
T. Washio et al. (Eds.): PAKDD 2007 Workshops, LNAI 4819, pp. 322–331, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Deploying Mobile Agents in Distributed Data Mining

Xining Li and JingBo Ni

State Key Laboratory of Novel Software Technology (Nanjing University)
Department of Computing and Information Science, University of Guelph, Canada

xli@cis.uoguelph.ca, jni@uoguelph.ca

Abstract. Mining information from distributed data sources over the Internet is a
growing research area. The introduction of mobile agent paradigm opens a new
door for distributed data mining and knowledge discovery applications. In this
paper, we present the design of a mobile agent system, which couples a logic
language based application programming interface for service discovery and
database access. Our proposal aims at implementing system tools to enable
intelligent mobile agents to search for distributed data services, to roams the
Internet for accessing distributed data sites, to discover patterns and extract useful
information from facts recorded in databases, to generate global data model
through the communication and aggregation of local results, and to overcome the
barriers posed by network congestion, poor security and unreliability.

Keywords: Mobile agent, distributed data mining, service discovery, database
service.

1 Introduction

Mobile agent systems bring forward the creative idea of moving user defined
computations – agents, towards network resources, and provide a whole new
architecture for designing distributed systems. Distributed data mining (DDM) is one
of the important application areas of deploying intelligent mobile agent paradigm [1],
[2]. Most existing DDM projects focus on approaches to apply various machine
leaning algorithms to compute descriptive models of the physically distributed data
sources. Although these approaches provide numerous algorithms, ranging from
statistical model to symbolic/logic models, they typically consider homogeneous data
sites and require the support of distributed databases. As the number and size of
databases and data warehouses grow at phenomenal rates, one of the main challenges
in DDM is the design and implementation of system infrastructure that scales up to
large, dynamic and remote data sources. The objective of our research is to equip
mobile agents with system tools such that those agents can search for data sites, move
from hosts to hosts, gather information and access databases, carry out complex data
mining algorithms, and generate global data model or pattern through the aggregation
of the local results.

To deploy mobile agents in DDM, a mobile agent system must provide languages
and various programming interfaces for fast and easy development of applications.
Different languages, such as C and Java, have been chosen as agent-programming

 Deploying Mobile Agents in Distributed Data Mining 323

languages for variety of reasons. Among them, logic-programming languages prove
to be an alternative tool of building mobile agents. Benefiting from their powerful
deductive abilities, complex calculations can often be represented by a set of compact
logic predicates, which make agents more suitable to migrate around the network. In
addition, mobile agents must interact with their hosts in order to use data services or
to negotiate services with service providers. Discovering services for mobile agents
came form two considerations. First, the agents possess local knowledge of the
network and have a limited functionality, since only agents of limited size and
complexity can efficiently migrate in a network and have little overhead. Hence
specific services are required which aim at deploying mobile agents efficiently in
system and network management. Secondly, mobile agents are subject to strong
security restrictions, which are enforced by the system security mechanism. Thus,
mobile agents should find services that help to complete security-critical tasks, other
than execute code, which might jeopardize remote servers. Following this trend, it
becomes increasingly important to give agents the ability of finding and making use
of data services that are available in a network [3]. A variety of Service Discovery
Protocols (SDPs) are currently under development by some companies and research
groups. The most well known schemes are Sun's Java based JiniTM [4], Salutation [5],
Microsoft's UPP [6], IETF's draft Service Location Protocol [7] and OASIS UDDI
[8]. Some of these SDPs are extended and applied by several mobile agent systems to
solve the service discovery problem.

In a DDM environment, data may be stored among physically distributed sites and
may be artificially partitioned among different sites for better scalability. Therefore
endowing mobile agents with the ability of accessing remote databases is the basis for
DDM applications. This encourages us to explore the strategies of coupling a mobile
agent programming language with database access facilities. In recent years numerous
approaches have been made under the topic of designing a coupled system that
integrates a relational database and a logic programming language. They all enable
programmers to access large amounts of shared data for knowledge processing,
manage data efficiently as well as process data intelligently. Generally speaking,
coupling a logic programming language with database access facility can be roughly
divided into two categories. A loosely coupled system embeds a non-logic language,
such as the Structure Query Language (SQL), within the logic-programming context
and a closely coupled system provides database query interface as a subset or an
extension of the language for featuring dynamic query formulation and view access.
For example, SWI-Prolog [9] and KB-Prolog [10] belong to the first and CGW [11]
and Quintus [12] fall into the second category.

In this paper we present the design and implementation of a mobile agent system,
which couples a logic language based application programming interface for DDM.
Two important system modules, namely, service discovery and database access, have
been encapsulated and installed inside of the existing IMAGO (Intelligent Mobile
Agent Gliding On-line) system. The IMAGO system is an infrastructure for mobile
agent applications. It includes code for the IMAGO server - a Multi-threading Logic
Virtual Machine, the IMAGO-Prolog - a Prolog-like programming language extended
with a rich API for implementing mobile agent and DDM applications, and the
IMAGO IDE, a Java-GUI based program from which users can do editing, compiling,
and invoking an agent application. The remainder of the paper is organized as

324 X. Li and J. Ni

follows. Section 2 gives an overview of the design of service discovery module and
integration with the IMAGO system. In Section 3, we discuss definitions of the
database predicates and how agents to use them in DDM applications. In Section 4,
we present the database connection management and briefly explain the way of
integrating the database interface into the IMAGO system. Finally, we give the
concluding remarks as well as future work.

2 Data Service Discovery

The general idea of distributed data services is that a DDM application may be
separated from the data sites needed to fulfill a task. These data sites are mostly
modeled by local and centralized databases, which are independent of, or sometimes
unknown to the application. A commonly used DDM approach is to apply traditional
data mining algorithms to an aggregation of data retrieved from physically distributed
data sources. However, this approach may be impractical to a large scale of data sets
distributed over the Internet. Deploying mobile agent paradigm in DDM offers a
possible solution because the application may decompose data mining problems to
scale up to a large distributed data sources and dispatch agents to carry out distributed
data processing. This in turn leads us to the data service discovery problem, that is,
how to find data sites available to a DDM application.

Clearly, the number of services that will become available in the Internet is
expected to grow enormously. Examples are information access via the Internet,
multi-media on demand, Web services and services that use computational
infrastructure, such as P2P computing and Grid computing. In general, the service
usage model is role-based. An entity providing services that can be utilized by other
requesting entities acts as a provider. Conversely, an entity requesting the provision of
a service is called a requester. To be able to offer services, a provider in turn can act
as a requester making use of other services. In a distributed system, requesters and
providers usually live on physically separate hosts. Providers should from time to
time advertise services by broadcasting to requesters or registering their services on
third party servers.

In the IMAGO system, we have implemented a new data service discovery model
DSSEM (Discovery Service via Search Engine Model) for mobile agents [13].
DSSEM is based on a search engine, a global Web search tool with centralized index
and fuzzy retrieval. This model especially aims at solving the database service
location problem and is integrated with the IMAGO system. Data service providers
manually register their services in a service discovery server. A mobile agent locates a
specific service by migrating to the service discovery server and subsequently
submitting requests with the required data description. The design goal of DSSEM is
to provide a flexible and efficient service discovery protocol in a mobile agent based
DDM environment.

Before a service can be discovered, it should make itself public. This process is
called service advertisement. The work can be done when services are initialized, or
every time they change their states via broadcasting to anyone who is listening. A
service advertisement should consist of the service identifier, plus a simple string
describing what the service is, or a set of strings for specifications and attributes.

 Deploying Mobile Agents in Distributed Data Mining 325

The most significant feature of DSSEM is that we enrich the service description by
using web page’s URL to replace the traditional string-set service description in
mobile agent systems. That is, service providers use web pages to advertise their
services. Because of the specific characteristics, such as containing rich media
information (text, sound, image, etc.), working with the standard HTTP protocol and
being able to reference each other, web pages may play a key role acting as the
template of the service description. On the other hand, since the search engine is a
mature technology and offers an automated indexing tool that can provide a highly
efficient ranking mechanism for the collected information, it is useful for acting as the
directory server in our model. Of course, DSSEM also benefits from previous service
discovery research in selected areas but is endowed with a new concept by combining
some special features of mobile agents as well as integrating service discovery tool
with agent servers.

IMAGO
Servers

access

search

migrate

mobile
agent directory

discovery
module

search
engine

mobile
agent

mobile
agent

mobile
agent

database
module

database database

database
module

Web page
advertise

Web page
advertise

migrate

migrate

Sevice
Discovery

Server

Fig. 1. An Example of Service discovery and Data Mining Process

In principle, data service providers register the URLs of their websites that
advertise all the information concerning services. As a middleware on the service
discovery server, the search engine will periodically retrieve web pages indicated in
URLs and all their referencing documents, parse tags and words in documents and set
up the relationship between the keywords and the host address of these service
providers. On the other hand, a mobile agent can move to a service discovery server,
utilize the system interface to access the search engine’s database and obtain an
itinerary that includes a list of ranked host addresses of the data service providers.
Based on the given itinerary, the mobile agent may travel from host to host to carry
out a DDM application. Figure 1 gives an example of service discovery and data
mining process.

The application programming interface of data service discovery for mobile agents
is a built-in predicate, namely, web_search(Query, Number, Result), where Query is a
compound term specifying characteristics of the search, Number is an integer
indicating what is the maximum number of results expected, and Result is a variable

326 X. Li and J. Ni

to hold return values. For example, suppose a food company wants to analyze the
customer transaction records for quickly developing successful business strategies, its
DDM agent may move to a known IMAGO service discovery server and then issue a
query predicate requesting up to 10 possible food industry database locations:

web_search(locate(“food”, “customer transaction”, “imago data server”), 10, R)

The agent is blocked and control is transferred to the service discovery module of the
hosting IMAGO server. The discovery module will communicate with the searcher,
wait for search results, and resume the execution of the blocked agent. Search results
will be delivered to the requesting agent in the form of list, where entries of the list
are ranked in priorities from high to low.

3 Data Mining Facilities

Having received a list of database addresses through the service discovery module,
the agent may move from host to host to access these databases or clone multiple
agents with assigned database addresses to start the DDM application. In order to
bridge logic based mobile agents with database systems, the IMAGO system provides
a set of database predicates, which enables agents to establish connection with data
sources and make requests for desired information.

A database connection is established by issuing a predicate of the form
db_connection(Info , ID , E), where the input argument Info binds with the address
and authorization information, such as database address, user name and password, the
output argument ID will be bound with an integer uniquely identifying a successful
connection, and E will be bound with an integer, either 0 or an negative error code
indicating if the current predicate succeeds or fails. To disconnect a database, the
agent may issue a predicate db_disconnection(ID , E), where ID represents the
connection to be closed, and E returns execution result. Suppose that an agent has
obtained a public-accessible database server address xxx.yyy.zz.ww, and it wants to
access data anonymously, the agent may simply execute the following code:

 Info = connect(“xxx.yyy.zz.ww”, “anonymous”, _),
 db_connection(Info, ID, E1),
 // Access and apply data mining algorithm through connection ID
 db_disconnection(ID, E2).

To facilitate DDM applications, the IMAGO system provides two different ways
of database access operations, i.e., the set retrieval and the tuple retrieval. The former
returns the entire matching data set to the requesting agent, whereas the latter allows
the requesting agent to consume the matching data on the tuple by tuple basis. A set
retrieval operation is defined by predicate db_search_set(ID , DB , Q , Dataset , E),
where ID indicates a pre-established database server connection, DB is bound with a
string representing the target database name, Q gives the searching query, Dataset is a
variable holding the retrieval result, and E is a variable to be bound with a positive
integer, which gives the number of records in the data set if the operation succeeds, or
a negative integer if the operation fails. For example, suppose that an agent has

 Deploying Mobile Agents in Distributed Data Mining 327

established a database server connection ID, it can search for the whole set of
customer records from a public database by issuing the following predicates:

db_search_set(ID, “public_database”, “select * from customer”, Dataset, E),
data_mining_algorithm(Dataset).

Obviously, the set retrieval is not practical if the return result involves a huge
amount of matching records. The operation of tuple retrieval is introduced to handle
this case. There are two predicates to implement tuple retrieval operations, i.e.,
db_search_tuple and db_tuple_next. The first predicate shares the same syntactic
form as the set retrieval predicate. Its behavior is to initialize a system manipulated
searching buffer and return the first marching record. The second predicate consumes
the next available data record from the system buffer orderly. Remaining records are
maintained by the IMAGO database module and linked with the connection identified
by ID. Therefore through this linkage the matching data records can be sequentially
consumed by a sequence of db_tuple_next predicates, which are probably invoked
recursively. An example of using tuple retrieval is given by the following example:

db_search_tuple(ID, “public_database”, “select * from customer”, DataRec, E),
data_mining_algorithm(ID, DataRec), // invoke data mining algorithm

where the procedure data_mining_algorithm may be defined as follows:

data_mining_algorithm(ID, DataRec):-
 // Processing the current DataRec,
 db_tuple_next(ID, DataRecNext, E),

E<0 →
 terminate;
 data_mining_algorithm(ID, DataRecNext).

Through the recursive invocation of db_tuple_next predicate, the entire result set is
accessed on the record-by-record basis. The value of E in the db_tuple_next predicate
can be used as a recursion termination condition because it will be bound with a
negative integer when the bottom of the record set is reached.

In a DDM application, agents are not working alone and they need to communicate
with each other to cooperate and generate a global data aggregation for further analysis.
Most existing mobile agent systems adopt some kind of communication models/
protocols from traditional distributed systems. However, the IMAGO system adopts a
different strategy to cope with this issue. The idea is to deploy intelligent mobile
messengers for inter-agent communication [14]. Messengers are thin agents dedicated to
deliver messages. Like normal agents, a messenger can move, clone, and make
decisions. Unlike normal agents, a messenger is anonymous and its special task is to
track down the receiving agent and reliably deliver messages in a dynamic, changing
environment. The IMAGO system provides a set of built-in messengers as a part of its
programming interface. A data-mining agent at any remote sites and at any time may
dispatch messengers to deliver data to designated receivers. For example, suppose that a
mobile agent has completed its data mining work at a remote database server, it can
either call move(‘home’) to carry results and migrate back to its stationary server, or
invoke dispatch($oneway_messenger, ‘home’, Results) to create a messenger which is
responsible to deliver Results to the home server.

328 X. Li and J. Ni

Communication among agents takes place by means of an Agent Communication
Language (ACL). The essence of an ACL is to make data mining agents
understanding the purpose and meaning of their exchanged data. In general, a
message consists of two aspects, namely, performative and content. The performative
specifies the purpose of a message and the content gives a concrete description for
achieving the purpose. In order to facilitate open standards of ACL’s, the IMAGO
agent-based communication model is in compliance with the FIPA ACL message
structure specification [15]. Of course, the performative and content of a message
often determine the reaction of the receiver. In addition to the various types of system
built-in messengers for sending agents, the IMAGO system provides a set of
predicates for receiving agents. The predicate which is similar to an unblocking
receive is accept(Sender, Msg). An invocation to this procedure succeeds if a
matching messenger is found, or fails if either the caller's messenger queue is empty
or there is no matching messenger in the queue. Likewise, the predicate which
implements the concept of blocking receive is wait_accept(Sender, Msg). A call to
this procedure succeeds immediately if a matching messenger is found. However, it
will cause the caller to be blocked if either the caller's messenger queue is empty, or
no matching messenger can be found. In this case, it will be automatically re-executed
when a new messenger attaches to the caller's messenger queue. Pragmatically, the
semantics of matching messengers is implemented by logic unification.

4 Database Connection Management

In the design of a logic based DDM system, an important consideration is efficiency.
Several proposals on efficiently manipulating databases have been made at both
technical level and logic level. On the technical level, a database connection
management scheme is proposed to reduce the cost of network establishments by
reusing existing database connections [16]. In addition, the data set retrieved from
databases can be handled efficiently by a cache management system, which stores
pre-fetched data and enables most queries to be fulfilled in these local caches at least
partially [17]. On the logic level, a method of delayed evaluation is introduced by
[18], which prevents redundant information being retrieved in a single logic program
context. Obviously, establishing, maintaining, or terminating a database connection is
always regarded as an expensive job, which not only occupies network resources but
also takes significant amount of user/system overhead. The idea of connection
management is to let all database operations issued by agents share a number of pre-
generated database connections, and therefore many unnecessary establishment and
termination operations can be avoided.

To simply our discussion, let C denote a set of database connections, where each
entry of C is a quadruple (Id, Status, Name, Link). As before, ID is an integer
identifying a connection, Status holds the current connection states, such as FREE,
CONNECTED, or OCCUPIED, Name gives the symbolic name of the database and
Link indicates the address of the database associated with the connection. As an
example, let us assume the following set of database connections:

C = [(1, FREE, _, NULL), (2, CONNECTED, “public_database”, “131.104.49.49”),
(3, OCCUPIED, “localhost”, “127.0.0.1”)].

 Deploying Mobile Agents in Distributed Data Mining 329

It is clear that the first entry of C represents a FREE connection, the second entry
holds a CONNECTED state indicating that the connection has been established and
linked to a target database but is not being used currently, whereas the last entry shows
an OCCUPIED connection, which is connected to the database installed on the
localhost and an agent is accessing data through this connection. Initially all entries in C
are FREE. Whenever an agent issues a connection request, the IMAGO database
module will first try to find a CONNECTED entry with the condition that whose target
database is the same as that requested by the db_connection predicate. The selected
connection is ready for data retrieval because it has already connected to the desired
database. However, if such an entry cannot be found, a FREE entry will be picked up
and connection establishment operation is invoked. A worse case is that set C has
reached its maximum capacity and none of the above two types of entries exist.
Therefore, the system must find a CONNECTED entry, disconnect it, and set it FREE to
establish a new connection to the required database. Of course, the state of a selected
entry needs to be changed from either CONNECTED or FREE to OCCUPIED before
being used and a new pair of username and password provided by the db_connection
predicate needs, if necessary, to be re-authorized by the database system. Finally, if all
entries of C are of OCCUPIED state, the subsequent connection requests will be
blocked until some data mining agents release their connections explicitly.

Having finished the desired data mining, an agent may call db_disconnection
predicate to return the database connection by simply changing its state from
OCCUPIED to CONNECTED without actually terminating the connection with the
target database. Other agents would probably reuse this non-terminated connection
sooner or later and therefore save network resources and reduce system/user
overhead.

5 Conclusion

In this paper, we discussed the scheme of deploying mobile agents in DDM
applications. The advantage of adopting mobile agents for DDM is to scale up to
large, dynamic and remote data sources, such as various databases distributed over the
Internet. We presented the design of data service discovery module and database
management module. The programming interface of these modules is a set system
built-in predicates capable to couple a logic programming language with
functionalities of locating data services and accessing remote databases. Equipped
with those system tools, mobile agents may search for suitable data sites, roam the
Internet to collect useful information, and communicate with each other to generate a
global view of data through the aggregation of distributed computations. In order to
verify the feasibility and efficiency of the mobile agent based DDM proposal,
experimental service discovery module and database management module have been
implemented and integrated with the IMAGO system. The service discovery module
is based on the search engine technology and concentrates on locating database
services. It uses web pages as a medium to advertise services, and runs an
independent search engine to gather and index service provider’s information, such as
service types, database names, URLs, access modes, as well as possible verification
information. The database management module not only provides flexible interface

330 X. Li and J. Ni

for accessing data, but also manipulates database connections efficiently. At the
current stage, the database model in the IMAGO system is MySQL, the most popular
open source DBMS system in the world [19].

Research on the agent based DDM involves further extensions of the IMAGO
system. First, the current implementation of service discovery module deals with only
a limited number of logical relationships. To be able to offer more precise discovery
service, this module could be enhanced to parse some complex search criteria, such as
conditional expressions and sub-string matching. Secondly, since databases may
contain multi-dimensional data, retrieving such kind of information from flat web
pages is a pending problem. We are looking to use XML meta-data to solve the
database dimensional problem. In addition, we are making investigations on adding
more programming languages to the IMAGO system, as well as introducing more
flexible and efficient communication tools, such as mobile socket, to facilitate DDM
applications.

Acknowledgments. We would like to express our appreciation to the Natural Science
and Engineering Council of Canada and State Key Laboratory of Novel Software
Technology (Nanjing University) for supporting this research.

References

[1] Klusch, M., Lodi, S., Moro, G.: The Role of Agents in Distributed Data Mining: Issues
and Benefits. In: IEEE/WIC International Conference on Intelligent Agent Technology
(IAT 2003) (2003)

[2] Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Applications,
Data Mining Handbook. In: Ye, N. (ed.) (2002)

[3] Bettstetter, C., Renner, C.: A Comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol. In: Proc. of EUNICE 2000, sixth
EUNICE Open European Summer School, pp. 13–15 (2000)

[4] Hashman, S., Knudsen, S.: The Application of Jini Technology to Enhance the Delivery
of Mobile Services, White Paper (2001), http://wwws.sun.com/

[5] Salutation Consortium, Salutation Architecture Overview, White Paper (1998),
www.salutation.org/whitepaper

[6] Universal Plug and Play Forum, Universal Plug and Play Device Architecture, Version
0.91, White Paper (2000)

[7] Guttman, E., Perkins, C.: Veizades, Service Location Protocol, Version 2, White Paper,
IETF, RFC 2608 (1999)

[8] OASIS UDDI, UDDI White Paper (2005), http://www.uddi.org
[9] Wielemaker, J.: SWI-Prolog ODBC Interface, technical report University of Amsterdam,

The Netherlands (2000)
[10] Bocca, J., Dahmen, M., Macartney, G.: KB-Prolog User Guide, Technical Report, ECRC

Munich (1989)
[11] Ceri, S., Gottlob, G., Wiederhold, G.: Efficient Database Access from Prolog. IEEE

Transactions on Software Engineering 15(2), 153–164 (1989)
[12] Quintus Inc., Quintus Prolog Database Interface Manual, technical report (1998),

http://www.sics.se/
[13] Song, L., Li, X., Ni, J.: A Database Service Discovery Model for Mobile Agents.

International Journal of Intelligent Information Technologies 2(2), 16–29 (2006)

 Deploying Mobile Agents in Distributed Data Mining 331

[14] Li, X., Autran, G.: Inter-agent Communication in IMAGO Prolog, Lecture Notes in
Artificial Intelligence. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.)
Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp. 163–180. Springer,
Heidelberg (2005)

[15] FIPA ACL, Agent Communication Language Specifications, FIPA (2005), http://
www.fipa.org

[16] Mckay, D., Finin, T., O’Hare, A.: The Intelligent Database Interface: Integrating AI and
Database Systems. In: Proceedings of the 8th National Conference on Artificial
Intelligence, pp. 677–684 (1990)

[17] Sheth, A., O’Hare, A.: The Architecture of BrAID: A System for Bridging AI/DB
Systems. In: Proceedings of the Seventh International Conference on Data Engineering,
pp. 570–581 (1991)

[18] Cuppens, F., Demolombe, R.: A Prolog-relational DBMS Interface Using Delayed
Evaluation. In: Proc. 3rd Int. Conf. On Data and Knowledge Bases, pp. 135–148 (1988)

[19] MySQL AB MySQL Reference Manual, user’s manual (2005), http://dev.mysql.com/
doc/mysql/en/

	Deploying Mobile Agents in Distributed Data Mining
	Introduction
	Data Service Discovery
	Data Mining Facilities
	Database Connection Management
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

