing
the original transformation y �→ Ay ⊕ b with

(y1, . . . , yk) �→ (Ay1 ⊕ b1, Ay2 ⊕ b2, . . . , Ayk ⊕ bk),

leading to a computation overhead linear in k. Notice that it is as secure but
more efficient to directly add b to one of the variables yi, say y1. Hence, the
transformation y �→ Ay ⊕ b is actually adapted as

(y1, . . . , yk) �→ (Ay1 ⊕ b, Ay2, . . . , Ayk).

Let us now consider that X ∈ {0, 1}m is the input to some S-box S : {0, 1}m →
{0, 1}n. The most generic adaptation then consists in replacing the original map-
ping y �→ S(y) with

(y1, . . . , yk) �→ (S1(y1, . . . , yk), . . . , Sk(y1, . . . , yk)),

212 G. Fumaroli, E. Mayer, and R. Dubois

where Si : ({0, 1}m)k → {0, 1}n, 1 ≤ i ≤ k − 1, are randomly picked invertible
S-boxes and the S-box Sk is computed such that

k⊕

i=1

Si(y1, . . . , yk) = S(y)

for all y. Clearly, this approach requires to generate and store kn2km bits. This
represents a computation and space overhead that exceeds the capacity of most
embedded devices even for a small k. Goubin et al. thus suggest a lightweight
variation in which a bijective function ϕ : {0, 1}m → {0, 1}m and invertible S-
boxes S′

i : {0, 1}m → {0, 1}m, 1 ≤ i ≤ k − 1, are randomly selected and the
S-box S′

k is computed such that

k⊕

i=1

S′
i(y) = S ◦ ϕ−1(y)

for all y. The original transformation then becomes

(y1, . . . , yk) �→ (S′
1(ϕ(y1 ⊕ · · · ⊕ yk)), . . . , S′

k(ϕ(y1 ⊕ · · · ⊕ yk)).

This leads to a computation and space overhead linear in k.
An important restriction on ϕ is that ϕ(y) can be computed without explic-

itly recombining the variable y even partially, i.e. without having to compute a
variable of the form

⊕
i∈I yi where I ⊆ {1, . . . , k} and #I ≥ 2.

In order to fulfil the former restriction, the authors put forward to choose
functions ϕ in the set F of linear or quadratic bijective functions. For example,
if F is the set of linear function, ϕ(y) can be computed as ϕ(y) =

⊕k
i=1 ϕ(yi).

A similar relation also allows to efficiently compute ϕ(y) without recombining
y when F is a particular subset of the set of quadratic functions as pointed out
in [6].

3 An Analytical Canvas for DPA Attacks

This section introduces the formalism and some general results that will be used
in the sequel of the paper.

3.1 First-Order DPA Attacks

We use the formalism of Joye et al. in [7]. Let I(x, s) ∈ S′ denote an intermediate
variable manipulated by the device at time τ , that only depends on known data
x ∈ S and on a small portion of the secret data s ∈ S. For each possible value
ŝ ∈ S for s, the attacker determines two sets

Sb(ŝ) = {x | g(I(x, ŝ)) = b} for b ∈ {0, 1} (1)

where g is an appropriate boolean selection function.

First-Order Differential Power Analysis on the Duplication Method 213

With C (t) denoting the power consumption of the device at time t, and 〈·〉
denoting the average operator, the attacker evaluates the first order DPA trace

Δ(ŝ, t) = 〈C (t)〉x∈S1(ŝ)
− 〈C (t)〉x∈S0(ŝ)

. (2)

Finally, the attacker retains all key hypothesis ŝ ∈ S for which the graph of
Δ(ŝ, t) contains a significant peak. Indeed, for the right key hypothesis ŝ = s,
the partition of the set C (t) is meaningful to the actual power consumption of
the device at time τ , resulting in a peak in the corresponding DPA trace around
that instant.

3.2 Soundness of a First-Order DPA Attack

In this paper, the soundness of first-order DPA attacks is proven in a rigorous
analytical way. For this, the expected magnitude of the DPA trace is evaluated
at time τ for all possible key hypothesis, i.e. the quantity E(Δ(ŝ, τ)) are com-
puted for each ŝ ∈ S. The attack is successful if E(Δ(s, τ)) significantly exceeds
E(Δ(ŝ, τ)) for almost all ŝ �= s.

Let us now derive some useful formulae to evaluate E(Δ(ŝ, τ)). Our analysis
is set in the Hamming weight model :

C (τ) = α H(I(x, s)) + β

with α, β denoting some fixed devide-dependent parameters, and H(·) denoting
the Hamming weight operator.

Let S′
0(ŝ) and S′

1(ŝ) denote the actual set to which I(x, s) belongs respectively
when x ∈ S0(ŝ) and x ∈ S1(ŝ).

We have the following result:

Proposition 1. Let I(x, s) be uniformly distributed over its definition set S′.
Let εb(ŝ) = E(H(I(x, s))) − E(H(I(x, s)) | I(x, s) ∈ S′

b(ŝ)) denote the difference
between the expected Hamming weight of I(x, s) when x ∈ S, and the expected
Hamming weight of I(x, s) when x ∈ Sb.

The expected value of the DPA trace at time τ under key hypothesis ŝ is
given by

E(Δ(ŝ, τ)) = α

(
1 +

P(I(x, s) ∈ S′
0(ŝ))

P(I(x, s) ∈ S′
1(ŝ))

)
ε0(ŝ).

Proof. Let μ = E(H(I(x, s))), μb(ŝ) = E(H(I(x, s)) | I(x, s) ∈ S′
b(ŝ)), εb(ŝ) =

μ − μb(ŝ), pb(ŝ) = P(I(x, s) ∈ S′
b(ŝ)).

Since

μ =

∑
b∈{0,1} pb(ŝ)μb(ŝ)∑

b∈{0,1} pb(ŝ)
,

we have

εb(ŝ) = −p1−b(ŝ)
pb(ŝ)

ε1−b(ŝ) for all b ∈ {0, 1}.

214 G. Fumaroli, E. Mayer, and R. Dubois

Then,

E(Δ(ŝ, τ)) = 〈C (t)〉x∈S1(ŝ) − 〈C (t)〉x∈S0(ŝ)

= (α E(H(I(x, s)) | I(x, s) ∈ S′
1(ŝ)) + β)

−(α E(H(I(x, s)) | I(x, s) ∈ S′
0(ŝ)) + β)

= α (ε0(ŝ) − ε1(ŝ))

= α

(
1 +

p0(ŝ)
p1(ŝ)

)
ε0(ŝ). �

Corollary 1. Let I(x, s) be uniformly distibuted over S′, and S′
0(ŝ)∩S′

1(ŝ) = ∅.
The expected value of the DPA trace at time τ under key hypothesis ŝ becomes

E(Δ(ŝ, τ)) =
α ε0(ŝ)

P(I(x, s) ∈ S′
1(ŝ))

.

Remark 1. Corollary 1 can generally only be applied for the right key hypothesis
ŝ = s. Indeed, in general, if ŝ �= s, we have

S′
0(ŝ) ∩ S′

1(ŝ) �= ∅.

4 Zero Attack When ϕ Is Variable

Although hardcoding is more efficient, cryptographic implementations in which
ϕ is dynamically regenerated are common in software. It is indeed often believed
that variable elements provide more security than constant ones. In [6], the
authors suggest that ϕ be chosen in a set F of bijective linear functions or
quadratic functions without affine parts. In this case, we point out an attack
that efficiently recovers the first subkey by short slices of m bits. Our attack
is based on ideas similar to that of the zero attack against the multiplicative
masking of AES [5]. We here exploit the property that for all f ∈ F , ϕ(0) = 0,
i.e. 0 is not masked by the countermeasure.

Let us assume that we target the input of a specific S-box in the substitution
layer of the first round. Let x ∈ S and s ∈ S respectively denote the input bits
and the first subkey bits corresponding to this S-box. We target the variable
I(x, s) = ϕ(x ⊕ s) ∈ S′ manipulated by the implementation at time τ . The
associated selection function g is defined by g(I(x, ŝ)) = 0 if ϕ−1(I(x, ŝ)) = 0,
and g(I(x, ŝ)) = 1 otherwise.

Let us now formaly describe the attack protocol:

1. Prepare a set of power consumption traces C (t) that contains at least N
traces for each possible value for x ∈ S. Let 〈I(x, s)〉 denote the mean value
of I(x, s) over N executions for a fixed x. The constant N should be large
enough so that for λ close to zero, say λ = 10−m, we have

P (|〈I(x, s)〉 − E(ϕ(x ⊕ s))| > λ) → 0

when x is fixed and ϕ is randomly uniformly chosen in F ;

First-Order Differential Power Analysis on the Duplication Method 215

2. Compute the DPA traces Δ(ŝ, t) for each ŝ ∈ S;
3. Create a set Ŝ� of all ŝ ∈ S such that the DPA trace Δ(ŝ, t) contains a

significant peak;
4. Return the set Ŝ�.

With the notations of the formal canvas presented in section 3, it turns out
that:

Proposition 2. The DPA traces computed in step 2 of the attack protocol are
such that for all s �= ŝ,

E(Δ(ŝ, τ)) = −α
m

2(2m − 1)(1 − 2−m)
,

and
E(Δ(s, τ)) = α

m

2(1 − 2−m)
.

Proof. See Appendix A.1.

With the former result, we have E(Δ(ŝ, τ)) = −(E(Δ(s, τ)))/(2m − 1) for all
ŝ �= s. Hence, for all typical m, we have #Ŝ� = 1 so that the right key hypothesis
can be immediately identified.

5 Attack When ϕ Is Constant

This second attack addresses the case when ϕ is constant. Before we describe
the actual attack protocol, we first introduce an attack based on the same idea
in a simplified setting.

Let us consider a DES implementation featuring the countermeasure described
in section 2 with ϕ a simple permutation of its input bits. In this setting, the
implementation can be broken by a classical first order DPA attack, as if it was
not protected. For some key hypothesis, let us predict the value of a bit b at the
output of an S-box in the first round. Since b is masked, the power consumption
of the device is entirely decorrelated from the actual value of b so that no peak
appears in the DPA trace at this point. However, let us further examine the
successive transformations that are applied to b between the first and the second
substitution layers. b is combined with one bit of the second subkey that is un-
known but constant. Hence, depending on the actual value of this second subkey
bit, b is either always inverted or left unchanged, which is strictly equivalent with
respect to DPA. b also passes through the DES diffusion layers which are almost
simple bit permutations such that it is just translated somewhere else in the DES
current state. Finally, b passes through ϕ which translates it but also unmasks
its value. Thus, at this point, the power consumption is correlated to the value
of b. In this simplified context, the expected DPA peak is only delayed compared
to an unprotected implementation, which is transparent to an attacker.

Let us now describe the actual attack protocol that is based exactly on the
same idea. We attempt to fix k bits among m at the input of ϕ in the second

216 G. Fumaroli, E. Mayer, and R. Dubois

round. By examining the diffusion layer, we can determine the bits at the output
of the first substitution layer that are related to targeted bits at the input of ϕ
in the second round. Without loss of generality, we may attempt to fix the all-
zero pattern at the output of the first substitution layer which fixes an unknown
k-bit pattern ζ� at the input of ϕ for the right key hypothesis. Clearly, the size
of the key hypothesis required to fix the all-zero pattern at the output of the
first substitution layer increases with k. It also increases with the diffusion layer
complexity. As an example, one bit at the input of ϕ in the second round depends
on the output of one S-box with DES, and on the output of four S-boxes with
AES.

Let w denote the m-bit vector of weight k, with ones in the positions that are
fixed at the input of ϕ. Let δw(v) denote the k-bit vector composed of the k bits
v[i] such that w[i] = 1. With the notations of section 3, the targeted intermediate
variable I(x, s) is the output of ϕ in the second round. The associated selection
function g is defined as g(I(x, ŝ)) = 0 if δw(ϕ−1(I(x, ŝ))) = ζ�, and g(I(x, ŝ)) = 1
otherwise.

Let us now formaly state the attack protocol:

1. Prepare a set of power consumption traces C (t);
2. Pick the next element w in the ordered list (wi) of m-bit vectors, where

H(wi1) ≤ H(wi2) whenever i1 ≤ i2;
3. Compute the DPA traces Δ(ŝ, t) for each ŝ ∈ S, where S is a set depend-

ing on w containing all possibles values for the secret bits involved in the
computation of g(I(x, s));

4. Create a set Ŝ� of all ŝ ∈ S such that the DPA trace Δ(ŝ, t) contains a
significant peak;

5. If Ŝ� �= ∅, stop the process and return the set Ŝ�;
6. Continue in step 2.

In the following proposition, C̃or(ϕ, �w) denotes the correlation between ϕ
and �w, formally stated in the following definition. �w denotes the linear boolean
function x �→ x · w.

Definition 1 (Correlation). The usual correlation of the boolean functions f, g :
{0, 1}m → {0, 1} is defined as

Cor(f, g) =
∑

x∈{0,1}m

(−1)f(x)+g(x).

If Cor(f, g) �= 0, f is said to be correlated to g.
By extension, the correlation between the vectorial boolean function ϕ : {0, 1}m

�→ {0, 1}m and the boolean function g is here defined as

C̃or(ϕ, g) =
m∑

i=1

Cor(ϕi, g),

where ϕi denotes the i-th component of ϕ. Again, if C̃or(ϕ, g) �= 0, ϕ is said to
be correlated to g.

First-Order Differential Power Analysis on the Duplication Method 217

Proposition 3. The DPA traces computed in step 3 of the attack protocol are
such that for all s �= ŝ,

E(Δ(ŝ, τ)) = 0,

and

E(Δ(s, τ)) = α
(−1)H(ζ�)

(1 − 2−H(w))2m+1
C̃or(ϕ, �w)

where �w denotes the linear boolean function x �→ x · w.

Proof. See Appendix A.2.

As a direct consequence of Proposition 3, the protocol successfully stops in step 5
as soon as ϕ is correlated to the linear boolean function �w. In this case, #Ŝ� = 1
so that the right key hypothesis can be immediately identified.

6 Countermeasures

The attack presented in section 5 would become computationally infeasible if ϕ
was chosen in a set of functions F with a high resiliency order. However, let us
recall that it is also necessary that the output of ϕ can be computed without
recombining its input. It remains as an open problem to find a set F that fulfils
these two conditions and is also sufficiently large to withstand exhaustive search.

As for the attack we presented in section 4, it could be efficiently avoided
by picking ϕ in a set F of affine functions, rather than in the set of linear or
quadratic functions as proposed by Goubin et al. Indeed, in this setting, for all
z ∈ {0, 1}m, ϕ(z) is uniformly distributed over {0, 1}m so that E(H(ϕ(z))) =
m/2. As a consequence, no DPA trace will contain a peak, even under the right
hypothesis.

We are left with finding an algorithm that efficiently generates random affine
functions of the form Ax+ b, where A ∈ GLm(GF(2)) is an element of the linear
group over GF(2) of dimension m and b is a binary vector with n components.
It is easy to create a vector b from a sequence of random bits, but the generation
of a uniform distribution over GLm(GF(2)) remains an open problem. As it is
observed in [4], on the one hand, one could choose a theoretically sound algorithm
with a complexity that is far too high to be practical, and on the other hand, one
could choose a simple heuristic for random elements as the product replacement
algorithm [2] which is known to have a bias.

Let us explain a variant of the product replacement algorithm over G =
GLm(GF(2)). Let us consider the two classical generators of G:

g1 =

⎡

⎢⎢⎣

1 1 0 ··· 0 0 0
0 1 0 ··· 0 0 0
0 0 1 0 0 0
...

...
...

...
0 0 0 1 0 0
0 0 0 ··· 0 1 0
0 0 0 ··· 0 0 1

⎤

⎥⎥⎦ , g2 =

⎡

⎢⎢⎣

0 0 0 ··· 0 0 1
1 0 0 ··· 0 0 0
0 1 0 ··· 0 0 0
...

...
...

...
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 ··· 0 1 0

⎤

⎥⎥⎦ .

218 G. Fumaroli, E. Mayer, and R. Dubois

Let A be an accumulator (A ∈ G) and S be an array of s elements of G (s ≥ 2).
We initialize A with the identity of G and cyclically S with g1 and g2. The basic
generation step consists in choosing two random elements of S (Si and Sj where
(i, j) ∈ {1, 2, . . . , s}2). The accumulator A is replaced by A×Si and Si becomes
Si × Sj . After a preprocessing step executing this basic operation a number of
times σ1, we generate random elements by reading the value of A after each
single step.

One obvious disadvantage of this technique is that the returned elements
are not independent of each other. For example, if a sequence of elements is
generated, then a consecutive quadriple of the form X , Xgi, Xgj and Xgigj will
occur in the sequence with a probability of order 1/s3. This drawback can be
circumvented by outputing the accumulator every σ2 steps.

In the context of DPA countermeasures, it suffices to consider s = 2 and σ1 =
σ2 = 1, so that we can generate a new ϕ function with only one multiplication
matrix. This ensures a good enough variation of ϕ. From a theoretical point of
view, it would be preferable to choose s = σ1 = σ2 = log2(G), as explained in [4]
in order to reach a uniform distribution over G, but of course it is really much
more costly.

7 Conclusion

This paper focuses on a lightweight variation on the Duplication Method imple-
menting a secret function ϕ ∈ F to mask the input of an S-Box. We present
novel first order DPA attacks that break this countermeasure whether ϕ is fixed
or variable when the set F is chosen as pointed out in [6]. Finally, we suggest
new sets F that allow the implementation to circumvent our attacks.

Acknowledgments

The authors would like to thank Éric Garrido and Philippe Painchault for helpful
discussions about spectral analysis, as well as David Lefranc and anonymous
referees for useful comments.

References

1. Akkar, M.L., Giraud, C.: An Implementation of DES and AES Secure Against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Celler, F., Leedham-Green, C.R., Murray, S.H., Niemeyer, A.C., O’Brien, E.A.:
Generating random element of a finite group. Comm. Algebra 23(13), 4931–4948
(1995)

3. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Toward Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

First-Order Differential Power Analysis on the Duplication Method 219

4. Cooperman, G.: Towards a practical, theoretically sound algorithm for random
generation in finite groups (2002)

5. Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2002)

6. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The “Duplication”
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

7. Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

8. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

10. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

A Proofs

A.1 Proof of Proposition 2

Let us first prove the following lemma.

Lemma 1. With F denoting the set of bijective functions over {0, 1}m that
are linear or quadratic in their input bits, and ϕ denoting a random variable
uniformly distributed over F ,

P(ϕ(z) = y) =

⎧
⎨

⎩

1 if {z, y} = {0},
0 if {z, y} = {0, ξ �= 0},
1

2m−1 otherwise,

where z, y ∈ {0, 1}m are fixed, and the probability is taken over the possible
choices for ϕ in F .

Proof. Cases {z, y} = {0} and {z, y} = {0, ξ �= 0} are trivial. We here give a
proof for the case z �= 0 and y �= 0.

Let z, y ∈ GF(2)m \ {0} and consider the mapping

f(z,y) :
∣∣∣∣
F → GF(2)m

ϕ �→ ϕ(z) ⊕ y

According to the rank theorem,

#{ϕ ∈ F : ϕ(z) ⊕ y = 0} = #F/# Im(f(z,y)). (3)

220 G. Fumaroli, E. Mayer, and R. Dubois

Since ϕ is uniformly distributed over F , (3) can be restated as

P(ϕ(z) = y) =
1

Im(f(z,y))
.

We are left with proving that # Im(f(z,y)) = 2m − 1.
First, we prove the result for F = GLm(GF(2)). If y, z ∈ GF(2)m \ {0}, there

is an invertible linear ϕ such that ϕ(z) = y. Just consider the matrices Mz, My ∈
GLm(GF(2)) with (Mz)∗1 = z and (My)∗1 = y, and let ϕ = MzM

−1
x . So, we

have Im(ϕ �→ ϕ(z)) = GF(2)m \{0} and thus Im(ϕ �→ ϕ(z)⊕y) = GF(2)m \{y},
i.e. # Im(f(z,y)) = 2m − 1.

Now, let F denote the set of bijective functions quadratic in their input bits.
Since any linear function ϕ can be viewed as a quadratic function, we actually
also prove that # Im(f(z,y)) = 2m − 1 in this case. �
With Lemma 1, we have

P(H(ϕ(z)) = w) =

⎧
⎨

⎩

1 if {z, w} = {0},
0 if {z, w} = {0, ξ �= 0},

1
2m−1

(
n
w

)
otherwise,

and thus

E(H(ϕ(z))) =
{

0 if z = 0,
m2m−1

2m−1 otherwise.
(4)

With the notations of section 3, we have

S′
b(ŝ) = {I(x, s) | g(I(x, ŝ)) = b} for b ∈ {0, 1}, (5)

where g(I(x, ŝ)) = 0 if x ⊕ ŝ = 0 and g(I(x, ŝ)) = 1 otherwise.
From (5) and by definition of g, S′

0(ŝ) = {I(x, s) | x ⊕ ŝ = 0} = {I(x, s) | x ⊕
s = δsŝ} where δsŝ = s ⊕ ŝ. Hence, we have

E(H(I(x, s)) | I(x, s) ∈ S′
0(ŝ)) = E(ϕ(x ⊕ s) | x ⊕ s = δsŝ). (6)

With (4) and (6), we have

E(H(I(x, s)) | I(x, s) ∈ S′
0(ŝ)) =

{
0 if ŝ = s,

m2m−1

2m−1 otherwise,
(7)

since δsŝ = 0 if ŝ = s, and δsŝ �= 0 otherwise.
Let us recall that ε0(ŝ) = E(H(I(x, s))) − E(H(I(x, s)) | I(x, y) ∈ S′

0). If we
assume that x is uniformly distributed over S, then I(x, s) can also be assumed
uniformly distributed over S′, so that

ε0(ŝ) =
m

2
− E(H(I(x, s)) | I(x, y) ∈ S′

0). (8)

From (7) and (8), we get

ε0(ŝ) =
{ m

2 if ŝ = s,
− m

2(2m−1) otherwise. (9)

First-Order Differential Power Analysis on the Duplication Method 221

Since for all ŝ, S′
0(ŝ) ∩ S′

1(ŝ) = ∅,

P(I(x, s) ∈ S′
1(ŝ)) = 1 − 2−m. (10)

From (9) and (10), we finally obtain with Corollary 1 that

E(Δ(ŝ, τ)) =

{
α m

2(1−2−m) if ŝ = s,
−α m

2(2m−1)(1−2−m) otherwise.

A.2 Proof of Proposition 3

A.2.1 Case ŝ = s
Let x[σ] denote the m-bit vector defined by (x[σ])i = xσ(i) for all i. Let ū =
(u ‖ 0)[σ] for u ∈ {0, 1}k. Let �ū denote the linear boolean function x �→ x · ū.
Let α(n) denote the n-bit vector such that (α(n))i = α for all i. Let � denote
the product order, i.e. x � y if and only if xi ≤ yi for all i.

Lemma 2. Let Z = (Z1 ‖Z2)[σ] be uniformly distributed over {0, 1}m, and
Y = ϕ(Z). For all ζ ∈ {0, 1}k, E(H(Y) | Z1 = ζ) = E(H(Y)) − ε, with
ε =

(∑
u�1(k)

(−1)u·ζ C̃or(ϕ, �ū)
)

/2m+1.

Proof. We have

E(H(Y) | Z1 = ζ) = E(H(ϕ((Z1 ‖Z2)[σ])) | Z1 = ζ)
= E(H(ϕ((ζ ‖ Z2)[σ])))

= E

(
m∑

i=1

ϕi((ζ ‖Z2)[σ])

)
.

Since ϕi = 1
2 (1 − (−1)ϕi), we get

E(H(Y) | Z1 = ζ) =
m

2
− 1

2
E

(
m∑

i=1

(−1)ϕi((ζ ‖Z2)[σ])

)
.

Let us now introduce the notion of Walsh transform.

Definition 2 (Walsh Transform). The Walsh transform of a function f :
{0, 1}m → {0, 1} is given by

f̂(w) =
∑

x∈{0,1}m

(−1)w·xf(x). (11)

for all w ∈ {0, 1}m.

222 G. Fumaroli, E. Mayer, and R. Dubois

By writting (−1)ϕi in terms of its Walsh transform coefficients, we obtain

E(H(Y) | Z1 = ζ)

=
m

2
− 1

2
E

⎛

⎝
m∑

i=1

1
2m

∑

(u ‖ v)[σ]

(−1)u·ζ·v·Z2 (̂−1)ϕi((u ‖ v)[σ])

⎞

⎠

=
m

2
− 1

2m+1

∑

(u ‖ v)[σ]

(−1)u·ζ
m∑

i=1

(̂−1)ϕi((u ‖ v)[σ]) E
(
(−1)v·Z2

)
.

Since Z is uniformly distributed over Z, we have E
(
(−1)v·Z2

)
= 0 if v �= 0,

E
(
(−1)v·Z2

)
= 1 if v = 0, and E(H(Y)) = m

2 . Hence,

E(H(Y) | Z1 = ζ) = E(H(Y)) − 1
2m+1

∑

u∈{0,1}k

(−1)u·ζ
m∑

i=1

(̂−1)ϕi(ū).

By definition, Cor(ϕi, �ū) = (̂−1)ϕi(ū). Hence,

E(H(Y) | Z1 = ζ) = E(H(Y)) − 1
2m+1

∑

u∈{0,1}k

(−1)u·ζ C̃or(ϕ, �ū). �

Now let σ denote the fixed bijection such that w = (1(k) ‖ 0(m−k))[σ]. Lemma 2
can be restated as

E(H(I(x, s)) | g(I(x, s)) = 0) = E(H(I(x, s))) − ε0(s)

with ε0(s) =
(∑

ū�w(−1)u·ζ� C̃or(ϕ, �ū)
)

/2m+1.
Since the protocol did not successfully stop for any element wi tested before

w, it means that no DPA peak – and thus no corresponding bias – happened
for these elements. In our attack protocol, by assumption, any element wi tested
before w is such that H(wi) ≤ H(w). In particular, any element ū �= w such that
ū � w must have been tested before w. Hence, for all such element ū, we must
have (−1)u·ζ� C̃or(ϕ, �ū) = 0. Hence, we have

ε0(s) =
1

2m+1
(−1)1(k)·ζ� C̃or(ϕ, w) =

(−1)H(ζ�) mod 2

2m+1
C̃or(ϕ, w). (12)

Since Y is uniformly distributed over S′ = {0, 1}m, we have

P(Y ∈ S′
1(s)) = 1 − P(Y ∈ S′

0(s)) = 1 − 2−k. (13)

Finally, with (12), (13) and Corollary 1, we obtain the expected result.

A.2.2 Case ŝ �= s
Let us assume that the S-boxes have ad hoc cryptographic properties. Since the
key hypothesis ŝ is wrong in this case, there are k′ bits in the k-bit pattern

First-Order Differential Power Analysis on the Duplication Method 223

that is supposed to be set to ζ� that are actually uniformly distributed over the
set {0, 1}k′

, with k′ ≥ 1. Moreover, since the protocol did not successfully stop
before this k-bit pattern was tested, it means that no DPA peak – and thus
no corresponding bias – happened for any pattern whose length is strictly less
than k. In particular, the output of ϕ is decorrelated from the k − k′ bits of the
k-bit pattern that are fixed despite the wrong key hypothesis. As a consequence,
we must have S′

b = S′ for all b ∈ {0, 1}.
Hence, whenever ŝ �= s, we must have

P(I(x, s) ∈ S′
b(ŝ)) = P(I(x, s) ∈ S′) = 1 for all b ∈ {0, 1}, (14)

and

ε0(ŝ) = E(H(I(x, y))) − E(H(I(x, y)) | I(x, y) ∈ S′
0(ŝ))

= E(H(I(x, y))) − E(H(I(x, y)) | I(x, y) ∈ S′)
= 0. (15)

From (14), (15) and Proposition 1, we obtain E(ΔK(t)) = 0 as expected.

Solving Discrete Logarithms from Partial

Knowledge of the Key

K. Gopalakrishnan1,�, Nicolas Thériault2,��, and Chui Zhi Yao3

1 Department of Computer Science, East Carolina University, Greenville, NC 27858
2 Instituto de Matemática y F́ısica, Universidad de Talca, Casilla 747, Talca, Chile

3 Department of Mathematics, University of California - Riverside, CA 92521

Abstract. For elliptic curve based cryptosystems, the discrete loga-
rithm problem must be hard to solve. But even when this is true from
a mathematical point of view, side-channel attacks could be used to re-
veal information about the key if proper countermeasures are not used.
In this paper, we study the difficulty of the discrete logarithm problem
when partial information about the key is revealed by side channel at-
tacks. We provide algorithms to solve the discrete logarithm problem for
generic groups with partial knowledge of the key which are considerably
better than using a square-root attack on the whole key or doing an
exhaustive search using the extra information, under two different sce-
narios. In the first scenario, we assume that a sequence of contiguous
bits of the key is revealed. In the second scenario, we assume that partial
information on the “Square and Multiply Chain” is revealed.

Keywords: Discrete Logarithm Problem, Generic Groups, Side Channel
Attacks.

1 Introduction

The discrete logarithm problem (DLP) is an important problem in modern
cryptography. The security of various cryptosystems and protocols (such as
Diffie-Hellman key exchange protocol, ElGamal cryptosystem, ElGamal signa-
ture scheme, DSA, cryptosystems and signature schemes based on elliptic and
hyperelliptic curves) relies on the presumed computational difficulty of solving
the discrete logarithm problem. For a survey of the discrete logarithm problem,
the reader is referred to [13].

However, even if the DLP is indeed difficult to solve, one has to take other
aspects into account in practical implementations. If proper countermeasures
are not used, side-channel attacks could be used to reveal partial information
about the key. In this paper, we address the problem of how to utilize the partial
information effectively when solving the DLP.
� This work was done in parts while the author was at the Institute of Pure and

Applied Mathematics, UCLA.
�� This work was done in parts while the author was at the Fields Institute, Toronto,

Canada.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 224–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving Discrete Logarithms from Partial Knowledge of the Key 225

When one wants to break a system based on DLP, one can of course, ignore
the partial information revealed by side channel attacks and simply use a generic
algorithm. Alternatively, one can use an exhaustive search using the partial
information made available to us. The primary question that we address in this
paper is whether we can do something in between? i.e., can we use the partial
information revealed by side channel attacks in an intelligent way to break the
system?

In some cases, side channel attacks could reveal a string of contiguous bits
of the secret key. In this situation, it is always possible to adapt Shank’s baby-
step giant-step algorithm [19] to perform the search in the remaining possible
keyspace; However the memory requirements could make this approach imprac-
tical. For example, if 100 bits remain to be identified, computing to the order of
250 group operations can be considered reasonable, but handling (and storing)
a table of 250 entries is much more problematic. To avoid this issue, we need
a different algorithm, not necessarily deterministic, which has a lower memory
requirement.

A number of papers address the question when a large number of observations
are available [6,11,12,9]. When only one observation is possible, probabilistic
algorithms are known, but they usually assumed that the known bitstring is
either in the most or the least significant bits of the key [15,16,23]. In Section 3,
we look at what happens when a contiguous sequence of bits is known somewhere
in the middle of the binary representation of the key.

In most cases, side channel attacks will reveal information on the square and
multiply chain (see the beginning of Section 4 for a definition), and not the
bitstring. Extracting the key from partial information on the square and multi-
ply chain requires different approaches than those used when some of the bits
are known. In this situation, no “fast” algorithm is known, no matter what
the memory requirement is, hence any “fast” algorithm can be considered an
improvement.

If uniform formulas are used for the group arithmetic (see [2,1] for example),
then a side channel attack will reveal the hamming weight of the key, but not the
position of the nonzero bits. If the hamming weight is low enough, fast algorithms
are available [22,3], although they can be slower than general searches if the
hamming weight is even moderately high. If the field arithmetic is not secured
as well, some parts of the square and multiply chain may also be leaked [24,21].

In that situation, no algorithm was known that could improve on the exhaus-
tive search from the partial information, or a search based solely on the hamming
weight (note that the two approaches are not compatible). In Section 4, we will
show how to significantly improve on the exhaustive search in this context.

2 Background

First, we define the discrete logarithm problem as follows: Let G be a cyclic
group of prime order p. Let g be a generator of G. Given β ∈ G, determine
α ∈ {0, 1, 2, . . . , p − 1} such that gα = β. Here, g and p are public information

226 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

known to everybody. Although our description is in terms of a multiplicative
group, all of the arguments in this paper are essentially identical when applied
to additive groups (for example groups coming from elliptic curves).

It is also possible to define the DLP on groups whose order n is not a prime
number. However, one could then use the well known technique due to Pohlig
and Hellman [14], and reduce the problem to a number of DLPs in groups of
order p, where p runs through all the prime factors of n. Hence, without any loss
of generality, we will focus on the case when the order of the group is a prime
number.

2.1 Generic Algorithms for Solving DLP

In this paper, we only consider generic algorithms for solving the DLP. A generic
algorithm for solving the DLP is an algorithm that does not exploit the structure
of the underlying group in solving the DLP. As a consequence, this algorithm
could be used to solve the DLP in any group.

In a generic algorithm, we want to think of the group as though it is presented
by means of a black box. More specifically, each group element has a unique
encoding or labeling and we have an oracle (a black box) which is capable of
doing the following things:

– Given the encoding of two elements g and h of the group, the oracle can
compute their product g ∗ h, in unit time.

– Given the encoding of two elements g and h, the oracle can decide whether
g = h, in unit time.

– Given the encoding of an element g, the oracle can compute any given power
of g (including the inverse g−1), in time O(log p).

We also note that in some groups, for example those coming from elliptic curves,
the inverse operation can be performed in unit time. The time complexity of a
generic algorithm is determined by counting the number of times it needs access
to the black box.

There are a few well-known generic algorithms to solve the DLP. The baby-
step giant-step method due to Shanks [19] is a deterministic generic algorithm
that can solve the DLP in time O(p1/2 log p) using space O(p1/2 log p). This
algorithm is based on a time-memory trade off technique. The rho method due
to Pollard [15,16] is a probabilistic generic algorithm that can solve the DLP in
expected running time O(p1/2) (under certain assumptions) using only O(log p)
amount of space (requiring the storage of a constant number of group elements),
and is based on the birthday paradox. The space efficiency of this algorithm
makes it more attractive in comparison to Shanks’ method. For an excellent
survey of the state of the art in these two methods, the reader is referred to [23].

Victor Shoup [20] established a lower bound of Ω(p1/2) on the time complexity
of any probabilistic (and therefore on any deterministic) generic algorithm that
can solve the DLP. Hence, both the baby-step giant-step method and the rho
method are essentially optimal algorithms with respect to their time complexity
and can only be improved in terms of constant factors.

Solving Discrete Logarithms from Partial Knowledge of the Key 227

It should be noted that the fastest known algorithms that can solve the DLP
for most elliptic curve groups are generic algorithms and thus of exponential
complexity (note that the size of the input is log p, whereas the algorithm has
O(p1/2) complexity). In contrast, subexponential algorithms exist for the fac-
toring problem which is the basis for the RSA cryptosystem. As a consequence,
cryptographers believe that elliptic curve based cryptosystems can provide bet-
ter security (provided the curves and the parameters are chosen appropriately).
This is the reason for increasing interest in elliptic curve based cryptography.

2.2 Side Channel Attacks

A side channel attack (on a cryptosystem or a signature scheme) is an attack
that focuses on the physical implementation of the algorithm as opposed to the
specification of the algorithm. By observing an implementation being executed,
an attacker can make correlations between the events that occur in the processor
and the data being processed. The first well known versions of side channel attack
were based on timing [7] and power [8] analysis (and more recently EM analysis
[4,17]).

In timing analysis based attacks, an attacker uses the execution timings to
infer about the flow of control and thus about the key. For example, an imple-
mentation might take longer to run if a conditional branch is taken than if it
is not taken. If the branch is taken or not depending on a bit of the secret key,
then the attacker might work out the corresponding bit of the secret key.

In power analysis based attacks, an attacker uses the amount of power con-
sumed by a processor to infer what operations are being performed and thus
about the key (EM based attacks use a similar approach on the electromagnetic
trace produced by the processor). For example, a multiplication operation would
have a distinct power usage profile and will differ considerably from the power
usage profile of a squaring operation. The attacker can then use that knowledge
to break the system.

The interesting thing about side channel attacks is that they do not contra-
dict the mathematical security provided by the system (even assuming the un-
derlying computational problems are provably difficult to solve) but they simply
bypass it.

3 Scenario I – Contiguous Bits of the Key Is Revealed

In this section, we deal with the scenario where the partial information revealed
is a sequence of contiguous bits of the key.

Let G be a cyclic group of prime order p and let g be a generator of G.
Given β ∈ G, recall that the Discrete Logarithm Problem (DLP) is to determine
α ∈ {0, 1, 2, . . . , p − 1} such that gα = β. In this section, we assume that a
sequence of contiguous bits of α is revealed by side channel attacks. Although a
variation of the baby-step giant-step method is always possible, we are looking
for an algorithm with memory requirements similar to the rho method, i.e. of
size O(log p).

228 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

There are three possible cases to consider; the sequence of contiguous bits
known may be in the left part, right part or somewhere in the middle (i.e.
located away from the extremities, but not necessarily centered). The first two
cases are known results and can be found in Appendices A and B. The third
case does not appear to have received as much attention, and a new method to
approach it is presented below.

3.1 Case III – Middle Part

Let us assume that we have some positive integers M and N such that we can
write α in the form

α = α1MN + α2M + α3 (1)

where 0 ≤ α2 < N is known and with 0 ≤ α3 < M . We also assume that
0 ≤ α1 < p/MN , i.e. that α is reduced modulo p. Note that α1 is really bounded
by

⌊
p−α2M

MN

⌋
, but the error introduced is insignificant (a difference of at most

1 on the bound, which vanishes in the O-notation), and it makes the analysis
easier to read. In terms of exhaustive search, we have to search through a set
of size p/N (�(p − α2M)/N� to be exact), which requires O(p/N) calls to the
oracle, whereas a generic attack on the whole group would require O(p1/2) calls
to the oracle.

In practice we may be more interested in the case where M and N are powers
of 2 – i.e. where N = 2l2 and M = 2l3 , so the first l1 and the last l3 bits are
unknown (we assume that l1 + l2 + l3 is the bitlength of the key) – but the
arguments presented here will hold for any positive integers N and M .

For now, let us assume that we are given an integer r, 0 < r < p, such that
we can write rMN as kp + s with |s| < p/2. We will discuss how to choose r in
a few paragraphs. Multiplying both sides of Equation (1) by r, we get

rα = rα1MN + rα2M + rα3

= α1kp + sα1 + rα2M + rα3

= α1kp + rα2M + α′, (2)

where α′ = sα1 + rα3. Raising g to both sides of Equation (2), we get

gαr = gα1kp+rα2M+α′

(gα)r = (gp)α1k
grα2Mgα′

βr = grα2Mgα′
. (3)

Denoting
(
β × g−α2M

)r by β′, Equation (3) can be written in the form β′ =
gα′

. Note that β′ can be computed from β as r, α2, and M are known. We can
then view determining α′ as solving a DLP. When s is positive, α′ = α3r + α1s
must be in the interval

[
0, r(M − 1) + s

(p

MN
− 1

)]
,

Solving Discrete Logarithms from Partial Knowledge of the Key 229

on which we can use Pollard’s kangaroo method. Similarly, if s is negative we
must consider the interval

[
s
(p

MN
− 1

)
, r(M − 1)

]
.

In both cases we can restrict the value of α′ to an interval of length rM + |s| p
MN .

To minimize the cost of the kangaroo method, we must therefore choose r > 0
to minimize the value of

rM + |s| p

MN
(4)

under the condition s ≡ rMN mod p.
Although it is not possible in general to choose r (and s) such that (4) is of

the form O(p/N), some situations are more favorable than others.
A perfect example (although a rather unlikely one) occurs when working in

the bitstring of a Mersenne prime p = 2l − 1 (with N = 2l2 and M = 2l3), in
which case we can choose r = 2l1 = 2l−l2−l3 and s = 1 and we get an interval of
length O(2l1+l3). Similarly, if the difference between p and 2l is of size O(2l3),
we can set r = 2l1 and s = 2l − p and obtain an interval of length O(2l1+l3).
In both of these situations, using Pollard’s kangaroo method would allow us to
compute α′ in time O(2(l1+l3)/2) = O(

√
p/N).

Unfortunately, such an optimal choice of r (and s) is impossible in general.
We will now consider how to choose r in order to minimize the range of possible
values for α1s + α3r. To do this, we will determine a value T (0 < T < p) such
that we can ensure both α3r < T and α1|s| < T by choosing r carefully.

We first consider the inequality α1|s| < T . Replacing s by rMN − kp (from
the definition of s) and bounding α1 by p

MN gives us

p

MN
|rMN − kp| < T

and a few simple manipulations turn the inequality into
∣∣∣∣
MN

p
− k

r

∣∣∣∣ <
(MNT

p2)

r
.

Thinking of MN
p as the real number γ, and MNT

p2 as ε, we recognize Dirichlet’s
Theorem on rational approximation (see [18] page 60, for example). We can then
say that there exists two integers k and r satisfying the inequality and such that
1 ≤ r ≤ 1

ε = p2

MNT . We also know that k and r can be found using the continued
fraction method (see D page 237, for a brief description).

Since the upper bound on r from Dirichlet’s Theorem is tight, and since
0 ≤ α3 < M , the best bounds we can give on α3r in general are 0 ≤ α3r < p2

NT .
To ensure that α3r < T , we must therefore require

p2

NT
≤ T ,

or equivalently T ≥ p/
√

N . Since we want T as small as possible (we will end
up with an interval of size 2T for the kangaroo method), we fix T = p/

√
N .

230 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

This means that r can be selected such that computing α′ with the kangaroo
method can be done in a time bounded above by O(

√
2p1/2

/
N1/4). From α′ =

rα3 + sα1, we have to solve an easy diophantine equation to obtain α1 and α3

(see Appendix C for details), and Equation (1) gives us α.
We can therefore reduce the search time for the discrete log from O(

√
p) for

Pollard rho (or the kangaroo method applied directly on the possible values of
α) by a factor of at least O(N1/4) in general, and up to O(

√
N) in the best

situations, while keeping the memory requirement of O(log p) of the Kangaroo
algorithm.

4 Scenario II – Partial Information About the Square
and Multiply Chain Is Revealed

In order to do modular exponentiation efficiently, typically one uses the square
and multiply algorithm. We will illustrate the working of this algorithm by means
of an example here and refer the reader to [10], page 71, for its formal description
and analysis.

For example, suppose we want to compute g43. We will first write down 43
in binary as 101011. Starting after the leading 1, replace each 0 by S (Square)
and each 1 by SM (Square and Multiply) to get the string SSMSSMSM . Such
a string goes by the name square and multiply chain. We start with h = g (i.e.
with g1, corresponding to the leading bit) and do the operations (Squaring h
and Multiplying h by g) specified by a scan of the above string from left to
right, storing the result back in h each time. At the end, h will have the desired
result. In this particular example, the successive values assumed by h would be
g → g2 → g4 → g5 → g10 → g20 → g21 → g42 → g43. Note that, the final value
of h is g43 as desired.

In this section, we assume that exponentiation is done using the square and
multiply algorithm. As the power consumption profile of squaring operation is
often considerably different from that of multiplication operation, one could
figure out which one of the two operations is being performed using side channel
information (unless sufficient countermeasures are used). In the following, we
assume that some partial information about the square and multiply chain is
revealed by side channel attacks.

Specifically, we assume that a side channel attack revealed the position of
some of the multiplications (M) and squares (S) of the square and multiply
chain. Note that once a multiplication is identified, the operations next to it
are known to be squares (i.e. we have the substring SMS) since there are no
consecutive multiplications in the square and multiply chain. We will assume
that n elements of the square and multiply chain have not been identified, of
which i are multiplications (M). The problem that we address is how to exploit
the partial information effectively to figure out the entire square and multiply
chain.

As the chain is made up of only S’s and M ’s, if we can figure out the positions
of all the M ’s, the string is completely determined, so we need to figure out the

Solving Discrete Logarithms from Partial Knowledge of the Key 231

exact positions of the remaining i M ’s. A naive approach to solving the problem
consists in guessing the positions of the i remaining M ’s. This will determine
the chain completely and hence the key. We can then verify whether our guess is
correct by checking if gα equals β. If we guessed correctly we can stop, otherwise
we can make new guesses until we eventually succeed. In this approach, we are
essentially doing an exhaustive search, so the complexity would be O(ni log p)
as there are

(
n
i

)
possible guesses for the missing M ’s, each of which requires

O(log p) time to test.
Also note that even though we may know the relative position of some of the

multiplications in the square and multiply chain, this does not readily translate
into information on the bitstring as the number of the remaining M ’s after and
between two known M ’s will change the position of the corresponding nonzero
bits in the binary representation of α (in particular, this is why the algorithms
of Stinson [22] and Cheng [3] cannot easily be adapted to work in this situation).

We could use the fact that no two M ’s are next to one another in the square
and multiply chain to reduce the number of possible guesses to test. However,
the overall effect will usually be small, and the worst case complexity will con-
tinue to be essentially O(ni log p). To solve this, we develop a more sophisticated
approach of exploiting the partial information that will make an impact on the
worst case complexity.

First, we assume that we can somehow split the chain into two parts, left and
right, such that i

2 of the remaining M ’s are on the left part and the other i
2 are

on the right part. We can now make use of the time-memory trade off technique
and determine the entire chain in time O(n

i
2 log p). The details are explained

below.
Suppose we make a specific guess for the i

2 M ’s on the left part and another
guess for the i

2 M ’s on the right part. This determines the square and multiply
chain completely and hence the bit string representation of the key α. Let a be
the number represented by the bit string corresponding to the left part and let
b be the number represented by the bit string corresponding to the right part.
Let x be the length of the bitstring corresponding to the right part. Note that,
we do know x as we are assuming, for the moment, that the position of the split
is given to us. Then, clearly

β = gα

= ga2x+b

=
(
g2x

)a

gb . (5)

If we denote g−2x

by h, then the above equation reduces to

gb = haβ . (6)

We can use Equation (6) to check whether our guess is correct. However, even
if we use Equation (6) to verify a guess, the worst case complexity will still be
O(ni log p). This is because there will be O(n

i
2) guesses for a, O(n

i
2) guesses for

b and any guess for a can be paired with any guess for b to make up a complete
guess.

232 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

Instead, we shall use a time-memory trade off technique. Consider all different
possible guesses for the left part. This will yield all different possible guesses for
a. For each such guess we compute ha and we record the pairs (a, ha). We then
sort all the pairs into an ordered table based on the second column, viz. the
value of ha.

Next we make a guess for the right part. This will yield a guess for b. We can
now compute y = β−1 × gb. If our guess for b is indeed correct, then y will be
present in the second column of some row in the table we built. The first column
of that row will produce the matching guess for a. So, all that we have to do
is search for the presence of y in the second column of the table. This can be
done using the binary search algorithm as the table is already sorted as per the
second column. If y is present, we are done and have determined the key. If y
is not present, we make a different guess for the right part and continue until
we eventually succeed. Since there are n

i
2 guesses for the right part, the time

complexity of this algorithm will be O(n
i
2 log p). As there are n

i
2 guesses for the

left part, the table that we are building will have that many entries and so the
space complexity of our algorithm will be O(n

i
2 log p).

Hence, both the time and space complexity of our algorithm will be O(n
i
2)

(ignoring the log p term). In contrast, the naive approach would have a time
complexity of O(ni) and space complexity of O(log p) as only constant amount
of storage space is needed. This is why this is called a time-memory trade off
technique.

In the analysis above, we ignored the costs associated with handling the table
(sorting and searching). Let m = n

i
2 . Whereas it takes time O(m log p) (oracle

operations) to compute the elements of the table, sorting it will require a time of
O(m log m) bit operations even with an optimal sorting algorithm (such as merge
sort). Similarly, to search in a sorted table of size O(m) even with an optimal
searching algorithm (such as binary search) will take O(log m) bit operations.
Note that in practice it is common to use a hash table when m is large, but
this does not change the form of the asymptotic cost. As we have O(m) guesses
for the right part and a search is needed for each guess, the total time spent
after the table is built would be O(m log m). So, technically speaking, the true
complexity of our algorithm is O(m log m) = O(ni/2 log p log log p) bit operations
(since both n and i are O(log p)). However, in practice our “unit time” of oracle
(group) operation is more expensive than a bit operation (requiring at least log p
bit operations), whereas the log log p terms grows extremely slowly, and we can
safely assume that the main cost (in oracle time) also covers the table costs.

Recall that we assumed that we can somehow split the chain into two parts,
left and right, such that i

2 of the remaining M ’s are in each of the two parts. This
is, of course, an unjustified assumption. Although we made this assumption for
ease of exposition, this assumption is not really needed. If we consider the set of
remaining M ’s as ordered, then we can easily define one of them as the “middle
one”. We will use the position of the “middle” M as our splitting position. There
are n− i = O(n) possible positions for the “middle” M (of which only one is the
true position).

Solving Discrete Logarithms from Partial Knowledge of the Key 233

For each of the possible positions, we try to obtain a match by assuming the
“middle” M is in this position and placing the i − 1 others. If i is odd, then
we have i−1

2 = � i
2� of the remaining M ’s on each side, and if i is even then we

have i
2 − 1 of the remaining M ’s on one side (say, on the left) and i

2 on the
other (with i

2 = � i
2�). Using the time-memory trade off technique, we have a

complexity of O(n� i
2 � log p) for each of the possible positions for the “middle”

M , and we obtain a total complexity of O(n� i
2 �+1 log p).

With our algorithm, we are able to cut down the complexity from O(ni) for the
naive approach to O(n� i

2 �+1) (ignoring logarithmic terms). This is a significant
improvement considering that the exponent of n has been reduced to about
half the original value and n will typically be very large (but still O(log p)) in
practical implementations of elliptic curve based cryptosystems.

5 Concluding Remarks

To summarize, in this article we considered the problem of determining the key
used in discrete logarithm based systems when partial knowledge of the key is
obtained by side channel attacks. We considered two different scenarios of partial
information viz. knowing a sequence of contiguous bits in the key and knowing
some part of the square and multiply chain. In both scenarios, we were able to
develop better algorithms in comparison to both using a square-root algorithm
(ignoring the partial information available to us) and doing an exhaustive search
using the extra information available. In particular, in the second scenario, our
algorithm is almost asymptotically optimal considering that its complexity is
very close to the square root of the order of the remaining key space.

Although we have made some progress, many more situations could be con-
sidered. We give the following as examples:

1. Consider the first scenario where we assume that a sequence of contiguous
bits in the middle of the key corresponding to a set of size N have been
revealed by side channel attacks (Section 3.1). Although we were able to
reduce the search time, only some situations will match the optimal search
time of O(

√
p/N). For a general combination of p, M and N , we would

still have to reduce the search time by a factor of O(N1/4) to obtain an
asymptotically optimal algorithm.

2. In the first scenario, we assumed that the known bits are contiguous bits. It
is possible that in some circumstances, we may get to know some bits of the
key, but the known bits may not be contiguous.

3. Finally, the Non-adjacent Form Representation (NAF) of the key is some-
times used to do the exponentiation operation more efficiently (in the average
case) [5]. If a sequence of bits is known, the situation is very similar to that of
Section 3. When partial information about the square and multiply chain is
obtained, the situation changes significantly compared to the binary square
and multiply, since it is usually assumed that multiplications by g and g−1

are indistinguishable. Although it is easy to adapt the algorithm presented in

234 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

Section 4 to locate the position of the multiplications coming from nonzero
bits, a factor of O(2m) (where m is the number of nonzero bits in the NAF
representation of the key) would be included in the complexity to deal with
the signs of the bits, which often cancels any gains we obtained.

In these situations, we leave the development of optimal algorithms, whose com-
plexity would be the square root of the order of the remaining key space (or
close to it), as an open problem.

Acknowledgments. This paper is an outcome of a research project proposed
at the RMMC Summer School in Computational Number Theory and Cryptog-
raphy which was held at the University of Wyoming in 2006. We would like to
thank the sponsors for their support.

References

1. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve
cryptosystems. In: Embedded Cryptographic Hardware: Methodologies and Archi-
tectures, pp. 247–256. Nova Science Publishers (2004)

2. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

3. Cheng, Q.: On the bounded sum-of-digits discrete logarithm problem in finite fields.
SIAM J. Comput. 34(6), 1432–1442 (2005)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

5. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27,
129–146 (1998)

6. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptogr. 23(3), 283–290 (2001)

7. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Leadbitter, P.J., Page, D., Smart, N.P.: Attacking DSA under a repeated bits
assumption. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 428–440. Springer, Heidelberg (2004)

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton (1996)

11. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

12. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Cryptogr. 30(2), 201–217 (2003)

13. Odlyzko, A.M.: Discrete logarithms: The past and the future. Designs, Codes and
Cryptography 19, 129–145 (2000)

Solving Discrete Logarithms from Partial Knowledge of the Key 235

14. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. IEEE Transactions on Information
Theory 24, 106–110 (1978)

15. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics
of Computation 32(143), 918–924 (1978)

16. Pollard, J.M.: Kangaroos, Monopoly and discrete logarithms. Journal of Cryptol-
ogy 13(4), 437–447 (2000)

17. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

18. Schrijver, A.: Theory of Linear and Integer Programming. In: Wiley-Interscience
Series in Discrete Mathematics, John Wiley & Sons, Chichester (1986)

19. Shanks, D.: Class number, a theory of factorization and genera. In: Proc. Symp.
Pure Math., vol. 20, pp. 415–440 (1971)

20. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

21. Stebila, D., Thériault, N.: Unified point addition formulae and side-channel attacks.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 354–368.
Springer, Heidelberg (2006)

22. Stinson, D.: Some baby-step giant-step algorithms for the low hamming weight
discrete logarithm problem. Math. Comp. 71(237), 379–391 (2002)

23. Teske, E.: Square-root algorithms for the discrete logarithm problem (a survey).
In: Public-Key Cryptography and Computational Number Theory, pp. 283–301.
Walter de Gruyter, Berlin (2001)

24. Walter, C.D.: Simple power analysis of unified code for ECC double and add.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204.
Springer, Heidelberg (2004)

A Case I – Left Part

Here we assume that contiguous most significant bits of the key are known. Let
z denote the bit string formed by the sequence of known bits. Suppose that l
is the length of the key. Suppose that l1 is the length of the known sequence of
contiguous bits and l2 is the length of the remaining bits so that l = l1 + l2.

Then the smallest possible value for α is the number a represented (in un-
signed binary notation) by z concatenated with a sequence of l2 zeroes. The
largest possible value for α is the number b represented by z concatenated with
a sequence of l2 ones. We do know that a ≤ α ≤ b.

Since α could take all the values in the interval [a, b], we are in the ideal
situation for Pollard’s Kangaroo Algorithm. This probabilistic algorithm [15,16]
was developed to compute the discrete logarithm when it is known to lie in an
interval [a, b]. It also can be implemented in a space efficient manner and has
expected running time of O(

√
b − a) under some heuristic assumptions.

Since we know both a and b, we can make use of Pollard’s Kangaroo algorithm
in this case. Note that the binary representation of b − a in our case is simply a
sequence of l2 1’s and so b−a is 2l2 −1. The expected running time to determine
α using the Kangaroo algorithm will then be O(2l2/2).

236 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

Observe that if we ignored the partial information available to us and solved
the DLP by using the rho method or the baby-step giant-step method, the
running time would be O(2l/2) which is much higher. Also, observe that if we
had exhaustively searched for a key consistent with our partial knowledge, the
running time would be O(2l2). So, we are able to do better than these two
obvious ways.

B Case II – Right Part

Here we assume that contiguous least significant bits of the key are known. Let
z denote the bit string formed by the sequence of known bits and let α2 denote
the number represented (in unsigned binary notation) by z. Suppose that l is
the length of the key. Suppose that l2 is the length of the known sequence of
contiguous bits and l1 is the length of the remaining bits so that l = l1 + l2.

Observe that if we ignored the partial information available to us and solved
the DLP by using the rho method or the baby-step giant-step method, the run-
ning time would be O(2l/2). Also, observe that if we had exhaustively searched
for a key consistent with our partial knowledge, the running time would be
O(2l1).

We know that α ≡ α2 mod 2l2 (since we know the l2 right-most bits of α),
and we let α1 be the integer corresponding to the l1 left-most bits of α, i.e.

α = α1 × 2l2 + α2 . (7)

Let M =
⌊

p−α2−1
2l2

⌋
, then we know that 0 ≤ α1 ≤ M since 0 ≤ α ≤ p−1. Raising

g to both sides of Equation (7), we can write

β = gα = gα1×2l2+α2

= gα1×2l2
gα2

=
(
g2l2

)α1

gα2 . (8)

If we denote g2l2 by g′ and β × g−α2 by β′, then Equation (8) reduces to β′ =
(g′)α1 . As Teske [23] observed, we can then solve this DLP by using Pollard’s
Kangaroo Algorithm on g′ and β′ in O(

√
M) time as 0 ≤ α1 ≤ M . Once α1 is

known, Equation (7) gives the value of α. As M =
⌊

p−α2−1
2l2

⌋
, the complexity

is easily seen to be O(
√

p
2l2), which is same as O(2l1/2). Thus, we are able

to cut down the complexity to square root of the size of the remaining key
space.

C Solving the Diophantine Equation

In Section 3.1, we use Pollard’s kangaroo algorithm to compute α′ = α3r + α1s,
for some carefully chosen r and s. However, this raises the question of how to
extract α1 and α3 from α′, after which we can use Equation (1) to obtain α.

Solving Discrete Logarithms from Partial Knowledge of the Key 237

To do this, we first show that r and s may be assumed to be coprime. Since
s = rMN − kp with ∣∣∣∣

MN

p
− k

r

∣∣∣∣ <
(MNT

p2)

r
,

we can assume that k and r are coprime: if gcd(k, r) = d > 1, we can replace
r and k with r̃ = r/d and k̃ = k/d, which gives us s̃ = r̃MN − k̃p = s/d. The

inequality clearly still holds for r̃ and k̃ since k̃
r̃ = k

r and
(MNT

p2)

r <
(MNT

p2)

r̃ , but we
have smaller values for the interval, which is clearly more advantageous for the
search. Furthermore, r is also coprime to p (since p is a prime and 0 < r < p),
so we have

gcd(r, s) = gcd(r, rMN − kp) = gcd(r, kp) = 1 .

Once we have that gcd(r, s) = 1, finding all integer solutions of α′ = sα1 +
rα3 is straightforward. Well known number theoretic techniques give us that all
solutions are of the form

α1 = b + ir

α3 =
α′ − sb

r
− is

where b ≡ α′s−1 mod r. The problem is then to restrict the number of possible
solutions, and the choice of r and s helps us once again. Recall that we started
with the condition |s| < p/2, which forces r > p

2MN . Since 0 ≤ α1 < p
MN , there

are at most two possible (and easily determined) values of i, and we can verify
each one in time O(log p).

D Computing r and k

We now give a brief description of how to compute r and k using the continued
fraction method. For the theoretical background, the reader can refer to [18]. In
our context, we are trying to approximate the number γ = MN

p with a rational
k
r such that the approximation error is less than ε

r with 1
ε = p2

MNT = p

M
√

N
.

The continued fraction method works iteratively, giving approximations ki/ri

of γ (i ≥ 0). Since 0 < γ < 1, we can initialize the process with γ0 = γ, r0 = 1,
k0 = 0, r−1 = 0 and k−1 = 1. At each iterative step, we let ai = �γ−1

i−1� and
we compute ri = airi−1 + ri−2, ki = aiki−1 + ki−2, and γi = γ−1

i−1 − ai. The
continued fraction expansion of γ will be [0; a1, a2, a3, . . .].

To find an optimal pair (r, s), i.e. a pair that minimizes Mr + p
MN |s| (the

size of the interval that will be searched with the kangaroo method), we proceed
as follows. Once we have a first approximation ki

ri
of γ such that ri+1 < 1

ε , we
evaluate Li = Mri + p

MN |si| (with si = riMN − kip). We then continue the
iterations, keeping track of the best pair r, s found so far (in the form of a triple
(rj , sj, Lj). Once Mri+1 > Lj, we are done and we can set r = rj , s = sj . To
see that we find the optimal pair, observe that the value of ri never decreases,
so once Mri+1 > Lj all further iterations will produce an Li greater than Lj .
This will take no more than O(log p) steps.

New Description of SMS4 by an Embedding

over GF(28)

Wen Ji and Lei Hu

State Key Laboratory of Information Security,
Graduate School of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. SMS4 is a 128-bit block cipher which is used in the WAPI
standard in China for protecting wireless transmission data. Due to the
nature that the functions deployed in the round transformations of SMS4
operate on two different fields GF(28) and GF(2), it is difficult to an-
alyze this cipher algebraically. In this paper we describe a new block
cipher called ESMS4, which uses only algebraic operations over GF(28).
The new cipher is an extension of SMS4 in the sense that SMS4 can be
embedded into ESMS4 with restricted plaintext space and key spaces.
Thus, the SMS4 cipher can be investigated through this embedding over
GF(28). Based on this new cipher, we represent the SMS4 cipher with
an overdetermined, sparse multivariate quadratic equation system over
GF(28). Furthermore, we estimate the computational complexity of the
XSL algorithm for solving the equation system and find that the com-
plexity is 277 when solving the whole system of equations.

Keywords: block cipher, SMS4, ESMS4, algebraic equation, XSL
algorithm.

1 Introduction

SMS4 is a block cipher published in 2006, which was designed to be used in
the WAPI (Wired Authentication and Privacy Infrastructure) standard [1], and
WAPI is officially mandated for securing wireless networks within China. The
SMS4 cipher was carefully designed to resist standard block cipher attacks such
as linear and differential attacks. As far as we know, since its publication, there
have been only two papers analyzing this cipher [10,13], from the aspects of dif-
ferential power attack and integral attack, respectively. In this paper we analyze
the structure of SMS4 from a viewpoint of algebra.

In the last few years, algebraic attack on block ciphers has received much
attention. This mainly comes from the fact that a block cipher can be described
as a system of quadratic equations, and that solving this system can break the
cipher [4].

For solving a large nonlinear equation system some linearization methods
were presented, such as relinearization [8], XL [5], variants of XL [6] and XSL
[3,4]. Among these methods which all have large complexity, XSL is claimed to

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 238–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

New Description of SMS4 by an Embedding over GF(28) 239

be more efficient than other methods for solving some special equation systems
derived from ciphers like AES [3,4].

In Crypto’02, Murphy and Robshow introduced a new cipher BES which
uses simple algebraic operations over GF(28). With restricted plaintext and key
spaces, AES can be regarded as being identical to the BES cipher. Therefore,
the AES cipher can be described by using only algebraic operations over the
field GF(28) [11]. In the same paper they described the AES cipher with an
overdetermined multivariate system over GF(28), and indicated that this equa-
tion system is more sparse than the equation system on GF(2). Additionally,
the XSL algorithm is presented and it can solve this large equation system over
GF(28) far faster than the system over GF(2) in [4].

As in AES, the critical structure of the round transformations in SMS4 con-
sists of an S-box substitution and linear diffusion transformations, and they
operate over two different fields, GF(28) and GF(2). For example, the inversion
transformation of the S-box operates on GF(28), while the left cyclicly shifts in
linear diffusion transformations operate on GF(2). Thus, cryptanalysis on SMS4
becomes complicated due to the nature of transformations operating two differ-
ent fields. To avoid this drawback for the investigation of SMS4, we introduce a
new cipher called ESMS4, which is an extension of SMS4 by using the conjugate
transformation of bytes. All the transformations in ESMS4 operate on GF(28)
and SMS4 can be embedded in ESMS4 with restricted plaintext and key spaces.
Thus, we can discuss the SMS4 cipher over a unique field GF(28), and the alge-
braic cryptanalysis to SMS4 can be then simplified. With this new construction
in mind, we describe the SMS4 cipher with a system of multivariate quadratic
equations over GF(28) and find that the system of equations is very sparse.
Along this line, we discuss the computational complexity of XSL algorithm for
solving the equation system of the SMS4 cipher over GF(28), and we get that
the complexity is 277, which is much smaller than the resulting complexity 2401

of BES-128 [12]. We also find that with the increasing of the number of rounds,
the computational complexity increases slowly.

This paper is organized as follows. The SMS4 cipher is briefly reviewed in
Section 2, and its extension, ESMS4, is presented in Section 3. In Section 4, we
present a multivariate equation system over GF(28), which describes the SMS4
cipher. In Section 5, the computational complexity of XSL algorithm for solving
the system is investigated. Finally, the paper is concluded in Section 6.

1.1 Notation

In this paper we use the following notations. An 8-bit value is simply called a
byte, a 32-bit value a word, and a 128-bit value is called a block. In SMS4 the
input of each round is a 128-bit block, but the round transformations operate on
words. For convenience, the values over which the functions in round transfor-
mations operate are considered as an element of GF(28) or a column vector in
GF(2)8. When a column vector is multiplied by a matrix, the matrix will occur
on the left. Let F denote the field GF(28), then the SMS4 cipher is investigated

240 W. Ji and L. Hu

over the vector space F
4 which is denoted with A, and the new cipher ESMS4

is described over the vector space F
32 which is denoted with E .

2 A Brief Description of SMS4

In this section we briefly review the SMS4 block cipher. SMS4 encrypts a 128-bit
plaintext with a 128-bit key and outputs 128-bit ciphertext after 32 rounds of
nonlinear iterations.

Let (Xi, Xi+1, Xi+2, Xi+3) ∈ (GF(2)32)4 be the input block of the i-th round,
rki be the corresponding round key, Xi+j , rki ∈ GF(2)32, i = 0, · · · , 31, j =
0, · · · , 3. The i-th round transformation of SMS4 is defined as:

T : GF(2)128 × GF(2)32 → GF(2)128

(Xi, Xi+1, Xi+2, Xi+3, rki) �→ (Xi+1, Xi+2, Xi+3,
Xi ⊕ L(S∗(Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ rki))),

where L is a linear diffusion function and S∗ is a brick-layer function applying
an 8-bit S-box to the input 4 times in parallel. According to [10], the S-box used
in S∗ is a composition of three transformations, that is,

S(x) = L1 ◦ I ◦ L1(x), ∀x ∈ GF(2)8,

where L1 is an affine transformation defined by

L1(x) = A1x ⊕ c, ∀x ∈ GF(2)8,

here

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is an 8 × 8 matrix over GF(2) and c = (1, 1, 0, 0, 1, 0, 1, 1)T is a constant column
vector. I is a nonlinear transformation on GF(2)8 derived from the multiplicative
inversion on the field GF(28) ∼= GF(2)[x]/(f(x)), where

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1

is a binary irreducible polynomial and I maps the zero vector into itself. Finally,
the linear diffusion function L is defined as follows:

L : GF(2)32 → GF(2)32

x �→ x ⊕ (x <<< 2) ⊕ (x <<< 10) ⊕ (x <<< 18) ⊕ (x <<< 24).

New Description of SMS4 by an Embedding over GF(28) 241

The key scheduling algorithm of SMS4 operates in a similar manner as its
encryption. It generates 32 round keys rki of 32-bit length from a 128-bit cipher
key with 32 rounds of iteration. The round transformation of key schedule is
almost identical to that of the encryption algorithm, and a unique difference is
the linear diffusion function. In the key schedule the linear diffusion function L′

is replaced by
L′ : GF(2)32 → GF(2)32

x �→ x ⊕ (x <<< 13) ⊕ (x <<< 23).

To obtain the round keys, the cipher key K = (K0, K1, K2, K3) is first masked
with a system parameter FK = (FK0, FK1, FK2, FK3), where

FK = 0xa3b1bac656aa3350677d9197b27022dc (hexadecimal)

and then one sets

rk−4 = K0 ⊕ FK0, rk−3 = K1 ⊕ FK1,
rk−2 = K2 ⊕ FK2, rk−1 = K3 ⊕ FK3.

The round key for the i-th round is computed as follows:

rki = rki−4 ⊕ L′(S∗(rki−3 ⊕ rki−2 ⊕ rki−1 ⊕ cki)),

where the cki (0 ≤ i ≤ 31) are fixed constant vectors.

3 An Extended Cipher of SMS4

In this section we introduce a new block cipher named ESMS4, which is an
Extension of SMS4.

3.1 Extension Maps

Inversion. In the SMS4 cipher, the inversion transformation is identical to the
standard field inversion with 0(−1) = 0.

For any n-dimensional vector

a = (a0, · · · , an−1) ∈ F
n,

the inverse transformation on a is viewed as a componentwise operation

a(−1) = (a(−1)
0 , · · · , a

(−1)
n−1).

Vector Conjugate. For any a ∈ F, the vector conjugate of a is defined as

φ : F → F
8

a �→ â = (a20
, a21

, · · · , a27
).

This map can be extended in an obvious way to the n-dimensional vector con-
jugate map

φ′ : F
n → F

8n,

242 W. Ji and L. Hu

namely, for any a = (a0, · · · , an−1) ∈ F
n,

â = φ′(a) = (φ(a0), · · · , φ(an−1)).

It is obvious that the vector conjugate transformation is additive and preserves
the inversion, i.e.,

φ′(a + a′) = φ′(a) + φ′(a′),
φ′(a(−1)) = φ′(a)(−1).

Thus, any state vector of SMS4 in vector space A can be embedded into the
vector space E of ESMS4 with the vector conjugate map φ′.

In the following subsection we will describe the ESMS4 cipher in detail.

3.2 The ESMS4 Cipher

According to Section 2, the input block of each round in SMS4 is 128 bits,
i.e., 4 words, and the last three words first exclusive or to get a 32-bit word
that is a basis operated by the remaining functions in the round transforma-
tion. Therefore, in the following we only consider the state vectors in the vector
space A.

For any a = (a0, a1, a2, a3)T ∈ A, the corresponding column vector in the
vector space E of ESMS4 is represented as:

e = (φ(a0), φ(a1), φ(a2), φ(a3))
= (e00, · · · , e07, e10, · · · , e17, e20, · · · , e27, e30, · · · , e37).

This extension ensures that each function of the round transformation in SMS4
can be expressed by algebraic operations over F. So, the ESMS4 cipher can be
obtained from the SMS4 cipher by this corresponding relationship.

The basic operations in the round transformation of SMS4 include the exclu-
sive or operation, the inversion transformation, a GF(2)-affine transformation in
S-box, and a linear diffusion function. In the following we will get the ESMS4
cipher by extending these basic operations of SMS4 from GF(2) to F = GF(28).

First, the operations of exclusive or and inversion can be extended to F in
an obvious manner. This is due to that the two operations operate on bytes
componentwisely, the corresponding operations in ESMS4 only need preserving
this transformation by conjugate mapping φ. Next, we discuss the extension of
the other two operations detailedly.

The GF(2)-affine transformation in the S-box. We know that the GF(2)-
affine transformation is the composition of a GF(2)-linear transformation and an
exclusive or with a constant vector. The exclusive or operation can be extended
in the previous manner, that is, replicating the conjugate vector of the constant
vector 4 times, we will then get the corresponding constant vector C ∈ F

32.
As for a GF(2)-linear transformation l defined by

l(x) = A1x, ∀x ∈ GF(2)8,

we have the following extension.

New Description of SMS4 by an Embedding over GF(28) 243

According to [7,9], l can be represented with a linear combination of conju-
gates, i.e.,

l(a) =
7∑

k=0

λka2k

, ∀a ∈ F,

where λi ∈ F, i = 0, · · · , 7. With this equation in mind, we extend l over F to
the following 8 × 8 matrix L′

E:

L′
E =

⎛

⎜⎜⎜⎜⎝

(λ0)2
0

(λ1)2
0 · · · (λ7)2

0

(λ7)2
1

(λ0)2
1 · · · (λ6)2

1

...
... · · · ...

(λ1)2
7

(λ2)2
7 · · · (λ0)2

7

⎞

⎟⎟⎟⎟⎠
.

This matrix replicates the action of l on the first byte of a vector conjugate
set and ensures the vector conjugate property is preserved on the remaining
bytes. As for the entire GF(2)-linear operation l, it can be extended to F with a
32 × 32 matrix LE over F. And, LE is a block diagonal matrix with 4 identical
blocks L′

E.

Linear transformation. The linear diffusion function L of SMS4 includes 4
left cyclicly shift transformations, i.e., they left cyclicly shift 2, 10, 18, and 24
bits, respectively. Since these transformations only operate on bits instead of on
bytes, therefore, in order to extend these operations to F, we would transform
them to operate on bytes. In the following, we just discuss the left cyclicly 2-bit
shift and the other three cases can be discussed in a similar way.

For a = (a0, a1 · · · , a31) ∈ GF(2)32, after the transformation of left cyclicly
shifting 2 bits, a is transformed to b = (a2, · · · , a31, a0, a1). Suppose the first
two bytes of a are denoted with a1 = (a0, · · · , a7)T and a2 = (a8, · · · , a15)T ,
respectively. The first byte in b denoted b1 = (a2, · · · , a8, a9)T can be obtained
from a1 and a2 with the following equation:

b1 = A1a1 + B1a2,

where

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let A be a block diagonal 32 × 32 matrix over GF(2) consisting of 4 identical
blocks A1, and B a block diagonal 32×32 matrix with 4 identical blocks B1. Thus,

244 W. Ji and L. Hu

for any column vector a ∈ GF(2)32, the left cyclicly 2-bit shift transformation
can be described with the following equation:

b = Aa + B · Ca,

where

C =

⎛

⎜⎜⎝

08 I8 08 08

08 08 I8 08

08 08 08 I8

I8 08 08 08

⎞

⎟⎟⎠

is a 32 × 32 matrix over GF(2) consisting of four 8 × 8 identity matrices I8 and
twelve 8 × 8 zero matrices 08. Thus, the operation of left cyclicly shifting 2 bits
is transformed to operate on bytes.

In the following we extend this left cyclicly 2-bit shift transformation to F.
For any column vector a ∈ GF(2)8, set f1(a) = A1a and g1(a) = B1a. Again
according to [7,9], these two transformations can be represented as the following
form:

f1(a) =
7∑

k=0

λ1ka2k

, g1(a) =
7∑

k=0

λ2ka2k

,

where, a, λij ∈ F, i = 0, 1, j = 0, · · · , 7. In ESMS4 the corresponding operations
of f1 and g1 can be represented by the following two 8 × 8 matrices over F

EA1 =

⎛

⎜⎜⎜⎜⎝

(λ20)2
0

(λ21)2
0 · · · (λ27)2

0

(λ27)2
1

(λ20)2
1 · · · (λ26)2

1

...
... · · · ...

(λ21)2
7

(λ22)2
7 · · · (λ20)2

7

⎞

⎟⎟⎟⎟⎠

and

EB1 =

⎛

⎜⎜⎜⎜⎝

(λ30)2
0

(λ31)2
0 · · · (λ37)2

0

(λ37)2
1

(λ30)2
1 · · · (λ36)2

1

...
... · · · ...

(λ31)2
7

(λ32)2
7 · · · (λ30)2

7

⎞

⎟⎟⎟⎟⎠
,

respectively. These two matrices replicate the action of the transformation f1 and
g1 on the first byte of a vector conjugate set and ensure the vector conjugate
property is preserved on the remaining bytes.

Therefore, for any b ∈ E , the operation of left cyclicly shifting 2 bits can be
extended to ESMS4 with the following way:

EAb + C · EBb,

where, EA is a block diagonal matrix with 4 identical blocks EA1 , and EB also is
a block diagonal matrix with 4 identical blocks EB1 . Let Lσ1 denote EA+C ·EB ,
thus this transformation can be written as Lσ1b.

New Description of SMS4 by an Embedding over GF(28) 245

With a similar method, the operations of left cyclicly shifting 10, 18, and 24
bits can all be extended to ESMS4, and let Lσ2 , Lσ3 , and Lσ4 denote corre-
sponding 32 × 32 matrices of them over F, respectively.

Now we can extend the linear diffusion function L from GF(2) to F, and the
corresponding transformation is still denoted with L, which can be written as:

L(b) = Ib + Lσ1b + Lσ2b + Lσ3b + Lσ4b, (1)

where, b ∈ E , I is a 32 × 32 identity matrix over GF(2).
Let Lσ denote I + Lσ1 + Lσ2 + Lσ3 + Lσ4 . Thus, the equation (1) can be

simplified and represented as L(b) = Lσb.
By far we have completed the extension of basic operations in SMS4 to

ESMS4. From Section 2, the basic operations in the key schedule of SMS4 are
same to those in encryption algorithm. Therefore, similarly to the encryption al-
gorithm the key schedule of SMS4 can be extended to ESMS4. Thus, the ESMS4
cipher is obtained completely.

We define EA to be the embedded image of the SMS4 state space in the ESMS4
state space. We have the following commuting diagram shown in Fig. 1.

A

rk ()rk SMS4 ESMS4

1

A

Fig. 1. Relationship between SMS4 and ESMS4

4 Multivariate Quadratic Equations

In this section we show that the SMS4 cipher can be expressed with a system of
sparse multivariate quadratic equations over F. To do this we need to describe
the ESMS4 cipher in such an equation system.

From the previous section we know that the ESMS4 cipher is an extension of
SMS4 by the conjugate transformation of bytes, and completely describes the
encryption of SMS4. Before describing the ESMS4 cipher with the system of
equations over F, we first give some notations.

Suppose (X0, X1, X2, X3) ∈ (F32)4 is the input block of ESMS4 and the cor-
responding ciphertext is (X32, X33, X34, X35) ∈ (F32)4. And for the i-th round
(0 ≤ i ≤ 31), the input of the affine transformation in S-box is denoted with Wi;
the input and output variables of inversion transformation are denoted by Vi and

246 W. Ji and L. Hu

Yi, respectively; the input and output variants of linear diffuse transformation
are denoted with Ui and Zi, respectively, and the round key is denoted with
RKi.

Then, the encryption algorithm of ESMS4 can be described with the following
equation system:

Wi = Xi + Xi+1 + Xi+2 + RKi

Vi = LEWi + C

Yi = V
(−1)
i

Ui = LEYi + C
Zi = LσUi

Xi+3 = Xi−1 + Zi, all for 0 ≤ i ≤ 31.

Let LB, D denote LσLE and LσC, respectively, the system of equations can be
simply written as:

Wi = Xi + Xi+1 + Xi+2 + RKi

Vi = LEWi + C

Yi = V
(−1)
i

Zi = LBYi + D
Xi+3 = Xi−1 + Zi.

(2)

Now we consider these equations componentwisely. For convenience, the ma-
trix LE is denoted with (α), LB with (β), respectively; the (8j+m)-th component
of Wi, Vi, Yi, Zi, and Xi is represented as Wi,(j,m), Vi,(j,m), Yi,(j,m), Zi,(j,m), and
Xi,(j,m), respectively for m = 0, · · · , 7, j = 0, · · · , 3. With these notations the
equation system (2) can be expressed as :

Wi,(j,m) = Xi,(j,m) + Xi+1,(j,m) + Xi+2,(j,m) + Ki,(j,m)

Vi,(j,m) = (LEWi)(j,m) + C(j,m)

Yi,(j,m) = V
(−1)
i,(j,m)

Zi,(j,m) = (LBYi)(j,m) + D(j,m)

Xi+3,(j,m) = Xi−1,(j,m) + Zi,(j,m),

for m = 0, · · · , 7, j = 0, · · · , 3. By investigating the S-box in SMS4, we found
that the probability of 0-inverse occurring is only O(2−10). In this case, we
could assume there is no 0-inverse in the equations discussed. Based on this
assumption, the previous system of equations has the following form:

0 = Xi,(j,m) + Xi+1,(j,m) + Xi+2,(j,m) + Ki,(j,m) + Wi,(j,m)

0 = (LEWi)(j,m) + C(j,m) + Vi,(j,m)

0 = Vi,(j,m)Yi,(j,m) + 1
0 = (LBYi)(j,m) + D(j,m) + Zi,(j,m)

0 = Xi−1,(j,m) + Zi,(j,m) + Xi+3,(j,m).

(3)

It is obvious that the equation system (3) fully describes the encryption of
ESMS4. Using the notations (α) and (β), this system can be further represented
as:

New Description of SMS4 by an Embedding over GF(28) 247

0 = Xi,(j,m) + Xi+1,(j,m) + Xi+2,(j,m) + Ki,(j,m) + Wi,(j,m)

0 = C(j,m) + Vi,(j,m) +
∑

(j′,m′) α(j,m),(j′,m′)Wi,(j′,m′)

0 = Vi,(j,m)Yi,(j,m) + 1
0 = D(j,m) + Zi,(j,m) +

∑
(j′,m′) β(j,m),(j′,m′)Yi,(j′,m′)

0 = Xi−1,(j,m) + Zi,(j,m) + Xi+3,(j,m).

If considering the conjugate property of variables, we could get more quadratic
equations. Adding these equations to the equation system, we get the resulting
system which describes the SMS4 encryption over F,

0 = Xi,(j,m) + Xi+1,(j,m) + Xi+2,(j,m) + Ki,(j,m) + Wi,(j,m)

0 = C(j,m) + Vi,(j,m) +
∑

(j′,m′) α(j,m),(j′,m′)Wi,(j′,m′)

0 = D(j,m) + Zi,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)Yi,(j′,m′)

0 = Xi−1,(j,m) + Zi,(j,m) + Xi+3,(j,m)

0 = Vi,(j,m)Yi,(j,m) + 1
0 = V 2

i,(j,m) + Vi,(j,m+1)

0 = Y 2
i,(j,m) + Yi,(j,m+1),

where, i = 0, · · · , 31, m = 0, · · · , 7, and j = 0, · · · , 3.
In this equation system, there are totally 32 × 5 × 32 + 32 × 2 × 32 = 7168

equations over F, of which 32 × 3 × 32 = 3027 quadratic equations and 4096
linear equations. In addition,

36 × 32 + 32 × 2 × 32 + 32 × 32 × 2 + 32 × 32 + 32 × 32 × 2 = 8320

terms appear in the system in total, and they comprise 36 × 32 + 32 × 32 × 4 =
1152+4096 = 5248 variables, and among them, there are 1152 key variables and
4096 intermediate variables.

With a similar method, the key schedule of SMS4 can also be described with a
multivariate quadratic system over F. After computation, this system comprises
7168 equations, of which 4096 linear equations and 3027 quadratic equations; all
these equations consist of 6144 variables.

Thus, for the SMS4 cipher we can totally obtain 7168 × 2 = 14336 equations
over F, and these equations are composed of 4096 × 2 = 8192 linear equations
and 3072×2 = 6144 quadratic equations. The whole system includes only 8320+
9216 = 17536 terms in total, which shows this multivariate quadratic system is
very sparse. In the next section we discuss the computational complexity of XSL
algorithm for solving the equation system.

5 Solving the Equation System of SMS4 with the XSL
Algorithm

XSL algorithm has two versions. The first one is introduced in [3], and the second
one is called “compact XSL” and proposed in [4]. In the first version, XSL algo-
rithm presents two different attacks, one eliminates the key schedule equations
but requires a number of pairs of plaintexts and ciphertexts, while the other uses
the key schedule equations and only works with a single plaintext-ciphertext pair.

248 W. Ji and L. Hu

According to [3] the second attack is more specific for the structure of the cipher
itself, in this paper we base our discussion of XSL technique on this attack.

According to [2,3], there are four main steps in XSL algorithm, and the fol-
lowing is a brief description.

Step 1. Process the existing set of equations, by choosing certain sets of mono-
mials and equations that will be used during the later steps of the algorithm.

Step 2. Select the value of the parameter P, and multiply the chosen equations
by the product of P − 1 selected monomials. This is the “core” of XSL and
should generate a large number of equations whose terms are the product of the
monomials chosen earlier.

Step 3. Perform the “T ′ method”, in which some selected equations are
multiplied by a single variable. The goal is to generate new equations without
creating any new monomials. Iterate with as many variables as necessary until
the system has enough linearly independent equations to apply linearization.

Step 4. Apply linearization, by considering each monomial as a new variable
and performing Gaussian elimination. This should yield a solution for the system.

The Step 3 is usually called “T ′ method”, which is a critical technique of the
XSL algorithm. All the new equations are generated in this step. These new
equations can be divided into two sets; one is obtained by exploiting S-boxes
and the other generated by the linear diffusion layers.

Before investigating the computational complexity of XSL algorithm for solv-
ing the equation system which describes the SMS4 cipher over F, we give some
notations from [3].

B: the number of S-boxes in each round;
Nr: the number of encryption rounds;
R: the set of all equations generated by S-boxes of the cipher and R denotes
the cardinality of R;
R′: the set of all equations generated by the equations of the linear diffusion
layer and R′ denotes the cardinality of R′;
T : the set of all monomials generated by S-boxes of the cipher and T denotes
the cardinality of T ;
T ′

i : the set of monomials in the system such that xi · T ′
i ⊆ T and T ′ denotes

the cardinality of T ′
i ;

t: the number of monomials in the S-box equation;
t′: the number of monomials in the S-box equations to be used in the T ′

method;
s: the number of bits operated by the S-box;
r: the number of equations in an S-box;
S: the total number of S-boxes in the cipher and the key schedule;
P : the critical parameter used in XSL.

In the following discussion, we consider the encryption algorithm and the key
schedule simultaneously. We first present some formulas for computing the com-
putational complexity of XSL algorithm without interpretation. For the details,
see [3].

New Description of SMS4 by an Embedding over GF(28) 249

The total number of equations generated by the S-boxes is about:

R ≈ r ∗ S ∗ t(P−1) ∗
(

S − 1
P − 1

)
.

The total number of terms in these equations is about:

T ≈ tP ∗
(

S

P

)
. (4)

After eliminating obvious linear dependencies, the number of equations could be
computed by the following formula:

R ≈
∑

i=1,··· ,P

(
S

i

)
ri ∗

(
S − i

P − i

)
(t − r)(p−i) =

(
S

P

)
∗ (tP − (t − r)P).

The total number of terms in these equations still can be computed with formula
(4).

The number of equations generated by linear diffusion layer (including the
equations generated by the linear diffusion layer of the key schedule) can be
computed with the following formula:

R′ ≈ 2 ∗ 2 ∗ s ∗ B ∗ Nr ∗ (t − r)(P−1) ∗
(

S

P − 1

)
.

At last, the number of terms generated by “T ′ method” could be represented
as:

T ′ ≈ t′ ∗ t(P−1) ∗
(

S − 1
P − 1

)
.

According to [3], the working condition of the “T ′ method” is:

R + R′

T − T ′ > 1,

that is,
T − R − R′ < T ′. (5)

With this formula, we could compute the least value P which makes the XSL
technique work. Suppose ω is the constant used for computing the complexity
of the Gaussian elimination, then the complexity of the XSL attack is about

T ω ≈ tωP ∗
(

S

P

)ω

.

These equations all take on their general forms in the XSL algorithm. However,
when XSL algorithm applied to different ciphers, these formulas need to be
changed slightly.

250 W. Ji and L. Hu

In the following, we present formulas to compute the complexity of the XSL
algorithm for solving the equation system describing SMS4 over F by investigat-
ing the ESMS4 cipher.

Based on the previous formulas, the number of equations generated by S-boxes
in ESMS4 can be computed with the following formula:

R ≈
(

S

P

)
∗ (tP − (t − r)P),

the number of terms in these equations is described as:

T ≈ tp ∗
(

S

P

)
,

and the total number of equations generated through the linear diffusion layers
is about:

R′ ≈ 2 ∗ 2 ∗ s ∗ B ∗ Nr ∗ (t − r)(P−1) ∗
(

S

P − 1

)
.

The number of terms generated by “T ′ method” could be estimated by the
formula:

T ′ ≈ t′ ∗ t(P−1) ∗
(

S − 1
P − 1

)
.

In the case of ESMS4, we have the following values: B=4, Nr=32, S=256,
t′=3, t = 5 × 8 + 1 = 41, r = 3 × 8 = 24, s=8.

After computation with the formula (5), we get the least value P=2 which
makes the XSL algorithm work. In general we consider ω=3, then the computa-
tional complexity of XSL algorithm attacking to ESMS4 is

T 3 = 416 ·
(

256
2

)3

= 277.

In other words, when solving the multivariate quadratic system of SMS4 over
F by XSL algorithm, the computational complexity is only 277. Table 1 lists
the computational complexity of the XSL algorithm on the different number of
rounds under the condition P=2.

Table 1. The complexity of different rounds

Nr 4 5 6 7 8 9 10 11 12 13
complexity 259 261 262 264 265 266 267 268 268 269

Nr 14 15 16 17 18 19 20 21 22 23
complexity 270 270 271 271 272 272 273 273 274 274

Nr 24 25 26 27 28 29 30 31 32
complexity 274 275 275 275 276 276 276 277 277

From this table we can see that the computational complexity increases slowly
with the increasing of the number of rounds.

New Description of SMS4 by an Embedding over GF(28) 251

6 Conclusion

In this paper we extended the SMS4 cipher to a new cipher ESMS4 over GF(28)
by the conjugate transformation. With restricted plaintext and key spaces SMS4
is identical to ESMS4. In this case, all operations in the round transformation
of SMS4 can be considered operating on GF(28). Thus, the difficulty that inves-
tigating the SMS4 cipher operating over two different fields GF(28) and GF(2)
is avoided, which makes algebraic cryptanalysis for SMS4 easier. We described
SMS4 with an extremely sparse overdetermined multivariate quadratic system
over GF(28), whose solution will recover a cipher key of SMS4. Based on this fact,
we used the XSL algorithm to solve the equation system describing the SMS4
cipher over GF(28), and estimated the computational complexity. As a result,
we found that the complexity of solving the whole system with XSL algorithm
is 277, which is much smaller than the resulting complexity for the embedding
cipher of AES.

References

1. Beijing Data Security Company, The SMS4 Block Cipher (in Chinese), Beijing
(2006), available at http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

2. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

3. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, Cryptology ePrint Archive, Report, /044, 2002 (2002), available
at http://eprint.iacr.org/2002/044

4. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

5. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

6. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

7. Daemen, J., Rijmen, V.: AES proposal: The Rijndael block cipher. Springer, Hei-
delberg (1999)

8. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–
30. Springer, Heidelberg (1999)

9. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge (1984)

10. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.: Analysis of
the SMS4 Block Cipher. In: ACISP 2007. LNCS, vol. 4586, pp. 158–170. Springer,
Heidelberg (2007)

11. Murphy, S., Robshaw, M.: Essential Algebraic Structure within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

12. Lim, C., Khoo, K.: An Analysis of XSL Applied to BES. In: FSE 2007. LNCS,
vol. 4593, pp. 242–253. Springer, Heidelberg (2007)

13. Zhang, L., Wu, W.: Difference Fault Attack on the SMS4 Encryption Algorithm
(in Chinese). Chinese Journal of Computers 29(9), 1596–1602 (2006)

http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://eprint.iacr.org/2002/044

Tweakable Enciphering Schemes from

Hash-Sum-Expansion

Kazuhiko Minematsu1,2 and Toshiyasu Matsushima2

1 NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

2 Waseda University, 3-4-1 Okubo Shinjuku-ku Tokyo, Japan

Abstract. We study a tweakable blockcipher for arbitrarily long
message (also called a tweakable enciphering scheme) that consists of
a universal hash function and an expansion, a keyed function with short
input and long output. Such schemes, called HCTR and HCH, have been
recently proposed. They used (a variant of) the counter mode of a block-
cipher for the expansion. We provide a security proof of a structure
that underlies HCTR and HCH. We prove that the expansion can be
instantiated with any function secure against Known-plaintext attacks
(KPAs), which is called a weak pseudorandom function (WPRF). As an
application of our proof, we provide efficient blockcipher-based schemes
comparable to HCH and HCTR. For the double-block-length case, our
result is an interesting extension of previous attempts to build a double-
block-length cryptographic permutation using WPRF.

Keywords: Mode of operation, HCTR, HCH, Weak Pseudorandom
Function.

1 Introduction

A tweakable blockcipher, introduced by Liskov, Rivest, and Wagner [8], is a
blockcipher that accepts an additional input called tweak. Formally, a ciphertext
of a tweakable blockcipher, Ẽ, is C = ẼK(M, T), where M is a plaintext, K is
the key, and T is the tweak. It is length-preserving, i.e., |C| = |M | always
holds. In this paper, we study the tweakable blockcipher with arbitrarily long
message, which is also called the tweakable enciphering scheme (TES)[20]. A
typical application of TES is the disk sector encryption, where a plaintext is a
content of a sector, and a tweak is used to specify the sector number. The first
approach to TES is Naor and Reingold [18]. They proposed to use the ECB mode
with lightweight mixing layers applied to the top and bottom. Although they
did not consider the tweak, it is easy to make their proposal tweakable. Their
scheme was proved to be secure against any combination of Chosen-plaintext
attack (CPA) and Chosen-ciphertext attack (CCA). Since then, many TESs
have been proposed (e.g., [6][5][14]).

Our target is based on the Naor and Reingold’s approach. This uses the Sum-
Expansion instead of ECB mode. The Sum-Expansion for �-bit message con-
sists of an n-bit blockcipher, EK , and a keyed function with n-bit input and

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 252–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tweakable Enciphering Schemes from Hash-Sum-Expansion 253

(� − n)-bit output, denoted by FK′ . Let Σn denote {0, 1}n. Then, for mes-
sage x = (xL, xR), xL ∈ Σn, xR ∈ Σ�−n, the Sum-Expansion is defined as
ϕ[EK , FK′](xL, xR) = (EK(xL), FK′(xL ⊕ EK(xL)) ⊕ xR), where xL ⊕ EK(xL)
is called the I/O sum. An unbalanced Feistel permutation using a universal hash
function is applied to the top and bottom of Sum-Expansion. This structure,
which we call Hash-Sum-Expansion (HSE), has been employed by previous pro-
posals. HCTR [20] uses the Sum-Expansion ϕ[EK ,CTR[EK]], where CTR[EK]
is the counter mode of the blockcipher EK that uses I/O sum as a counter (See
Sect. 4). HCH [2] is similar, but the I/O sum is encrypted by EK before it is given
to CTR[EK]. Our purpose is to prove the security of HSE based on the abstract
properties of its components, in particular the property of the expansion. That
is, we want to identify the sufficient security conditions for each component. Our
main contribution is to prove that, if the expansion is an independently-keyed
function secure against any practical known-plaintext attack (KPA), the resulting
HSE is provably secure. Such a KPA-secure function is called a weak pseudo-
random function (WPRF). Its construction and application have been studied
in many papers [17][3][12][13]. Our result demonstrates the soundness of using
the counter mode, as we prove that the counter mode of a CPA-secure block-
cipher is a (length-expanding) WPRF. However our proof can not be obtained
by extending the proofs of previous modes. Moreover, our proof enables us to
use any WPRF other than the counter mode, in order to improve the efficiency
or security. Although we do not have a practical proposal at this moment, we
briefly discuss this issue in Sect. 4.2.

Our result is also useful in designing secure and efficient TESs. Combined
with the idea of tagged tweakable blockcipher (See Sect. 4.1), we provide an
implementation of HSE based on a blockcipher. The resulting mode is similar
to HCH and HCTR. However, it has a better security bound than that of HCTR
and is comparable to HCH (or, slightly faster if preprocessing is allowed). We
also describe how to improve the security of HCTR with small changes.

A more theoretical (but still interesting) application of our result is build-
ing a double-block-length (i.e., � = 2n, DBL for short) permutation. Recent
studies [12][16] showed that a CPA-secure DBL permutation can be built us-
ing one CPA-secure and KPA-secure functions. However, it was not clear if a
similar construction is possible for building a CCA-secure DBL permutation:
previous approaches needed at least two CPA-secure functions (or CCA-secure
permutations, see Sect. 4.3). In contrast, HSE for � = 2n is a CCA-secure DBL
permutation using one CCA-secure permutation and one KPA-secure function.

2 Preliminaries

Let Σn denote {0, 1}n and Σ∗ denote the set of all finite-length binary se-
quences. The bit length of x is denoted by |x|. A uniform random function
(URF) with n-bit input and �-bit output, denoted by Rn,�, is a random variable
uniformly distributed over {f : Σn → Σ�}. Similarly, a random variable uni-
formly distributed over all n-bit permutations is an n-bit block uniform random

254 K. Minematsu and T. Matsushima

permutation (URP) and is denoted by Pn. A tweakable n-bit URP with n′-bit
tweak is defined by the set of 2n′

independent URPs (i.e., an independent n-bit
URP is used for each tweak) and is denoted by P̃n,n′ . We write P̃n if n′ is clear
from the context. If FK : X → Y is a keyed function, then FK is a random
variable (not necessarily uniformly) distributed over {f : X → Y}. If FK is a
keyed permutation, F−1

K will denote its inversion. If its key, K, is uniform over
K, we have Pr(FK(x) = y) = {k ∈ K : f(k, x) = y}/|K| for some function
f : K × X → Y. We will omit the subscript K and write F : X → Y, when K is
clear from the context.

Elements of GF(2n). Following [19], we express the elements of field GF(2n)
by the n-bit coefficient vectors of the polynomials in the field. We alternatively
represent n-bit coefficient vectors by integers 0, 1, . . . , 2n −1. For example, 5 cor-
responds to the coefficient vector (00 . . .0101) (which corresponds to the poly-
nomial x2 + 1) and 1 corresponds to (00 . . . 01), i.e., the identity element. For
x, y ∈ Σn, we define xy as the field multiplication of corresponding elements.

Security notions. Consider the game in which we want to distinguish two keyed
functions, G and G′, using a black-box access to them. We define classes of at-
tacks: Chosen-plaintext attack (CPA), Known-plaintext attack (KPA), where
plaintexts are independent and uniformly random, and Chosen-ciphertext at-
tack (CCA), and CCA with tweak, i.e., a tweak and a plaintext (or cipher-
text) can be arbitrarily chosen by the adversary. Obviously, CCA (with tweak)
can be defined when G and G′ are keyed (tweakable) permutation. Let atk ∈
{cpa, kpa, cca, c̃ca}, where c̃ca denotes CCA with tweak. The maximum advan-
tage of adversary using atk in distinguishing G and G′ is:

AdvatkG,G′(θ)
def= max

A:θ−atk

∣∣ Pr[AG = 1] − Pr[AG′
= 1]

∣∣, (1)

where AG = 1 denotes that A’s guess is 1, which indicates one of G or G′. The
parameter θ denotes the attack resource, such as the number of queries, q, and
time complexity, τ . If θ does not contain τ , the adversary has no computational
restriction. The maximum is taken for all atk-adversaries having θ. For KPA,
we assume a generation of q random n-bit plaintexts requires O(q) time. For
G : Σn → Σm, we have

AdvprfG (θ) def= AdvcpaG,Rn,m
(θ), and AdvwprfG (θ) def= AdvkpaG,Rn,m

(θ),

and if G is an n-bit keyed permutation, AdvsprpG (θ) def= AdvccaG,Pn
(θ). Moreover, if G

is an n-bit keyed tweakable permutation, we define Advs̃prpG (θ) def= Advc̃ca
G,P̃n

(θ). If

AdvprfG (θ) is negligibly small for any practical θ including τ , G is a pseudorandom
function (PRF)[4]. If G is invertible, it is also called a pseudorandom permutation
(PRP). Similarly, if AdvwprfG (θ) is negligibly small for any practical θ, G is a weak
pseudorandom function (WPRF), and if G is a keyed permutation with negligibly
small AdvsprpG (θ), G is a strong pseudorandom permutation (SPRP). Finally, if
G is a tweakable keyed permutation with negligibly small Advs̃prpG (θ), G is called
a tweakable SPRP.

Tweakable Enciphering Schemes from Hash-Sum-Expansion 255

For keyed functions E : Σs → Σn and F : Σn → Σ�, let E�F : Σs → Σn+� be
the composition such that E�F (x) = (E(x), F (E(x))). For F and G : Σn → Σ�,
we have the following relationships between cpa and kpa-advantages. For the
proofs, see [15] (the second claim is Lemma 2.1 of [15]).

AdvkpaF,G(q, τ) = AdvcpaRm,n� F,Rm,n� G(q, τ ′) for any m ≥ q, and (2)

AdvcpaE�F,E�G(q, τ) ≤ 2AdvcpaE,Rs,n
(q, τ) + AdvkpaF,G(q, τ ′), where τ ′=τ + O(q). (3)

These definitions are for the fixed input length (FIL) setting. However, they
can be naturally extend for the variable input length (VIL) setting, where an
adversary can change the input length, by considering VIL versions of URF and
URP. Every security notion will denote the security under FIL (VIL) model if
the target functions are FIL (VIL).

3 The Security of Hash-Sum-Expansion

3.1 Main Theorem

We prove the c̃ca-security of HSE. The basic HSE described in Introduction has
no tweak, however it can be tweakable with a slight modification. We assume
the unit block length is n-bit, and the message length is �-bit. Here, � is not
necessarily a multiple of n. For simplicity, we assume � > n. All proposals of
this paper can be easily extended to the case � = n. We also assume the tweak
length is n-bit. The tweakable HSE uses three keyed functions. The first is Ẽ,
an n-bit block tweakable blockcipher with n-bit tweak. If tweak is not needed,
it is an n-bit blockcipher, E. The second and third are keyed functions F :
Σn → Σ�−n and H : Σ�−n → Σn. We first consider the FIL scheme. The
VIL scheme will be described later. Let HSE[H, Ẽ, F] denote HSE using H ,
Ẽ, and F . The encryption of HSE[H, Ẽ, F] is as follows. For plaintext x ∈ Σ�

and tweak t ∈ Σn, we first partition x into xL ∈ Σn and xR ∈ Σ�−n. Then,
we compute S = xL ⊕ H(xR), U = Ẽ(S, t), and V = S ⊕ U . The ciphertext
y = (yL, yR) is computed as yR = F (V) ⊕ xR and yL = U ⊕ H(yR). The
Sum-Expansion, ϕ[Ẽ, F], is a tweakable permutation defined as ϕ[Ẽ, F](x, t) =
(Ẽ(xL, t), F (xL ⊕ Ẽ(xL, t)) ⊕xR). See Fig. 1. The decryption procedure is clear,
thus omitted here.

If Pr[H(x) ⊕ H(x′) = c] ≤ ε for any c ∈ Σn and any distinct inputs x and x′,
H is called an ε-almost XOR universal (ε-AXU) hash function [21]. We prove
that HSE[H, Ẽ, F] is c̃ca-secure, if Ẽ is a tweakable SPRP, and H is an ε-AXU
hash function, and F is a WPRF.

Theorem 1. If H, and Ẽ, and F are independent and H is ε-AXU, we have

Advs̃prp
HSE[H,Ẽ,F]

(�, q, τ) ≤ Advs̃prp
Ẽ

(q, τ ′) + AdvwprfF (q, τ ′) + q2ε +
2q2

2n
,

where the message is �-bit, and τ ′ = τ + O(q).

256 K. Minematsu and T. Matsushima

Algorithm 3.1: HSE[H, Ẽ, F](x, t)

Partition x into (xL ∈ Σn, xR ∈ Σ�−n)
S ← xL ⊕ H(xR)

U ← Ẽ(S, t)
V ← S ⊕ U
yR ← F (V) ⊕ xR

yL ← U ⊕ H(yR)
y ← (yL, yR), return (y)

...
...

...
E E˜ ˜

t x xL

L R

R

H

H

S
V

U

y y

F F,[]

...

...

...

φ

Fig. 1. Encryption procedure of HSE (left) and the structure of HSE (right)

Proof. Let Q be HSE[H, Ẽ, F], and let Qpf be HSE[H, P̃n, F], and let Qpr be
HSE[H, P̃n, Rn,�−n]. Using triangle inequality, we have

Advs̃prpQ (q, τ) = Advc̃ca
Q,P̃�

(q, τ) ≤ Advc̃caQ,Qpf
(q, τ)+Advc̃caQpf,Qpr

(q, τ)+Advc̃ca
Qpr,P̃�

(q, τ).
(4)

First, we have

Advc̃caQ,Qpf
(q, τ) ≤ Advc̃ca

Ẽ,P̃n
(q, τ ′) = Advs̃prp

Ẽ
(q, τ ′), (5)

which follows from the standard arguments (e.g., see [1]). Next, we focus on
Advc̃caQpf,Qpr

(q, τ). Observe that any CCA can be described as a CPA having an
additional 1-bit input, w, as oracle indicator. Here, w = 0 (w = 1) means the
access to encryption (decryption) oracle. Since H is common to both Qpf and
Qpr, we have

Advc̃caQpf,Qpr
(q, τ) ≤ Advc̃ca

ϕ[P̃n,F],ϕ[P̃n,Rn,�−n]
(q, τ ′) ≤ AdvcpaP⊕

n � F,P⊕
n � Rn,�−n

(q, τ ′),

(6)

where P⊕
n is a keyed function: Σn × Σn × Σ → Σn that uses P̃n such as

P⊕
n (v[1], v[2], w) =

{
P̃n(v[1], v[2]) ⊕ v[1] if w = 0,

P̃
−1

n (v[1], v[2]) ⊕ v[1] if w = 1.

Here, (v[1], v[2]) corresponds to (input, tweak) for P̃n. Note that, a pair of queries
that is adaptively chosen can cause a P⊕

n -output collision with probability one.
Since such a pair is pointless, we only have to consider cpa without such queries,
which is denoted by cpa′. Then we have

AdvcpaP⊕
n � F,P⊕

n � Rn,�−n
(q, τ ′) = Advcpa

′

P⊕
n � F,P⊕

n � Rn,�−n
(q, τ ′)

≤ 2Advcpa
′

P⊕
n ,R2n+1,n

(q, τ ′) + AdvkpaF,Rn,�−n
(q, τ ′). (7)

Tweakable Enciphering Schemes from Hash-Sum-Expansion 257

The inequality of Eq. (7) follows from Eq. (3), as Eq. (3) holds for a constrained
CPA such as cpa′. A simple collision analysis provides

Advcpa
′

P⊕
n ,R2n+1,n

(q, τ ′) ≤ Advcpa
′

P⊕
n ,R2n+1,n

(q) ≤
(

q

2

)
1
2n

. (8)

Thus, combining Eqs. (6)(7)(8), we obtain

Advc̃caQpf,Qpr
(q, τ) ≤ AdvkpaF,Rn,�−n

(q, τ ′) +
(

q

2

)
2
2n

≤ AdvwprfF (q, τ ′) +
q2

2n
. (9)

For the last term of Eq. (4), we have the following information-theoretic bound.

Lemma 1. Advc̃ca
Qpr,P̃�

(q, τ) ≤ Advc̃ca
Qpr,P̃�

(q) ≤ q2ε + q2/2n.

The proof of Lemma 1 is based on Maurer’s method (see Appendix. A) and
written in Appendix B. The proof of Theorem 1 is completed by combining
Eqs. (4)(5)(9) and Lemma 1.

3.2 Variants of HSE

Different tweak processing. We can think of another tweak processing, where
tweak t is a part of H ’s input. With this tweak processing, we use H(xR‖t) and
H(yR‖t) instead of H(xR) and H(yR), and U is defined as E(S) for a (non-
tweakable) blockcipher E. This variant is called HSE type 2. It has almost the
same security proof as that of HSE defined in Sect. 3.1 (we call it HSE type 1
if it is confusing). The following is the security proof of HSE type 2.

Theorem 2. Let HSE2[H, E, F] be the HSE type 2. If H, E, and F are inde-
pendent and H is ε-AXU for �-bit inputs (as |xR‖t| = �), Advs̃prpHSE2[H,E,F](q, τ) is

at most AdvsprpE (q, τ ′) + AdvwprfF (q, τ ′) + 2q2ε + 2q2/2n, where τ ′ = τ + O(q).

The proof of Theorem 2 will be given in the full paper1. Type 2 tweak processing
has been employed by HCTR. In practice, the difference in the tweak processing
type may slightly affect the performance characteristic (see Sect. 4.1).

VIL schemes. Converting HSE (of both types) into a VIL scheme requires H
to be a VIL-AXU hash function: it must assure a small differential probability
of outputs for any pair of finite-length inputs. Typically, such hash functions
can be obtained from FIL-AXU hash functions with some input encodings. For
example, the polynomial evaluation hash over GF(2n), defined as polyK(x) def=
Km ·x[1]+· · ·+K ·x[m], where x = (x[1]‖ . . . ‖x[m]), x[i] ∈ Σn, |x| = nm, is m/2n-
AXU if K ∈ Σn is uniform (note that we interchangeably use Σn and GF(2n)
to denote n-bit variable) for any m-block inputs. Let len(x) ∈ Σn denote the

1 The proof structure is the same as Theorem 1. However, the proof will require few
more steps for bounding the c̃ca-advantage between Qpr and P̃�. This results in the
additional constant εq2.

258 K. Minematsu and T. Matsushima

n-bit representation of |x|. We define pad(x) = x if γ = |x| mod n = 0, and
pad(x) = x‖0∗, where 0∗ denotes the (n − γ)-bit sequence of all zeros. Then,

H(x) = polyK(pad(x)‖len(x)) (10)

accepts any finite-length input. It is (m + 1)/2n-AXU if |x| ≤ nm. Almost the
same hash function was employed in HCTR with tweak processing type 2. For
completeness, the encryption procedure of HCTR is in the right of Fig. 2. For
both of tweak processing types, the security proof of the VIL scheme is almost
the same as Theorems 1 and 2. Thus we omit it here.

4 Applications

4.1 Implementation Based on a Blockcipher

As mentioned, our primal purpose is proving the security of general HSE, rather
than specifying a concrete implementation. At the same time, our result can be
useful in building concrete TESs. In this section, we describe an implementation
of HSE type 1 using a blockcipher. As well as HCTR, we use counter mode
and field multiplication. The resulting scheme is similar to HCTR and HCH.
However, it has a better security bound than that of HCTR and is comparable
to HCH. We first describe a FIL scheme using one blockcipher key. To start with,
we prove that the counter mode of E is a WPRF if E is a PRP.

Lemma 2. Let CTRm[E] : Σn → Σm be the counter mode of E, such as

CTRm[E](x) def= (E(x), E(x ⊕ 1), . . . , cut(E(x ⊕ �m/n	 − 1))),

where cut(v) is the first (m mod n)-bit of v. Then AdvwprfCTRm[E](q, τ) is at most

AdvprpE (ωq, τ ′) + AdvwprfCTRm[Pn](q) and AdvwprfCTRm[Pn](q) is at most
(
ωq
2

)
2
2n , where

ω = �m/n	 and τ ′ = τ + O(ωq).

Proof. The first claim follows from the triangle inequality and the fact that
AdvkpaCTRm[E],CTRm[Pn](q, τ) is no larger than AdvprpE (ωq, τ ′). The second follows
from a simple collision analysis similar to the analysis of the XOR mode (ran-
domized counter mode) provided by Bellare et al. [1].

The components (H, Ẽ, F) are defined as follows. First, we define u0, u1, u2,
and u3 as distinct constants of GF(2n) \ {0}. For Ẽ, we use a scheme based on
LRW [8] and XEX [19], which was provided by Minematsu [16]. Let TW[E] :
Σn × Σn → Σn be the tweakable blockcipher defined as

TW[E](x, t) def= E(x ⊕ mul′(L, t))) ⊕ mul′(L, t), where L = E(0) and

mul′(L, t) =

⎧
⎪⎨

⎪⎩

tL if t ∈ Σn \ {0, 1},
u1L

2 if t = 1,
u0L

2 if t = 0.

Tweakable Enciphering Schemes from Hash-Sum-Expansion 259

Algorithm 4.1: HSEf[E](x, t)

Setup :
L ← E(0), Lsq ← L2, K ← E(u2Lsq)

Partition x into (xL∈Σn, xR∈Σ�−n)
S ← xL ⊕ polyK(pad(xR))
U ← E(S ⊕ mul′(L, t))) ⊕ mul′(L, t)
V ← S ⊕ U
yR ← CTR�−n[E](V ⊕ u3Lsq) ⊕ xR

yL ← U ⊕ polyK(pad(yR))
y ← (yL, yR), return (y)

Algorithm 4.2: HCTR[E](x, t)

Partition x into (xL∈Σn, xR∈Σ�−n)
S ← xL ⊕ polyK(pad(xR‖t)‖len(xR‖t))
U ← E(S) (1)
V ← S ⊕ U (2)
yR ← CTR�−n[E](V) ⊕ xR (3)
yL ← U ⊕ polyK(pad(yR‖t)‖len(xR‖t))
y ← (yL, yR), return (y)

Fig. 2. Encryptions of HSEf (Left) and HCTR (Right), where the hash key, K, is
independent. In the original HCTR, the counter mode is slightly different from this.

Recall that t = 0 and t = 1 represent (0 . . . 0) and (0 . . . 01) in the n-bit rep-
resentation, which correspond to the zero and identity elements in GF(2n). We
use L2 since using tL for all t ∈ Σn leads to an attack [19][16]. We use TW[E]
as Ẽ of HSE. Moreover, H and F are defined as: H(x) = polyK(pad(x)), where
K = E(u2L

2), and F (x) = CTR�−n[E](x ⊕ u3L
2). Note that F (x) is equiv-

alent to CTR�−n[E⊕u3L2
](x), where E⊕c denotes a cipher with input mask:

E⊕c(x) = E(x ⊕ c). Our scheme is HSE[H,TW[E],CTR�−n[E⊕u3L2
]], which

will be denoted by HSEf[E] (f for FIL). Its encryption procedure is shown in
Fig. 2. This scheme requires several constant-variable multiplications. Generally
such multiplications can be done with few simple operations. Typically, we de-
fine the field GF(2n) with a primitive polynomial and set ui = 2i. This allows
very efficient and simple implementations, as described by [19].

Security. To prove the security of HSEf, we need the idea of tagged tweakable
blockcipher introduced by Rogaway [19], where a tweak is always specified with
1-bit tag. When the tag is 1, the adversary can access to either encryption or
decryption oracle, and when the tag is 0, it can only access to the encryption
oracle. Once a tag has been set for a tweak, it can not be changed. Tags can be
adaptively determined by the adversary, or fixed in advance to the attack. Here,
we only need to consider the latter case, which we call a (static) tagged CCA,
denoted by t̃-cca. The maximum t̃-cca-advantage for a tagged tweakable n-bit
blockcipher, Ẽ, can be naturally defined as Advt̃-sprp

Ẽ
(θ) def= Advt̃-cca

Ẽ,P̃n
(θ). We need

the following theorem to prove the security of HSEf.

Theorem 3. Let TW∗[E] be a tagged tweakable blockcipher induced by TW[E].
That is, it has tweak space T = Σn ∪ {α, β}, and tag tag ∈ Σ, defined as2

TW∗[E](x, tag, t) = E(x ⊕ mul′′(L, t)) ⊕ sel(tag, L, t), where L = E(0) and

2 The inverse is TW∗[E]−1(x, tag, t) = E−1(x ⊕ sel(tag, L, t))⊕mul′′(L, t). Note that
the inverse can not be accessed when tag = 0.

260 K. Minematsu and T. Matsushima

mul′′(L, t) =

⎧
⎪⎨

⎪⎩

mul′(L, t) if t ∈ Σn,
u2L

2 if t = α,
u3L

2 if t = β,

and sel(tag, L, t) = mul′′(L, t) if tag = 1, 0 if tag = 0. For any tagged CCA

with tag = 1 for all t ∈ Σn and tag = 0 for t ∈ {α, β}, we have Advt̃-sprpTW∗[Pn](q) ≤
4q2/2n.

TW∗ is based on the idea of Rogaway’s tagged tweakable cipher, XEX∗ (also
called XEorXEX) [19]. The proof of Theorem 3 is obtained by extending Theo-
rem 4 of [16], which will be given in the full paper.

Using Theorem 3, the proof of HSEf is as follows.

Corollary 1. Let the message length of HSEf[E] be �-bit and ω = ��/n	. Then

Advs̃prpHSEf[E](q, τ) ≤ AdvsprpE (ωq + 2, τ ′) +
5(ωq + 1)2

2n
, where τ ′ = τ + O(ωq).

Proof. First, note that HSEf[Pn] can be obtained as a function of TW∗[Pn]. Let
P̃
∗
n be the n-bit tagged tweakable URP with tweak space Σn ∪{α, β} (note that

a tag can be attached to any tweakable URP). Then, let HSE∗
f use P̃

∗
n instead

of TW∗[Pn]. From Theorem 3, we have

Advc̃caHSEf[Pn],HSE∗
f
(q) ≤ Advt̃-cca

TW∗[Pn],P̃
∗
n

(ωq + 1) ≤ 4(ωq + 1)2

2n
. (11)

Clearly, the components (H , Ẽ, and F) of HSE∗
f are independent of each other.

Since H ’s input is (�−n)-bit, H is (ω−1)/2n-AXU (see Sect. 3.2). Thus we have

Advc̃ca
HSE∗

f ,P̃�
(q) ≤ Advs̃prp

P̃n
(q) + AdvwprfCTR�−n[Pn](q) + q2 · ω − 1

2n
+

2q2

2n
, (12)

≤
(

(ω − 1)q
2

)
2
2n

+
(ω + 1)q2

2n
. (13)

where the first inequality follows from Theorem 1, and the second follows from
the second claim of Lemma 2. Combining Eqs. (11)(13) and triangle inequality,
we have

Advs̃prpHSEf[Pn](q) ≤ 4(ωq + 1)2

2n
+

(
(ω − 1)q

2

)
2
2n

+
(ω + 1)q2

2n
,

≤ 4(ωq + 1)2 + (ω − 1)2q2 + (ω + 1)q2

2n
≤ 5(ωq + 1)2

2n
, (14)

using (ω2 − ω + 2) ≤ ω2 when ω ≥ 2 (as � > n). We can easily convert Eq. (14)
into a computational counterpart. This concludes the proof.

Tweakable Enciphering Schemes from Hash-Sum-Expansion 261

VIL variant. We can also build a VIL variant called HSEv using the hash
function H defined as Eq. (10). This will require one more multiplication using
Horner’s rule. As the hash function is called twice, HSEv needs two additional
multiplications compared to HSEf. As mentioned in Sect. 3.2, the security proof
HSEv is almost the same as that of HSEf, therefore it is omitted.

Comparison. Table 1 shows a comparison between HCTR, HCH, and HSE.
HCTR’s security bound is cubic. HSE and HCH have quadratic bounds, and
their total (i.e., Setup + Encryption) complexities are generally the same. How-
ever, in the Encryption phase, HSE requires fewer blockcipher calls (ω for VIL
and FIL) than that of HCH (ω + 3 for VIL, ω + 2 for FIL). Since HSE requires
a larger number of multiplication than HCH, the gain of HSE will depend on
the ratio of speed between the blockcipher and multiplication (and hence it is
not always faster than HCH). Note that, as HSE uses a variant of XEX∗ to
implement independent permutations, a naive implementation requires one or
two XOR operations of masking values for every blockcipher call, which can be a
drawback. However, the number of these XORs can be reduced to three, as shown
by Fig. 2. The number of multiplication in Encryption of HSEv is one less than
that of HCTR, as HSEv needs 2ω multiplications for the hash computations,
and (at most) one multiplication for computing mul′(L, t), while HCTR always
needs 2(ω + 1) multiplications for the hash computations. Generally, the differ-
ence would be greater if the tweak gets longer. This demonstrates the difference
in performance characteristics between HSE types 1 and 2.

4.2 Other Implementations

Improving HCTR with small changes. We describe how to improve the
security of HCTR with small changes. This fix is also an implementation of
HSE type 2. As shown by Fig. 2, HCTR uses ϕ[E,CTR[E]]. Our proof tech-
nique can not be directly applied to this Sum-Expansion, as the same block-
cipher keys are used for the I/O sum generation and the expansion. Now,
we use ϕ[E⊕⊕2L,CTR[E⊕22L]] instead of ϕ[E,CTR[E]], where E⊕⊕2L(x) =
E(x ⊕ 2L) ⊕ 2L with L = E(0) (recall E⊕c(x) = E(x ⊕ c)). That is, we changes
the lines (from (1) to (3)) of Fig. 2 such as

U ← E(S ⊕ 2L) ⊕ 2L

V ← S ⊕ U

yR ← CTR�−n[E](V ⊕ 22L) ⊕ xR

and keep other lines unchanged. This fix requires only one additional blockcipher
call in the setup. Since (E⊕⊕2L, E⊕22L) is an instance of TW∗[E], we can easily
prove the security of the modified HCTR by combining3 Theorems 2, 3, and
Lemma 2, in the same manner as Corollary 1. Although we omit the concrete

3 As HCTR is a VIL scheme, we also need to extend Theorem 2 to the VIL version.
This is quite straightforward.

262 K. Minematsu and T. Matsushima

Table 1. Comparison of modes. The blockcipher’s key bit length is k, and ω = ��/n�
where the message length is �-bit. i/j denotes i blockcipher calls and j multiplications.

Mode Type Key Setup Encryption Security

HCTR[20] VIL k + n 0/0 ω/2ω + 2 (ωq)3/2n

HCH[2] VIL k 0/0 ω + 3/2ω − 2 (ωq)2/2n

HCHfp[2] FIL k + n 0/0 ω + 2/2ω − 2 (ωq)2/2n

HSEv VIL k 2/1 ω/2ω + 1 (ωq)2/2n

HSEf FIL k 2/1 ω/2ω − 1 (ωq)2/2n

proof due to the space limitation, the constant of its security bound will be
improved to quadratic: O(ω2q2/2n).

Other expansions. Since Theorem 1 does not rely on a particular expan-
sion, various expansions, e.g., a stream cipher with n-bit initial vectors, can
be used. We can also consider using a blockcipher-based expansion with better
kpa-advantage than that of the counter mode. A naive approach is to combine
multiple independent expansions. Let m = λ · μ · n, where λ and μ are positive
integers. We use μ independently-keyed blockciphers, E(1), . . . , E(μ), and define
the extended counter mode, eCTRm[E(1), . . . , E(μ)](x), as the concatenation of
CTRλn[E(i)](x) for i = 1, . . . , μ. Using Lemma 2 and Lemma 1 of [3], it is
easy to prove that the kpa-advantage of eCTRm[E(1), . . . , E(μ)](x) is at most
ω2q2/μ2n, where ω = m/n. I.e., the bound linearly decreases w.r.t. the number
of keys. In the extreme setting (λ, μ) = (1, ω), the bound is ωq2/2n. Of course,
this is quite impractical and thus searching for a better expansion would be an
interesting future research.

4.3 Construction of a Double-Block-Length SPRP

The construction of double-block-length (DBL) PRP or SPRP, i.e., 2n-bit block-
cipher using n-bit functions, has been an active research topic. Classical propos-
als [9][10][18] use two or more CPA-secure functions (i.e., PRF or PRP or SPRP)
and some universal hash. However, recent studies prove that two CPA-secure
functions are not needed to build a DBL PRP. Maurer et al.[12] proved that the
last round function of the 3-round Feistel cipher can be any WPRF, if the first
is an AXU hash, and the second is a PRF. A variant of this is also seen in [15].
These results demonstrated that an invocation of a CPA-secure function can be
substituted with that of a KPA-secure one. Since WPRF is naturally expected
to be faster than PRF (e.g., see [13][17]), such combined constructions are theo-
retically faster than the previous ones4. However, we still need two CPA-secure
functions to build a DBL SPRP in the previous proposals. Naor and Reingold’s
4-round Feistel cipher [18] required two PRFs and two AXU hashs. They also

4 Obviously, they would require more memory for implementation than the construc-
tions using single primitive.

Tweakable Enciphering Schemes from Hash-Sum-Expansion 263

proposed a construction using two SPRPs and two universal hash-based mixing
layers. In contrast, the non-tweakable HSE for � = 2n requires one SPRP and
one WPRF, and two AXU hashs. To our knowledge, this is the first non-trivial
DBL SPRP construction that does not require two CPA-secure functions.

5 Conclusion

We have studied the tweakable enciphering scheme using universal hash func-
tions and a length-expanding function called the expansion, and proved that the
expansion can be any weak pseudorandom function. While this structure has
been employed by the previous proposals using the counter mode-based expan-
sion, ours is the first to point out this fact. As applications of this result, we have
provided some efficient blockcipher-based TESs. We expect that this structure
can offer more applications, e.g., TESs beyond the birthday-bound security.

Acknowledgments

We would like to thank the anonymous referees for very useful comments.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS 1997. Proceedings of the 38th Annual Sympo-
sium on Foundations of Computer Science, pp. 394–403 (1997)

2. Chakraborty, D., Sarkar, P.: HCH: A New Tweakable Enciphering Scheme Using
the Hash-Encrypt-Hash Approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg. The full version is avail-
able from IACR ePrint 2007/028 (2006)

3. Damg̊ard, I., Nielsen, J.: Expanding Pseudorandom Functions; or: From Known-
Plaintext Security to Chosen-Plaintext Security. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)

4. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer, Heidelberg

5. Halevi, S.: EME*: Extending EME to Handle Arbitrary-Length Messages with
Associated Data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

6. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

7. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

8. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

9. Luby, M., Rackoff, C.: How to Construct Pseudo-random Permutations from
Pseudo-random functions. SIAM J. Computing 17(2), 373–386 (1988)

10. Lucks, S.: Faster Luby-Rackoff Ciphers. In: Gollmann, D. (ed.) Fast Software En-
cryption. LNCS, vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

264 K. Minematsu and T. Matsushima

11. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

12. Maurer, U., Oswald, Y.A., Pietrzak, K., Sjoedin, J.: Luby-Rackoff Ciphers from
Weak Round Functions. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 391–408. Springer, Heidelberg (2006)

13. Maurer, U., Sjoedin, J.: A Fast and Key-Efficient Reduction of Chosen-Ciphertext
to Known-Plaintext Security. In: EUROCRYPT 2007. LNCS, vol. 4515, pp. 498–
516. Springer, Heidelberg (2007)

14. McGrew, D., Fluhrer, S.: The Extended Codebook (XCB) Mode of Operation.
IACR ePrint archive (2004), http://eprint.iacr.org/2004/278

15. Minematsu, K., Tsunoo, Y.: Hybrid Symmetric Encryption Using Known-Plaintext
Attack-Secure Components. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS,
vol. 3935, pp. 242–260. Springer, Heidelberg (2006)

16. Minematsu, K.: Improved Security Analysis of XEX and LRW Modes. In: SAC
2006 Selected Areas in Cryptography. LNCS, vol. 4356, pp. 96–113 (2007)

17. Naor, M., Reingold, O.: Number-theoretic Constructions of Efficient Pseudo-
random Functions. In: 38th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 1997, pp. 458–467 (1997)

18. Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. Journal of Cryptology 12(1), 29–66 (1999)

19. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

20. Wang, P., Feng, D., Wu, W.: HCTR: A Variable-Input-Length Enciphering Mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

21. Wegman, M., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. Journal of Computer and System Sciences 22, 265–279 (1981)

A Maurer’s Methodology

We briefly describe the methodology developed by Maurer [11], which will be
used in Appendix B. Consider event ai defined for i input/output pairs (and pos-
sibly internal variables) of a keyed function. We assume ai is monotone, i.e., ai

never occurs if ai−1, negation of ai−1, occurs. An infinite sequence A = a0a1 . . .
is called a monotone event sequence (MES). Here, a0 is some tautological event.
A random variable and its value are written in capital and small letters, respec-
tively. For random variables X1, X2, . . . , let X i denote (X1, . . . , Xi). After this,
dist(X i) will denote an event where X1, X2, . . . , Xi are distinct. If dist(X i, Y j)
holds true, then we have no collision among {X1, . . . , Xi, Y1, . . . , Yj}. Let MESs
A and B be defined for two keyed functions, F : X → Y and G : X → Y, re-
spectively. Let Xi ∈ X and Yi ∈ Y be the i-th input and output. Let PF be the
probability space defined by F . For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi =
yi|X i = xi, Y i−1 = yi−1] where Yj = F (Xj) for j ≥ 1. If PF

Yi|XiY i−1(yi, xi) =
PG

Yi|XiY i−1(yi, xi) for all possible (yi, xi), then we write PF
Yi|XiY i−1 = PG

Yi|XiY i−1 .
This is also represented as F ≡ G, and we say they are equivalent. Inequalities
such as PF

Yi|XiY i−1 ≤ PG
Yi|XiY i−1 are similarly defined.

http://eprint.iacr.org/2004/278

Tweakable Enciphering Schemes from Hash-Sum-Expansion 265

Definition 1. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

holds
for all possible (yi, xi) and i≥1. We also write F |A≡G|B if PF

Yi|XiY i−1ai
(yi, xi)=

PG
Yi|XiY i−1bi

(yi, xi) holds for all possible (yi, xi) and i ≥ 1.

Definition 2. We define ν(F, aq) as the maximal probability of aq for any CPA
with q queries and infinite computational power that interacts with F .

If F is a (tweakable) keyed permutation, we can think of the maximal probability
of aq for any cca (c̃ca) adversary. For simplicity, it is also written as ν(F, aq).
The following theorems and lemmas will be used in Appendix B.

Theorem 4. (Theorem 1 (i) of [11]) If FA ≡ GB or F |A ≡ G holds true, we
have AdvcpaF,G(q) ≤ ν(F, aq).

Theorem 5. (Lemma 1 (iv) and Theorem 1 (iii) of [11]) If F |A ≡ G|B and
PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
for i ≥ 1, then FA ≡ GB∧C for some MES C

defined for G, and AdvcpaF,G(q) ≤ ν(F, aq).

Lemma 3. (Lemma 6 (ii) of [11]) If FA ≡ GB, then ν(F, aq) = ν(G, bq).

Lemma 4. (Lemma 4 (ii) of [11]) Let F be the function of F and G (i.e., F[F]
is a function that internally invokes F to process its inputs). If FA ≡ GB holds,
F[F]A

′ ≡ F[G]B
′

also holds. Here, MES A′ = a′
0a

′
1 . . . is defined such that a′

i

denotes A-event is satisfied for the time period i. B′ is defined in the same way.

Lemma 5. (Lemma 6 (iii) of [11]) ν(F, aq ∧ bq) ≤ ν(F, aq) + ν(F, bq).

Lemma 6. (An extension of Lemma 2 (ii) of [11]) If FA ≡ GB, then FA∧D ≡
GB∧D holds for any MES D defined on the inputs and/or outputs.

B Proof of Lemma 1

We use the notations from Appendix A. The first inequality is trivial. For the
second, consider the game of distinguishing ϕpr

def= ϕ[P̃n, Rn,�−n] from P̃� (note
that this game itself is quite easy to win). We convert CCA into CPA using the
oracle indicator. Let Xi = (Mi, Ti, Wi) be the i-th query, where message Mi ∈
Σ�, tweak Ti ∈ Σn, and oracle indicator Wi ∈ Σ. Let Yi ∈ Σ� be the i-th answer.
We assume that Mi = Mj whenever (Ti, Wi) = (Tj , Wj) with i < j, and Yi = Mj

whenever Ti = Tj and Wi = Wj with i < j, since such queries are pointless for a
keyed permutation. We call this the invertibility assumption (IA). A CPA with
IA is denoted by cpa′′. For a tweakable permutation Ẽ with M ∈ Σ� and T ∈ Σn,
we write 〈Ẽ〉 to denote the corresponding keyed function : Σ� × Σn × Σ → Σ�

such that 〈Ẽ〉(M, T, W) equals Ẽ(M, T) if W = 0, and Ẽ−1(M, T) if W = 1.
We define (Si, Ui) as the first n bits of (Mi, Yi) when Wi = 0, and the first n
bits of (Yi, Mi) when Wi = 1. We also define Vi = Si ⊕ Ui. In 〈ϕpr〉, Si (Ui)
corresponds to the i-th input (output) of P̃n. Let aq (bq) be the event where

266 K. Minematsu and T. Matsushima

Si = Sj (Ui = Uj) for any 1 ≤ i < j ≤ q such that Ti = Tj. In addition, dq

denotes the event dist(V q). MESs are defined as A = a0a1 . . . , B = b0b1 . . . , and
D = d0d1 Note that A ≡ B in 〈ϕpr〉, but not in 〈P̃�〉. From the properties of
ϕpr and P̃n, it is easy to check that 〈ϕpr〉|ABD ≡ 〈ϕpr〉|AD ≡ 〈P̃�〉|ABD holds
true. Also, a simple probability analysis provides

P
〈P̃�〉
aibidi|XiY i−1ai−1bi−1di−1

≤ P
〈ϕpr〉
aibidi|XiY i−1ai−1bi−1di−1

= P
〈ϕpr〉
aidi|XiY i−1ai−1di−1

.

From these observations and the second claim of Theorem 5, 〈ϕpr〉A∧D∧G ≡
〈P̃�〉A∧B∧D holds for some MES G. Let ψ[H] be the �-bit unbalanced Feistel
permutation using the round function H . We define HPH : Σ� × Σn × Σ → Σ�

as 〈P̃�〉 sandwiched between ψ[H]: when the query to HPH is (M, T, W), the
output is Y = ψ[H](Ŷ), where Ŷ = 〈P̃�〉(ψ[H](M), T, W). Note that if we use
〈ϕpr〉 instead of 〈P̃�〉, we obtain 〈Qpr〉. From this observation, and 〈ϕpr〉A∧D∧G ≡
〈P̃�〉A∧B∧D, and Lemma 4, we have

〈Qpr〉A∧D∧G ≡ HPHA∧B∧D. (15)

Then we obtain

Advc̃ca
Qpr,P̃�

(q) = Advcpa
′′

〈Qpr〉,〈P̃�〉
(q) = Advcpa

′′

〈Qpr〉,HPH(q) ≤ ν(HPH, aq ∧ bq ∧ dq), (16)

where the first equality is trivial, the second follows from HPH ≡ 〈P̃�〉 (as ψ[H]
is invertible) and the inequality follows from Eq. (15) and Theorem 4.

For 〈P̃�〉 and R�+n+1,�, let eq be the event such as Yi = Yj when Mi = Mj

and (Ti, Wi) = (Tj , Wj), and Yi = Xj when Ti = Tj and Wi = Wj , for any
i = j ≤ q. Note that the MES E = e0e1 . . . always holds true for 〈P̃�〉 (but not
for R�+n+1,�) under cpa′′. From this observation, we have

〈P̃�〉 ≡ 〈P̃�〉|E ≡ R�+n+1,�|E , and 〈P̃�〉R ≡ RE
�+n+1,�, (17)

for some MES R = r0r1 Now we obtain

〈P̃�〉A∧B∧D∧R ≡ RA∧B∧D∧E
�+n+1,� , and HPHA∧B∧D∧R ≡ HRHA∧B∧D∧E , (18)

where HRH is defined as R�+n+1,� sandwiched between ψ[H]. The first equiv-
alence of Eq. (18) follows from Eq. (17) and Lemma 6, and the second follows
from the first and Lemma 4. From Eq. (18) and Lemma 3, we obtain

ν(HPH, aq∧ bq∧ dq)≤ν(HPH, aq∧ bq∧ dq∧ rq)=ν(HRH, aq∧ bq∧ dq∧ eq), (19)

where the underlying attack is cpa′′. We focus on the last term. In HRH, let
Mi,L and Mi,R (Yi,L and Yi,R) be the first n bits and remaining � − n bits of Mi

(Yi). Note that (Si, Ui, Vi) is defined on the input/output of R�+n+1,� used by
HRH. Thus, aq ∧ bq consists of the following collision events.

Type 1: i = j, Ti = Tj, Wi = Wj , H(Mi,R) ⊕ H(Mj,R) = Mi,L ⊕ Mj,L

Tweakable Enciphering Schemes from Hash-Sum-Expansion 267

Type 2: i = j, Ti = Tj, Wi = Wj , H(Yi,R) ⊕ H(Yj,R) = Yi,L ⊕ Yj,L

Type 3: i = j, Ti = Tj, Wi = Wj , H(Mi,R) ⊕ H(Yj,R) = Mi,L ⊕ Yj,L

Type 4: i = j, Ti = Tj, Wi = Wj , H(Yi,R) ⊕ H(Mj,R) = Yi,L ⊕ Mj,L

Let p(h) denote the maximum collision probability of type h = 1, . . . , 4. As ψ[H]
is invertible, HRH is equivalent to R�+n+1,� and thus any adversary can not obtain
any information of K, the key of H . In addition, the output Yi is completely
independent and random. From this observation and the fact that H is ε-AXU,
we have p(h) ≤ ε for all h = 1, . . . , 4. For each 1 ≤ i < j ≤ q, we can think of
collision types 1 and 2 or types 3 and 4. Thus we have ν(HRH, aq ∧ bq) ≤ (

q
2

)
2ε.

Next, we focus on dq. The collision event belonging to dq is

H(Mi,R)⊕H(Mj,R)⊕H(Yi,R)⊕H(Yj,R) = Mi,L⊕Mj,L⊕Yi,L⊕Yj,L, for i = j.

W.l.o.g., we assume i < j. Then, Yj is independent and uniformly random,
even if the adversary is adaptive. Thus the collision probability is 1/2n and
we have ν(HRH, dq) ≤ (

q
2

)
/2n. Also, it is easy to obtain ν(HRH, eq) ≤ (

q
2

)
/2�.

Combining these bounds and Lemma 5, we obtain ν(HRH, aq ∧ bq ∧ dq ∧ eq) ≤(
q
2

) (
2ε + 1/2n + 1/2�

)
. From this and Eqs. (16)(19), the proof is completed.

A Framework for Chosen IV Statistical Analysis

of Stream Ciphers

H̊akan Englund1, Thomas Johansson1, and Meltem Sönmez Turan2

1 Dept. of Electrical and Information Technology, Lund University, Sweden
2 Institute of Applied Mathematics, METU, Turkey

Abstract. Saarinen recently proposed a chosen IV statistical attack,
called the d-monomial test, and used it to find weaknesses in several
proposed stream ciphers. In this paper we generalize this idea and pro-
pose a framework for chosen IV statistical attacks using a polynomial de-
scription. We propose a few new statistical attacks, apply them on some
existing stream cipher proposals, and give some conclusions regarding
the strength of their IV initialization. In particular, we experimentally
detected statistical weaknesses in some state bits of Grain-128 with full
IV initialization as well as in the keystream of Trivium using an initial-
ization reduced to 736 rounds from 1152 rounds. We also propose some
stronger alternative initialization schemes with respect to these statisti-
cal attacks.

1 Introduction

Synchronous stream ciphers are an important part of symmetric cryptosystems
and they are suitable for applications where high speed and low delay are re-
quired. As examples, the stream cipher family A5 is used in the GSM standard
and the cipher E0 is used to supply privacy in Bluetooth applications. In most
applications, the transmission of ciphertext is assumed to be done over a noisy
channel where the synchronization between sender and receiver can be lost and
resynchronization is necessary.

Depending on the protocol, different resynchronization mechanisms can be
used. In most applications the message is divided into frames and each frame
is encrypted using different publicly known Initialization Vectors (IVs) and the
same secret key. In such systems, the ciphers should be designed to resist attacks
that use many short keystreams generated by random or chosen IVs.

In [1], an attack on nonlinear filter generators with linear resynchronization
and filter function with few inputs is presented and this attack is extended to
the case where the filter function is unknown in [2]. More extensions of the
resynchronization attack is available in [3].

To avoid such attacks, the initialization of stream ciphers in which the internal
state variables are determined using the secret key and the public IV should be
designed carefully. In most ciphers, firstly the key and IV are loaded into the state
variables, then a next state function is applied to the internal state iteratively
for a number of times without producing any output. The number of iterations

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 268–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 269

play an important role on both security and the efficiency of the cipher. It should
be chosen so that each key and IV bit affect each initial state bit in a complex
way. On the other hand, using a large number of iterations is inefficient and may
hinder the speed for applications requiring frequent resynchronizations.

In [4], tests were introduced to evaluate the statistical properties of symmetric
ciphers using the number of the monomials in the Boolean functions that sim-
ulate the action of a given cipher. In [5], Saarinen recently proposed to extend
these ideas to a chosen IV statistical attack, called the d-monomial test, and
used it to find weaknesses in several proposed stream ciphers.

In this paper we generalize this idea and propose a framework for chosen IV
statistical attacks using a polynomial description. The basic idea is to select
a subset of IV bits as variables. Assuming all other IV values as well as the
key being fixed, we can write a keystream symbol as a Boolean function of
the selected IV variables. By running through all possible values of these bits
and creating a keystream output for each of them, we create the truth table
of this Boolean function. We now hope that this Boolean function has some
statistical weaknesses that can be detected. We describe the d-monomial test
in this framework, and then we propose two new tests, called the monomial
distribution test and the maximal degree monomial test.

We then apply them on some existing stream cipher proposals, and give some
conclusions regarding the strength of their IV initialization. In particular, we
experimentally detected statistical weaknesses in the keystream of Grain-128
with IV initialization reduced to 192 rounds as well as in the keystream of
Trivium using an initialization reduced to 736 rounds. Furthermore, we repeat
our experiments to study the statistical properties of internal state bits. Here we
could detected statistical weaknesses in some state bits of Grain-128 with full
IV initialization. In the context, we also propose alternative initial loadings for
some of the ciphers so that the diffusion is satisfied in fewer rounds.

The paper is organized as follows. In the next section, some background infor-
mation about hypothesis testing and Boolean functions are given. In Section 3,
the suggested framework for chosen IV statistical attacks is presented, and in
Section 4 some results are presented for reduced round initializations of the ci-
phers Grain [6], Trivium [7] and Decim [8]. Finally we conclude the paper in
Section 5.

2 Preliminaries

2.1 Hypothesis Testing

Assume we have independently and identically distributed (i.i.d.) random vari-
ables Xi, the sum is a new random variable, denoted by Y , i.e., Y =

∑n
i=0 Xi.

According to the central limit theorem Y is approximately normally distributed
if n is large. Let y denote an observation from Y , and assume that we have r ob-
servations of random variables Y , i.e., y0, . . . , yr−1, then the chi-square statistic
is

270 H. Englund, T. Johansson, and M. Sönmez Turan

χ2 =
r−1∑

k=0

(
yk − E(Y)

)2

E(Y)
d→ χ2

r

where d→ means convergence in distribution, and r is called the degrees of freedom
(i.e., number of independent pieces of information).

Our two hypothesis are

– H0 : z = 0, y0, . . . , yr−1 are samples from Y ,
– H1 : z �= 0, y0, . . . , yr−1 are not samples from Y .

For a one-sided χ2-Goodness of fit test, the hypothesis is rejected if the test
statistics χ2 is greater than the tabulated χ2(1−α; r) value, for some significance
level α with r degrees of freedom.

2.2 Algebraic Normal Form of a Boolean Function

Let f : F
n
2 �→ F2 be a mapping from n binary input bits into one output bit,

then f is called a Boolean function. There are many representations of a Boolean
function, but in this paper we are mainly interested in the so called Algebraic
Normal Form (ANF). The ANF is the polynomial

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ . . . ⊕ anxn ⊕ an+1x1x2 ⊕ . . . ⊕ a2n−1x1x2 . . . xn

with unique ai’s in F2.

2.3 Computation of Algebraic Normal Form

Assume the truth table of an n-variable Boolean function is represented in a
vector v of size 2n and the ANF of the Boolean function can be calculated with
complexity O(n2n) using the algorithm presented in Figure 1, which uses two
auxiliary vectors t and u, both of size 2n−1.

�

�

�

�

Compute ANF(v)

for i = 1, . . . , n
for j = 1, . . . , 2n−1

tj = v2j−1

uj = v2j−1 ⊕ v2j

end for
v = t||u

end for

Fig. 1. Algorithm to compute the ANF in vector v from the truth table in v

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 271

2.4 Properties of a Random Boolean Function

Let f : F
n
2 �→ F2 be a Boolean function, and let the number of monomials in the

ANF of f be denoted by M . If f is randomly chosen, each monomial is included
with probability one half, i.e., a Bernoulli distribution. The sum of Bernoulli
distributed random variables is Binomially distributed, hence M ∈Bin(2n, 1

2),
with expected value E(M) = 2n−1. Let’s denote the number of monomials of
degree k by Mk, i.e., M =

∑n
k=0 Mk. The distribution of Mk is Bin(

(
n
k

)
, 1

2) with
E(Mk) = 1

2

(
n
k

)
.

Let mk be an observation from Mk, then

χ2 =
n∑

k=0

(
mk − 1

2

(
n
k

))2

1
2

(
n
k

) d→ χ2
n+1, when

(
n

k

)
→ ∞.

If
(
n
k

)
is large enough, methods described in Section 2.1 can be used to perform

a hypothesis test to decide if the function in question has a deviant number of
monomials of degree k.

3 A Framework for Chosen IV Statistical Attacks

For an additive synchronous stream cipher, let K = (k0, . . . , kN−1) denote the
secret key. Furthermore, let IV = (iv0, . . . , ivM−1) denote the public IV value
used, and, finally, let Z = z0, z1, . . . denote the keystream sequence. We as-
sume that the attacker has received a number of different keystream sequences
generated using different (possibly chosen) IV values.

Different tests have been introduced to evaluate statistical properties of se-
quences from symmetric ciphers and hash functions. The tests are usually based
on taking one long keystream sequence and then applying different statistical
tests, like the NIST statistical test suit used in the AES evaluation [9].

However, recently several researchers have noted the possibility to instead
generate a lot of short keystream sequences, from different chosen IV values and
look at the statistical properties of, say, only the first output symbol of each
keystream. One such example is the observation by Shamir and Mantin that the
second byte in RC4 is strongly biased [10].

Based on work in [4], Saarinen [5] recently proposed the d-monomial IV dis-
tinguisher. The behavior of the keystream is analyzed using a function of n IV
bits, i.e., z = f(iv0, . . . , ivn−1). All other IV and key bits are considered to be
constants. In [5] among a few other tests, Saarinen suggested the d-monomial
test. For a chosen parameter d (set to be a small value), the test counts the num-
ber of monomials of weight d in the ANF of f and compares it to its expected
value 1

2

(
n
d

)
, using the χ2-Goodness of Fit test with one degree of freedom.

In this paper, we will instead sum the test statistics for each d and evaluate
the result using n+1 degrees of freedom. The algorithm for the d-Monomial test
is summarized in Figure 2.

The complexity of this attack is O(n2n) operations and it needs memory
O(n2n). The downside of this method is that statistical deviations for lower

272 H. Englund, T. Johansson, and M. Sönmez Turan

�

�

�

�

d-Monomial Test

for iv = 1, . . . , 2n − 1
Initialize cipher with iv
v[iv]=first keystream bit after initialization

end for
Compute ANF of vector v and store result in v.
for i = 1, . . . , 2n − 1

if v[i] = 1
weight= weight of monomial i
distr[weight] + +

end for
for d = 0, . . . , n

χ2+ =
(distr[d]− 1

2 (n
d))

2

1
2 (n

d)
.

if χ2 > χ2(1 − α; n + 1)
return cipher

else
return random

Fig. 2. Summary of the d-monomial test, complexity O(n2n)

and higher degree monomials are hard to detect since their numbers are few. So
even if the maximal degree monomial never occurs, the test does not detect this
anomaly. In the next section we will present alternative attacks that solves this
problem.

3.1 A Generalized Approach

We suggest to use a generalized approach. Instead of analyzing just one function
in ANF form, we can study the behavior of more polynomials so that monomials
that are more (or less) probable than others can be detected.

Let us select n IV values, denoted iv0, . . . , ivn−1, as our variables. The re-
maining IV values as well as key bits are kept constant. Using the first output
symbol, z0 = f1(iv0, . . . , ivn−1), for each choice of iv0, . . . , ivn−1, the ANF of f1

can be constructed.
The new approach is now to do the same again, but using some other choice on

IV values outside the IV variables. Running through each choice of iv0, . . . , ivn−1

in this case gives us a new function f2. Continuing in this way, we derive P
different Boolean functions f1, f2, . . . , fP in ANF form. In some situations, it
might also be possible to obtain polynomials from different keys, where the
same IVs have been used.

Having P different polynomials in our possession we can now design any test
that looks promising, taken over all polynomials. The d-monomial test would
appear for the special case P = 1, and the test being counting the number of
weight d monomials. We now propose in detail two different tests.

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 273

3.2 The Monomial Distribution Test

The attack scenario is similar to the d-monomial test, but instead of counting
the number of monomials of a certain degree, we generate P polynomials and
calculate in how many of the polynomials each monomial is present. That is, we
generate P polynomials of the form (1) and count the number of occurrences of
ai = 1, 0 ≤ i ≤ 2n − 1

f = a0 + a1x1 + . . . + an+1x1x2 + . . . + a2n−1x1x2 . . . xn−1xn (1)

Denote the number of occurrences of coefficient ai by Mai , since each monomial
should be included in a function with probability 1/2, i.e., P (ai = 1) = 0.5, 0 ≤
i ≤ 2n − 1, the number of occurrences is binomially distributed with expected
value E(Mai) = P/2 for each monomial. We will as previously perform a χ2-
Goodness of fit test with 2n degrees of freedom, as described by Equation (2).

χ2 =
2n−1∑

i=0

(Mai − P
2)2

P
2

(2)

If the observed amount is larger than some tabulated limit χ2(1 − α; 2n), for
some significance level α, we can distinguish the cipher from a random one. The
pseudo-code of the monomial distribution test is given in Figure 3.

�

�

�

�

Monomial Distribution Test

for j = 1, . . . , P
for iv = 1, . . . , 2n − 1

Initialize cipher with iv
v[iv]=first keystream bit after initialization

end for
Compute ANF of vector v and store result in v.
for i = 1, . . . , 2n − 1

if v[i] = 1
Mai + +

end for
end for
for d = 0, . . . , 2n − 1

χ2+ =
(Mad

− P
2)2

P
2

.

end for
if χ2 > χ2(1 − α; 2n)

return cipher
else

return random

Fig. 3. Summary of Monomial distribution test, complexity O(Pn2n)

274 H. Englund, T. Johansson, and M. Sönmez Turan

This algorithm has a higher computational complexity than the d-Monomial
attack, O(Pn2n), and needs the same amount of memory, O(n2n). On the other
hand, if for a cipher some certain monomials are highly non-randomly dis-
tributed, the attack may be successful with less number of IV bits, i.e., smaller n,
compared to the d-monomial test. Additionally, although this attack is originally
proposed for the chosen IV scenario of a fixed unknown key, it is also possible
to apply the test for different key values, if the same IV bits are considered.

3.3 The Maximal Degree Monomial

A completely different and very simple test is to see if the maximal degree
monomial can be produced by the keystream generator. The maximal degree
monomial is the product of all IV bits and can hence only occur if all the IV bits
have been properly mixed. In hardware oriented stream ciphers the IV loading
is usually as simple as possible to save gates, e.g., the IV bits are loaded into
different memory cells. The update function is then performed a number of steps
to produce proper diffusion of the bits, intuitively it will take many clockings
before all IV bits meet in the same memory cell and even more clocking before
they spread to all the memory cells and are mixed nonlinearly. The aim of the
Maximal Degree Monomial is to check in a simple way whether the number of
initial clockings are sufficient. Since the maximal degree monomial is unlikely to
exist if lower degree monomials do not exist, this is our best candidate to study.
Hence, the existence of the maximal degree term in ANFs is a good indication
to the satisfaction of diffusion criteria, especially completeness.

According to the Reed-Muller transform the maximal degree monomial can be
calculated as the XOR of all entries in the truth table. So the test is similar to the
previous tests performed by initializing the cipher with all possible combinations
for n IV bits, ziv0,...,ivn−1 = f(iv0, . . . , ivn−1), all other bits are considered to
be constants. The existence of the maximal degree monomial can be checked by
XORing the first keystream bit from each initialization, following the notation
from Section 2.2, this is equivalent to determining a2n−1.

a2n−1 =
⊕

iv0,...,ivn−1

ziv0,...,ivn−1 .

By for example changing some other IV bit we receive a new polynomial and
perform the same procedure again, this is repeated for P polynomials, if the max-
imal degree polynomial never occurs in any of the polynomials or if it occurs in
all of the polynomials we successfully distinguish the cipher. Hence we can, with
low complexity, and more importantly, almost no memory, check whether the
maximal degree monomial can exist in the output from the cipher. It is possi-
ble, with the same complexity, to consider other weak monomials, the coefficient
can be calculated according to the Reed-Muller transform. The complexity of
the Maximal Degree Attack is O(P2n) and it only requires O(1) memory. The
description of the test is given in Figure 4.

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 275

�

�

�

�

Maximal Degree Monomial Test

for j = 1, . . . , P
a2n−1 = 0
for iv = 1, . . . , 2n − 1

Initialize cipher with iv
z = first keystream bit after initialization
a2n−1 = a2n−1 ⊕ z

end for
if a2n−1 = 1

ones++
end for
if ones=0 or ones=P

return cipher
else

return random

Fig. 4. Summary of Maximal Degree Test, complexity O(P2n)

3.4 Other Possible Tests

We have proposed two specific tests that we will use in the sequel to analyze
different stream ciphers. Our framework gives us the possibility to design many
other interesting tests. As an example, a monomial distribution test restricted
to only monomials with very high weight could be an interesting test. Another
possibility would be to examine properties of the Walsh transform of each poly-
nomial. These tests have not been experimentally examined in this work.

4 Experimental Results

We applied the proposed tests described above on some of the Phase III
eSTREAM candidates to evaluate their efficiency of initializations. We evalu-
ated their security margin by testing reduced round versions of the ciphers. We
also presented some results on the statistical properties of the internal state
variables.

The significance level of the hypothesis tests is chosen to be approximately
1 − α = 1 − 2−10. The tabulated results have a success rate of at least 90%.
The required number of IVs, polynomials and the amount of memory needed to
attack the ciphers are given in tables. Also, the results for initial state variables
are presented with the percentage of weak initial state variables.

Hardware oriented stream ciphers use simple initial key and IV loading com-
pared to software oriented ciphers. Generally, key and IV bits affect one initial
state variable. Therefore, they require a large number of clockings to satisfy the
diffusion of each input bit on each state bit. We repeated some of our simulations
using alternative key/IV loadings in which each IV bit is assigned to more than

276 H. Englund, T. Johansson, and M. Sönmez Turan

one internal state bit and compared the results to the original settings. In the
alternative loadings the hardware complexity is slightly higher, however on the
other hand the cipher has more resistance to chosen IV attacks.

4.1 Grain-128

Grain-128 [6] is a hardware oriented stream cipher using a LFSR and a NFSR
together with a nonlinear filter function. In the initialization of Grain, a 128 bit
key is loaded into the NFSR and a 96 bit IV is loaded into the first 96 positions
of the LFSR, the rest of the LFSR is filled with ones. The cipher is then clocked
256 times and for each clock the output bit is fed back into both the LFSR and
the NFSR.

In Table 1, the results obtained for reduced version of Grain are given. The
highest number of rounds, we succeeded to break is 192 out of the original 256
which corresponds to the 75% of the initialization phase.

Table 1. Number of IV bits needed to attack the first keystream bit of Grain-128 for
different number of rounds in the initialization (out of 256 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

160 1 14 214 26 7 27 25 11 1

192 1 25 225 26 22 222 25 22 1

In Table 2, the results of the experiments for initial state variables are pre-
sented. The number of weak initial state variables are three times better in the
maximum degree test compared to the d-monomial test. The statistical devia-
tions in state bits remain even after full initialization. These weak state bits are
located in the left most positions of the feedback shift registers. To remove the
statistical deviations in state variables, at least 320 initial clockings are needed.
It is possible that if we use larger number of IV bits, the weaknesses in state
variables may also be observed from the keystream bits (See Appendix A).

Table 2. Number of IV bits needed to attack the initial state variables Grain-128 for
different number of rounds in the initialization (out of 256 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

256 1 14 214 33/256 26 8 28 20/256 25 14 1 108/256

256 1 16 216 40/256 26 10 210 35/256 25 16 1 120/256

256 1 20 220 56/256 26 15 215 44/256 25 20 1 138/256

288 1 20 220 0/256 26 20 220 0/256 25 20 1 73/256

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 277

Table 3. Number of IV bits needed to attack the first keystream bit of Grain-128 with
alternative Key/IV loading for different number of rounds in the initialization (out of
256 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

160 1 19 219 26 20 220 25 21 1

Alternative Key/IV Loading for Grain-128. Here we propose an alterna-
tive Key/IV loading in which only the loading of the first 96 bits of the NFSR
is different from the original. Instead of directly assigning the key, we assign the
modulo 2 summation of IV and the first 96 bits of the key. The proposed loading
is very similar to the original and the increase in number of gates required is
approximately 10-15%. In an environment where many resynchronizations are
expected, one can reduce the number of initial clockings by using some more
gates in the hardware implementation. In the new loading, each IV bit affects
two internal state variables. We repeated our experiments using the new load-
ing and the results are given in Table 3 and Table 4. Using alternative loading,
Grain shows more resistance to the presented attacks, but still the statistical
deviations in the state bits remain after full initialization.

Table 4. Number of IV bits needed to attack the initial state variables of Grain-128
with alternative Key/IV loading for different number of rounds in the initialization
(out of 256 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

256 1 14 214 1/256 26 8 28 4/256 25 14 1 100/256

256 1 16 216 5/256 26 10 210 10/256 25 20 1 108/256

288 1 20 220 0/256 26 20 220 0/256 25 20 1 47/256

4.2 Trivium

Trivium [7] is another hardware oriented stream cipher based on NFSRs. The
state is divided into three registers which in total stores 288 bits. During the
initialization the 80-bit key is inserted into the first register while an 80-bit IV
is inserted into the second register. The cipher is clocked 4 full cycles before
producing any keystream, i.e., 1152 clockings.

The results for Trivium are given in Table 5 and Table 6. The attacks on 736
and more rounds, the d-Monomial and the Monomial distribution attacks suffer
from too large memory requirements. The maximal degree monomial test can be
used to attack even 736 rounds (approximately 64% of initialization) using 33 IV
bits, the attack on 736 rounds has only been performed a handful of times so the
success rate is still an open issue in this case. The percentage of weak initial state

278 H. Englund, T. Johansson, and M. Sönmez Turan

Table 5. Number of IV bits needed to attack the first keystream bit of Trivium for
different number of rounds in the initialization (out of 1152 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

608 1 12 212 25 9 29 25 9 1

640 1 15 215 26 13 213 25 13 1

672 1 20 220 28 18 217 25 18 1

704 1 27 227 26 23 223 25 24 1

736 − − − − − − − 33 ∗ 1

Table 6. Number of IV bits needed to attack the initial state variables of Trivium for
different number of rounds in the initialization (out of 1152 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

608 1 12 212 144/288 25 12 212 105/288 25 12 1 169/288

640 1 12 212 57/288 25 12 212 29/288 25 12 1 86/288

672 1 15 215 87/288 25 15 215 0/288 25 15 1 108/288

704 1 20 220 74/288 25 20 220 12/288 25 20 1 76/288

variables for Trivium are approximately same using d-monomial and maximal
degree tests.

Alternative Key/IV Loading for Trivium. In the original key/IV loading,
128 bits of the initial state are assigned to constants and the key and IV bits
affect only one state bit. Here, we propose an alternative initial Key/IV loading
in which the first register is filled with the modulo 2 summation of key and
IV, the second register is filled with IV and the last register is filled with the
complement of key plus IV. In this setting, each IV bit affects 3 internal state
bits, therefore the diffusion of IV bits to the state bits is satisfied in less number
of clockings. We repeated the tests using the alternative loading and obtained
the results given in Table 7 and Table 8. In the alternative loading, the required
number of IV bits and memory needed to attack Trivium are approximately 50
percent more compared to the original loading.

4.3 Decim

Decim-v2 [8] is also a hardware oriented stream cipher based on a nonlinearly
filtered LFSR and the irregularly decimation mechanism, ABSG. The internal
state size of Decim-v2 is 192 bit and it is loaded with 80 bit Key and 64 bit IV.
The first 80 bits of the LFSR are filled with the key, the bits between 81 and
160 are filled with linear functions of key and IV and the last 32 bits are filled
with a linear function of IV bits.

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 279

Table 7. Number of IV bits needed to attack the first keystream bit of Trivium with
alternative Key/IV loading for different number of rounds in the initialization (out of
1152 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

608 1 18 218 25 22 222 25 17 1

Table 8. Number of IV bits needed to attack the initial state variables of Trivium with
alternative Key/IV loading for different number of rounds in the initialization (out of
1152 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

608 1 12 212 4/288 25 12 212 2/288 25 12 1 21/288

640 1 18 218 17/288 25 18 218 19/288 25 18 1 24/288

672 1 20 220 0/288 25 20 220 0/288 25 20 1 0/288

The results we obtained for Decim-v2 are given in Table 9 and Table 10. The
security margin for Decim against chosen IV attacks is very large, the cipher can
only be broken when not more than about 3% of the initialization is used. This
is mainly because of the initial loading of key and IV in which each IV bits affect
3 state variables and the high number of quadratic terms in the filter function.
The weakness in initial state variables can be observed for higher number of
clockings. The number of weak initial state variables are approximately same for
all attacks.

Table 9. Number of IV bits needed to attack the first keystream bit of Decim-v2 for
different number of rounds in the initialization (out of 768 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory P IVs Memory P IVs Memory

20 1 16 216 25 13 213 25 19 1

Table 10. Number of IV bits needed to attack the initial state variables of Decim-v2
for different number of rounds in the initialization (out of 768 rounds)

Rounds d-Monomial test Monomial distr. test Max. degree monomial

P IVs Memory Fraction P IVs Memory Fraction P IVs Memory Fraction

160 1 12 212 47/192 25 17 217 47/192 25 12 1 44/192

192 1 20 220 18/192 25 20 220 13/192 25 20 1 17/192

280 H. Englund, T. Johansson, and M. Sönmez Turan

5 Conclusions

In this study, we generalize the idea of d-monomial attacks and propose a frame-
work for chosen IV statistical analysis. The proposed framework can be used
as an instrument for designing good initialization procedures. It can be used
to verify the effectiveness of the initialization, but also to help designing a well-
balanced initialization, e.g., prevent an unnecessary large number of initial clock-
ings or even reduce the number of gates used in an hardware implementation by
being able to use a simpler loading procedure.

Also, we propose a few new statistical attacks, apply them on some exist-
ing stream cipher proposals, and give some conclusions regarding the strength
of their IV initialization. In particular, we experimentally detected statistical
weaknesses in the keystream of Trivium using an initialization reduced to 736
rounds as well as in some state bits of Grain-128 with full IV initialization. It
is an open question how to utilize these weaknesses of state bits to attack the
cipher.

For ciphers Grain and Trivium, we also propose alternative initialization
schemes with slightly higher hardware complexity. In the proposed loadings,
each IV and key bit affects more than one state bit and the resistance of the
ciphers to the proposed attacks increases about 50%. Decim seems to have a
high security margin and it is an interesting question whether a simpler load-
ing procedure could be used in Decim which could mean a smaller footprint
in hardware, fewer intial clockings could also be used for a faster intialization
procedure.

References

1. Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization weaknesses in syn-
chronous stream ciphers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 159–167. Springer, Heidelberg (1994)

2. Golic, J.D., Morgari, G.: On the resynchronization attack. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 100–110. Springer, Heidelberg (2003)

3. Armknecht, F., Lano, J., Preneel, B.: Extending the resynchronization attack.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 19–38.
Springer, Heidelberg (2004)

4. Filiol, E.: A new statistical testing for symmetric ciphers and hash functions. In:
Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 21–35. Springer,
Heidelberg (2001)

5. Saarinen, M.J.O.: Chosen-iv statistical attacks on estream stream ciphers. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/013 (2006),
http://www.ecrypt.eu.org/stream

6. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. ISIT, Seattle, USA (2006), available at http://www.ecrypt.eu.org/stream

7. De Cannière, C., Preneel, B.: Trivium - specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/030 (2005), available at
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

A Framework for Chosen IV Statistical Analysis of Stream Ciphers 281

8. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin,
T., Sibert, H.: Decim v2. eSTREAM, ECRYPT Stream Cipher Project, Report
2006/004 (2006), http://www.ecrypt.eu.org/stream

9. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications
(2001), http://www.nist.gov

10. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24.
Springer, Heidelberg (2001)

A Linear Regression Model for d-Monomial Test of Grain

In this part, we model the relationship between the number of IVs and number
of rounds using linear regression. We fit a linear equation to the observed data
of d-monomial test of Grain as given in Figure 5.

Fig. 5. The linear regression model for d-monomial test of Grain

The trend equation is obtained as y = 0.3981092437x − 52.21953782 where
y represents the number of IVs and x represents the number of rounds in ini-
tialization. The correlation coefficient of the model is 0.96850. Using this model,
the prediction of required number of IVs to attack Grain with d-monomial test
is y = 0.3981092437(256) − 52.21953782 = 49.69643 ≈ 50. However, note that
this model is just a guess, more points needs to be calculated before a conclusion
about the security can be drawn.

http://www.ecrypt.eu.org/stream
http://www.nist.gov

Public Key Encryption with Searchable Keywords

Based on Jacobi Symbols

Giovanni Di Crescenzo1 and Vishal Saraswat2

1 Telcordia Technologies, Piscataway-NJ, USA
giovanni@research.telcordia.com

2 University of Minnesota, Minneapolis-MN, USA
vishal@math.umn.edu

Abstract. Public-key encryption schemes with searchable keywords are
useful to delegate searching capabilities on encrypted data to a third party,
who does not hold the entire secret key, but only an appropriate token
which allows searching operations but preserves data privacy. Such notion
was previously proved to imply identity-based public-key encryption [5]
and to be equivalent to anonymous (or key-private) identity-based
encryption which are useful for fully-private communication.

So far all presented public-key encryption with keyword search (PEKS)
schemes were based on bilinear forms and finding a PEKS that is not
based on bilinear forms has been an open problem since the notion of
PEKS was first introduced in [5]. We construct a public-key encryption
scheme with keyword search based on a variant of the quadratic
residuosity problem. We obtain our scheme using a non-trivial trans-
formation of Cocks’ identity-based encryption scheme [9]. Thus we show
that the primitive of PEKS can be based on additional intractability as-
sumptions which is a conventional desiderata about all cryptographic
primitives.

Keywords: Public-Key Encryption, Searchable Public-Key Encryption,
Quadratic Residuosity, Jacobi Symbol.

1 Introduction

A classical research area in Cryptography is that of designing candidates for
cryptographic primitives under different intractability assumptions, so to guar-
antee that the cryptographic primitive does not depend on the supposed hard-
ness of a single computational problem and its fortune against cryptanalytic
research. In this paper we concentrate on a recently introduced primitive, public-
key encryption with keyword search (PEKS) [5], for which all constructions in
the literature were based on assumptions related to bilinear forms. We present
a PEKS scheme based on a new assumption that can be seen as a variant of the
classical assumption on the hardness of deciding quadratic residuosity modulo
composite integers.
Motivation. PEKS allows a sender to compute an encrypted message, so that
the receiver can allow a third party to search keywords in the encrypted message

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 282–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 283

without (additional) loss of privacy on the content of the message. The following
motivating example for PEKS is taken almost verbatim from [5]. Suppose user
Alice wishes to read her email on a number of devices: laptop, desktop, pager,
etc. Alice’s mail gateway is supposed to route email to the appropriate device
based on the keywords in the email. For example, when Bob sends email with
the keyword “urgent” the mail is routed to Alice’s pager. When Bob sends email
with the keyword “lunch” the mail is routed to Alice’s desktop for reading later.
One expects each email to contain a small number of keywords. For example, all
words on the subject line as well as the sender’s email address could be used as
keywords. Now, suppose Bob sends encrypted email to Alice using Alice’s public
key. Both the contents of the email and the keywords are encrypted. In this
case the mail gateway cannot see the keywords and hence cannot make routing
decisions. With public-key encryption with keyword search one can enable Alice
to give the gateway the ability to test whether “urgent” is a keyword in the email,
but the gateway should learn nothing else about the email. More generally, Alice
should be able to specify a few keywords that the mail gateway can search for,
but learn nothing else about incoming mail.

Previous work. In its non-interactive variant, constructions for this primi-
tive were showed to be at least as hard to obtain as constructions for identity-
based encryption (as proved in [5]). Moreover, the existence of PEKS was proved
to follow from the existence of “anonymous” or “key-private” identity-based
encryption (this was noted in [5] and formally proved in [1]); namely, encryption
where the identity of the recipient remains unknown. Anonymous encryption is
well-known to be an attractive solution to the problem of fully-private commu-
nication (i.e., sender-anonymous and receiver-anonymous ciphertexts, as well as
protection against traffic analysis, by using bulletin boards); see, e.g., discus-
sions in [2,8]). It is a natural goal then to try to convert the existing identity-
based public-key cryptosystems into their anonymous variant, so that a PEKS
is automatically obtained. In fact, the anonymity or key-privacy property for
a public-key encryption scheme (whether it is identity-based or not), is itself a
property of independent interest, as already discussed in [2], where this property
was defined and investigated for conventional (i.e., not identity-based) public-key
encryption schemes. So far, however, all presented public-key encryption schemes
with keyword search were transformations of identity-based cryptosystems based
on bilinear forms. Even the authors of [5] noted the difficulty of coming up with
other examples of public-key encryption schemes with keyword search, by ob-
serving that the only identity-based cryptosystem not based on bilinear forms
(namely, Cocks’ scheme [9]) does not seem to have a direct transformation into an
anonymous variant and thus into a public-key encryption scheme with keyword
search. Further work on PEKS (e.g., [17,15,13,1,8]) did not contribute towards
this goal, but further studied schemes and variations based on bilinear forms.

Our results. In this paper we construct the first public-key encryption scheme
with keyword search which is not based on bilinear forms but is based on a new
assumption that can be seen as a variant of the well-known hardness of deciding
quadratic residues modulo a large composite integer. Our scheme is obtained

284 G. Di Crescenzo and V. Saraswat

as a non-trivial transformation of Cocks’ identity-based encryption scheme [9].
By the known equivalence of public-key encryption scheme with keyword search
and anonymous identity-based encryption, our scheme immediately gives the
first anonymous identity-based encryption scheme which is not based on bilinear
forms, a problem left open in [5]. Our scheme essentially preserves the time effi-
ciency of the (not anonymous) identity-based encryption of Cocks’ scheme, which
was claimed in the original paper [9] to be satisfactory in a hybrid encryption
mode (that is, when used to encrypt first a short session key and then using this
key to produce a symmetric encryption of a large message). We do note however
that the decryption time of Cocks’ scheme (and thus of our scheme too) is less
efficient than the known schemes based on bilinear forms.

The construction of a new identity-based encryption scheme based on quad-
ratic residuosity [7] and having short ciphertexts was claimed very recently, and
after seeing our present work [3]. This scheme is also anonymous, like ours, but
is based on very different techniques. Although their scheme is quite elegant,
encryption and decryption operations are estimated [4] to be significantly less
efficient than in Cocks’ scheme. Instead, when used as an anonymous identity-
based encryption scheme, our scheme is only less efficient than the original (and
not anonymous) Cocks’ scheme [9] by a small constant factor.
Organization of the paper. In what follows, we start by reviewing in Section 2
the formal definitions related to the notion of interest in this paper: public-
key encryption with keyword search. In Section 3 we present our public-key
cryptosystem with keyword search and in Section 4 we prove its properties.

2 Definitions and Preliminaries

We recall the known notion and formal definition of public-key encryption with
keyword search (as defined in [5,1]). We assume familiarity with the notion of
identity-based public-key cryptosystems (as defined, for instance, in [6,9]).

An identity-based public-key cryptosystem can be defined as a 4-tuple of al-
gorithms (Setup, KeyGen, Encrypt, Decrypt), with the following semantics: Setup
is used by the trusted authority TA to generate public parameters PK and a
master secret key SK; KeyGen is used by the trusted authority TA to gener-
ate a trapdoor key tID given a party’s ID; Encrypt is used by a sender who
wants to encrypt a message to a receiving party and only uses the receiver’s
ID and the public parameters PK; Decrypt is used by a receiver to decrypt a
ciphertext and only uses the trapdoor tID and the public parameters PK. We de-
note the identity-based cryptosystem in [9] as CC-IBE = (CC-Setup, CC-KeyGen,
CC-Encrypt, CC-Decrypt):

2.1 Public-Key Encryption with Keyword Search

Informally speaking, in a public-key encryption scheme with keyword search, a
sender would like to send a message in encrypted form to a receiver, so that the
receiver can allow a third party to search keywords in the encrypted message

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 285

without losing (additional) privacy on the message’s content. According to [5],
a non-interactive implementation of this task can be performed as follows. The
sender encrypts her message using a conventional public key cryptosystem, and
then appends to the resulting ciphertext a Public-key Encryption with Key-
word Search (PEKS) of each keyword. Specifically, to encrypt a message M with
searchable keywords W1, . . . , Wm, the sender computes and sends to the receiver

EApub
(M) ‖ ksEnc(Apub, W1) ‖ · · · ‖ ksEnc(Apub, Wm), (1)

where Apub is the receiver’s public key and E is the encryption algorithm of the
conventional public-key cryptosystem. Based on this encryption, the receiver
can give the third party a certain trapdoor TW which enables the third party
to test whether one of the keywords associated with the message is equal to
the word W of the receiver’s choice. Specifically, given ksEnc(Apub, W

′) and TW ,
the third party can test whether W = W ′; if W �= W ′ the third party learns
nothing more about W ′. Note that sender and receiver do not communicate
in this entire process, as the sender generates the searchable ciphertext for W ′

just given the receiver’s public key (thus, the term “public-key encryption with
keyword search” is used here).

More formally, we consider a setting with three parties: a sender, a receiver,
and a third party (representing the e-mail gateway in the application example
given in the introduction). In this setting, a public-key encryption with keyword
search is defined as follows.

Definition 1. A (non-interactive) public-key encryption scheme with keyword
search (PEKS) consists of the following polynomial time randomized algorithms:

1. KeyGen(1m): on input security parameter 1m in unary, it returns a pair
(Apub, Apriv) of public and private keys.

2. ksEnc(Apub, W): on input a public key Apub and a keyword W , it returns a
ciphertext, also called the searchable encryption of W .

3. Trapdoor(Apriv , W): on input Alice’s private key and a keyword W , it returns
a trapdoor TW .

4. Test(Apub, S, TW): on input Alice’s public key, a searchable encryption S =
ksEnc(Apub, W

′), and a trapdoor TW = Trapdoor(Apriv, W), it returns ‘yes’
or ‘no’.

Given the above definition, an execution of a public-key encryption scheme with
keyword search goes as follows. First, the receiver runs the KeyGen algorithm
to generate her public/private key pair. Then, she uses the Trapdoor algorithm
to generate trapdoors TW for any keywords W which she wants the third party
to search for. The third party uses the given trapdoors as input to the Test
algorithm to determine whether a given message encrypted by any sender using
algorithm ksEnc contains one of the keywords W specified by the receiver.

We now define three main properties which public-key encryption schemes
with keyword search may satisfy: (two variants of) consistency and security.
The following basic definition will be useful towards that: we say that a given

286 G. Di Crescenzo and V. Saraswat

function f : N → [0, 1] is negligible in n if f(n) < 1/p(n) for any polynomial p
and sufficiently large n.
Consistency. Next, we consider definitions of consistency for a PEKS (following
definitions in [5,1]). We consider two variants: right-keyword consistency and
adversary-based consistency for a PEKS in the random oracle model.

Informally, in right-keyword consistency, we require the success of the search
of any word W for which the encryption algorithm had computed a searchable
encryption.

Definition 2. We say that a PEKS is right-keyword consistent if it holds that
for any word W , the probability that Test(Apub, C, TW) �= ‘yes’ is negligible in
m, where Apub was generated using the KeyGen algorithm and input 1m, C was
computed as ksEnc(Apub, W) and TW was computed as Trapdoor(Apriv, W).

Informally, in adversary-based consistency, one would like to ensure that even
an adversary that has access to the public parameters PK and to a (uniformly
distributed) random oracle cannot come up with two different keywords such
that the testing algorithm returns ‘yes’ on input a trapdoor for one word and
a public-key encryption with keyword search of the other. Formally, we define
consistency against an attacker A using the following game between a challenger
and an attacker. Here, we denote by m the security parameter, given in unary
as input to both players, and by k the length of the keywords, where we assume
that k = Θ(mc), for some constant c > 0 (this assumption is seen to be wlog
using simple padding).

PEKS Adversary-Based Consistency Game

1. The challenger runs the KeyGen(1m) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker returns two keywords W0, W1 ∈ {0, 1}k.
3. Encryption C = ksEnc(Apub, W0) and trapdoor TW1 = Trapdoor(Apriv, W1)

are computed.
4. The attacker wins the game if W0 �= W1 and Test(Apub, C, TW1) returns ‘yes’.

We define A’s advantage AdvA(m, k) in breaking the consistency of PEKS as
the probability that the attacker wins the above game.

Definition 3. We say that a PEKS satisfies (computational) adversary-based
consistency if for any attacker A running in time polynomial in m, we have that
the function AdvA(m) is negligible in m.

Security. Finally, we recall the definition of security for a PEKS (in the sense
of semantic-security). Here, one would like to ensure that an ksEnc(Apub, W)
does not reveal any information about W unless TW is available. This is done
by considering an attacker who is able to obtain trapdoors TW for any W of his
choice, and require that, even under such attack, the attacker should not be able
to distinguish an encryption of a keyword W0 from an encryption of a keyword
W1 for which he did not obtain the trapdoor. Formally, we define security against

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 287

an active attacker A using the following game between a challenger and the
attacker. Here, we denote by m the security parameter, given in unary as input
to both players, and by k the length of the keywords, where we assume that
k = Θ(mc), for some constant c > 0 (this assumption is seen to be wlog using
simple padding).

PEKS Security Game

1. The challenger runs the KeyGen(1m) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TW for any
keyword W ∈ {0, 1}k of his choice.

3. At some point, the attacker A sends the challenger two keywords W0, W1 on
which it wishes to be challenged. The only restriction is that the attacker
did not previously ask for the trapdoors TW0 or TW1 . The challenger picks a
random b ∈ {0, 1} and gives the attacker C = ksEnc(Apub, Wb). We refer to
C as the challenge ciphertext.

4. The attacker can continue to ask for trapdoors TW for any keyword W of his
choice as long as W �= W0, W1.

5. Eventually, the attacker A outputs d ∈ {0, 1}.

Here, the attacker wins the game if its output differs significantly depending
on whether he was given the challenge ciphertext corresponding to W0 or W1.
This is formalized as follows. First, for b = 0, 1, let Ab = 1 denote the event
that A returns 1 given that C = ksEnc(Apub, Wb). Then, define A’s advantage in
breaking the PEKS scheme as

AdvA(m) =
∣∣ Prob[A0 = 1] − Prob[A1 = 1]

∣∣

Definition 4. We say that a PEKS is semantically secure against an adaptive
chosen-keyword attack if for any attacker A running in time polynomial in m,
we have that the function AdvA(m) is negligible in m.

Remarks. We defined right-keyword consistency as done in [5,1] (although
the name was first used in [1]). The (computational version of the) adversary-
based consistency was defined as a relaxed version of what is called just consis-
tency in [1]; the relaxation consisting in only restricting the adversary to return
keywords which have a known upper-bounded length. Although guaranteeing a
slightly weaker property, this is essentially not a limitation in practical scenarios
where a (small) upper bound on the length of keywords is known to all parties.
We also note that such a relaxation is always done, for instance, in the definition
of conventional public-key cryptosystems.

3 Our Construction

In this section we present our main construction: a public-key encryption with key-
word search under an intractability assumption related to quadratic residuosity

288 G. Di Crescenzo and V. Saraswat

modulo Blum-Williams integers. We first define the intractability assumption
which we use and formally state our main result; then, in Subsection 3.1 we give
an informal discussion where we sketch a preliminary (but flawed) construction,
explain why it does not work, and how we fix it; finally, in Subsection 3.2, we for-
mally describe our public-key cryptosystem with keyword search.

An intractability assumption. Our cryptosystem is based on the following
assumption which is a variation of the well-known quadratic residuosity problem.

Quadratic Indistinguishability Problem (QIP). Let m be a security parameter.
Let (p, q) ← BW(1m) denote the random process of uniformly and independently
choosing two m-bit primes p, q such that p = q = 3 mod 4. Let QR(n) denote the
set of quadratic residues modulo n and let Z

+1
n (resp. Z

−1
n) be the set of positive

integers which are < n, coprime with n and have Jacobi symbol equal to +1
(resp. −1). Also, let s ← CS(n, α) denote the random process of randomly and
independently choosing an integer s in Z

+1
n such that the condition α holds. The

QIP problem consists of efficiently distinguishing the following two distributions:

D0(1m) = {(p, q) ← BW(1m); n ← p · q; h ← Z
+1
n ;

s ← CS(n, s2 − 4h ∈ Z
−1
n ∪ QR(n)) : (n, h, s)}

D1(1m) = {(p, q) ← BW(1m); n ← p · q; h ← Z
+1
n ; s ← Z

∗
n : (n, h, s)}.

We say that algorithm A has advantage ε in solving QIP if we have that:

∣∣Pr[(n, h, s) ← D0(1m) : A(n, h, s) = 1]

− Pr[(n, h, s) ← D1(1m) : A(n, h, s) = 1]
∣∣ = ε. (2)

We say that QIP is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP.

Our result. In the rest of the paper we prove the following.

Theorem 1. Assume that the QIP problem is intractable. Then there exists
(constructively) a public-key encryption scheme with keyword search.

3.1 An Informal Discussion

A first (not yet anonymous) construction. The first approach is a very nat-
ural one — we simply apply the Cocks’ IBE scheme in place of Boneh-Franklin
scheme as done in the public-key encryption scheme with keyword search pre-
sented in [5]. Given a security parameter 1m, for m ∈ Z

+, the user Alice uses algo-
rithm CC-Setup to generate two sufficiently large primes p, q such that both p and
q are congruent to 3 mod 4 and a cryptographic hash function H (assumed to
behave like a random oracle in the analysis); then she outputs the public param-
eters Apub = (n, H) and keeps secret the master secret key Apriv = (p, q). Alice
treats each keyword W as an identity and, using algorithm CC-KeyGen, computes
a square root g of h = H(W) or −h depending on which one is a square modulo n,

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 289

and supplies the mail server with TW = g as the trapdoor for W . A user Bob
wishing to send an encrypted email to Alice with the keyword W uses algorithm
CC-Encrypt to encrypt the string 1k, where k = |W |, using W as the necessary
input identity, thus obtaining ksEnc(Apub, W) = s = (s1, . . . , sk, sk+1, . . . , s2k).
The server then decrypts s as in algorithm CC-Decrypt and outputs ‘yes’ if the
decryption returns 1k, or outputs ‘no’ otherwise.

The problem with the first approach. The above scheme does not satisfy
anonymity because Cocks’ IBE scheme is not public-key private or anonymous,
in the sense of Bellare et al. [2], and thus the ciphertext returned by algorithm
PEKS may reveal more information than desired about the searchable keyword.
This fact was already briefly mentioned in [5], but it is useful to analyze it in
greater detail here to understand how we will obtain our main construction.
Specifically, to clarify this fact, we note that for i = 1, . . . , k, it holds that

s2
i − 4h = (ti + h/ti)2 − 4h = (ti − h/ti)2 mod n

and therefore, except with negligible probability,
(

s2
i −4h

n

)
= +1 and, analo-

gously, for i = k + 1, . . . , 2k, it holds that

s2
i + 4h = (ti − h/ti)2 + 4h = (ti + h/ti)2 mod n

and therefore, except with negligible probability,
(

s2
i +4h

n

)
= +1.

On the other hand, for any other keyword W ′ �= W , if h′ = H(W ′), the
quantities s2

i − 4h′ and s2
i + 4h′ are not necessarily squares and their Jacobi

symbols
(

s2
i ±4h′

n

)
may be −1. In fact, when h′ is randomly chosen in Z

∗
n, for

each i ∈ {1, . . . , 2k}, it holds that
(

s2
i±4h′

n

)
= −1 exactly half the time s2

i ± 4h′

is in Z
∗
n. Thus, an outsider can easily find out whether a keyword W is in the

message or not with some non-negligible probability, which is not desirable.

Fixing the problems and ideas behind our construction. At a very high
level, we still would like to use the approach in [5]; which, very roughly speaking,
might be abstracted as follows: a searchable ciphertext is ‘carefully computed’
as the output of an identity-based encryption algorithm on input a plaintext
sent in the clear and a function of the keyword W as the identity; the com-
putation of the searchable ciphertext is such that (with high probability) the
plaintext sent in the clear is the actual decryption of this ciphertext if and only
if the trapdoor associated to the same keyword W is used to decrypt. However,
the main difficulty in implementing this approach with (a modification of) the
Cocks’ scheme CC-IBE is in obtaining a modification which additionally satis-
fies the ‘public-key privacy’ or ‘anonymity’ property. We solve this problem by
modifying the distribution of the ciphertext in CC-IBE, so that its modified distri-
bution is ‘properly randomized’, and, when used in the context of a ciphertext
associated with our public-key encryption scheme with keyword search, does
not reveal which keyword is being used. The randomization of the ciphertext
has to guarantee not only that the ciphertext does not reveal the identity used

290 G. Di Crescenzo and V. Saraswat

(or, in other words, the integer h = H(ID)), but also has to guarantee that the
distribution remains the same when it is matched with another identity (e.g.,
another integer h′ = H(ID′)). In this randomization process, we have to take
care of two main technical obstacles, one related to the distribution of the in-
tegers si with respect to the Jacobi symbols

(
s2

i±4h
n

)
; and another one, related

to efficiently guaranteeing that all values si are constructed using uniformly and
independently distributed hashes (or, functions of the keyword) playing as the
identity. We achieve this through two levels of randomization. First, the cipher-
text contains 4k integers si in Z

∗
n such that the Jacobi symbols of the related

expressions s2
i −4h are uniformly distributed in {−1, +1} whenever s2

i ±4h is in
Z
∗
n. Second, to make sure that these Jacobi symbols are also independently dis-

tributed, we do not use a single value h, but use a uniformly and independently
distributed hi for each index i.

3.2 Formal Description

We denote our public-key encryption with keyword search scheme as MainScheme
= (M-KeyGen, M-ksEnc, M-Trapdoor, M-Test). MainScheme uses a cryptographic
hash function H : {0, 1}k → Z

+1
n (which is assumed in the analysis to behave as

a random oracle). We denote by m the security parameter and by k the length
of keywords. We assume wlog that k = Θ(mc) for some constant c > 0 (concrete
values for m, k can be m = 1024 and k = 160). MainScheme can be described as
follows:

M-KeyGen(1m): On input security parameter 1m in unary, for m ∈ Z
+, do the

following:
1. randomly choose two primes p, q of length m/2, and such that both p

and q are congruent to 3 mod 4 and set n = pq;
2. Set Apub = (n, 1k) and Apriv = (p, q), and output: (Apub, Apriv).

M-ksEnc(Apub, W): Let Apub = (n, 1k), W ∈ {0, 1}k, and do the following:
1. For each i = 1, . . . , 4k,

compute hi = H(W |i);
randomly and independently choose ui ∈ Z

∗
n;

if
(

u2
i−4hi

n

)
= +1 then

randomly and independently choose ti ∈ Z
+1
n ;

set si = (ti + hi/ti) mod n.
if

(
u2

i−4hi

n

)
∈ {−1, 0} then set si = ui.

2. Output s = (s1, . . . , s4k).
M-Trapdoor(Apriv, W): Let Apriv = (p, q), W ∈ {0, 1}k, and do the following:

1. For i = 1, . . . , 4k;
compute hi = H(W |i);
use p, q to randomly choose gi ∈ Z

∗
n (if any) such that g2

i = hi mod n;
if hi has no square root modulo n, then set gi =⊥;

2. return: (g1, . . . , g4k).

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 291

M-Test(Apub, s, TW): Let TW = (g1, . . . , g4k) and s = (s1, . . . , s4k), and do the
following:
1. For i = 1, . . . , 4k,

if gi =⊥ then set t̄i =⊥;
if g2

i = hi mod n then
if

(
s2

i −4hi

n

)
= +1 then set t̄i =

(
si+2gi

n

)
;

otherwise set t̄i =⊥;
2. output ‘yes’ if t̄i ∈ {+1, ⊥} for all i = 1, . . . , 4k; otherwise output ‘no’.

Remarks: ciphertext distribution and scheme parameters. We note the
distribution of the ciphertext s = (s1, . . . , s4k) returned by algorithm M-ksEnc
has only negligible statistical distance from the distribution where each element
si is uniformly distributed among the integers such that s2

i − 4hi ∈ QR(n) with
probability 1/2, or s2

i − 4hi ∈ Z
−1
n with probability 1/2.

We note that it is essential to choose our scheme’s parameter k = Θ(mc),
for some c > 0, to guarantee that the consistency properties of MainScheme
are satisfied in an asymptotic sense. Good practical choices for parameters m, k
include setting m = 1024 and k = 160.

4 Properties of Our Construction

In Subsections 4.1 and 4.2 we prove the consistency and security properties of
our public-key encryption scheme with keyword search.

4.1 Proof of Consistency

We prove the right-keyword consistency here and omit the proof of adversary-
based consistency of MainScheme to meet space constraints.

Right-keyword consistency. For i = 1, . . . , 4k, whenever
(

s2
i −4hi

n

)
= +1, it

always holds that hi = g2
i mod n and it never holds that t̄i =

(
si+2gi

n

)
= −1.

The latter fact is proved by observing that, for i = 1, . . . , 4k, it holds that

si + 2gi = ti + hi/ti + 2gi = ti · (1 + g2
i /ti

2 + 2gi/ti) = ti · (1 + gi/ti)2 mod n,

and thus, except with negligible probability,

t̄i =
(

si + 2gi

n

)
=

(
ti
n

)
= +1.

Now, the above equalities do not hold only when si + 2gi mod n is not in Z
∗
n,

in which case it still holds that
(

si+2gi

n

)
= 0 �= −1. As a consequence of these

two facts, the right-keyword consistency property holds with probability 1.

292 G. Di Crescenzo and V. Saraswat

4.2 Proof of Security

Let A be a polynomial-time algorithm that attacks MainScheme and succeeds
in breaking with advantage ε, and while doing that, it makes at most qH > 0
queries to the random oracle H and at most qT > 0 trapdoor queries. We would
like to show that ε is negligible in m or otherwise A can be used to construct an
algorithm B that violates the intractability of the QIP problem. More precisely,
we will attempt to violate the intractability of one among two problems that we
call QIP1 and QIP2, and that are easily seen to be computationally equivalent
to QIP.

We prove this by defining a sequence of games, which we call ‘MainScheme
Security Game t’, for t = 0, . . . , 4k, which are all variations of the PEKS Security
Game defined in Section 2.

MainScheme Security Game t

1. Algorithm B takes as input (n, h0, h1, s), where n is a Blum-Williams integer,
and h0, h1 ∈ Z

+1
n and s ∈ Z

∗
n.

2. First of all B runs the M-KeyGen(1m) algorithm to generate Apub = (n, 1k)
and Apriv = (p, q); afterwards, it gives Apub to the attacker A.

3. A can adaptively ask for outputs from the random oracle H to any inputs
of its choice. To respond to H-queries, algorithm B maintains a list of tuples
〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 called the H-list. The list is initially empty.
When A queries the random oracle H at a point (Wi|j), for Wi ∈ {0, 1}k

and j ∈ {1, . . . , 4k}, algorithm B responds as follows.
If tuple 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 appears on the H-list then algo-

rithm B responds with H(Wi|j) = hi,j ∈ Z
+1
n .

Otherwise, B uniformly chooses d(i, j) ∈ {0, 1}, ri,j ∈ Z
∗
n, and randomly

choose c(i, j) ∈ {0, 1} such that c(i, j) = 0 with probability 1/(qT + 1) and
c(i, j) = 1 with probability 1 − 1/(qT + 1).

If c(i, j) = 1 then B computes hi,j = (−1)d(i,j) · r2
i,j mod n; sets gi,j =⊥

if d(i, j) = 1, or gi,j = ri,j if d(i, j) = 0; adds 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉
to the H-list and responds with hi,j to the H-query (Wi|j).

If c(i, j) = 0, then B sets d = d(i, j), computes hi,j = hd · r2
i,j mod n,

sets gi,j = ri,j , adds 〈Wi, j, hi,j , gi,j, d(i, j), c(i, j)〉 to the H-list and responds
with hi,j to the H-query (Wi|j).

4. A can adaptively ask for the trapdoor TW for any keyword W ∈ {0, 1}k of
his choice, to which B responds as follows.

If tuple 〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 already appears on the H-list, for
some j ∈ {1, . . . , 4k} and Wi = W , then B responds with (gi,1, . . . , gi,4k) to
the trapdoor query W if c(i, j) = 1 or reports failures and halts if c(i, j) = 0.

Otherwise B randomly chooses d(i, j) ∈ {0, 1} and ri,j ∈ Z
∗
n; computes

hi,j = (−1)d(i,j) · r2
i,j mod n; sets gi,j =⊥ if d(i, j) = 1 or gi,j = ri,j oth-

erwise, responds with (gi,1, . . . , gi,4k) to the trapdoor query W and inserts
〈Wi, j, hi,j , gi,j , d(i, j), c(i, j)〉 in H-list.

5. The attacker A sends the two keywords W0, W1 on which it wishes to be
challenged (for which it did not previously ask for trapdoors TW0 or TW1).

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 293

If the two tuples

〈Wu, j, hu,j , gu,j, d(u, j), c(u, j)〉 and 〈Wv, j, hv,j , gv,j , d(v, j), c(v, j)〉
satisfying Wu = W0, Wv = W1, j = t, and ((c(u, j) = 0) ∨ (c(v, j) = 0)), are
not in H-list, then B reports failures and halts.

Otherwise B computes (s1, . . . , s4k) as follows:
– s1, . . . , st−1 are computed as from algorithm M-ksEnc on input Apub, W0;
– st is set equal to s · ri,t mod n;
– st+1, . . . , s4k are computed as from algorithm M-ksEnc on input Apub, W1.

6. Given challenge (s1, . . . , s4k), A can continue to ask for random oracle H ’s
outputs for any input of its choice, and for trapdoors TW for any keyword
W of his choice as long as W �= W0, W1; these are answered as in items 3
and 4, respectively.

7. A outputs out ∈ {0, 1}.
By using a standard hybrid argument on our assumption that A breaks the secu-
rity of MainScheme with probability ε, we obtain that there exists t ∈ {1, . . . , 4k}
such that

| Prob[At = 1] − Prob[At+1 = 1] | ≥ ε/4k, (3)

where by At = 1 we denote the event that A returns 1 in the real attack game
given that the challenge ciphertext s had been computed as follows: s1, . . . , st

are computed as in algorithm M-ksEnc on input Apub, W0; and st+1, . . . , s4k are
computed as in algorithm M-ksEnc on input Apub, W1. Similarly, as in [5], we
can obtain that with probability at least ε/4k, A queries at least one of the two
H-queries (W0|t), (W1|t). (The proof is omitted for lack of space.)

The proof continues by considering two cases according to whether only one
of the two queries are made or both of them are made. In the first case, we
show that B violates the intractability of the QIP1 problem, and in the second
case we show that it violates the intractability of the QIP2 problem. Both the
QIP1 and QIP2 are minor variants of the QIP problem and easily seen to be
computationally equivalent to it.

Case (a). We now consider the case when only one of the two H-queries; say,
(W0|t), is made by algorithm A. We define the QIP1 problem as the problem of
efficiently distinguishing the following two distributions:

D1,0(1m) = {(p, q) ← BW(1m); n ← p · q; d ← {0, 1}; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4hd ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}

D1,1(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ; s ← Z

∗
n : (n, h0, h1, s)}

We say that algorithm A has advantage ε in solving QIP1 if we have that:
∣∣Pr[(n, h0, h1, s) ← D1,0(1m) : A(n, h0, h1, s) = 1]

− Pr[(n, h0, h1, s) ← D1,1(1m) : A(n, h0, h1, s) = 1]
∣∣ = ε. (4)

We say that QIP1 is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP1.

294 G. Di Crescenzo and V. Saraswat

By a simple simulation argument, we can prove the following theorem:

Theorem 2. The QIP1 problem is intractable if and only if the QIP problem
is so.

We continue the proof by noting that bit c(i, t) associated to the query (W0|t),
where the i-th queried keyword is W0, satisfies c(i, t) = 0 with probability
1/(qT + 1). Assuming that c(i, t) = 0, we evaluate the distribution of cipher-
text s in MainScheme Security Game t, for t = 1, . . . , 4k.

First, we let d = d(i, t) and observe that when (n, h0, h1, s) ∈ D1,0(1m),
the ciphertext s in MainScheme Security Game t appears to A to be distributed
exactly as if s1, . . . , st were computed as in algorithm M-ksEnc on input Apub, W0,
and st+1, . . . , s4k were computed as in algorithm M-ksEnc on input Apub, W1. This
can be seen by observing that we assumed that c(i, t) = 0 and thus H(W0|t) =
hd·r2

i,t; then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W0|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W0|t) = (sri,t)2 −4hdr
2
i,t =

r2
i,t(s

2 − 4hd), where s2 − 4hd is also randomly distributed among the integers
in Z

−1
n ∪ QR(n)) as (n, h0, h1, s) ∈ D1,0(1m). Therefore, the probability that A

returns 1 in MainScheme Security Game t when (n, h0, h1, s) ∈ D1,0(1m) is the
same as the probability that At = 1.

We now consider the case when (n, h0, h1, s) ∈ D1,1(1m), the ciphertext s
in MainScheme Security Game t appears to A to be distributed exactly as if
s1, . . . , st−1 were computed as in algorithm M-ksEnc on input Apub, W0, and
st, . . . , s4k were computed as in algorithm M-ksEnc on input Apub, W1. This can
be seen by observing that st is uniformly distributed in Z

∗
n by definition of D1,1,

and that if st were computed as in algorithm M-ksEnc on input Apub, W1, it
would appear to A to have the same distribution, as we assumed that (W1|t)
was not queried by A. Therefore, the probability that A returns 1 in MainScheme
Security Game t when (n, h0, h1, s) ∈ D1,1(1m) is the same as the probability
that At−1 = 1.

This implies that the probability that B distinguishes D1,0(1m) from D1,1(1m)
is the probability 1/(e · qT) that B does not halt in MainScheme Security Game
t, times the probability ε/(4k · (qT +1)) that A makes only one H-queries among
(H0|t), (H1|t) and it holds that the associated bit c·,t = 0.

Since ε is assumed to be not negligible, then so is the quantity ε/(e·4k·(qT +1)),
and therefore B violates the intractability of the QIP1 problem.

Case (b). We now consider the case when both H-queries (W0|t), (W1|t) are
made by algorithm A. We define the QIP2 problem as the problem of efficiently
distinguishing the following two distributions:

D2,0(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4h0 ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}

D2,1(1m) = {(p, q) ← BW(1m); n ← p · q; h0, h1 ← Z
+1
n ;

s ← CS(n, s2 − 4h1 ∈ Z
−1
n ∪ QR(n)) : (n, h0, h1, s)}

Public Key Encryption with Searchable Keywords Based on Jacobi Symbols 295

We say that algorithm A has advantage ε in solving QIP2 if we have that:

∣∣Pr[(n, h0, h1, s) ← D2,0(1m) : A(n, h0, h1, s) = 1]

− Pr[(n, h0, h1, s) ← D2,1(1m) : A(n, h0, h1, s) = 1]
∣∣ = ε. (5)

We say that QIP2 is intractable if all polynomial time (in m) algorithms have a
negligible (in m) advantage in solving QIP2.

By a simple hybrid argument, we can prove the following theorem:

Theorem 3. The QIP2 problem is intractable if and only if the QIP problem
is so.

We continue the proof by noting that bits c(i, t), c(j, t) associated to the two
queries, where the i-th queried keyword is Wi and the j-th queried keyword is
W1, satisfy c(i, t) = c(j, t) = 0 with probability at least 1/(qT + 1)2. Under
this setting, we evaluate the distribution of ciphertext s in MainScheme Security
Game t, for t = 1, . . . , 4k.

First, we observe that when (n, h0, h1, s) ∈ D2,0(1m), the ciphertext s in
MainScheme Security Game t appears to A to be distributed exactly as if s1,. . ., st

were computed as in algorithm M-ksEnc on input Apub, W0, and st+1, . . . , s4k

were computed as in algorithm M-ksEnc on input Apub, W1. This can be seen
by observing that we assumed that c(i, t) = 0 and thus H(W0|t) = h0 · r2

i,t;
then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W0|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W0|t) = (sri,t)2 −4h0r
2
i,t =

r2
i,t(s

2 − 4h0), where s2 − 4h0 is also randomly distributed among the integers in
Z
−1
n ∪ QR(n)) as s ∈ D2,0(1m). Therefore, the probability that A returns 1 in

MainScheme Security Game t when (n, h0, h1, s) ∈ D2,0(1m) is the same as the
probability that At = 1.

Analogously, when (n, h0, h1, s) ∈ D2,1(1m), the ciphertext s in MainScheme
Security Game t appears to A to be distributed exactly as if s1, . . . , st−1 were
computed as in algorithm M-ksEnc on input Apub, W0, and st, . . . , s4k were com-
puted as in algorithm M-ksEnc on input Apub, W1. This can be seen as before by
again observing that we assumed that c(j, t) = 0 and thus H(W1|t) = h1 · r2

j,t;
then, it holds that st is randomly distributed among the integers such that
s2

t −4H(W1|t) ∈ Z
−1
n ∪QR(n)) as it satisfies s2

t −4H(W1|t) = (srj,t)2 −4h1r
2
j,t =

r2
j,t(s

2 − 4h1), where s2 − 4h1 is also randomly distributed among the integers
in Z

−1
n ∪QR(n)) as s ∈ D2,1(1m). Therefore, the probability that A returns 1 in

MainScheme Security Game t when (n, h0, h1, s) ∈ D2,1(1m) is the same as the
probability that At−1 = 1.

This implies that B distinguishes D2,0(1m) from D2,1(1m) is the probability
1/(e ·qT) that B does not halt in MainScheme Security Game t, times the proba-
bility ε/(4k · (qT + 1)2) that A makes both H-queries (H0|t), (H1|t) and it holds
that ci,t = cj,t = 0.

Since ε is assumed to be not negligible, then so is the quantity ε/(e · 4k · qT

(qT + 1)2), and therefore B violates the intractability of the QIP2 problem.

296 G. Di Crescenzo and V. Saraswat

Acknowledgements

We thank Fadil Santosa, Minnesota Center for Industrial Mathematics, Univer-
sity of Minnesota, and Andrew Odlyzko, Digital Technology Center, University
of Minnesota, for support and interesting discussions.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, Springer,
Heidelberg (2001)

3. Boneh, D.: Private communication (February 2007)
4. Boneh, D.: Private communication (August 2007)
5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption

with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. SIAM
J. of Computing 32(3), 586–615 (2003) (Extended abstract in Crypto 2001)

7. Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity Based Encryption
Without Pairings (in submission)

8. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (with-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
Springer, Heidelberg (2006)

9. Cocks, C.: An Identity Based Encryption Echeme based on Quadratic Residues.
In: Eighth IMA International Conference on Cryptography and Coding, Royal
Agricultural College, Cirencester, UK (December 2001)

10. Cohen, H.: A Course in Computational Algebraic Number Theory. In: Graduate
Texts in Mathematics, vol. 138, Springer, Heidelberg (1993)

11. Coron, J.: On the Exact Security of Full-Domain-Hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

12. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal on
Computing (2000) Early version in Proc. of STOC 1991

13. Golle, P., Staddon, J., Waters, B.R.: Secure Conjunctive Keyword Search over
Encrypted Data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, Springer, Heidelberg (2004)

14. Maniatis, P., Roussopoulos, M., Swierk, E., Lai, K., Appenzeller, G., Zhao, X.,
Bake, M.: The Mobile People Architecture. ACM Mobile Computing and Commu-
nications Review (MC2R) 3(3) (July 1999)

15. Park, D.J., Kim, K., Lee, P.J.: Public Key Encryption with Conjunctive Keyword
Search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, Springer,
Heidelberg (2005)

16. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, Springer, Heidelberg
(1985)

17. Waters, B., Balfanz, D., Durfee, G., Smetters, D.: Building an Encrypted and
Searchable Audit Log. In: Proc. of NDSS 2004 (2004)

A Certificate-Based Proxy Cryptosystem with

Revocable Proxy Decryption Power

Lihua Wang1, Jun Shao2, Zhenfu Cao2,
Masahiro Mambo3, and Akihiro Yamamura1

1 Information Security Research Center, National Institute of Information and
Communications Technology, Tokyo 184-8795, Japan

{wlh,aki}@nict.go.jp
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, P.R. China
chn.junshao@gmail.com, zfcao@sjtu.edu.cn

3 Graduate School of Systems and Information Engineering, University of Tsukuba,
Tsukuba 305-8573, Japan
mambo@cs.tsukuba.ac.jp

Abstract. We present a proxy cryptosystem based on a certificate-
based encryption scheme. The proposed scheme inherits the merits of
certificate-based encryption systems: no-key-escrow and implicit certifi-
cation. In addition, the proposed scheme allows the proxy’s decryption
power to be revoked even during the valid period of the proxy key without
changing the original decryptor’s public information. Few proxy schemes
have this property, and ours is more efficient than the existing ones. We
show that our proposal is IND-CBPd-Rev-CCA secure under the bilinear
Diffie-Hellman assumption in the random oracle model.

Keywords: proxy cryptosystem, pairing, certificate-based encryption
(CBE).

1 Introduction

Proxy cryptosystems were invented by Mambo and Okamoto [7] for the dele-
gation of the power to decrypt ciphertexts. In a proxy cryptosystem, there are
three roles of participants involved: encryptor Alice, original decryptor Bob, and
Bob’s proxy decryptors Charlie, Clara and so on.

Let us consider the following scenario. A busy corporate manager, Bob, re-
ceives a great number of e-mails encrypted using his public key every day. To
reduce the burden of decrypting all of the ciphertexts, Bob partly delegates his
decryption power to his secretaries by subject assigned to them. The subjects
may be project names, trade names, or simply topics written in the subject lines
of e-mails. For example, Bob delegates the decryption power corresponding to a
certain subject jobc (say it is related to a project during the fiscal year 2007) to
Charlie. Charlie is then given proxy decryption power for the period from the first
of January to the thirty-first of December, 2007. As long as the proxy behaves
well, the proxy decryption power will be valid until the end of 2007. However,

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 297–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 L. Wang et al.

the following unexpected cases may occur before the proxy decryption power
expires: Charlie’s occupation changes, Charlie’s proxy key has disappeared, or
Charlie becomes corruptible so that Bob dose not trust him anymore.

In such cases, it is desirable for Bob to be able to revoke Charlie’s proxy
decryption power even if his proxy key has not expired. We name this ability
revocability. If a proxy cryptosystem has revocability, we call it a proxy cryp-
tosystem with revocable proxy decryption power. To avoid unnecessary tasks
on encryptors, Bob’s public information, public key, and subjects assigned to
proxy decryptors should remain unchanged when a proxy’s decryption power is
revoked.

In the Mambo-Okamoto proxy cryptosystem [7], Bob controls his proxy de-
cryption power by transforming an original ciphertext into another ciphertext
for the proxy. The proxy cannot decrypt a ciphertext at all before Bob transfers
the ciphertext for him. Therefore, the Mambo-Okamoto proxy cryptosystem can
revoke decryption power without changing Bob’s public information. However,
the ciphertext transformation needs to be executed for every ciphertext, so the
Mambo-Okamoto proxy cryptosystem is not efficient enough for practical use.

To make the cryptosystem more efficient, many ciphertext Transformation-
Free Proxy cryptosystems (TFP systems) were studied [8,10,11,12,14]. In these
schemes, each proxy can decrypt a ciphertext directly without ciphertext trans-
formation. However, none of them is a proxy cryptosystem with revocable proxy
decryption power.

Furthermore, all proxy cryptosystems (including those with ciphertext trans-
formation and the above TFP systems) are constructed based either on directory-
based public key cryptography (PKC) or identity-based cryptography (IBC). It is
well known that directory-based PKC suffers from the certificate revocation prob-
lem and IBC suffers from the key escrow problem. To overcome these disadvan-
tages in directory-basedPKC and IBC, Gentry [6] introduced the certificate-based
encryption (CBE) scheme, which combines the best aspects of IBCs (implicit cer-
tification) and of directory-based PKCs (no-key-escrow).To the best of our knowl-
edge, there is no proxy cryptosystem constructed based on CBE.

In this paper, we give the first construction of a certificate-based proxy cryp-
tosystem (CBPd)1. In addition to the inherent merits of the CBE scheme, our
CBPd scheme can revoke proxy decryption power without changing Bob’s public
information even during the valid period of the proxy key. Our scheme is also
efficient because it is a ciphertext transformation-free proxy cryptosystem. The
proposed CBPd scheme with revocable proxy decryption power is semantically
secure against adaptive chosen ciphertext attack (IND-CBPd-Rev-CCA secure)
under the random oracle model. Therefore, our scheme is the first certificate-
based proxy cryptosystem that has revocability, transformation-freeness, and
IND-CBPd-Rev-CCA security.

The rest of this paper is organized as follows. In Section 2, we recall the
definition of pairings and computational complexity assumptions. In Section 3,
we first formally define a certificate-based proxy cryptosystem and then propose

1 “d” is used here to distinguish proxy decryption from proxy signature.

A Certificate-Based Proxy Cryptosystem 299

a concrete scheme with revocable proxy decryption power. In Section 4, we prove
that our scheme is IND-CBPd-Rev-CCA secure in the random oracle model. We
discuss several issues in Section 5 and make brief concluding remarks in Section 6.

2 Bilinear Pairings and Complexity Assumption

Our scheme is based on an admissible pairing that was first used to construct
cryptosystems independently by Sakai et al. [9] and Boneh et al. [2]. The modified
Weil pairing and the Tate pairing associated with supersingular elliptic curves
are examples of such admissible pairings. However, we describe pairings and the
related mathematics in a more general format here.

Let G1, G2 be two multiplicative groups with prime order p and g be a gen-
erator of G1. G1 has an admissible bilinear map into G2, ê : G1 × G1 −→ G2, if
the following three conditions hold:

(1) Bilinear. ê(ga, gb) = ê(g, g)ab for all a, b ∈ Z
∗
p.

(2) Non-degenerate. ê(g, g) �= 1G2 .
(3) Computable. There is an efficient algorithm to compute ê(f, h) for any

f, h ∈ G1.

Bilinear Diffie-Hellman (BDH) Parameter Generator [2,6]: A random-
ized algorithm IG is a BDH parameter generator if IG takes a security parameter
k > 0, runs in time polynomial in k, and outputs the description of two groups
G1 and G2 of the same prime order p and the description of an admissible pairing
ê : G1 × G1 → G2.

The following three problems are assumed to be intractable for any polynomial
time algorithm.

Discrete Logarithm Problem: Given g, ga ∈ G1, or μ, μa ∈ G2, find a ∈ Z
∗
q .

Computational Diffie-Hellman (CDH) Problem [2]: Given g, ga, gb ∈ G1,
find gab ∈ G1.

Bilinear Diffie-Hellman (BDH) Problem [2]: Given g, ga, gb, gc ∈ G1, find
ê(g, g)abc ∈ G2.

3 A CBPd Scheme with Revocable Proxy Decryption
Power

3.1 Definitions

Definition 1 (CBPd system). A certificate-based proxy cryptosystem (CBPd
system) consists of the following five algorithms:

Setup: This algorithm takes as input a security parameter 1k and returns the
certifier’s master secret key msk and master public key mpk. It also outputs a
public parameter params, which is shared in the system.

300 L. Wang et al.

Original Decryption Key Generation

- PartialKeyGen: This algorithm takes as input system parameter params.
It outputs a user U ’s partial secret/public key pair (skU , pkU).

- Certification: This algorithm takes as input master secret/public key pair
(msk, mpk), system parameter params, user U ’s information which includes
his or her identity IDU and public key pkU . It outputs a certificate CertU .

- DecKeyGen: This algorithm takes as input certificate CertU and user U ’s
partial secret/public key pair (skU , pkU). It outputs user U ’s original decryp-
tion key sk

(0)
U .

Proxy Decryption Key Distribution (PDK): This algorithm takes as input
master public key mpk, system parameter params, user U ’s original decryption
key sk

(0)
U , and delegation subject job. It outputs a proxy key sk

(job)
U .

Encryption (E): The encryption algorithm, E, is a probabilistic algorithm that
takes as input a plaintext m, U ’s public key pkU and identity IDU , and the subject
line, job. It outputs ciphertext Cjob of m.

Decryption: The decryption algorithm, (DU , Djob), is a deterministic algorithm
that consists of an original/basic decryption algorithm DU and a proxy decryption
algorithm Djob.

- The original/basic decryption algorithm, DU , takes as input a ciphertext
Cjob, and U ’s original decryption key sk

(0)
U . It outputs plaintext m of Cjob.

- The proxy decryption algorithm, Djob, takes as input a ciphertext Cjob, proxy
key sk

(job)
U , and user U ’s public information. It outputs plaintext m of Cjob.

In the above CBPd system, the delegation subject, job, acts as the “identity”
of the proxy. Therefore, the encryptor does not need to know who the proxy of
Bob is.

Definition 2 (Revocability). A CBPd system with revocable proxy decryption
power satisfies the following basic security requirements:

- (General requirements) On receipt of a ciphertext to Bob, no one can do basic
decryption operation without Bob’s partial secret key skB or decryption key
SB; The proxy for the subject job cannot decrypt the ciphertext corresponding
to subject job′ �= job.

- (Requirements in view of revocability) When the proxy key is marked void
by Bob forcibly on time τ , Charlie can no longer decrypt ciphertexts under
subject jobc on time τ ′ > τ even if the valid period of the proxy key has not
expired.

3.2 Our Scheme

In our scheme, proxy decryption key distribution algorithm PDK and proxy de-
cryption algorithm Djob are devised as follows to meet revocability requirements:

A Certificate-Based Proxy Cryptosystem 301

- Bob distributes proxy keys with a valid period to proxies by subject, e.g.,
sk

(jobc)
B denotes the proxy key that Bob distributes to Charlie, who is dele-

gated proxy decryption power for subject jobc.
- Bob distributes short-term common data and often (e.g., once a day) renews

the data for all of his proxies. Let Y (τi) denote the data on day τi where
i = 1, 2,

- On receipt of the ciphertext C in terms of the subject jobc and time τ ,
Charlie decrypts the ciphertext C, using both sk

(jobc)
B and Y (τ).

Assume that there are n assistants who are delegated to do proxy decryption for
Bob. Their proxy authorities are for different subjects job1, ..., jobn. Using ideas
from the CBE of Gentry [6], the IBE of Waters [13], and Fujisaki and Okamoto’s
scheme [5], we construct the following concrete scheme.

Setup: The CA2 does as follows:

– Run the BDH parameter generator IG on input 1k to generate a prime p,
two multiplicative groups G1, G2 of order p, and an admissible bilinear map
ê : G1 × G1 → G2. Choose an arbitrary generator g ∈ G1.

– Pick a random sC ∈ Z
∗
p, and set gpub = gsC .

– Choose six cryptographic hash functions H0 : G1 × {0, 1}lid × G1 → G1,
H1 : {0, 1}lid × G1 → G1, H2 : {0, 1}ljob → G1, H3 : {0, 1}ltime → G1,
H4 : {0, 1}2lM → Z

∗
p, and H5 : {0, 1}lM → {0, 1}lM, where lid, ljob, ltime and

lM denote the lengths of user identity, subject job, time τ , and plaintext
m ∈ M, respectively. Choose a key derivation function F : G2 → {0, 1}lM

for lM, such as KDF1 defined in IEEE Standard 1363-2000. The security
analysis will view F , Hi(i ∈ {0, 1, 2, 3, 4, 5}) as random oracles.

The system parameters are

params = (G1, G2, p, ê, g, gpub, F, Hi(i ∈ {0, 1, 2, 3, 4, 5})).

The message space is M = {0, 1}lM. The CA’s secret is sC ∈ Z
∗
p.

Original Decryption Key Generation

– Bob generates his partial secret/public key pair (sB, pkB), where pkB = gsB

is computed according to the parameters issued by the CA.
– Bob sends his information to the CA, which includes his public key pkB and

any necessary additional identifying information, such as his name and mail
address. The CA verifies Bob’s information, then computes

CertB = H0(gpub, IDB, pkB)sC ∈ G1.

Certificate CertB is, in fact, a signature (the signature in [4]) by the CA on
Bob’s information.

2 The main difference from the CA in PKC is that the CA in CBE uses an IBE scheme
to generate the certificate ([6]).

302 L. Wang et al.

– Before doing decryptions, Bob also signs on his own information by produc-
ing SignB = H1(IDB, pkB)sB . Then Bob will use this two person aggregate
signature [3]

SB = CertB · SignB = H0(gpub, IDB , pkB)sC H1(IDB, pkB)sB

as his decryption key.

Proxy Decryption Key Distribution (PDK): Bob selects A ∈R G1, be-
fore generating a long-term personal proxy key for each proxy and short-term
common data for all of his proxies.

– Long-term personal proxy key: Charlie, one of Bob’s proxies, is delegated the
decryption power for subject, jobc. Bob selects djobc ∈R Z

∗
p then computes

proxy key sk
(jobc)
B = (sk(jobc)

1 , sk
(jobc)
2) for Charlie as follows:

sk
(jobc)
1 = SBH2(jobc)djobc A, sk

(jobc)
2 = gdjobc .

Bob sends sk
(jobc)
B to Charlie via a secure channel. Let jobc denote a project

during the fiscal year 2007, then the proxy key’s valid period should be until
the end of 2007. Note that, (sk(jobc)

1 /A, sk
(jobc)
2) is the signature in [13] with

a hash function.
– Short-term common data: Bob selects dτ ∈R Z

∗
p, τ = {τ1, τ2, ...}, then com-

putes common data Y (τ) = (y1(τ), y2(τ)) on τ as follows:

y1(τ) = A−1H3(τ)dτ , y2(τ) = gdτ .

Bob renews Y (τ) once a day by changing random number dτ , in which no
proxies’ information is included, so Y (τ) is the common data for all of his
proxies.

– Verification of common data of time τ : Charlie computes η = ê(H0(gpub, IDB,
pkB), gpub) · ê(H1(IDB, pkB), pkB) and then checks whether

ê(sk(jobc)
1 y1(τ), g) ?= η · ê(H2(jobc), sk

(jobc)
2) · ê(H3(τ), y2(τ)).

If it is correct, together with proxy key sk
(jobc)
B , common data Y (τ) is used

to do proxy decryption operation.

Note that parameters A, djobc for jobc ∈ {job1, ..., jobn}, and dτ for τ = τ1, τ2, ...
must be kept secretly by Bob himself.

Encryption (E): To encrypt message m ∈ M under subject jobc on day τ ,
encryptor Alice
– computes η = ê(H0(gpub, IDB, pkB), gpub) · ê(H1(IDB, pkB), pkB);
– selects σ ∈R {0, 1}lM, let r = H4(m||σ), and computes ciphertext C =

(C1, C2, C3, C4, C5), where

C1 = m ⊕ H5(σ), C2 = σ ⊕ F (ηr), C3 = gr, C4 = H2(jobc)r, C5 = H3(τ)r ;

– sends 〈C, jobc, τ〉 to Bob.

A Certificate-Based Proxy Cryptosystem 303

Decryption

– DB: Bob can decrypt the ciphertext under any subject by computing

σ′ = C2 ⊕ F (ê(SB, C3)),

and
m′ = C1 ⊕ H5(σ′).

Then he can check whether

C3
?= gH4(m

′||σ′).

If this is correct, then m = m′ is accepted as the plaintext. Otherwise abort.

Accordingly, this proposed CBPd scheme will degenerate into Gentry’s CBE
scheme if Alice sends C = (C1, C2, C3) to Bob as a ciphertext. This implies
that encryptor Alice can decide whether to let the proxy read m or not.

– Djobc : Charlie performs the proxy decryption operation for the ciphertext
for his own subject, jobc, by computing

σ′ = C2 ⊕ F (
ê(sk(jobc)

1 y1(τ), C3)

ê(C4, sk
(jobc)
2) · ê(C5, y2(τ))

),

and
m′ = C1 ⊕ H5(σ′).

Then he checks whether

C3
?= gH4(m′||σ′), C4

?= H2(jobc)H4(m′||σ′), C5
?= H3(τ)H4(m′||σ′).

If they are correct, then m = m′ is accepted as the plaintext. Otherwise abort.

3.3 Correctness

Correctness can be proved as follows:
For DB , we have

ê(SB , C3) = ê(H0(gpub, IDB, pkB)sC H1(IDB, pkB)xB , gr)
= [ê(H0(gpub, IDB, pkB), gpub) · ê(H1(IDB, pkB), pkB)]r

= ηr.

For Djobc , we have

ê(sk(jobc)
1 y1(τ), C3)

= ê(SBH2(jobc)djobc H3(τ)dτ , gr)
= ê(SB, gr) · ê(H2(jobc)djobc , gr) · ê(H3(τ)dτ , gr)
= ê(SB, C3) · ê(H2(jobc)r, gdjobc) · ê(H3(τ)r , gdτ)

= ηr · ê(C4, sk
(jobc)
2) · ê(C5, y2(τ)).

304 L. Wang et al.

Therefore,
ê(sk(jobc)

1 y1(τ), C3)

ê(C4, sk
(jobc)
2) · ê(C5, y2(τ))

= ηr.

4 Security

4.1 How to Revoke Proxy Decryption Power

According to the description of revocable proxy decryption power in Section 1,
Bob should be able to revoke Charlie’s proxy decryption power even if his proxy
key has not expired. He should have this ability in order to deal with the cases
such as Charlie’s occupation changing, Charlie’s proxy key disappearing, or Bob
losing trust in Charlie.

For the communication for subject jobc to continue securely and, at the same
time, avoid unnecessarily burdening encryptors, Bob’s public information, in-
cluding his public key and subjects assigned to Charlie, should remain unchanged
when Charlie’s decryption power is revoked. Bob can cope with this situation by
changing original parameters A, djob into new parameters A′, d′job ∈ Z

∗
p, where

A �= A′, and djob �= d′job for each job ∈ {job1, ..., jobn}. The process in detail is:

– Renew the data Y (τ) = (y1(τ), y2(τ)) using the new parameter A′. Then

y1(τ) = A′−1
H3(τ)dτ , y2(τ) = gdτ .

– Renew the proxy keys for other proxies in terms of the new parameter A′.
Then the proxy keys

sk
(job)
1 = SBH2(job)d′

jobA′, sk
(job)
2 = gd′

job ,

where job ∈ {job1, ..., jobn} \ {jobc}.
– Execute the original decryption, DB, before delegating the decryption power

in terms of the above new parameters A′ and d′jobc
, to another assistant.

The above new common data, Y (τ), corresponding to A′ cannot pass verification
using the revoked proxy key (sk(jobc)

1 , sk
(jobc)
2) = (SBH2(jobc)djobc A, gdjobc), to

say nothing of proxy decryption operation. In fact, on receipt of the ciphertext
of m′ on time τ ′ > τ , using the revoked proxy key (sk(jobc)

1 , sk
(jobc)
2) and new

common data Y (τ ′), Charlie can only obtain ηr ê(AA′−1, g)r �= ηr. So, m′′ =
C1 ⊕ F (ηr ê(AA′−1, g)r) = m′ ⊕ F (ηr) ⊕ F (ηr ê(AA′−1, g)r) �= m′. Accordingly,
Charlie’s proxy decryption power is revoked.

4.2 IND-CBPd-Rev-CCA

For a secure proxy cryptosystem with revocable proxy decryption power, the
following requirements should be considered: the proxy whose decryption power
has been revoked cannot decrypt any new ciphertext for his or her subject using

A Certificate-Based Proxy Cryptosystem 305

the revoked proxy key, even if he or she can obtain the new common data, Y (τ),
and/or collude with other proxies for different subjects. Therefore, we say that
a certificate-based proxy cryptosystem scheme with revocable proxy decryption
power is semantically secure against an adaptive chosen ciphertext attack (IND-
CBPd-Rev-CCA) if no polynomially bounded adversary A has a non-negligible
advantage against the challenger in the following game.

Setup. The challenger generates system parameters and gives the parameters
to the adversary. Furthermore, after the challenger generates master key, the
private key of original decryptor Bob’s and the corresponding public keys, he or
she gives the public keys to the adversary.

Phase 1. The adversary is permitted to make the following queries:

– (Certification query) On input (ID, pk) by the adversary, the challenger
returns the corresponding certification.

– (Proxy secret key query) On input (τ, job) by the adversary, the challenger
returns the corresponding long-term proxy key.

– (Common data query) On input τ by the adversary, the challenger returns
the corresponding common data.

– (Basic decryption oracle query) On input the basic ciphertext3 by the ad-
versary, the challenger returns the corresponding plaintext.

– (Proxy decryption oracle query) On input the proxy ciphertext4 for (τ, job)
by the adversary, the challenger returns the corresponding plaintext.

– (Revocation oracle query) On input (τ, job) by the adversary, the challenger
returns the corresponding long-term proxy key and common data. In fact,
this query is the combination of proxy secret key query and common data
query. For soundness, we define this oracle here.

Challenge. The adversary submits a target subject, job∗, and two messages
(m0, m1) on time τ∗. The adversary’s choice of job∗ is restricted to the subjects
that he did not request a proxy key for on time τ∗ in Phase 1. The challenger flips
a fair binary coin, γ, and returns an encryption c∗ of mγ for subject job∗ on τ∗.

Phase 2. Phase 1 is repeated with the following constraints:
– the adversary cannot request the proxy secret key oracle query on (τ∗, job∗);
– the adversary cannot request the basic decryption oracle query on c∗;
– the adversary cannot request the proxy decryption oracle query on (c∗, τ∗,

job∗);
– the adversary cannot request the revocation oracle query on (τ∗, job∗).

Guess. The adversary submits a guess, γ′, of γ.
Then the advantage of A is

AdvCBPd
A = |Pr[γ′ = γ′] − 1

2
|.

3 In our proposal, the basic ciphertext is (C1, C2, C3).
4 In our proposal, the proxy ciphertext is (C1, C2, C3, C4, C5).

306 L. Wang et al.

Definition 3 (IND-CBPd-Rev-CCA). A CBPd scheme with revocable proxy
decryption power is semantically secure against an adaptive chosen ciphertext
attack (IND-CBPd-Rev-CCA Secure) if AdvCBPd

A is negligible.

Theorem 1. The proposed scheme is an IND-CBPd-Rev-CCA secure certificate-
based proxy cryptosystem under the assumption that there is no polynomial algo-
rithm to solve the BDH problem with non-negligible probability.

Proof Sketch. We show that if an adversary A can break our CBPd scheme
with non-negligible probability, then we have another algorithm B that, using A,
can solve the BDH problem with non-negligible probability (refer to Appendix
A for more details).

5 Discussion

Advantages of Our Proposed CBPd Scheme
- Our scheme is the first certificate-based proxy cryptosystem, so it inherits the

merits of certificate-based encryption systems: no-key-escrow and implicit
certification.

- Our scheme is a TFP system and has the property of revocability.

The Efficiency. The Mambo-Okamoto scheme [7] supplies a revocable proxy
decryption power, but they are inefficient, because a proxy cannot decrypt a
ciphertext at all before Bob transfers the ciphertext for him. In our scheme, Bob
controls proxy decryption power by renewing the common data for all of his
proxies once a day.

Let Exp denote exponential computation, N(τ) denote the mail number that
Bob received on day τ , Ni(τ) denote the mail number for subject jobi, i =
1, ..., n, and CostτBob(·) denote the computation cost that Bob incurs on day τ .
Then Bob’s computation in our scheme is 2 ·Exp, while in the Mambo-Okamoto
scheme, it is 1 · Exp × N(τ), where N(τ) = N1(τ) + ... + Ni(τ) + ... + Nn(τ).
Accordingly,

CostτBob(Ours) ≈ 2
N(τ)

CostτBob(MO).

That is to say, on day τ , the computation cost that Bob incurs in our scheme is
nearly 2

N(τ) of that in the Mambo-Okamoto scheme. Therefore, our new CBPd
scheme with revocable proxy decryption power is much more flexible and efficient
than the Mambo-Okamoto scheme.

Problems. In our scheme, Bob controls proxy decryption power by renewing the
short-term common data, which are generated for all of the proxies. Accordingly,
Bob can use one data Y (τ) to control all of his proxies when every thing is
normal. However, Bob has to reissue all of the proxy keys when he wants to
revoke one of the proxy keys.

A Certificate-Based Proxy Cryptosystem 307

Table 1. Related work

CBPd TFP Revocability Bob’s computation cost on day τ

Mambo-Okamoto [7] × × √
Costτ

Bob(MO) = 1 · Exp × N(τ)

MOV [8] × √ × -
HEAD [10] × √ × -

AL-TFP [11,12] × √ × -
ZCC [14] × √ × -

Proposed CBPd
√ √ √

Costτ
Bob(Ours) = 2 · Exp

6 Concluding Remarks

We presented a certificate-based proxy cryptosystem that is ciphertext trans-
formation-free and has revocability, which means that proxy decryption power
can be revoked even if the validity of the proxy key has not expired. Therefore,
our scheme is more practical than the existing schemes in protecting messages
of the original decryptor from his proxies who have become untrustworthy. The
security of our scheme is based on the well-known BDH assumption.

References

1. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

2. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

5. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

6. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

7. Mambo, M., Okamoto, E.: Proxy cryptosystem: delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundamentals E80-A(1), 54–63 (1997)

8. Mu, Y., Varadharajan, V., Nguyen, K.Q.: Delegation decryption. In: Walker, M.
(ed.) IMA - Crypto & Coding 1999. LNCS, vol. 1746, pp. 258–269. Springer, Hei-
delberg (1999)

9. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing, SCIS2000-
C20 (2000)

10. Sarkar, P.: HEAD: hybrid encryption with delegated decryption capbility. In: Can-
teaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 230–
244. Springer, Heidelberg (2004)

308 L. Wang et al.

11. Wang, L., Cao, Z., Okamoto, E., Miao, Y., Okamoto, T.: Transformation-free proxy
cryptosystems and their applications to electronic commerce. In: Proceeding of
International Conference on Information Security (InfoSecu 2004), pp. 92–98. ACM
Press, New York (2004)

12. Wang, L., Cao, Z., Okamoto, T., Miao, Y., Okamoto, E.: Authorization-limited
transformation-free proxy cryptosystems and their security analyses. IEICE Trans.
Fundamentals E89-A(1), 106–114 (2006)

13. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

14. Zhou, Y., Cao, Z., Chai, Z.: Constructing secure proxy cryptosystem. In: Feng,
D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 150–161. Springer,
Heidelberg (2005)

A Proof of Theorem 1

We show that if an adversary A can break our CBPd scheme with non-negligible
probability, then we have another algorithm B that, using A, can solve the BDH
problem with non-negligible probability. That is, given 〈G1, G2, p, ê; g, ga, gb, gc ∈
G1〉, B aims to output ê(g, g)abc ∈ G2. We denote the challenge ciphertext as
(C∗

1 , C∗
2 , C∗

3 , C∗
4 , C∗

5) for (τ∗, job∗).

Setup. B generates master public parameters 〈G1, G2, p, ê, g, gpub, F, Hi(i ∈
{0, 1, 2, 3, 4, 5})〉 where gpub = gsC . And set pkB = ga, H1(IDB, pkB) = gb,
C∗

3 = gc. Then the game between A and B is as follows.

Phase 1. B builds the following oracles.
OF : On input Ri, if there is a tuple (Ri, R

′
i) in table TF , then return R′

i; oth-
erwise, choose a random number R′

i, return it and record (Ri, R
′
i) in table

TF .
OH0 : On input (gpub, IDi, pki), if there is a tuple (gpub, IDi, pki, r

(0)
i) in table

TH0 , then return r
(0)
i ; otherwise, choose a random number r

(0)
i ∈ G1, return

it and record (gpub, IDU , pkU , r
(0)
i) in table TH0 .

OH1 : On input (IDi, pki), if there is a tuple (IDi, pki, r
(1)
i) in table TH1 , then

return r
(1)
i ; otherwise, choose a random number r

(1)
i ∈ G1, return it and

record (IDi, pki, r
(1)
i) in table TH1 . Note that, at the beginning of game, B

should set H1(IDB, pkB) = ga, and record (IDB , pkB, ga) into table TH1 .
OH2 : On input jobi, if there is a tuple (jobi, r

(2)
i) in table TH2 , then return

H1(IDB, pkB)r
(2)
i ; otherwise, choose a random number r

(2)
i ∈ Z

∗
p, return

H1(IDB, pkB)r
(2)
i and record (jobi, r

(2)
i) in table TH2 . Note that, at the be-

ginning of game, B should guess which query will be job∗ (the probability of
correctness is 1/qH2 , where qH2 is the total number of queries to H3), and
set H2(job∗) = gα∗

, and record (job∗, α∗) into table TH2 .
OH3 : On input τi, if there is a tuple (τi, r

(3)
i) in table TH3 , then return H1(IDB,

pkB)r
(3)
i ; otherwise, choose a random number r

(3)
i ∈ Z

∗
p, return H1(IDB,

A Certificate-Based Proxy Cryptosystem 309

pkB)r
(3)
i , and record (τi, r

(3)
i) in table TH3 . Note that, at the beginning of the

game, B should guess which query will be τ∗ (the probability of correctness
is 1/qH3 , where qH3 is the total number of queries to H3), set H3(τ∗) = gβ∗

,
and record (τ∗, β∗) into table TH3 .

OH4 : On input (mi, σi), if there is a tuple (mi, σi, r
(4)
i) in table TH4 , then return

r
(4)
i ; otherwise, choose a random number r

(4)
i ∈ Z

∗
p, return it, and record

(mi, σi, r
(4)
i) into table TH4 .

OH5 : On input σi, if there is a tuple (σi, r
(5)
i) in table TH5 , then return r

(5)
i ; oth-

erwise, choose a random number r
(5)
i ∈ {0, 1}, return it, and record (σi, r

(5)
i)

into table TH5 .
Certificate query: This is the same as real execution because B knows the

value of sC .
Proxy decryption key query: On input (τ, jobc), B searches whether (τ, jobc,

�1, �2) exists in table Tkey. If it does, return (�1, �2); otherwise, B does
the following.

Case 1. τ �= τ∗: Search whether (τ, �1, �2, �3) exits in table Tcom (see the
following common data query).
– If it is there, set skjobc

1 = H0(gpub, IDB, pkB)sC H3(τ)�1 · H2(jobc)djobc /

�2, skjobc

2 = gdjobc , where djobc is a random number from Z∗
q . Finally,

record (τ, jobc, sk
jobc

1 , skjobc

2) into table Tkey .
– If it does not exist, choose two random numbers d ∈ Z∗

q , y ∈ G1. Set
skjobc

1 = H0(gpub, IDB, pkB)sC H3(τ)d · H2(jobc)djobc /y, skjobc

2 = gdjobc ,
where djob is a random number from Z∗

q . Finally, record (τ, jobc, sk
jobc

1 ,

skjobc

2) into table Tkey, and (τ, d, y, pk
−1/r(3)

B gd) into table Tcom, where
H3(τ) = H1(IDB, pkB)r(3)

.

Case 2. τ = τ∗ and jobc �= job∗: Search whether (τ, �1, �2, �3) exists in
table Tcom.
– If it exists, set skjobc

1 = H0(gpub, IDB, pkB)sC H3(τ)�1 · H2(jobc)d/�2,

skjobc

2 = pk
−1/r(2)

B gd, where d is a random number from Z∗
q and H2(jobc)

= H1(IDB, pkB)r(2)
. Finally, record (τ, jobc, sk

jobc

1 , skjobc

2) into table
Tkey .

– If it does not exist, choose two random numbers d ∈ Z∗
q , y ∈ G1. Set

skjobc

1 =H0(gpub, IDB, pkB)sC H3(τ)d ·H2(jobc)d′
/y, skjobc

2 =pk
−1/r(2)

B gd,
where d′ is a random number from Z∗

q and H2(jobc) = H1(IDB, pkB)r(2)
.

Finally, record (τ, jobc, sk
jobc

1 , skjobc

2) into table Tkey , and (τ, d, y, gd) into
table Tcom.

Note that,

H0(gpub, IDB, pkB)sC (H1(IDB, pkB)r)d

= H0(gpub, IDB, pkB)sC

310 L. Wang et al.

·H1(IDB, pkB)sB (H1(IDB , pkB)r)
−sB

r · (H1(IDB, pkB)r)d

= H0(gpub, IDB, pkB)sC H1(IDB, pkB)sB · (H1(IDB, pkB)r)d− sB
r

= SBH2(jobc)d− sB
r ,

and
pk

−1/r
B gd = (gsB)

−1
r gd = gd− sB

r .

Hence, we have the following equations for item (τ, jobc, �1, �2) in table
Tkey and item (τ, �1, �2, �3) in table Tcom.

�1 · �2 = SBH2(jobc)djobc H3(τ)dτ ,

�2 = gdjobc , �3 = gdτ .

Common data query: On input τ , B searches whether (τ, �1, �2, �3) exists
in table Tcom. If it does, return (�2, �3), Otherwise, B chooses two random
numbers d ∈ Z∗

q and y ∈ G1.
– If τ = τ∗, return (y, gd) and record (τ, d, y, gd) into table Tcom.

– If τ �= τ∗, return (y, pk
−1/r(3)

B gd) and record (τ, d, y, pk
−1/r(3)

B gd) into
table Tcom, where H3(τ) = H1(IDB, pkB)r(3)

.
Basic decryption oracle query: On input (C1, C2, C3), B does the following.

1. Set two empty sets S1 and S2.
2. Find (mi, σi, r

(4)
i) in table TH4 , such that C3 = gr

(4)
i and put the triples

into set S1. If S1 is empty, abort. This step makes this oracle distinguish-
able in real execution when the adversary can guess the correct value of
H4(mi||σi) without querying OH4 . The probability of this event is qH4/p,
where qH4 is the number of queries to OH4 .

3. Find (σj , r
(5)
j) in table TH5 , such that σj = σi, where (mi, σi, r

(4)
i) is the

item in set S1. Put ((mi, σi, r
(4)
i), (σj , r

(5)
j)) into set S2. If S2 is empty,

abort. This step makes this oracle distinguishable in real execution when
the adversary can guess the correct value of H5(σj) without querying
OH5 . The probability of this event is qH5/2lM , where qH5 is the number
of queries to OH5 .

4. Find the tuple ((mi, σi, r
(4)
i), (σj , r

(5)
j)) in set S2, such that C1 = mi ⊕

r
(5)
j , and C2 = σi ⊕ F (ηr

(4)
i). If the ciphertext is valid, then there is

only one such tuple. This step makes this oracle distinguishable in real
execution when the adversary can guess the correct value of F (ηr

(4)
i)

without querying OF . The probability of this event is qF /2lM, where qF

is the number of queries to OF .
5. Output mi.

As a result, this oracle is indistinguishable in real execution with (1 −
qH4/p)(1 − qH5/2lM)(1 − qF /2lM).

Proxy decryption oracle query: On input (C1, C2, C3, C4, C5, job, τ), B
does the following

A Certificate-Based Proxy Cryptosystem 311

1. Set two empty sets S1 and S2.
2. Find (mi, σi, r

(4)
i) in table TH4 , such that C3 = gr

(4)
i , C4 = H2(job)r

(4)
i ,

C5 = H3(τ)r
(4)
i , and put the triples into set S1. If S1 is empty, abort.

3. Find (σj , r
(5)
j) in table TH5 , such that σj = σi, where (mi, σi, r

(4)
i) is

the item in set S1, and put ((mi, σi, r
(4)
i), (σj , r

(5)
j)) into set S2. If S2 is

empty, abort.
4. Find the tuple ((mi, σi, r

(4)
i), (σj , r

(5)
j)) in set S2, such that C1 = mi ⊕

r
(5)
j , and C2 = σi ⊕ F (ηr

(4)
i).

5. Output mi.
The analysis of probability for indistinguishability between this oracle and
real execution is the same as for the above oracle and the probability is also
(1 − qH4/p)(1 − qH5/2lM)(1 − qF /2lM).

Challenge. The adversary submits a target subject, job∗, and two messages
(m0, m1) in time τ∗. The adversary’s choice of job∗ is restricted to the subjects
that he did not request a proxy key for in time τ∗ in Phase 1. The challenger flips
a fair binary coin, γ, and returns an encryption of mγ for subject job∗ on τ∗.
C∗

1 = mγ ⊕ H5(σ∗), C∗
2 , C∗

3 = gc, C∗
4 = H2(job∗)c = (gc)α∗

, C∗
5 = H3(τ∗)c =

(gc)β∗
, where σ∗ and C∗ are two random numbers from {0, 1}lM.

Phase 2. Phase 1 is repeated with the restriction that
– the adversary cannot request the proxy secret key oracle query on (τ∗, job∗);
– the adversary cannot request the basic decryption oracle query on c∗;
– the adversary cannot request the proxy decryption oracle query on (c∗, τ∗,

job∗);
– the adversary cannot request the revocation oracle query on (τ∗, job∗).

Guess. The adversary submits a guess,γ′, ofγ. B outputs Ri

ê(H0(gpub,IDB ,pkB)sC ,gc)

= e(g, g)abc as the BDH solution, where Ri is a random number chosen from
table TF .

If the probability of γ′ = γ is 1/2 + ε and the game is completed, then
Ri

ê(H0(gpub,IDB ,pkB)sC ,gc) is the correct BDH solution with probability ε/qF , where
qF is the total number of queries to F . However,
– B guesses the correct target τ∗ and job∗ with probability 1/qH2 and 1/qH3 ,

respectively.
– certificate query oracle, proxy decryption key query oracle, and common

data query oracle can always succeed.
– basic decryption query oracle and proxy decryption query oracle can both

succeed with probability (1 − qH4/p)(1 − qH5/2lM)(1 − qF /2lM).
Hence, if an adversary A can break our scheme with advantage ε, then we

have another algorithm B solves BDH problem with probability ε
qH2qH3qF

(1 −
qH4/p)2(1 − qH5/2lM)2(1 − qF /2lM)2, which is non-negligible. 	

Computationally-Efficient Password

Authenticated Key Exchange Based on
Quadratic Residues

Muxiang Zhang

Verizon Communications Inc.
40 Sylvan Road, Waltham, MA 02451, USA

muxiang.zhang@verizon.com

Abstract. In this paper, we present a computationally efficient pass-
word authenticated key exchange protocol based on quadratic residues.
The protocol, called QR-CEKE, is derived from the protocol QR-EKE,
a previously published password authenticated key exchange protocol
based on quadratic residues. The computational time for the client,
however, is significant reduced in the protocol QR-CEKE. In compar-
ison with QR-EKE, the protocol QR-CEKE is more suitable to an
imbalanced computing environment where a low-end client device com-
municates with a powerful server over a broadband network. Based on
number-theoretic techniques, we show that the computationally efficient
password authenticated key exchange protocol is secure against residue
attacks, a special type of off-line dictionary attack against password-
authenticated key exchange protocols based on factorization. We also
provide a formal security analysis of QR-CEKE under the factoring
assumption and the random oracle model.

1 Introduction

Password-authenticated key exchange protocols allow two entities who share a
small password to authenticate each other and agree on a large session key be-
tween them. Such protocols are attractive for their simplicity and convenience
and have received much interest in the research community. A major challenge
in designing password-authenticated key exchange protocols is to deal with the
so-called exhaustive guessing or off-line dictionary attack, as passwords are gen-
erally drawn from a small space enumerable, off-line, by an adversary. In 1992,
Bellovin and Merritt [3] presented a family of protocols, known as Encrypted Key
exchange (EKE), which was shown to be secure against off-line dictionary at-
tack. Following EKE, a number of protocols for password-based authentication
and key exchange have been proposed; a comprehensive list of such protocols
can be found in Jablon’s research link [6]. Over the last decade, many re-
searchers have investigated the feasibility of implementing EKE using different
types of public-key cryptosystems such as RSA, ElGamal, and Diffie-Hellman
key exchange. Nonetheless, most of the well-known and secure variants of EKE

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 312–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computationally-Efficient Password Authenticated Key Exchange 313

are based on Diffie-Hellman key exchange. It seems that EKE works well with
Diffie-Hellman key exchange, but presents subtleties one way or the other when
implemented with RSA and other public-key cryptographic systems. In their
original paper [3], Bellovin and Merritt pointed out that the RSA-based EKE
variant is subject to a special type of dictionary attack, called residue attack. In
1997, Lucks [7] proposed an RSA-based password-authenticated key exchange
protocol (called OKE) which was claimed to be secure against residue attacks.
Later, Mackenzie et al. [8] found that the OKE protocol is still subject to residue
attacks. In [8], Mackenzie et al. proposed an RSA-based EKE variant (called
SNAPI) and provided a formal security proof in the random oracle model. Un-
fortunately, the SNAPI protocol has to use a prime public exponent e which is
larger than the RSA modulus n. This renders the SNAPI protocol impractical
in resource-limited platforms. To avoid using large public exponents, Zhu et al.
[28] proposed an “interactive” protocol which is revised from an idea of [3]. The
interactive protocol requires a large communication overhead in order to verify
the RSA public key. Bao [1] and Zhang [14] also pointed out some weaknesses of
Zhu et al.’s password-authenticated key exchange protocol. In 2004, Zhang [12]
presented an RSA-based password authenticated key exchange protocol (called
PEKEP) which can use both large and small primes as RSA public exponents,
but without inducing large communication overhead on communication entities.
Alternatively, Zhang [13] also presented a password authenticated key exchange
protocol (called QR-EKE) based on quadratic resides.

In comparison with the RSA based password authenticated key exchange
protocol PEKEP , the quadratic residue based password authenticated key ex-
change protocol QR-EKE has a merit that one of the entities (i.e., client) does
not need to perform primality test. In the protocol QR-EKE, the computational
time for both entities, i.e., client and server, is O(log2 n)3. In many applications,
however, it is highly desirable that the computational time for a low-end client
device be much less than O(log2 n)3, in order to support resource-limited com-
puting platforms, such as mobile phones and personal digital assistants. To re-
duce the computational burden on client devices, we present a computationally
efficient password authenticated key exchange protocol in this paper. The pro-
tocol, called QR-CEKE, is derived from QR-EKE by adding two additional
flows between the client and the server. The two additional flows increase the
communication overhead by log2 n + 2k bits, where k is the security parameter
(e.g., k = 160). With the two additional flows, we show that the probability for
an adversary to launch a successful residue attack against QR-CEKE is less
than or equal to 2ε, where ε is a small number (e.g., 0 < ε ≤ 2−80) selected
by the client. In the protocol QR-CEKE, the computational time for the client
is O(log2 ε−1(log2 n)2), which is much less than O((log2 n)3). When ε = 2−80,
log2 n = 1024, k = 160, for example, the computational time for the client in the
protocol QR-CEKE is about 13.5 times less than that in the protocol QR-EKE,
while the communication overhead in QR-CEKE is just about 1 mini-second
(1 ms) more than that in QR-EKE when both protocols are running in a com-
munication network of 1 megabits per second (1 mbps) bandwidth. Hence, the

314 M. Zhang

protocol QR-CEKE is more suitable to an imbalanced computing environment
where a low-end client device communicates with a powerful server over a broad-
band network. Under the factoring assumption and the random oracle model,
we also provide a formal security analysis of the QR-CEKE protocol.

2 Security Model

Our formal model of security for password-authenticated key exchange protocols
is based on that of [2].

Initialization. Let I denote the identities of the protocol participants. Ele-
ments of I will often be denoted A and B (Alice and Bob). Each pair of enti-
ties, A, B ∈ I, are assigned a password w which is randomly selected from the
password space D. The initialization process may also specify a set of crypto-
graphic functions (e.g., hash functions) and establish a number of cryptographic
parameters.

Running the Protocol. Mathematically, a protocol Π is a probabilistic
polynomial-time algorithm which determines how entities behave in response
to received message. For each entity, there may be multiple instances running
the protocol in parallel. We denote the i-th instance of entity A as Πi

A. The
adversary A can make queries to any instance; she has an endless supply of Πi

A

oracles (A ∈ I and i ∈ N). In response to each query, an instance updates its
internal state and gives its output to the adversary. At any point in time, the in-
stance may accept and possesses a session key sk, a session id sid, and a partner
id pid. The query types, as defined in [2], include:

- Send(A, i, M): This sends message M to instance Πi
A. The instance executes

as specified by the protocol and sends back its response to the adversary.
- Execute(A, i, B, j): This call carries out an honest execution between two

instances Πi
A and Πj

B , where A, B ∈ I, A �= B and instances Πi
A and Πj

B

were not used before. At the end of the execution, a transcript is given to the
adversary, which logs everything an adversary could see during the execution
(for details, see [2]).

- Reveal(A, i): The session key ski
A of Πi

A is given to the adversary.
- Test(A, i): The instance Πi

A generates a random bit b and outputs its session
key ski

A to the adversary if b = 1, or else a random session key if b = 0. This
query is allowed only once, at any time during the adversary’s execution.

- Oracle(M): This gives the adversary oracle access to a function h, which is
selected at random from some probability space Ω . The choice of Ω deter-
mines whether we are working in the standard model, or in the random-oracle
model (see [2] for further explanations).

Let Πi
A and Πi

B, A �= B, be a pair of instances. We say that Πi
A and Πi

B

are partnered if both instances have accepted and hold the same session id sid
and the same session key sk. Here, we define the sid of Πi

A (or Πi
B) as the

concatenation of all the messages sent and received by Πi
A (or Πi

B). We say that

Computationally-Efficient Password Authenticated Key Exchange 315

Πi
A is fresh if: i) it has accepted; and ii) a Reveal query has not been called either

on Πi
A or on its partner (if there is one). With these notions, we now define the

advantage of the adversary A in attacking the protocol. Let Succ denote the
event that A asks a single Test query on a fresh instance, outputs a bit b′, and
b′ = b, where b is the bit selected during the Test query. The advantage of the
adversary A is defined as Advake

A = 2Pr(Succ) − 1.
As suggested in [5], we use the Send query type to count the number of on-

line guesses performed by the adversary. We only count one Send query for each
entity instance, that is, if the adversary sends two Send queries to an entity
instance, it should still count as a single password guess. Based on this idea,
we have the following definition of secure password-authenticated key exchange
protocol, which is the same as in [5].

Definition 1. A protocol Π is called a secure password-authenticated key ex-
change protocol if for every polynomial-time adversary A that makes at most
Qsend (Qsend ≤ |D|) queries of Send type to different instances, the following
two conditions are satisfied:

(1) Except with negligible probability, each oracle call Execute(A, i, B, j) produces
a pair of partnered instances Πi

A and Πj
B.

(2) Advake
A ≤ Qsend/|D| + ε, where |D| denotes the size of the password space

and ε is a negligible function of security parameters.

3 Computationally-Efficient Password Authenticated
Key Exchange Based on Quadratic Residues

Define hash functions H1, H2, H3 : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → Zn,
where k is a security parameter, e.g., k = 160. The protocol QR-CEKE, which is
described in Fig. 1, is based on QR-EKE, but the number of squaring operations
performed by Bob is much less than �log2 n�. In the protocol QR-CEKE, Bob
selects a small number ε, 0 < ε ≤ 2−80, which determines the probability of
a successful residue attack against the protocol QR-CEKE. Alice starts the
protocol QR-CEKE by sending a Blum integer n and two random numbers
ρ, rA ∈R {0, 1}k to Bob. Bob verifies if n is an odd integer. If n is not odd,
Bob rejects. Else, Bob computers m = �log2 ε−1	. Then Bob selects a random
number � ∈R {0, 1}k such that γ = H(n, e, ρ, �, A, B, m) satisfying gcd(γ, n) = 1
and

(
γ
n

)
= 1. Bob sends � and m to Alice. After receiving � and m, Alice

checks if γ = H(n, e, ρ, �, A, B, m) is a quadratic residue. If γ is not a quadratic
residue, then −γ must be a quadratic residue since n is a Blum integer. Next,
Alice computes an integer u satisfying u2m

= ±γ mod n, and sends u back to
Bob. Subsequently, Bob verifies if Alice has made the right computation, i.e.,
u2m

= ±γ mod n. If not, Bob rejects. Else, Alice and Bob executes the rest of
the protocol as in QR-EKE.

Note that in the protocol QR-CEKE, Bob only verifies that the integer n
received from Alice is an odd number; he does not verify that n is the product
of two distinct primes p and q and p ≡ q ≡ 3 (mod 4). This may foster the

316 M. Zhang

Alice (A) Bob (B)

password: w password: w

n = pq, p ≡ q ≡ 3 (mod4) 0 < ε ≤ 2−80

ρ, rA ∈R {0, 1}k

rA, ρ, n, A �
Reject if n is not odd

m = �log2 ε−1�
� ∈R {0, 1}k

H(n, ρ, �, A,B, m) ∈ Jn�, m�
γ = H(n, e, ρ, �,A, B, m)

Compute u satisfying

u2m

= ±γ mod n u �
Reject if u2m �= ±γ mod n

α ∈R Qn, rB ∈R {0, 1}k

ξ = H(w, rA, rB, A,B, n)

If gcd(ξ, n) = 1, λ = ξ

else λ ∈R Z
∗
n

z = (λα2)2
m−1

mod nrB , z�
ξ = H(w, rA, rB, A, B, n)

If gcd(ξ, n) �= 1, β ∈R Zn

else
Compute β ∈ Qn satisfying

(ξβ2)2
m−1

= z mod n
μ = H1(β, rA, rB, A,B, n) μ �

μ
?
= H1(α, rA, rB, A,B, n)

Reject if not, else
η = H2(α, rA, rB, A,B, n)

sk = H3(α, rA, rB, A,B, n)
η�

η
?
= H2(β, rA, rB, A, B, n)

Reject if not, else

sk = H3(β, rA, rB, A, B, n)

Fig. 1. The Protocol QR-CEKE

so-called residue attack as described in [3]. In such an attack, an adversary, say,
Eva, selects a password π0 at random from D and an odd integer n which may
not necessarily be a Blum integer. Then Eva impersonates as Alice and starts
the protocol by sending rE , n, A to Bob. After receiving rB and z from Bob, Eva
Computes μ and sends it back to Bob. If Bob accepts, then Eva has a successful
guess of Alice’s password. If Bob rejects, on the other hand, Eva excludes her
guess (i.e., π0) from the password space D. Furthermore, Eva may exclude more
passwords by repeating, off-line, the following three steps:

Computationally-Efficient Password Authenticated Key Exchange 317

1) Eva selects a password π from D.
2) Eva computes γ = H(π, rE , rB , A, B, n).
3) Eva tests if gcd(γ, n) = 1. If not, Eva returns to step 1; otherwise, Bob

verifies if the congruence (γx2)2
t ≡ z (mod n) has a solution in Qn. If the

congruence has a solution, Eva returns to step 1. If the congruence has no
solution in Qn, then Eva is ensured that π is not the password of Alice. Next
Eva excludes π from D and returns to step 1.

Theorem 1. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2
2 . . . par

r . Let m be a positive integer. If there exists a prime power,
say pai

i , of the factorization of n such that 2m | φ(pai

i), then for an integer γ
randomly selected from Jn, the probability that γ is an 2m-th power residue of n
is less than or equal to 2−m+1.

Proof. Let ni = pai

i be a prime power of the factorization of n such that 2m |
φ(ni). Since n is odd, ni possesses a primitive root. Let g be a primitive root of
ni. For an integer γ randomly selected from Jn, let indgγ denote the index of γ
to the base g modulo ni. Then γ is an 2m-th power residue of ni if and only if
the congruence x2m ≡ γ (mod ni) has a solution, or equivalently, if and only if

g2m indgx−indgγ ≡ 1 (mod ni),

which is equivalent to

2mindgx ≡ indgγ (mod φ(ni)).

Since 2m | φ(ni), γ is an 2m-th power residue of ni if and only if 2m | indgγ.
Let n′

i = n/ni, then ni and n′
i are relatively prime. For any integer β ∈

Z
∗
n, it is clear that β mod ni and β mod n′

i are integers of Z
∗
ni

and Z
∗
n′

i
,

respectively. On the other hand, for two integers α1 ∈ Z
∗
ni

and α2 ∈ Z
∗
n′

i
, by

the Chinese Remainder Theorem, there is an unique integer α ∈ Z
∗
n, such that

α ≡ α1 (mod ni), and α ≡ α2 (mod n′
i). So, the number of integers α ∈ Z

∗
n

which satisfy the congruence α ≡ α1 (mod ni) is φ(n′
i). If γ is randomly selected

from Jn, then for any integer s, 0 ≤ s ≤ φ(ni) − 1, we have

Pr(gs = γ mod ni) ≤ φ(n′
i)

|Jn| ≤ 2
φ(ni)

.

Note that in last inequality described above, we make use of the fact |Jn| ≥
φ(n)/2. Thus, we have Pr(indgγ = s) ≤ 2/φ(ni). Therefore,

Pr(2m | indgγ) =
∑

2m|s, 0≤s<φ(ni)

Pr(indgγ = s)

≤ 2φ(ni)2−m/φ(ni)
= 2−m+1

which indicates that, for an integer γ randomly selected from Jn, the probability
that γ is an 2m-th power residue of ni is less than or equal to 2−m+1. So, the
probability that γ is an 2m-th power residue of n does not exceed 2−m+1. �

318 M. Zhang

Theorem 1 demonstrates that, if there exits a prime-power pai

i of the factorization
of n such that 2m | φ(pai

i), then for a random number γ ∈ Jn, the probability
that Alice can take square roots of γ or −γ repetitively m times is less than or
equal to 2−m+1.

Theorem 2. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2
2 . . . par

r . Let m be a positive integer such that for any prime-power pai

i

of the factorization of n, 2m+1
� φ(pai

i), 1 ≤ i ≤ r. If z is an 2m-th power residue
of n, then for any λ ∈ Z

∗
n, the congruence (λx2)2

m ≡ z (mod n) has a solution
in Qn.

Proof. To prove that (λx2)2
m ≡ z (mod n) has a solution in Qn, we only need

to prove that, for each prime power pai

i of the factorization of n, the following
congruence

(λx2)2
m ≡ z (mod pai

i) (1)

has a solution in Qp
ai
i

.
Let ni = pai

i , 1 ≤ i ≤ r. Then φ(ni) = pai−1
i (pi − 1). Since n is odd, pi is an

odd prime. Thus, the integer ni possesses a primitive root. Let g be a primitive
root of ni, that is, gφ(ni) = 1 mod ni, and for any 0 ≤ i, j ≤ φ(ni) − 1, i �= j,
gi �= gj mod ni. Let gcd(2m, φ(ni)) = 2c, 1 ≤ c ≤ m. We consider the following
two cases:

(1) If c = 1, then d = φ(ni)/2 must be an odd integer. For any integer a ∈ Z
∗
ni

,
a2d ≡ 1 (mod ni), which implies that ad ≡ 1 or −1 (mod ni). We claim that
ad ≡ −1 (mod ni) if and only if a is a quadratic non-residue of ni. If ad ≡ −1
(mod ni), it is obvious that a ∈ Q̄ni . On the other hand, if a ∈ Q̄ni , then there
exists an odd integer s such that a = gs mod ni since g is the primitive root of
ni. As the order of g is 2d, not d, we have ad = (gd)s = −1 mod ni. Similarly, we
can also prove that, if a ∈ Qni , then the congruence x2 ≡ a (mod ni) has two
solutions, with one solution in Qni and another in Q̄ni . Hence, for any γ ∈ Z

∗
n,

there exists a solution xj , 0 ≤ j ≤ 1, such that xjγ ∈ Qni , that is, (xjγ)d = 1
(mod ni). Hence, congruence (3) has a solution in Qni .

(2) Next, we consider the case that 2 ≤ c ≤ m. Since z is a 2m-th power
residue modulo n, the congruence x2m ≡ z (mod n) has solutions in Z

∗
n. By the

Chinese Remainder Theorem, the following congruence

y2m ≡ z (mod ni) (2)

has solutions in Z
∗
ni

. Let indgz denote the index of z to the base g modulo ni

and let y ∈ Z
∗
ni

be a solution of (4). Then, g2mindgy−indgz ≡ 1 (mod ni). Since
the order of g modulo ni is φ(ni), it follows that

2mindgy ≡ indgz (mod φ(ni)) (3)

Also since gcd(2m, φ(ni)) = 2c, equation (5) has exactly 2c incongruent solutions
modulo φ(ni) when taking indgy as variable. This indicates that equation (4)

Computationally-Efficient Password Authenticated Key Exchange 319

has exactly 2c incongruent solutions modulo ni. Let y0 be one of the solutions
of equation (4), then the 2c incongruent solutions of (5) are given by

indgy = indgy0 + jφ(ni)/2c mod φ(ni), 0 ≤ j ≤ 2c − 1.

For any γ ∈ Z
∗
n, we have

indgy − indgγ = indgy0 − indgγ + jφ(ni)/2c mod φ(ni), 0 ≤ j ≤ 2c − 1.

Without loss of generality, let’s assume that indgy0 − indgγ ≥ 0; otherwise we
consider indgγ − indgy. Under the condition that 2m+1

� φ(ni) it is clear that
φ(ni)/2c is an odd integer. Hence, there exist an integer j, 0 ≤ j ≤ 3 ≤ 2c − 1,
such that

indgy0 − indgγ + jφ(ni)/2c ≡ 0 (mod 4),

which implies that there exists an integer y ∈ Z
∗
ni

such that y2m ≡ z (mod ni)
and yγ−1 is a 4-th power residue of ni. Therefore, the congruence (3) has a
solution in Qni , which proves the theorem. �
Based on Theorem 1 and Theorem 2, we can conclude that the probability for an
adversary to launch a successful residue attack against the protocol QR-CEKE
is less than or equal to 2ε.

In the protocol QR-CEKE, Alice proves to Bob in an interactive manner
(via flow 2 and flow 3) that for every prime-power pai

i of the factorization of
n, 2m

� φ(pai

i). The interactive procedure increases the communication overhead
on Alice and Bob by log2 n + 2k bits. When log2 n = 1024 and k = 160, for
example, the communication overhead induced by the interactive procedure is
about 1 mini-second (1 ms) over a broadband network of 1 megabits per sec-
ond (1 mbps) bandwidth. In QR-CEKE, the computational burden on Bob
includes two modulo exponentiations, i.e., u2m

mod n and (λa2)2
m−1

mod n,
where m = �log2 ε−1	. The computation time for the two modulo exponentia-
tions is O((log2 ε−1)(log2 n)2). When ε−1 � n, the computational load on Bob
is greatly reduced in QR-CEKE in comparison with that in QR-EKE (or in
SNAPI).

4 Formal Security Analysis

In this section, we analyze the security of QR-CEKE within the formal model
of security given in Section 2. Our analysis is based on the random-oracle model.
In this model, a hash function is modeled as an oracle which returns a random
number for each new query. If the same query is asked twice, identical answers
are returned by the oracle. In our analysis, we also assume the intractability of
the Factoring problem.

Factoring Assumption: Let GE be a probabilistic polynomial-time algorithm
that on input 1� returns a product of two distinct primes p and q of length /2

320 M. Zhang

satisfying p ≡ q ≡ 3 (mod 4). For any probabilistic polynomial-time algorithm
C of running time t, the following probability

Advfac
C (t) = Pr(C(n) = (p, q), pq = n : n ← GE(1�))

is negligible. In the following, we use Advfac(t) to denote maxC{Advfac
C (t)},

where the maximum is taken over all polynomial-time algorithms of running
time t.

Under the above assumptions, we have the following Theorem 4.

Theorem 3. Let A be an adversary which runs in time t and makes Qsend,
Qsend ≤ |D|, queries of type Send to different instances. Then the adversary’s
advantage in attacking the protocol QR-CEKE is bounded by

Advake
A ≤ Qsend

|D| + 4ε + (Qexecute + 5Qsend)Advfac(O(t)) + +
Qsend

2k−1

+
(Qexecute + 2Qsend)Qoh

φ(n)
,

where Qexecute denotes the number of queries of type Execute and Qoh denotes
the number of random oracle calls.

5 Conclusion

In this paper, we present a computationally efficient password authenticated
key exchange protocol based on quadratic residues. The protocol QR-CEKE is
derived from the protocol QR-EKE, a previously published password authen-
ticated key exchange protocol based on quadratic residues. However, the com-
putational time for the client is significant reduced in the protocol QR-CEKE.
In comparison with QR-EKE, the protocol QR-CEKE is more suitable to an
imbalanced computing environment where a low-end client device communicates
with a powerful server over a broadband network. Based on number-theoretic
techniques, we show that the computationally efficient password authenticated
key exchange protocol is secure against residue attacks, a special type of off-line
dictionary attack against password-authenticated key exchange protocols based
on RSA and quadratic residues. We also provide a formal security analysis of
QR-CEKE under the factoring assumption and the random oracle model.

References

1. Bao, F.: Security analysis of a password authenticated key exchange protocol. In:
Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 208–217. Springer, Hei-
delberg (2003)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

Computationally-Efficient Password Authenticated Key Exchange 321

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Bellovin, S.M., Merritt, M. (eds.) Proc. of
the IEEE Symposium on Research in Security and Privacy, Oakland, pp. 72–84
(May 1992)

4. Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, Springer, Heidelberg (to appear, 2004)

5. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 524–542.
Springer, Heidelberg (2003)

6. Jablon, D.: http://www.integritysciences.com
7. Lucks, S.: Open key exchange: How to defeat dictionary attacks without encrypt-

ing public keys. In: Christianson, B., Lomas, M. (eds.) Proc. Security Protocol
Workshop. LNCS, vol. 1361, pp. 79–90. Springer, Heidelberg (1997)

8. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000)

9. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

10. Patel, S.: Number theoretic attacks on secure password schemes. In: IEEE Sym-
posium on Security and Privacy, Oakland, California (May 5-7, 1997)

11. Zhu, F., Wong, D., Chan, A., Ye, R.: RSA-based password authenticated key ex-
change for imbalanced wireless networks. In: Chan, A.H., Gligor, V.D. (eds.) ISC
2002. LNCS, vol. 2433, pp. 150–161. Springer, Heidelberg (2002)

12. Zhang, M.: New approaches to password authenticated key exchange based on RSA.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 230–244. Springer,
Heidelberg (2004)

13. Zhang, M.: Password Authenticated Key exchange using quadratic residues. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 248–
262. Springer, Heidelberg (2004)

14. Zhang, M.: Further analysis of password authenticated key exchange protocol based
on RSA for imbalanced wireless networks. In: Zhang, K., Zheng, Y. (eds.) ISC 2004.
LNCS, vol. 3225, pp. 12–24. Springer, Heidelberg (2004)

http://www.integritysciences.com

On the k-Operation Linear Complexity of

Periodic Sequences

(Extended Abstract)

Ramakanth Kavuluru and Andrew Klapper

Department of Computer Science, University of Kentucky
Lexington, KY, 40506, USA

ramakanth.kavuluru@uky.edu, klapper@cs.uky.edu

Abstract. Non-trivial lower bounds on the linear complexity are de-
rived for a sequence obtained by performing k or fewer operations on
a single period of a periodic sequence over Fq. An operation is a sub-
stitution, an insertion, or a deletion of a symbol. The bounds derived
are similar to those previously established for either k substitutions, k
insertions, or k deletions within a single period. The bounds are useful
when T/2k < L < T/k, where L is the linear complexity of the original
sequence and T is its period.

Keywords: Periodic sequence, linear complexity, k-error linear complex-
ity, k symbol insertion, k symbol deletion.

1 Introduction

The linear complexity of a sequence is the length of the shortest linear feedback
shift register (LFSR) that can generate the sequence and is an important measure
of randomness of a sequence. Given at least the first 2L symbols of the sequence
one can determine the LFSR that generates it using the Berlekamp-Massey algo-
rithm, where L is the linear complexity of the sequence. Hence for cryptographic
purposes sequences with high linear complexity are necessary. Otherwise with
only a small initial segment an adversary can recover the LFSR and its initial
state and hence the sequence.

Linear complexity might decrease drastically by altering a few symbols in
the sequence. This instability can be measured using k-error linear complexity
which, for a periodic sequence, is the smallest complexity value that can be
obtained by changing k or fewer elements in a single period of the sequence.
Counting functions and expected values for linear complexity and k-error linear
complexity were extensively explored by Meidl and Niederreiter [2, 3].

Linear complexities of periodic sequences obtained by substituting a few sym-
bols, inserting a few symbols, or deleting a few symbols were also determined
[4, 5, 6, 7]. It is well accepted that a cryptographically strong sequence should
have high linear complexity and that the linear complexity should not decrease
considerably with substitutions, insertions, and deletions of a few symbols.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 322–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the k-Operation Linear Complexity of Periodic Sequences 323

Let {ai} be a periodic sequence over Fq with period T and let LC({ai}) denote
the linear complexity of {ai}. Let ({âi}) be a sequence obtained from {ai} by
either substituting k symbols, inserting k symbols, or deleting k symbols within
one period and periodically repeating the modified period.

Jiang, Dai, and Imamura [1] gave a proof that LC({âi}) ≥ T/k − LC({ai})
in each of the following three separate cases:

1. at most k substitutions are performed;
2. at most k insertions are performed; or
3. at most k deletions are performed.

Their analysis did not allow any combination of these operations.

Definition 1. The k-operation linear complexity of a periodic sequence {ai} is
the smallest linear complexity obtained by performing any combination of up
to k substitutions, insertions, and deletions in a single period of {ai} and then
repeating the period.

In this paper we prove

1. Jiang, Dai, and Imamura’s bound should be min(LC({ai}), T/k−LC({ai})).
2. This bound holds for any combination of up to k substitutions, insertions,

and deletions. Thus we derive a lower bound on the k-operation linear com-
plexity of a periodic sequence.

2 Preliminaries

Let Fq denote the finite field with q elements, where q = pr, r ≥ 1, and p is
prime. Let {ai} = (a0, a1, · · ·) be a periodic sequence over Fq with period T . Let
a(x) = a0 + a1x + ... + aT−1x

T−1. The sequence {ai} can be represented as the
power series

∑

i≥0

aix
i =

a(x)
1 − xT

=
g(x)
f(x)

, gcd(g(x), f(x)) = 1, (1)

with deg(g(x)) < deg(f(x)). Then the linear complexity of {ai} is

LC({ai}) = deg
(

1 − xT

gcd(a(x), 1 − xT)

)
= deg(f(x)). (2)

We can see that LC({ai}) ≤ T .
We use the following lemma to derive bounds for the linear complexity after

k operation modification of a single period in the later sections. The proof is due
to Jiang et al. [1].

Lemma 1. Let C(x), D(x) ∈ Fq[x] with deg(D(x)) < deg(C(x)) and C(x) �= 0.
Define a periodic sequence {ci} over Fq by

∑

i≥0

cix
i =

D(x)
C(x)

.

324 R. Kavuluru and A. Klapper

Define another sequence {c̃i} by

∑

i≥0

c̃ix
i =

[H(x)D(x)] mod C(x)
C(x)

,

where H(x) ∈ Fq[x]. Then

LC({c̃i}) ≤ LC({ci}). (3)

If gcd(C(x), H(x)) = 1, then equality holds in equation (3).

We can apply Lemma 1 with D(x) = a(x), C(x) = 1 − xT , and H(x) = xs. Let
{ai} be as in equation (1) and define {ãi} by

∑

i≥0

ãix
i =

[xsa(x)] mod (1 − xT)
1 − xT

.

We have, {ãi}={ai−s} for 1≤s≤T −1. So using the fact that gcd(xs, xT −1)=1,
Lemma 1 implies that

LC({ai}) = LC({ai−s}), 1 ≤ s ≤ T − 1. (4)

3 Notation for k Operation Modification

In this section we describe k operation modification of a sequence and establish
the notation we use in the next section to prove the main result of the paper.
We ultimately want a bound that applies when up to k modifications are made.
We first prove a lower bound assuming exactly k modifications.

Let {ai} be the original sequence and {âi} be the sequence obtained after
exactly k operations are performed on a single period of {ai}. Say there are kS

substitutions, kD deletions, and kI insertions. Say the kI insertions are performed
as kL blocks. So

k = kS + kD + kI , kL ≤ kI . (5)

Let S, D, I ⊂ {0, · · · , T − 1} be sets that denote the positions of substitutions,
deletions, and insertions respectively. Substitutions and deletions are performed
on the elements at the positions in sets S and D respectively. Insertions occur
before the positions in the set I. Note that |S| = kS , |D| = kD, and |I| = kL.
If there are a deletion and substitution at the same place we can remove the
substitution and obtain the same modified sequence. Thus we can replace our
list of k modifications by a list of l ≤ k modifications with no deletions and
substitutions at the same place. Similarly we can replace an insertion and a
deletion at the same position by a substitution of the element at that position
with the element to be inserted. That is, we may assume that

D ∩ S = D ∩ I = ∅. (6)

On the k-Operation Linear Complexity of Periodic Sequences 325

However, an insertion and a substitution can occur at the same position. Hence
if k′ is the cardinality of S ∪ D ∪ I, from equations (5) and (6) we have k′ =
|S ∪D∪I| ≤ kS +kD +kL ≤ k. Let t1, · · · , tk′ be the list of the distinct elements
of S ∪ D ∪ I so that

t1 < t2 < · · · < tk′ , k′ = |S ∪ D ∪ I|. (7)

Let ni, i = 1 · · ·k′, denote the number of symbols to be inserted before ati , so
that ∑

ti∈I

ni = kI .

From equation (4), by replacing {ai} by a cyclic shift {ai−s}, 0 ≤ s ≤ T − 1, we
can make t1 = 0 and

T − tk′ = max(t2, t3 − t2, · · · , T − tk′) ≥ T

k′ . (8)

So from equation (8) we have

tk′ ≤ (k′ − 1)T
k′ ≤ (k − 1)T

k
(9)

Consider the subsequence of the sequence in equation (7) with all the elements
from the set D ∪ I and no others,

tq1 < tq2 < · · · < tq|D∪I| . (10)

We write a(x) in equation (1) as a(x) = A0(x) + A1(x) + ... + A|D∪I|(x), where

A0(x) =
tq1−1∑

i=0

aix
i,

Am(x) =

tq(m+1)−1∑

i=tqm

aix
i (m = 1, · · · , |D ∪ I| − 1), and

A|D∪I|(x) =
T−1∑

i=tq|D∪I|

aix
i.

(11)

For our analysis we need the differences between numbers of insertions and dele-
tions at each position where an operation is performed. Let rm =

∑
j≤m, tj∈I nj−

|{j ≤ m : tj ∈ D}|, where m ∈ {1, · · · , k′}. Then rm denotes the net change in
the index of atm .

4 Main Result

With the notation established in the previous section, we obtain a lower bound
on the linear complexity of the modified sequence.

326 R. Kavuluru and A. Klapper

Theorem 1. Let {ai} be a sequence over Fq of period T . Let {âi} be a sequence
obtained after any combination of k substitutions, insertions, and deletions is
performed on a single period of {ai} and repeated periodically. Then

1. LC({âi}) ≥ min(LC({ai}), T/k − LC({ai})) if the number of deletions is
greater than or equal to the number of insertions.

2. LC({âi}) ≥ min(LC({ai}), (T +1)/k−LC({ai})) if the number of deletions
is less than the number of insertions.

Proof. The polynomial â(x) corresponding to the new sequence as in equation
(1) can be written as

â(x) = A0(x) +
∑

tj∈S

(btj − atj)x
tj+rj +

∑

tj∈I, j=qm

Am(x)xrj

+
∑

tj∈I

tj+rj−1+nj−1∑

z=tj+rj−1

czx
z +

∑

tj∈D, j=qm

(Am(x) − atj x
tj)xrj ,

(12)

where the btj s and czs are the new symbols for substitutions and insertions
respectively. Now the new sequence can be represented as

∑

i≥0

âix
i =

â(x)
1 − xT+kI−kD

. (13)

We consider two cases based on whether the number of insertions is greater than
the number of deletions.

Case 1: kI ≤ kD

Let

B(x) = xkD−kI â(x) − a(x) =
5∑

i=1

Ti(x), (14)

where

T1(x) = A0(x)(xkD−kI − 1),

T2(x) =
∑

tj∈S

(btj − atj)x
tj+rj+kD−kI ,

T3(x) =
∑

tj∈I, j=qm

Am(x)(xrj+kD−kI − 1),

T4(x) =
∑

tj∈I

tj+rj−1+nj−1∑

z=tj+rj−1

czx
z+kD−kI ,

T5(x) =
∑

tj∈D, j=qm

(Am(x)(xrj+kD−kI − 1) − atj x
tj+rj+kD−kI).

(15)

From equation (14), B(x) is a polynomial since â(x) and a(x) are polynomials.
Now we show that deg B(x) ≤ tk′ . We make the following observations.

On the k-Operation Linear Complexity of Periodic Sequences 327

1. We have rj = ij −dj where ij and dj are the numbers of insertions and dele-
tions, respectively, up to and including those that are performed at position
tj . For each tj ∈ S ∪ D ∪ I there must be at least kD − dj positions after tj
to account for the rest of the deletions. From this observation and equation
(7) we have the inequalities

tj ≤ tk′ − (kD − dj), tj ∈ S ∪ D ∪ I. (16)

2. From equation (15), the term of T3 or T5 with j = q|I∪D| is zero since it has
a factor (xkD−kI+rj − 1), and rj = kI − kD for j = q|I∪D|. That is

A|I∪D|(x)(xrq|I∪D| +kD−kI − 1) = 0. (17)

From equations (11), (15), (16), and (17) we have

deg T2(x) ≤ max
tj∈S

(kD − kI + tj + rj)

≤ max
tj∈S

(tk′ + ij − kI) ≤ tk′ ,
(18)

deg T3(x) ≤ max
tj∈I

(tj+1 − 1 + rj + kD − kI)

≤ max
tj∈I

(tk′ + (ij − kI) + (dj+1 − (dj + 1))) ≤ tk′ ,
(19)

deg T1(x) ≤ (tq1 + kD) − (kI + 1) ≤ tk′ − 1 − (kI + 1) ≤ tk′ ,

and

deg T4(x) ≤ max
tj∈I

(kD − kI + tj + rj−1 + ntj − 1)

≤ max
tj∈I

(kD − kI + tj + rj)

≤ max
tj∈I

(tk′ + ij − kI) ≤ tk′ .

From equations (18) and (19), using a similar derivation we obtain

deg T5(x) ≤ tk′ .

Thus
deg B(x) ≤ tk′ . (20)

From equations (1), (13), and (14) we have

∑

i≥0

âix
i =

â(x)
1 − xT+kI−kD

=
xkI−kD (a(x) + B(x))

1 − xT+kI−kD

=
g(x)(1 − xT) + f(x)B(x)

f(x)(xkD−kI − xT)
.

(21)

328 R. Kavuluru and A. Klapper

From equations (1) and (20) we have deg(g(x)(1 − xT) + f(x)B(x)) < deg
(f(x)(xkD−kI − xT)), and we can apply Lemma 1 with {ci} = {âi} and H(x) =
f(x). Hence {c̃i} is the sequence represented by

∑

i≥0

c̃ix
i

=
[f(x)(g(x)(1 − xT) + f(x)B(x))] mod (f(x)(xkD−kI − xT))

f(x)(xkD−kI − xT)

=
[g(x)(1 − xkD−kI) + f(x)B(x)] mod (xkD−kI − xT)

xkD−kI − xT
.

(22)

We have the following two subcases based on the degree of the numerator in
equation (22).

Case 1a: [g(x)(1 − xkD−kI) + f(x)B(x)] �≡ 0 mod (xkD−kI − xT)
Since tk′ ≥ kD, from equations (1), (2), and (20), we have

deg(g(x)(1 − xkD−kI) + f(x)B(x)) = deg(f(x)B(x))
≤ LC({ai}) + tk′ .

(23)

From Lemma 1 and equations (22) and (23) we have

LC({âi}) ≥ LC({ĉi})
≥ T − deg(f(x)B(x))
≥ T − (LC({ai}) + tk′).

Hence from equation (9) we have

LC({âi}) ≥ T

k
− LC({ai}). (24)

Case 1b: [g(x)(1 − xkD−kI) + f(x)B(x)] ≡ 0 mod (xkD−kI − xT)
If LC({ai}) ≥ T/k, then the right hand side of equation (24) is at most 0 and
so the result is trivial. Hence we may assume that

LC({ai}) <
T

k
. (25)

Let
g(x)(1 − xkD−kI) + f(x)B(x) = l(x)(xkD−kI − xT) (26)

for some l(x) ∈ Fq[x]. From equations (23) and (9) we have

deg(l(x)(xkD−kI − xT)) ≤ LC({ai}) +
(k − 1)T

k
.

So from equation (25) deg l(x) ≤ LC({ai}) − T/k < 0. From equation (26) this
implies that g(x)(1 − xkD−kI) + f(x)B(x) = 0. Hence we have

B(x) =
g(x)(xkD−kI − 1)

f(x)
. (27)

On the k-Operation Linear Complexity of Periodic Sequences 329

From equations (1), (13), (14), and (27) we have

∑

i≥0

âix
i =

â(x)
1 − xT+kI−kD

=
B(x) + a(x)
xkD−kI − xT

=
1

xkD−kI − xT

(
g(x)(xkD−kI − 1)

f(x)
+

g(x)(1 − xT)
f(x)

)

=
g(x)
f(x)

=
∑

i≥0

aix
i.

(28)

From equations (24) and (28) Case 1 is proved.

Case 2: kI > kD

This can be derived by using the result of Case 1 by switching the roles of {ai}
and {âi}.

Example 1. For a simple example of Case 1b let T = 10, sequence a =
(0101010101)∞ and k = 2. Hence T/k − LC({ai}) = 3 which is not a lower
bound for the linear complexity of the modified sequence because we can delete
any two consecutive symbols to have a sequence with linear complexity 2. Sim-
ilarly we can insert two symbols and use a combination of an insertion and a
deletion to obtain the same linear complexity as that of the original sequence.
This shows that we must include LC({ai}) in our lower bound. It is this term
that was missing from Jiang, et al.’s lower bound [1].

Corollary 1. Let {ai} be a sequence over Fq of period T. Let {âi} be a sequence
obtained after any combination of up to k substitutions, insertions, and deletions
is performed on a single period of {ai} and repeated periodically. Then

1. LC({âi}) ≥ min(LC({ai}), T/k − LC({ai})) if the number of deletions is
greater than or equal to the number of insertions.

2. LC({âi}) ≥ min(LC({ai}), (T +1)/k−LC({ai})) if the number of deletions
is less than the number of insertions.

Proof. The lower bound established in Theorem 1 is monotonically non-increasing
in k. Thus if we make up to k modifications, the bound for exactly k modifications
still applies.

We note that there are examples of arbitrary large period sequences that meet
the bounds.

5 Conclusion

A derivation of non-trivial lower bounds for the linear complexity of a sequence
over Fq obtained by performing k or fewer operations on a single period of a

330 R. Kavuluru and A. Klapper

periodic sequence is presented, where an operation is a substitution, insertion,
or a deletion of a symbol. The bounds are useful when the linear complexity
of the original sequence is less then T/k and greater than T/2k where T is the
period. Since the information about the positions and the corresponding values
of the new elements to be inserted, deleted, or substituted is not used, the bounds
are not always tight. However, it is interesting to see that the bounds using any
combination of the three operations are similar to those proved by Jiang et al.
when only one type of operation at a time is allowed [1]. In fact the three bounds
they derived for k symbol substitution, insertion, and deletion are corollaries of
Theorem 1 of this paper.

References

[1] Jiang, S., Dai, Z., Imamura, K.: Linear complexity of a sequence obtained from a
periodic sequence by either substituting, insertion or deleting k symbols within one
period. IEEE Trans. Inf. Theory 44, 1328–1331 (1998)

[2] Meidl, W., Niederreiter, H.: Counting Functions and Expected Values for the k-
error Linear Complexity. Finite Fields Appl. 8, 142–154 (2002)

[3] Meidl, W., Niederreiter, H.: On the Expected Value of Linear Complexity and the
k-error Linear Complexity of Periodic Sequences. IEEE Trans. Inf. Theory 48(11),
2817–2825 (2002)

[4] Dai, S., Imamura, K.: Linear complexity for one-symbol substitution of a periodic
sequence over GF(q). IEEE Trans. Inf. Theory 44, 1328–1331 (1998)

[5] Uehara, S., Imamura, K.: Linear complexity of periodic sequences obtained from
GF (q) sequences with period qn − 1 by one-symbol insertion. IEICE Trans. Fun-
damentals E79-A, 1739–1740 (1996)

[6] Uehara, S., Imamura, K.: Linear complexity of peridic sequences obtained from
a sequence over GF (p) with period pn − 1 by one-symbol deletion. IEICE Trans.
Fundamentals E80-A, 1164–1166 (1997)

[7] Uehara, S., Imamura, K.: Linear complexities of periodic sequences obtained from
an m-sequence by two-symbol substitution. In: Proc. 1998 Int. Symp. Inf. Theory
and Its Appl., Mexico City, Mexico, pp. 690–692 (October 1998)

Trade-Off Traitor Tracing

Kazuto Ogawa1, Go Ohtake1, Goichiro Hanaoka2, and Hideki Imai2

1 Japan Broadcasting Corporation, Japan
{ogawa.k-cm, ohtake.g-fw}@nhk.or.jp

2 National Institute of Advanced Industrial Science and Technology, Japan
{hanaoka-goichiro,h-imai}@aist.go.jp

Abstract. There has been a wide ranging discussion on the contents
copyright protection in digital contents distribution systems. Fiat and
Tassa proposed the framework of dynamic traitor tracing. Their frame-
work requires dynamic computation transactions according to the real-
time responses of the pirate, and it presumes real-time observation of
contents redistribution and therefore cannot be simply utilized in an ap-
plication where such an assumption is not valid. In this paper, we propose
a new scheme that not only provides the advantages of dynamic traitor
tracing schemes but also overcomes their problems.

1 Introduction

There are a lot of approaches to protect contents copyrights in contents distribu-
tion services. Watermarking technology is one of the most important primitives
for them and a lot of methods employ the technology. The framework of dy-
namic traitor tracing proposed by Fiat and Tassa is one of them. It assigns
user subsets in order to trace illegal redistributors (traitors) in real time dy-
namically according to the illegally redistributed contents. Dynamic assignment
enables tracers to obtain most useful information to trace traitors according to
the traitors’ strategy. However, it needs a real-time feedback channel and thus
it is well known that the delayed attack, which redistributes contents with some
delay, is effective. As the above implies, it does not provide a practical protection
scheme. Therefore, our goal is to develop a new traitor tracing scheme that has
the advantages of dynamic traitor tracing and less of its shortcomings.

1.1 Related Works

Traitor Tracing. Traitor tracing is one of the major schemes for protecting
copyrighted works. In a system, a contents provider encrypts contents and dis-
tributes them, and each user decrypts them with his/her decryption key, which
is distributed prior to the service. Each user’s decryption key is unique, so if the
user illegally redistributes the decryption key, it is possible to identify the de-
cryption key’s owner [4,5,6,10,11]. However, these traitor tracing schemes cannot
protect the decrypted contents from illegal copying.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 331–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 K. Ogawa et al.

Watermarking. One sort of countermeasure is watermarking. A simple water-
marking scheme works as follows [15,3]. The contents provider produces differ-
ent contents and distributes them to users. These contents are generated from
a single original, but their embedded information is different. Effectively then,
each user gets contents that are different from any other user’s contents. Un-
fortunately, as part of a broadcasting service, this scheme requires a network
capacity in proportion to the number of users and thus is not practical.

Dynamic Traitor Tracing. Fiat and Tassa proposed a scheme such that mul-
tiple watermarks are assigned dynamically for users. They assume that contents
are redistributed in real time, and that the redistributed contents can be ob-
tained in real time [8,9]. In addition, Berkman, Parnas, and Sgall improved it
[1,2]. The system dynamically assigns watermark patterns soon after getting the
redistributed contents, and this enables one to identify traitors at a low network
cost. Such schemes are called dynamic traitor tracing (DTT).

However, it has some shortcomings. One is that a real-time feedback channel
to get redistributed contents in real time is required for this system. Another
one is that a real-time dynamic watermark assignment is required, which im-
plies that the CPU cost of the watermark assignment server is extremely high.
Moreover, there is an effective attack whereby contents are redistributed with
some delay and the attack makes it hard for the contents provider to assign
watermarks dynamically.

Sequential Traitor Tracing. Safavi-Naini and Wang proposed another ap-
proach to solve these problems, called sequential traitor tracing (STT) [13,14].
In this scheme, even if there are no traitors, it is necessary to distribute mul-
tiple contents, and the number of the contents is in proportion to the number
of traitors whom the contents provider assumes to collude and to redistribute
contents. Hence, the scheme’s network cost is high.

The above discussion illustrates that while DTT and STT are effective ways
of tracing traitors, but they do not meet all of the requirements.

1.2 Our Contribution

Our goal is to develop a new scheme that has the advantages of DTT and has
less of its shortcomings (we call it trade-off traitor tracing). In our scheme, sev-
eral segments are stored and the watermarks embedded into them are detected.
Then, the successive next pattern of watermarks embedded into the next several
segments is determined after analyzing the detected watermarks pattern and
with one dynamic computation. The determination must be made in a way that
the information obtained from the next detected watermarks works most effec-
tively to identify traitors. This method makes it robust against delayed attacks
[13,14].

For example, consider a likely scenario in which attackers try to redistribute a
serial drama episode the day after it was shown. The conventional scheme would
not work in this case, but ours would. In the service, every episode is broadcast
every day. The attackers perform delayed attacks and illegally redistribute the
jth episode the next day. The tracers, who would like to specify the attackers,

Trade-Off Traitor Tracing 333

Table 1. Comparison of three schemes: in terms of delayed attack security (DA-
security), number of dynamic computations (# DC), and number of variants (# Var)

Scheme [8,9] [1,2] Ours

p < 60 p ≥ 60

DA-security − − √

DC p(log2 n+1) p(log3 n+1) p(log4(n/p)+4)−3 p(log4 n+1)

Var 2p+1 3p+1 3p+1

determine the watermark patterns at the j+1th episode broadcasting after they
found illegal redistribution of the jth episode. In the case of DTT, only one
new watermark pattern is determined for the next episode. On the other hand
in our scheme, one episode is divided into multiple segments (two segments in
the following construction), and distinct watermark pattern is assigned for each
segment. It means that one episode is considered as one segment in DTT, and
as multiple (two) segments in our scheme. When the tracers find the next illegal
redistribution of the j+1th episode, the tracer can decrease the number of users,
who include the attackers, to 1/2 in DTT and to 1/4 in our scheme. Hence, our
scheme works more effectively against delayed attacks than DTT.

Moreover, the computational cost (the number of dynamic watermark assign-
ment to trace all traitors) of our proposal is less than that of DTT. Table 1
shows a comparison with the schemes of [8,9,1,2], when the number of segments
is set to two and the number of watermark variants to specify one traitor is set
to three. The comparison shows that our proposal can decrease the number of
dynamic computations to about 79%(� log4 3=(p log4 n)/(p log3 n)), where p is
the number of traitors and n is the number of total users (p � n).

Totally, our scheme has all the advantages and less shortcomings of DTT, and
it is more practical than DTT.

2 Model: Trade-Off Traitor Tracing

Our model is similar to that of DTT [8,9], but real-time contents feedback is un-
necessary. The next watermark pattern is determined with adaptive and dynamic
computations, depending on the watermark information detected from illegally
redistributed contents. Contents providers distribute contents and then traitors
redistribute them illegally. The providers can see the contents redistributed.
One content consists of multiple segments and it is possible to generate multiple
variants of each segment. Distinct information is embedded in each variant. In
addition, users are divided into multiple subsets, and each variant is distributed
to each subset. In the process, several current segments are stored and the wa-
termark information is detected. The detected watermark pattern is then used
to determine the next pattern, which would be embedded in the next several seg-
ments. That is, assignment to distinct subsets for each segment is determined at
an assignment timing dynamically. On the other hand, in DTT, the assignment
to the same subsets for all segments is determined.

334 K. Ogawa et al.

Through this modification, the computational cost can decrease and the ro-
bustness against delayed redistribution attacks can be achieved. We describe the
details of our model below, and in the following we use the notation in Table 2.

Table 2. Notation

m : the number of total segments
t : the number of segments which are used at each assignment (that is, the number

of segments which are used for one TRC (see the following part))
U : the set of all users, |U |=n
n : the number of all users
T : a set of users (traitors) who collude and redistribute contents illegally, T ⊂ U and

|T |=p
p : the number of traitors
Σ : the set of alphabets that are used for watermarking, Σ ={σ1, · · · , σr}
r : the number of different variants

vj
k : the variant of the jth segment into which σk is embedded, 1 ≤ j ≤ m, 1 ≤ k ≤ r

Sj
k : the set of the users who received the variant vj

k

h : side information to trace traitors. It includes the attributes of each subset of
authorized users. The subset is generated in the tracing process.

Content Structure. One content is divided into several sequential segments.
In the case of video contents, for example, one content is a program and one
content is divided into minute-long segments. We assume that there exists an
ideal watermarking scheme. Multiple variants of one segment are generated with
this watermarking scheme, and the information embedded in each variant is
different from the others. The following conditions are required for these variants:

– Fundamentally, all variants carry the same information to the extent that
humans cannot easily distinguish between them.

– Given any set of variants of the jth segment (1 ≤ j ≤ m), vj
1, · · · , vj

λ, it is
impossible to generate another variant that can not be traced back to one
of the original variants vj

i (1 ≤ i ≤ λ).

Clearly, assuming that there exists a watermarking scheme which meets the
above requirements, it would be possible to identify at least one variant with
illegally redistributed variants, and prove that there is one traitor among the set
of users who received the same variant with the identified variant.

Algorithms. Trade-off traitor tracing consists of two algorithms, WMK and
TRC. WMK is the algorithm to embed watermarks. TRC is the algorithm to
trace traitors who redistribute contents illegally.

WMK: This is an algorithm which takes as inputs U , t consecutive segments (from
jth to j+t−1th segments), and h. It generates multiple variants vi

k (1 ≤ k ≤ r)
for all ith segment (j ≤ i ≤ j+t−1). For all i and k (j ≤ i ≤ j+t−1, 1 ≤ k ≤ r),
it determines the sets of users Si

k and the variant vi
k distributed to Si

k, updates
side information h, and returns vi

k, Si
k and h.

Trade-Off Traitor Tracing 335

TRC: This is an algorithm which takes as inputs U , the detected watermark
information from t consecutive segments (from jth to j+t−1th segments), Si

k

(j ≤ i ≤ j+t−1, 1 ≤ k ≤ r), and h, and returns the updated h.
These two algorithms are used as follows. When the content is distributed,

WMK generates multiple variants vi
k (1 ≤ k ≤ r) for each segment i (j ≤ i ≤

j+t−1). If the illegally redistributed content is found, the variants detected in
the content, the user set information Si

k (j ≤ i ≤ j + t−1, 1 ≤ k ≤ r) and
information h, which shows the relationship between the sets of users and the
distributed variants, are inputted to TRC. TRC analyzes these data and reduces
the number of suspicious users. It outputs h, which includes information of new
subsets to collect the most meaningful information. After that, WMK takes as
inputs these new subsets, and generates new variants vi

k and sets Si
k (1 ≤ k ≤ r)

for the next t consecutive segments (j+t ≤ i ≤ j+2t−1). This process is repeated
until all traitors are identified.

3 Concrete Construction of Trade-Off Traitor Tracing

We show a construction of the trade-off traitor tracing scheme. Although the
trade-off traitor tracing scheme is constructed based on [8,9], it is significantly
different from them in regard to their strategy to identify traitors. That is,
trade-off traitor tracing collects t consecutive segments and analyzes them si-
multaneously. Different user subsets are created at each segment and this is the
trick to get the most meaningful and most effective information.

On the other hand, direct use of the scheme described in [8,9] is not effective,
since the traitors can adaptively choose which segments to redistribute and thus
the contents provider (tracer) collects less information. That is, once a set of users
is divided into subsets, the subsets are not changed until illegal redistribution is
found. One subset assignment is used for all segments, regardless of the number
of segments. The traitors can, then, take such a strategy that they redistribute
only the segments distributed to one subset.

Strategy. The strategy to collect the most meaningful information to identify
traitors from the variants of two segments is as follows. In the following, we
set t to two and the number of watermark variants to specify one traitor to
three to simplify our explanation, even though the larger these numbers are, the
more effective our scheme becomes. Let S be a set of users to which an illegal
redistributed variant is distributed. Regarding the two segments the contents
provider will distribute next, the contents provider makes four subsets of S, S⊕,
S⊕, S⊗ and S⊗, where S⊕ ∪ S⊕=S⊗ ∪ S⊗=S, |S⊕|= |S⊕|= |S⊗|= |S⊗|= 1

2 |S|,
and |S⊕ ∩ S⊗|= |S⊕ ∩ S⊗|= |S⊕ ∩ S⊗|= |S⊕ ∩ S⊗|= 1

4 |S|. For the first segment,
one variant is distributed to S⊕ and another variant to S⊕. For the next segment,
one is to S⊗ and another one to S⊗. When, for example, the variants assigned
to S⊕ and S⊗ are found to be illegally redistributed, the following situations can
be imagined:

(i) At least one traitor is in S⊕ ∩ S⊗.
(ii) At least one of them is in S⊕ ∩ S⊗ and at least one of them is in S⊕ ∩ S⊗.

336 K. Ogawa et al.

In particular, when only one traitor exists in S, (i) is true, and hence one dy-
namic computation enables tracers to decrease the number of suspicious users
to 1/4. In contrast, when the conventional traitor tracing scheme [8,9] is used,
two dynamic computations are necessary to decrease the number to 1/4, but the
scheme described above can achieve it through only one dynamic computation.

However, realistically (especially at the beginning of tracing) it is natural to
suppose that multiple traitors exist in S. A decision such that (i) or (ii) is true
may make it so that traitors can not be identified in the subsequent tracing
process. Hence, the decision made from one piece of collected information is not
likely to be effective, and we need another strategy to get a correct result for
identifying the true traitors. The correct strategy is that the tracers set a high
possibility to (i), and that they utilize a scheme to identify traitors in S⊕ ∩ S⊗.
Simultaneously, considering the case that (ii) is true, they utilize another scheme.
If (ii) is true and the latter scheme works effectively, the tracers can get more
information about traitors than in the first scheme. As a result, traitors cannot
help but perform in the way in which (i) is true.

State Transition. In our scheme, there are four states, State0 to State3, and
seven transitions, Case1 to Case7. Figure 1 shows the state transition diagram.
Statei-j denotes a Statei with an index j, where j is used only to make a dis-
tinction with another Statei. In addition, we use the following variables.

I : The set of users in which traitors have not been found.
C⊕,l, C⊕,l, C⊗,l, C⊗,l (1 ≤ l ≤ p) : These are sets of users such that C⊕,l ∪C⊕,l =
C⊗,l ∪ C⊗,l(:=Cl) and there exists at least one traitor in Cl.
C

′

⊕,l, C
′
⊕,l, C

′

⊗,l, C
′
⊗,l, L

′

l, R
′

l (1 ≤ l ≤ p) : These are sets of users such that

C
′

⊕,l ∪ C
′
⊕,l =C

′

⊗,l ∪ C
′
⊗,l(:= C

′

l) and C
′

l includes at least one traitor or L
′

l and
R

′

l include at least one traitor.
C

′′

l , L
′′

l , R
′′

l (1 ≤ l ≤ p) : These are sets of users such that two sets among
C

′′

l , L
′′

l , and R
′′

l include at least one traitor.
∅ : This is an empty set of users.

Diagram

– State0 is the state in which the set is I, Cω or Cl. When illegal redistribution
is detected in State0, the state changes into State1. This is Case1 transition.

– When illegal redistribution is detected in State1 and the detected subsets’
pair is one ((C⊕,l, C⊗,l) in Fig. 1) of {(C⊕,l, C⊗,l), (C⊕,l, C⊗,l), (C⊕,l, C⊗,l),
(C⊕,l, C⊗,l)}, the state changes into State2. This is Case2 transition.

– When illegal redistribution is detected in State2 and the detected subsets’
pair is one ((C

′

⊕,l, C
′

⊗,l) in Fig. 1) of {(C
′

⊕,l, C
′

⊗,l), (C
′

⊕,l, C
′
⊗,l), (C

′
⊕,l, C

′

⊗,l),

(C ′
⊕,l, C

′
⊗,l)}, the state changes into another State2. This is Case3 transi-

tion. This state is different from previous State2, in that the number of |I|
increases and the numbers of |C ′

⊕,l|,|C ′
⊕,l|,|C

′

⊗,l|,|C ′
⊗,l|, |L

′

l| and |R′

l| decrease
to 1/4.

Trade-Off Traitor Tracing 337

,lC⊕

I

, , lI C Cω

'
lR

,lC⊕

,lC⊗

,lC⊗
'
lL

'
,lC⊕

'
,lC⊕

'
,lC⊗

'
,lC⊗

'
lR

'
lL

'
,lC⊕

'
,lC⊕

'
,lC⊗

'
,lC⊗

''
lR

''
lL

''
lC

Case1 Case2

Case3

Case4

Case5

Case6

Case7

State0 State1 State2

State2

State3

X : Subset of users

X

State0

State0

State0

State0

State1-2

State1-1

State1-2 State1-2
State0

State1-1

State0

S
ta

te
1-

1
I

S
ta

te
0

State1-2

I

I

I

I

I

: Subset attribute

,lC⊕

I

, , lI C Cω

'
lR

,lC⊕

,lC⊗

,lC⊗
'
lL

'
,lC⊕

'
,lC⊕

'
,lC⊗

'
,lC⊗

'
lR

'
lL

'
,lC⊕

'
,lC⊕

'
,lC⊗

'
,lC⊗

''
lR

''
lL

''
lC

Case1 Case2

Case3

Case4

Case5

Case6

Case7

State0 State1 State2

State2

State3

X : Subset of users

X

State0

State0

State0

State0

State1-2

State1-1

State1-2 State1-2
State0

State1-1

State0

S
ta

te
1-

1
I

S
ta

te
0

State1-2

I

I

I

I

I

: Subset attribute

Fig. 1. State Transition Diagram

– When illegal redistribution is detected in State2 and the detected subsets’
pair is (L

′

l ∪ R
′

l, L
′

l ∪ R
′

l), the state changes into State3. This is Case4
transition.

– When illegal redistribution is detected in State2 and one of the detected
subsets is a subset (C

′

⊕,l in Fig. 1) among {C
′

⊕,l, C
′
⊕,l, C

′

⊗,l, C
′
⊗,l} and the

other is L
′

l ∪ R
′

l , the state changes into one State0 and two State1 (State1-1
and State1-2). This is Case5 transition. In this case, there are at least two
traitors and at least one of them is in the former subset (C

′

⊕,l in Fig. 1), and
at least one of them is in L

′

l ∪ R
′

l . The former subset (C
′

⊕,l in Fig. 1) then
can be treated as Cl in State0, and L

′

l ∪ R
′

l can be treated as Cω in State0,
and each of these states changes into State1.

– When illegal redistribution is detected in State3 and the detected subsets’
pair is one ((L

′′

l , L
′′

l) in Fig. 1) of {(C
′′

l , C
′′

l), (L
′′

l , L
′′

l), (R
′′

l , R
′′

l)}, the state
changes into one State0 and two State1 (State1-1 and State1-2). This is
Case6 transition. In this case, there are at least two traitors and at least one
of them is included in a subset (L

′′

l in Fig. 1) among {C
′′

l , L
′′

l , R
′′

l }, and at
least one of them is included in a combined subset (C

′′

l ∪R
′′

l in Fig. 1), which
is generated by excluding the detected subset (L

′′

l in Fig. 1) from the subset
{C

′′

l ∪ L
′′

l ∪ R
′′

l }. The detected subset (L
′′

l in Fig. 1) can be treated as Cω in
State0, another subset (C

′′

l ∪ R
′′

l in Fig. 1) can be treated as Cl in State0,
and each of these states changes into State1.

338 K. Ogawa et al.

– When illegal redistribution is detected in State3 and the detected subsets’
pair is one ((C

′′

l , L
′′

l) or (L
′′

l , C
′′

l) in Fig. 1) of {(C
′′

l , L
′′

l), (C
′′

l , R
′′

l), (L
′′

l , C
′′

l),
(L

′′

l , R
′′

l), (R
′′

l , C
′′

l), (R
′′

l , L
′′

l)}, the state changes into one State0 and two
State1 (State1-1 and State1-2). This is Case7 transition. In this case, there
are at least two traitors and they are in two different subsets (C

′′

l and L
′′

l

in Fig. 1) among three possible subset pairs, (C
′′

l and L
′′

l , C
′′

l and R
′′

l , or,
L

′′

l and R
′′

l). One subset of the two different subsets (L
′′

l in Fig. 1) can be
treated as Cω in State0, and another one (C

′′

l in Fig. 1)) can be treated as
Cl in State0, and each of these states changes into State1.

Our construction is fully described in the full paper [12].

4 Evaluation

We then address the traceability of the tracing scheme and evaluate our scheme
with regard to the number of dynamic computations and compare it with that of
DTT [8,9,1,2]. In addition, we evaluate our scheme in terms of delayed attacks.

4.1 Traceability

We show that our tracing algorithm can trace at most p (1 ≤ p < �r/3) traitors
perfectly, where �x	 denotes a function which outputs a maximum integer less
than or equal to x. Formally, we prove the following theorem.

Theorem 1. If the number of traitors p is less than �r/3	, the tracing algorithm
can trace all p traitors.

For the proof of this theorem, we utilize the following two claims under the
condition of p < �r/3	. In these claims, which we prove in the full paper [12],
the notation Πl is used, where Πl ∈ {Cl, C⊕,l, C⊕,l, C⊗,l, C⊗,l, C

′
⊕,l, C

′
⊕,l, C

′
⊗,l,

C′
⊗,l, L

′
l ∪ R′

l, C
′′
l , L′′

l , R′′
l }, and its index is l (1 ≤ l ≤ p).

Claim 1. When there are p traitors and they belong to p distinct subsets, which
have p distinct indices, (Π1, · · · , Πp), the tracing algorithm can trace all p traitors.

Claim 2. When multiple traitors belong to one subset Πl and the traitors in Πl

select a variant at every segment for illegal redistribution, such that the traitor
whose received variant is used at jth segment is different from the traitor whose
received variant is used at j+1th segment, the tracing algorithm can divide the
traitors into two subsets Πl and Πl′ (l �= l′).

Proof of Theorem 1 (Sketch). Suppose that there are p (1 ≤ p ≤ �r/3)
traitors and that multiple traitors belong to one subset Πl. The tracing algorithm
can lead to the situation, such that the traitors in Πl are divided into two distinct
subset Πl and Πl′ from claim 2. By repeating this process, p traitors can be
divided into p distinct subsets Π1, · · · , Πp. Moreover, p traitors, who belong to p
distinct subsets, can be traced perfectly from claim 1. It shows that the tracing
algorithm can trace all p traitors. �

Trade-Off Traitor Tracing 339

4.2 Evaluation on the Number of Dynamic Computations

We show that our scheme is better with regard to the number of dynamic com-
putations than [8,9].

Number of Dynamic Computations of Our Scheme. Regarding the num-
ber of dynamic computations to trace all p traitors, the following claim holds,
and we prove it in the full paper [12].

Claim 3. The largest number of dynamic computations of our scheme to trace
all p traitors is p × (log4 n−log4 p)+4p−3 if p < 60, otherwise p × (log4 n+1).

Comparison of [8,9] and Our Scheme. Our scheme can decrease the number
of suspicious users to 1/4 with one dynamic computation, whereas the conven-
tional scheme [8,9] can decrease the number only to 1/2. Thus, our scheme can
identify all traitors by using only half the number of dynamic computations.
However, while our scheme uses up to three variants to identify one traitor,
compared with the conventional scheme’s two variants, our scheme does not
always use three variants.

To evaluate these schemes, a conventional scheme using three variants should
be considered, and such an improvement is easy to achieve. It can decrease the
number of suspicious users to 1/3 with one dynamic computation in a way that
always uses three variants. Such an improvement is described in [1,2]. Table 1
compares the proposed scheme with the conventional schemes.

Generally, we can assume 0 < p � n, and then p log2 n � p(log2 n+1),
p log3 n � p(log3 n + 1), and p log4 n � p(log4 n + 1) � p(log4(n/p)+ 4)− 3.
Hence, our scheme can decrease the number of dynamic computations to about
50%(=log4 2=(p log4 n)/(p log2 n)) of the conventional scheme’s. Compared with
the improved conventional scheme, it can decrease it to about 79%(� log4 3 =
(p log4 n)/(p log3 n)). This proves that if the contents provider generates enough
variants, our scheme is more effective than the conventional scheme. Regarding
the number of variants and the number of dynamic computations, our scheme
and the conventional scheme have a trade-off relationship; hence, we call our
scheme trade-off traitor tracing.

4.3 Delayed Attack Resilience

Our scheme is robust against delayed attacks. The subset assignment of each
segment is determined before next several segments are distributed, and the
assignment is recorded in the side information in order to trace traitors. In
the worst case, the traitors wait for the distribution to be completed and then
start the redistribution. However, since distinct subsets are assigned for each
segment, the information to be used for tracing can be obtained even when
such an attack is performed and the information can be used for next dynamic
computation. This is in contrast to DTT that is completely insecure against a
delayed attack.

340 K. Ogawa et al.

5 Conclusion

We proposed the trade-off traitor tracing scheme. This scheme requires fewer
dynamic computations than the conventional scheme does, and it does not need
to make a dynamic computation in real time, since the computation is performed
after several segments have been stored. Moreover, our scheme is more resilient
against delayed attacks than the conventional scheme.

References

1. Berkman, O., Parnas, M., Sgall, J.: Efficient Dynamic Traitor Tracing. In: Proc.
of ACM-SODA 2000, pp. 586–595 (2000)

2. Berkman, O., Parnas, M., Sgall, J.: Efficient Dynamic Traitor Tracing. SIAM Jour-
nal on Computing 30(6), 1802–1828 (2000) (full version of [1])

3. Blakley, G.R., Meadows, C., Purdy, G.B.: Fingerprinting Long Forgiving Messages.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 180–189. Springer,
Heidelberg (1986)

4. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Tracing Scheme. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

5. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Tracing Scheme, full
version of [4], http://crypto.stanford.edu/∼dabo/pubs.html

6. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 252–270. Springer, Heidelberg (1994)

7. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Trans. on Infor-
mation Theory 46(3), 893–910 (2000) (full version of [6])

8. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. In: Wiener, M.J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)

9. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. J. of Cryptology 14(3), 211–223
(2001) (full version of [8])

10. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

11. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

12. Ogawa, K., Ohtake, G., Hanaoka, G., Imai, H.: Trade-off Traitor Tracing, full
version of this paper, available from the first author via e-mail

13. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

14. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. IEEE Trans. on Informa-
tion Theory 49(5), 1319–1326 (2003) (full version of [13])

15. Wagner, N.: Fingerprinting. In: Proc. of IEEE Symposium on S&P 1983, pp. 18–22
(1983)

http://crypto.stanford.edu/~dabo/pubs.html

X-FCSR – A New Software Oriented Stream

Cipher Based Upon FCSRs�

François Arnault1, Thierry P. Berger1, Cédric Lauradoux2, and Marine Minier3

1 XLIM (UMR CNRS 6172), Université de Limoges
123 avenue Albert Thomas, F-87060 Limoges Cedex - France

arnault@unilim.fr, thierry.berger@unilim.fr
2 INRIA - projet CODES, B.P. 105, 78153 Le Chesnay Cedex - France

cedric.lauradoux@inria.fr
3 INSA de Lyon - Laboratoire CITI

21 Avenue Jean Capelle, 69621 Villeurbanne Cedex - France
marine.minier@insa-lyon.fr

Abstract. Feedback with Carry Shift Registers (FCSRs) are a promis-
ing alternative to LFSRs in the design of stream ciphers. The previous
constructions based on FCSRs were dedicated to hardware applications
[3]. In this paper, we will describe X-FCSR a family of software oriented
stream ciphers using FCSRs. The core of the system is composed of two
256-bits FCSRs. We propose two versions: X-FCSR-128 and X-FCSR-
256 which output respectively 128 and 256 bits at each iteration. We
study the resistance of our design against several cryptanalyses. These
stream ciphers achieve a high throughput and are suitable for software
applications (6.3 cycles/byte).

Keywords: stream cipher, FCSRs, software design, cryptanalysis.

1 Introduction

Following the recent development of algebraic attacks [7,12], it seems difficult
to design good stream ciphers using combined or filtered LFSRs. A FCSR is
similar to LFSRs, but it performs operations with carries, and so its transition
function is not linear. Such an automaton computes the 2-adic expansion of
some 2-adic rational number p/q. This can be used to prove several interesting
properties of FCSRs: proven period, non-degenerated states, good statistical
properties [15,20,21]. The high non-linearity of the FCSR transition function
provides an intrinsic resistance to algebraic attacks, and seems also to prevent
correlation attacks. There exists a hardware efficient family of stream ciphers
based on FCSRs: the filtered FCSR or F-FCSR [1,2,3,5]. In these ciphers, the
internal state of the FCSR is filtered by a linear function to provide from 1 to
16 output bits at each iteration. At the present moment, the F-FCSR-H and

� This work was partially supported by the french National Agency of Research: ANR-
06-SETI-013.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 341–350, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

342 F. Arnault et al.

F-FCSR-16 are selected for the third and last phase of the European Project
eSTREAM for the Profile 2 (i.e. hardware profile) [22].

While F-FCSR stream ciphers have good performances in hardware, they are
slow in software since they require many bit manipulation instructions to output
only a few bits. In this paper, we propose an efficient way to design a fast stream
cipher by generating many keystream bits from the same internal state. Our
design is based on two 256-bit FCSRs and on a mechanism of extraction with a
16×256 bits or 16×128 bits memory. The input of the extraction function is the
bitwise XOR of the full contents of the two FCSR main registers. This function
and the IV setup use some classical and well-known techniques of block cipher
design such as the “ShiftRows” and the “MixColumns” operations of the AES.

In this paper, we present two versions of our stream cipher. The first one
X-FCSR-256 outputs 256 bits at each iteration. This version is probably riskier
but is the most efficient (6.5 cycles/byte). It can be considered as a challenge for
cryptanalysts. The second one X-FCSR-128 outputs 128 bits at each iteration.
It seems more robust, and have also good performances (8.2 cycles/byte).

Section 2 presents background on FCSRs and their most useful properties
for cryptographic use. The stream ciphers X-FCSR-256 and X-FCSR-128 are
described in Section 3. We present an analysis of security in Section 4. We give
in conclusion detailed results on the performance of our designs.

2 Background on FCSRs and 2-Adic Sequences

The FCSR automaton. The Feedback with Carry Shift Registers (FCSRs)
were first introduced by A. Klapper and M. Goresky in [20] (see also [21,15,1,5]).
A FCSR automaton with connection integer q and initial state p computes the
2-adic expansion of p/q.

In the sequel, we suppose that q is a negative prime and p satisfies 0 ≤ p < |q|.
This ensures that the output sequence is periodic with period T where T is the
order of 2 modulo q. This period is maximal if T = |q| − 1. In that case the
sequence S is called a �-sequence. We define an optimal FCSR as an FCSR
generating �-sequences.

We suppose that the size of q is n + 1, i.e. 2n < −q < 2n+1. Let d = (1 − q)/2
and d =

∑n−1
i=0 di2i, di ∈ {0, 1}, dn−1 = 1. The FCSR automaton with connection

integer q is composed of two registers (sets of cells): a main register M and a
carry register C.

The main register M contains n binary cells where each bit is denoted by
mi(t) (0 ≤ i ≤ n − 1). We call m(t) =

∑n−1
i=0 mi(t)2i the content of M .

The carry register C contains � cells where � + 1 is the number of nonzero di

digits, i.e. the Hamming weight of d. More precisely, the carry register contains
one cell for each nonzero di with 0 ≤ i ≤ n − 2. We denote ci(t) the binary digit
contained in this cell. We put ci(t) = 0 when di = 0 or when i = n − 1. We call
the integer c(t) =

∑n−2
i=0 ci(t)2i the content of C. The Hamming weight of the

binary expansion of c(t) is at most �. Note that, if di = 0, then ci(t) = 0 for all t.
At cell level, the transition function of an FCSR is given by:

X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs 343

mi(t + 1) = mi+1(t) ⊕ dici(t) ⊕ dim0(t)
ci(t + 1) = di (mi+1(t)ci(t) ⊕ ci(t)m0(t) ⊕ m0(t)mi+1(t)).

where ⊕ denotes bitwise XOR. Note that m0(t) is the least significant bit of
m(t) and represents the feedback bit.

TMD attacks and procedure of initialization of FCSR. The graph of
the transition function of a FCSR automaton is well mastered. The following
proposition gives its full description [3]:

Proposition 1. If the order of 2 mod q is T = |q| − 1, the size of the final
cycle of a component of the transition function graph is exactly T (except for
two degenerated cases: m + 2c = 0 or m + 2c = −q).

To guarantee a constant entropy equal to log(2n − 1) after any number of iter-
ations, we propose to initialize c with 0 and to take a random m from the set
[1, · · · , 2n − 1]. Thus, two distinct initializations cannot converge to the same
state after a same number of iterations.

Distinguishing attacks using diffusion of differences. In a FCSR automa-
ton, a small difference between two initial states remains local if the feedback
bit is not affected by it. This property has been exploited to mount resynchro-
nization attacks against some stream ciphers with bad IV setup design [18,19].

To avoid this problem, we need to design an IV setup which unables any at-
tacker to master a difference between two internal states by choosing some pairs
of IV. Such a procedure can be obtained by essentially two ways: by performing
n + 4 iterations before to output any value [3] or by digesting the key and the IV
using an efficient function such as an hash function or a block cipher. The first so-
lution is very slow for a software purpose, thus we have chosen to initialize the two
FCSR main registers with the ciphertext produced by the IV using an AES-like
block cipher whereas the round subkeys are derived from the master key.

Algebraic attacks on FCSR automata. For a filtered LFSR of size n,
the system of non-linear equations used for algebraic attacks is of the form
f(Lj(X)) = S(t0 + j) where X = (x1, . . . , xn) = X(t0) is the initial state of the
automaton at time t0, L is the linear transition function of the LFSR, f is the
extraction boolean function (the non-linear filter) and S(t0 + j) is the output at
the j-th iteration. The resistance against algebraic attacks depends only on the
boolean function f .

For a filtered FCSR, the transition function Q is no more linear but quadratic.
The system becomes f(Qj(X)) = S(t0 + j) for 0 ≤ j < r. In this case, the com-
plexity of the problem depends essentially on the function Qj and the function
f could be linear as done in the F-FCSR stream ciphers. This property ensures
a very efficient resistance against algebraic attacks. In fact the difficulty is not
only to solve the system, but to compute it.

As soon as the number of required iterations is sufficiently large, the degree of
the equations grows up to n and the number of monomials grows exponentially.
Following experimental results given in [10], the limit to which it is possible to

344 F. Arnault et al.

compute equations seems close to 10 iterations, even for FCSRs of small sizes
(typically 64 or 128).

More properties of xored 2-adic sequences. In [15], M. Goresky and A.
Klapper studied the general behavior of a sequence of the form: s = p

q ⊕ p′

q′ .
The core of our stream cipher is the XOR of two FCSR automata with distinct
connection integers qa and qb. Set s = pa

qa
⊕ pb

qb
, 0 < pa < |qa| and 0 < pb < |qb|

and S = (si) with s =
∑∞

i=0 si2i. Applying the results given in [15], we have the
following properties: the period of S is T = (|qa| − 1)(|qb| − 1)/2; the sequence
S is balanced and the distribution of consecutive pairs in S is uniform.

Until now, there is no known method more efficient than the exhaustive search
to recover p/q and p′/q′ from the knowledge of s.

3 Design of X-FCSR-128 and X-FCSR-256

X-FCSR is a new family of additive synchronous stream ciphers. The two pro-
posed versions, X-FCSR-128 and X-FCSR-256, essentially differ on the extrac-
tion function: for X-FCSR-128, 128 bits of keystream are generated at each
iteration, while the extraction of X-FCSR-256 produces 256 bits of keystream.
Clearly, the latter version is riskier since it outputs 256 bits - the size of one
FCSR main register - and can be viewed as a challenge for cryptanalysts.

Both stream ciphers admit a secret key K of 128-bit length and a public
initialization vector IV of bitlength ranging from 64 to 128 as input. These
parameters conform to the requirements given in the eSTREAM initial call for
Stream Ciphers for software applications [22].

General overview and parameters of the FCSR automata. The core of
the design is constituted of two optimal 256 bit FCSRs: The first one with the
connection integer qa is right-clocked whereas the second one is left-clocked with
connection integer qb. qa and qb are primes and produces �-sequences (i.e. the
corresponding FCSRs are optimal):

qa=−231583736761916429980870326666224608672078432415725276914781707903145369917947

qb=−171877005186002814581455393667408237212045583156346323656490004737372232601307

At time t, we denote by Ma(t) and Mb(t) the contents of the two main registers.
At each iteration, the value X(t) = Ma(t) ⊕ Mb(t) feeds an extraction function
with memory which computes the output from the current value and from the
value obtained at time t − 16. The connection integers have been chosen such
that, if we denote X(t) by (x0(t), . . . , x255(t)) at bit level, at least one of the two
FCSRs has a feedback between xi(t) and xi+1(t) for each i, 0 ≤ i < 255.

Extraction function of X-FCSR-128. The extraction function is constituted
of a function Round128 working on 128-bit input/output words, and a memory
of 16 128-bit words which stores the output of Round128 that will be used 16
iterations later. More formally, the full extraction function works as follows:

X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs 345

– compute the 128-bit word Y (t) = X(0)(t) ⊕ X(1)(t),
with X(t) =

(
X(0)(t)||X(1)(t)

)
, where || denotes the concatenation.

– Compute Z(t) = Round128(Y (t)).
– Store Z(t) in memory (keep it during 16 iterations).
– Output the 128-bit word Output128(t) = Y (t) ⊕ Z(t − 16).

Round128 is a one-round function from {0, 1}128 into itself: Round128(a) =
Mix128(SR128(SL128(a))). If the 128-bit word a is represented at byte level by a
4×4 matrix M where each byte is represented by the word ai,j with 0 ≤ i, j ≤ 3,
then the function Round128 works as follows:

– SL128() is a S-box layer applied at byte level: each byte ai,j is transformed
into an other byte bi,j with bi,j = S(ai,j) where S is the S-box given in [4]
chosen for its good properties (the differential and linear probabilities are
low, the algebraic degree is equal to 7, the nonlinear order is equal to 6, the
I/O-degree is equal to 3).

– The SR128() operation corresponds with the ShiftRows() operation of the
AES.

– the Mix128() operation is the one used in [16] computed using the operations
over GF (2). More precisely for each column of a, we compute ∀j, 0 ≤ j ≤ 3:

Mix128

⎛

⎜⎜⎝

a0,j

a1,j

a2,j

a3,j

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

a3,j ⊕ a0,j ⊕ a1,j

a0,j ⊕ a1,j ⊕ a2,j

a1,j ⊕ a2,j ⊕ a3,j

a2,j ⊕ a3,j ⊕ a0,j

⎞

⎟⎟⎠ .

Even if this function is not fully optimal for a diffusion purpose, its branch
number is however equal to 4 and its computation is significantly faster than
the MixColumns of the AES: Mix128 can be computed with only six 32-bit
bitwise XORs.

Extraction function of X-FCSR-256. For X-FCSR-256, the extraction func-
tion works directly on the 256-bit word X(t) with the function Round256 from
{0, 1}256 into itself, and a memory of 16 × 256-bit words which stores the out-
put of Round256 that will be used 16 iterations later. More formally, the full
extraction function holds as follows:

– Compute the 256-bit word W (t) = Round256(X(t)).
– Store W (t) in memory (keep it during 16 iterations).
– Output the 256-bit word Output256(t) = X(t) ⊕ W (t − 16).

Round256 is a similar round function than the previous one but from {0, 1}256

into itself that can be written as Round256(a) = Mix256(SR256(SL256(a))). If
the 256-bit word a is represented at byte level by a 4 × 8 matrix M where each
byte is written ai,j with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7, then the function Round256

can be described as follow:

– the first transformation SL256() consists in the same S-box layer applied
at byte level that transforms each byte ai,j into an other byte bi,j such as
bi,j = S(ai,j) using always the S-box S.

346 F. Arnault et al.

– The SR256() operation corresponds with the ShiftRows() operation of Rijn-
dael described in [13] and consists in Shifting each row of the current matrix
on the left at byte level: by 0 for the first row, by one for the second, by
three for the third and by four for the fourth one.

– The Mix256() operation is similar to Mix128() but there are here 8 columns
to consider.

Key and IV injection. As done in [8], we have split the initialization process
into two steps to speed up the IV injection:

-The key schedule, which processes the secret key but does not depend on the
IV .
- The IV injection, which uses the output of the key schedule and the IV .

This initializes the stream cipher internal state. Then, the IV setup for a fixed
key is less expensive than a complete key setup, improving the common design
since changing the IV is more frequent than changing the secret key.

Key schedule. The key setup process used here corresponds to a classical key
schedule of a block cipher and is inspired by the one of the DES due to its
good resistance against related key attacks [11] and against related key rect-
angle attacks [17]. The key expansion produces 25 × 128-bit subkeys denoted
K0, · · · , K24. It works as follow:

– the subkey K0 is deduced from the master key: K0 = (Round128(K))<<<23

where <<<j denotes a 128-bit left rotation of j positions.
– then Ki is deduced from Ki−1: Ki = Round128((Ki−1)<<<j) where j = 23

if i ≡ 3 mod 4 and j = 11 otherwise.

IV injection. If necessary the IV is extended to a 128-bit word by adding
leading zeros. Then, this value is considered as a plaintext that is first enciphered
12 times using the Round128 function and then xored with the subkey of the
round Kj . More precisely, the process is the following if we denote by Vi the
ciphertext after the round i:

V0 = IV ⊕ K0; for i from 1 to 24 do Vi = Round128(Vi−1) ⊕ Ki.

Then, the values V12, V16 V20 and V24 are used to initialize the main registers as
follows: Ma(0) = (V12||V20) and Mb(0) = (V16||V24) whereas the carry registers
Ca and Cb are initialized to zero. The two FCSRs are then clocked 16 times
to fill the sixteen memory registers of the extraction function. Note that for
X-FCSR-256, the registers are directly filled with the 256-bit value W (t0) =
Round256(Ma(t0) ⊕ Mb(t0)) whereas for X-FCSR-128 this value is folded using
the 128-bit word Y (t0).

4 Design Rationale and Security Analysis

Objectives of key and IV injection. In [9], the authors demonstrate that
to be secure the key and IV setup (parametrized by the key K) of an IV -

X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs 347

dependent stream cipher must be a pseudo-random function. We have tried to
achieve this goal designing our key and IV setup as a block cipher using 12
rounds of Round128. Under those conditions, the secret key of the cipher cannot
be easily recovered from the initial state of the generator. Once the initial state
is recovered, the attacker is only able to generate the output sequence for a
particular key and a given IV.

This mechanism already used in [8] also prevents our stream cipher from the
distinguishing differential attacks described in Section 2: the values of the two
main registers are key dependent and, for a given secret key, no difference could
be mastered with a sufficient probability between two distinct IV values and the
contents of the main registers. Moreover, and as explained in Section 2, the two
carry registers are initialized to 0 to avoid any loss of entropy and prevent TMD
attacks.

Role of the core FCSRautomata. As noticed in [9], to be secure the keystream
generation of an IV -dependent stream cipher must rely on a pseudo-random num-
ber generator. Following this requirement and the results of Section 2, we have
based our stream cipher on the XOR of two independent 2-adic sequences that
provides good pseudo-random sequences. As explained in [5], any cell of the main
register of a FCSR automaton provides a 2-adic sequence. Except if there is no
feedback bits between two cells, the theoretical dependencies between these se-
quences cannot be exploited easily. The main idea of X-FCSR is to directly XOR
the contents of two distinct FCSRs of size 256 to provide in parallel 256 xored
2-adic sequences, denoted at time t by X(t) = (x0(t), . . . , x255(t)) in Section 3.

However, the content of X(t) cannot be directly output because in this case
we obtain a system of 256 equations with 512 variables at time t that could
be easily solved: the condition “qa and qb have been chosen such that there is
always at least a feedback bit between two consecutive xored cells xi and xi+1”
is necessary but not sufficient.

Moreover, we could also build a guess and determine attack using the knowl-
edge of X(t): first choose an indice i such that there is no carry between ma i and
ma i+1, and between ma i+1 and ma i+2. So there are carries between mb i+1 and
mb i and between mb i+2 and mb i+1. Then, guess the contents of the 9 cells ma i,
ma i+1, ma i+2, mb i, mb i+1, mb i+2, cb i+1, cb i+2 and mb 255 at time t. Using the
transition formula, derive the corresponding values at time t+1 from the known
outputs xi(t), xi+1(t) and xi+2(t). Repeating this process, we then obtain the
consecutive values of the feedback bit mb 255 to deduce the content of the first
register and we then could guess the cell values of the second register. In the
case of X-FCSR-128 (cf. Section 3), the 128-bit output Y (t) computed from X(t)
with the formula yi(t) = xi(t)⊕xi+128(t) prevents this attack from holding even
if the information provided by Y (t) seems to be too strong to directly output
this value.

An other constraint must be respected: the two registers must be clocked in
opposite way because if the two automata are both right-clocked (for example),
the values xi(t) and xi+1(t + 1) are correlated according the values of the two
feedback bits.

348 F. Arnault et al.

Role of the extraction function. The two round functions Round128 and
Round256 have been chosen for their good diffusion and non-linear properties:
they ensure a good resistance against the residual correlations present between
the bits of the two main registers of the FCSRs. Their use also prevents attacks
that are derived from the ones previously described.

The use of 16 memory registers is a good compromise between a better secu-
rity and a limited performance cost. First, it increases the number of unknown
variables depending on the cells of the main register from 2×256 to 16×256 for
X-FCSR-256 (or to 16 × 128 for X-FCSR-128): solving such a system becomes
more expensive than the exhaustive key search. This memory could also be seen
as four FCSR automata, since at each operation, the output depends on X(t)
and X(t − 16). Even if there exists dependencies between X(t) and X(t − 16),
it is computationally infeasible to determine the values of the main registers at
time t + 16 from the values at time t using the transition functions as noticed in
Section 2.

Resistance against known attacks. The good statistical properties (period,
balanced sequences and so on) of our constructions are provided by the xored 2-
adic properties. We experimentally verified some of them by applying the NIST
statistical test suite [23] with success to our two constructions.

As previously mentioned, differential distinguishing attacks, algebraic attacks,
Time/Memory/Data trade off attacks and guess and determine attacks are dis-
carded due to the properties described in Section 2 and due to the previous
remarks. The fact that 2-adic sequences are xored in the extraction function
ensures also a good resistance against 2-adic attacks.

Then, we focus on correlation and fast correlation attacks. In those attacks, the
cryptanalyst tries to exploit an existing correlation between some internal bits
of the automaton and some output bits using in general linear relations. Since
the first FCSR based stream cipher appeared in [5] two years ago, no correlation
attack have been exhibited against this construction. This is essentially due to
the non-linearity induced by the carries propagation. Even if there exists some
2-adic correlations in a FCSR, those non-linear relations are destroyed by the
action of the XOR. Specifically, in the case of X-FCSR, the residual correlations
between the neighbor cells of the main registers are stopped by the use of the
Round functions.

To sum up all the previous analyses, we think that traditional attacks against
stream cipher that exploit linear relations built upon the transition function are
not realistic in our case. Thus, wanting to cryptanalyse FCSRs leads to create
new attacks exploiting other kinds of relations.

5 Conclusion

We have integrated the X-FCSR-128 and X-FCSR-256 stream ciphers to the
eSTREAM benchmarking suite [14]. We run the benchmark on an Opteron 250
(1.4Ghz) with GCC 4.1.1 (-O3-funroll-all-loops -fomit-frame-pointer) and gather
the results in Table 1.

X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs 349

Table 1. X-FCSR performance on an Opteron with the eSTREAM benchmark suite

cycles/byte cycles/key cycles/IV

Algorithm Keystream speed 40 bytes 576 bytes 1500 bytes Key setup IV setup

X-FCSR-256 6.5 50 9.5 7.6 1093 1636

X-FCSR-128 8.21 51 11 9.3 1096 1651

AES-CTR 18.23 22.98 18.3 18.3 172.23 11.74

Our new design X-FCSR-128 and X-FCSR-256 are significantly faster than
the AES-CTR except for small plaintexts. The performance of the two proposed
stream ciphers are promising. We hope that we have shown how to use FCSRs
for software applications. FCSRs have many other advantages such as a simple
software implementation or proven properties. In such a design, two important
parameters have to be considered: the size of the FCSR automaton, and the
size of the output of the extraction function. They have opposite impacts on the
throughput and on the security, thus a compromise has to be found. The two
stream ciphers presented here correspond to some choice for these parameters.
However, the problem of the optimal choice for them remains open.

References

1. Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer,
Heidelberg (2005)

2. Arnault, F., Berger, T.P., Lauradoux, C.: The FCSR: primitive specification and
supporting documentation. ECRYPT - Network of Excellence in Cryptology, Call
for stream Cipher Primitives (2005), http://www.ecrypt.eu.org/stream/

3. Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR stream cipher.
ECRYPT - Network of Excellence in Cryptology, Call for stream Cipher Primi-
tives - Phase 2 (2006), http://www.ecrypt.eu.org/stream/

4. Arnault, F., Berger, T.P., Lauradoux, C., Minier, M.: X-FCSR: a new software
oriented stream cipher based upon FCSRs (full paper). Cryptology ePrint Archive,
Report 2007/380, http://eprint.iacr.org/2007/380

5. Arnault, F., Berger, T.P.: Design and properties of a new pseudorandom generator
based on a filtered FCSR automaton. IEEE Trans. Computers 54(11), 1374–1383
(2005)

6. Arnault, F., Berger, T.P., Minier, M.: On the security of FCSR-based pseudoran-
dom generators. In: ECRYPT Network of Excellence - SASC Workshop (2007),
Available at: http://sasc.crypto.rub.de/files/sasc2007 179.pdf

7. Ars, G., Faugère, J.-C.: An algebraic cryptanalysis of nonlinear filter generators
using Gröbner bases. Research Report INRIA Lorraine, number 4739 (2003)

8. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: Sosemanuk:
a fast software-oriented stream cipher. ECRYPT - Network of Excellence in Cryp-
tology, Call for stream Cipher Primitives - Phase 2 (2005),
http://www.ecrypt.eu.org/stream/

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://eprint.iacr.org/2007/380
http://sasc.crypto.rub.de/files/sasc2007_179.pdf
http://www.ecrypt.eu.org/stream/

350 F. Arnault et al.

9. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In: FSE
2007. LNCS, vol. 4593, Springer, Heidelberg (2007)

10. Berger, T.P., Minier, M.: Two algebraic attacks against the F-FCSRs using the
IV mode. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)

11. Biham, E.: New types of cryptoanalytic attacks using related keys (extended ab-
stract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409.
Springer, Heidelberg (1994)

12. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 177–194. Springer, Heidelberg
(2003)

13. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: The Second Advanced En-
cryption Standard Candidate Conference. N.I.S.T. (1999), available at:
http://csrc.nist.gov/encryption/aes/

14. de Cannières, C.: eSTREAM Optimized Code HOWTO (2005),
http://www.ecrypt.eu.org/stream/perf

15. Goresky, M., Klapper, A.: Periodicity and distribution properties of combined
FCSR sequences. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA
2006. LNCS, vol. 4086, pp. 334–341. Springer, Heidelberg (2006)

16. Granboulan, L., Levieil, E., Piret, G.: Pseudorandom permutation families over
abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77.
Springer, Heidelberg (2006)

17. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of CHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

18. Jaulmes, E., Muller, F.: Cryptanalysis of ecrypt candidates F-FCSR-8
and F-FCSR-H. ECRYPT Stream Cipher Project Report, 2005/04 (2005),
http://www.ecrypt.eu.org/stream

19. Jaulmes, E., Muller, F.: Cryptanalysis of the F-FCSR stream cipher family. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 20–35. Springer,
Heidelberg (2005)

20. Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) Fast Soft-
ware Encryption. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1993)

21. Klapper, A., Goresky, M.: Feedback Shift Registers, 2-Adic Span, and Combiners
with Memory. J. Cryptol. 10(2), 111–147 (1997)

22. Network of Excellence in Cryptology ECRYPT. Call for stream cipher primitives,
http://www.ecrypt.eu.org/stream/

23. National Institute of Standards and Technology. The statistical test suite (v.1.8)
(2005), http://csrc.nist.gov/rng/rng2.html

http://csrc.nist.gov/encryption/aes/
http://www.ecrypt.eu.org/stream/perf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/
http://csrc.nist.gov/rng/rng2.html

Efficient Window-Based Scalar Multiplication on

Elliptic Curves Using Double-Base Number
System

Rana Barua, Sumit Kumar Pandey, and Ravi Pankaj

Indian Statistical Institute
205, B.T. Road
Kolkata, India

{rana,mtc0518,mtc0520}@isical.ac.in

Abstract. In a recent paper [10], Mishra and Dimitrov have proposed
a window-based Elliptic Curve (EC) scalar multiplication using double-
base number representation. Their methods were rather heuristic. In this
paper, given the window lengths w2 and w3 for the bases 2 and 3, we first
show how to fix the number of windows, ρ, and then obtain a Double
Base Number System (DBNS) representation of the scalar n suitable for
window-based EC scalar multiplication. Using the DBNS representation,
we obtain our first algorithm that uses a small table of precomputed EC
points. We then modify this algorithm to obtain a faster algorithm by
reducing the number of EC additions at the cost of storing a larger
number of precomputed points in a table. Explicit constructions of the
tables are also given.

1 Introduction

The efficiency of Elliptic Curve Cryptography (ECC) implementation largely
depends upon how fast one can compute the point [n]P =

∑n
i=1 P , given a

point P on the curve and the integer (scalar) n. Several efficient algorithms for
computing [n]P have been proposed. See Avanzi et al [1] and Hankerson et al [8]
for detailed discussion on these methods. Several window-based methods have
also been proposed, of them w-NAF methods seem to be very efficient.

Recently, Mishra and Dimitrov[10] have proposed a new window-based scalar
multiplication algorithm by suitably representing the scalars in DBNS. The
DBNS has recently been exploited to compute exponentiation (or scalar multi-
plication) efficiently[5]. The sparseness of the representation leads to fewer point
additions than the usual double-and-add or NAF methods. In fact, one can have a
DBNS representation of n having O(logn/loglogn) terms. This together with the
fact that 2a3b[P], for an EC point P , can be computed efficiently([6]) gives rise
to some very efficient algorithms for scalar multiplication. However, the method
in [10] is quite heuristic and an explicit method for finding the partition length
ρ is not given, nor any explicit expression for the cost of scalar multiplication in
terms of EC addition, doubling or tripling.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 351–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

352 R. Barua, S.K. Pandey, and R. Pankaj

In this paper, we first show how to fix ρ, the length of the partition i.e. the
number of windows, given w2, w3, the lengths of the window corresponding to
the bases 2 and 3 respectively. We then obtain a DBNS representation of the
scalar n suitable for window-based scalar multiplication. We obtain the DBNS
representation more efficiently than in [10] using a much smaller search space.
Using our DBNS representation we obtain our scalar multiplication algorithm
using a table look-up that stores (w2+1)(w3+1) EC points. Explicit construction
of the table is also given. Using a larger table that stores (2w2 ×3w3)/2 points, we
modify the above algorithm that considerably reduces the number of EC point
additions. We also obtain an expression for the average number of EC additions,
doubling, tripling required for computing the scalar multiplication.

2 Double-Base Number System

The double base number system (DBNS) [6] is a representation scheme in which
every integer n is represented as the sum or difference of numbers of the form
2a3b(called {2, 3}-integers) i.e.

n =
m∑

i=1

si2bi3ti , with si ∈ {−1, 1} and bi, ti ≥ 0.

This representation is very short and the representation scheme is highly redun-
dant. It has been shown that (cf [5], every positive integer n can be represented as
the sum of at most O(logn/loglogn) {2, 3}-integers. A simple Greedy algorithm
ensures nearly shortest representation for a given integer. A modified Greedy
was proposed in [10] suitable for window-based scalar multiplication. Here we
propose a more efficient algorithm suitable for window-based method that uses
a search space consisting only of 2w23w3 integers.

3 Proposed Window-Based Method for Scalar
Multiplication

Unlike earlier proposed methods ([10], [6], [11]), by choosing the window sizes,
we obtain natural bounds on maximum exponents of bases 2 and 3, and propose
a window method so that it reduces the overall storage.

Let n be an r-bit integer. Let w2, w3 be the dimension of the window. Let
max2, max3 be integers satisfying 2max23max3 ≥ n and such that max2/w2 =
max3/w3 = ρ, say (as in [10]). Then, we have

max2 + max3log23 ≥ log2n (1)

Substituting max2 = ρw2, max3 = ρw3 in (1), we get

ρ ≥ log2n

w2 + w3log23
(2)

For fix window lengths, we can obtain the number ρ by choosing ρ to be the
least positive integer satisfying inequality (2). If n is r-bit, then we may also
choose ρ = �r/(w2 + w3log23)�. Henceforth, we fix such a number ρ.

Efficient Window-Based Scalar Multiplication on Elliptic Curves 353

3.1 Representation of n

There is no unique representation of n in double base number system. Finding
a canonical representation of n, i.e. having least number of terms, is extremely
difficult. A short and sparse representation of n results in less computation for
scalar multiplication. We propose a representation of n which can be obtained
very efficiently and will be suitable for our window-based method. Since we are
particularly interested in window method, we will first obtain a DBNS represen-
tation of integers m lying in the window i.e. 0 ≤ m ≤ 2w23w3 using (distinct)
terms in the window.

Proposition 3.1. Every integer 0 ≤ m ≤ 2w23w3 can be represented as∑
j sj2bj 3tj , where sj ∈ {−1, 1} and 0 ≤ bj ≤ w2, 0 ≤ tj ≤ w3.

To find a DBNS representation of m lying in a window, we will use a table T
such that T (a, b) = 2a3b where 0 ≤ a ≤ w2 and 0 ≤ b ≤ w3. With the help
of table T , we can easily find the nearest {2, 3}-integer lying in a window and
hence the double base representation of any integer m, lying in a window.

Algorithm 1 gives the method to find a DBNS representation of n by greedy
approach which is almost the same as in [10].

Algorithm 1. Conversion into DBNS
Input : an integer m such that 0 ≤ m ≤ 2w23w3 for a given window

lengths w2, w3 for 2, 3 respectively and table T , where T (a, b) = 2a3b

and 0 ≤ a ≤ w2, 0 ≤ b ≤ w3.

Output : The sequence (si, bi, ti) such that m =
∑l

i=1 si2
bi3ti ,

where si ∈ {−1, 1}, 0 ≤ bi ≤ w2, 0 ≤ ti ≤ w3

1: i ← 1
2: si ← 1
3: A[i] ← (0, 0, 0)
4: while m > 0 do
5: define X = 2bi3ti , the best approximation of m in T with

0 ≤ bi ≤ w2 and 0 ≤ ti ≤ w3. If there are two choices,
choose nearest integer smaller to m.

6: A[i] ← (si, bi, ti)
7: if m < X then
8: si+1 ← −si

9: m ← |m − X|
10: i ← i + 1
11:return A.

Now, for any integer n, by our choice of ρ we have 0 ≤ n ≤ (2w23w3)ρ. The
propositon below gives a way to represent n suitable for our purpose.

Proposition 3.2. Every integer 0 ≤ n ≤ (2w23w3)ρ can be represented as n =
Mρ−1(2w23w3)ρ−1 ± Mρ−2(2w23w3)ρ−2 ± · · · ± M0 s.t. 0 ≤ Mρ−1 ≤ 2w23w3 and
0 ≤ Mj ≤ (2w23w3)/2 for 0 ≤ j ≤ ρ − 1.

354 R. Barua, S.K. Pandey, and R. Pankaj

Proof: If n = (2w23w3)ρ, then it is obvious. So let 0 ≤ n < (2w23w3)ρ. Then
n = M ′

ρ−1(2
w23w3)ρ−1 +R′

ρ−1, where 0 ≤ R′
ρ−1 < (2w23w3)ρ−1. Clearly M ′

ρ−1 <
2w23w3 ,for otherwise n ≥ (2w23w3)ρ. If R′

ρ−1 > (2w23w3)ρ−1/2, take Mρ−1 =
M ′

ρ−1 + 1 and Rρ−1 = R′
ρ−1 − (2w23w3)ρ−1, else Mρ−1 = M ′

ρ−1 and Rρ−1 =
R′

ρ−1. So, n = Mρ−1(2w23w3)ρ−1 + Rρ−1, where 0 ≤ Mρ−1 ≤ 2w23w3 and
−(2w23w3)ρ−1/2 < Rρ−1 ≤ (2w23w3)ρ−1/2.

Now, take |Rρ−1| so that 0 ≤ |Rρ−1| ≤ (2w23w3)ρ−1/2.
Let |Rρ−1| = Mρ−2(2w23w3)ρ−2 + Rρ−2, where 0 ≤ Mρ−2 ≤ 2w23w3/2 and
−(2w23w3)ρ−2/2 < Rρ−2 ≤ (2w23w3)ρ−2/2. Observe that Mρ−2 �> (2w23w3)/2,
for otherwise |Rρ−1| > (2w23w3)ρ−1/2.

Proceeding similarly, we have the result.

Algorithm 2 gives the method to find a representation of n.

Algorithm 2. To find representation of n

Input : an integer n, window dimension w2, w3 and ρ.
Output: a seq. of (si, Mi)i>0 such that n =

∑ρ
i=1 sρ−iMρ−i(2

w23w3)ρ−i,
where si ∈ {−1, 1}, 0 ≤ Mρ−1 ≤ 2w23w3 and
0 ≤ Mρ−i ≤ (2w23w3)/2 for all 2 ≤ i ≤ ρ.

1: i ← 1
2: sρ−1 ← 1
3: R ← n
4: X ← (2w23w3)ρ−1

5: while i ≤ ρ do
6: Mρ−i ← �R/X�
7: R ← R − Mρ−iX
8: sρ−i−1 ← sρ−i

9: if R > X/2 then
10: Mρ−i ← Mρ−i + 1
11: R ← X − R
12: sρ−i−1 ← −sρ−i

13: X ← X/2w23w3

14: i ← i + 1
15: A[ρ − i] ← (sρ−1, Mρ−i)
16:return A

After getting a representation of n, we are in position to find [n]P , given an
EC point P , using Horner’s scheme. To calculate [n]P , we will use another table
T P which contains the precomputed values of [2a3b]P , where 0 ≤ a ≤ w2 and
0 ≤ b ≤ w3, i.e. T P (a, b) = [2a3b]P . Observe that, since negation of an EC point
can be obtained almost free, we omit its cost in our calculation. Using T P , we
can find [n]P as follows.

1. Compute ρ. Then we calculate M ′
js, where n =

∑ρ
j=1 sρ−jMρ−j(2w23w3)ρ−j ,

where Mj , sj’s are as in Proposition 3.2. (Algorithm 2).
2. Now, we find out [Mj]P , (Algorithm 3). To obtain this we first find represen-

tation of Mj in DBNS using Algorithm 2, say
∑l

j=1 sj2bj 3tj . Then looking

Efficient Window-Based Scalar Multiplication on Elliptic Curves 355

at table T P , we find the values of sj [2bj 3tj]P for all j = 1, . . . , l and adding
these points gives the value of [Mj]P .

3. After getting the values of all [Mj]P in the representation of n, we evaluate
[n]P by applying Horner’s scheme (Algorithm 4).

Algorithm 3. calculation of [m]P , for m in the window
Input : an integer m such that 0 ≤ m ≤ 2w23w3 , a point P

on an elliptic curve E, tables T and T P .
Output : [m]P
1: A ←Algorithm 1(m,w2, w3, T)
2: L ← length(A)
3: P ← O (point at infinity on elliptic curve E)
4: i ← 1
5: while i ≤ L do
6: (si, bi, ti) ← A[i]
7: P ← P + siT

P (bi, ti)
8: i ← i + 1
9:return P

It is not hard to check that the number of terms in the DBNS representation
of m lying in the window is at most c(w2 + log3w3) for c < 1. Perhaps a much
better estimate can be obtained. Thus we have.

Proposition 3.3. Algorithm 3 correctly computes [m]P for 0 ≤ m ≤ 2w23w3

using at most c(w2 + log3w3) additions. The table T P stores (w2 + 1)(w3 + 1)
EC points.

Algorithm 4 calculates [n]P .

Algorithm 4. Calculation of [n]P

Input : an integer n such that 0 ≤ n ≤ (2w23w3)ρ, a point P

on an elliptic curve E, partition length ρ, tables T and T P .
Output : [n]P
1: A ← Algorithm 2(n, w2, w3, ρ)
2: P ← O (point at infinity on elliptic curve E)
3: i ← 1
4: while i ≤ ρ do
5: (sρ−i, Mρ−i) ← A[ρ − i]
6: Q ← Algorithm 3(Mρ−i, w2, w3, P, T, T P)
7: P ← P + sρ−iQ
8: P ← [3w3]P
9: P ← [2w2]P
10: i ← i + 1
11: return P

The following is not very hard to check using Horner’s scheme, since the
probabily of each Mj being non-zero is (1 − 1

2w23w3).

356 R. Barua, S.K. Pandey, and R. Pankaj

Proposition 3.4. Algorithm 4 correctly computes [n]P using on an average
(t−1)(c(w2 + log3w3)−1) EC additons, (ρ−1)w2 point doublings and (ρ−1)w3

point triplings, where c < 1, ρ = � log2n

w2+w3log23
�, and t = (1 − 1

2w23w3)ρ. Table

T stores (w2 + 1)(w3 + 1) integers, while table T P stores (w2 + 1)(w3 + 1) EC
points.

We can reduce the cost of computation if more precomputed points are stored. For
that we construct T P

all instead of T P such that T P
all(i) = [i]P for 1 ≤ i ≤ 2w22w3/2.

Since in the representation of n, maximum value of Mj can be (2w23w3/2), except
Mρ−1 which can have maximum value 2w23w3 , the number of precomputed points
is (2w23w3/2). If Mρ−1 > 2w23w3/2 then [Mρ−1]P can be evaluated by calculating
first �[Mρ−1/2]	P and then doubling and adding P if Mρ−1 is odd. Hence, steps
for evaluating [n]P using table T P

all will be same except step 3. In modified step 3,
we will evaluate [Mj]P by just looking at table T P

all.

Algorithm 40. Calculation of [n]P

Input : an integer n such that 0 ≤ n ≤ (2w23w3)ρ, a point P
on an elliptic curve E, partition length ρ, table T P

all.
Output : [n]P
1: A ← Algorithm 3(n, w2, w3, ρ)
2: P ← O (point at infinity on elliptic curve E)
3: i ← 1
4: while i ≤ ρ do
5: (sρ−i, Mρ−i) ← A[ρ − i]
6: if Mρ−i = 0 then
7: Q ← O (point at infinity)
8: else
9: if i = 1 then
10: if Mρ−i > 2w23w3/2
11: Mρ−i ← �Mρ−i/2�
12: Q ← 2[T P

all(Mρ−i)]
13: if Mρ−i is odd then
14: Q ← Q + P
15: else
16: Q ← T P

all(Mρ−i)
17: else
18: Q ← T P

all(Mρ−i)
19: P ← P + sρ−iQ
20: P ← [3w3]P
21: P ← [2w2]P
22: i ← i + 1
23: return P

The following is now clear.

Proposition 3.5. Algorithm 40 correctly computes [n]P using (ρ − 1)w2 point
doublings, (ρ − 1)w3 point triplings and at most ρ point additions. Table T P

all

stores 2w23w3/2 EC points.

Efficient Window-Based Scalar Multiplication on Elliptic Curves 357

4 Computation of T P and T P
all

The algorithms described so far use one or more look-up tables. If the EC point P
is known in advance, then the tables can be precomputed and stored; otherwise
they have to be computed online. Formation of tables T , T P , and T P

all may take
much computation but it can be reduced if they are formed recursively.

Note that T (a, b) = 2a3b and T P (a, b) = [2a3b]P , so T P (a, b) = [T (a, b)]P .
By considering the lexicographic ordering of the tuples (a, b) we can form T, T P

as follows:

1. T (0, 0) = 1; T P (0, 0) = P
2. T (0, b) = 3T (0, b − 1); T P (0, b) = [3]T P (0, b − 1), b > 0.
3. T (a, b) = 2T (a − 1, b); T P (a, b) = [2]T P (a − 1, b), a > 0.

Algorithm 5 illustrates the method to form table T P .

Algorithm 5. Table construction for T P

Input : window lengths w2, w3 and an EC point P

Output : an array T P (a, b) such that T P (a, b) = [2a3b]P
where 0 ≤ a ≤ w2 and 0 ≤ b ≤ w3.

1: T P (0, 0) ← P
2: a ← 0
3: b ← 0
4: while b < w3 do
5: T P (a, b + 1) ← [3]T P (a, b)
6: b ← b + 1
7: b ← 0
8: while b < w3 + 1 do
9: while a < w2 do
10: T P (a + 1, b) ← [2]T P (a, b)
11: a ← a + 1
12: b ← b + 1

13:return T P

Proposition 4.1. Algorithm 5 correctly computes T P used in Algorithm 4 using
w3 triplings and w2(w3 + 1) doublings.

Remarks: If tripling is less expensive than doubling(as in the case of EC over
fields of characteristic 3), we form T P as follows:

1. T P (0, 0) = P
2. T P (a, 0) = 2[T P (a − 1, 0)], a > 0 T P (a, b) = 3[T P (a, b − 1)], b > 0.

One can then appropriately modify Algorithm 5, using the above recursive rela-
tion. This will involve w2 doubling and w3(w2 + 1) triplings

Finally, Table T P
all can be formed as follows, if T P is given:

1. T P
all(1) = P T P

all(m + 1) = T P (m + 1), if m + 1 is a {2, 3}-integer,
2. T P

all(m + 1) = T P
all(m) + P , otherwise.

Clearly this requires 2w23w3/2 − (w1w2 + w1 + w2) EC point additions.

358 R. Barua, S.K. Pandey, and R. Pankaj

5 Comparison

The present method for scalar multiplication is comparable or performs better
in terms of both storage and computation in many cases.

(a) Storage - Methods for scalar multiplication in [10], [11] and [6] use a table
T of large size to find the nearest representation of n, but in our method the table
size required to find nearest representation of n is comparatively very small.

(b) Computation - In this method, we use a table T P or T P
all of precomputed

points, which reduces the overall computation in scalar multiplication. We have
computed cost of [n]P using existing algorithm for [2w2]P ([4]) and [3]P ([2])
in affine coordinates for curves over characteristic 2. Since square is almost free
in affine coordinates, we have not taken the cost of squaring. On the other
hand, cost for computing [n]P has been calculated using algorithm for [2w2]P
([9]), [3w3]P ([6]) and mixed addition ([3]) in Jacobian coordinates. Table 1
summarizes the cost of operation required.

We calculated cost of field operations for different window lengths in Table 2.
We compared our results with some earlier methods in Table 3.

Table 1. Cost of operation required in different point addition algorithm. Here [I], [S]
and [M] denote cost of field inversion, squaring and multiplication respectively.

Operation cost
Affine Jacobian

P + Q 1[I] + 2[M] 4[S] + 12[M]
mixed-(P + Q) - 3[S] + 8[M] (cf [3])

[2w]P 1[I] + (4w − 2)[M] (cf [4]) (4w + 2)[S] + 4w[M] (cf [9])
[3]P 1[I] + 7[M] (cf [2]) 6[S] + 10[M] (cf [6])
[3w]P - (4w + 2)[S] + (11w − 1)[M] (cf [6])

Table 2. Cost of scalar multiplication for 160 bit scalar

using T P using T P
all

w2 w3 # Affine Jacobian # Affine Jacobian
storage [I]/[M] = 8 [S]/[M] = 0.8 storage [I]/[M] = 8 [S]/[M] = 0.8

1 1 4 2042.3 [M] 1973.7[M] 3 2066.7[M] 2000.5[M]
1 2 6 2030.0[M] 1966.8[M] 9 1878.9[M] 1809.6[M]
1 3 8 1993.5[M] 1932.9[M] 27 1750.0[M] 1674.6[M]
2 1 6 1716.0[M] 1812.8[M] 6 1679.3[M] 1774.7[M]
2 2 9 1775.0[M] 1823.2[M] 18 1665.4[M] 1708.4[M]
2 3 12 1800.3[M] 1822.7[M] 54 1584.9[M] 1598.6[M]
3 1 8 1578.7[M] 1766.9[M] 12 1490.4[M] 1678.8[M]
3 2 12 1637.8[M] 1760.3[M] 36 1504.4[M] 1623.8[M]
3 3 16 1689.4[M] 1774.6[M] 108 1459.1[M] 1535.0[M]
4 1 10 1485.2[M] 1732.7[M] 24 1310.2[M] 1550.7[M]
4 2 15 1584.4[M] 1764.8[M] 72 1362.5[M] 1534.0[M]
4 3 20 1632.3[M] 1768.1[M] 216 1385.6[M] 1511.6[M]

Efficient Window-Based Scalar Multiplication on Elliptic Curves 359

Table 3. Comparison among different proposed methods

Algorithm size of # Precomputed Affine Jacobian
Table T points [I]/[M] = 8 [S]/[M] = 0.8

for 160 bit scalar

Mishra-Dimitrov method [11] 48384 5 1469.0[M] 1502.0[M]
Mishra-Dimitrov method [10] 4332 26 - 1692.2[M]

for window length (3,2)

w−NAF (for w = 3) 0 3 2016[M] -

w−NAF (for w = 4) 0 5 1894[M] -

Our method (using T P) 10 10 1485.2[M] 1732.7[M]
for window length (4,1)

Our method (using T P
all) 10 24 1310.2[M] 1550.7[M]

for window length (4,1)

Our method (using T P) 15 15 1584.4[M] 1764.8[M]
for window length (4,2)

Our method (using T P
all) 15 72 1362.5[M] 1534.0[M]

for window length (4,2)

for 200 bit scalar

Doche-Imbert method [7] 313 3 - 2019[M]
for window length (1,1)

Our method (using T P) 10 10 - 2312.6[M]
for window length (4,1)

Our method (using T P) 15 15 - 2272.9[M]
for window length (4,2)

Our method (using T P
all) 10 24 - 1938.4[M]

for window length (4,1)

References

1. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Langue, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC press, Boca
Raton, USA (2005)

2. Ciet, M., Lauter, K., Joye, M., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

3. Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using
Mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 51–65. Springer, Heidelberg (1998)

4. Dahab, R., Lopez, J.: An Improvement of Guajardo-Paar Method for Multipli-
cation on non-supersingular Elliptic Curves. In: SCCC 1998. Proceedings of the
XVIII International Conference of the Chilean Computer Science Society, Novem-
ber 12-14, pp. 91–95. IEEE Computer Society Press, Los Alamitos (1998)

5. Dimitrov, V., Gullien, G.A., Miller, W.C.: An algorithm for modular exponentia-
tion. Information Processing Letters 66(3), 155–159 (1998)

6. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Curve Point Multi-
plication Using Double Base Chain. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 59–79. Springer, Heidelberg (2005)

360 R. Barua, S.K. Pandey, and R. Pankaj

7. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

9. Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.: Fast implementation of
public-key cryptography on a DSP TMS320C6201. In: Koç, Ç.K., Paar, C. (eds.)
CHES 1999. LNCS, vol. 1717, p. 6172. Springer, Heidelberg (1999)

10. Mishra, P.K., Dimitrov, V.: Window-Based Elliptic Curve Scalar Multiplication
using Double Base Number Representation, Short Papers, Inscrypt (2007)

11. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation, ePrint
archive. In report 2007/040 (2007), http://www.iacr.org

http://www.iacr.org

Extended Multi-Property-Preserving and

ECM-Construction

Lei Duo and Chao Li

Department of Science, National University of Defense Technology,
Changsha, China

duoduolei@gmail.com

Abstract. For an iterated hash, it is expected that, the hash trans-
form inherits all the cryptographic properties of its compression func-
tion. This means that the cryptanalytic validation task can be confined
to the compression function. Bellare and Ristenpart [3] introduced a no-
tion Multi-Property preserving (MPP) to characterize the goal. In their
paper, the MPP was collision resistance preserving (CR-pr), pseudo ran-
dom function preserving (PRF-pr) and pseudo random oracle preserving
(PRO-pr). The probability distribution of hash transform influences the
randomness and adversary’s advantage on collision finding, we expect
that the hash transform is almost uniformly distributed and this prop-
erty is inherited from its compression function and call it Almost-Uniform
Distribution preserving (AUD-pr). However, AUD-pr is not always true
for MD-strengthening Merkle-Damg̊ard [7,12] transform. It is proved that
the distribution of Merkle-Damg̊ard transform is not only influenced by
output distribution of compression function, but also influenced by the
iteration times. Then, we recommend a new construction and give proofs
of satisfying MPP that is CR-pr, PRO-pr, PRF-pr and AUD-pr.

Keywords: Hash functions, random oracle, Merkle-Damg̊ard, collision
resistance, pseudo random function, almost uniform distribution.

1 Introduction

Most of hash functions are iterated hash function with Merkle-Damg̊ard con-
struction [7,12], it has been proven [7,12] to be collision-resistance preserving
(CR-Pr): if its compression function is collision resistant (CR). However, Coron
et. al [6] pointed out the MD-strengthening padded Merkle-Damg̊ard construc-
tion is not indifferentiable, which was first introduced by Maurer [11], from
random oracle even when its compression function is indifferentiable from ran-
dom oracle. As pointed out by Bellare and Ristenpart [3], current usage makes it
obvious that CR no longer suffices as the security goal for hash functions. Then,
towards the goal of building strong, multi-purpose hash functions, they intro-
duced the notion of a multi-property preserving (MPP), which is that, if we want
a hash function with properties P1, . . . , Pn, then we should design a compression
function with the goal of having properties P1, . . . , Pn, and apply an iteration
transform (domain extension transform) that provably preserves Pi for every

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 361–372, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

362 L. Duo and C. Li

i ∈ [1..n]. And they call a compression function a multi-property one, and call
such a transform a multi-property-preserving transform. In their paper, the MPP
was collision resistance preserving (CR-pr), pseudo random function preserving
(PRF-pr) and pseudo random oracle oracle preserving (PRO-pr). Then, they
recommended a new construction called EMD (Enveloped Merkle-Damg̊ard),
which is the first to meet their MPP.

The distribution of a hash construction is an important character to evaluate
the randomness. The adversary’s advantage on collision finding is also influenced
by the distribution bound. We think a good hash construction should have good
output distribution that is almost uniform distribution. To make one hash trans-
form fitted with different compression function, we expect that the compression
function has almost uniform distribution and the iteration preserves the almost
uniform distribution call it almost uniform distribution preserving (AUD-pr). We
add this new property to the multi-property preserving and the MPP becomes
CR-pr, PRF-pr, PRO-pr and AUD-pr.

The almost uniform distribution is decided by the distribution bounds.
Surprisingly, the distribution bound of Merkle-Damg̊ard construction with MD-
strengthening may reach 1, even when the compression function has good distri-
bution bound, where the bound of hash is not only related with the distribution
bound of compression function, but also related with the iteration times.

Since MD5 and SHA-1 were attacked by Wang et. al [13,4], increased attention
has been paid to security of hash, and some improved structures are given. Lucks
[10] given two imported structure of Merkle-Damg̊ard construction called wide-
pipe hash and double-pipe hash. Gauravaram et. al recommend 3c hash [9].
Biham and Dunkelman recommend a new structure called HAIFA [5]. Bellare
and Ristenpart [3] presented EMD construction, which is first structure proven to
be MPP (CR-pr, PRF-pr, and PRO-pr). The wide-pipe hash, EMD and HMAC
are not AUD-pr and the 3C is AUD-pr, but the 3c is not PRO-pr. Then, we give a
new construction, which is called ECM (Enveloped CheckSum Merkle-Damg̊ard)
that is MPP(CR-pr, PRF-pr, PRO-pr and AUD-pr). At last a generalized
enveloped MPP construction is given.

The section 2 is basic notions. Section 3 is an example of that output of hash
compression function has almost uniform distribution, however, iterated by the
Merkle-Damg̊ard construction the hash does not have good distribution. Sec-
tion 4 gives the proof of distribution bounds on Merkle-Damg̊ard construction.
New recommendation construction ECM and its proofs of MPP are in section
5. Generalized construction is in section 6.

2 Notation

Capital calligraphic letters (e.g. X) denote sets and the corresponding capital
letter (e.g. X) denotes a random variable taking values in the set. Concrete values
for X are usually denoted by the corresponding small letter x. The distribution
of a random variable X is denoted PX , we use PX(x)

def
= P (X = x), similarly

for conditional probabilities PZ|X=x(z)
def
= P (Z = z|X = x).

Extended Multi-Property-Preserving and ECM-Construction 363

Let message block y ∈ {0, 1}κ, ỹ ∈ {0, 1}κ−n, padded message m = y1 . . . yi ∈
∪∗

ι=1{0, 1}κ·ι and m̃ = y1‖ . . . ‖yt‖ỹ, where the padded message m or m̃ means
MD-strengthening padded message. Let 0 be n bits ′0′.

Let function F : X ×Y → {0, 1}n be Z = F(X, Y). For function Z = F(X, Y),
the distribution of Z is decided by distribution of X and Y . We give a definition
of derived probability distribution.

Definition 1. For function F : X × Y → Z, let Z = F(X, Y). X and Y

are independent. Let χF(x,y)(z) =
{

1 , z = F(x, y)
0 , z �= F(x, y) . The derived probability of

random variable Z is defined as

PZ(z) =
∑

x∈X

∑

y∈Y
PX(x)PY (y)χF(x,y)(z).

The derived conditional probability of z with X taking value x is defined as
PZ|X=x(z) =

∑
y∈Y

PX(x)χF(x,y)(z). If Z ⊆ {0, 1}n, z �∈ Z and z ∈ {0, 1}n, then

we assume PZ(z) := 0.

Definition 2. For function F : X × Y → {0, 1}n signified Z = F(X, Y). We
saying output of F satisfies an ε-almost-uniform distribution, if

max
z∈{0,1}n

∣∣PZ(z) − 1
2n

∣∣ ≤ ε.

where X and Y are uniformly distributed in X and Y, respectively. And we saying
output of F satisfies an ε-almost-uniform distribution on condition of X = x, if

max
z∈{0,1}n

∣∣PZ|X=x(z) − 1
2n

∣∣ ≤ ε.

Definition 3. Merkle-Damg̊ard construction Hm : {0, 1}κ·∗ → {0, 1}n is de-
fined as x0 = iv, xi = F(xi−1, yi)(i = 1, . . . , t),Hm(iv, m) = xt, where m =
y1‖ . . . ‖yt. Function F : {0, 1}n × {0, 1}κ → {0, 1}n is called compression func-
tion signified Z = F(X, Y). iv ∈ {0, 1}n is a constant value.

Definition 4. The CheckSum Hash Hs : {0, 1}κ·∗ → {0, 1}n is defined as x0 =
iv, xi = F(xi−1, yi)(i = 1, . . . , t),Hs(iv, m) =

⊕t
i=0 xi.

Definition 5. The EMD-Hash He : {0, 1}κ·∗+κ−n → {0, 1}n is defined as
He(iv1, iv2, m̃) = F(iv2,Hm(iv1, m)‖ỹ), where Hm is Merkle-Damg̊ard hash and
m̃ = m‖ỹ.

We write F = RFd,n to signify F is random oracle from {0, 1}d to {0, 1}n.
The compression function F is also considered as domain extension function
F : {0, 1}n+κ → {0, 1}n and denoted Z = F(X‖Y).

Let CF1,...,Fl : {0, 1}∗ → {0, 1}n be a function for random oracles F1, . . . ,Fl =
RFd,n. Then let SF = (S1, . . . , Sl) be a simulator Oracle Turing Machines with
access to a random oracle F : {0, 1}∗ → {0, 1}n and which exposes interfaces
for each random oracle utilized by C. The PRO-advantage of an adversary A
against C is

Advpro
C,S(A) = Pr[ACF1,...,Fl ,F1,...,Fl ⇒ 1] − Pr[AF ,SF ⇒ 1].

364 L. Duo and C. Li

The advantage of adversary using resources as that, the total number of left
queries qL (which are either to C or F), the number of right queries qi made to
each oracle Fi or simulator interface Si, the total number of queries qS to F and
the maximum running time tS .

Let F : {0, 1}n × {0, 1}κ → {0, 1}n be function family and F = RFn,n. For

each k
$← {0, 1}κ, F(·, k) is function mapping from {0, 1}n to {0, 1}n. The PRF-

Advantage of F is defined as
Advprf

F (A) = Pr
[
k

$← K; AF(·,k) ⇒ 1
]

− Pr
[AF ⇒ 1

]
.

3 An Example of Merkle-Damg̊ard Construction

This section gives an example that, a compression function has good distribution
bound, however, iterated by Merkle-Damg̊ard construction, the upper bound of
distribution is 1. Let function F1 : {0, 1}n × {0, 1}n → {0, 1}n be

F1(x, y) =
{

(x � 1) � Ek0(y), Ek0(y) = 0
(x ≪ 1) � Ek0(y), Ek0(y) �= 0 ,

where x � s: left shift of binary sequence x by s positions; x ≪ s: circular
left shift of binary sequence x by s positions; � : addition of positive integers,
reduced modulo 2n; Ek0 is a block cipher with key k0 and the k0 is secret to all
(The Ek0 is one way permutation.). Then to get y0 to satisfy y0 = E−1

k0
(0) takes

2n−1 computation. Let Ek0(y0) = 0.
The distribution of F1 is follows. Let Z = F1(X, Y), we have

PZ|Y =y(z) =

⎧
⎪⎪⎨

⎪⎪⎩

{
2
2n z is even
0 z is odd , y = y0

1
2n , y �= y0

,

PZ|X=x(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎨

⎩

2
2n , z = (x � 1)
0, z = (x � 1) ⊕ 1
1
2n , else

, (x � 1) �= (x ≪ 1)

1
2n , (x � 1) = (x ≪ 1)

.

The output of function F1 satisfies 1
2n -uniform distribution on condition of

X = x or Y = y, which means F1 has distribution bounds 0 ≤ PZ|X=x(z) ≤
2
2n and 0 ≤ PZ|Y =y(z) ≤ 2

2n . Let M
def
= Y1‖ . . . ‖Ys‖Ys+1‖ . . . ‖Ys+t, MA =

Y1‖ . . . ‖Ys, and MB = Ys+1‖ . . . ‖Ys+t. Iterating the function F1 by Merkle-
Damg̊ard transform denoted Z = H1(iv, M), we get distribution bounds

⎧
⎨

⎩

1
2n ≤ PZ|MA=mA

(z) ≤ 2
2n

0 ≤ PZ|MB=mB
(z) ≤ 1

PZ|MB=y0‖...‖y0(0) ≡ 1
, in which y0‖ . . . ‖y0

def
= y0‖ . . . ‖y0︸ ︷︷ ︸

n

.

Then ∀m, m′ ∈ {0, 1}κ·∗, H1(iv, m‖y0‖ . . . ‖y0) ≡ H1(iv, m′‖y0‖ . . . ‖y0) ≡ 0.

Extended Multi-Property-Preserving and ECM-Construction 365

Although the compression function F1 has good distribution bounds, which
does not guarantee H1 having a good distribution bounds. The reason is that
the distribution bound of Merkle-Damg̊ard construction is influenced by that
of compression function and the iterated times, proof of which is given in next
section. Finding y0 to satisfy Ek0(y0) = 0 takes 2n−1 encryption, however, we
should remember that, finding y0 will destroy the hash H1, it is far more serious
than finding collision on it.

4 Distribution of Merkle-Damg̊ard Construction

The distribution bound of Merkle-Damg̊ard Construction is presented in The-
orem 1. Since, the output distribution is derived from input distribution, to
analysis the output distribution, we have to select the input distribution. Taken
the distribution of Merkle-Damg̊ard construction into consideration, the input
set can be randomly selected, which is some of input message block can be fixed.
To make thing simple, we only consider the distributions of pre- or post- part
of message blocks are fixed. The reason is that, the case other message blocks
being fixed can be deduced from this two distributions.

We make following assumption. Let M
def
= MA‖MB. Let MA and MB be

uniformly distributed in {0, 1}κ·s and {0, 1}κ·t, respectively, with s > 0 and

t > 0. Then let MA
def
= Y1‖ . . . ‖Ys, and MB

def
= Ys+1‖ . . . ‖Ys+t.

Let compression function F signified as Z = F(X, Y) have distribution bounds
maxx,z∈{0,1}n PZ|X=x(z) = Δ1

2κ , maxz∈{0,1}n,y∈{0,1}κ PZ|Y =y(z) = Δ2
2n , where Δ1

and Δ2 be two constant values.

Theorem 1. Merkle-Damg̊ard Hash Z = Hm(iv, MA‖MB) satisfies,

PZ|MA=mA
(z) ≤ Δ1

2κ , PZ|MB=mB
(z) ≤ min{1, Δ1(Δ2)

t

2κ }.

Proof. Let MB
def
= M ′

B‖Ys+t and MA
def
= Y1‖M ′

A,

PZ|MA=mA
(z) =

∑
mB∈{0,1}κ·t

PMB (mB)χHm(iv,mA‖mB)(z)

=
∑

m′
B∈{0,1}κ·(t−1)

∑
ys+t∈{0,1}κ

PM ′
B
(m′

B)PYs+t(ys+t)χF(Hm(iv,mA‖m′
B),ys+t)(z)

≤ ∑
m′

B∈{0,1}κ·(t−1)

PM ′
B
(m′

B)Δ1
2κ = Δ1

2κ .

The proof of PZ|MB=mB
(z) ≤ min{1, Δ1(Δ2)t

2κ } is given by deduction of s and t.
And it is not influenced by the selection of iv, we assume it be any fixed value
v ∈ {0, 1}n. When t = 1, s = 1, for any v ∈ {0, 1}n

PZ|MB=mB
(z) =

∑
mA∈{0,1}κ

PMA(mA)χF(Hm(v,mA),mB)(z)

=
∑

u∈{0,1}n

χF(u,mB)(z)
∑

mA∈{0,1}κ

PMA(mA)χF(v,mA)(u) ≤ Δ1Δ2
2κ .

366 L. Duo and C. Li

It is clear that, when v = iv the inequality is also true. Suppose t = lt, s = ls
the inequality be true for any v ∈ {0, 1}, when s = ls + 1, t = lt, we have:

PZ|MB=mB
(z) =

∑
m′

A∈{0,1}κ·ls

∑
y1∈{0,1}κ

PM ′
A
(m′

A)PY1(y1)χHm(v,y1‖m′
AmB)(z)

=
∑

u∈{0,1}n

∑
y1∈{0,1}κ

PY1(y1)χF(v,y1)(u)
∑

m′
A∈{0,1}κ·ls

PM ′
A
(m′

A)χHm(u,m′
A‖mB)(z)

≤ Δ1(Δ2)lt

2κ

∑
y1∈{0,1}κ

PY1(y1)
∑

u∈{0,1}n

χF(v,y1)(u) = Δ1(Δ2)lt

2κ .

When s = ls and t = lt + 1, let MB
def
= M ′

B‖Ylt+1, we have,

PZ|MB=mB
(z) =

∑
mA∈{0,1}κ·ls

PMA(mA)χHm(v,mA‖mB)(z)

=
∑

mA∈{0,1}κ·ls

∑
u∈{0,1}n

PMA(mA)χHm(v,mA‖m′
B)(u)χF(u,ylt+1)(z)

≤ ∑
u∈{0,1}n

Δ1(Δ2)lt

2κ χF(u,ylt+1)(z) ≤ Δ1(Δ2)lt+1

2κ .

From induction principle we get the conclusions. ��
Note 1. The distribution of Z on conditioned with MB = mB is not only related
with distribution of compression function, but also related with the message
block length of mB. Surprisingly, in the worst case the probability PZ|MB=mB

(z)
may increases in exponential way when |mB|/κ increases.

Note 2. Although the complexity of finding mB, which makes the probability
PZ|MB=mB

(z) getting the maximum value, may pass the complexity of find-
ing collision on Hm. We have to remember that, if we find mB, which makes
PZ|MB=mB

(z0) close to 1, then we destroy the whole hash function, it is far more
serious than finding one collision on it.

Theorem 2. For function F, let F(2)(x, y‖y′)
def
= F(F(x, y), y′), if for any m ∈

{0, 1}κ·l, F(iv, Y1) is independent from
⊕l+1

i=2(F
(i)(iv, Y1‖m), then CheckSum

Hash Hs satisfies
PZ|MA=mA

(z) ≤ Δ1
2κ , PZ|MB=mB

(z) ≤ Δ1
2κ .

Proof. Let MB = M ′
B‖Ys+t and MA = Y1‖M ′

A.
PZ|MA=mA

(z) =
∑

mB∈{0,1}κ·t
PMB (mB)χHs(iv,mA‖mB)(z)

=
∑

mB∈{0,1}κ·t
PM ′

B
(m′

B)PYs+t(ys+t)χF(Hm(iv,mA‖m′
B),ys+t)(z ⊕ Hs(iv, mA‖m′

B))

≤ ∑
m′

B∈{0,1}κ·(t−1)

PM ′
B
(m′

B)Δ1
2κ = Δ1

2κ .

PZ|MB=mB
(z) =

∑
mA∈{0,1}κ·s

PMA(mA)χHs(iv,mA‖mB)(z)

=
∑

mA∈{0,1}κ·s
PMA(mA)χF(iv,y1)(z ⊕ Hs(iv, mA‖mB) ⊕ F(iv, y1))

=
∑

mA∈{0,1}κ·s
PMA(mA)χF(iv,y1)(z ⊕

s+t⊕
i=2

F(i)(iv, y1‖ . . . ‖yl) ⊕ iv) ≤ Δ1
2κ .

Extended Multi-Property-Preserving and ECM-Construction 367

5 New Construction and MPP

The CheckSum Hash satisfies AUD-pr. EMD-Hash is indifferentiability from ran-
dom oracle model with MD-strengthening padding, when compression function
is instanced by random oracle model. We recommend a new structure called
ECM-Hash (Enveloped Checksum Merkle-Damg̊ard Hash), which is combine of
the EMD-Hash and CheckSum Hash, to inherit cryptographic properties of EMD
and CheckSum Hash.

Definition 6 (ECM-Hash). The ECM-Hash Hecm : {0, 1}κ·∗+κ−n → {0, 1}n

is defined as
Hecm(iv, m̃) = F(Hs(iv, m),Hm(iv, m)‖ỹ),

where m = y1‖ . . . ‖yt, m̃ = m‖ỹ, F is compression function, Hs is CheckSum
Hash, Hm is Merkle-Damg̊ard Hash and iv �= 01 and message padding is MD-
strengthening padding.

...

z

1
y

2
y t

y

iv
1

x
1tx tx

...

y

The ECM-Hash is CR-pr, PRO-pr, PRF-pr and AUD-pr, the proofs are as fol-
lows, full version of proofs can be found in [8].

AUD Preserving. The AUD-pr of ECM relies on AUD-pr of CheckSum Hash.
Let M̃ = M‖Ỹ .

Theorem 3. The check sum Hash Hs satisfies Theorem 2. Then the ECM-hash
satisfies,

PZ|MA=mA
(z) ≤ Δ1Δ2

2κ , PZ|MB‖Ỹ =mB‖ỹ (z) ≤ Δ1Δ2
2κ .

Proof. We have,
PZ|MA=mA

(z)
=

∑
mB‖ỹ∈{0,1}κ·t+κ−n

PMB‖Ỹ (mB‖ỹ)χF(Hs(iv,mA‖mB),Hm(iv,mA‖mB)‖ỹ)(z)

=
∑

mB‖ỹ

PMB‖Ỹ (mB‖ỹ)
∑

u∈{0,1}n

χHs(iv,mA‖mB)(u)χF(u,Hm(iv,mA‖mB)‖ỹ)(z)

≤ Δ2 max
u∈{0,1}n

∑
mB∈{0,1}κ·t

PMB (mB)χHs(iv,mA‖mB)(u) ≤ Δ1Δ2
2κ .

PZ|MB‖Ỹ =mB‖ỹ(z) =
∑

mA∈{0,1}κ·s
PMA(mA)χF(Hs(iv,m),Hm(iv,mA‖mB)‖ỹ)(z)

=
∑

mA∈{0,1}κ·s
PMA(mA)

∑
u∈{0,1}n

χHs(iv,mA‖mB)(u)χF(u,Hm(iv,mA‖mB)‖ỹ)(z)

≤ Δ2 max
u∈{0,1}n

∑
mA∈{0,1}κ·s

PMA(mA)χHs(iv,mA‖mB)(u) ≤ Δ1Δ2
2κ . ��

The proof of Theorem 3 indicates that, AUD-pr is inherited from CheckSum
Hash.
1 iv �= 0 is required in indifferentiability.

368 L. Duo and C. Li

CR Preserving. Let compression function F be a collision resistant compres-
sion function. Then any adversary which finds collisions against ECM-Hash (two
messages m̃ �= m̃′ for which Hecm(iv, m̃) = Hecm(iv, m̃′)) will necessarily find
collisions against F. This can be proven using a slightly modified version of the
proof that Merkle-Damg̊ard construction with MD-strengthening is collision-
resistant [12,7].

PRO Preserving. Now we show that ECM is PRO-pr. Bellare and Ristenpart
[3] gave very nice presentation on PRO-pr of EMD. Our resulting scheme is
similar to EMD, so we inherits some idea of EMD proofs. However, our transform
has a liner checksum sequence, which is fixed value iv2 in EMD, we can not utilize
the proof of EMD in our proof.

Theorem 4 (ECM-Hash is PRO-pr). Fix n, κ, and let iv ∈ {0, 1}n, where
iv �= 0. Let F = RFκ+n,n be a random oracle. Let A be an adversary that asks
at most qL left queries with maximal length (l − 1) · κ + (κ − n) bits for l ≥ 2,
qR right queries, and runs in time T . Then

Advpro
Hecm,SA(A) ≤ (lqL+qR)2

2n + 2lqLqR+2lqL+2qR

2n .

where the simulator SA makes qSA ≤ qR queries and runs in time O(q2
R).

Proof. We utilize a game-playing argument. The simulator SA is to mimic F in
a way that convinces any adversary that F is actually Hecm. The simulator SA
is defined as follows.

On query SA(x, y):

z
$← {0, 1}n, Parse y into u‖w s.t. |u| = n, |w| = n − κ

if y1 . . . yi ← GETPATHR(x) then
if y1 . . . yi ← GETPATHL(u) then ret F(y1 . . . yiy)
else ret z

if x = iv then NEWNODE(y) ← (z, z ⊕ iv)
if y1 . . . yi ← GETPATHL(x) then

z′ ← GETNODER(y1 . . . yi), NEWNODE(y1 . . . yiy) ← (z, z′ ⊕ z)
ret z

The simulator SA exposes interface that accept (n+κ)-bit inputs and reply with
n bit outputs. The functions GETPATHL, GETPATHR, EWNODE and GETNODER are
used to access and modify a tree structure, initially with only a root node labeled
with (iv, iv), in which iv is n-bit. The notation GETPATHL(z), GETPATHR(z′) for
z, z′ ∈ {0, 1}n returns the sequence of edge labels on a path from the root to a
node with left n-bit labeled by z, and right n-bit labeled by z′, respectively (if
there are duplicate such nodes, return a fitted one, if there are none then return
false). The notion GETNODER(y1 . . . yi) returns the right n-bit of node, which
is following the path starting from the root and following the edges labeled by
y1 . . . yi. The notation NEWNODE(y1 . . . yiy) ← (x,GETNODER(y1 . . . yi) ⊕ x) for
y ∈ {0, 1}κ, x ∈ {0, 1}n and yi ∈ {ε} ∪ {0, 1}κ means (1) locate the node found
by following the path starting from the root and following the edges labeled by

Extended Multi-Property-Preserving and ECM-Construction 369

y1, y2, . . . , yi, and (2) add an edge labeled by y from this found node to a new
node left part labeled by x and right n-bit are labeled by GETNODER(y1 . . . yi)⊕x.

Let A be an adversary attempting to differentiate between Hems,F and
F , SAF . We replaces the oracles by games that simulate them, in which games
show in Fig. 1 to perform the reduction. The Game G0 is simulates exactly the
pairs of oracles Hecm and F.

The G1, which does not include the underline statements, is a correct simu-
lation of F , SAF . The G0 and G1 are identical until bad returns.

We replace our tracking of F by two multisets BL and BR and defer the setting
of bad until the finalization step, which is G2. We initially have BL = {iv} and
BR = ∅. It is clear that Pr[AG1 sets bad] ≤ Pr[AG2 sets bad].

The bad being set in query in G2 equals collision occurs in BL or BR, which
is collision occurs in left query at line 107, line 108, 114 and 115, and in right
query at line 205,208 and 209. In i-th left and right queries, we have

Pr[Bad107] ≤
l−2∑
t=0

((l+1)(i−1)+t+1+2qR)

2n , P r[Bad205] ≤ (l−1)qL

2n ,

P r[Bad108] ≤
l−2∑
t=0

((l−1)(i−1)+t)

2n , P r[Bad208] = 0,

P r[Bad114∨115] ≤ (l+1)(i−1)+(l−1)+1+2qR

2n , P r[Bad209] ≤ (l+1)qL+2i+1
2n .

Then, we get the conclusion

Advpro
Hecm

F ,SA(A) ≤ Pr[AG0 ⇒ 1] − Pr[AF ,SAF ⇒ 1] = Pr[AG1 set bad]

≤ Pr[AG2 set bad] ≤
qL∑
i=1

(Pr[Bad107∪108∪114∪115]) +
qR∑
i=1

(Pr[Bad205∪208∪209])

≤ (lqL+qR)2

2n + 2qLqR+2qL+2qR

2n . ��

PRF Preserving. PRF preserving is that, if an appropriately keyed version of
the compression function is a PRF then the appropriately keyed version of the
hash function must be a PRF too. Our resulting scheme is very similar to NMAC,
which we know to be PRF-Pr [1]. Our transform has a liner checksum sequence,
which is key value K2 in NMAC, we can not directly utilize the proof of NMAC.
The majority of the proof of NMAC is captured by following two conclusions [1],
the first shows that keyed Merkle-Damg̊ard iteration is computationally almost
universal(cAU), the second shows that, composition of a PRF and a cAU function
is a PRF. In our schemes we just need to prove that, the composition of a
checksum and Merkle-Damg̊ard construction is a PRF. We omit the detail.

Theorem 5. Fix n, κ and let F : {0, 1}n × {0, 1}κ → {0, 1}n be a function
family keyed via the low n bits of its input. Let A be a prf-adversary against
keyed ECM-Hash using q queries of length at most l blocks and running in time
T . Then there exists prf-adversaries A1 and A2 against F such that

Advprf

FHsH̃m
(A) ≤ Advprf

F (A1) +
(

q
2

) [
2lAdvprf

F (A2) + 1
2n

]
.

370 L. Duo and C. Li

Game G0,Game G1 Response to the t-th query

A left query L(mt): A right query RF(xt, yt):

000 yt
1 . . . yt

k−1eyt
k

d← mt; 200 zt $← {0, 1}n

001 retLSub(t, yt
1 . . . yt

k−1eyt
k) 201 Parse yt into ut‖wt s.t.

|wt| = κ − n, |ut| = n
SUBROUTINE LSub(t, yt

1 . . . yt
k−1eyt

k) 202 if y1 . . . yi ← GETPATHR(xt) then
100 Let s be min value s.t 203 if GETPATHR(xt) ← GETPATHL(ut) then

ys
1 . . . ys

k−1eys
k = ys

1 . . . yt
k−1eyt

k 204 ret LSub(t, y1 . . . yiy
t)

101 if s < t then ret xs
k 205 if (xt, yt) ∈ Dom(F) then

102 xt
0 ← iv, x′t

0 ← iv 206 bad← true
103 for 1 ≤ i ≤ k − 1 207 zt ← F(xt, yt)

104 xt
i

$← {0, 1}n 208 if (xt, yt) ∈ Dom(F) then
105 if (xt

i−1, y
t
i) ∈ Dom(F) then 209 zt ← F(xt, yt)

106 xt
i ← F(xt

i−1, y
t
i) 210 if xt = iv then

107 F(xt
i−1, y

t
i) ← xt

i 211 NEWNODE(y) ← (zt, zt ⊕ iv)
108 x′t

i ← x′t
i−1 ⊕ F(xt

i−1, y
t
i) 212 if yt

1 . . . yt
i ← GETPATHL(xt) then

109 xt
k

$← {0, 1}n 213 z′t ← GETNODER(GETPATHL(xt))
110 if (x′t

k−1, x
t
k−1‖eyt

k) ∈ Dom(F) then 214 NEWNODE(yt
1 . . . yt

iy
t) ← (zt, z′t ⊕ zt)

111 bad← true 215 F(xt, yt) ← zt

112 xt
k ← F(x′t

i , xt
i‖eyt

k) 216 ret zt

113 F(x′t
k−1, x

t
k−1‖eyt

k) ← xt
k

114 ret xt
k

Game G2, Response to the t-th query

A left query L(mt): A right query RF(xt, yt):

000 yt
1 . . . yt

k−1eyt
k

d← mt; 200 zt $← {0, 1}n

001 retLSub(t, yt
1 . . . yt

k−1eyt
k) 201 Parse yt into ut‖wt s.t.

|wt| = κ − n, |ut| = n
SUBROUTINE LSub(t, , yt

1 . . . yt
k−1eyt

k) 202 if xt ∈ BR then
100 Let s be min value s.t 203 if GETPATHR(xt) ← GETPATHL(ut) then

ys
1 . . . ys

k−1eys
k = ys

1 . . . yt
k−1eyt

k 204 ret LSub(t, y1 . . . yiy
t)

101 if s < t then ret xs
k 205 BL

∪← xt

102 xt
0 ← iv, x′t

0 ← iv 206 if (xt, yt) ∈ Dom(F) then
103 for 1 ≤ i ≤ k − 1 207 zt ← F(xt, yt)

104 xt
i

$← {0, 1}n 208 else BL
∪← xt

105 if (xt
i−1, y

t
i) ∈ Dom(F) then 209 BL

∪← zt

106 xt
i ← F(xt

i−1, y
t
i) 210 if x = iv then

107 else BL
∪← xt

i 211 NEWNODE(y) ← (z, z ⊕ iv)

118 BR
∪← x′t

i−1 ⊕ xt
i 212 if yt

1 . . . yt
i ← GETPATHL(xt) then

109 F(xt
i−1, y

t
i) ← xt

i 213 z′t ← GETNODER(GETPATHL(xt))
110 x′t

i ← x′t
i−1 ⊕ F(xt

i−1, y
t
i) 214 NEWNODE(yt

1 . . . yt
iy

t) ← (zt, z′t ⊕ zt)

111 xt
k

$← {0, 1}n 215 ret zt

112 if (x′t
k−1, x

t
k−1‖eyt

k) ∈ Dom(F) then
113 xt

k ← F(x′t
i , xt

i‖eyt
k)

114 BL
∪← x′t

k−1 Finalization:

115 else BL
∪← xt

k, 300 bad ← ∃x, x′ ∈ BLs.t.x = x′

116 BL
∪← x′t

k−1 301 bad ← ∃x, x′ ∈ BRs.t.x = x′

117 F(x′t
k−1, x

t
k−1‖eyt

k) ← xt
k

118 ret xt
k

Fig. 1. Games utilized in the proof of Theorem 4. Initially, BL = {iv}, BR = ∅.

Extended Multi-Property-Preserving and ECM-Construction 371

where A1 utilizes q queries and runs in time at most T and A2 utilizes at most
two oracle queries and runs in time O(lTF) where TF is the time for one com-
putation of F.

6 Generalized Enveloped MPP Transformation

The paper presented ECM transformation to satisfy MPP, in which the liner
CheckSum selected as envelped hash is the easiest way of attending AUD-pr.

A generalized Enveloped MPP transformation Hg : {0, 1}κ·∗+κ−n → {0, 1}n

can be defined as HG(iv, m̃) = F(G(iv, m),Hm(iv, m)‖ỹ),

...

z

1
y

2
y t

y

iv
1

x
1tx tx

y

)G(iv,m

in which m = y1‖ . . . ‖yt, m̃ = m‖ỹ, F is compression function, Hm is Merkle-
Damg̊ard Hash and G : {0, 1}κ·∗ → {0, 1}n is AUD-pr transformation.

Acknowledgments

The authors are supported in part by NSFC 60573028 and by NUDT FBR
JC07-02-02. The first author would like to thank Dr. Wu Wenling for sugges-
tion on formal definition of almost uniform distribution on reviewing the PhD
thesis [8].

References

1. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keyed Hash Functions for Message Authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

3. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

4. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

5. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions—HAIFA,
http://www.csrc.nist.gov/pki/HashWorkshop/2006/Papers/

6. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgard revisited: How
to construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

7. Damg̊a, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

http://www.csrc.nist.gov/pki/HashWorkshop/2006/Papers/

372 L. Duo and C. Li

8. Duo, L.: Analysis of block cipher to design of Hash function, PhD thesis, National
University of Defence Technology (2007)

9. Gauravaram, P., Millan, W., Neito, J.G., Dawson, E.: Constructing Secure Hash
Functions by Enhancing Merkle-Damg̊ard Construction. In: Batten, L.M., Safavi-
Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Heidelberg
(2006)

10. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

11. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

13. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

Design of a Differential Power Analysis

Resistant Masked AES S-Box

Kundan Kumar1, Debdeep Mukhopadhyay2, and Dipanwita RoyChowdhury3

1 MTech Student, Department of Computer Science and Engg., Indian Institute of
Technology, Kharagpur, India

kundankr@gmail.com
2 Assistant Professor, Department of Computer Science and Engg., Indian Institute

of Technology, Madras, India
debdeep@cse.iitm.ernet.in

3 Professor, Department of Computer Science and Engg., Indian Institute of
Technology, Kharagpur, India
drc@cse.iitkgp.ernet.in

Abstract. Gate level masking is one of the most popular countermea-
sures against Differential Power Attack (DPA). The present paper pro-
poses a masking technique for AND gates, which are then used to build
a balanced and masked multiplier in GF (2n). The circuits are shown
to be computationally secure and have no glitches which are dependent
on unmasked data. Finally, the masked multiplier in GF (24) is used to
implement a masked AES S-Box in GF (24)2. Power measurements are
taken to support the claim of random power consumption.

1 Introduction

Rijndael-AES (Advanced Encryption Standard) has become the worldwide
choice in the field of symmetric key cryptography since October 2001. Since
then lots of research work have been carried out on the design and implementa-
tions of the AES block cipher. With the imposing threat of side-channel attacks,
which exploit weakness in the implementation, design of all cryptographic algo-
rithms required a revisit. Hence for AES, various design architectures have been
reported [1,2,3] to make it more and more secured against various side chan-
nel attacks. The side channel attacks based on the power consumption of the
crypto-device are the hardest to tackle. This attack was first introduced by Paul
Kocher et. al. in [4] and subsequently extended by many researchers[5,6,7,8,9].

In [10] the first practical power analysis of AES hardware implementation
was proposed. Several research works have been carried out to develop design
alternatives to overcome power based side-channel leakages from the AES im-
plementations. One way of tackling the problem is the use of masked gates in
AES implementations to prevent side-channel leakage. Several patents exist on
the gate level masking strategies [11,12]. Various techniques for random masking
in hardware has been presented in [13]. Although as is shown in [14], masked
cryptographic circuits may cause leakage against ”higher order DPAs”, masking

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 373–383, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

374 K. Kumar, D. Mukhopadhyay, and D. RoyChowdhury

is still one of the most popular safeguards. Also as proved in [15], using distinct
mask values one can protect against higher order DPAs. However, in case of
practical CMOS circuits it is natural that the output of internal gates switch
more than once before stabilizing depending on the path delay inside the circuit
[16]. The results on DPA attacks of masked gates, reported in [17] demonstrate
that all proposed masked gates are vulnerable to power based side-channel leak-
age in the presence of glitches. The work in [18] discusses three different attacks,
zero-offset DPA, toggle count DPA and zero input DPA on masked AES hard-
ware implementations. Thus glitches in masked circuits pose a serious threat
to masking implementations against power attack. The analysis pinpoints that
the switching characteristics of XOR gates in a multiplier are responsible for the
power based side channel leakage when there are glitches inside the circuit. Thus,
the above observations lead to the following objectives for a secured hardware
implementation with respect to power based attacks: The gates of the circuit to
be protected against power based analysis should solely consume power which is
independent of the unmasked value and the gates should be arranged in a regular
and balanced architecture to minimize the glitches which are dependent on the
unmasked data. The authors in [17] show that XOR gates in the masked GF (2n)
multiplier of the S-box are the main sources of side-channel leakage. The multi-
plier architecture commonly used for masked S-box implementations ([1,2,3]) are
analyzed in [18]. In these lines, the present paper proposes a balanced masked
AND gate, which avoids any glitches dependent on unmasked data. The pa-
per also shows a balanced and regular architecture for a masked multiplier in
GF (2n). Using the two building blocks the work then develops a masked AES
S-Box, when the S-Box is implemented in tower field GF (24)2. The design has
been prototyped on a Xilinx XCV FPGA platform and the power curves have
been analyzed to evaluate that the power consumption of the masked circuits
are not correlated with the unmasked inputs.

The outline of the paper is as follows: The design of the proposed masked AND
Gate is described in section 2. The architecture of a secured masked multiplier
in GF (2n) has been proposed in section 3. Section 4 presents the experimen-
tal results of FPGA implementations of a GF (24) multiplier and the resultant
masked AES S-Box. The work is concluded in section 5.

2 Design of Glitch Free Masked AND Gate

In this section, we discuss a masking technique for a basic 2 input AND gate.
The two inputs to the AND Gate are x and y. The output is denoted by z = xy.
A straight-forward implementation of the AND gate is prone to power based
side channel attacks, as the power consumption of the gate is proportional to
the inputs, x and y. The masking technique uses two random bits or masks,
denoted by rx and ry. The masked values are derived from the unmasked val-
ues, x and y using the relation, x′ = x ⊕ rx and y′ = y ⊕ ry. The assump-
tion is that the random bits are uniformly distributed and mutually statistically

Design of a Differential Power Analysis Resistant Masked AES S-Box 375

+

+

+

+

rz

rx ry rx ry

+z’=(xy) r

AND AND AND AND

x’ y’ x’y’

z

Fig. 1. Unbalanced architecture of a masked multiplier

independent. The masked AND gate is hence obtained by the following equation:
z′ = rz ⊕z = rz ⊕xy = rz ⊕(x′⊕rx)(y′⊕ry) = (((rz ⊕rxry)⊕ryx′)⊕rxy′)⊕x′y′.

The solution is depicted in Fig 1. The computations are secure on the logic
gate level if rx, ry and rz are uniformly distributed and are mutually statistically
independent. This may be concluded from the fact that, for each fixed value of
(x, y), the two inputs to each AND gate are uniformly distributed and mutually
statistically independent. Due to rz , one of the inputs to the XOR gate is uni-
formly distributed and statistically independent of the other input. As the other
input is also statistically independent of (x, y), the computations remain secure
on the logic gate level[13].

However, in [20,17] it was shown that there is another strong assumption
behind the above analysis, that the CMOS gates switch once in a clock cycle.
That is there are no internal glitches in the circuit, the occurence of which are
dependent on the unmasked data, x and y. Because of the unbalanced nature
of Fig 1, there can be glitches in the circuit, which shall lead to transitions and
hence power consumptions which are correlated to x and y. It was pin-pointed
in [17], that the XOR gates were responsible of performing different transitions
depending on the glitches. Hence, observing the above facts we augment our
security conditions against DPA to the following:
C1: If all the inputs to a logic gate are statistically independent of the original
data, then the outputs of any set of logic gates in the circuit are also jointly
statistically independent of the original data.
C2: The glitches occurring in the circuit should not be dependent on the unmasked
values.

The condition for a secured computation of a logic circuit would be hence
C1 ∧ C2.

Thus, we propose the following circuit which satisfies both the conditions C1
and C2, and thus performs secured computation. The circuit depicted in Fig 2
is based on the following decomposition:

z′ = ((x′ry) ⊕ rs) ⊕ ((y′rx) ⊕ rt)
rz = ((x′y′) ⊕ rs) ⊕ ((rxry) ⊕ rt)

376 K. Kumar, D. Mukhopadhyay, and D. RoyChowdhury

+ +

+ +

++

rt
rx rx

ry
ry rsrtrs

z’ rz

x’ y’y’x’

Fig. 2. Data dependent glitch free masked AND gate

In the proposed implementation, rx, ry , rs and rt are the random bits used.
They are assumed to be uniformly distributed and statistically independent.
It may be observed, that the decomposition has been made in a fashion such
that the signals inside a circuit are mutually statistically independent and also
uncorrelated to the unmasked data. Thus in the computation of z′, the signal
values, x′ry and y′rx are mutually statistically independent. This may be ob-
served from the fact that given the value of any one of them does not give any
information about the other value, better than a random guess. Also, the values
are uncorrelated to the unmasked values. Thus even if some signals reach some
nodes before others, no correlation can be made with the unmasked data. Also
the balanced nature of the circuit ensures no glitches, if the input signals ar-
rive at the same time. Thus it may be safely concluded that the circuit satisfies
both conditions C1 and C2. It satisfies C1 because, the inputs to the AND gates
are statistically independent of each other and also uniformly distributed. Thus
the computations of the AND gates are secured. The random bits, rs and rt

ensure that the inputs to the XOR gates are not only statistically independent
but also randomly distributed. Also, because of the balanced nature of the cir-
cuit there are no glitches in the circuit which are dependent on the unmasked
data. Thus, condition C2 is also satisfied. The extra cost for the implementa-
tion is an extra random bit. The outputs, z′ and rz appear at the same time.
In future computations, z′ shall be used, along-with its corresponding mask
value rz .

The proposed architecture may be compared with the previous architecture
depicted in Fig 1. The proposed architecture has a critical delay proportional
to 1 AND gate and 2 XOR gates, compared to the previous circuit which has a
delay of 1 AND gate and 4 XOR gates. Using the fact that the delay of 1 XOR
gate is equal to 1.5 AND gates, the delay of the proposed architecture is about
half than the previous architecture. The number of gates required is 4 AND
gates and 6 XOR gates, compared to 4 AND gates and 4 XOR gates required in
the previous architecture.

Design of a Differential Power Analysis Resistant Masked AES S-Box 377

3 Data Dependent Glitch Free Masked GF (2n) Multiplier

In this section, we present a regular structure of a finite field multiplier operating
in GF (2n). First we present the architecture of the multiplier. Next we present
the technique used to mask the multiplier.

3.1 A Regular GF (2n) Multiplier Architecture

The inputs to the multiplier are denoted by the polynomials, a(x) and b(x), both
elements of GF (2n). The primitive polynomial of the field is denoted by p(x).

The multiplier has two blocks:

1. Generate Companion Matrix: This block generates an n2 square matrix in
GF (2). The matrix is denoted by Ta,p.

2. AND-XOR plane: The AND-XOR plane is a regular switch, which gets con-
figured by the Generate Companion Matrix block.

We first present the following theorem to explain the working of the algorithm.
The proof is omitted for the lack of space.

Theorem 1. The product of two polynomials a(x) and b(x) (both belongs to
GF (2n)) modulo a polynomial p(x) (primitive polynomial in GF (2n)) is rep-
resented by the equation c(x) = [a(x) ∗ b(x)]mod(p(x)). The equation can be
simulated in two stages: First, a(x), p(x) generate the matrix, Ta,p. The output
c(x) is then equal to c(x) = Ta,pb(x), where the transition matrix is denoted by

Ta,p =

⎡

⎢⎢⎢⎢⎣

| | . . . |
| | . . . |

a(x) xa(x)modp(x) . . . xn−1a(x)modp(x)
| | . . . |
| | . . . |

⎤

⎥⎥⎥⎥⎦

The above theorem leads to the following algorithm, Generate Companion
Matrix, for the multiplier.

Algorithm 1. Input: Multiplicand: a(x), Multiplier: b(x), Modulo polynomial:
p(x). The above elements belong to GF (2n).

Output: The product c(x) = a(x) ∗ b(x)modp(x)
The Companion Matrix, Ta,p.
Step1: Express a(x) in binary notation.
col[0]=binary representation of a(x)
/* The array col[.] is an eight bit array*/
Step2: for(i = 0; i < n; i + +)
{
{overflow, col[i]}=col[i-1]<<1;
if(overflow==1)
col[i]=col[i]⊕prim;
/*prim is the binary representation of p(x)* /

378 K. Kumar, D. Mukhopadhyay, and D. RoyChowdhury

/*⊕ represents bitwise XOR* /
}
Step3: The Transition Matrix Ta,p=[col[0], col[1], . . . , col[n-1]]
Step 4: c(x) = Ta,pb(x)

Next we describe the technique used to mask the above computation, so that
the computations are secure with respect to power based analysis. The multiplier
desires to compute, c(x) = a(x)b(x)modp(x), where a(x), b(x), c(x) ∈ GF (2n).
The polynomial p(x) is a primitive poynomial of GF (2n). However, due to mask-
ing the multiplier masks the values of a(x) and b(x) with ra(x) and rb(x) re-
spectively. Both the masking values belong to GF (2n) and are statistically inde-
pendent and uniformly distributed. The masked values are a′(x) = a(x) ⊕ ra(x)
and b′(x) = b(x) ⊕ rb(x).

3.2 The Masked Implementation of the Generate Companion
Matrix

It may be followed from the above description, that the Generate Companion
Matrix step is a linear step. Thus, the corresponding masking can be done by
processing the masked data and the masking value in separate circuits.

The Generate Companion matrix hence operates as two separate circuits. One
of them operates on the mask value, ra(x) ∈ GF (2n) and the other operates on
the masked value a′(x) = a(x) ⊕ ra(x). Fig 3 depicts the block for GF (24). We
have used the fact, that the value of p(x) = x4+x+1. The block loads the vector
col[0] with the input polynomial and generates the vectors, col[1-3] through the
circuit. For masking, the block has 2 copies, one operating on the value, a′(x)
and the other on ra(x). It is straight forward to see that both the circuits are
thus uncorrelated to the unmasked value, a(x). The blocks generate two square
matrices, T ′

a,p and rT , both of order n2. It is evident because of the linearity of
the blocks, Ta,p = T ′

a,p + rT , where the operation + is an element by element
modulo 2 addition. The number of gates required for the Generate Companion
Matrix block for GF (24) is 12 number of 2 input XOR gates, as to generate each
of the two matrices number of 2 input XOR gates is 6 (refer Fig 3). The critical
delay is that of 3 XOR gates. After the completion of the operation, a control
signal is raised high to commence the operation of the AND-XOR plane.

+

+

0

+

+

0

+

+

0col[0] col[1] col[2] col[3]

Fig. 3. The Generate Companion Matrix Block for GF (24)

Design of a Differential Power Analysis Resistant Masked AES S-Box 379

3.3 The Masked Implementation of the AND-XOR Plane

Masking of the AND-XOR plane is depicted in Fig 4. As described previously,
the AND-XOR plane is an n2 ×n2 array, which gets programmed by the value of
the Generate Companion Matrix block. The AND-XOR plane operates when the
control signal goes high. The functionality of the plane is to compute the value
of c(x) = Ta,pb(x). To prevent power based side channel attacks, the plane uses
the masked values, b′(x) and the elements of the matrix T ′

a,p. The corresponding
masking values are rb(x) and the elements of the matrix rT .

The plane has n2 masked AND gates, which are masked as described previ-
ously. The masked AND gate at the location i, j, where 0 ≤ i, j < n, takes as
inputs, T ′

a,p[i][j] and rT [i][j]. The other inputs are b′[j] and rb[j]. Also as previ-
ously discussed, for the masked AND gates two random bits rt and rs are used.
Each masked AND gate produces two outputs, z′[i][j] and rz[i][j].

The output of the multiplier has two components: the masked product c′(x)
and the corresponding mask rc(x).

The output equations for the ith (0 ≤ i < n) bit slice are stated below. c′[i] =⊕n−1
j=0 (z′[i][j]); rc[i] =

⊕n−1
j=0 (rz [i][j]) ⇒ c′[i] ⊕ rc[i] =

⊕n−1
j=0 (z′[i][j] ⊕ rz [i][j]) =

⊕n−1
j=0 ((T ′

a,p[i][j] ⊕ rT [i][j])b[j]) =
⊕n−1

j=0 (Ta,p[i][j]b[j]) = c[i](using, Ta,p

= T ′
a,p + rT).

Thus the masked product c′(x) and rc(x) may be xored to obtain c(x), which
is the product required from Theorem 1. Also, the computations performed by
the masked AND gate are secure by our arguments in the previous section. The
inputs to all the gates in the masked multiplier are thus mutually statistically
independent, uniformly distributed and uncorrelated to the unmasked values.

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

r
T
(0,1)

r
T
(1,1)

r
T
(3,1)

r
T
(2,1)

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

r
T
(0,2)

r
T
(1,2)

r
T
(3,2)

r
T
(2,2)

r
T
(0,3)

r
T
(1,3)

r
T
(3,3)

r
T
(2,3)

Masked
 AND

Masked
 AND

Masked
 AND

Masked
 AND

r
T
(0,0)

r
T
(1,0)

r
T
(3,0)

r
T
(2,0)

rb(x)[0] rb(x)[1] rb(x)[2] rb(x)[3]

r
z
(1,0)

r
z
(2,0)

r
z
(3,0) r

z
(3,1)

r
z
(2,1)

r
z
(0,1) r

z
(0,2)

r
z
(1,2)

r
z
(2,2)

r
z
(3,2) r

z
(3,3)

r
z
(1,1)

r
z
(2,3)

r
z
(0,3)

r
z
(1,3)

+

+

+

+

r
z
(0,0)

r
z
(0,2)

r
z
(0,1)

r
z
(0,0)

r
z
(0,3)

+
r
z
(1,1)

r
z
(1,0)

r
z
(1,2)

r
z
(1,3)

r
z
(2,0)

r
z
(3,0)

+
r
z
(3,1)

r
z
(3,2)

r
z
(3,3)

r
z
(2,3)

r
z
(2,1)

r
z
(2,2)

r [0]c

r [1]c

r [2]c

r [3c

+

+

−

T’(0,1)

r r

r

s t

s t

b’(x)[1]

T’(1,1)

T’(2,1)

T’(3,1)

r r

r r

r

s t

s t

r r

r

s t

s t

T’(0,3)

r r

r

s t

s t

b’(x)[2]

T’(1,2)

T’(2,2)

T’(3,2)

r r

r r

r

s t

s t

b’(x)[3]

T’(1,3)

T’(2,3)

T’(3,3)

r r

r r

r

s t

s t

T’(0,0)

r r

r

s t

s t

b’(x)[0]

T’(1,0)

T’(2,0)

T’(3,0)

r r

r r

r

s t

s t

T’(0,2)

z’[0,0]

z’[2,0]

z’[0,1]

z’[1,1]

z’[2,1]

z’[3,1] z’[3,2]

z’[1,2]

z’[0,2] z’[0,3]

z’[1,3]

z’[3,3]

z’[1,0]

z’[3,0]

z’[2,2] z’[2,3]

z’[0,0]
z’[0,1]
z’[0,2]
z’[0,3]

z’[1,0]
z’[1,1]

z’[1,3]
z’[1,2]

z’[2,0]
z’[2,1]
z’[2,2]
z’[2,3]

z’[3,0]
z’[3,1]
z’[3,2]
z’[3,3]

c’[0]

c’[1]

c’[2]

c’[3]

Fig. 4. The AND XOR Plane for GF (24)

380 K. Kumar, D. Mukhopadhyay, and D. RoyChowdhury

Also, the regular nature of the circuit ensures that there are no unmasked data
dependent glitches in the circuit. The linear layer operates separately upon the
masked values and the masking values and thus the computations performed
are always uncorrelated to the unmasked values. Thus we conclude that the
computations in the masked multiplier are not correlated to the unmasked values.
Hence, the masked multiplier is secure against power based attacks.

We have implemented the masked multiplier in the field GF (24). The total
number of gates involved is 116 AND gates and 222 XOR gates. The critical delay
is that due to 1 AND and 6 XOR gates. The multiplier is used to implement the
AES S-Box in GF (24)2. We present the results in the next section to demonstrate
that the computations in the proposed masked multiplier and the consequent
AES S-Boxes are not correlated with the unmasked data and thus prevent DPA
attacks.

4 Experimental Set-Up and Results

The scheme described above was coded in verilog and then downloaded onto a
modified Spartan-III FPGA kit. The connection between the Vdd of Spartan-III
XC3S400 FPGA kit and the Vdd pin of the FPGA is cut and a resistor of 0.1 ohm
is inserted in between them. The Tektronix TCPA300 Amplifier AC/DC current
probe is used to measure the current through the register, which is assumed
to be proportional to the power consumption of the circuit. The value of this

Fig. 5. Mean of peak power consumption vs number of readings for a masked multiplier

Design of a Differential Power Analysis Resistant Masked AES S-Box 381

Table 1. Comparision of a Masked AND Gate

Conventional Masked AND gate Proposed Masked AND gate

#AND Gates 4 4
#XOR Gates 4 6

#Delay 1 AND Gate + 4 XOR Gate 1 AND Gate + 2 XOR Gate
#Random Bits 3 4

current is passed to a Tektronix TDS50328 Digital Phospor storage oscilloscope
for computing the peak values of the current. The input to the circuit is changed
at the rate of 1 MHz. Thus the average of the peak power consumed by the device
were observed and also plotted.

If a masking scheme is secure, the power consumption of the device for all
inputs should be randomized. In other words the expected values for peak power
consumption should be equal and not correlated to the input transitions. Fig 4
plot the mean of peak power consumptions for a masked multiplier in GF (24).
The traces are plotted in the following manner: For a value i in the x-axis, the
corresponding value in the y-axis is the mean of first i readings. The darker line
in each of the plots represent the transition from 0× 0 to F ×F , while the other
line denotes the power consumption from 0 × 0 to 0 × 1. The plots show that
the scheme was able to randomize the power consumption. Fig 4 plots the same

Fig. 6. Mean of peak power consumption vs number of readings for a masked AES
S-Box

382 K. Kumar, D. Mukhopadhyay, and D. RoyChowdhury

thing for a masked AES S-Box. The plots show that the masking scheme was
indeed able to make the power consumption of AES S-Box randomized.

But the benefit in security comes at the cost of hardware cost and number
of random bits required. Table 1 compares the hardware cost, in terms of the
AND and XOR gates required to realize a masked AND gate using the proposed
technique as compared to a conventional method [3,19]. The table also compares
the critical delay of the masked AND gates and the number of random bits
required.

Table 2 tabulates the hardware cost, in terms of XOR gates and AND gates
for a GF (24) multiplier and also the AES S-Box. We also mention the maximum
number of random bits, assuming that all the random bits are independent. We
compare the results to a conventional masking technique for the components.

Table 2. Comparision of the Masked Circuits

UnMasked Conventional Proposed
Circuit Masking[3,19] Masking

GF (24) AES S-Box GF (24) AES S-Box GF (24) AES S-Box
Multiplier Multiplier Multiplier

#AND 16 78 64 312 116 736
Gates

#XOR 15 162 124 336 222 1124
Gates

#Random – – 16 78 32 142
bits

5 Conclusion

In this paper we have proposed a masking technique for AND gates and a multi-
plier in GF (2n). The schemes proposed are shown to be computationally secured.
The balanced and regular architectures remove glitches in the circuit which are
dependent on unmasked data. The masking techniques are used to mask the
AES S-Box. Practical results demonstrate that the masking schemes presented
are able to make the power consumption randomized.

References

1. Blomer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

2. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

Design of a Differential Power Analysis Resistant Masked AES S-Box 383

3. Trichina, E., Korkishko, T., Lee, K.H.: Small Size, Low Power, Side Channel-
Immune AES Coprocessor: Design and Synthesis Results. In: Dobbertin, H., Rij-
men, V., Sowa, A. (eds.) Advanced Encryption Standard – AES. LNCS, vol. 3373,
pp. 113–127. Springer, Heidelberg (2005)

4. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related
attacks (1998), http://www.cryptography.com/

5. Fahn, P.N., Pearson, P.K.: IPA: A New Class of Power Attacks. In: Koç, Ç.K.,
Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 173–186. Springer, Heidelberg
(1999)

6. Goubin, L., Patarin, J.: DES and Differential Power Analysis - The ”Duplication”
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, Springer,
Heidelberg (1999)

7. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power Analysis, What is Now
Possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000)

8. Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier,
P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

9. Yen, S.-M.: Amplified Differential Power Cryptanalysis on Rijndael Implementa-
tions with Exponentially Fewer Power Traces. In: Safavi-Naini, R., Seberry, J.
(eds.) ACISP 2003. LNCS, vol. 2727, pp. 106–117. Springer, Heidelberg (2003)

10. Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an
ASIC AES implementation. Proceedings ofInformation Technology: Coding and
Computing 2, 546–552 (2004)

11. Menicocci, R., Pascal, J.: Elaborazione Crittografica di Dati Digitali Mascherati,
Italian Patent IT MI0020031375A (July 2003)

12. Messerges, T.S., Dabbish, E.A., Puhl, L.: Method and Apparatus for Preventing
Information Leakage Attacks on a Microelectronic Assembly. US Patent 6,295,606
(September 2001), Available online at http://www.uspto.gov/

13. Golić, J.D.: Random Masking in Hardware. IEEE Transactions on Circuits and
Systems-I 54(2) (2007)

14. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

15. Chari, S., Jutla, C.S., Rao, J., Rohtagi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

16. Jan, M.: Digital Integrated Circuits. Prentice-Hall, Englewood Cliffs (1996)
17. Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES

Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, Springer, Heidelberg (2006)

18. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, Springer, Heidelberg (2005)

19. Trichina, E., De Seta, D., Germani, L.: Simplified Adaptive Multiplicative Masking
for AES. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 187–197. Springer, Heidelberg (2003)

20. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365.
Springer, Heidelberg (2005)

http://www.cryptography.com/
http://www.uspto.gov/

LFSR Based Stream Ciphers Are Vulnerable to

Power Attacks

Sanjay Burman1, Debdeep Mukhopadhyay2, and Kamakoti Veezhinathan3

1 PhD Student, Department of Computer Science and Engg., Indian Institute of
Technology, Madras, India
sanjayburman@gmail.com

2 Assistant Professor, Department of Computer Science and Engg., Indian Institute
of Technology, Madras, India
debdeep@cse.iitm.ernet.in

3 Associate Professor, Department of Computer Science and Engg., Indian Institute
of Technology, Madras, India
kama@cs.iitm.ernet.in

Abstract. Linear Feedback Shift Registers (LFSRs) are used as build-
ing blocks for many stream ciphers, wherein, an n-degree primitive con-
nection polynomial is used as a feedback function to realize an n-bit
LFSR. This paper shows that such LFSRs are susceptible to power anal-
ysis based Side Channel Attacks (SCA). The major contribution of this
paper is the observation that the state of an n-bit LFSR can be deter-
mined by making O(n) power measurements. Interestingly, neither the
primitive polynomial nor the value of n be known to the adversary launch-
ing the proposed attack. The paper also proposes a simple countermeasure
for the SCA that uses n additional flipflops.

Keywords: Linear Feed Back Shift Registers, Side Channel Attacks,
Power Analysis, Hamming Distance, Dynamic Power Dissipation.

1 Introduction

Encryption algorithms are used to protect information from unauthorized access
or disclosure and are constructed using key controlled cryptographic primitives.
The security robustness of cryptographic primitives have traditionally been mea-
sured under three mathematical models, namely, (1) when an adversary is as-
sumed to have unlimited computational power (unconditional security); (2) when
it can be proved that if an adversary is successful in breaking the cryptographic
primitive under attack then, the adversary can also solve another mathematical
problem that is believed to be hard to solve (provable security); and, (3) when
the effort required to break a cryptographic primitive is so large that the crypto-
graphic primitive can be considered to be unbreakable (computational security).
However, it has been established in the recent past that even if a cryptographic
primitive is robust against attacks under the three mathematical models men-
tioned above, there exist a class of attacks against the real life implementations

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 384–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

LFSR Based Stream Ciphers Are Vulnerable to Power Attacks 385

that must be considered to ensure the security robustness of a system implement-
ing the cryptographic primitives. These are referred to as Side Channel Attacks
(SCA) [1]. This class of attacks against implementations are rather powerful and
lead to system breaks with little effort. The adversary in this case exploits the
information leaked unintentionally from the system executing the cryptographic
primitive, into the environment, to attack the cryptographic system, often lead-
ing to catastrophic failure of security. This is possible even on a system whose
theoretical robustness has been established under the mathematical models men-
tioned above.

Stream ciphers are an important class of symmetric ciphers used extensively
for encryption by hardware-based cryptographic systems. They are popular be-
cause of their simplicity, efficiency and performance. The secure realization of
stream ciphers is crucial to guard against the SCAs. Some guidelines in this
direction are suggested in [2]. An overview on SCAs on stream ciphers and
countermeasures is provided in [3]. LFSRs are used as building blocks for many
stream ciphers because of their well defined structure and remarkable properties
like long period, ideal autocorrelation and statistical properties. The leakage
of information and vulnerability of stream ciphers based on Galois LFSRs is
investigated in [4].

Though side channel attacks have reportedly been successfully mounted for
many years [5], the publication of [6] by Kocher et.al. is a watershed in this area.
This spurred a flurry of research and development in the exploitation of and
safeguards against information leaked though side channels with an intention to
attack the cryptographic mechanisms built into various security systems. There
are several types of side channels through which information leaks inadvertently
into the environment. The most prominent of them includes the measurement
of the time taken or power consumed to perform a cryptographic function, the
argument(s) to the function being the secret cryptographic key/data. A number
of successful attacks using the above idea have been reported. These attacks
can be mounted by using some very standard test and measuring equipment
that are widely available. Typically power attacks can be mounted by measur-
ing the electrical current that flows through a small resistor (10 Ω to 50 Ω)
placed in series with the pin through which power is fed into a device perform-
ing a cryptographic computation. If the current being drawn is a function of
the cryptographic key/data then the measurements of current during the cryp-
tographic computation will be correlated with the cryptographic key/data. This
correlation can then be analyzed to either directly mount the attack to reveal
the key/data or be used in conjunction with a brute force attack to reduce the
search space. Similar power attacks can also be mounted by measuring the elec-
tromagnetic radiations in the vicinity of the device performing the cryptographic
computation.

This paper presents a power analysis based SCA technique to precisely de-
termine the state of an n-bit LFSR by measuring the power consumed by the
LFSR in each cycle over consecutive cycles linear in n.

386 S. Burman, D. Mukhopadhyay, and K. Veezhinathan

n−degree primitive polynomial

S(n−1) S(n−2) S(1) S(0)

c(n−1) c(n)c(2)c(1)

Nonlinear Boolean Function

Key Stream

Plain Text Cipher Text

Fig. 1. An n-stage LFSR with a Non-linear filter

2 Preliminaries

2.1 LFSRs

LFSRs are used as primitives in building blocks in many stream ciphers because
of their simple structure, guaranteed period and near ideal statistical properties.
A general LFSR structure is shown in Figure 1.

The LFSR is a finite state machine that operates over some finite field Fq,
where q is a prime or positive power of a prime. For the purposes of this paper
we assume that q = 2r, and r = 1, i.e. we consider only binary LFSRs. An
n-stage binary LFSR consists of n consecutive storage elements, called stages.
Each stage is a flipflop that stores S(i), such that, S(i) ∈ {0, 1}, ∀i, 1 ≤ i ≤ n.
The content of the n-stages of the LFSR at time t is referred to as the state of
the LFSR at time t and denoted by STt. The state at time t + 1 is computed
by rightshifting the LFSR by one bit. The value shifted into the first (leftmost)
stage, denoted by S(n), is a linear combination of the contents of the n-stages
as defined by the feedback polynomial used to realize the LFSR. Therefore, if
STt = (S(n − 1), · · · , S(0)) then, STt+1 = (S(n), S(n − 1), S(n − 2), · · · , S(1)),
where,

S(n) = c(1)S(n−1)⊕c(2)S(n−2)⊕· · ·⊕c(n)S(0), c(i) ∈ {0, 1}, ∀i, 1 ≤ i ≤ n.

For more information and background on the LFSRs, the reader is referred to
[7]. We shall now present some new and interesting properties of LFSRs.

LFSR Based Stream Ciphers Are Vulnerable to Power Attacks 387

Theorem 1. Let HDt be the Hamming Distance between the n-bit vectors, STt

and STt+1. Let PDt = (HDt − HDt+1). Then, PDt ∈ {−1, 0, 1}.
Proof. Let STt = (S(n − 1), · · · , S(1), S(0)). Then, STt+1 = (S(n), S(n − 1),
· · · , S(1)) and STt+2 = (S(n + 1), S(n), S(n − 1), · · · , S(2)). Let HW (V) denote
the Hamming Weight (number of ones) of a bit-vector V . It is straightforward
to see the following:

HDt = HW ((S(n) ⊕ S(n − 1)), (S(n − 1) ⊕ S(n − 2)), · · · , (S(1) ⊕ S(0))) (1)

HDt+1 = HW ((S(n + 1) ⊕ S(n)), (S(n) ⊕ S(n − 1)), · · · , (S(2) ⊕ S(1))) (2)

Equations 1 and 2 imply the following:

PDt = HDt − HDt+1 (3)
= HW ((S(0) ⊕ S(1)) − HW ((S(n + 1) ⊕ S(n))) (4)
= {0, 1} − {0, 1} (5)
= {−1, 0, 1} (6)

Hence, the Theorem. �
Corollary 1. Let PD′

t be defined as follows: It is equal to 0 when, HDt =
HDt+1, else it is 1. Given S(n+1), S(n), S(1) and S(0) as defined in Theorem 1,

PD′
t = S(n + 1) ⊕ S(n) ⊕ S(1) ⊕ S(0).

Proof. The definition of PD′
t and equation 4 imply the corollary. �

2.2 Dynamic Power Consumption of an LFSR

The dynamic power consumed by a digital circuit is directly proportional to
the switching activity (number of components in the circuit that has a state-
transition from 0 to 1 or vice-versa) [9]. In the case of LFSRs the dynamic
power consumed during the transition in cycle t, that is, from time period t to
time period t + 1, is proportional to HDt (refer Theorem 1), as the computed
Hamming Distance is a measure of the total number of toggles in the state of
the LFSR during the time interval t to t + 1. This implies that the difference in
power consumed by the LFSR between cycle t and cycle t + 1 is proportional to
PDt (as defined in Theorem 1). This paper assumes the following:

Assumption 1. If the number of toggles in the state of an LFSR in cycle t is
different than that in cycle t+1 (in other words HDt �= HDt+1), then the power
consumed by the LFSR in the two cycles are also different, else they are the
same. Therefore, by measuring the power consumption at every cycle, the value
of PD′

t as defined in corollary 1, can be computed. �

388 S. Burman, D. Mukhopadhyay, and K. Veezhinathan

3 The Proposed SCA Model

We explain our attack approach for the case where the stream cipher is built
using an LFSR with a primitive feedback function and a nonlinear feed forward
function as shown in Figure 1. These generators have been widely studied and
often used as primitive building blocks in a number of stream ciphers [8]. The
n-stage LFSR is initialized with a nonzero state which is the cryptographic key.
Every time it is clocked a new key stream bit is generated by filtering the state
using a nonlinear Boolean function. The key stream bit is added mod 2 to the
plain text to produce the cipher text. The only assumption of the proposed SCA
model is that the adversary,

– can compute the values of PD′
t by measuring the power consumed by the

LFSR, as stated in Assumption 1 above.

It is worthwhile to note that as stated in Assumption 1, the measurement of the
power consumed is used not to compute the number of toggles during any cycle
but to just indicate whether the number of toggles between any two consecutive
cycles is same or different. Before proceeding further, the following properties
of sequences generated by LFSR with primitive connection polynomials are pre-
sented. Such sequences are called M -sequences in the literature.

Theorem 2. [10] The linear complexity of an infinite binary sequence s, de-
noted by L(s), is defined as follows:

1. if s is the zero sequence s = 0, 0, 0, . . . , then L(s) = 0;
2. if no LFSR generates s, then L(s) = ∞;
3. otherwise, L(s) is the length of the shortest LFSR that generates s.

Let t be a (finite) subsequence of s of length at least 2L(s). Then, the Berlekamp-
Massey algorithm on input t determines an LFSR of length L(s) which
generates s.

Theorem 3. [11] Given an n-bit LFSR F generating an M -sequence S, a linear
combination of the stages of F yields a delayed version (phase) of S. For every
delay d, 1 ≤ d ≤ 2n−1, there exists a linear combination of the stages that yields
a version of S that is delayed by d. �
Let (S(n−1), S(n−2), · · · , S(0)) be the initial unknown state of the given LFSR
at time instant 0. Let S(n + k) denote the bit shifted into the LFSR in the kth

cycle, 0 ≤ k ≤ n. From corollary 1, if the adversary obtains the values of PD′
k,

they can be related to the sequence generated by the LFSR as follows:

S(n + 1) ⊕ S(n) ⊕ S(1) ⊕ S(0) = PD′
0 (7)

S(n + 2) ⊕ S(n + 1) ⊕ S(2) ⊕ S(1) = PD′
1 (8)

· · · · · · · · · (9)
S(n + k + 1) ⊕ S(n + k) ⊕ S(k + 1) ⊕ S(k) = PD′

k (10)
· · · · · · · · · (11)

LFSR Based Stream Ciphers Are Vulnerable to Power Attacks 389

The next theorem shows that the PD′
k values computed are a delayed M -

sequence generated by the LFSR.

Theorem 4. The sequence PD′
0, PD′

1, · is a delayed sequence of the M -sequence
generated by the given LFSR with initial state (S(n − 1), S(n − 2), · · · , S(0)).

Proof. Note that by the definition of the LFSR, S(n) is a linear combination of
the bits currently stored in the LFSR. Let S(n) = f0(S(n−1), S(n−2), · · · , S(0)).
Now, S(n + 1) = f0(S(n), S(n − 1), · · · , S(1)). Since S(n) is a linear combina-
tion of (S(n − 1), S(n − 2), · · · , S(0)), S(n + 1) can also be represented as a
linear combination of (S(n − 1), S(n − 2), · · · , S(0)) denoted by f1(S(n − 1),
S(n − 2), · · · , S(0)).

From equation 7 we see that

PD0 = f1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕ S(1) ⊕ S(0).

Hence, PD′
0 is a linear combination LC of the bits stored in the LFSR at time

instant 0.
From equation 10 we see that

PDk = f1(S(n + k − 1), · · · , S(k)) ⊕ f0(S(n + k − 1), · · · , S(k)) ⊕ S(k + 1) ⊕
S(k).

Note that PD′
k is the same linear combination, LC, (as in the case of PD′

0

mentioned above) of the bits stored in the LFSR at time instant k. This and
theorem 3 proves this theorem. �
Theorem 5. Given the length of the LFSR, the primitive connection polynomial
and the delayed sequence PD′

0, PD′
1, · · · , PD′

n−1, the initial state of the LFSR
can be determined.

Proof. As mentioned earlier, let S(n + k) denote the bit shifted into the LFSR
in the kth cycle, 0 ≤ k ≤ n. Note that by the definition of the LFSR, S(n)
is a linear combination of the bits currently stored in the LFSR. Let S(n) =
f0(S(n − 1), S(n − 2), · · · , S(0)). As the primitive polynomial and the length of
the LFSR, n, is known to the adversary imply that the function f0() is known
to the adversary. As mentioned earlier, S(n + 1) = f0(S(n), S(n − 1), · · · , S(1)).
Since S(n) is a linear combination of (S(n−1), S(n−2), · · · , S(0)), S(n+1) can be
represented as the function f1(S(n−1), S(n−2), · · · , S(0)). In a similar fashion,
S(n+k) = fk(S(n−1), S(n−2), · · · , S(0)). As the primitive polynomial is known
to the adversary, all the functions fk(S(n − 1), S(n − 2), · · · , S(0)), 0 ≤ k ≤ n
are known to the adversary.

Substituting S(n + k) by fk(S(n − 1), · · · , S(0)), 0 ≤ k ≤ n, in the equa-
tions 7 8 10, we get

f1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕ S(1) ⊕ S(0) = PD′
0

f2(S(n − 1), · · · , S(0)) ⊕ f1(S(n − 1), · · · , S(0)) ⊕ S(2) ⊕ S(1) = PD′
1

· · · · · · · · ·
fn(S(n − 1), · · · , S(0)) ⊕ fn−1(S(n − 1), · · · , S(0)) ⊕ f0(S(n − 1), · · · , S(0)) ⊕

S(n − 1) = PD′
n−1

390 S. Burman, D. Mukhopadhyay, and K. Veezhinathan

Given that PD′
k, 0 ≤ k < n is known, the above forms a set of n simultane-

ous equations with n unknowns, namely, S(n − 1), S(n − 2), · · · , S(0). Solving
the above shall yield the values of S(n − 1), S(n − 2), · · · , S(0). Substituting
these values in fk(S(n − 1), S(n − 2), · · · , S(0)), 0 ≤ k ≤ n, gives the values of
S(2n), S(2n − 1), · · · , S(n + 1).

The fact that the sequence generated by the LFSR is an M -sequence and
Theorem 4 imply that the above set of simultaneous equations does have an
unique solution. This is true from the observation that there should exist states
(S(n − 1), S(n − 2), · · · , S(0)) which is at an unique delay distance from the se-
quence (PD′

0, PD′
1, · · ·); and, there can be only one (state of the LFSR) solution

to (S(n − 1), S(n − 2), · · · , S(0)). If there are more than one solution, it essen-
tially implies that the delayed sequence (PD′

0, PD′
1, · · ·) can be arrived at from

two different initial states of the LFSR, with the same amount of delay, which
contradicts the fact that the LFSR generates an M-sequence. �

3.1 The Proposed Attack

Let POW (k) denote the dynamic power consumed by the nonlinear filter gen-
erator at time instant k.

1. Measure POW (0), for time instant 0;
2. for each time instant k, k ≥ 1 do

(a) Measure the dynamic power, POW (k).
(b) PD′

k−1 = 1 if POW (k − 1) �= POW (k), else it is 0.
(c) Input PD′

k−1 into the Berlekamp-Massey (BM) Algorithm. If BM ter-
minates then exit this for loop; else repeat Step 2;

3. Result
(a) Berlekamp-Massey algorithm outputs the length n of the LFSR F and

the connection polynomial realized by F ; (as inferred from theorems 2
and 4).

(b) Now that the length of the LFSR and the connection polynomial realized
by the LFSR are known, compute the initial state of the LFSR at the
time of launch of the attack using Theorem 5.

4 Countermeasure to the SCA

Figure 2 shows the countermeasure for the SCA. In the circuit, for each flipflop
F in the LFSR, there is a corresponding toggle flipflop F ′ that toggles, if F does
not toggle; and, does not toggle, if F toggles. Note that the clock input to F ′

is the XNOR of the input and output of F AND-ed with the system clock. If
the input and output of F is same, that is F does not toggle in the next cycle,
the clock is fed into F ′ essentially toggling it. On the other hand, if the input
and output of F are different, that is F toggles in the next cycle, the clock is
not fed into F ′ preventing it from toggling. In this circuit, at each stage there
shall be uniformly n toggles, thereby countering the power attack. To avoid clock
skews between the LFSR flipflops and their toggle counterparts, the clock path

LFSR Based Stream Ciphers Are Vulnerable to Power Attacks 391

S(n)S(n−1) S(0)

c(1) c(n)c(2)

n−degree primitive polynomial

1 1 1

CLK

T T T

Fig. 2. The Countermeasure to the SCA

to both are balanced by introducing a dummy gate in the clock path driving the
flipflops of the LFSR. The drawbacks of this approach are that it needs double
the number of flipflops and consumes more dynamic power.

5 Conclusions

We have shown an interesting property of LFSRs with respect to the hamming
distance between the state transitions of an LFSR with primitive feedback poly-
nomial. We exploit this property to determine the state of the LFSR by making
O(n) power measurements. In this paper, we have made an ideal assumption that
the power consumed by the LFSR in each of any two consecutive cycles shall re-
main the same if the number of toggles in the state of the LFSR are also equal in
the two cycles under consideration. A more practical assumption would be that if
the difference in power consumed across two cycles is less than a threshold then the
toggles are equal across the cycles, else they are different. Such type of thresholds
can be determined by simulating the model of the LFSR, using circuit simulators
like SPICE. The paper also presents a simple countermeasure for the attack.

References

1. Kocher, P., Lee, R., McGraw, G., Raghunathan, A., Ravi, S.: Security as a New
Dimension in Embedded System Design. In: Proc. of IEEE Design Automation
Conference - DAC 2004, pp. 753–761. IEEE Computer Society Press, Los Alamitos
(2004)

2. Kumar, S., Lemke, K., Paar, C.: Some Thoughts about Implementation Properties
of Stream Ciphers. In: Proc. of State of the Art of Stream Ciphers Workshop -
SASC 2004, Brugge, Belgium (2004)

392 S. Burman, D. Mukhopadhyay, and K. Veezhinathan

3. Rechberger, C., Oswald, E.: Stream Ciphers and Side-Channel Analysis. In: Proc.
of State of the Art of Stream Ciphers Workshop - SASC 2004, Brugge, Belgium
(2004)

4. Delaunay, P., Joux, A.: Galois LFSR, Embedded Devices and Side Channel Weak-
nesses. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp.
436–451. Springer, Heidelberg (2006)

5. Shamir, A.: A Top View of Side Channel Attacks. In: Proc. of L-SEC/CALIT IT
Security Congress (October 19-20, 2006)

6. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

7. Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills, CA (1981)
8. Bedi, S.S., Pillai, N.R.: Cryptanalysis Of The Nonlinear Feedforward Generator.

In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 188–194.
Springer, Heidelberg (2000)

9. Hsiao, M.S.: Peak Power Estimation using Genetic Spot Optimization for large
VLSI circuits. In: DATE 1999. Proc. of Intl. Conf. on Design Automation and Test
in Europe, pp. 175–179 (1999)

10. Menezes, A., van Oorschot, P., Van stone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton, USA (1996)

11. Davies, A.C.: Delayed versions of maximal-length linear binary sequences. Elec-
tronic Letters 1, 61 (1965)

An Update on the Side Channel Cryptanalysis of

MACs Based on Cryptographic Hash Functions�

Praveen Gauravaram1,�� and Katsuyuki Okeya2

1 Department of Mathematics, Technical University of Denmark, Denmark
p.gauravaram@mat.dtu.dk

2 Hitachi, Ltd., Systems Development Laboratory, Japan
katsuyuki.okeya.ue@hitachi.com

Abstract. Okeya has established that HMAC/NMAC implementations
based on only Matyas-Meyer-Oseas (MMO) PGV scheme and his two
refined PGV schemes are secure against side channel DPA attacks when
the block cipher in these constructions is secure against these attacks.
The significant result of Okeya’s analysis is that the implementations
of HMAC/NMAC with the Davies-Meyer (DM) compression function
based hash functions such as SHA-1 are vulnerable to DPA attacks. In
this paper, first we show a partial key recovery attack on NMAC/HMAC
based on Okeya’s two refined PGV schemes by taking practical con-
straints into consideration. Next, we propose new hybrid NMAC/HMAC
schemes for security against side channel attacks assuming that their un-
derlying block cipher is ideal. We show a hybrid NMAC/HMAC proposal
which can be instantiated with DM and a slight variant to it allowing
NMAC/HMAC to use hash functions such as SHA-1. We then show that
M-NMAC, MDx-MAC and a variant of the envelope MAC scheme based
on DM with an ideal block cipher are secure against DPA attacks.

Keywords: Side channel attacks, DPA, HMAC, M-NMAC, MDx-MAC.

1 Introduction

Okeya [11] has shown that NMAC/HMAC implementations based on eleven
out of twelve provably secure Preneel-Govaerts-Vandewalle (PGV) compression
functions based on block ciphers [2] are vulnerable to differential power analysis
(DPA) and its minor variant reverse DPA (RDPA) attacks even if the under-
lying block cipher is secure against these attacks. His analysis shows that only
Matyas-Meyer-Oseas (MMO) PGV scheme and his two refined PGV compres-
sion function proposals are secure against these attacks and one of the secret keys
of NMAC/HMAC schemes can be extracted when they are implemented with

� This work is supported by The Danish Research Council for Technology and Pro-
duction Sciences grant no. 274-05-0151 and partly supported by National Institute
of Information and Communications Technology (NICT), Japan.

�� Some of this work was performed when the author was at Information Security
Institute, Queensland University of Technology, Australia.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 393–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

394 P. Gauravaram and K. Okeya

the popular Davies-Meyer (DM) based hash functions such as MD5, RIPEMD-
160, SHA-1, SHA-224/256 and SHA-384/SHA-512. The impact of this attack is
that NMAC/HMAC implementations with these hash functions do not always
result in a secure MAC as there is no guarantee that these schemes provide
secure authentication when the attacker knows any of the secret keys [1, 5, 4].

In this paper, we show a partial key recovery attack on NMAC/HMAC
schemes implemented with two refined PGV compression functions proposed
in [11] with different state and block sizes using RDPA attack. We conclude
that NMAC/HMAC based on only MMO PGV scheme with the same/different
block and state sizes is secure against side channel attacks. We propose new
hybrid NMAC/HMAC functions that use compression functions of different ar-
chitecture as the inner and outer functions in NMAC/HMAC for security against
DPA/RDPA attacks assuming that the block cipher in them is secure. Consider-
ing the wide usage of DM scheme in many standard hash functions, we propose a
DPA/RDPA resistant hybrid NMAC/HMAC scheme based on DM and a slight
variant of it which follows the design goal of HMAC by calling hash function as
a black box. We analysed M-NMAC [5,4], MDx-MAC [14] and a variant of the
envelope MAC scheme [14] based on twelve provably secure PGV compression
functions against DPA/RDPA attacks assuming that the block cipher of PGV
schemes is ideal. We show that these MAC proposals based on DM and our two
refined PGV compression function proposals are secure against DPA/RDPA at-
tacks. Our work shows that the security of hash based MAC schemes against
side channel attacks depends on the architectures of both the MAC function and
its underlying compression function.

The DPA/RDPA resistant MAC schemes proposed/analysed in this paper can
be used as software programs using a tamper-resistant block cipher coprocessor
on the smartcard. These MAC schemes can also be used when a hardware ac-
celerator capable of computing bulk encryption using DPA countermeasure is
available but the operations needed for the MAC are computed in a microcon-
troller without DPA countermeasures.

We organise this paper as follows: In Section 2, we describe iterated hash func-
tions and NMAC/HMAC proposals respectively. In Section 3, we discuss DPA/
RDPA attacks on NMAC/HMAC functions. In Section 4, we extend Okeya’s at-
tacks on NMAC/HMAC. In Section 5, we propose hybrid MAC proposals fol-
lowing the model of NMAC/HMAC. In Section 6, we review other hash based
MAC schemes proposed in the literature. In Section 7, we analyse the security of
M-NMAC and its variants based on twelve PGV schemes against DPA/RDPA at-
tacks followed by forgery attacks on these MAC schemes in Section 8. We conclude
the paper in Section 9 with some directions to the future work.

2 Cryptographic Hash Functions

Cryptographic hash functions process an arbitrary length message into a fixed
length digest. The Merkle-Damg̊ard iterative structure [8,3] has been a popular
structure used in the design of many standard hash functions such as MD5,

An Update on the Side Channel Cryptanalysis of MACs 395

SHA-1, SHA-224/256 and SHA-384/512. The message x with |x| ≤ 2l − 1 bits,
to be processed using the hash function H is always padded by appending it
with a 1 bit followed by 0 bits until the padded message is l bits short of a block
length b of the fixed length input compression function f . The last l bits are filled
in with the binary encoded representation of the length of the original unpadded
message x to avoid some trivial attacks [7]. This message is an integer multiple of
b bits and is represented with b-bit data blocks as x = x1, x2, . . . xn. Each data
block xi is processed using f to compute intermediate states Hi = fHi−1(xi)
where i = 1 to n. The final state Hn = fHn−1(xn) is the message digest of x.
In general, the approaches to design compression functions employ block cipher-
based constructions. There are twelve out of sixty-four schemes considered by
PGV [12] that are provably secure when the underlying block cipher used in
them is ideal [2]. This model of PGV uses parameters y, k, z ∈ {Hi−1, xi, Hi−1 ⊕
xi, 0} and a block cipher G. See Appendix A for these twelve schemes named as
f1 to f12.

2.1 NMAC/HMAC Functions

If k1 and k2 are two independent and random secret keys and H is the iterated
hash function over the compression function f , then the NMAC function [1] used
to process an arbitrary size message x is given by NMACk(x) = fk1(Hk2(x)).
The secret key k2 is the IV of the inner iterated hash function H and the key k1

is the IV of the outer compression function f . The standard padding procedure
is followed for the functions H and f as described in Section 2. HMAC is a “fixed
IV” variant of NMAC and uses H as a black box. It is defined by HMACk(x) =
HIV (k ⊕opad||HIV (k ⊕ipad||x)) where opad and ipad are constants as defined
in [1], k denotes the completion of the key k to a b-bit block by padding k with
0 bits and || denotes the concatenation operation.

3 Side Channel Attacks on NMAC/HMAC

3.1 DPA and Reverse DPA Attack Models

In the DPA (resp. RDPA) attack, the attacker observes the power consumption of
the computing device as side channel information and uses statistical tools such
as the average of the power consumption to eliminate the noise in order to extract
the secret key [6]. RDPA is a standard DPA where instead of known input, the
attacker uses the known output to mount the DPA attack. Following [11], we
consider the application of DPA (resp. RDPA) on the target XOR operation
in MACs as shown in Figure 1. This analysis is also applicable to the modular
addition operation. The XOR operation in Figure 1(a) (resp. Figure 1(b)) has
two inputs: y1, a constant secret and x, a public variable (resp. a secret), and
an output y2, whose value is unknown to the attacker (resp. a public variable).

The attacker uses the DPA (resp. RDPA) attack to recover the secret y1.
The attacker guesses some bit of y1 and classifies the input x (resp. the out-
put y2) into two groups depending on the target bit of y2 (resp. x) which is 1

396 P. Gauravaram and K. Okeya

(a)

public
variable

(b)

variable

public

xx

y1y1 y2y2

Fig. 1. The DPA and Reverse DPA models

or 0 according to the variable input x (resp. y2). The attacker then observes
the power consumed by the XOR operation due to several inputs of x (resp.
outputs of y2). The attacker then computes the average power consumption for
each group. Then the attacker computes the difference between two averages. If
positive spikes appear in the difference, the attacker ensures the original guess
for the bit of y1. Otherwise, the attacker performs its bit inversion. Under the
Hamming weight model [9], power consumption is correlated with the Hamming
weight of the manipulated data. Thus, positive spikes imply that the target bit
of y2 is manipulated as expected, and the averaging eliminates the impact of
other bits on the value of y2 since they behave randomly. By observing sufficient
number of power consumptions, re-classifying y2 and computing average power
consumption, the attacker does not have to re-observe them in order to find
other target bits. See [11] for the experimental results of these attacks on a XOR
operation implemented in an IC chip.

3.2 Okeya’s Analysis of NMAC/HMAC

Okeya [11] has analysed HMAC/NMAC based on twelve PGV compression
functions f i where i ∈ {1, 2, . . . , 12} assuming an ideal block cipher against
DPA/RDPA attacks. This analysis assumes that the state size t of H is same as
the data block size b of f .

The following setting was considered in the analysis of NMAC [11]: The mes-
sage block x1 is public and variable and H0(= k2) is secret and fixed. If the
compression function contains the XOR operation x1 ⊕ H0, the attacker would
directly mount the DPA attack on this operation to extract the secret H0 fol-
lowing the steps given in Section 3.1. The PGV compression functions f i where
i ∈ {2, 4, 6, 8, 9, 10, 11, 12} have the operation x1 ⊕ H0 and hence the key k2

can be extracted by mounting the DPA attack. Using k2, the attacker computes
sufficient outputs of the inner hash function Hk2(x) for various messages x. The
attacker uses these values as the public and variable input to the XOR opera-
tion Hk2(x) ⊕ k1 in these compression functions to extract the secret key k1 by
mounting the DPA attack.

Similarly, for NMAC based on DM, the secret key k1 can be extracted using
RDPA attack on the target XOR operation between the secret k1 and a secret
variable from the output of G which produces NMAC output. The DPA/RDPA
attacks on the compression functions f3 and f7 depends on the order of the
execution of XOR operation used in these functions. Okeya [11] has refined the

An Update on the Side Channel Cryptanalysis of MACs 397

compression functions f3 and f7 and proposed the new DPA/RDPA resistant
compression functions f (3∗) and f (7∗) as Hi = (GHi−1(xi) ⊕ Hi−1) ⊕ xi and
Hi = (Gxi(Hi−1) ⊕ Hi−1) ⊕ xi respectively.

4 Extending Okeya’s Attack to Different Block/State
Sizes

When f i for i ∈ {2, 4, 6, 8, 9, 10, 11, 12} is used as the inner and outer compression
function in NMAC, it is straight forward to mount the DPA attack discussed
above on the XOR operation x1 ⊕ k2 to extract the secret key k2. This attack is
independent of the padding and length encoding of the message used in the last
block.

Now assume that the output bit length t of the inner function Hk2(x) is less
than the block size b of the outer compression function fk1 and |k1| = b. Hence,
Hk2(x) is padded to the block size b following the standard procedure discussed
in Section 2 and used as input to the outer function fk1 . Let this input be denoted
by Hk2(x)||pad, where pad are the padded and length encoded bits. Even if the
attacker computes sufficient count of Hk2(x)||pad for various messages x and
mounts the DPA attack on the outer function fk1 , the attacker can only recover
the higher t bits of k1. The attacker cannot recover the lower b − t bits of k1 as
the padded and length encoded bits appended to the inputs Hk2(x) are unique
and their hamming weight cannot be correlated to the power consumption of
the device under the Hamming weight model. If |k1| < b then we pad the key
k1 with b − |k1| bits that are independent of the secret key k1. This padding
procedure is known to the attacker who mounts the DPA attack to recover the
other bits of k1. The RDPA attack on NMAC based on f5, f3 and f7 [11] is
also applicable when the output size of the inner hash function of NMAC is less
than the block size of the outer compression function.

4.1 Partial Key Recovery of NMAC/HMAC with f (3∗)/f (7∗)

We analyse NMAC assuming that the output bit length t of its inner function
Hk2(x) is less than the block size b of the outer compression function f . Hence,
Hk2(x) is padded to the block size b and used as input to the outer function
f . Let the inner function of NMAC be any DPA resistant compression function
such as f1, f (3∗) and f (7∗). Consider the compression function f (3∗) for the outer
function of NMAC. The output Hk2(x) of the inner function is padded in the
standard manner and is denoted by Hk2(x)||pad which is used as input to the
outer function. The output NMACk(x) is computed as shown in Figure 2.

Here G(·) denotes Gk1(Hk2 (x)||pad). The target XOR operation is G(·) ⊕ k1.
Since the padding information used in pad is known to the attacker, the attacker
can compute the lower |pad| (= b − t) bits of the result of the first XOR using
NMACk(x) and pad. The attacker can now mount the RDPA attack to this case
where the lower |pad| bits of k1 is a secret constant and the lower |pad| bits of
the result of the first XOR is a public variable. As a result, the attacker can

398 P. Gauravaram and K. Okeya

G(·)

⊕

k1

⊕

Hk2(x) pad

�

NMACk(x)

Fig. 2. NMAC with f (3∗) as the outer compression function and padded Hk2(x)

recover the lower |pad| bits of the key k1. This attack also applies to NMAC
with f (7∗) as the outer function.

Once part of k1 is recovered, its remaining part and the key k2 can be recov-
ered using brute-force key search. Though this complete key recovery process is
impractical for reasonable key sizes, the total work is still less than the work
2|k1| + 2|k2| of the divide and conquer key recovery attack on NMAC [1]. Note
that the knowledge of k1 does not guarantee NMAC to be a secure MAC [1,5,4].
This attack does not work when the outer function of NMAC is MMO scheme
as it has no target XOR operation on which the RDPA attack can be mounted.

Illustration: For NMAC with f (3∗) or f (7∗) as the outer function, if |Hk2(x)| =
160 bits, b = 256 bits and |k1| = 256 bits, the lower 96 bits of k1 can be extracted
using the above attack.

In order to avoid this attack, we must have |k1| ≤ t. If |k1| < t and t = b, we
pad the lower b−|k1| bits of k1 and ensure that this padding is independent of the
secret key. For example, we must avoid padding by repeating the secret key. We
can also pad Hk2(x) along with length encoded bits that represent |Hk2(x)| but
this requires an extra iteration of fk1 to process the padded block. If |k1| < t and
t < b, we pad k1 with bits independent of the secret key and Hk2(x) as above.

5 Hybrid MAC Proposals

The notion of hybrid MAC functions in the context of NMAC was introduced
in [1]. For simplicity of analysis, we assume that block and state sizes of the
compression functions are equal. We observe from Section 3 that for NMAC, the
resistance against DPA attacks is essential only for the inner function and from
RDPA attacks is essential only for the outer function of these schemes. Due to
different security requirements for the inner and outer functions, the hybrid use
of PGV schemes provides us more flexible choices to design MACs. To design a
secure hybrid NMAC structure, the inner function can be chosen from any of the
DPA-resistant compression functions: f1, f (3∗), f5, f (7∗) and the outer function
from any RDPA resistant functions: f1, f2, f (3∗), f4, f6, f (7∗), f9, f12.

An Update on the Side Channel Cryptanalysis of MACs 399

DPA/RDPA resistant hybrid NMAC/HMAC based on DM
We can use the DM scheme f5 and its slight variant f6 for the inner and outer
functions respectively to design a secure hybrid NMAC/HMAC structure. Note
that f6 and f5 are related by f6

Hi−1
(x) = f5

Hi−1⊕x(x). This hybrid use of f6 and
f5 allows us to design DPA/RDPA resistant NMAC/HMAC using compression
functions such as SHA-256. This hybrid NMAC based on DM hash function
H is defined by fHk2 (x)⊕k1(Hk2(x)). Similarly, the hybrid HMAC is defined by
HIV (k ⊕ opad ⊕ HIV (k ⊕ ipad||x)||HIV (k ⊕ ipad||x)).

6 Other MAC Proposals Based on Hash Functions

We have found that M-NMAC, MDx-MAC and a variant of the envelope MAC
scheme as the DPA/RDPA resistant MAC schemes based on the DM scheme
after a thorough survey and analysis for DPA/RDPA resistant DM based MAC
schemes. We treat MDx-MAC and envelope MAC schemes as variants of M-
NMAC for an easier presentation of schemes and their analysis.

6.1 M-NMAC Function

M-NMAC [5, 4] is a variant of NMAC which uses the trail key k1 as an input
block to the outer function f in NMAC. M-NMAC is defined by M-NMACk(x) =
fHk2 (x)(k1) where k1 (|k1| ≥ |k2|) denotes the key k1 made to the block size b of
the compression function f by concatenating sufficient 0 bits to it if |k1| < b.

6.2 Variants of M-NMAC

The envelope MAC scheme H(k2||x||k1) [17], analysed in [13, 14, 15], has a trail
secret key k1 which either spans across the last two blocks or placed only in the
last block. A variant of it proposed by Preneel and van Oorschot [14, p.22] uses
the trail secret key k1 in a separate block. MDx-MAC [13] is another popular
MAC scheme which employs MD4 family of hash functions and three keys. The
key k2 replaces the IV of H , the key k1 exclusive-ored with some constants is
appended to the message and the key k3 influences the internal rounds of the
compression function. We note that MDx-MAC can be implemented in such a
way that its compression function (which uses k3 in it) can be called as a black
box as the keys k1 and k2 are used external to the compression function.

7 Side Channel Attacks on M-NMAC and Its Variants

7.1 Target Compression Functions in M-NMAC

The intermediate state of M-NMAC at any iteration i is given by Hi = fHi−1(xi)
where i = 1, 2, . . . , n and H0 = k2. The value fHn(k1) is the authentication tag
of M-NMAC. The message x split into blocks x1, x2, . . . , xn is known to the at-
tacker and is public. At any iteration i in the computation of M-NMAC using the

400 P. Gauravaram and K. Okeya

compression function fHi−1(xi), the value Hi−1 is secret and fixed and xi is public
and variable whenever the blocks x1, . . . , xi−1 are fixed. The task of the attacker is
to extractHi−1. The attacker uses the DPA attack with the power consumption re-
lating to the output Hi. The other target compression function is the final function
fHn(k1) which gives M-NMAC output. Here k1 and Hn are secrets and the output
of M-NMAC is public but is not under the control of the attacker. The attacker’s
goal is to extract k1 by mounting RDPA attack using the output of M-NMAC on
which the attacker has no control and does not care about the other input Hn.

7.2 DPA/RDPA Attacks on M-NMAC and Its Variants

In this analysis, we set k1 = xi and assume that the internal state size of H is
the same as the block size of f .

Analysis of M-NMAC against DPA attack
For M-NMAC instantiated with the compression functions f i where i ∈ {2, 4, 6,
8, 9, 10, 11, 12}, the attacker mounts the DPA attack from Section 7.1 to extract
the secret key k2 by choosing a message block x1 as a public variable value.
After recovering k2, the attacker computes Hk2(x) for any message x. If the
outer function f is also one of the eight compression functions f i where i ∈
{2, 4, 6, 8, 9, 10, 11, 12}, it would have the XOR operation k1 ⊕ Hk2(x) with a
public variable Hk2(x) and the fixed secret k1. By mounting the DPA attack
again, the attacker recovers the secret key k1.

Analysis of M-NMAC against RDPA attack
The functions f i where i ∈ {1, 4, 9, 12} directly XORs the key k1 with the
value obtained after processing the chaining value Hn from the last compression
function with the block cipher G. In this setting, the key k1 is secret which the
attacker aims to extract, the value obtained as the output of the block cipher is
also a secret which the attacker does not care and the XOR of these two values
gives the M-NMAC output. For this setting, the attacker mounts the RDPA
attack from Section 7.1 to extract k1.

The applicability of RDPA attack on M-NMAC based on f3 and f7 depends
on the order of the execution of the XOR operation in them. For f3 (resp. f7), we
define G(·) by GHi−1(k1) (resp. Gk1(Hi−1)). These schemes can be implemented
in three ways as f3(1) (resp. f7(1)): Hi = (k1 ⊕ Hi−1) ⊕ G(·); f3(2) (resp. f7(2)):
Hi = (G(·) ⊕ Hi−1) ⊕ k1; f3(3) (resp. f7(3)): Hi = (G(·) ⊕ k1) ⊕ Hi−1.

The scheme f3(1) (resp. f7(1)) is vulnerable to the DPA attack due to the
operation k1 ⊕ Hi−1. The scheme f3(2) (resp. f7(2)) is vulnerable to the RDPA
attack due to the operation y1⊕k1 where y1 = G(·)⊕Hi−1. We propose f3(3) and
f7(3) as the refined schemes on which DPA/RDPA attacks do not work. This also
applies to DM as there is no target XOR operation in M-NMAC based on DM
on which we could mount these attacks. Hence, M-NMAC implemented with
f3(3), f7(3) and f5 is immune against DPA/RDPA attacks. This analysis of M-
NMAC also applies to its variants. This shows the significance of the architectural
difference of these schemes compared to NMAC/HMAC in using the trail secret
key as a block rather than as a state.

An Update on the Side Channel Cryptanalysis of MACs 401

8 Forgery Attacks on M-NMAC and Its Variants

For M-NMAC based on f i for i ∈ {2, 4, 6, 8, 9, 10, 11, 12}, our attacks recover
both the keys. Hence, the attacker can perform selective forgery on M-NMAC
based on these schemes for a message of its choice. The attacker can only recover
the trail key k1 of M-NMAC based on f1, f3(2) and f7(2). In this case, M-NMAC
can be forged by querying its oracle for an authentication tag M-NMACk(x) =
fHk2 (x)(k1) of the message x. The attacker then uses the key k1 to perform
existential forgery by computing fM-NMAC(x)(k1) which is the tag for the new
forged message x||k1.

Similarly, the attacker can selectively forge the variant of the envelope MAC
scheme implemented with f i for i ∈ {2, 4, 6, 8, 9, 10, 11, 12}. For this MAC scheme
based on f1, f3(2) and f7(2), the attacker can only recover the trail secret key k1

and can forge it in a similar way as M-NMAC. This analysis also applies to MDx-
MAC. Finally, the attacker cannot forge M-NMAC and its variants based on f5

and our proposed compression functions f3(3) and f7(3) using the techniques from
Section 7.2.

Remark 1. M-NMAC based on f i where i∈{2, 3(1), 3(3), 5, 6, 7(1), 7(3), 8, 10, 11}
is secure against the RDPA attack. Hence, these schemes can be used as the outer
function in M-NMAC. Any of the schemes f i where i ∈ {1, 3(2), 3(3), 5, 7(2), 7(3)}
as the inner function for M-NMAC is secure against the DPA attack. These com-
binations can be utilized to design hybrid nested MAC schemes in the setting of
M-NMAC and its variants.

Remark 2. When the output of any DPA resistant inner compression function
of M-NMAC and its variants is less than the key size k1 then part of k1 can be
recovered in similar to the partial key recovery attack on NMAC and HMAC
discussed in Section 4.1.

9 Conclusion

The black box usage of compression function rather than hash function by most
of the DPA/RDPA resistant MAC schemes proposed/analysed in this paper
agrees with Mironov’s concern [10] on proving the security of protocols by as-
suming Merkle-Damg̊ard hash function as a black box. It is an interesting re-
search problem to formalise models to understand side channel attacks that are
directly meaningful to practice for the MAC schemes proposed/analysed in this
paper as done for block ciphers [16].

Acknowledgements

Many thanks to the reviewers of CHES 2007 for valuable comments that greatly
helped in improving this work and to the reviewers of INDOCRYPT 2007 for
their valuable feedback. We also thank Suganya Annadurai, Gary Carter, Ed

402 P. Gauravaram and K. Okeya

Dawson, Choudary Gorantla, Lars Knudsen, William Millan, Juanma González
Nieto, Søren Thomsen, Jiri Tuma and Kapali Viswanathan for comments on the
previous drafts of this paper.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996), available at:
http://www-cse.ucsd.edu/users/mihir/papers/hmac.html

2. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

3. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Gauravaram, P.: Cryptographic Hash Functions: Cryptanalysis, Design and Ap-
plications. PhD thesis, Information Security Institute, Queensland University of
Technogy (June 2007)

5. Gauravaram, P., Hirose, S., Annadurai, S.: An Update on the Analysis and De-
sign of NMAC and HMAC functions. International Journal of Network Secu-
rity (IJNS) 7(1), 50–61 (July 2008), Online version of the paper is available at
http://ijns.nchu.edu.tw/contents/ijns-v7-n1/ijns-v7-n1.html Last access
date: 6th of August 2007

6. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

7. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

8. Merkle, R.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

9. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

10. Mironov, I.: Hash functions: Theory, attacks, and applications. Technical Report
MSR-TR-2005-187, Microsoft Research (November 2005), This technical report
is available at the link http://research.microsoft.com/users/mironov/ Last
access date: 8th of November 2006

11. Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based
Hash Functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 432–443. Springer, Heidelberg (2006)

12. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

13. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

14. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer,
Heidelberg (1996)

http://www-cse.ucsd.edu/users/mihir/papers/hmac.html
http://ijns.nchu.edu.tw/contents/ijns-v7-n1/ijns-v7-n1.html
http://research.microsoft.com/users/mironov/

An Update on the Side Channel Cryptanalysis of MACs 403

15. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

16. Standaert, F.-X., Malkin, T.G., Yung, M.: A formal practice-oriented model for
the analysis of side-channel attacks. Cryptology ePrint Archive, Report 2006/139,
2006, this paper is available at http://eprint.iacr.org/2006/139 Last access
date: 21st of January 2007

17. Tsudik, G.: Message Authentication with One-Way Hash Functions. In: IEEE In-
focom 1992, pp. 2055–2059. IEEE Computer Society Press, Los Alamitos (1992)

A 12 Provably Secure PGV Compression Functions

hi−1 �

mi

� �
� � ��hi

f1

hi−1 �

�

mi

� ��
� ��hi

f7

hi−1 �

�

mi

��

� �
� � ��hi

f2

hi−1� ��

�

mi

�� �
� ��hi

f8

hi−1 �

�

mi

� �
� � ��hi

f3

hi−1� ��

mi

�� �
� � ��hi

f9

hi−1 �

�

mi

�

�

�

�
� � ��hi

f4

hi−1 �

�

�

mi

��

��
� ��hi

f10

hi−1 �

�

mi

��
� ��hi

f5

hi−1� ��

�

mi

��
� � ��hi

f11

hi−1� ��

�

mi

�� �
� ��hi

f6

hi−1 �

�

mi

�

�

�

��
� ��hi

f12

Fig. 3. Compression functions based on PGV construction

http://eprint.iacr.org/2006/139

Attacking the Filter Generator by Finding Zero

Inputs of the Filtering Function

Frédéric Didier�

Projet CODES, INRIA Rocquencourt, Domaine de Voluceau,
78153 Le Chesnay cedex

frederic.didier@inria.fr

Abstract. The filter generator is an important building block in many
stream ciphers. We present here an attack that recovers the initial state
of the hidden LFSR by detecting the positions where the inputs of the
filtering function are equal to zero. This attack requires the precompu-
tation of low weight multiples of the LFSR generating polynomial. By a
careful analysis, we show that the attack complexity is among the best
known and work for almost all cryptographic filtering functions.

Keywords: Stream cipher, filter generator, Boolean functions, low weight
multiples, autocorrelation.

1 Introduction

The filter generator uses a linear feedback shift register (LFSR) of length N
and characteristic polynomial g(X) that generates a binary sequence (st)t≥0 of
period 2N −1. As we can see in Figure 1 this sequence is filtered using a n-variable
balanced Boolean function f (from Fn

2 into F2) to produce the keystream (zt)t≥0.
The inputs of this function are taken as some bits in the LFSR internal state.
We will write xt for the n-bit vector corresponding to the inputs of f at time t.
Notice that we will always write such elements of Fn

2 in bold. Our goal here is to
find the key (that is the LFSR initial state s0, . . . , sN−1) knowing the keystream
sequence (zt)t≥0 and all the constituents of the filter generator.

s1 s0

z0 z1 z2
...

s
N−1

g

f

Fig. 1. LFSR filter generator

� This work is partially funded by CELAR/DGA.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 404–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Attacking the Filter Generator by Finding Zero Inputs 405

The filter generator is one of the simplest stream cipher and it is really in-
teresting to understand what kind of attacks we may perform on it. There is
of course a huge literature on the subject and quite a few approaches. Some of
the most important ones fall into the category of fast correlation attacks. They
were introduced by Meier and Staffelbach [MS88] as an improvement to corre-
lation attack introduced by Siegenthaler in [Sie85]. Since then, many different
versions have been proposed (see for instance [CT00], [MFI01],[CF02],[JJ00] and
[JJ02]). The other main class is given by the algebraic [CM03] and fast algebraic
attacks [Cou03] which can be really efficient if the filtering function is of low al-
gebraic immunity. Recently, Rønjom and Helleseth have proposed a new variant
[RH07] which is closely related to the Berlekamp Massey attack. There is also
some ideas in [MFI05] and [MFI06] that apply to the two previous categories of
attacks. When the inputs positions of f (also known as tapping positions) are
not well chosen, one can apply inversion attack or conditional correlation attack
(see [Gol96],[GCD00] and [LCPP96]). Finally, there is the very general class of
time-memory-data tradeoff attack (see [BS00]) which is often the most efficient
if the generator is well designed.

In this paper, we will present a new attack related to vectorial versions of fast
correlation attacks (see [LZGB03], [EJ04], [GH05]). This attack has an interest-
ing complexity and appears to be difficult to avoid. The idea is to use the low
degree multiples to distinguish the positions corresponding to zero inputs of the
filtering function f . Most of the probabilistic analysis is derived from the work
of Sabine Leveiller during her PhD [Lev04b] (it is in French but some of it is
published in [Lev04a] and [LZGB03]). However, we push it a little further and
show that the positions corresponding to zero inputs of f are actually almost
always detectable.

The paper is organized as follows. We begin by explaining the attack principle
in the first section. Then, in Section 2, we compute the bias at the heart of the
attack, this is our main contribution. This also allows us to derive the actual
attack complexity in Section 3. We give in Section 4 the time complexity of
such an attack on some example filter generators. We finally conclude in the last
section.

2 Attack Principle

Our attack uses like many correlation attacks the small weight multiples of the
polynomial g(X) generating the LFSR. Each of these multiples induces a lin-
ear relation between some points where f is applied to produce the keystream.
Namely, for a multiple p(X) = 1 +

∑w
i=1 Xpi of weight w + 1 we have

xt + xt+p1 + · · · + xt+pw = 0 ∀t ≥ 0 (1)

In all this paper, we will assume that for a given multiple and a point xt, the
others point xt+p1 up to xt+pw can take with the same probability any value
satisfying (1). This is justified by the good properties of an LFSR sequence and

406 F. Didier

appears to be a good working hypothesis since we will see that the experimental
results are very close to the predicted ones. With this assumption, we define

Px
def= Pr

(
f(x1) + · · · + f(xw) = 0 |

w∑

i=1

xi = x

)
. (2)

We did not include the pi in this expression because they have no real influence
in this model. Actually in our model Px is exactly the probability that for a
given multiple and a time t, zt+p1 + · · · + zt+pw is equal to zero knowing that
xt = x. The crux of our attack is based on these probabilities. They can be
expressed nicely as we will see in the next section and for an even w they satisfy
two interesting properties:

– P0 is always greater than 1/2 and is greater than or equal to the other Px’s.
– If the function f has a good autocorrelation property then there is always a

gap between P0 and the other Px’s.

At this point, one could guess what we are going to do. Using many multiples of
g, we will be able to have a good approximation of the probability Pxt associated
to a position t. Now, if the gap between P0 and the others Px is large enough
(depending of the number of multiples we used) we will then be able to detect
which time positions are associated with an xt equal to 0.

Each xt equal to 0 actually tells us that the n bits of the sequence (st)t≥0

involved in this xt are equal to 0. By substituting their linear expression in terms
of s0, . . . , sN−1 we then obtain n linear equations involving the key bits. In the
end, merging the equations from all the zero xt’s, we get a linear system of rank
at most N − 1 since both the all zero state and the actual LFSR initial state are
solutions. We thus hope that given �N/n� such zero xt, we should get a rank
N −1 linear system where the only non trivial solution is the LFSR initial state.

The attack algorithm is summarized here with two parameters D and L that
will be discussed later:

1. Compute all the weight 2p + 1 multiples of g(X) up to degree D. This can
be done offline and once for all.

2. Approximate Pxt for the L first bits of the keystream. In order to do that,
for a given position each multiple corresponds to a parity check, and we just
have to count how many are satisfied by the keystream bits. Remark that
among the L bits, only the ones for which zt = f(0) have to be considered.

3. Assume that the �N/n� bits with the higher approximated Pxt correspond
to positions where xt = 0.

4. Solve the linear system induced by the knowledge of xt at these positions
and retrieve the initial state.

A detailed complexity analysis will be carried in the following sections but
we give here a preliminary one. The best complexity for the first step (precom-
putation) is given by the algorithm of [CJM02] and is in Dp time and Dp/2

memory. The complexity for Step 2 is in L times the number of multiples and

Attacking the Filter Generator by Finding Zero Inputs 407

requires the knowledge of D+L keystream bits. The last two steps are negligible
in the overall complexity. Remark however that last step may deal with some
erroneous answers at Step 3 by trying more than one linear system induced by
the positions with a high Pxt .

3 Bias Computation

We will give here a simple expression for the probability

Px
def= Pr

(
f(x1) + · · · + f(xw) = 0 |

w∑

i=1

xi = x

)
(3)

corresponding to an equation of weight w + 1. We will then use it to compute
the gap between P0 and the other Px in the case of an even w. In order to do
that, let us introduce

dw(x) def=
∑

x1,...,xw−1∈Fn
2

(−1)f(x1)+···+f(xw−1)+f(x+x1+···+xw−1) (4)

where x + x1 · · · + xw−1 corresponds to xw in (3) since the sum of x1 up to xw

must be equal to x. By definition, d1 is the sign function of f

d1(x) = (−1)f(x) (5)

and the dw’s are directly related to the probability Px by

Px =
1
2

(
1 +

1
2(w−1)n

dw(x)
)

. (6)

Moreover, it is easy to show the following recursive relation

dw(x) =
∑

y∈Fn
2

(−1)f(x+y)dw−1(y) = d1 ∗ dw−1(x) (7)

where ∗ is the convolution product. Using the properties of the Walsh transform
we obtain that d̂w(u) = d̂1(u)w where

d̂1(u) =
∑

x∈Fn
2

d1(x)(−1)u.x (8)

And by using the inverse Walsh transform we finally obtain

dw(x) =
1
2n

∑

u∈Fn
2

(−1)u.xd̂1(u)w . (9)

That is

Px =
1
2

⎡

⎣1 +
∑

u∈Fn
2

(−1)u.x

(
d̂1(u)

2n

)w
⎤

⎦ . (10)

408 F. Didier

This has already be observed by Sabine Leveiller in her PhD thesis [Lev04b],
we have just given here another proof of this statement. For reference, one may
look at [LZGB03] since her PhD is in French only.

We will show now that the probability P0 can be distinguished quite well
from the others when w is even. For that it is natural to look at the minimum
difference between P0 and Px, that is to compute minx �=0(P0 − Px).

Let us begin by defining Δ to be the minimum of P0 −Px when w = 2. Using
(6) we have

Δ
def=

1
2

[
d2(0)
2n

− max
x �=0

(
d2(x)
2n

)]
=

1
2

[
1 − max

x �=0

(
d2(x)
2n

)]
(11)

since d2(0) is equal to 2n by Parseval’s equality. Usually, if f has a good auto-
correlation then this Δ is very close to 1/2. To see that, looking at the formula
(4) we have

d2(x) =
∑

u

(−1)f(u)+f(u+x) (12)

which is nothing more than an autocorrelation coefficient and should be close
to 0. Remark that if this is not the case we are confident that we can distinguish
quite well other values of Px from the others.

In the more general case w = 2p, we can write the difference between P0 and
Px as

min
x �=0

(P0 − Px) =
1
2

min
x �=0

⎡

⎣
∑

u∈Fn
2

(
d̂1(u)

2n

)2p

−
∑

u∈Fn
2

(−1)u.x

(
d̂1(u)

2n

)2p
⎤

⎦ (13)

that is,

min
x �=0

(P0 − Px) = min
x �=0

∑

u,u.x=1

(
d̂1(u)
2n

)2p

. (14)

Notice that this difference is always greater than or equal to 0 which means that
P0 is always greater than or equal to the other probabilities. In the case p = 1
this is nothing more than Δ and using the Hölder inequality (see Appendix A)
we can see that the worst case for the others p is when all the d̂1(u) are equal.
Since there is 2n−1 terms in the sum, the worst case is when for p = 1 each term
in the sum is equal to Δ/2n−1. We thus get this lower bound

min
x �=0

(P0 − Px) ≥ 2n−1

(
Δ

2n−1

)p

(15)

which corresponds to the bias we will need to detect.

4 Complexity Analysis

Let us look at the complexity of attacking the filter generator when we use
multiples of weight 2p + 1. We will suppose that the function has a good

Attacking the Filter Generator by Finding Zero Inputs 409

autocorrelation property, meaning that the bias to detect is around

bias � 1
21+n(p−1)

. (16)

To detect it, we will thus need as many equations as the square of the bias
inverse. Looking for multiples of weight 2p + 1 up to degree D of the LFSR
generator polynomial, we know that we will find around

degree at most D multiples number �
(

D

2p

)
1

2N
� D2p

(2p)!2N
(17)

of them. This result is well known and is derived as follows. We have
(

D
2p

)
poly-

nomials of weight 2p+1 and degree at most D. For each of them, we may assume
that the rest of the Euclidean division by g(X) is equally distributed among the
2N possible values. Hence, the formula (17) just express that we get a multiple
(a rest equal to 0) one time over 2N .

Putting the equations (16) and (17) together, to be able to detect our bias we
need to choose a degree D such that

D2p

(2p)!2N
= 22+2n(p−1). (18)

That means we will have to compute the weight 2p + 1 multiples up to a degree
D where

log2 D =
N

2p
+ n

(
1 − 1

p

)
+

1
p
. (19)

We neglect the factorial term (2p)! here since in practice p is 2 or 3. Using
the algorithm of [CJM02], the complexity to compute them is in Dp time and
Dp/2 memory. Remark that the algorithm is completely parallelizable over many
computers. We finally get for the offline part of the attack

log2(offline time) = N/2 + (p − 1)n + 1 (20)

log2(offline memory) = N/4 + (p − 1)n/2 + 1/2. (21)

For the online phase, we will need to identify around �N/n� bits corresponding
to an x equal to 0. We will thus need to approximate the Pxt for L bits in
average where

L =
⌈

N

n

⌉
2n. (22)

This comes from the fact that an x equal to 0 appears in average one time
each 2n keystream bits. We can actually gain a factor 2 because we can skip
the positions for which f(xt) �= f(0). For each of these L bits, we will have to
compute as many parity checks as the number of multiples. The online phase
complexity is then given by

log2(online time/L) = 2 + 2n(p − 1) (23)

410 F. Didier

which is in practice really efficient. For the memory we just need to access the
stored multiples and a length of keystream equal to D + L, that is basically

log2(keystream length) =
N

2p
+ n

(
1 − 1

p

)
+

1
p
. (24)

Remark that the overall complexity is quite good. Let us compare it with
the time-memory-data tradeoff described in [BS00]. This tradeoff is such that
TM2K = 22N where T is the online time, M the online memory and K the
length of the keystream needed. A good choice is to take M = K = 2N/3

which gives an online time of 22N/3 and the same precomputation time. For
our attack with weight 5 multiples and an n around N/8 (which is typical), we
have the following: an online time complexity in 2N/4 and memory in 25N/16

for a keystream length of 25N/16 bits. This is better than the time-memory-data
tradeoff, especially since the precomputation time is a little smaller too (25N/8

compared to 22N/3).

5 Experimental Results

We have successfully carried on this attack on some example generators. We
give here the timing of our program in C. All computations were performed on
a 3.6GHz Pentium4 with 2MB of cache and 2GB of RAM.

We worked on three filter generators of length 53, 59 and 61. In all three cases,
the filtering functions used were good cryptographic functions with a maximum
Walsh coefficients of respectively 32, 24 and 48. We can see in Table 1 the exact
value of the bias for these functions. Notice that it is significantly higher than
our lower bound. As a comparison, for a Δ equal to one half and an 8-variable
function, our lower bound gives 0.002 for weight 5 and 0.000008 for weight 7.

Table 1. Exact bias to detect the zero inputs for the used functions

N n bias for weight 5 bias for weight 7

53 8 0.0039 0.000061
59 8 0.0027 0.000021
61 9 0.0014 0.000006

In Table 2 we can see the timings for some successful attacks. We can see that
the online time is really short and that all the computational effort is spent on
computing the low weight multiples. We only used weight 5 multiples because we
did not have the 2 weeks time needed to precompute enough weight 7 multiples.
In all the attacks, the value of L was just chosen to have a very high probability
to get enough zero inputs for f in a keystream of length L.

For the first two filter generators, we applied the exact method described in
this paper. For the last attack however, we did not want to spend too much time
on the multiples computation, so we used a few tricks to improve the practical

Attacking the Filter Generator by Finding Zero Inputs 411

Table 2. Successful attack timing on the different generators. Some tricks were used
for the last generator as explained below.

N n multiples weight log2 D nb of multiples(time) L online time

53 8 5 18.6 100000(20min) 3200 10 sec
59 8 5 20.47 330000(1day) 3200 30 sec
61 9 5 21 349034(2days) 4000 1 min

efficiency. Firstly, at the price of doubling the needed keystream, we can get for
each multiple w + 1 parity check equations (by shifting the multiple by one of
its five non null positions). The other improvement is, as explained before, to
deal with erroneous zero inputs detection by spending more time on the last
phase of the attack. Here for instance, we got 3 erroneous positions among the
10 with the higher Px. To get the correct key, we thus had to try all the

(
10
7

)

linear systems since �N/n� is equal to 7 here. Those tricks helped to perform
the attack with less multiples, however we did not really cut down the overall
attack complexity.

To conclude this section, notice that the actual value for D is really close to the
theoretical one. In order to detect the bias, we theoretically needed respectively
around 65746, 137200 and 510000 parity checks for each generator. That gives us,
using the approximated formula (17) for the number of multiples, a theoretical
log2 D of 18.4, 20.16 and 21.14 respectively.

6 Conclusion

As a conclusion, we want to detail some important points about the attack we
just presented.

First of all, the probabilistic hypothesis behind the complexity analysis seems
quite sound since the simulations are really close to the predicted results. This is
actually not always the case with other attacks using a binary symmetric channel
model where simulations are usually worse than predicted.

Then, we believe that this attack is difficult to avoid. Using a filtering function
with a bad autocorrelation will certainly weaken the cipher. Moreover, in this
case other inputs than the all zero one could become detectable. Remark as well
that one cannot have a filtering function with too many variables compared to
N. This is for performance reasons but also to have tapping positions with good
behavior.

Finally, the overall complexity of the attack is quite good as explained at
the end of Section 4. In particular, we successfully attacked a length 61 filter
generator in a few seconds after a 2 days precomputation on a single computer.

Acknowledgment

The author want to thanks Yann Laigle-Chapuy, Jean-Pierre Tillich and Anne
Canteaut for their helpful insight on the subject.

412 F. Didier

References

[BS00] Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for
stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
Springer, Heidelberg (2000)

[CF02] Canteaut, A., Filiol, E.: On the influence of the filtering function on the
performance of fast correlation attacks on filter generators. In: 23rd Sym-
posium on Information Theory in the Benelux, Louvain-la-Neuve, Belgium
(May 2002)

[CJM02] Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: an algorith-
mic point of view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 209–221. Springer, Heidelberg (2002)

[CM03] Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear
feedback. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp.
346–359. Springer, Heidelberg (2003)

[Cou03] Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer,
Heidelberg (2003)

[CT00] Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-
check equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

[EJ04] Englund, H., Johansson, T.: A new simple technique to attack filter gen-
erators and related ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC
2004. LNCS, vol. 3357, pp. 39–53. Springer, Heidelberg (2004)

[GCD00] Golic, J.D., Clark, A., Dawson, Ed.: Generalized inversion attack on non-
linear filter generators. IEEE Trans. Comput. 49(10), 1100–1109 (2000)

[GH05] Golic, J.D., Hawkes, P.: Vectorial approach to fast correlation attacks. Des.
Codes Cryptography 35(1), 5–19 (2005)

[Gol96] Golic, J.D.: On the security of nonlinear filter generators. In: Proceedings
of the Third International Workshop on Fast Software Encryption, pp.
173–188. Springer, London (1996)

[JJ00] Johansson, T., Jöhansson, F.: Fast correlation attacks through reconstruc-
tion of linear polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 300–315. Springer, Heidelberg (2000)

[JJ02] Jönsson, F., Johansson, T.: A fast correlation attack on LILI-128. Informa-
tion Processing Letters 81(3), 127–132 (2002)

[LCPP96] Lee, S., Chee, S., Park, S.-J., Park, S.-M.: Conditional correlation attack
on nonlinear filter generators. In: Kim, K.-c., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 360–367. Springer, Heidelberg (1996)

[Lev04a] Leveiller, S.: A new algorithm for cryptanalysis of filtered lfsrs: the
“probability-matching” algorithm. ISIT 1978, 234 (2004)

[Lev04b] Leveiller, S.: Quelques algorithmes de cryptanalyse du registre filtré. PhD
thesis, Télécom Paris, ENST (November 2004)

[LZGB03] Leveiller, S., Zémor, G., Guillot, P., Boutros, J.: A new cryptanalytic attack
for PN-generators filtered by a boolean function. In: Nyberg, K., Heys,
H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 232–249. Springer, Heidelberg
(2003)

[MFI01] Mihaljevic, M.J., Fossorier, M.P.C., Imai, H.: A low-complexity and high-
performance algorithm for the fast correlation attack. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 45–60. Springer, Heidelberg (2001)

Attacking the Filter Generator by Finding Zero Inputs 413

[MFI05] Mihaljevic, M., Fossorier, M.P., Imai, H.: Cryptanalysis of keystream gen-
erator by decimated sample based algebraic and fast correlation attacks. In:
Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 155–168. Springer, Heidelberg (2005)

[MFI06] Mihaljevic, M., Fossorier, M.P.C., Imai, H.: A general formulation of alge-
braic and fast correlation attacks based on dedicated sample decimation.
In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS,
vol. 3857, pp. 203–214. Springer, Heidelberg (2006)

[MS88] Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314.
Springer, Heidelberg (1988)

[RH07] Rønjom, S., Helleseth, T.: A new attack on the filter generator. In IEEE
IT (to appear, 2007)

[Sie85] Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only.
IEEE Trans. Computers 34(1), 81–85 (1985)

A Lemma Used in the Bias Computation

The proof at the end of Section 3 is based on the following lemma applied with

m = 2n−1, s = Δ and ai =
(

d̂1(u)
2n

)2

for the u in Fn
2 such that x.u = 1.

Lemma 1. Given m positive real numbers (ai)i=1...m and an integer p > 1 we
have the lower bound

m∑

i=1

ai
p ≥ m

(s

m

)p

(25)

where s
def=

∑m
i=1 ai.

Proof. The result comes almost directly from Hölder’s inequality

m∑

i=1

|xiyi| ≤
(

m∑

i=1

|xi|p
)1/p (

m∑

i=1

|yi|q
)1/q

(26)

where (xi)i=1...m, (yi)i=1...m, p, q are in R and such that 1
p + 1

q = 1. If we apply
it with all the yi equal to 1, the xi equal to the positive ai, the p from the lemma
and the corresponding q we obtain

m∑

i=1

ai ≤
(

m∑

i=1

ai
p

)1/p

m1/q that is

(
m∑

i=1

ai
p

)
≥ (smq)p . (27)

And since 1
q = 1−p

p we finally obtain
(

m∑

i=1

ai
p

)
≥ spm1−p ≥ m

(s

m

)p

. (28)

Remark that there is an equality when all the ai are equal to s/m.

Efficient Implementations of Some Tweakable

Enciphering Schemes in Reconfigurable
Hardware

Cuauhtemoc Mancillas-López, Debrup Chakraborty,
and Francisco Rodŕıguez-Henŕıquez

Computer Science Departament,
Centro de Investigación y Estudios Avanzados del IPN,

Av. Instituto Politécnico Nacional No. 2508, México D.F.

Abstract. We present optimized FPGA implementations of three tweak-
able enciphering schemes, namely, HCH, HCTR and EME using AES-128
as the underlying block cipher. We report performance timings and hard-
ware resources occupied by these three modes when using a fully pipelined
AES core and a sequential AES design. Our experimental results suggest
that in terms of area HCTR, HCH and HCHfp (a variant of HCH) require
more area than EME. However, HCTR performs the best in terms of speed
followed by HCHfp, EME and HCH.

1 Introduction

A tweakable enciphering scheme (TES) is a specific kind of block-cipher mode of
operation which provides a strong pseudorandom permutation (SPRP). A fully
defined TES for arbitrary length messages using a block cipher was first presented
in [9]. In [9] it was also stated that a possible application area for such encryption
schemes could be low level disc encryption, where the encryption/decryption
algorithm resides on the disc controller which has access to the disc sectors but
has no knowledge of the disk’s high level partitions such as directories, files,
etc. Furthermore, it was suggested in [9] that sector addresses could be used as
tweaks. Because of the specific nature of this application, a length preserving
enciphering scheme is required and under this scenario, a SPRP can provide the
highest possible security.

In the last few years there have been numerous proposals for TES. These pro-
posals fall in three basic categories: Encrypt-Mask-Encrypt type, Hash-ECB-
Hash type and Hash-Counter-Hash type. CMC [9], EME [10], EME∗ [7] falls
under the Encrypt-Mask-Encrypt group. PEP [3], TET [8], HEH [17] falls under
the Hash-ECB-Hash type and XCB [15], HCTR [19], HCH [4] falls under the
Hash-Counter-Hash type. Although about nine different constructions of differ-
ent TES have been proposed, we are not aware of any work reporting experi-
mental performance data of any of these schemes. A comparative performance
comparison of these modes is very necessary given the current efforts of IEEE
security in storage working group [12] towards standardization of TES.

K. Srinathan, C. Pandu Rangan, M. Yung (Eds.): Indocrypt 2007, LNCS 4859, pp. 414–424, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Implementations of Some TES in Reconfigurable Hardware 415

A speculative performance comparison of the EME∗, XCB, HCH and TET
modes of operation in hardware is provided in [8]. This comparison assumes
the same hardware implementation setting reported in [1], where a fully-parallel
GF(2n) field multiplier capable of performing one multiplication in one clock
cycle was implemented at a hardware cost in area of about three times the
cost associated with one AES round function. The AES core was implemented
through the computation of ten such modules. However, this analysis might
not be quite accurate because, as we will see in the rest of this paper, one can
implement a GF(2n) field multiplier with an efficiency comparable to the one of
an AES round function in terms of both, the critical path and the cost in area.

In this paper we present performance data for hardware implementation of
three TES. Our implementations are optimized for the application of low level
disc encryption. The modes we select for our comparative study are EME, HCH
and HCTR. Also we provide performance data for a variant of HCH which is
called HCHfp, which is particularly useful for disk encryption. We use AES-128
as the underlying block-cipher, and use a fully parallel Karatsuba-Ofman multi-
plier to compute the hash functions. We carefully analyze and present our design
decisions and finally report hardware performance data of the three modes. Due
to lack of space in this paper we discuss in detail the construction and im-
plementation of HCH only, but present performance data of all the modes we
implemented. The full implementation details of the three modes will appear in
the full version of the paper.

Notations. In the rest of the paper by EK() we shall mean a n bit block cipher
call with key K. By X ||Y we shall mean the concatenation of two binary strings
X and Y and binn(|X |) will denote the n-bit binary representation of |X |, which
denotes the length of X . By padr(X) we shall mean concatenation r zeros to
the end of X and dropr(X) will denote the r ≤ |X | most significant bits of
X . We will treat n bit strings as polynomials of degree less than n of the field
GF (2n). If X and Y are n bit strings then by X ⊕ Y and XY we shall mean
addition and multiplication in the field respectively. By xX we would represent
the multiplication of X by the polynomial x.

2 The Schemes

As mentioned earlier HCH falls under the category of Hash-Counter-Hash con-
structions. HCH uses an universal hash function of the form:

HR,Q(A1, . . . , Am) = Q ⊕ A1 ⊕ A2R
m−1 ⊕ · · · ⊕ Am−1R

2 ⊕ AmR (1)

Where A1, A2, . . . , Am, R, Q are n bit strings. In addition to the hash function
HCH requires a counter mode of operation. Given an n-bit string S, the counter
mode is defined as

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S1), . . . , Am ⊕ EK(Sm)). (2)

416 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

Algorithm ET
K(P1, . . . , Pm)

1. R ← EK(T); Q ← EK(R ⊕ binn(l));
2. Mm ← padn−r(Pm);
3. M1 ← HR,Q(P1, . . . , Pm−1, Mm);
4. U1 ← EK(M1); I ← M1 ⊕ U1; S ← EK(I);
5. (C2, . . . , Cm−1, Dm)

← CtrK,S(P2, . . . , Pm−1, Mm);
6. Cm ← dropn−r(Dm); Um ← padn−r(Cm);
7. C1 ← HR,xQ(U1, C2, . . . , Cm−1, Um);
8. return (C1, . . . , Cm).

Algorithm DT
K(C1, . . . , Cm)

1. R ← EK(T); Q ← EK(R ⊕ binn(l));
2. Um ← padn−r(Cm);
3. U1 ← HR,xQ(C1, . . . , Cm−1, Um);

4. M1 ← E−1
K (U1); I ← M1 ⊕ U1; S ← EK(I);

5. (P2, . . . , Pm−1, Vm)
← CtrK,S(C2, . . . , Cm−1, Um);

6. Pm ← dropn−r(Vm); Mm ← padn−r(Pm);
7. P1 ← HR,Q(M1, P2, . . . , Pm−1, Mm);
8. return (P1, . . . , Pm).

Fig. 1. Encryption and decryption using HCH. The tweak is T and the key is K. For
1 ≤ i ≤ m − 1, |Pi| = n and |Pm| = r where r ≤ n, and l is the length of the message.

Where Si = S ⊕ binn(i). The complete encryption and decryption algorithm of
HCH is given in Fig. 1.

HCH can encrypt arbitrary long messages greater than n bits. It uses a single
key which is same as the block-cipher key. It requires m+3 block cipher calls and
2m−2 finite field multiplications to encrypt a m block message. The key for the
universal hash is R, which is derived by encrypting the tweak. Thus R changes
across encryption calls and this does not allow the use of pre-computations for
computing the hash. HCH requires two passes over the data. In [5] a modification
of HCH is also proposed which is called HCHfp. HCHfp can only be used in those
applications where the message length is fixed. This construction simplifies the
general HCH construction and requires one less block-cipher call, but it requires
two separate keys for the hash and the block-cipher. As in HCHfp the hash key
is not dependent on the tweak so pre-computation for calculating the hash is
also possible. HCHfp is particularly of interest for disk encryption applications
as here the message length is fixed and same as the sector length. The encryption
decryption algorithm using HCHfp can be found in [5].

All variants of HCH are provably secure and the authors guarantee that the
advantage of any computationally bounded chosen plaintext chosen ciphertext
adversary in distinguishing HCH from a random permutation can be at most
O(σ2

n)/2n +δ where σn denotes the number of n bit plaintexts and/or ciphertext
blocks the adversary has access to, and δ denotes the advantage of an adversary
to distinguish the underlying block-cipher from a random permutation.

The structure of HCTR is similar to that of HCH with some important dif-
ferences. HCTR can also encrypt arbitrary long messages. It requires m block
cipher calls and 2m + 2 field multiplications to encrypt an m block message. It
utilizes two different keys and it is proved to be secure with a security bound of
O(σ3

n)/2n + δ. Thus it provides lesser security than HCH and it requires three
less block cipher calls than HCH and 2 less block cipher calls than HCHfp but it
needs four more multiplications than both HCH and HCHfp. A full description
of HCTR can be found in [19].

EME stands for ECB-Mask-ECB (EME)[10]. As the name suggests, the mode
consists of two electronic code-book layers with a masking layer in between. The
structure of EME is quite different from HCH and HCTR. EME falls under
the category of Encrypt-mask-Encrypt constructions. It does not use any hash

Efficient Implementations of Some TES in Reconfigurable Hardware 417

function, but instead uses two layers of encryption. EME requires 2m + 2 block
cipher calls for encrypting a m block message. It requires no multiplication.
EME uses a single key same as the block-cipher key. EME has some message
length restrictions. If the block length of the underlying block cipher is n then the
message length should always be a multiple of n. Moreover, EME cannot encrypt
more than n blocks of messages. This means that if an AES-128 is used as the
underlying block-cipher then EME cannot encrypt more than 2048 bytes (2 KB)
of data. This message length restriction was removed in a construction called
EME∗ which requires more block-cipher calls than EME. But for the purpose of
disc encryption EME appears to be sufficient, as generally disk sectors lengths
are less than 2KB and their lengths are multiples of 128 bits. EME has a security
bound of O(σ2)/2n + δ. A full description of EME can be found in [10].

3 Design Decisions

For implementing all three schemes we chose the underlying block cipher as
AES-128. As mentioned earlier the designs that we present here are directed
towards the application of disk sector encryption. In particular, our designs are
optimized for applications where the sector length is fixed to 512 bytes. As the
sector address is considered to be the tweak, thus the tweak length itself is
considered to be fixed and equal to the block length of the block cipher.

The speed of a low level disk encryption algorithm must meet the current
possible data rates of disc controllers. With emerging technologies like serial
ATA and Native Command Queuing (NCQ) the modern day discs can provide
data rates around 3Giga-bits per second[18]. Thus, the design objective should
be to achieve an encryption/decryption speed which matches this data rate.

The modes HCH and HCTR use two basic building blocks, namely, a poly-
nomial universal hash and the block-cipher. EME requires only a block-cipher.
Since AES-128 was our selection for the underlying block-cipher, proper design
decisions for the AES design must meet the desired speed. Out of many possible
designs reported in the literature [13,6,2,11] we decided to design the AES core
so that a 10-stage pipeline architecture could be used to implement two different
functionalities: the counter mode, and the encryption of one single block that
we will call in the rest of this paper as single mode. This decision was taken
based on the fact that the structure of the AES algorithm admits to a natural
ten-stage pipeline design, where after 11 clock cycles one can get one encrypted
block in each subsequent clock-cycle. It is worth mentioning that in the litera-
ture, several ultra fast designs with up to 70 pipeline stages have been reported
[13], but such designs would increase the latency, i.e., the total delay before a
single block of cipher-text can be produced. As the message lengths in the target
application are specifically small, such pipeline designs are not suitable for our
target application.

The main building block needed for implementing the polynomial hash of
the HCH and HCTR modes is an efficient multiplier in GF (2128). Out of many
possible choices we selected a fully parallel Karatsuba-Ofman multiplier which

418 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

can multiply two 128-bit strings in a single clock-cycle at a sub-quadratic com-
putational cost [16]. This time efficient multiplier occupies about 2 times the
hardware resources required by one single AES round. Because of this, the total
hardware area required by HCTR and HCH are significantly more than EME
(which does not require multipliers). A more compact multiplier selection would
yield significantly lower speeds which violates the design objective of optimizing
for speed.

The specifications of both the HCTR and HCHfp algorithms imply that one
multiplicand is always fixed, thus allowing the usage of pre-computed look up
tables that can significantly speed up the multiplication operation. Techniques
to speed up multiplication by look-up tables in software are discussed in [14,1].
These techniques can be be extended to hardware implementations also. How-
ever, there is a tradeoff in the amount of speed that can be obtained by means of
pre-computation and the amount of data that needs to be stored in tables. Sig-
nificantly higher speeds can be obtained if one stores large tables. This speedup
thus comes with an additional cost of area and also the potentially devastating
penalty of secure storage. Moreover, if pre-computation is used in a hardware
design, then the key needs to be hardwired in the circuit which can lead to nu-
merous difficulties in key setup phases and result in lack of flexibility for changing
keys. Because of the above considerations, we chose not to store key related ta-
bles for our implementations. Thus the use of an efficient but large multiplier is
justified in the scenario under analysis.

We implemented the schemes on a FPGA device which operates at lower fre-
quencies than true VLSI circuits. Thus the throughput that we obtained prob-
ably can be much improved if we use the same design strategies on a different
technology. Our target device was a XILINX Virtex 4, xc4v1x100-12FF1148.

4 The Design Overviews

In this Section we give a carefully analysis of the data dependencies of HCH and
explain how we exploit the parallelism present in the algorithm. Similar analysis
for HCTR and EME can be found in the extended version of this paper.

In the analysis which follows we assume the message to be of 512 bytes
(32 AES blocks). Also, we assume a single AES core designed with a 10 stage
pipeline and a fully parallel single clock cycle multiplier. We also calculate the
key schedules for AES on the fly, this computation can be parallelized with the
AES rounds. The polynomial universal hash functions are computed using the
Horner’s rule.

Referring to the Algorithm of Fig. 1 the algorithm starts with the computation
of the parameter R in Step 1. For computing R the AES pipeline cannot be
utilized and must be accomplished in simple mode, implying that 11 clock cycles
will be required for computing R. At the same time, the AES round keys can be
computed by executing concurrently the AES key schedule algorithm. The hash
function of Step 3 can be written as

HR,Q(P1, P2, . . . P32) = P1 ⊕ Q ⊕ Z

Efficient Implementations of Some TES in Reconfigurable Hardware 419

where Z = R31P2 ⊕ . . . ⊕ RP32. So, Z and Q can be computed in parallel. For
computing Z, 31 multiplications are required and computation of Q takes 11
clock cycles. So the computation of the hash in step 2 takes 31 clock cycles.
Then, the computation of Step 4 requires two simple mode encryption which
implies 22 more clock cycles. So we need to wait 64 clock cycles before the
counter mode starts. The counter mode in step 5 requires 31 block cipher calls
which can be pipelined. So computation of step 5 requires a total of 30+11 = 41
clock cycles. The first cipher block C2 is produced 11 clock cycles after the
counter starts. The second hash function computation of Step 7 can start as
soon as C2 is available in the clock cycle 75. Hence the computation of the hash
function can be completed at the same time that the last cipher block (Cm) of
Step 5 is produced. Figure 2 depicts above analysis. It can be seen that a valid
output will be ready after the cycle 75 and a whole disk sector will be ready in
the cycle 106. In case of HCHfp the computation of Q is not required, and it
uses a hash key which is different from R. Thus R and the hash function can be
computed in parallel, which gives rise to a savings of 11 clock cycles. So HCHfp
will produce a valid output in 64 clocks and it will take 95 clock-cycles to encrypt
the 32 block message.

Key Schedule

R

lR
Q

M
1

I

U

S

1

C ,...,Cm2

1C

0 11 22 43 54 65 76 106

Clock cycles

Fig. 2. HCH Time Diagram

A similar analysis can be done in case of HCTR and EME. Exploiting the
parallelism present in these algorithms to the full extent we obtain that for
HCTR a valid output will be ready after the cycle 55 and a whole disk sector
will be ready in the cycle 88. For EME the first block of valid output would be
produced after 75 clock cycles and the whole sector would be ready after 106
clock-cycles.

5 Implementation

Due to lack of space, in this Section we only discuss the design details of the basic
control unit of HCH. The other implementation details along with the details for
HCTR and EME implementation will appear in the full version of this paper,
but we shall provide performance data for all the modes in Section 6.

Fig. 3 shows the general architecture of the HCH mode of operation. It can
be seen that AES must be implemented both, in counter and in simple mode.

420 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

Additionally, a hash function is also required as one of the main building blocks.
The architecture operation is synchronized through a control unit that performs
the adequate sequence of operations in order to obtain a valid output.

cAES c/d mcms readyAES

inAES S

key

outh cH readyH inH

Control Unit

outAES

AES counter
and

Hash

simple

R Q

Fig. 3. HCH General Architecture

The HCH control unit architecture is shown in Fig. 4. It controls the AES
block by means of four 1-bit signals, namely: cAES that initializes the round
counter, the c/d signal that selects between encryption or decryption mode,
the msms signal that indicates whether one single block must be processed
or rather, multiple blocks by means of the counter mode. Finally, readyAES
indicates whenever the architecture has just computed a valid output. The AES
dataflow is carried out through the usage of three 128-bit busses, namely, inAES
that receives the blocks to be encrypted, outAES that sends the encrypted
blocks and S that receives the initialization parameter for the counter mode. The
communication with the hash function block is done using two signals: cH for

Reg Q

Reg R

Reg S

Reg I

Reg U
1

Mul x2

Reg M
1

T

States

Machine

inH resetH outH readyH Q

R

in

c/d mcms cAES readyAES inAES outAES S

len

outHCH

HCH

readyHCH

Fig. 4. HCH Control Unit Architecture

Efficient Implementations of Some TES in Reconfigurable Hardware 421

initializing the accumulator register and the counter of blocks already processed
and readyH that indicates that the hash function computation is ready. The
data input/output is carried by the inH and outH busses, respectively. The
parameters R and Q are calculated in the control unit and send through the
busses to the hash function.

The HCH control unit implements a finite state automaton that executes
the HCH sequence of operations. It uses eight states: RESET, AES1, AES2,
HASH1, AES3, AES4, ECOUNTER and HASH2. In each state, an appropriate
control word is generated in order to perform the required operations. The correct
algorithm execution requires storing the R, Q, S, I, U1 and M1 values. Thus,
six registers are needed. In particular the hash function input inH can come
from the system input or from the output of the AES counter mode. Therefore,
a multiplexer is needed for addressing the correct input, where the multiplexer
signals are handled by the state machine’s control word.

6 Results

In this section we provide the performance results obtained from our implemen-
tations. We will measure the performances based on the following criteria: time
taken for encrypting 32 blocks of data, the latency, i.e., the time required to
produce the first block of output, the size of the circuit in slices, the number
of B-RAMs used and the throughput. The performance/area tradeoff is eval-
uated using the Throughput per Area (TPA) metric, which is computed as,
TPA = [(slices + 128 · BRAMS) · time]−1

. For a given design, a high TPA
indicates high efficiency, i.e., a good performance/area tradeoff.

In Table 1 we show the performance of the basic building blocks of the ar-
chitectures, i.e, the performance of one AES round and one multiplier. Table 1
shows that considering the B-RAMs and slices the size of our multiplier circuit
is about two times the size of a AES round. The critical path delay of the AES
round is more than the multiplier, so the AES round determines the critical path
in all the implementations.

Table 1. Performance of AES round and multiplier

Design Slices B-RAM Critical Path(nS)

AES round 1215 8 10.998

multiplier 3223 - 9.85

Table 2 gives the performance of the full AES (both a sequential and pipelined
architecture), it also shows the performance of the two different hash functions
for HCH and HCTR. Column 5 of Table 2 shows the throughput. Throughput
does not carry the usual meaning in case of the hash functions, as they produce a
128 bit output irrespective of the input size. By throughput of the hash function
we mean the number of bits they can process per unit time. The sequential

422 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

Table 2. Performance of the AES and Hash implementations

Method Slices B-RAM Frequency (MHz) Throughput (GBits/s)
AES-Sequential 1301 18 81.967 1.049
AES-Pipeline 6368 85 83.88 10.736
Hash-HCTR 3986 - 101.08 12.15
Hash-HCH 4014 - 101.45 12.98

AES gives significantly poor throughput and both hash functions have better
throughput than the AES-pipeline.

In Table 3 we show the experimental results for the four modes of operations
implemented using a pipelined AES core. As we implemented both encryption
and decryption functionalities in the same circuit and due to the symmetry of the
algorithms the timings for encryption and decryption operations are the same.
Note that the number of clock-cycles reported in Table 3 are one more than
those estimated in Section 4, this is because in the true implementations one
clock cycle is lost due to the initial reset operation. From Table 3 it is evident
that EME is the most economical mode in terms of area resources, mainly due
to the fact that this mode does not utilizes a hash function. The most costly
mode in terms of area is HCH since it requires 6 registers in contrast to the three
registers required by the HCTR. Additionally, HCH has more possible inputs for
its AES building block. In terms of speed, the fastest mode is HCTR since it only
utilizes one AES block cipher call in sequential mode, whereas HCH requires a
total of four such calls (although only three have consequences in terms of clock
cycles since the other one is masked with the computation of the hash function).
HCHfp is better than both EME and HCH in terms of speed.

Table 3. Hardware costs of the HCTR, HCH and EME modes with an underlying
AES full pipeline core: The time and clock-cycles are the time required to encrypt 32
blocks

Mode Slices B-RAM Frequency Clock Cycles Time Latency Throughput TPA
(MHz) Cycles (μS) (μS) GBits/Sec

HCH 13755 85 65.939 107 1.622 1.167 2.46 24.42
HCHfp 12970 85 66.500 96 1.443 0.992 2.83 29.05
HCTR 12068 85 79.65 89 1.117 0.703 3.66 39.81
EME 10120 87 67.835 107 1.576 1.120 2.64 29.85

In Table 4 we show the four modes of operation when using a sequential
implementation of the AES core. In a sequential architecture, EME is the most
inefficient mode in terms of latency due to the two costly block cipher passes
that require eleven clock cycles per block. Hence, a significant increment in the
required number of clock cycles is observed for the EME mode. This situation
does not occur in HCTR or in HCH since they only need one encryption pass. The
hash function computation is not affected in this scenario due to the fact that
we use a multiplier which is essentially a combinatorial circuit able to produce
a result in one clock cycle.

Efficient Implementations of Some TES in Reconfigurable Hardware 423

Table 4. Hardware costs of the HCTR, HCH and EME modes with an underlying
sequential AES core: The times reported are for 32 blocks

Mode Slices B-RAM Frequency Clock Cycles Time Throughput TPA
(MHz) (μS) (Gbits/sec)

HCH 8688 18 64.026 416 6.497 0.631 14.00
HCHfp 7903 18 64.587 405 6.270 0.653 15.73
HCTR 7006 18 77.737 388 4.991 0.820 21.53
EME 5053 20 65.922 716 10.861 0.377 12.09

Discussion: As we stated in Section 3 the design objective would be to match
the data rates of modern day disk controllers which are of the order of 3Gbits/sec.
Table 4 shows that using a sequential design it is not possible to achieve such data
rates though this strategy provides more compact designs. If we are interested
in encrypting hard disks of desktop or laptop computers the area constraint is
not that high, but speed would be the main concern. So, a pipelined AES will
probably be the best choice for designing disk encryption schemes.

From Table 3 we see that the most efficient mode in terms of speed is HCTR
followed by HCHfp, EME and HCH. The full functionality of HCH is not needed
for disk encryption schemes as for this application messages would be of fixed
length. Thus we can conclude that HCTR and HCHfp are the best modes to use
for this application. But, the security guarantees that HCTR provides is quite
weak as it have a cubic security bound. Thus, among the different modes that
we implemented, and in view of all these constraints, HCHfp should probably
be the most preferred mode.

7 Conclusion

We presented optimized implementation of three TES. To our knowledge this is
the first work to report real performance data of any TES on hardware. There
are many other TES schemes which needs to be implemented and then a true
performance comparison would be possible. This performance comparison will
of course help in selection of the best mode. This work can be seen as a first step
towards this objective.

References

1. Bo Yang, R.K., Mishra, S.: A high speed architecture for galois/counter mode of
operation (gcm). Cryptology ePrint Archive, Report 2005/146 (2005),
http://eprint.iacr.org/

2. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

3. Chakraborty, D., Sarkar, P.: A New Mode of Encryption Providing a Tweakable
Strong Pseudo-random Permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

http://eprint.iacr.org/

424 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

4. Chakraborty, D., Sarkar, P.: HCH: A New Tweakable Enciphering Scheme Using
the Hash-Encrypt-Hash Approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

5. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-counter-hash approach. Cryptology ePrint Archive, Report 2007/028 (2007),
http://eprint.iacr.org/

6. Good, T., Benaissa, M.: AES on FPGA from the Fastest to the Smallest. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer,
Heidelberg (2005)

7. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

8. Halevi, S.: TET: A wide-block tweakable mode based on Naor-Reingold. Cryptol-
ogy ePrint Archive, Report 2007/014 (2007), http://eprint.iacr.org/

9. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

10. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

11. Hsiao, S.F., Chen, M.C.: Efficient Substructure Sharing Methods for Optimising
the Inner-Product Operations in Rijndael Advanced Encryption Standard. IEE
Proceedings on Computer and Digital Technology 152(5), 653–665 (2005)

12. IEEE Security in Storage Working Group (SISWG). PRP modes comparison IEEE
p1619.2. IEEE Computer Society (March 2007), Available at http://siswg.org/

13. Jarvinen, K., Tommiska, M., Skytta, J.: Comparative survey of high-performance
cryptographic algorithm implementations on FPGAs. Information Security, IEE
Proceedings 152(1), 3–12 (2005)

14. McGrew, D., Viega, J.: The galois/counter mode of operation (GCM), submission
to nist modes of operation process (January 2004), Available at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
gcm-revised-spec.pdf

15. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
Cryptology ePrint Archive, Report 2004/278 (2004), http://eprint.iacr.org/

16. Rodŕıguez-Henŕıquez, F., Koç, Ç.: On fully parallel karatsuba multipliers for
GF(2m). In: International Conference on Computer Science and Technology CST
2003, pp. 405–410. Acta Press (May 2003)

17. Sarkar, P.: Improving upon the TET mode of operation. Cryptology ePrint Archive,
Report 2007/317 (2007), http://eprint.iacr.org/

18. Seagate Technology. Internal 3.5-inch (sata) data sheet, Available at:
http://www.seagate.com/docs/pdf/datasheet/disc/ds internal sata.pdf

19. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://siswg.org/
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.seagate.com/docs/pdf/datasheet/disc/ds_internal_sata.pdf

Author Index

Arnault, François 341

Barua, Rana 351
Berger, Thierry P. 341
Bernstein, Daniel J. 167
Birkner, Peter 167
Burman, Sanjay 384

Cao, Zhenfu 183, 197, 297
Carter, Gary 138
Chakraborty, Debrup 414
Choudhary, Ashish 101

Dawson, Ed 138
Di Crescenzo, Giovanni 282
Didier, Frédéric 404
Dimitrov, Vassil 152
Dolev, Shlomi 123
Dubois, Renaud 210
Dunkelman, Orr 86
Duo, Lei 361

Englund, H̊akan 268

Feng, Dengguo 73
Fumaroli, Guillaume 210

Gauravaram, Praveen 393
Gopalakrishnan, K. 224

Hanaoka, Goichiro 331
Hisil, Huseyin 138
Hu, Lei 238
Huang, Xiaofang 183

Imai, Hideki 331

Jao, David 33
Jetchev, Dimitar 33
Ji, Wen 238
Johansson, Thomas 268

Kavuluru, Ramakanth 322
Klapper, Andrew 322
Kumar, Kundan 373

Lahiani, Limor 123
Lange, Tanja 167
Lauradoux, Cédric 341
Li, Chao 361
Liang, Xiaohui 197

Mambo, Masahiro 297
Mancillas-López, Cuauhtemoc 414
Matsushima, Toshiyasu 252
Mayer, Emmanuel 210
Minematsu, Kazuhiko 252
Minier, Marine 341
Mishra, Pradeep Kumar 152
Mukhopadhyay, Debdeep 373, 384
Muralidhara, V.N. 48

Ogawa, Kazuto 331
Ohtake, Go 331
Okeya, Katsuyuki 393

Pandey, Sumit Kumar 351
Pankaj, Ravi 351
Patra, Arpita 101
Paul, Souradyuti 58
Peters, Christiane 167
Preneel, Bart 58, 86

Rangan, C. Pandu 101
Rodŕıguez-Henŕıquez, Francisco 414
RoyChowdhury, Dipanwita 373

Saarinen, Markku-Juhani O. 1, 10
Saraswat, Vishal 282
Sekar, Gautham 58, 86
Sen, Sandeep 48
Shao, Jun 197, 297
Sönmez Turan, Meltem 268
Srinathan, Kannan 101

Thériault, Nicolas 224

Veezhinathan, Kamakoti 384
Venkatesan, Ramarathnam 33

Wang, Licheng 183, 197
Wang, Lihua 297
Wu, Wenling 73

426 Author Index

Yamamura, Akihiro 297
Yang, Yixian 183
Yao, Chui Zhi 224
Yasuda, Kan 18
Yung, Moti 123

Zhang, Lei 73

Zhang, Muxiang 312

Zhang, Wentao 73

Zheng, Shihui 183

	Title Page
	Preface
	Organization
	Table of Contents
	Linearization Attacks Against Syndrome Based Hashes
	Introduction
	The FSB Compression Function
	Linearization Attack
	The Selection of Alphabet in a Preimage Attack
	Invertibility of Random Binary Matrices

	Finding Collisions When r = 2w
	Larger Alphabets
	Pre-image Search
	Collision Search

	Conclusions
	Appendix: A Collision and Pre-image Example

	A Meet-in-the-Middle Collision Attack Against the New FORK-256
	Introduction
	Description of New FORK-256
	Observations
	A Collision Attack
	First Phase
	Second Phase
	Runtime Analysis

	Further Work
	Conclusion

	Multilane HMAC— Security beyond the Birthday Limit
	Introduction
	Preliminaries
	General Framework
	Two-Lane NMAC
	L-Lane NMAC (L \geq 3)
	L-Lane HMAC
	Performance Issues
	Concluding Comments

	On the Bits of Elliptic Curve Diffie-Hellman Keys
	Introduction
	Preliminaries
	Partial Diffie-Hellman Bits

	Algebraic Case with Low Degree Extensions
	Elliptic Curves over Finite Field Extensions of Degree 2
	Elliptic Curves over Extensions of Degree 3
	Elliptic Curves over \F_{q}

	Analytic Case
	Our Conjecture on Character Sums
	Relationship to an Error-Correcting Code
	Proof of Our Conjecture on Average

	Expander Graphs and Character Sums
	Constructing the Graph G_E and the Subgraph G'
	Distributional Properties

	A Result on the Distribution of Quadratic Residues with Applications to Elliptic Curve Cryptography
	Introduction
	El-Gamal Cryptosystem
	Previous Results
	Main Result

	Proof of the Main Result
	A Modified ECC
	Key Generation
	Encryption
	Decryption

	Randomizing the Distribution of Quadratic Residues in a Finite Field
	Weil's Theorem

	Related-Key Attacks on the Py-Family of Ciphers and an Approach to Repair the Weaknesses
	Introduction
	Description of the Stream Ciphers TPypy, TPy, Pypy and Py
	Notation and Convention
	Related-Key Weaknesses in the Py-Family of Ciphers
	Propagation of the Weaknesses Through the Key Setup Algorithm
	Propagation of the Weaknesses Through the IV Setup
	Propagation of the Weaknesses Through the Round Function
	The Distinguisher
	Attacks with Shorter Keys

	New Stream Ciphers -- RCR-32 and RCR-64
	Security Analysis

	Future Work and Conclusion

	Related-Key Differential-Linear Attacks on Reduced AES-192
	Introduction
	Differential-Linear Cryptanalysis
	Description of AES
	Notations

	A 5-Round Related-Key Differential-Linear Distinguisher
	Attacking 7-Round
	The Attack Procedure
	Analysis of the Attack Complexity

	Attacking 8-Round
	Analysis of the Attack Complexity

	Another Attack on 7-Round AES-192
	Summary

	Improved Meet-in-the-Middle Attacks on Reduced-Round DES
	Introduction
	Description of DES
	An Alternative Description of DES and Notations Used
	Meet-in-the-Middle Attack on 4-Round DES
	A Meet-in-the-Middle Attack with One Known Plaintext
	Using Multiple Known Plaintexts
	Using Chosen Ciphertexts

	Attack on 5-Round DES
	Using Chosen Plaintexts

	Attack on 6-Round DES
	Conclusions and Open Problems

	Probabilistic Perfectly Reliable and Secure Message Transmission – Possibility, Feasibility and Optimality
	Introduction
	Our Contribution
	Network Model

	Probabilistic Perfectly Reliable Message Transmission
	Characterization for PPRMT
	Lower Bound on Communication Complexity of Single Phase PPRMT Protocol
	Single Phase Bit Optimal PPRMT Protocol

	Multiphase PPSMT Protocol in Undirected Networks
	Characterization for Multiphase PPSMT Protocol
	Lower Bound on Communication Complexity of Multiphase PPSMT Protocol
	Constant Phase Bit Optimal PPSMT Protocol

	Conclusion

	SECRET SWARM UNIT Reactive k−Secret Sharing (Extended Abstract)
	Introduction
	Swarm Settings
	Reactive k-Secret Counting -- The Chinese Remainder Solution
	Reactive k-Secret -- Counting/Multiplying Polynomial-Based Solution
	Virtual Automaton
	Conclusions

	New Formulae for Efficient Elliptic Curve Arithmetic
	Introduction
	New Doubling Formulae
	New Tripling Formulae
	Mixed-Addition for Modified Jacobi-Quartic Coordinates
	Alternative Base Points
	Conclusion

	A Graph Theoretic Analysis of Double Base Number Systems
	Introduction
	Background: Double Base Number System
	Graphical Representation of Numbers: The DBNS Graphs
	Some Special DBNS-Graphs
	Operations on DBNS-Graphs

	Generalization to More Than 2 Bases
	A Partition of S_n
	Integer Arithmetic Using DBNS-Graphs
	Conclusion

	Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication
	Introduction
	Edwards Curves
	Fast Addition on Elliptic Curves
	Background: Double-Base Chains for Single-Scalar Multiplication
	New Results
	Appendix: Quintupling on Edwards Curves

	Transitive Signatures from Braid Groups
	Introduction
	Primitive of Transitive Signature and Related Constructions
	Background of Braid-Based Public Key Cryptography
	Contributions and Organizations

	Preliminaries
	Braid Group and Related Cryptographic Assumptions
	Notations and Definitions

	Transitive Signatures from Braid Groups
	Security Level, Performance Evaluation and Parameters Suggestion
	Conclusions

	Proxy Re-signature Schemes Without Random Oracles
	Introduction
	Our Contribution
	Paper Organization

	Definitions
	Bidirectional Proxy Re-signature
	Bidirectional ID-Based Proxy Re-signature
	Bilinear Maps
	The Computational Diffie-Hellman Assumption (CDH)

	Bidirectional Proxy Re-signature Schemes
	S_{mb}: Multi-use Bidirectional Scheme
	S_{id-mb}: ID-Based Multi-use Bidirectional Scheme

	Conclusions

	First-Order Differential Power Analysis on the Duplication Method
	Introduction
	The Duplication Method
	An Analytical Canvas for DPA Attacks
	First-Order DPA Attacks
	Soundness of a First-Order DPA Attack

	Zero Attack When φ Is Variable
	Attack When φ Is Constant
	Countermeasures
	Conclusion
	Proofs
	Proof of Proposition 2
	Proof of Proposition 3

	Solving Discrete Logarithms from Partial Knowledge of the Key
	Introduction
	Background
	Generic Algorithms for Solving DLP
	Side Channel Attacks

	Scenario I -- Contiguous Bits of the Key Is Revealed
	Case III -- Middle Part

	Scenario II -- Partial Information About the Square and Multiply Chain Is Revealed
	Concluding Remarks
	Case I -- Left Part
	Case II -- Right Part
	Solving the Diophantine Equation
	Computing r and k

	New Description of SMS4 by an Embedding over GF(2^8)
	Introduction
	Notation

	A Brief Description of SMS4
	An Extended Cipher of SMS4
	Extension Maps
	The ESMS4 Cipher

	Multivariate Quadratic Equations
	Solving the Equation System of SMS4 with the XSL Algorithm
	Conclusion

	Tweakable Enciphering Schemes from Hash-Sum-Expansion
	Introduction
	Preliminaries
	The Security of Hash-Sum-Expansion
	Main Theorem
	Variants of HSE

	Applications
	Implementation Based on a Blockcipher
	Other Implementations
	Construction of a Double-Block-Length SPRP

	Conclusion
	Maurer's Methodology
	Proof of Lemma 1

	A Framework for Chosen IV Statistical Analysis of Stream Ciphers
	Introduction
	Preliminaries
	Hypothesis Testing
	Algebraic Normal Form of a Boolean Function
	Computation of Algebraic Normal Form
	Properties of a Random Boolean Function

	A Framework for Chosen IV Statistical Attacks
	A Generalized Approach
	The Monomial Distribution Test
	The Maximal Degree Monomial
	Other Possible Tests

	Experimental Results
	Grain-128
	Trivium
	Decim

	Conclusions
	Linear Regression Model for d-Monomial Test of Grain

	Public Key Encryption with Searchable Keywords Based on Jacobi Symbols
	Introduction
	Definitions and Preliminaries
	Public-Key Encryption with Keyword Search

	Our Construction
	An Informal Discussion
	Formal Description

	Properties of Our Construction
	Proof of Consistency
	Proof of Security

	A Certificate-Based Proxy Cryptosystem with Revocable Proxy Decryption Power
	Introduction
	Bilinear Pairings and Complexity Assumption
	A CBPd Scheme with Revocable Proxy Decryption Power
	Definitions
	Our Scheme
	Correctness

	Security
	How to Revoke Proxy Decryption Power
	IND-CBPd-Rev-CCA

	Discussion
	Concluding Remarks
	Proof of Theorem 1

	Computationally-Efficient Password Authenticated Key Exchange Based on Quadratic Residues
	Introduction
	Security Model
	Computationally-Efficient Password Authenticated Key Exchange Based on Quadratic Residues
	Formal Security Analysis
	Conclusion

	On the k-Operation Linear Complexity of Periodic Sequences (Extended Abstract)
	Introduction
	Preliminaries
	Notation for k Operation Modification
	Main Result
	Conclusion

	Trade-Off Traitor Tracing
	Introduction
	Related Works
	Our Contribution

	Model: Trade-Off Traitor Tracing
	Concrete Construction of Trade-Off Traitor Tracing
	Evaluation
	Traceability
	Evaluation on the Number of Dynamic Computations
	Delayed Attack Resilience

	Conclusion

	X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs
	Introduction
	Background on FCSRs and 2-Adic Sequences
	Design of X-FCSR-128 and X-FCSR-256
	Design Rationale and Security Analysis
	Conclusion

	Efficient Window-Based Scalar Multiplication on Elliptic Curves Using Double-Base Number System
	Introduction
	Double-Base Number System
	Proposed Window-Based Method for Scalar Multiplication
	Representation of n

	Computation of T^P and ${T_{all}^{P}}$
	Comparison

	Extended Multi-Property-Preserving and ECM-Construction
	Introduction
	Notation
	An Example of Merkle-Damg\{aa}rd Construction
	Distribution of Merkle-Damg\{aa}rd Construction
	New Construction and MPP
	Generalized Enveloped MPP Transformation

	Design of a Differential Power Analysis Resistant Masked AES S-Box
	Introduction
	Design of Glitch Free Masked AND Gate
	Data Dependent Glitch Free Masked GF(2^n) Multiplier
	A Regular GF(2^n) Multiplier Architecture
	The Masked Implementation of the $Generate Companion Matrix$
	The Masked Implementation of the AND-XOR Plane

	Experimental Set-Up and Results
	Conclusion

	LFSR Based Stream Ciphers Are Vulnerable to Power Attacks
	Introduction
	Preliminaries
	LFSRs
	Dynamic Power Consumption of an LFSR

	The Proposed SCA Model
	The Proposed Attack

	Countermeasure to the SCA
	Conclusions

	An Update on the Side Channel Cryptanalysis of MACs Based on Cryptographic Hash Functions
	Introduction
	Cryptographic Hash Functions
	NMAC/HMAC Functions

	Side Channel Attacks on NMAC/HMAC
	DPA and Reverse DPA Attack Models
	Okeya's Analysis of NMAC/HMAC

	Extending Okeya's Attack to Different Block/State Sizes
	Partial Key Recovery of NMAC/HMAC with f^{(3*)} / f^{(7*)}

	Hybrid MAC Proposals
	Other MAC Proposals Based on Hash Functions
	M-NMAC Function
	Variants of M-NMAC

	Side Channel Attacks on M-NMAC and Its Variants
	Target Compression Functions in M-NMAC
	DPA/RDPA Attacks on M-NMAC and Its Variants

	Forgery Attacks on M-NMAC and Its Variants
	Conclusion
	12 Provably Secure PGV Compression Functions

	Attacking the Filter Generator by Finding Zero Inputs of the Filtering Function
	Introduction
	Attack Principle
	Bias Computation
	Complexity Analysis
	Experimental Results
	Conclusion
	Lemma Used in the Bias Computation

	Efficient Implementations of Some Tweakable Enciphering Schemes in Reconfigurable Hardware
	Introduction
	The Schemes
	Design Decisions
	The Design Overviews
	Implementation
	Results
	Conclusion

	Author Index

