
Deriving XACML Policies
from Business Process Models

Christian Wolter1, Andreas Schaad1, and Christoph Meinel2

1 SAP Research
Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

{christian.wolter,andreas.schaad}@sap.com
2 Hasso-Plattner-Institute (HPI) for IT Systems Engineering

University of Potsdam, Germany
meinel@hpi.uni-potsdam.de

Abstract. The Business Process Modeling Notation (BPMN) has become a de-
facto standard for describing processes in an accessible graphical notation. The
eXtensible Access Control Markup Language (XACML) is an OASIS standard
to specify and enforce platform independent access control policies.

In this paper we define a mapping between the BPMN and XACML meta-
models to provide a model-driven extraction of security policies from a business
process model. Specific types of organisational control and compliance policies
that can be expressed in a graphical fashion at the business process modeling level
can now be transformed into the corresponding task authorizations and access
control policies for process-aware information systems.

As a proof of concept, we extract XACML access control policies from a secu-
rity augmented banking domain business process. We present an XSLT converter
that transforms modeled security constraints into XACML policies that can be
deployed and enforced in a policy enforcement and decision environment. We
discuss the benefits of our modeling approach and outline how XACML can sup-
port task-based compliance in business processes.

Keywords: Policy Definition, Integration, Enforcement, Separation of Duties
Business Process Modeling, eXtensible Access Control Markup Language.

1 Introduction

The control and audit of activities is a fundamental principle in systems with a high
degree of human interaction [1]. In the domain of information systems security and
compliance, access control models are used to decide on the ways in which the avail-
ability of resources is managed and company assets are protected.

A multitude of access control models and related specification languages have
emerged over the last decades. Requirements, such as “access control models must
allow high level specification of access rights, thereby better managing the increased
complexity [..]” [2], are representative of today’s collaborative, service-integrated, and
process-aware information systems. What is evident is the need for business experts to
able to define their compliance requirements at a business process level, while the corre-
sponding access control policies need to be specified and enforced at the backend- and

M. Weske, M.-S. Hacid, C. Godart (Eds.): WISE 2007 Workshops, LNCS 4832, pp. 142–153, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Deriving XACML Policies from Business Process Models 143

service-level of an enterprise information system [3]. In the domain of access control
engineering Crampton et al. state “[..] that existing approaches to the specification of
authorization constraints are unnecessarily complicated” [4]. For instance, this applies
to the well defined eXtensible Access Control Markup Language [5]. This XML-based
notation is very expressive, but policy definition is cumbersome and tool support is
scarce. The manual definition of XACML policies is slow, error prone and may lead to
policy inconsistencies and disruption of related business process execution.

We base our work on two key observations with respect to business process driven
security administration and compliance management for service-based integrated enter-
prise environments. First, there is a set of well defined and accessible business process
modeling notations used to describe enterprise service orchestration based on Web Ser-
vices that are widely accepted and standardized. Second, only the security specialists
specify security policies for enterprise services on a very technical level to create re-
lated security policies instead of the actual stakeholder which is the business process
domain expert.

Based on these observations, as an initial step, we had enriched the semantics of the
Business Process Modeling Notations (BPMN) in [6] to leverage the specification of ac-
cess control security policies (e.g., separation of duty) for process-aware information
systems onto the level of the process model definition itself. In this paper, we now ad-
dress the issue of XACML policy specification usability and present a novel approach
to derive concrete security policies, from a business process model, transform them
into a dedicated policy specification language, such as RBAC-extended XACML pol-
icy sets, and deploy these policies in a policy enforcement enriched process execution
environment based on Web Services. In essence, in this paper we provide:

– An evaluation of the BPMN and XACML meta-model and description of which
entities must be mapped to each other in order to derive XACML security policies
from BPMN models.

– A mapping to define a model transformation that extracts policy information from
an XML-based business process model description to automate the generation of
according XACML policies.

– A proof of concept prototype XSLT transformation script, applied on some example
separation of duty constraints taken from a banking process [1].

The rest of this paper is organized as follows. The next section provides some back-
ground information about the Business Process Modeling Notation along with our
security augmentation for task-based authorization. In Section 3 we discuss the under-
lying meta-models of BPMN and XACML and identify a mapping between entities of
both models in order to define a model transformation to derive XACML policies. In
Section 4 we demonstrate the feasibility of our mapping proposal by presenting an
XSLT transformation applied to a given example banking process. The process is stored
as an XML document and parsed by an XSLT transformer to generate XACML policies.
Section 5 presents some related work in the area of policy modeling and model-based
policy generation. The last section discusses our current approach and outlines future
work, such as policy analysis that goes beyond syntactical validation of policy sets.

144 C. Wolter, A. Schaad, and C. Meinel

2 Background

In this section we provide some short background information about the Business Pro-
cess Modeling Notation and the eXtensible Access Control Markup Language.

2.1 Business Process Modeling Notation

The Business Process Modeling Notation has emerged as a standard notation for cap-
turing business processes, especially at the level of domain analysis and high-level
systems design. The notation inherits and combines elements from a number of other
proposed notations for business process modeling, including the XML Process Defini-
tion Language (XPDL) [7] and the Activity Diagrams component of the Unified Mod-
eling Notation (UML). Figure 1 depicts an excerpt of the BPMN meta-model. For the
sake of simplicity we omitted some elements that are not relevant in the course of this
paper. BPMN process models are composed of flow objects such as routing gateways,
events, and activity nodes. Activities, commonly referred to as tasks, represent items
of work performed by software systems or humans, i.e. human activities. Activities are
assigned to pools and lanes expressing organizational institutions, roles and role hier-
archies. Routing gateways and events capture the flow of control between activities.
Control flow elements connect activity nodes by means of a flow relation in almost ar-
bitrary ways [8]. BPMN supports so called artifacts that enrich the process model by
information entities that do not affect the underlying control flow and are a dedicated
extension points to add additional information to the model. We provided an extension
for security semantics in BPMN by adding an authorization constraint artifact.

Fig. 1. BPMN Entitiy Diagram Excerpt

2.2 Constrained Business Process

The authorization constraint artifacts we proposed in [6] basically consist of two argu-
ments nu and mth (cf. Figure 2). The first denotes the number of different users that
must perform at least one activity of the set of activities indicated by a group or lane
element the constraint is applied to. The latter argument defines the maximum number
of activity instances of a given set of activities a single user may perform. This thresh-
old value is necessary to restrict the number of possible task invocations of looped or

Deriving XACML Policies from Business Process Models 145

Fig. 2. Modeling of Authorization Constraints [6]

Fig. 3. Example Business Process Model

multiple-instance tasks. Crampton et al. defined such constraints as cardinality con-
straints [4]. The authorization constraint artifact can be assigned to groups, lanes, and
repetitive activities.

We applied our notation to a banking process illustrated in Figure 3 and modeled
security constraints for this process that are discussed in [1]. The process describes the
necessary steps for opening an account for a customer. Therefore, the customer’s per-
sonal data is acquired. The customer is identified and the customer’s credit worthiness
is checked by an external institution. Afterwards, one of several product bundles is cho-
sen. A form is printed for the selected bundle that is signed by the customer and the
bank.

A role-based authorization constraint for a role Clerk is expressed by assigning the
set of tasks {T 1, T 2, T 3, T 4, T5, T6, T8} to the lane labeled Clerk. A second role-
based authorization constraint for the role Manager is expressed by combining the tasks
of the role clerk with the task T 7. The nesting of the lane Clerk within the lane Manager
expresses a role hierarchy. We defined two separation of duty constraints for the pairs of

146 C. Wolter, A. Schaad, and C. Meinel

conflicting tasks {T 3, T 4} and {T 7, T 8} by adding the related authorization constraints
to both groups. In the same way we expressed a binding of duty constraint for tasks
{T 1, T 2}. A last operative separation of duty constraint is directly assigned to the lane
Clerk that restricts the executive power of a single clerk for a process instance to five
activities.

2.3 eXtensible Access Control Markup Language

XACML is an OASIS standard that allows the specification of XML-based access con-
trol policies, primarily applied to the domain of Web Services. Referring to Figure 4,
XACML specifies a request-response protocol and a data flow model between a service
requester, a policy enforcement point (PEP), a context handler, and a policy decision
point (PDP). Each access request is send to the PEP and forwarded to the context han-
dler. The context handler creates a request context that is unique for each access request.
The request context holds a snapshot of the overall system state. For instance audit
log information, timestamps, or a subject’s organisational context, such as user role.
This information is collected from diverse backend systems, e.g. directory services,
database systems, or workflow management systems. This request-dependent informa-
tion is stored as context attributes and is used by the policy decision point to decide
whether to grant or deny an access request. A detailed description of the data flow is
given in [5].

The meta-model of XACML is shown in Figure 5. The root of all XACML policies
is a policy or a policyset element. Policysets may hold one or more policies or other
policysets. Each policy contains rule elements which are evaluated by the PDP. Target
elements specify the context a rule applies to or not. A target is composed of subject,
resource, and action elements. A subject element defines a human interacting with the
system. A resource element defines a protected entity, such as a Web Service, file or
process task in the context of a workflow management system. An action element de-
fines the operation that is performed on the protected resource element. If more than
one rule applies a rule combining algorithm defines the outcome of the overall decision
request.

Condition elements further restrict the overall decision based on the contextual at-
tributes of the access request. A condition contains a predicate which evaluates to either
true or false, e.g. a subject’s role attribute must be clerk. If the condition returns true
the rule’s effect is returned. The effect may result in a permit, deny, or not applicable

Fig. 4. XACML Overview

Deriving XACML Policies from Business Process Models 147

Fig. 5. XACML Entity Diagram Excerpt [5]

statement. An obligation is an additional activity (e.g. sending a notification email) that
must be performed by the policy enforcement point in case a policy applies to a specific
request and rule effect.

3 Mapping of BPMN to XACML Elements

In order to automate the extraction of security policies from process models we discuss
in this section the relationship and respective mapping between selected meta-model
entities of BPMN and XACML. The dotted lines in Figure 6, indicate the mappings we
are discussing in the following:

XACML subject role attributes of the policy target can be derived from lanes and
nested lanes respectively. A lane represents an organisational role, thus the semantic of
embedded human activities is interpreted as a role-task assignment.

The BPMN elements activity and human activity are mapped to XACML resource
elements as part of the policy target. In the context of a workflow management system
we consider a process task as a resource. In the domain of process management an
activity has several possible states that are related to human interaction, namely ready,
activated, completed, or canceled. Therefore, for each task we derive three XACML
action elements for the XACML policy target, each related to a state transition that can
be performed on a task.

BPMN group, lane, and authorization constraint elements are mapped onto an
XACML condition element of an XACML policy rule. A condition describes under
which circumstances a rule applies for a matching target or not. This supports fine-
grained access control and is essential to express separation of duty or binding of duty
constraints. In case of separation of duty authorization constraints an XACML condi-
tion is generated, where the condition must not be met. For instance a specific task must
not be performed by the same subject. Binding of duty constraints result in an XACML
condition element that must be met. For instance, a subject must have executed a previ-
ous activity in order to perform the requested activity.

BPMN authorization constraint elements also map onto an XACML obligation ele-
ment. Obligation elements represent meta-information for an XACML enabled policy
enforcement point and contain activities that must be performed by the enforcement
point depending on the outcome of the policy evaluation. For instance in case of op-
erational separation and binding of duty constraints potential obligations for a policy
enforcement point are extended audit information housekeeping in a backend system to
store a subject’s activity history information.

148 C. Wolter, A. Schaad, and C. Meinel

Fig. 6. Mapping of BPMN to XACML

4 Extraction of XACML Elements from BPMN

We developed an XSLT transformation script that automates the generation of XACML
policies and stores them in an XML format file that can be read by an XACML based
policy decision point. Basically, the script performs the following steps on a given
BPMN process source stored in XML-format (cf. Figure 7):

Fig. 7. BPMN Process Source

1. Role Engineering
The process model is parsed for lane elements. For each lane the script generates
a role-based policy set. Each human activity that is assigned to that lane results
in a policy and three rules. These rules allow the actions activate, complete, and
cancel for each human activity by a subject that holds a role attribute with the
corresponding role represented by the lane. If the transformer detects a nested lane
a new role-based policy set is created and its contained policies are referenced by
the parent lane. According to [5] this allows to express role-hierarchies in terms of
role seniority.

Deriving XACML Policies from Business Process Models 149

2. Condition Definition
If the transformer detects an authorization artifact it adds a condition element to the
affected policy rule. In the case of separation of duty constraints the logical function
of the condition is NOT. For binding of duty constraints the logical function AND
is used. This logical function will be applied to all arguments within the condition
element. The authorization constraint references a set of activities either by pointing
to a group artifact or a lane element.

3. Argument Generation
For each human activity defined in a referenced task group or lane element an at-
tribute function is applied to the condition element. This element takes a subject
identifier, a process identifier, a set of task identifier (i.e. argument bag), and an op-
tional threshold value as arguments. We defined an abstract check:history function
for the XACML context handler able to query audit log information from work-
flow systems. Depending on the utilized system this function must be adapted. The
check:history function returns true or false if the subject has performed any of the
tasks referenced by the set of tasks in the argument bag.

Fig. 8. Policy Generation as a Petri-Net

The described steps are implemented by an XSLT script. The overall algorithm is
shown in Figure 8 as a Petri-Net. This script extracts information from a BPMN source
process, such as shown in Figure 7, and stores them as XACML policies. Please note,
due to the length of the overall transformation we can only provide a small script extract
in this paper. Parts of the resulting XACML policy set that is generated based on our
example (cf. Figure 7) is depicted in Figure 9. The extract shows a separation of duty
condition between the two tasks Check Credit Worthiness and Check Rating as well
as a simple task-role assignment of the task Check Credit Worthiness to the role Clerk.
Regarding the syntactical complexity of a simple separation of duty policy between two
tasks in XACML, it is comprehensible why XACML lacks a wide spread deployment in

150 C. Wolter, A. Schaad, and C. Meinel

Fig. 9. Resulting XACML Policy Set Extract

enterprise environments and how our model transformation approach to automatically
derive security policies from business process models may mitigate this situation.

While this description is tailored for the BPMN meta-model, our approach is general
in nature and can be applied to other process modeling notations, for instance XPDL
[7] or jPDL [9].

5 Related Work

Our integration approach of BPMN and XACML on the meta-model level is related to
some areas of model-driven security and general modeling of authorizations in work-
flow systems.

In the domain of UML-based security modeling several approaches exist, such as
UMLSec [10], SecureUML [11], or a modeling methodology presented by Dobmeier
and Pernul in [12]. These approaches allow to model fine-grained access control on
the application level for accessing services in open systems, such as Web Services, by
terms of generating code fragments from UML models, but they do not address access
control in the context of workflow management systems. In SECTET [13] a novel ap-
proach for the specification of model-driven access rights for service-oriented architec-
tures is presented. In SECTET security policies are expressed in a predictive language
and are translated into platform independent XACML permissions interpreted by a se-
curity gateway. A similar approach is taken in [14] by deriving XML-based security
policies from policies described in natural language. They created a set of grammars
which execute on a shallow parser that are designed to identify rule elements in natural
language policies. In the domain of graphical security policy specification Hoagland

Deriving XACML Policies from Business Process Models 151

et al. developed LaSCO [15] a graph-based specification language for security policies.
LaSCO policies are specified as expressions in logic and as directed graphs, giving a
visual view of the policy. A LaSCO specification can be automatically translated into
executable code that checks an invocation of a Java application with respect to a pol-
icy. In [16], Neumann et al. discussed a graphical role engineering and administration
tool to define authorization constraints that can be enforced as part of RBAC context
constraints.

In [17] and [18] various workflow meta models are analysed in order to evaluate the
capabilities to model a workflow as a set of relating roles. Roles are defined in term
of goals, qualifications, obligations, permissions, protocols, etc. Nevertheless, they did
not address the problem of task-based authorization and their enforcement in a process-
aware environment. In [19], Atluri et al. define role allocation constraints in the context
of workflows and then assign one or more users to each role. They are able to express se-
curity policies, such as separation of duties, as constraints on users and roles and devel-
oped a constraint consistency analysis algorithms, but provide no translation to actually
enforce their policies in an information system. In the area of model transformation
for business processes Strembeck et al. [20] presented a transformation algorithm to
extract RBAC policies from process models expressed in BPEL. They present an ap-
proach to integrate Role-Based Access Control (RBAC) and BPEL on the meta-model
level and automate steps of the role engineering process. Transforming process models
into a machine executable notation is also discussed in [21] by Aalst et al. They defined
a mapping to convert the control-flow structure of a BPMN source model into BPEL, a
language supported by several process execution platforms. The workflow meta-model
described in [22] by Leymann and Roller also contained access control elements, but
omitted a detailed discussion and extraction of enforceable security policies.

6 Conclusion

In this paper we presented an approach for the automated derivation of authorization
constraints from BPMN model annotations to enforceable XACML policies. This was
based on an analysis of the two corresponding meta-models and the definition of an
appropriate transformation algorithm. Our work is motivated by two main observations.

First, the definition of XACML policies is overly complex, cumbersome, and time
consuming. This may result in syntactical and semantical errors. The automated gen-
eration of XACML policies from a modeling notation that is more accessible by hu-
mans than directly editing XACML policies will speed up the whole policy engineering
process. It allows for the direct definition of policies in the context of the underlying
business process, avoiding potential inconsistencies between defined security policies
and process models based on model changes.

Second, the usability and benefits of our compliance extensions for the Business Pro-
cess Modeling Notation are strengthened by the mapping to XACML policies that can
be directly enforced in an enterprise environment based on Web-Service orchestration
and demonstrate how the complexity of XACML-based policy administration can be
reduced by defining them on a more abstract level. A reduced complexity of XACML

152 C. Wolter, A. Schaad, and C. Meinel

policy administration may lead to a wider roll-out of the XACML standard in enterprise
information systems and overall increased general acceptance.

In future work we plan to integrate an XACML-based policy enforcement and deci-
sion point into a process execution engine that works in conjunction with an user man-
agement service. As mentioned in Section 4, we will implement the XACML context
handler extension check:history capable of accessing audit logs and activity specific his-
tory information stored in workflow management systems along with a new XACML
obligation method used for policy-based auditing. In conjunction, both will support
task-based compliance for business critical processes that goes beyond traditional role-
based security and access control lists. Another interesting aspect would be to apply a
consistency checking algorithm, such as proposed in [4], to avoid the creation of contra-
dicting policies either on the XACML model or the BPMN model itself. From a model
transformation perspective, we also think about bi-directional model transformation ap-
proaches to enable the import of existing XACML policies into a given process model
in order to support system migration scenarios.

References

1. Schaad, A., Lotz, V., Sohr, K.: A Model-checking Approach to Analysing Organisational
Controls in a Loan Origination Process. In: SACMAT 2006. Proceedings of the eleventh
ACM symposium on Access control models and technologies (2006)

2. Tolone, W., Ahn, G.-J., Pai, T., Hong, S.-P.: Access control in collaborative systems. ACM
Comput. Surv. 37(1), 29–41 (2005)

3. Schreiter, T., Laures, G.: A Business Process-centered Approach for Modeling Enterprise Ar-
chitectures. In: Proceedings of Methoden, Konzepte und Technologien für die Entwicklung
von dienstebasierten Informationssystemen (EMISA) (2006)

4. Tan, K., Crampton, J., Gunter, C.: The consistency of task-based authorization constraints in
workflow systems. In: CSFW 2004. Proceedings of the 17th IEEE workshop on Computer
Security Foundations (2004)

5. Anderson, A.: Core and hierarchical role based access control (RBAC) profile of XACML
v2.0. OASIS Standard (2005)

6. Wolter, C., Schaad, A.: Modeling of Authorization Constraints in BPMN. In: BPM 2007.
Proceedings of the 5th International Conference on Business Process Management (2007)

7. The Workflow Management Coalition.: Process Definition Interface – XML Process Defini-
tion Language (2005), http://www.wfmc.org

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal Semantics and Automated Analysis of
BPMN Process Models. In: ePrints Archive (2006)

9. Red Hat Middleware.: JBoss jBPM 2.0 jPdl Reference Manual (2007),
http://www.jboss.com/products/jbpm/docs/jpdl

10. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: UML 2002.
Proceedings of the 5th International Conference on The Unified Modeling Language, pp.
412–425 (2002)

11. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security for Process-Oriented Systems.
In: SACMAT 2003. Proceedings of the eighth ACM symposium on Access control models
and technologies, pp. 100–109 (2003)

12. Dobmeier, W., Pernuk, G.: Modellierung von Zugiffsrichtlinien für offene Systeme.
In: Tagungsband Fachgruppentreffen Entwicklungsmethoden für Informationssysteme und
deren Anwendung (EMISA 2006) (2006)

http://www.wfmc.org
http://www.jboss.com/products/jbpm/docs/jpdl

Deriving XACML Policies from Business Process Models 153

13. Alam, M., Breu, R., Hafner, M.: Modeling permissions in a (u/x)ml world. In: ARES 2006.
Proceedings of the First International Conference on Availability, Reliability and Security,
Washington, DC, USA, pp. 685–692. IEEE Computer Society Press, Los Alamitos (2006)

14. Brodie, C.A., Karat, C.-M., Karat, J.: An empirical study of natural language parsing of
privacy policy rules using the sparcle policy workbench. In: SOUPS 2006. Proceedings of
the second symposium on Usable privacy and security, pp. 8–19. ACM Press, New York
(2006)

15. Hoagland, J.A., Pandey, R., Levitt, K.N.: Security Policy Specification Using a Graphical
Approach. In Technical report CSE-98-3. The University of California, Davis Department of
Computer Science (1998)

16. Neumann, G., Strembeck, M.: An approach to engineer and enforce context constraints in
an rbac environment. In: Proc. of the 8th ACM Symposium on Access Control Models and
Technologies (SACMAT) (2003)

17. Muehlen, M.z.: Evaluation of workflow management systems using meta models. In: HICSS
1999. Proceedings of the Thirty-second Annual Hawaii International Conference on Sys-
tem Sciences, Washington, DC, USA, vol. 5, p. 5060. IEEE Computer Society Press, Los
Alamitos (1999)

18. Yu, L., Schmid, B.: A conceptual framework for agent-oriented and role-based work ow
modeling. In: Proc. of the 1st Int. Workshop on Agent-Oriented Information Systems (1999)

19. Bertino, E., Ferrari, E., Atluri, V.: The Specification and Enforcement of Authorization Con-
straints in Workflow Management Systems. ACM Transactions on Information and System
Security 2, 65–104 (1999)

20. Mendling, J., Strembeck, M., Stermsek, G., Neumann, G.: An approach to extract rbac mod-
els from bpel4ws processes. In: Proceedings of the 13th IEEE International Workshops on
Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE), Modena,
Italy (June 2004)

21. Ouyang, C., van der Aalst, W.M.P., Marlon, D., ter Hofstede, Arthur, H.M.: Translating
BPMN to BPEL. In: BPM Center Report BPM-06-02 (2006)

22. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR,
Upper Saddle River (2000)

23. Object Management Group.: Business Process Modeling Notation Specification (2006),
www.bpmn.org

www.bpmn.org

	Deriving XACML Policies from Business Process Models
	Introduction
	Background
	Business Process Modeling Notation
	Constrained Business Process
	eXtensible Access Control Markup Language

	Mapping of BPMN to XACML Elements
	Extraction of XACML Elements from BPMN
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

