

Lecture Notes in Computer Science 4863
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Anthony Bonato Fan R.K. Chung (Eds.)

Algorithms and Models
for the Web-Graph

5th International Workshop, WAW 2007
San Diego, CA, USA, December 11-12, 2007
Proceedings

13

Volume Editors

Anthony Bonato
Wilfrid Laurier University, Department of Mathematics
Waterloo, ON, N2L 3C5, Canada
E-mail: abonato@rogers.com

Fan R.K. Chung
University of California, San Diego, Department of Mathematics
La Jolla, CA 92093-0112, USA
E-mail: fan@math.ucsd.edu

Library of Congress Control Number: 2007939821

CR Subject Classification (1998): F.2, G.2, H.4, H.3, C.2, H.2.8, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77003-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77003-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12197316 06/3180 5 4 3 2 1 0

Preface

This volume constitutes the refereed proceedings of the Fifth Workshop on Al-
gorithms and Models for the Web-Graph, WAW 2007, held in San Diego in
December 2007. The proceedings consist of 18 revised papers (13 regular pa-
pers and 5 short papers) which were reviewed and selected from a large pool of
submissions. The papers address a wide variety of topics related to the study
of the Web-graph such as random graph models for the Web-graph, PageRank
analysis and computation, decentralized search, local partitioning algorithms,
and traceroute sampling.

The Web-graph has been the focal point of a tremendous amount of research
for more than a decade. The view of the Web as a graph has great practical im-
portance and has also generated much interesting theoretical work. A goal of the
2007 Workshop was to present state-of-the art research on both the applications
and theory of the Web-graph. Our hope is that the papers presented here will
help stimulate new and exciting avenues of research on the Web-graph.

December 2007 Anthony Bonato
Fan Chung Graham

Organization

Executive Committee

Conference Chair Ronald Graham (University of California, San
Diego, USA)

Local Arrangements Chair Tara Javidi (University of California, San
Diego, USA)

Program Committee Co-chair Anthony Bonato (Wilfrid Laurier University,
Canada)

Program Committee Co-chair Fan Chung Graham (University of California,
San Diego, USA)

Program Committee Co-chair Tara Javidi (University of California, San
Diego, USA)

Organizing Committee

Andrei Broder, (Yahoo! Research, USA)
Fan Chung Graham (University of California, San Diego, USA)
Jeannette Janssen, (Dalhousie University, Canada)
Tara Javidi (University of California, San Diego, USA)
Lincoln Lu (University of South Carolina, USA)

Program Committee

Dimitris Achlioptas, (University of California, Santa Cruz, USA)
Colin Cooper, (King’s College London, UK)
Anthony Bonato (Wilfrid Laurier University, Canada)
Alan Frieze (Carnegie Mellon University, USA)
Michael Goodrich, (University of California, Irvine, USA)
Fan Chung Graham (University of California, San Diego, USA)
Jeannette Janssen, (Dalhousie University, Canada)
Tara Javidi (University of California, San Diego, USA)
Ravi Kumar (Yahoo! Research, USA)
Kevin Lang, (Yahoo! Research, USA)
Stefano Leonardi (Università di Roma, Italy)
Lincoln Lu (University of South Carolina, USA)
Milena Mihail (Georgia Institute of Technology, USA)
Michael Mitzenmacher (Harvard University, USA)
Muthu Muthukrishnan (Rutgers University and Google Inc., USA)
Joel Spencer (New York University, USA)
Walter Willinger (AT&T Research, USA)

VIII Organization

Sponsoring Institutions

California Institute for Telecommunications and Information Technology
Google Inc.
Yahoo! Research
National Science Foundation
Springer Lecture Notes in Computer Science
University of California, San Diego

Table of Contents

Bias Reduction in Traceroute Sampling – Towards a More Accurate
Map of the Internet . 1

Abraham D. Flaxman and Juan Vera

Distribution of PageRank Mass Among Principle Components of the
Web . 16

Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham

Finding a Dense-Core in Jellyfish Graphs . 29
Mira Gonen, Dana Ron, Udi Weinsberg, and Avishai Wool

A Geometric Preferential Attachment Model of Networks II 41
Abraham D. Flaxman, Alan M. Frieze, and Juan Vera

Clustering Social Networks . 56
Nina Mishra, Robert Schreiber, Isabelle Stanton, and
Robert E. Tarjan

Manipulation-Resistant Reputations Using Hitting Time 68
John Hopcroft and Daniel Sheldon

Using Polynomial Chaos to Compute the Influence of Multiple Random
Surfers in the PageRank Model . 82

Paul G. Constantine and David F. Gleich

A Spatial Web Graph Model with Local Influence Regions 96
W. Aiello, A. Bonato, C. Cooper, J. Janssen, and P. Pra�lat

Determining Factors Behind the PageRank Log-Log Plot 108
Yana Volkovich, Nelly Litvak, and Debora Donato

Approximating Betweenness Centrality . 124
David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail

Random Dot Product Graph Models for Social Networks 138
Stephen J. Young and Edward R. Scheinerman

Local Computation of PageRank Contributions . 150
Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft,
Vahab S. Mirrokni, and Shang-Hua Teng

Local Partitioning for Directed Graphs Using PageRank 166
Reid Andersen, Fan Chung, and Kevin Lang

Stochastic Kronecker Graphs . 179
Mohammad Mahdian and Ying Xu

X Table of Contents

Deterministic Decentralized Search in Random Graphs 187
Esteban Arcaute, Ning Chen, Ravi Kumar, David Liben-Nowell,
Mohammad Mahdian, Hamid Nazerzadeh, and Ying Xu

Using Bloom Filters to Speed Up HITS-Like Ranking Algorithms 195
Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy

Parallelizing the Computation of PageRank . 202
John Wicks and Amy Greenwald

Giant Component and Connectivity in Geographical Threshold
Graphs . 209

Milan Bradonjić, Aric Hagberg, and Allon G. Percus

Author Index . 217

Bias Reduction in Traceroute Sampling –

Towards a More Accurate Map of the Internet

Abraham D. Flaxman1 and Juan Vera2

1 Microsoft Research
Redmond, WA

abie@microsoft.com
2 Georgia Institute of Technology

Atlanta, GA
jvera@cc.gatech.edu

Abstract. Traceroute sampling is an important technique in exploring
the internet router graph and the autonomous system graph. Although
it is one of the primary techniques used in calculating statistics about
the internet, it can introduce bias that corrupts these estimates. This
paper reports on a theoretical and experimental investigation of a new
technique to reduce the bias of traceroute sampling when estimating
the degree distribution. We develop a new estimator for the degree of a
node in a traceroute-sampled graph; validate the estimator theoretically
in Erdős-Rényi graphs and, through computer experiments, for a wider
range of graphs; and apply it to produce a new picture of the degree
distribution of the autonomous system graph.

1 Introduction

The internet is quite a mysterious network. It is a huge and complex tangle of
routers, wired together by millions of edges. To understand this router graph is
quite a challenge, one that has driven research for the last decade.

The router graph has a natural clustering into Autonomous Systems (ASes),
which are sets of routers under the same management. Producing an accurate
picture of the AS graph is an important step towards understanding the internet.

There are three techniques for finding large sets of edges in the AS graph: the
WHOIS database, BGP tables, and traceroute sampling. No approach is clearly
superior, and the results of the different approaches are compared in detail in a
recent paper [14].

The present paper focuses on traceroute sampling, an approach applicable
to the router graph as well as the AS graph. Traceroute sampling consists of
recording the paths that packets follow when they are sent from monitor nodes
to target nodes, and merging all of these paths to produce an approximation of
the AS graph.

A seminal analysis using both traceroute sampling and BGP tables concluded
that the AS graph degree distribution follows a power-law (meaning that the
number of ASes of degree k is proportional to k−α for a wide range of k values)

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 A.D. Flaxman and J. Vera

[7]. This caused a shift in simulation methodology for evaluating network al-
gorithms and also contributed to the avalanche of recently developed network
models which produce power-law degree distributions.

However, the true nature of the AS-graph degree distribution was called into
question by computer experiments on synthetic graphs [12,17]. These experi-
ments show that if the sets of monitor and target nodes are too small then
traceroute sampling will produce a power-law degree distribution, even when
the underlying graph has a tightly concentrated degree distribution. Theoretical
follow-up work proved rigorously that in many non-power-law graphs, includ-
ing random regular graphs, an idealized model of traceroute sampling yields
power-law degree distributions [4,1].

Subsequent computer experiments have led some to believe that the bias in-
herent to traceroute sampling can be ignored, at least for making a qualita-
tive distinction between scale-free and homogeneous graphs, when using a large
enough set of monitor nodes [9]. This is also supported by an analysis using the
statistical physics technique of mean field approximation [5].

1.1 Our Contribution

This paper proposes a new way forward in the struggle to characterize the degree
distribution of the AS graph. Our contribution has three parts:

1. We derive a statistical technique for reducing the bias in traceroute sampling;
2. We verify the technique experimentally and theoretically, in the framework

previously studied in [12,4];
3. We use the traceroute bias-reduction technique to generate a more accurate

picture of the AS degree distribution over time, which suggests that aspects
of commercially available technology are reflected in the network topology.

Our approach for reducing the bias in traceroute sampling is based on a technique
from biostatistics, the multiple-recapture census, which has been developed for
estimating the size of an animal population [18] (this technique also has applica-
tions to proofreading [19]). However, we do not have the benefit of independent
random variables which are central to the animal counting and proofreading
statistics, and so we must adapt the technique to apply to random variables
with complicated dependencies.

To provide some evidence that this bias-reduction technique actually reduces
bias, we consider a widely used model of traceroute sampling, which assumes
that data travels from monitor to target along the shortest path in the network.
It is generally believed that the path that data actually takes is not the shortest
path, but that the shortest path is an acceptable approximation of the actual
path (see [13] for a discussion of this approximation). In this model, it is possible
to check theoretically and experimentally that the bias reduction provides a
better estimate of the degree distribution. We show that the new estimation is
asymptotically unbiased for the Erdős-Rényi random graph Gn,p when np �
log n, and that it gives improved estimates for finite instances from a variety of
different graphs.

Bias Reduction in Traceroute Sampling 3

Finally, we use the bias-reduction technique on real data, traceroute samples
from the internet. The new estimate of the AS-graph degree distribution is still
scale-free over two orders of magnitude, with an exponent very similar to the
uncorrected degree distribution (see Figure 1). A by-product of bias reduction
is the removal of all vertices with degree less than 3, and this increases the
average degree. For example, in March 2004 (the month used for comparison in
[14]), the biased estimate of average degree is 6.29, while after bias reduction the
average degree is 12.66 (which is very close to 12.52, the biased average degree
when restricted to vertices of degree at least 3). An interesting feature in the
bias-reduced AS degree distribution (from March 2004) is the lack of nodes with
degree between 65 and 90; at the time, a popular router maker offered a router
which provided up to 64 ports per chassis. In March 2002, before this product
was available, there was no dearth of 65 degree nodes.

2004, Biased

2004, Bias Reduced

2002, Bias Reduced

k

P
r[

d
eg

(u
)

>
k
]

.10

.11

.12

.13

.14

.11

.12

64 90

100 101 102 103

Fig. 1. Degree sequence ccdf estimates for the AS graph (from CAIDA skitter). Main
panel: March, 2004, with and without bias reduction. Inset: a portion of ccdf for March,
2004 and March, 2002, both with bias reduction. The nodes with degree between 65
and 90 in 2002 have disappeared in 2004.

1.2 Related Work

Internet mapping by traceroute sampling was pioneered by Pansiot and Grad
in [15], and the scale-free nature of the degree distribution was observed by
Faloutsos, Faloutsos, and Faloutsos in [7]. Since 1998, the Cooperative Associa-
tion for Internet Data Analysis (CAIDA) project skitter has archived traceroute
data that is collected daily [10]. The bias introduced by traceroute sampling
was identified in computer experiments by Lakhina, Byers, Crovella, and Xie
in [12] and Petermann and De Los Rios [17], and formally proven to hold in
a model of one-monitor, all-target traceroute sample by Clauset and Moore

4 A.D. Flaxman and J. Vera

[4] and, in further generality, by Achlioptas, Clauset, Kempe, and Moore [1].
Computer experiments by to Guillaume, Latapy, and Magoni [9] and an anal-
ysis using the mean field approximation of statistical physics due to Dall’Asta,
Alvarez-Hamelin, Barrat, Vázquez, and Vespignani [5] argue that, despite the
bias introduced by traceroute sampling, some sort of scale-free behavior can be
inferred from the union of traceroute-sampled paths.

The present paper provides a new avenue for investigating these controver-
sial questions, by developing a method for correcting the bias introduced by
traceroute sampling. Another recent paper by Viger, Barrat, Dall’Asta, Zhang
and Kolaczyk applied techniques from statistics to reduce the bias of traceroute
sampling [21]. That paper focused on estimating the number of nodes in the
AS graph, and applied techniques from a different problem in biostatistics, es-
timating the number of species in a bioregion. The problem of correcting bias
in sampled networks has a long history in sociology, although the biases in that
domain seem somewhat different; see the surveys by Frank, by Klovdahl, or by
Salganik and Heckathorn for an overview [8,11,20].

In addition to traceroute sampling, maps of the AS graph have been generated
in two different ways, using BGP tables and using the WHOIS database. A recent
paper by Mahadevan, Krioukov, Fomenkov, Dimitropoulos, claffy, and Vahdat
provides a detailed comparison of the graphs that result from each of these
measurement techniques [14].

1.3 Outline of What Follows

The new estimator for the degree of a node in the AS graph is developed from
multiple-recapture population estimation in Section 2. Section 3 argues that
this estimator generates an asymptotically unbiased degree distribution for the
Erdős-Rényi graph Gn,p when p � log n, which rigorously demonstrates that the
new estimator can reject a null hypothesis. Section 4 presents additional evidence
that the new estimator reduces the bias of traceroute sampling, in the form of
computer experiments on synthetic networks. Section 5 provides a comparison
between the degree sequence predicted by the new estimator and the previous
technique, and details how, after bias reduction, the degree distribution may
reflect economic and technological factors present in the system, i.e., there a
significantly larger marginal cost of adding a 65th neighbor than adding a 64th
neighbor when using the Juniper T320 edge router. Section 6 provides a conclu-
sion and focuses on directions of future research to strengthen this approach.

2 Estimation Technique

The classical capture-recapture approach to estimating an animal population
has two phases. First, an experimenter captures animals for a given time period,
marks them (with tags or bands), and releases them, recording the total number
of animals captured. Then, the experimenter captures animals for a second time
period, and records both the number of animals recaptured and the total number

Bias Reduction in Traceroute Sampling 5

of animals captured during the second period. If A denotes the number of animals
captured in phase one, B denotes the number captured during phase two, and
C denotes the number captured in phase one and captured again in phase two,
then an estimate of total population size is given by

̂N =

{

AB
C , if C �= 0;

∞, otherwise.

If the true population size is N , and each animal is captured or not cap-
tured during each phase independently, with probability p1 during phase one
and probability p2 during phase two, then ̂N is the maximum likelihood esti-
mate of N [18]. For more than two phases, the maximum likelihood estimator
does not have a simple closed form, but it can be computed efficiently using the
techniques developed in [18].

When estimating the degree of a particular AS by traceroute sampling, each
edge corresponds to an animal, and each monitor node corresponds to a recapture
phase. Unfortunately, in this setting there is no reason to believe that the events
“monitor i observes edge j” are independent. Indeed, when shortest-path routing
is used (as an approximation of BGP routing), these events are highly dependent.
However, it is still possible adapt the capture-recapture estimate to reduce bias
in this case.

Let G be a graph, and let s and t be monitor nodes in G. Let Gs be the union
of all routes discovered when sending packets from s to every node in the target
set. Define Gt analogously. Let Ns(u) denote the neighbors of u in Gs and define
Nt(u) analogously.

Using this notation, the modification of the capture-recapture estimate pro-
posed for traceroute sampling is given by

̂degs,t(u) =

{ |Ns(u)|·|Nt(u)|
|Ns(u)∩Nt(u)| , if |Ns(u) ∩ Nt(u)| > 2;

∞, otherwise.

When more than 2 monitor nodes are available, pair up the monitors, con-
sider the estimates given by each pair that are not ∞, and for the final estima-
tor, use the median of these values. So, if the monitor nodes are paired up as
(s1, t1), (s2, t2), ..., (sk, tk) then

̂deg(u) = median
({

̂degsi,ti
(u) �= ∞

})

.

This degree estimator can also provide an estimate of the cdf of the degree
distribution (i.e., the fraction of nodes with degree at most k) according to the
formula

̂d≤k = ̂Pr[deg(u) ≤ k] =
#{u : ̂degs,t(u) ≤ k}
#{u : ̂degs,t(u) < ∞}

.

Discussion: It may seem wasteful to consider the median-of-two-monitors es-
timate instead of combining all available monitors in a more holistic manner.

6 A.D. Flaxman and J. Vera

However, we have conducted computer experiments with maximum likelihood
estimators for multiple-recapture population estimation with more than two
phases, and the adaptations we have considered thus far perform significantly
worse than the median-of-two-monitors approach above. This is probably due to
the complicated dependencies of several overlapping shortest-path trees. How-
ever, the exploration we have conducted to date is not exhaustive, and does not
rule out the possibility that a significantly better estimator exists.

3 Theoretical Analysis

This section and the next intend to provide some assurance that repeated ap-
plication of ̂deg(u) is an accurate way to estimate the degree distribution of the
sampled graph.

This section provides a theoretical analysis of the performance of ̂deg(u) in a
very specific setting: when the underlying graph is the Erdős-Rényi graph Gn,p

with n sufficiently large, np � log n, and every vertex is a target node. For the
purpose of analysis, this section and the next assume that traceroute finds a
shortest path from monitor to target. This is the same setting that is considered
in [4].

Theorem 1. Let G ∼ Gn,p be a random graph with np = d � log n, and let s, t,
and u be uniformly random vertices of G. Then, for any k, with high probability,

̂d≤k =
#{u : ̂deg(u) ≤ k}
#{u : ̂deg(u) < ∞}

=
#{u : deg(u) ≤ k}

n
± O (1/d) .

Proof sketch: The analysis two breadth-first-search trees in a random graph is
difficult when the average degree is small. But, for d moderately large, as in this
theorem, the situation is simpler.

It follows from the branching-process approximation of breadth-first search
that with high probability there are (1 ± ε)di vertices at distance exactly i
from s (or t) when i < (log n)/(log d). Thus, almost all vertices are distance
�(log n)/(log d)	 apart. For ease of analysis, suppose that � = (log n)/(log d) is
an integer.

So, with high probability, if u is at distance � from s or t then it is a leaf node
in Gs or Gt. In this case, |Ns(u) ∩ Nt(u)| ≤ 1 and therefore ̂deg(u) = ∞.

Now, consider the case where vertex u is distance i from s and distance j from
t, where i, j < �. Let N(u) denote the neighbors of u in G, and then let S be the
set of vertices within distance i of s in G and let T be the set of vertices within
distance j of t in G. Conditioned on S, T and N(u), the set of indicator random
variables

{

1[v ∈ Ns(u)],1[v ∈ Nt(u)] : v ∈ N(u) \ (S ∪ T)
}

is independent, and, for v ∈ N(u) \ (S ∪ T), Pr[v ∈ Ns(u)] and Pr[v ∈ Nt(u)]
are functions of S and T , but constants with respect to v, i.e., Pr[v ∈ Ns] = ps

Bias Reduction in Traceroute Sampling 7

and Pr[v ∈ Nt] = pt. So, besides any edges between u and S ∪ T , the edges
incident to u in Gs[S] and Gt[T] yield the random variables |Ns(u)|, |Nt(u)|,
and |Ns(u) ∩ Nt(u)|, which correspond to A, B, and C in the capture-recapture
estimate of population size. For example, if there is only one edge incident to u
in Gs[S] and only one in Gt[T], and these edges are different, then

Pr
[

̂deg(u) ≥ k

∣

∣

∣

∣

S, T, N(u)
]

= Pr
[

(A + 1)(B + 1)
C

≥ k

]

,

where C ∼ B(|N(u)| − 2, pspt), A ∼ C + B(|N(u)| − 1 − C, ps), and B ∼ C +
B(|N(u)| − 1 − C, pt). If k is sufficiently large and ps and pt are not too small
then this probability is concentrated in the range k = |N(u)| ±

√

|N(u)|.
To complete the proof, it remains to show that, with probability 1 − O(1/d),

ps, pt ≥ ε and |N(u)∩ (S ∪T)| ≤ 2, and from this show that, for A, B, C defined
analogously to above,

Pr
[

(A + 1)(B + 1)
C

≥ k

]

= Pr[|N(u)| ≥ k]+O(1/d). �

Discussion: This analysis would go through without modification if the estimate
also included samples where |Ns(u) ∩ Nt(u)| = 2, but the definition of ̂deg(u)
from above seems to behave better under finite scaling.

The proof sketch can be adapted for random graphs with other degree distri-
butions, provided that the average degree is large. However, the proof relies on
the fact that the graph is locally tree-like, which ensures that N(u) ∩ (S ∪ T) is
likely to be small. This assumption does not seem to hold in the AS graph, and
even Gs, the union of all routes discovered from a single monitor node s, has some
triangles. The next section includes evidence from computer experiments that in
graphs which are not locally tree-like, such as the random geometric graph, esti-
mator ̂deg(u) is not asymptotically unbiased, but can still reduce some amount
of bias. Proving this rigorously may be a difficult task.

4 Computer Experiments

This section describes the results of a series of computer experiments conducted
to investigate how well ̂d≤k approximates the true degree distribution.

We consider three different distributions for random graphs, the Erdős-Rényi
model, the Preferential Attachment model, and the random geometric graph. Ad-
ditionally, we consider synthetic data based on a real-world graph, the Western
States Power Grid (WSPG), which Duncan Watts has graciously made available
to researchers [22]. These graphs will all be described in more detail below.

For each graph, we set edge e to be of length 1 + ηe, where ηe is selected
uniformly from the interval [−1/n, 1/n], where n is the number of vertices. This
ensures that there are not multiple shortest paths between pairs of vertices. We
approximate the path that data takes from a monitor to a target node by the
shortest path. This follows the experimental design of [12].

8 A.D. Flaxman and J. Vera

For each graph distribution, and for a range of graph sizes, edge densities,
monitor set sizes, and target set sizes, we estimate the degree of every vertex by
̂deg(u) and by the biased estimator given by the union of the edges discovered
by traceroute sampling,

̂degbiased(u) =

∣

∣

∣

∣

∣

⋃

s∈Vm

Ns(u)

∣

∣

∣

∣

∣

,

where Vm is the set of monitor nodes and Ns(u) denotes the neighbors of u in
the union of all routes discovered when sending packets from s to every node in
the target set Vt. This provides estimates of the degree distribution cdf, by the
reduced bias estimator ̂d≤k from above and by the biased estimator ̂d≤kbiased,
defined by

̂d≤kbiased =
#{u : ̂degbiased(u) ≤ k}
#{u : ̂degbiased(u) ≥ 1}

.

̂d≤kbiased has been the primary approach considered in prior work.
We use these estimates to calculate the �2 error of the degree distribution cdf

estimate, given by

errbiased =

(

∑∞
k=0

(

̂d≤kbiased − Pr[deg(u) ≤ k]
)2

)1/2

(
∑∞

k=0 Pr[deg(u) ≤ k]2)1/2 ,

and

errreduced =

(

∑∞
k=0

(

̂d≤k − Pr[deg(u) ≤ k]
)2

)1/2

(
∑∞

k=0 Pr[deg(u) ≤ k]2)1/2 ,

where Pr[deg(u) ≤ k] = #{u : deg(u) ≤ k}/n is the probability with respect to
a uniformly random choice of u from the vertices of G.

We also exhibit plots of the distribution and the two estimates for a typical
parameter setting. All error values reported are the median value of 100 experi-
ments, and the plots show the distribution with the median error as well as the
pointwise 90th percentile values from the 100 experiments.

4.1 Random Graph, Gn,m

The Erdős-Rényi distribution of graphs, Gn,m, can be generated by choosing a
graph uniformly at random from all graphs with n vertices and m edges [6]. It
was not developed to model real-world graphs, but it is analytically tractable
and can provide insight into the behavior of more realistic graph models. It can
also be used as a null hypothesis. Section 3 proved that ̂deg(u) and ̂d≤k are
asymptotically unbiased for Gn,p when np � log n. Conventional wisdom holds
that anything true for Gn,p is also true for Gn,m when m ≈

(

n
2

)

p, and computer

Bias Reduction in Traceroute Sampling 9

experiments support this conclusion, even for moderately size n and m, as shown
in Table 1 and Figure 2a. These experiments indicate that ̂deg(u) and ̂d≤k are
also good estimators when the number of targets nt is a reasonably small fraction
of n, which is the case in traceroute sampling of the AS graph.

Table 1. �2 error in degree distribution estimation with and without bias reduction for
Erdős-Rényi graph, Gn,m where d = 2m/n, with nm monitors and nt targets (median
values of 100 trials)

n d nm nt % errbiased % errreduced

1,000 15 2 n/8 3.38 3.15
n/2 3.08 0.96

n 2.81 0.42
8 n/2 2.11 0.81

16 n/2 1.38 0.80

10,000 20 2 n/8 4.02 2.10
n/2 3.75 1.25

n 3.51 0.46

100,000 15 2 n 2.81 0.21

4.2 Preferential Attachment Graph

The preferential attachment (PA) graph was proposed for a model of the internet
and the world wide web by Barabási and Albert in [2], and this has generated
a large body of subsequent research, although the validity of the model as a
representation of the router graph or the AS graph has been questioned (see, for
example, [3]). The estimator ̂δ≤k does not perform particularly well on the PA
graphs that we used in our experiments, generating �2 error that is sometimes
smaller and sometimes larger than the biased estimator (see Table 2).

The most interesting detail of this series of experiments is the shape of the de-
gree distribution estimated by ̂δ≤k. When plotted on a log-log scale (Figure 2b),

Table 2. �2 error in degree distribution estimation with and without bias reduction for
Preferential Attachment graph with n nodes and m out-edges per node, nm monitors
and nt targets (median values of 100 trials)

n m nm nt % errbiased % errreduced

1,000 5 2 n/8 2.29 2.35
n/2 1.95 2.66

n 1.71 2.88
8 n/2 1.26 2.00

16 n/2 0.91 1.57

10,000 10 2 n/8 3.47 2.36
n/2 3.23 3.39

n 3.03 4.31

100,000 15 2 n 3.99 4.43

10 A.D. Flaxman and J. Vera

(a) Gn↪m with n = 100↪ 000, d = 2m�n = 15. (b) PA graph with n = 100↪ 000, m = 15.

(c) G(X ; r) with n = 100↪ 000, d = πr2 = 25. (d) Western states power graph from [22].

Fig. 2. Degree sequence ccdf, biased, and bias reduced estimators for synthetic data,
with 2 monitor nodes chosen uniformly at random, n target nodes, and shortest path
sampling used to approximate traceroute. Plots based on 100 trials, where data points
correspond to trial with median �2 error, and dotted region shows pointwise bounds
on 90% of trials.

the biased estimate of the degree distribution appears to be straight line, al-
though with a different slope than the underlying distribution (this is consistent
with the theoretical results of [1]). However, the “biased reduced” estimate ap-
pears to fall off faster than linear (when plotted on a log-log scale). This is
typical of the experiments we conducted with other parameter settings for the
PA graph. It could be an effect of the instance sizes being too small, but it
persists over two orders of magnitude. Thus, it seems that locally non-tree-like
aspects of the PA graph are decreasing the accuracy of ̂δ≤k. As shown in Fig-
ure 1 and to be elaborated upon in Section 5, the degree distribution of the AS
graph does not fall off faster than linear when estimated with ̂δ≤k. This could
mean that the shortest path routing used in the experiment is not a close enough
approximation of the true traceroute sampled paths. But it could be interpreted

Bias Reduction in Traceroute Sampling 11

as additional evidence that the AS graph is not distributed according to the PA
graph process.

4.3 Random Geometric Graph, G(X ; r)

For graphs with high clustering coefficient, the proof sketched in Section 3 will
not apply. However, the traceroute paths found by skitter exhibit some level of
clustering. To investigate the performance of the bias-reduction technique on
graphs with clustering, we examine random geometric graphs G(X ; r). These
graphs are formed by selecting a set of n points independently and uniformly at
random from the unit square, and linking two points with an edge if and only if
they are within �2 distance r (for a detailed treatment, see [16]). The performance
of the bias-reduction technique is summarized for a variety of geometric random
graphs in Table 3.

The plot exhibited in Figure 2c is typical for the performance of bias reduction
on random geometric graphs; although the bias-reduced estimate is closer to the
truth, it is still quite far away from it. The tail of the estimated ccdf, with or
without bias reduction, falls off noticeably more slowly than that of the true
degree distribution, and looks more like a power-law than it should.

In light of this, it seems that future research should investigate the amount
of clustering present in the AS graph. This will permit us to better gauge the
accuracy of the bias-reduced estimate of the degree distribution there. However,
understanding clustering in the AS graph is hard for the same reasons that un-
derstanding the degree distribution is hard, which is due to the lack of unbiased
data.

Table 3. �2 error in degree distribution estimation with and without bias reduction for
geometric random graph, G(X , r) where d = πr2n, with nm monitors and nt targets
(median values of 100 trials)

n d nm nt errbiased errreduced

1,000 15 2 n/8 3.14 2.77
n/2 2.91 2.49

n 2.73 2.17
8 n/2 2.45 2.50

16 n/2 2.23 2.49

10,000 20 2 n/8 3.87 3.57
n/2 3.68 3.36

n 3.55 3.16

100,000 25 2 n 4.19 3.90

4.4 Western States Power Graph

In addition to studying the behavior of bias reduction on the random graphs
describe above, we also consider the estimator’s performance on synthetic data
that is based on a network from the real world, the Western States Power Grid

12 A.D. Flaxman and J. Vera

Table 4. �2 error in degree distribution estimation with and without bias reduction
for Western States Power Graph (n = 4, 941, m = 6, 594) with nm monitors and nt

targets (median values of 100 trials)

Pr[deg(u) ≤ k]:

n d nm nt errbiased errreduced

4,941 2.67 2 n 0.25 0.75

Pr
[

deg(u) ≤ k
∣

∣ deg(u) ≥ 3
]

:

n d nm nt errbiased errreduced

4,941 2.67 2 n/8 0.24 0.13
n/2 0.12 0.06

n 0.06 0.05
8 n/2 0.09 0.06

16 n/2 0.08 0.09

Graph (WSPG Graph) [22]. This graph represents the power transmission links
between 4, 941 nodes, representing the generators, transformers, and substations
in the Western United States. It is roughly similar in size to the AS graph, and
also similar because both networks represent real objects which are connected
by real wires.

The result of the bias-reduction technique is shown in Figure 2d. The �2 error
is higher after bias reduction, but this is because the bias-reduction technique
filters out all vertices of degree less than 3. Since these low degree vertices are
prevalent in the WSPG graph, we also compare the bias-reduced estimate to the
degree distribution of the WSPG graph restricted to vertices of degree 3 and
higher. Table 4 shows the unconditioned �2 error for one experiment, and the �2
error of the estimated cdfs conditioned on vertices having degree at least 3 for a
range of experiments.

5 AS Graph

The previous two sections showed theoretically and by computer simulations
that the bias-reduction technique developed in Section 2 can be an effective way
to reduce the errors introduced by traceroute sampling. This section reports on
the results of applying the bias-reduction technique to traceroute-sampled data
from the CAIDA skitter project.

A recent paper by Mahadevan, Krioukov, Fomenkov, Dimitropoulos, claffy,
and Vahdat provides a detailed analysis of CAIDA skitter data from March,
2004 [14]. We follow the methodology used there, and, in particular, we aggregate
the routes observed over the course of a month (from daily graphs provided by
CAIDA), and we remove all AS-sets, multi-origin ASes, and private ASes, and
discard all indirect links.

The results of applying the bias-reduction technique to the March, 2004 skitter
data are plotted in Figure 1. This data set contains 9, 204 nodes and 28, 959

Bias Reduction in Traceroute Sampling 13

Biased Estimate
Biased Reduced

100 101 102 103

k

10-4

10-3

10-2

10-1

100

]
k
≥)v(

ge
d[r

P

True Distribution
Biased Estimate
Bias Reduced

100 101 102 103

k

10-4

10-3

10-2

10-1

100

]
k

>)v(
ge

d[r
P

(a) CAIDA skitter, March, 2003 (b) PA graph

Fig. 3. Estimated degree distribution ccdf of CAIDA skitter data from March, 2003
with and without bias reduction and estimated degree distribution ccdf of PA Graph
with similar parameters (n = 10, 000 nodes, m = 10 out-edges per node, 20 source
nodes, n/2 target nodes) with and without bias reduction. Both estimates of skitter
data follow power law, but bias reduced estimate of PA Graph does not.

edges, so the average degree before bias reduction is 6.29. There are 22 ASes in
the monitor set, and between 10% and 50% of ASes are represented in the target
set. The bias-reduction technique yields an estimate of ̂deg(u) < ∞ for 2, 078
vertices, and the average degree after bias reduction is 12.66 (which is very close
to 12.52, the biased average degree of vertices with degree at least 3).

The behavior of the bias reduced estimate for k values around 64 is particularly
interesting (see Figure 1). Although it is far from definitive, the lack of ASes
with degree between 65 and 90 could be the result of economic or technological
factors. For example, the Juniper T320 edge router has the ability to house up
to 64 interfaces in one chassis. This, or similar product specifications, could lead
AS operators to avoid connecting to slightly more than 64 other ASes.

Finally, the fact that the bias reduced estimate does not fall off at a superlinear
rate provides some additional evidence against the theory that the AS graph is
an example of a preferential attachment model (see comparison in Figure 3). This
argument has been made previously based on completely different considerations
(see, for example, [3]).

6 Conclusion

In this paper we introduced a new approach to addressing the bias inherent to
traceroute sampling. Starting from the multiple-recapture population estimation
technique of statistics, we developed a bias reduction technique applicable to the
highly dependent random variables present in path sampling.

14 A.D. Flaxman and J. Vera

In an idealized theoretical framework of shortest path sampling in Erdős-
Rényi graphs, we described how to rigorously prove that the proposed estimator
is asymptotically unbiased, and, using computer experiments, we show that the
estimator can give significant improvements when the target nodes constitute a
fraction of vertex set. Computer experiments also highlighted some of the weak
points of this estimator, including the less-than-perfect estimates on locally non-
tree-like graphs, like the PA graph and the random geometric graph.

Applying the bias-reduction technique to the CAIDA skitter data provided
new evidence that the AS graph is not a preferential attachment graph, and also
uncovered a way that economic and technological limitations are reflected in the
AS degree distribution.

The theoretical and computer simulations supporting the effectiveness of the
bias-reduction technique all rely on the assumption that shortest path routing
is a close-enough approximation of BGP routing. This assumption should be
considered in more detail, and the behavior of the bias-reduction technique under
a more realistic model of traceroute is an important future direction of research.

Acknowledgments

ADF would like to thank Josh Grubman for pointing us towards the specifi-
cations of the Juniper T320 router, even if he does not believe that product
specifications are likely to result in the absence of nodes with degree slightly
above 64.

References

1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sam-
pling: or, power-law degree distributions in regular graphs. In: STOC 2005. Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pp. 694–703. ACM Press, New York, NY, USA (2005)

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

3. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The
origin of power laws in Internet topologies revisited. In: INFOCOM 2002. Proceed-
ings Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies, vol. 2, pp. 608–617 (2002)

4. Clauset, A., Moore, C.: Accuracy and scaling phenomena in internet mapping.
Physical Review Letters 94(1), 18701 (2005)

5. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vazquez, A., Vespignani, A.: A sta-
tistical approach to the traceroute-like exploration of networks: theory and sim-
ulations. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405,
Springer, Heidelberg (2005)

6. Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297
(1959)

Bias Reduction in Traceroute Sampling 15

7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. In: SIGCOMM 1999. Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, NY, USA,
pp. 251–262. ACM Press, New York (1999)

8. Frank, O.: A survey of statistical methods for graph analysis. Sociological Method-
ology 12, 110–155 (1981)

9. Guillaume, J.-L., Latapy, M., Magoni, D.: Relevance of massively distributed ex-
plorations of the internet topology: Qualitative results. Computer networks 50(16),
3197–3224 (2006)

10. claffy, k.c., Monk, T.E., McRobb, D.: Internet tomography. Nature (January 1999)
11. Klovdahl, A.S.: The Small World (in honor of Stanley Milgram), chapter Urban so-

cial networks. In: Some methodological problems and possibilities, ABLEX, Green-
wich (1989)

12. Lakhina, A., Byers, J., Crovella, M., Xie, P.: Sampling biases in ip topology mea-
surements. In: INFOCOM 2003. 22nd Annual Joint Conference of the IEEE Com-
puter and Communications Societies, vol. 1, pp. 332–341. IEEE, Los Alamitos
(2003)

13. Leguay, J., Latapy, M., Friedman, T., Salamatian, K.: Describing and simulating
internet routes. In: Boutaba, R., Almeroth, K.C., Puigjaner, R., Shen, S., Black,
J.P. (eds.) NETWORKING 2005. LNCS, vol. 3462, pp. 659–670. Springer, Heidel-
berg (2005)

14. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., claffy, k.c., Vah-
dat, A.: The internet AS-level topology: three data sources and one definitive met-
ric. SIGCOMM Comput. Commun. Rev. 36(1), 17–26 (2006)

15. Pansiot, J.-J., Grad, D.: On routes and multicast trees in the internet. SIGCOMM
Comput. Commun. Rev. 28(1), 41–50 (1998)

16. Penrose, M.: Random geometric graphs. In: Oxford Studies in Probability, vol. 5,
Oxford University Press, Oxford (2003)

17. Petermann, T., Rios, P.D.L.: Exploration of scale-free networks. European Physical
Journal B 38, 201–204 (2004)

18. Pickands, J.I., Raghavachari, M.: Exact and asymptotic inference for the size of a
population. Biometrika 74(2), 355–363 (1987)

19. Pólya, G.: Probabilities in proofreading. Amer. Math. Monthly 83(1), 42 (1975)
20. Salganik, M.J., Heckathorn, D.D.: Sampling and estimation in hidden populations

using respondent-drive sampling. Sociological Methodology 34, 193–239 (2004)
21. Viger, F., Barrat, A., Dall’Asta, L., Zhang, C., Kolaczyk, E.: Network Infer-

ence from TraceRoute Measurements: Internet Topology ‘Species’. Phys. Rev. E
75(056111) (2007)

22. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Na-
ture 292, 440–442 (1998)

Distribution of PageRank Mass Among

Principle Components of the Web

Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham

1 INRIA Sophia Antipolis, 2004, Route des Lucioles, 06902, France
k.avrachenkov@sophia.inria.fr

2 University of Twente, Dept. of Applied Mathematics, P.O. Box 217,
7500AE Enschede, The Netherlands

n.litvak@ewi.utwente.nl
3 St.Petersburg State University, 35, University Prospect, 198504, Peterhof, Russia

sonsecure@yahoo.com.sg

Abstract. We study the PageRank mass of principal components in
a bow-tie Web Graph, as a function of the damping factor c. Using a
singular perturbation approach, we show that the PageRank share of
IN and SCC components remains high even for very large values of the
damping factor, in spite of the fact that it drops to zero when c → 1.
However, a detailed study of the OUT component reveals the presence
of “dead-ends” (small groups of pages linking only to each other) that
receive an unfairly high ranking when c is close to one. We argue that
this problem can be mitigated by choosing c as small as 1/2.

1 Introduction

The link-based ranking schemes such as PageRank [1], HITS [2], and SALSA [3]
have been successfully used in search engines to provide adequate importance
measures for Web pages. In the present work we restrict ourselves to the analysis
of the PageRank criterion and use the following definition of PageRank from [4].
Denote by n the total number of pages on the Web and define the n×n hyper-link
matrix W as follows:

wij =

⎧

⎨

⎩

1/di, if page i links to j,
1/n, if page i is dangling,
0, otherwise,

(1)

for i, j = 1, ..., n, where di is the number of outgoing links from page i. A page
is called dangling if it does not have outgoing links. The PageRank is defined as
a stationary distribution of a Markov chain whose state space is the set of all
Web pages, and the transition matrix is

G = cW + (1 − c)(1/n)11T . (2)

Here and throughout the paper we use the symbol 1 for a column vector of ones
having by default an appropriate dimension. In (2), 11T is a matrix whose all

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 16–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distribution of PageRank Mass Among Principle Components 17

entries are equal to one, and c ∈ (0, 1) is the parameter known as a damping
factor. Let π be the PageRank vector. Then by definition, πG = π, and ||π|| =
π1 = 1, where we write ||x|| for the L1-norm of vector x.

The damping factor c is a crucial parameter in the PageRank definition. It
regulates the level of the uniform noise introduced to the system. Based on the
publicly available information Google originally used c = 0.85, which appears
to be a reasonable compromise between the true reflection of the Web structure
and numerical efficiency (see [5] for more details). However, it was mentioned in
[6] that the value of c too close to one results into distorted ranking of important
pages. This phenomenon was also independently observed in [7]. Moreover, with
smaller c, the PageRank is more robust, that is, one can bound the influence of
outgoing links of a page (or a small group of pages) on the PageRank of other
groups [8] and on its own PageRank [7].

In this paper we explore the idea of relating the choice of c to specific prop-
erties of the Web structure. In papers [9,10] the authors have shown that the
Web graph can be divided into three principle components. The Giant Strongly
Connected Component (SCC) contains a large group of pages all having a hyper-
link path to each other. The pages in the IN (OUT) component have a path to
(from) the SCC, but not back. Furthermore, the SCC component is larger than
the second largest strongly connected component by several orders of magnitude.

In Section 3 we consider a Markov walk governed by the hyperlink matrix W
and explicitly describe the limiting behavior of the PageRank vector as c → 1.
We experimentally study the OUT component in more detail to discover a so-
called Pure OUT component (the OUT component without dangling nodes and
their predecessors) and show that Pure OUT contains a number of small sub-
SCC’s, or dead-ends, that absorb the total PageRank mass when c = 1. In
Section 4 we apply the singular perturbation theory [11,12,13,14] to analyze the
shape of the PageRank of IN+SCC as a function of c. The dangling nodes turn
out to play an unexpectedly important role in the qualitative behavior of this
function. Our analytical and experimental results suggest that the PageRank
mass of IN+SCC is sustained on a high level for quite large values of c, in spite
of the fact that it drops to zero as c → 1. Further, in Section 5 we show that the
total PageRank mass of Pure OUT component increases with c. We argue that
c = 0.85 results in an inadequately high ranking for Pure OUT pages and we
present an argument for choosing c as small as 1/2. We confirm our theoretical
argument by experiments with log files. We would like to mention that the value
c = 1/2 was also used in [15] to find gems in scientific citations. This choice
was justified intuitively by stating that researchers may check references in cited
papers but on average they hardly go deeper than two levels. Nowadays, when
search engines work really fast, this argument also applies to Web search. Indeed,
it is easier for the user to refine a query and receive a proper page in fraction of
seconds than to look for this page by clicking on hyper-links. Therefore, we may
assume that a surfer searching for a page, on average, does not go deeper than
two clicks.

18 K. Avrachenkov, N. Litvak, and K.S. Pham

The body of the paper contains main ideas and results. An extended version
with the necessary information from the perturbation theory and the proofs can
be found in [16].

2 Datasets

We have collected two Web graphs, which we denote by INRIA and FrMathInfo.
The Web graph INRIA was taken from the site of INRIA, the French Research
Institute of Informatics and Automatics. The seed for the INRIA collection was
Web page www.inria.fr. It is a typical large Web site with around 300.000 pages
and 2 millions hyper-links. We have collected all pages belonging to INRIA. The
Web graph FrMathInfo was crawled with the initial seeds of 50 mathematics
and informatics laboratories of France, taken from Google Directory. The crawl
was executed by Breadth First Search of depth 6. The FrMathInfo Web graph
contains around 700.000 pages and 8 millions hyper-links. As the Web seems to
have a fractal structure [17], we expect our datasets to be enough representative.

The link structure of the two Web graphs is stored in Oracle database. We
could store the adjacency lists in RAM to speed up the computation of PageRank
and other quantities of interest. This enables us to make more iterations, which
is extremely important when the damping factor c is close to one. Our PageRank
computation program consumes about one hour to make 500 iterations for the
FrMathInfo dataset and about half an hour for the INRIA dataset for the same
number of iterations. Our algorithms for discovering the structures of the Web
graph are based on Breadth First Search and Depth First Search methods, which
are linear in the sum of number of nodes and links.

3 The Structure of the Hyper-link Transition Matrix

With the bow-tie Web structure [9,10] in mind, we would like to analyze a
stationary distribution of a Markov random walk governed by the hyper-link
transition matrix W given by (1). Such random walk follows an outgoing link
chosen uniformly at random, and dangling nodes are assumed to have links to
all pages in the Web. We note that the methods presented below can be easily
extended to the case of personalized PageRank [18], when after a visit to a
dangling node, the next page is sampled from some prescribed distribution.

Obviously, the graph induced by W has a much higher connectivity than the
original Web graph. In particular, if the random walk can move from a dangling
node to an arbitrary node with the uniform distribution, then the Giant SCC
component increases further in size. We refer to this new strongly connected
component as the Extended Strongly Connected Component (ESCC). Due to the
artificial links from the dangling nodes, the SCC component and IN component
are now inter-connected and are parts of the ESCC. Furthermore, if there are
dangling nodes in the OUT component, then these nodes together with all their
predecessors become a part of the ESCC.

Distribution of PageRank Mass Among Principle Components 19

In the mini-example in Figure 1, node 0 represents the IN component, nodes
from 1 to 3 form the SCC component, and the rest of the nodes, nodes from 4 to
11, are in the OUT component. Node 5 is a dangling node, thus, artificial links
go from the dangling node 5 to all other nodes. After addition of the artificial
links, all nodes from 0 to 5 form the ESCC.

4

7

8

ESCC

OUTPure OUT

Q

Q1

2

11

10
9

6

5

SCC+IN 0
1

2
3

Fig. 1. Example of a graph

INRIA FrMathInfo

total nodes 318585 764119
nodes in SCC 154142 333175

nodes in IN 0 0
nodes in OUT 164443 430944

nodes in ESCC 300682 760016
nodes in Pure OUT 17903 4103

SCCs in OUT 1148 1382
SCCs in Pure Out 631 379

Fig. 2. Component sizes in INRIA and Fr-
MathInfo datasets

In the Markov chain induced by the matrix W , all states from ESCC are
transient, that is, with probability 1, the Markov chain eventually leaves this
set of states and never returns back. The stationary probability of all these
states is zero. The part of the OUT component without dangling nodes and
their predecessors forms a block that we refer to as a Pure OUT component. In
Figure 1 the Pure OUT component consists of nodes from 6 to 11. Typically, the
Pure OUT component is much smaller than the Extended SCC. However, this
is the set where the total stationary probability mass is concentrated. The sizes
of all components for our two datasets are given in Figure 2. Here the size of
the IN components is zero because in the Web crawl we used the Breadth First
Search method and we started from important pages in the Giant SCC. For the
purposes of the present research it does not make any difference since we always
consider IN and SCC together.

Let us now analyze the structure of the Pure OUT component in more detail.
It turns out that inside Pure OUT there are many disjoint strongly connected
components. All states in these sub-SCC’s (or, “dead-ends”) are recurrent, that
is, the Markov chain started from any of these states always returns back to it.
In particular, we have observed that there are many dead-ends of size 2 and 3.
The Pure OUT component also contains transient states that eventually bring
the random walk into one of the dead-ends. For simplicity, we add these states
to the giant transient ESCC component.

Now, by appropriate renumbering of the states, we can refine the matrix W
by subdividing all states into one giant transient block and a number of small
recurrent blocks as follows:

20 K. Avrachenkov, N. Litvak, and K.S. Pham

W =

⎡

⎢

⎢

⎢

⎣

Q1 0 0
. . .

0 Qm 0
R1 · · · Rm T

⎤

⎥

⎥

⎥

⎦

dead-end (recurrent)

· · ·
dead-end (recurrent)
ESCC+[transient states in Pure OUT] (transient)

(3)

Here for i = 1, . . . , m, a block Qi corresponds to transitions inside the i-th
recurrent block, and a block Ri contains transition probabilities from transient
states to the i-th recurrent block. Block T corresponds to transitions between
the transient states. For instance, in example of the graph from Figure 1, the
nodes 8 and 9 correspond to block Q1, nodes 10 and 11 correspond to block Q2,
and all other nodes belong to block T . Let us denote by π̄OUT,i the stationary
distribution corresponding to block Qi.

We would like to emphasis that the recurrent blocks here are really small,
constituting altogether about 5% for INRIA and about 0.5% for FrMathInfo.
We believe that for larger data sets, this percentage will be even less. By far
most important part of the pages is contained in the ESCC, which constitutes
the major part of the giant transient block.

Next, we note that if c < 1, then all states in the Markov chain induced by
the Google transition matrix (2) are recurrent, which automatically implies that
they all have positive stationary probabilities. However, if c = 1, the majority
of pages turn into transient states with stationary probability zero. Hence, the
random walk governed by the Google transition matrix G is in fact a singularly
perturbed Markov chain. Informally, by singular perturbation we mean relatively
small changes in elements of the matrix, that lead to altered connectivity and
stationary behavior of the chain. Using the results of the singular perturbation
theory (see e.g., [11,12,13,14]), in the next proposition we characterize explicitly
the limiting PageRank vector as c → 1.

Proposition 1. Let π̄OUT,i be a stationary distribution of the Markov chain gov-
erned by Qi, i = 1, . . . , m. Then, we have

lim
c→1

π(c) = [πOUT,1 · · · πOUT,m 0] ,

where

πOUT,i =
(

nodes in block Qi

n
+

1
n
1T [I − T]−1Ri1

)

π̄OUT,i (4)

for i = 1, ..., m, I is the identity matrix, and 0 is a row vector of zeros that
correspond to stationary probabilities of the states in the transient block.

The second term inside the brackets in formula (4) corresponds to the PageRank
mass received by a dead-end from the Extended SCC. If c is close to one, then
this contribution can outweight by far the fair share of the PageRank, whereas
the PageRank mass of the giant transient block decreases to zero. How large is
the neighborhood of one where the ranking is skewed towards the Pure OUT?

Distribution of PageRank Mass Among Principle Components 21

Is the value c = 0.85 already too large? We will address these questions in
the remainder of the paper. In the next section we analyze the PageRank mass
IN+SCC component, which is an important part of the transient block.

4 PageRank Mass of IN+SCC

In Figure 3 we depict the PageRank mass of the giant component IN+SCC, as a
function of the damping factor, for FrMathInfo. Here we see a typical behavior
also observed for several pages in the mini-web from [6]: the PageRank first grows
with c and then decreases to zero. In our case, the PageRank mass of IN+SCC
drops drastically starting from some value c close to one. We can explain this
phenomenon by highlighting the role of the dangling nodes.

Fig. 3. The PageRank mass of IN+SCC as a function of c

We start the analysis by subdividing the Web graph sample into three subsets
of nodes: IN+SCC, OUT, and the set of dangling nodes DN. We assume that
no dangling node originates from OUT. This simplifies the derivation but does
not change our conclusions. Then the Web hyper-link matrix W in (1) can be
written in the form

W =

⎡

⎣

Q 0 0
R P S

1
n11T 1

n11T 1
n11T

⎤

⎦

OUT
IN+SCC ,
DN

where the block Q corresponds to the hyper-links inside the OUT component,
the block R corresponds to the hyper-links from IN+SCC to OUT, the block P
corresponds to the hyper-links inside the IN+SCC component, and the block S
corresponds to the hyper-links from SCC to dangling nodes. In the above, n is
the total number of pages in the Web graph sample, and the blocks 11T are the
matrices of ones adjusted to appropriate dimensions.

Dividing the PageRank vector in segments corresponding to the blocks OUT,
IN+SCC and DN, namely, π = [πOUT πIN+SCC πDN], we can rewrite the well-known
formula (see e.g. [19])

22 K. Avrachenkov, N. Litvak, and K.S. Pham

π =
1 − c

n
1T [I − cW]−1 (5)

as a system of three linear equations:

πOUT[I − cQ] − πIN+SCCcR − c

n
πDN11T =

1 − c

n
1T , (6)

πIN+SCC[I − cP] − c

n
πDN11T =

1 − c

n
1T , (7)

− πIN+SCCcS + πDN − c

n
πDN11T =

1 − c

n
1T . (8)

Solving (6–8) for πIN+SCC we obtain

πIN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC

[

I − cP − c2α

1 − cβ
S1uIN+SCC

]−1

, (9)

where α = |IN + SCC|/n and β = |DN|/n are the fractions of nodes in IN+SCC
and DN, respectively, and uIN+SCC = |IN + SCC|−11T is a uniform probability
row-vector of dimension |IN + SCC|. Now, define

k(c) =
(1 − c)α
1 − cβ

, and U(c) = P +
cα

1 − cβ
S1uIN+SCC. (10)

Then the derivative of πIN+SCC(c) with respect to c is given by

π′
IN+SCC

(c) = uIN+SCC

{

k′(c)I + k(c)[I − cU(c)]−1(cU(c))′
}

[I − cU(c)]−1, (11)

where using (10) after simple calculations we get k′(c) = −(1 − β)α/(1 − cβ)2,
(cU(c))′ = U(c)+ cα/(1− cβ)2S1uIN+SCC. Let us consider the point c = 0. Using
(11), we obtain

π′
IN+SCC

(0) = −α(1 − β)uIN+SCC + αuIN+SCCP. (12)

One can see from the above equation that the PageRank of pages in IN+SCC
with many incoming links will increase as c increases from zero, which explains
the graphs presented in [6].

Next, let us analyze the total mass of the IN+SCC component. From (12)
we obtain ||π′

IN+SCC
(0)|| = −α(1 − β)uIN+SCC1 + αuIN+SCCP1 = α(−1 + β + p1),

where p1 = uIN+SCCP1 is the probability that a random walk stays in IN+SCC
for one step if the initial distribution is uniform over IN+SCC. If 1 − β < p1
then the derivative at 0 is positive. Since dangling nodes typically constitute
more than 25% of the graph [20], and p1 is usually close to one, the condition
1 − β < p1 seems to be comfortably satisfied in Web samples. Thus, the total
PageRank of the IN+SCC increases in c when c is small. Note by the way that
if β = 0 then ||πIN+SCC(c)|| is strictly decreasing in c. Hence, surprisingly, the
presence of dangling nodes qualitatively changes the behavior of the IN+SCC
PageRank mass.

Distribution of PageRank Mass Among Principle Components 23

Now let us consider the point c = 1. Again using (11), we obtain

π′
IN+SCC

(1) = − α

1 − β
uIN+SCC[I − P − α

1 − β
S1uIN+SCC]−1. (13)

Note that the matrix in the square braces is close to singular. Denote by P̄ the
hyper-link matrix of IN+SCC when the outer links are neglected. Then, P̄ is
an irreducible stochastic matrix. Denote its stationary distribution by π̄IN+SCC.
Then we can apply Lemma A.1 of [16] from the singular perturbation theory
to (13) by taking A = P̄ , εC = P̄ − P − α/(1 − β)S1uIN+SCC, and noting that
εC1 = R1 + (1 − α − β)(1 − β)−1S1. Combining all terms together and using
π̄IN+SCC1 = ||π̄IN+SCC|| = 1 and uIN+SCC1 = ||uIN+SCC|| = 1, by Lemma A.1 of [16]
we obtain

||π′
IN+SCC

(1)|| ≈ − α

1 − β

1
π̄IN+SCCR1 + 1−β−α

1−β π̄IN+SCCS1
.

It is expected that the value of π̄IN+SCCR1 + 1−β−α
1−β π̄IN+SCCS1 is typically small

(indeed, in our dataset INRIA, the value is 0.022), and hence the mass
||πIN+SCC(c)|| decreases very fast as c approaches one.

Having described the behavior of the PageRank mass ||πIN+SCC(c)|| at the
boundary points c = 0 and c = 1, now we would like to show that there is at
most one extremum on (0, 1). It is sufficient to prove that if ||π′

IN+SCC
(c0)|| ≤ 0

for some c0 ∈ (0, 1) then ||π′
IN+SCC

(c)|| ≤ 0 for all c > c0. To this end, we apply
the Sherman-Morrison formula to (9), which yields

πIN+SCC(c) = π̃IN+SCC(c) +
c2α

1−cβ uIN+SCC[I − cP]−1S1

1 + c2α
1−cβuIN+SCC[I − cP]−1S1

π̃IN+SCC(c), (14)

where

π̃IN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC[I − cP]−1. (15)

represents the main term in the right-hand side of (14). (The second summand
in (14) is about 10% of the total sum for the INRIA dataset for c = 0.85.) Now
the behavior of πIN+SCC(c) in Figure 3 can be explained by means of the next
proposition.

Proposition 2. The term ||π̃IN+SCC(c)|| given by (15) has exactly one local max-
imum at some c0 ∈ [0, 1]. Moreover, ||π̃′′

IN+SCC
(c)|| < 0 for c ∈ (c0, 1].

We conclude that ||π̃IN+SCC(c)|| is decreasing and concave for c ∈ [c0, 1], where
||π̃′

IN+SCC
(c0)|| = 0. This is exactly the behavior we observe in the experiments.

The analysis and experiments suggest that c0 is definitely larger than 0.85 and
actually is quite close to one. Thus, one may want to choose large c in order to
maximize the PageRank mass of IN+SCC. However, in the next section we will
indicate important drawbacks of this choice.

24 K. Avrachenkov, N. Litvak, and K.S. Pham

5 PageRank Mass of ESCC

Let us now consider the PageRank mass of the Extended SCC component
(ESCC) described in Section 3, as a function of c ∈ [0, 1]. Subdividing the Page-
Rank vector in the blocks π = [πPureOUT πESCC], from (5) we obtain

||πESCC(c)|| = (1 − c)γuESCC[I − cT]−11, (16)

where T represents the transition probabilitites inside the ESCC block, γ =
|ESCC|/n, and uESCC is a uniform probability row-vector over ESCC. Clearly,
we have ||πESCC(0)|| = γ and ||πESCC(1)|| = 0. Furthermore, by taking derivatives
we easily show that ||πESCC(c)|| is a concave decreasing function. In the next
proposition, we derive upper and lower bounds for ||πESCC(c)||.

Proposition 3. Let λ1 be the Perron-Frobenius eigenvalue of T , and let p1 =
uESCCT1 be the probability that the random walk started from a randomly chosen
state in ESCC, stays in ESCC for one step.

(i) If p1 < λ1 then

||πESCC(c)|| <
γ(1 − c)
1 − cλ1

, c ∈ (0, 1). (17)

(ii) If 1/(1 − p1) < uESCC[I − T]−11 then

||πESCC(c)|| >
γ(1 − c)
1 − cp1

, c ∈ (0, 1). (18)

The condition p1 < λ1 has a clear intuitive interpretation. Let π̂ESCC be the
probability-normed left Perron-Frobenius eigenvector of T . Then π̂ESCC, also
known as a quasi-stationary distribution of T , is the limiting probability dis-
tribution of the Markov chain given that the random walk never leaves the block
T (see e.g. [21]). Since π̂ESCCT = λ1π̂ESCC, the condition p1 < λ1 means that
the chance to stay in ESCC for one step in the quasi-stationary regime is higher
than starting from the uniform distribution uESCC. Although p1 < λ1 does not
hold in general, one may expect that it should hold for transition matrices de-
scribing large entangled graphs since quasi-stationary distribution should favor
states, from which the chance to leave ESCC is lower.

Both conditions of Proposition 3 are satisfied in our experiments. With the
help of the derived bounds we conclude that ||πESCC(c)|| decreases very slowly for
small and moderate values of c, and it decreases extremely fast when c becomes
close to 1. This typical behavior is clearly seen in Figure 4, where ||πESCC(c)||
is plotted with a solid line. The bounds are plotted in Figure 4 with dashed
lines. For the INRIA dataset we have p1 = 0.97557, λ1 = 0.99954, and for the
FrMathInfo dataset we have p1 = 0.99659, λ1 = 0.99937.

From the above we conclude that the PageRank mass of ESCC is smaller than
γ for any value c > 0. On contrary, the PageRank mass of Pure OUT increases
in c beyond its “fair share” δ = |PureOUT|/n. With c = 0.85, the PageRank
mass of the Pure OUT component in the INRIA dataset is equal to 1.95δ. In

Distribution of PageRank Mass Among Principle Components 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mass of ESCC
Lower bound (with p

1
)

Upper bound (with λ
1
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mass of ESCC
Lower bound (with p

1
)

Upper bound (with λ
1
)

Fig. 4. PageRank mass of ESCC and bounds, INRIA (left) and FrMathInfo (right)

the FrMathInfo dataset, the unfairness is even more pronounced: the PageRank
mass of the Pure OUT component is equal to 3.44δ. This gives users an incentive
to create dead-ends: groups of pages that link only to each other. Clearly, this
can be mitigated by choosing a smaller damping factor. Below we propose one
way to determine an “optimal” value of c.

Let v be some probability vector over ESCC. We would like to choose c = c∗

that satisfies the condition

||πESCC(c)|| = ||vT ||, (19)

that is, starting from v, the probability mass preserved in ESCC after one step
should be equal to the PageRank of ESCC. One can think for instance of the
following three reasonable choices of v: 1) π̂ESCC, the quasi-stationary distribu-
tion of T , 2) the uniform vector uESCC, and 3) the normalized PageRank vector
πESCC(c)/||πESCC(c)||. The first choice reflects the proximity of T to a stochastic
matrix. The second choice is inspired by definition of PageRank (restart from
uniform distribution), and the third choice combines both these features.

If conditions of Proposition 3 are satisfied, then (17) and (18) hold, and thus
the value of c∗ satisfying (19) must be in the interval (c1, c2), where

(1 − c1)/(1 − p1c1) = ||vT ||, (1 − c2)/(1 − λ1c2) = ||vT ||.

Numerical results for all three choices of v are presented in Table 1.
If v = π̂ESCC then we have ||vT || = λ1, which implies c1 = (1−λ1)/(1−λ1p1)

and c2 = 1/(λ1 + 1). In this case, the upper bound c2 is only slightly larger
than 1/2 and c∗ is close to zero in our data sets (see Tabel 1). Such small c
however leads to ranking that takes into account only local information about
the Web graph (see e.g. [22]). The choice v = π̂ESCC does not seem to represent
the dynamics of the system; probably because the “easily bored surfer” random
walk that is used in PageRank computations never follows a quasi-stationary
distribution since it often restarts itself from the uniform probability vector.

For the uniform vector v = uESCC, we have ||vT || = p1, which gives c1, c2, c
∗

presented in Table 1. We have obtained a higher upper bound but the values of
c∗ are still much smaller than 0.85.

26 K. Avrachenkov, N. Litvak, and K.S. Pham

Table 1. Values of c∗ with bounds

v c INRIA FrMathInfo

π̂ESCC c1 0.0184 0.1956
c2 0.5001 0.5002
c∗ .02 .16

uESCC c1 0.5062 0.5009
c2 0.9820 0.8051
c∗ .604 .535

πESCC/||πESCC|| 1/(1 + λ1) 0.5001 0.5002
1/(1 + p1) 0.5062 0.5009

Finally, for the normalized PageRank vector v = πESCC/||πESCC||, using (16),
we rewrite (19) as

||πESCC(c)|| =
γ

||πESCC(c)||πESCC(c)T1 =
γ2(1 − c)

||πESCC(c)||uIN+SCC[I − cT]−1T1,

Multiplying by ||πESCC(c)||, after some algebra we obtain

||πESCC(c)||2 = γ
c ||πESCC(c)|| − (1−c)γ2

c .

Solving the quadratic equation for ||πESCC(c)||, we get

||πESCC(c)|| = r(c) =
{

γ if c ≤ 1/2,
γ(1−c)

c if c > 1/2.

Hence, the value c∗ solving (19) corresponds to the point where the graphs of
||πESCC(c)|| and r(c) cross each other. There is only one such point on (0,1),
and since ||πESCC(c)|| decreases very slowly unless c is close to one, whereas
r(c) decreases relatively fast for c > 1/2, we expect that c∗ is only slightly
larger than 1/2. Under conditions of Proposition 3, r(c) first crosses the line
γ(1− c)/(1−λ1c), then ||πESCC(c)||1, and then γ(1− c)/(1−p1c). Thus, we yield
(1 + λ1)−1 < c∗ < (1 + p1)−1. Since both λ1 and p1 are large, this suggests that
c should be chosen around 1/2. This is also reflected in Tabel 1.

Last but not least, to support our theoretical argument about the undeserved
high ranking of pages from Pure OUT, we carry out the following experiment.
In the INRIA dataset we have chosen an absorbing component in Pure OUT
consisting just of two nodes. We have added an artificial link from one of these
nodes to a node in the Giant SCC and recomputed the PageRank. In Table 2
in the column “PR rank w/o link” we give a ranking of a page according to
the PageRank value computed before the addition of the artificial link and in
the column “PR rank with link” we give a ranking of a page according to the
PageRank value computed after the addition of the artificial link. We have also
analyzed the log file of the site INRIA Sophia Antipolis (www-sop.inria.fr)
and ranked the pages according to the number of clicks for the period of one

Distribution of PageRank Mass Among Principle Components 27

year up to May 2007. We note that since we have the access only to the log file
of the INRIA Sophia Antipolis site, we use the PageRank ranking also only for
the pages from the INRIA Sophia Antipolis site. For instance, for c = 0.85, the
ranking of Page A without an artificial link is 731 (this means that 730 pages
are ranked better than Page A among the pages of INRIA Sophia Antipolis).
However, its ranking according to the number of clicks is much lower, 2588.
This confirms our conjecture that the nodes in Pure OUT obtain unjustifiably
high ranking. Next we note that the addition of an artificial link significantly
diminishes the ranking. In fact, it brings it close to the ranking provided by
the number of clicks. Finally, we draw the attention of the reader to the fact
that choosing c = 1/2 also significantly reduces the gap between the ranking by
PageRank and the ranking by the number of clicks.

Table 2. Comparison between PR and click based rankings

c PR rank w/o link PR rank with link rank by no. of clicks

Node A

0.5 1648 2307 2588
0.85 731 2101 2588
0.95 226 2116 2588

Node B

0.5 1648 4009 3649
0.85 731 3279 3649
0.95 226 3563 3649

To summarize, our results indicate that with c = 0.85, the Pure OUT compo-
nent receives an unfairly large share of the PageRank mass. Remarkably, in order
to satisfy any of the three intuitive criteria of fairness presented above, the value
of c should be drastically reduced. The experiment with the log files confirms
the same. Of course, a drastic reduction of c also considerably accelerates the
computation of PageRank by numerical methods [23,5,24].

Acknowledgments

This work is supported by EGIDE ECO-NET grant no. 10191XC and by NWO
Meervoud grant no. 632.002.401.

References

1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford University (1998)

2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

3. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis
(SALSA) and the TKC effect. Comput. Networks 33(1-6), 387–401 (2000)

28 K. Avrachenkov, N. Litvak, and K.S. Pham

4. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Math. 1, 335–380
(2003)

5. Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond: the science of search
engine rankings. Princeton University Press, Princeton, NJ (2006)

6. Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In:
Proc. of the Fourteenth International World Wide Web Conference, Chiba, Japan,
ACM Press, New York (2005)

7. Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stoch.
Models 22(2), 319–331 (2006)

8. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Inter.
Tech. 5(1), 92–128 (2005)

9. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Statac, R.,
Tomkins, A., Wiener, J.: Graph structure in the Web. Computer Networks 33,
309–320 (2000)

10. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal,
E.: The Web as a graph. In: PODS 2000. Proc. 19th ACM SIGACT-SIGMOD-
AIGART Symp. Principles of Database Systems, pp. 1–10. ACM Press, New York
(2000)

11. Avrachenkov, K.: Analytic Perturbation Theory and its Applications. PhD thesis,
University of South Australia (1999)

12. Korolyuk, V.S., Turbin, A.F.: Mathematical foundations of the state lumping of
large systems. Mathematics and its Applications, vol. 264. Kluwer Academic Pub-
lishers, Dordrecht (1993)

13. Pervozvanskii, A.A., Gaitsgori, V.G.: Theory of Suboptimal Decisions. Mathemat-
ics and its Applications (Soviet Series), vol. 12. Kluwer Academic Publishers, Dor-
drecht (1988)

14. Yin, G.G., Zhang, Q.: Discrete-time Markov chains. Applications of Mathematics
(New York), vol. 55. Springer, New York (2005)

15. Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Google.
Arxiv preprint Physics 0604130 (2006)

16. Avrachenkov, K., Litvak, N., Pham, K.: Distribution of PageRank mass among
principle components of the Web. Arxiv preprint CS 0709.2016 (2007)

17. Dill, S., Kumar, R., McCurley, K.S., Rajagopalan, S., Sivakumar, D., Tomkins, A.:
Self-similarity in the Web. ACM Trans. Inter. Tech. 2(3), 205–223 (2002)

18. Haveliwala, T.: Topic-sensitive PageRank: A context-sensitive ranking algorithm
for Web search. IEEE Transactions on Knowledge and Data Engineering 15(4),
784–796 (2003)

19. Moler, C., Moler, K.: Numerical Computing with MATLAB. In: SIAM (2003)
20. Eiron, N., McCurley, K., Tomlin, J.: Ranking the Web frontier. In: WWW 2004:

Proceedings of the 13th international conference on World Wide Web, pp. 309–318.
ACM Press, New York (2004)

21. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Series in Statistics.
Springer, New York, Revised reprint of the second (1981) edition [Springer-Verlag,
New York MR0719544] (2006)

22. Fortunato, S., Flammini, A.: Random walks on directed networks: the case of
PageRank. Arxiv preprint Physics 0604203 (2006)

23. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo meth-
ods in PageRank computation: When one iteration is sufficient. SIAM J. Numer.
Anal. 45(2), 890–904 (2007)

24. Berkhin, P.: A survey on PageRank computing. Internet Math. 2, 73–120 (2005)

Finding a Dense-Core in Jellyfish Graphs

Mira Gonen, Dana Ron�, Udi Weinsberg, and Avishai Wool

Tel-Aviv University, Ramat Aviv, Israel
gonenmir@post.tau.ac.il, danar@eng.tau.ac.il,

udiw@eng.tau.ac.il, yash@acm.org

Abstract. The connectivity of the Internet crucially depends on the relationships
between thousands of Autonomous Systems (ASes) that exchange routing infor-
mation using the Border Gateway Protocol (BGP). These relationships can be
modeled as a graph, called the AS-graph, in which the vertices model the ASes,
and the edges model the peering arrangements between the ASes. Based on topo-
logical studies, it is widely believed that the Internet graph contains a central
dense-core: Informally, this is a small set of high-degree, tightly interconnected
ASes that participate in a large fraction of end-to-end routes. Finding this dense-
core is a very important practical task when analyzing the Internet’s topology.

In this work we introduce a randomized sublinear algorithm that finds a dense-
core of the AS-graph. We mathematically prove the correctness of our algorithm,
bound the density of the core it returns, and analyze its running time. We also
implemented our algorithm and tested it on real AS-graph data. Our results show
that the core discovered by our algorithm is nearly identical to the cores found by
existing algorithms - at a fraction of the running time.

1 Introduction

1.1 Background and Motivation

The connectivity of the Internet crucially depends on the relationships between thou-
sands of Autonomous Systems (ASes) that exchange routing information using the Bor-
der Gateway Protocol (BGP). These relationships can be modeled as a graph, called the
AS-graph, in which the vertices model the ASes, and the edges model the peering ar-
rangements between the ASes.

Significant progress has been made in the study of the AS-graph’s topology over the
last few years. A great deal of effort has been spent measuring topological features of
the Internet. Numerous research projects [14, 1, 13, 25, 35, 36, 9, 5, 4, 24, 30, 26, 7, 6, 28,
34,32,33,21,8,29,31] have ventured to capture the Internet’s topology. Based on these
and other topological studies, it is widely believed that the Internet graph contains a
central dense-core: Informally, this is a small set of high-degree, tightly interconnected
ASes that participate in a large fraction of end-to-end routes. Finding this dense-core is
a very important practical task when analyzing the Internet’s topology.

There are several ways to define a dense-core precisely, and various corresponding
algorithms and heuristics. In the next subsection we briefly survey known definitions

� This work was supported by the Israel Science Foundation (grant number 89/05).

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 29–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 M. Gonen et al.

and algorithms, and shortly discuss their pros and cons. The goal of our work is to de-
scribe an algorithm that finds the dense-core (using a reasonable definition of a dense
core), is amenable to rigorous mathematical analysis, and is efficient, both asymptoti-
cally and when implemented and tested on real AS data.

1.2 Defining a Dense-Core

An early conceptual model for the Internet topology was suggested by Tauro et al. [34].
This work seems to have coined the “jellyfish” term. The authors argued that the Internet
topology resembles a jellyfish where the Internet core corresponds to the middle of the
cap, which is surrounded by many “tentacles”.

The simplest working definition of a dense-core is from Siganos et al. [31]: according
to this work, a core is a clique of maximum size. Since the MaxClique problem is NP-
hard and is even hard to approximate [22], the authors suggest a greedy algorithm,
which we call GreedyMaxClique: Select the highest degree node as the first member
of the core. Then, examine each node in decreasing degree order, and add to the core
any node that neighbors all the nodes already in the core. This algorithm has a time
complexity of O(|E|) (where |E| is the number of edges in the graph). On real AS data
(with n ≈ 20, 000 and |E| ≈ 60, 000) the algorithm finds a clique of size 13. Since
the graph is sparse (that is, |E| = O(n)), the algorithm works quite fast. However, the
definition of the core as a clique is very restrictive, since it requires 100% edge density1,
and there is no guarantee that the algorithm will indeed find even an approximately
maximum clique. In this work we shall refer to such a clique as the nucleus of the
AS-graph, to distinguish it from other definitions.

Carmi et al. [10, 11] give a different definition for a dense-core. According to their
definition, a k-dense-core is a maximal set of nodes with degrees > k, where the degree
is measured in the subgraph induced by the core nodes. Alvarez-Hamelin et al. [2]
use a similar k-core decomposition. Carmi et al. [10, 11] described an algorithm to
iteratively compute a k-core, which we refer to as the kCore algorithm. For a given
minimal degree k, kCore repeatedly eliminates nodes with (residual) degrees ≤ k, until
no more nodes can be eliminated—and the remaining nodes form a k-core. On real AS-
graph data, with k = 30, they get a core of about 100 nodes. The kCore algorithm has
a theoretical time complexity2 of O(n2), and in practice it is significantly slower than
the GreedyMaxClique algorithm of [31]. Note that even though the algorithm claims to
find a “dense core”, it is really based on degrees and has a rather weak guarantee about
the density of the resulting core: for a degree k, if the discovered core is C then the edge
density is > k/(|C| − 1). Furthermore, a-priori there is no guarantee on the size of the
core that is found or on the discovered density: for a fixed degree k, one can construct
an infinite family of connected graphs in which all nodes have degree ≥ k and the core
density tends to 0.3

1 The density of a subgraph with k vertices is the fraction of the k(k − 1)/2 possible edges that
exist in the subgraph.

2 A more careful implementation, using a bucket-based priority queue, gives complexity
O(n log n).

3 E.g., take a collection of m k-cliques and connect them via m additional edges. All nodes have
a degree of k or k + 1 so the core is the whole graph. As m grows the density vanishes.

Finding a Dense-Core in Jellyfish Graphs 31

Subramanian et al. [32] suggested a 5-tier hierarchical layering of the AS-graph.
Their dense-core - the top tier, is defined as a subset of ASes whose edge density is >
50%. Their tiering agrees with the jellyfish model of [34] in that they, implicitly, assume
a single dense-core. They use a simple greedy algorithm for finding (their definition of)
a dense-core. However, they report finding a dense-core of only 20 ASes. A similar
approach was suggested by Ge et al. [18].

Feige et al. [15] consider the k-densest subgraph problem, which is defined as fol-
lows. Given a graph G = (V, E), find a subgraph H = (X, F) of G such that |X | = k
and |F | is maximized. This problem is NP-hard. Feige et al. [15] describe an approxi-
mation algorithm that gives a ratio of O(nδ) for some δ < 1/3. For any particular value
of k the greedy algorithm of Asahiro et al. [3] (which is similar to the kCore algorithm)
gives the ratio O(n/k). For some specific values of k there are algorithms that produce
approximation ratios that are better than O(n/k) [16, 17]. Charikar [12] considers the
related problem of finding a subgraph of maximum average degree. He shows that a
simple (linear time) greedy algorithm, which is a variant of the kCore algorithm and
the algorithm of Asahiro et al. [3], gives a factor-2 approximation. The proof is based
on the relation between the greedy algorithm and the dual of the LP formulation of the
problem. We note that in general, a subset of (approximately) maximum average degree
might be quite different from the notion we are interested in of a relatively small, very
dense subgraph. The example given in Footnote 3 illustrates this.

Sagie and Wool [29] suggested an approach that is based on dense k-subgraphs
(DkS). They use parts of the DkS approximation algorithm of [15]. On a sampled AS-
graph (based on BGP data) their algorithm found a dense-core of 43 ASes, with density
70%. The time complexity of their algorithm is rather high: O(n3). Bar et al. [4, 5] use
the same approach for finding a dense-core.

Against this backdrop of diverging definitions, our goal was to design an algorithm
that (i) is not limited to finding a fully-connected clique, (ii) provides a precise den-
sity guarantee for the discovered core, (iii) is very efficient, both asymptotically and in
practice, and (iv) is amenable to mathematical analysis.

1.3 Contributions

We chose to use a natural definition of a dense-core that focuses on the actual edge
density: We define a dense-core as a set of vertices of size k with a given density α.
Motivated by graph property-testing algorithms [19], our approach is to use randomized
sampling techniques to find such a core. A related approach was applied in [27] to
find large conjunctive clusters. However, intuitively, a dense-core in a general graph is
a “local” phenomenon, so random sampling has a very low success probability (e.g.,
if the core is log-sized). Therefore, we restrict ourselves to the practically-interesting
class of Jellyfish graphs: Graphs that contain a dense-core - and this core is also well
connected to other parts of the graph.

The extra structure provided by Jellyfish graphs is the basis for our main contribu-
tion: a sublinear randomized algorithm for finding a dense-core in the AS-graph. We
rigorously prove the correctness of our algorithm, and the density of the dense-core
produced by the algorithm under mild structural assumptions on the graph (assump-
tions that do hold for the real AS graph).

32 M. Gonen et al.

We implemented our algorithm (JellyCore) and tested it extensively on AS-graph
data collected by the DIMES project [30]. We also implemented the kCore algorithm
of Carmi et al. [10], and the GreedyMaxClique algorithm of Siganos et al. [31]. On the
AS-graph our JellyCore algorithm finds a 60-80%-dense-core, which has a 90% overlap
with the core reported by kCore—but JellyCore runs 6 times faster. Furthermore, we
also define a nucleus within the dense-core as a subset of the highest degree vertices
in the dense-core. The nucleus produced by our algorithm has an 80-90% overlap with
the 13-node clique reported by GreedyMaxClique - i.e., we find a nucleus containing
around 11 of the 13 members in the clique.

Organization: In Section 2 we give definitions and notations. In Section 3 we de-
scribe and analyze a simple randomized algorithm (JellyCore) for finding the dense-
core, which serves as a basis for our sublinear algorithm. In Section 4 we modify the
JellyCore algorithm to a sublinear algorithm. In Section 5 we give an implementation
of the JellyCore algorithm and compare it to the algorithms of Carmi et al. [10] and
Siganos et al. [31]. We summarize our conclusions in Section 6.

2 Definitions and Notations

Throughout the paper we consider sparse graphs G = (V, E), i.e., |E| = O(n), where
n = |V |. For the purpose of time complexity analysis, we assume that for every vertex
in the graph we know the degree (in O(1) time). We start by some technical definitions
leading up to the definition of the dense-core, and the family of Jellyfish graphs.

Definition 1. Closeness to a clique: Let Ck denote the k-vertex clique. Denote by
dist(G, Ck) the distance (as a fraction of

(

k
2

)

) between a graph G over k vertices and
Ck. Namely, if dist(G, Ck) = ε then ε

(

k
2

)

edges should be added in order to make G
into a clique. A graph G over k vertices is ε-close to being a clique if dist(G, Ck) ≤ ε.

Definition 2. (k, ε)-dense-core: consider a graph G. A subset of k vertices in the graph
is a (k, ε)-dense-core if the subgraph induced by this set is ε-close to a clique.

Definition 3. Let C be a subset of vertices of a graph G. The d-nucleus of C, denoted
by H , is the subset of vertices of C with degree (not induced degree) at least d.

For a set of vertices X , let Γ (X) denote the set of vertices that neighbor at least one
vertex in X , and let Γδ(X) denote the set of vertices that neighbor all but at most δ|X |
vertices in X . We next introduce our main definition.

Definition 4. (k, d, c, ε)-Jellyfish subgraph: For integers k and d, and for 0 ≤ ε ≤ 1
(that may all be functions of n), and for a constant c ≥ 1, a graph G contains a
(k, d, c, ε)-Jellyfish subgraph if it contains a subset C of vertices, with |C| = k, that is
a (k, ε)-dense-core, which has a non-empty d-nucleus H s.t. the following conditions
hold:

1. For all v ∈ C, v neighbors at least (1 − ε)|H | vertices in H ,
2. For all but ε|Γ3ε(H)| vertices, if a vertex v ∈ V neighbors at least (1 − ε)|H |

vertices in H then v has at least (1 − ε)|C| neighbors in C.

Finding a Dense-Core in Jellyfish Graphs 33

V \ C

H

C

Fig. 1. An illustration of a Jellyfish Graph

3. For all but ε|H | vertices in the graph, if deg(v) ≥ d then v ∈ H .
4. |Γ3ε(H)|/|C| ≤ c.

Intuitively, Item 1 of Definition 4 describes the fact that the vertices in C have many
neighbors in H . Item 2 describes the fact that vertices that have many neighbors in H
must have many neighbors in C too (so that the neighborhood relation to H is in a
sense “representative” of the neighborhood relation to C). Item 3 describes the fact that
most of the high-degree vertices in the graph are in H . Item 4 describes the fact that
most vertices that neighbor most of H , are in C. Thus items 1 to 4 describe the dense-
core as a dense set of vertices that contains most of the very high-degree nodes in the
graph, neighbors most of these high-degree nodes, and are almost all the vertices in the
graph that neighbor most of these high-degree nodes. Figure 1 shows an illustration of
a Jellyfish graph.

Two notes are in place:

1. These assumptions hold for the AS-graph according to [30] for the values of
k, d, c, ε we use.

2. Item 3 in Definition 4 will be relaxed in the full version of the paper [20] for
|H | = O(log k) so that in this item ε will be any constant (that might be larger
than 1).

3 The JellyCore Algorithm for Finding a Dense-Core in Jellyfish
Graphs

In this section we describe a randomized algorithm that, given a graph G = (V, E)
that contains a (k, d, c, ε)-Jellyfish subgraph, finds a (k, (8 · c + 1)

√
ε)-dense-core ̂C

and an approximation of the nucleus H . Our algorithm and its analysis take some ideas
from the Approximate-Clique Finding Algorithm of [19] (which is designed for dense
graphs).

The algorithm is given query access to the graph G, and takes as input: k (the re-
quested dense-core size), d (the minimal degree for nodes in the nucleus), ε, and a
sample size s.

34 M. Gonen et al.

Algorithm 1. (The JellyCore algorithm for approximating C and H)

1. Uniformly and independently at random select s vertices. Let S be the set of vertices
selected.

2. Compute ̂H = {v ∈ Γ (S) | deg(v) ≥ d}. If ̂H = ∅ then abort.
3. Compute the set Γ2ε(̂H) of vertices that neighbor all but at most of 2ε| ̂H| vertices

in ̂H .
4. Order the vertices in Γ2ε(̂H) according to their degree in the subgraph induced by

Γ2ε(̂H) (breaking ties arbitrarily). Let ̂C be the first k vertices according to this
order.

5. Return ̂C, ̂H

Our main result is the following:

Theorem 1. Let G = (V, E) be a sparse graph that contains a (k, d, c, ε)-Jellyfish
subgraph. Then, for s ≥ c′(n/d) ln(|H | + 2), where c′ is a constant, with probability
at least 1 − e−(c′−1), Algorithm 1 finds a set ̂C of size | ̂C| = k that is O(

√
ε) close to

being a clique, and finds a set ̂H that is a superset of H s.t. | ̂H | ≤ (1+ ε)|H |. The time
complexity of Algorithm 1 is O(n log n).

Intuitively, the algorithm works in graphs that contain (k, d, c, ε)-Jellyfish subgraphs
since in such graphs it suffices to sample a small set of vertices and observe their neigh-
bors. The set of the neighbors with degree at least d is close to a nucleus H . In addition,
in graphs that contain (k, d, c, ε)-Jellyfish subgraphs each vertex in C neighbors most
of the vertices in H , and there might be only few vertices outside C that neighbor most
of the vertices in H . Therefore, by taking the vertices that neighbor most of the vertices
in H we get an approximation of C. However, in general graphs, if we sample a small
set of vertices, the set of their neighbors might be a small random subset, so we won’t
be able to get any approximation of C.

We prove Theorem 1 by proving several lemmas. The lemmas and their proofs
appear in the full version of the paper [20].

Assume for now that we have access to a superset U of H that contains vertices with
degree at least d.

We next state our main lemma.

Lemma 1. Suppose we order the vertices in Γ2ε(U) according to their degree in the
subgraph induced by Γ2ε(U) (breaking ties arbitrarily). Let ̂C be the first k vertices
according to this order. Then ̂C is O(

√
ε) close to being a clique.

Since we don’t actually have access to a superset U of H that contains vertices
with degree at least d, we sample the graph in order to get w.h.p. such a set.4

4 We note that it is possible to search the graph for the vertices with degree at least d in linear
time, which would not change (asymptotically) the running time of Algorithm 1. However,
we shall need to perform random sampling in our sublinear algorithm, which is based on
Algorithm 1, and hence we choose to introduce sampling at this stage. Furthermore, as we see
in our implementation, in practice, we gain from using random sampling even when running
Algorithm 1.

Finding a Dense-Core in Jellyfish Graphs 35

Specifically, we select s vertices uniformly and independently, where s should be at
least c′(n/d) ln(|H | + 2) for a constant c′, and let S denote the subset of sampled
vertices. Let ̂H = {v ∈ Γ (S)|deg(v) ≥ d}. Then

Lemma 2. With probability at least 1 − e−(c′−1) it holds that H ⊆ ̂H .

Proof of Theorem 1. The correctness of Algorithm 1 follows from Lemmas 1 and 2.
It remains to compute the time complexity of the algorithm:

1. Steps 1 and 2: The most expensive operation is computing ̂H . ̂H is computed by
going over all the vertices in S, and adding the neighbors of each vertex with degree
at least d to a list. (Thus a vertex can appear several times in the list). The time
complexity is

∑

v∈S deg(v) ≤ min{2|E|, |S| · n} = O(n).

2. Step 3: This step is preformed in the following manner. First the multiset Γ (̂H) is
computed, and then Γ2ε(̂H) is computed.

(a) Γ (̂H) is computed by going over all the vertices in ̂H , and adding the neigh-
bors of each vertex to a list. (Here too a vertex can appear several times in the
list). The time complexity is

∑

v∈ ̂H deg(v) ≤ min{2|E|, | ̂H| · n} = O(n).

(b) Γ2ε(̂H) is computed by the following algorithm: (i) Sort the vertices in the
multiset Γ (̂H) according the names of the vertices. (ii) For each vertex in
Γ (̂H) count the number of times it appears in Γ (̂H). If it appears at least
(1 − 2ε)|Γ (̂H)| times then add the vertex to Γ2ε(̂H). The time complexity is
|Γ (̂H)| log |Γ (̂H)| = O(n log n).

3. Step 4: ̂C is computed by first computing the degrees in Γ2ε(̂H) of the ver-
tices in Γ2ε(̂H), and then sorting the vertices in Γ2ε(̂H) according to this degree.
Computing the degrees is upper bounded by

∑

v∈Γ2ε(̂H) deg(v) = min{2|E|, n ·
|Γ2ε(̂H)|} = O(n). Therefore the time complexity of this step is upper bounded
by O(n) + |Γ2ε(̂H)| log(|Γ2ε(̂H)|) ≤ O(n) + O(k log k) = O(n log n).

Thus the time complexity of the algorithm is O(n log n).

4 A Sublinear Algorithm

In this section we modify the algorithm described in the previous section to get a sublin-
ear algorithm that works under an additional assumption. For the sake of simplicity, we
continue using the term Jellyfish subgraph, where we only add an additional parameter
to its definition. Specifically, we say that a graph G = (V, E) contains a (k, d, d′, c, ε)-
Jellyfish subgraph if it contains a (k, d, c, ε)-Jellyfish subgraph as described in Defini-
tion 4, and there are at most ε|H | vertices in the graph with degree larger than d′.

The next claim follows directly from a simple counting argument.

Claim 3. Let G = (V, E) be a sparse graph, where |E| ≤ c′′n. Then for any choice of
d, the graph G contains at most d/2 vertices with degree larger than 4c′′n/d.

36 M. Gonen et al.

Let H ′ be a subset of H that contains only vertices with degree at most d′. By the
definition of a (k, d, d′, c, ε)-Jellyfish subgraph, it holds that

|H | ≥ |H ′| ≥ |H | − ε|H | = (1 − ε)|H |.

The algorithm is given query access to the graph G = (V, E), and takes as input: k
(the requested dense-core size), d (the minimal degree for nodes in the nucleus), d′ (the
high-degree threshold), ε, c′′ (where |E| ≤ c′′n) and a sample size s.

Algorithm 2. (An algorithm for approximating C and H)

1. Uniformly and independently at random select s vertices. Let S be the set of vertices
selected.

2. Compute S′ = {v ∈ S | deg(v) ≤ 4c′′n/d}.
3. Compute ̂H ′ = {v ∈ Γ (S′) | d ≤ deg(v) ≤ d′}. If ̂H ′ = ∅ then abort.
4. Compute Γ4ε(̂H ′) the set of vertices that neighbor all but at most 4ε| ̂H ′| vertices

in ̂H ′.
5. Compute ̂C = {u ∈ Γ4ε(̂H ′)|deg(u) ≥ d}.
6. Order the vertices in Γ4ε(̂H ′)\ ̂C according to their degree in the subgraph induced

by Γ4ε(̂H ′) (breaking ties arbitrarily). Let C′′ be the first k−| ̂C| vertices according
to this order.

7. ̂C ← ̂C ∪ C′′.
8. Return ̂C, ̂H ′

Our main result is the following:

Theorem 2. Let G = (V, E) be a sparse graph that contains a
(k, Ω(n1−β), O(n1−β/2), c, ε)-Jellyfish subgraph. Then, for s ≥ c′(n/d) ln(|H | + 2),
where c′ is a constant, with probability at least 1 − e1−c′/2 Algorithm 2 finds a set ̂C of
size | ̂C| = k that is O(

√
ε) close to being a clique, and finds a set ̂H ′ that is a superset

of H ′ s.t. | ̂H ′| ≤ (1 + ε)|H |.5 For k = O(log n) and β ≤ 2/5, the time complexity of
Algorithm 2 is Õ(n1−β/2)6.

The proof of Theorem 2 appears in the full version of the paper [20].

5 Implementation

To demonstrate the usefulness of our algorithms beyond their theoretical contribu-
tion, we conducted a performance evaluation of our algorithm in comparison with the
GreedyMaxClique algorithm of Siganos et al. [31] and the kCore algorithm of Carmi et
al. [10] on real AS-graph data.

For our own algorithm we implemented the basic Algorithm 1 of Section 3. We
did not implement the sublinear algorithm of Section 4. The AS graph contains only a

5 Recall that |H ′| ≥ (1 − ε)|H |, so Algorithm 2 indeed approximates H .
6 The notation Õ(g(k)) for a function g of a parameter k means O(g(k) ·polylog(g(k))) where
polylog(g(k)) = logc(g(k)) for some constant c.

Finding a Dense-Core in Jellyfish Graphs 37

handful of very high degree vertices, so the main assumption of Section 4 holds anyway.
This means that the refinements of the sublinear algorithm, which ensure that we do
not process too many such vertices, would not bring significant gains. Moreover, the
basic JellyCore algorithm gave us excellent running times (see below), so we opted for
simplicity and ease of programming.

All three algorithms were implemented in Java, using Sun’s Java 5, using the open
source library JUNG [23] (Java Universal Network/Graph Framework). We ran the al-
gorithms on a 3GHz 4x multiprocessor Intel Xeon server with 4GB RAM, running
RedHat Linux kernel 2.6.9.

We tested the algorithms on AS graphs constructed from data collected by the
DIMES project [30]. DIMES is a large-scale distributed measurements effort that mea-
sures and tracks the evolution of the Internet from hundreds of different view-points,
and provides detailed Internet topology graphs. We merged AS graphs from consec-
utive weeks starting from the first week of 2006 until reaching a total of 64 weeks in
February 2007. This resulted in AS graphs that have a vertex count ranging from 11,000
to around 21,000 ASes.

All three algorithms accept the Internet AS graph as an input. The kCore algorithm
used a degree of 29 (i.e., it produced a core in which the minimal residual node degree
is 30). The parameters for our JellyCore Algorithm 1 were set as follows: Given the
number of vertices n, we used a minimal nucleus degree of d = n0.7, which gave
675 < d < 1100 for our values of n. We picked ε = 0.1 since we knew from earlier
work that the AS graph contains a clique of 10–13 vertices—a smaller value of ε would
have been essentially meaningless. The sample size s was calculated as follows: s =
10 · n0.3 · ln(3 log(5 logn)) (this gave values 473 < s < 577 for our values of n). To
allow a fair comparison with the kCore algorithm, we set the required dense-core size k
to be the exact core size returned by the kCore algorithm in each run (67 < k < 91 in
all cases).

Since the JellyCore algorithm is randomized, we ran it 10 times on each input graph,
each time with independent random samples. Each point plotted in the figures represents
the average of these 10 runs.

5.1 Accuracy of the JellyCore Algorithm

Figure 2 (left) shows the percentage of matching vertices of JellyCore and kCore. In
other words, if kCore returned a core Z and Jellycore returned a core J then Figure 2
(left) shows 100 · |J ∩ Z|/|Z|. We can see that in all cases, between 92% and 95% of
the core J returned by JellyCore is also in Z . Thus the results of JellyCore and kCore
are very similar on the AS graph.

The figure also shows the percentage of matching vertices between the clique Q
returned by GreedyMaxClique and the nucleus ̂H (here denoted by U). We can see
that ̂H contains between 68% and 94% of the vertices of Q - and that this percentage
improves as the number of vertices grows. Furthermore, we found by inspection that
the JellyCore’s J always completely includes the GreedyMaxClique Q.

Figure 2 (right) shows the density of the cores returned by JellyCore and of kCore
as a function of the number of vertices of the graph. We can see that both densities are

38 M. Gonen et al.

11,000 13,000 15,000 17,000 19,000 21,000
0

10

20

30

40

50

60

70

80

90

100

Number of vertices

F
ra

ct
io

n
of

 m
at

ch
in

g
ve

rt
ic

es
 (

%
)

Matching JellyCore with kCore
Matching U with GreedyMaxClique

11,000 13,000 15,000 17,000 19,000 21,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of vertices

C
or

e
de

ns
ity

kCore
JellyCore

Fig. 2. Left: Percentage of matching vertices between JellyCore and kCore, and percentage of
matching vertices between of U(= ̂H) and GreedyMaxClique, for increasing graph sizes. Right:
Core Density.

almost identical, particularly for n ≥ 18, 000 vertices. The density of GreedyMax-
Clique is obviously 1, by the algorithm definition.

We can conclude that the practical results of the JellyCore algorithm, on the real AS
graph, agree extremely well with the results of both kCore and GreedyMaxClique.

11,000 13,000 15,000 17,000 19,000 21,000
0

2000

4000

6000

8000

10000

12000

Number of vertices

E
xe

cu
tio

n
tim

e
[m

S
ec

]

kCore
JellyCore
GreedyMaxClique

Fig. 3. Executions times

5.2 Execution Times

Figure 3 shows that the running times of JellyCore and GreedyMaxClique are almost
identical, and that kCore is indeed slower: Jellycore runs about 6 times faster than kCore
on the largest AS graphs. Moreover, the running time of kCore increases substantially
as the number of vertices in the graph grows, while the growth in the running times of
JellyCore and GreedyMaxClique is relatively minor.

Therefore, we can see that the JellyCore algorithm produces cores that are very
similar to those kCore—at a fraction of the running time. In addition, JellyCore
returns “for free” the nucleus ̂H , which is essentially the clique Q discovered by
GreedyMaxClique.

Finding a Dense-Core in Jellyfish Graphs 39

6 Conclusions

In this work we presented first a simple algorithm (JellyCore), and then a sublinear
algorithm, for approximating the dense-core of a Jellyfish graph. We mathematically
proved the correctness of our algorithms, under mild assumptions that hold for the AS
graph. In our analysis we bounded the density of the cores our algorithms return, and
analyzed their running time.

We also implemented our JellyCore algorithm and tested it on real AS-graph data.
Our results show that the dense-core returned by JellyCore is very similar to the kCore
of Carmi et al. [10], at a fraction of the running time, and the improvement is more
prominent as the number of vertices increases. In addition, as a side effect JellyCore
also approximates the clique returned by GreedyMaxClique of Siganos et al. [31].

Therefore, we have demonstrated that our randomized approach provides both a the-
oretically successful algorithm (with a rigorous asymptotic analysis of the discovered
density and success probability)—and a successful practical algorithm.

References

1. Albert, R., Barabási, A.-L.: Topology of evolving networks: Local events and universality.
Physical Review Letters 85(24), 5234–5237 (2000)

2. Alvarez-Hamelin, I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks finger-
printing and visualization using the k-core decomposition. Proc. Neural Information Process-
ing Systems (August 2005)

3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Jour-
nal of Algorithms 34, 203–221 (2000)

4. Bar, S., Gonen, M., Wool, A.: An incremental super-linear preferential Internet topology
model. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 53–62. Springer,
Heidelberg (2004)

5. Bar, S., Gonen, M., Wool, A.: A geographic directed preferential Internet topology model.
Computer Networks 51(14), 4174–4188 (2007)

6. Barford, P., Bestavros, A., Byers, J., Crovella, M.: On the marginal utility of network topol-
ogy measurements. In: Proc. ACM SIGCOMM (2001)

7. Bianconi, G., Barabási, A.L.: Competition and multiscaling in evolving networks. Euro-
physics Letters 54(4), 436–442 (2001)

8. Brunet, R.X., Sokolov, I.M.: Evolving networks with disadvantaged long-range connections.
Physical Review E 66(026118) (2002)

9. Bu, T., Towsley, D.: On distinguishing between Internet power-law generators. In: Proc. IEEE
INFOCOM 2002, New-York (April 2002)

10. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: Medusa - new model of Internet
topology using k-shell decomposition. Technical Report arXiv:cond-mat/0601240v1 (2006)

11. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using
k-shell decomposition. PNAS 2007. Proceedings of the National Academy of Sciences, USA
104(27), 11150–11154 (July 3, 2007)

12. Charikar, M.: Greedy approximation algorithms for finding dense components in graphs. In:
Proc. APPROX (2000)

13. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: The origin of
power laws in Internet topologies revisited. In: Proc. IEEE INFOCOM 2002, New-York
(April 2002)

40 M. Gonen et al.

14. Faloutsos, C., Faloutsos, M., Faloutsos, P.: On power-law relationships of the Internet topol-
ogy. In: Proc. of ACM SIGCOMM 1999, pp. 251–260 (August 1999)

15. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–
421 (2001)

16. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in
graph partitioning. Journal of Algorithms 41, 174–211 (2001)

17. Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report, Department of
Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot (1997)

18. Ge, Z., Figueiredo, D.R., Jaiswal, S., Gao, L.: On the hierarchical structure of the logical
Internet graph. In: SPIE ITCOM (August 2001)

19. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connections to learning and
approximation. J. ACM 45, 653–750 (1998)

20. Gonen, M., Ron, D., Weinsberg, U., Wool, A.: Finding a dense-core in jellyfish graphs. Tech-
nical report, School of Electrical Enjeneering, Tel-Aviv University (2007)

21. Govindan, R., Tangmunarunki, H.: Heuristics for Internet map discovery. In: Proc. IEEE
INFOCOM 2000, Tel-Aviv, Israel, pp. 1371–1380 (March 2000)

22. Håstad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182, 105–142
(1999)

23. JUNG - the java universal network/graph framework (2007),
http://jung.sourceforge.net/

24. Krapivsky, P.L., Rodgers, G.J., Render, S.: Degree distributions of growing networks. Phys-
ical Review Letters 86(5401) (2001)

25. Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling biases in IP topology measurments.
In: Proc. IEEE INFOCOM 2003 (2003)

26. Li, X., Chen, G.: A local-world evolving network model. Physica A 328, 274–286 (2003)
27. Mishra, N., Ron, D., Swaminathan, R.: A new conceptual clustering framework. Machine

Learning 56, 115–151 (2004)
28. Reittu, H., Norros, I.: On the power law random graph model of the Internet. Performance

Evaluation 55 (January 2004)
29. Sagie, G., Wool, A.: A clustering approach for exploring the Internet structure. In: Proc. 23rd

IEEE Convention of Electrical & Electronics Engineers in Israel (IEEEI) (2004)
30. Shavitt, Y., Shir, E.: DIMES: Let the Internet measure itself. In: Proc. ACM SIGCOMM, pp.

71–74 (2005)
31. Siganos, G., Tauro, S.L., Faloutsos, M.: Jellyfish: A conceptual model for the as Internet

topology. Journal of Communications and Networks (2006)
32. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.H.: Characterizing the Internet hierarchy

from multiple vantage points. In: Proc. IEEE INFOCOM 2002, New-York (April 2002)
33. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network topology

generators: Degree based vs. structural. In: Proc. ACM SIGCOMM (2002)
34. Tauro, L., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for Internet

topology. In: IEEE Global Internet, San Antonio, TX (November 2001)
35. Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S.: Scaling phenomena in the

Internet: Critically examining criticality. Proceedings of the National Academy of Sciences
of the United States of America 99, 2573–2580 (February 2002)

36. Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Technical Report UM-CSE-TR-
456-02, Department of EECS, University of Michigan (2002)

http://jung.sourceforge.net/

A Geometric Preferential Attachment Model of

Networks II

Abraham D. Flaxman, Alan M. Frieze�, and Juan Vera

Department of Mathematical Sciences,
Carnegie Mellon University,

Pittsburgh PA15213,
U.S.A.

Abstract. A detailed understanding of expansion in complex networks
can greatly aid in the design and analysis of algorithms for a variety
of important network tasks, including routing messages, ranking nodes,
and compressing graphs. This has motivated several recent investigations
of expansion properties in real-world graphs and also in random models
of real-world graphs, like the preferential attachment graph. The results
point to a gap between real-world observations and theoretical models.
Some real-world graphs are expanders and others are not, but a graph
generated by the preferential attachment model is an expander whp.

We study a random graph Gn that combines certain aspects of geo-
metric random graphs and preferential attachment graphs. This model
yields a graph with power-law degree distribution where the expansion
property depends on a tunable parameter of the model.

The vertices of Gn are n sequentially generated points x1, x2, . . . , xn

chosen uniformly at random from the unit sphere in R3. After gen-
erating xt, we randomly connect it to m points from those points in
x1, x2, . . . , xt−1

1 Introduction

During the last decade a large body of research has centered on understand-
ing and modeling the structure of large-scale networks like the Internet and the
World Wide Web. Several recent books provide a general introduction to this
topic [37] and [40]. One important feature identified in early experimental stud-
ies (including [3,12,22]) is that the vertex degree distribution of many real-world
networks has a heavy-tailed property, which may follow a power-law (i.e., the
proportion of vertices of degree at least k is proportional to k−α for some con-
stant α). This has driven the investigation of random graph distributions which
generate heavy-tailed degree distributions, including the fixed degree sequence
model, the copying model, and the preferential attachment model.

The preferential attachment model and its derivatives have been particularly
popular for theoretical analysis. Preferential attachment was proposed as a model
for real-world complex networks by Barabási and Albert [4]. The distribution
� Supported in part by NSF grant CCF-200945.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 41–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 A.D. Flaxman, A.M. Frieze, and J. Vera

was formalized by Bollobás and Riordan [9], and in [11] it was proved rigor-
ously that whp a graph chosen according to this distribution has a power-law
degree distribution with complementary cumulative distribution function (ccdf)
Pr[deg(v) ≥ k] = Θ(k−2). By changing the initial attactiveness or incorporating
more random addition and deletion, the power of the ccdf power-law can be
tuned to take any value in the interval (1, ∞) [13,17].

However, there are some significant differences between graphs generated by
preferential attachment and those found in the real world. One major difference
is found in their expansion properties. Mihail, Papadimitriou, and Saberi [35]
showed that whp the preferential attachment model has conductance bounded
below by a constant. On the other hand, Blandford, Blelloch and Kash [7] found
that some WWW related graphs have smaller separators than the preferential
attachment model predicts. This observation is consistient with observations
due to Estrada [19], who found that half of the real-world networks he looked
at were good expanders and the other half were not so good. The perturbed
random graph framework provides one approach to understanding expansion in
real-world networks [23], but it does not give a generative procedure. This paper
investigates a generative procedure, based on a geometric modification of the
preferential attachment model, which yields a graph that might or might not be
a good expander, depending on a tunable parameter of the geometry. This is a
strict generalization of the geometric preferential attachment graph developed
in [24] which was designed specifically to avoid being a good expander.

The primary contribution of this paper is to provide a parameterised model
that exhibits a sharp transition between low and high conductance. Choosing this
parameter appropriately provides a unified approach to generating preferential
attachment graphs with and without good expansion processes.

1.1 The Random Process

In [24] we studied a process which generates a sequence of graphs Gt, t =
1, 2, . . . , n. The graph Gt = (Vt, Et) has t vertices and mt edges. Here Vt is
a subset of t random points on S, the surface of the sphere in R3 of radius 1

2
√

π

(so that area(S) = 1). After randomly choosing xt+1 ∈ S, it is connected, by
preferential attachment (i.e. proportional to degree), to m vertices in Vt among
those of distance at most r from xt+1. We showed that this graph has a power
law degree distribution, small seperators and a moderate diameter. In this paper
we provide a “smoothed” version of this model, instead of choosing proportional
to degree among those vertices within distance r of xt+1, the m neighbors of xt

are chosen proportional to degree and some function of the distance to xt+1.
Let F : R+ → R+. Define

I =
∫

S

F (|u − u0|)du =
1
2

∫ π

x=0
F (x) sin xdx)

where u0 is any point in S and 0 ≤ |u−u0| ≤ π is the angular distance from u to
u0 along a great circle. Other parameters of the process are m > 0 the number
of edges added in every step and α ≥ 0 a measure of the bias towards self loops.

A Geometric Preferential Attachment Model of Networks II 43

– Time step 0: To initialize the process, we start with G0 being the Empty
Graph.

– Time step t+1: We choose vertex xt+1 uniformly at random in S and add
it to Gt. Let

T (xt+1) =
∑

v∈Vt

F (|xt+1 − v|) degt(v).

We add m random edges (xt+1, yi), i = 1, 2, . . . , m incident with xt+1. Here,
each yi is chosen independently from Vt+1 = Vt ∪ {xt+1} (parallel edges and
loops are permitted), such that for each i = 1, . . . , m, for all v ∈ Vt,

Pr(yi = v) =
degt(v)F (|xt+1 − v|)
max (T (xt+1), αmIt)

and

Pr(yi = xt+1) = 1 − T (xt+1)
max (T (xt+1), αmIt)

(When t = 0 we have Pr(yi = x1) = 1.)

For z > 0 we define

Iz =
1
2

∫ z

x=0
F (x) sin xdx and Jz = I − Iz .

Where possible we will illustrate our theorems using the canonical functions:

F0(u) = 1|u|≤r, r ≥ nε−1/2.

F1(u) =
1

max{n−δ, u}β
where δ < 1/2.

F2(u) = e−βu β = β(n) ≥ 0.

Notice that F0 corresponds to the model presented in [24]. Also notice that
without the n−δ term in the definition of F1 for β ≥ 2 we would have I = ∞.
One can justify its inclusion (for some value of δ) from the fact that whp the
minimum distance between the points in Vn is greater than 1/n lnn.

Observe that

Iz(F0) =
1
2
(1 − cos(min {z, r})).

Iz(F1) =

⎧

⎪

⎨

⎪

⎩

βnδ(β−2)

4(β−2) + O(n(β−4)δ + z2−β) z ≥ n−δ, β > 2.

Θ(z2−β) + O(n(β−2)δ) z ≥ n−δ, β < 2
ln(nδz) + O(1) z ≥ n−δ, β = 2

Iz(F2) =
1

2(1 + β2)
(1 − e−βz(cos z + β sin z)).

Let dk(t) denote the number of vertices of degree k at time t and let dk(t)
denote the expectation of dk(t).

We will first prove the following result about the degree distribution and the
existence of small separators:

44 A.D. Flaxman, A.M. Frieze, and J. Vera

Theorem 1

(a) Suppose that α > 2 and in addition that
∫ π

x=0
F (x)2 sin xdx = O(nθI2) (1)

where θ < 1 is a constant.
Then there exists a constant γ1 = γ1(α, θ) > 0 such that for all k =

k(n) ≥ m,

dk(n) = eϕk(m,α)
(m

k

)1+α

n + O(n1−γ1) (2)

where ϕk(m, α) = O(1) tends to a constant ϕ∞(m, α) as k → ∞.
Furthermore, for n sufficiently large, the random variable dk(n) satisfies

the following concentration inequality: Let ζ > 0 be constant.

Pr(|dk(n) − dk(n)| ≥ I2nmax{1/2,2/α}+ζ) ≤ e−nζ

. (3)

(b) Suppose that α > 0 and m0 ≤ m where m0 is a sufficiently large constant
and ϕ, η = o(1) are such that ηn → ∞ and Jη ≤ ϕI. Then whp, Vn can
be partitioned into T, T̄ such that |T |, |T̄ | ∼ n/2, and there are Õ((η + ϕ)n)
edges between T and T̄ .

Remark 1. Note that the exponent in (a) does not depend on the particular
function F . F manifests itself only through the error terms.

For Part (a) of the above theorem:

F = F0: θ = 0.
F = F1, β > 2: θ = 2δ.
F = F1, β < 2: θ = 0.
F = F1, β = 2: θ = 2δ.
F = F2: θ = 0.

For Part (b) of the above theorem:

F = F0: η = r, ϕ = 0.
F = F1, β > 2: η = n−δ, ϕ = O(n−(β−2)δ).
F = F1, β = 2: η = ln ln n

lnn , ϕ = O(η).

We now consider the connectivity and diameter of Gn. For this we will place
some more restrictions on F .

Define the parameter ρ(μ) by

Iρ = μI. (4)

We will say that F is smooth (for some value of μ) if

(S1) F is monotone non-increasing.
(S2) ρ2n ≥ L lnn for some sufficiently large constant L.
(S3) ρ2F (2ρ) ≥ c3I for some c3 which is bounded away from zero.

A Geometric Preferential Attachment Model of Networks II 45

Theorem 2. Suppose that α > 2 and F is smooth for some constant μ > 0 and
m ≥ K ln n for K sufficiently large. Then whp

(a) Gn is connected.
(b) Gn has diameter O(ln n/ρ).

For the above theorem:

F = F0: I ∼ r2/4 and so we can take μ ∼ 1/4, ρ = r/2, c3 ∼ 1.
F = F1, β > 2: I ∼ nδ(β−2)

2(β−2) and so we can take μ ∼ 1/4, ρ = n−δ/2, c3 ∼
(β − 2)/2.

F = F1, β < 2: I = Θ(1) and we can take ρ = 1, μ = Ω(1), c3 = Ω(1).
F = F2: I = Θ(1) and we can take ρ = 1, μ = Ω(1), c3 = Ω(1).

We have a problem fitting the case of F1 with β = 2 into the theorem.
We now consider conditons under which Gn is an expander.
Let F be tame if there exist absolute constants C1, C2 such that

(T1) F (x) ≥ C1 for 0 < x ≤ π.
(T2) I ≤ C2.

We note that F1 with β < 2 is tame since F1(x) ≥ π−β for 0 ≤ π and

I =
1
2

∫ π

x=0
x−β sin xdx ≤ π2−β

2(2 − β)
.

The conductance Φ of Gn is defined by

Φ = min
degn(K)≤mn

Φ(K) = min
degn(K)≤mn

|E(K : K̄)|
degn(K)

.

Theorem 3. If α > 2 and F is tame and m ≥ K ln n for K sufficiently large
then whp

(a) Gn has conductance bounded away from zero.
(b) Gn is connected.
(c) Gn has diameter O(logm n).

Mihail [31] has empirical results on the conductance of Gn in the case where
F = F1. They observe poor conductance when β < 2 and good conductance
when β > 2. This fits nicely with the results of Theorems 2 and 3.

The role of α: This parameter was introduced in [24] as a means of overcoming
a difficult technical problem. When α > 2 it facilitates a proof of Lemma 2. On
the positive side, it does give a parameter that effects the power law. On the
negative side, when α > 2, there will whp be isolated vertices, unless we make
m grow at least as fast as ln n. It is for us, an interesting open question, as to
how to prove our results with α = 0.

46 A.D. Flaxman, A.M. Frieze, and J. Vera

2 Outline of the Paper

We prove a likely power law for the degree sequence in Section 3. We follow a
standard practise and prove a recurrence for the expected number of vertices
of degree k at time step t. Unfortunatley, this involves the estimation of the
expectation of the reciprocal of a random variable and to handle this, we show
that this random variable is concentrated. This is quite technical and is done in
Section 3.2. In Section 4 we show that under the assumptions of Theorem 1(b)
there are small separators. This is relatively easy, since any give great circle can
whp be used to define a small separator.

The proof of connectivity when m grows logarithmically with n is left to the
full paper. The idea is to show that whp the sub-graph Gn(B) induced by a ball
B of radius ρ, centered in u ∈ S, is connected. and has small diameter. We then
show that the union of the Gn(B)’s for u = x1, x2, . . . , xn is connected and has
small diameter.

3 Proving a Power Law

3.1 Establishing a Recurrence for dk(t): The Expected Number of
Vertices of Degree k at Time t

Our approach to proving Theorem 1(a) is to find a recurrence for dk(t). For
k ∈ N define Dk(t) = {v ∈ Vt : degt(v) = k}. Thus dk(t) = |Dk(t)|. Also, define
dm−1(t) = 0 and dm−1(t) = 0 for all integers t with t > 0. Let ηk(Gt, xt+1)
denote the (conditional) probability that a parallel edge from xt+1 to a vertex
of degree no more than k is created at time t + 1. Then,

ηk(Gt, xt+1) = O

⎛

⎝min

⎧

⎨

⎩

(

m

2

) k
∑

i=m

∑

v∈Di(t)

F (|xt+1 − v|)2 i2

max{αmIt, T (xt+1)}2 , 1

⎫

⎬

⎭

⎞

⎠ . (5)

Then for k ≥ m,

E [dk(t + 1) | Gt, xt+1] = dk(t)

+ m
∑

v∈Dk−1(t)

(k − 1)F (|xt+1 − v|)
max{αmIt, T (xt+1)}

− m
∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, T (xt+1)}

+ Pr [degt+1(xt+1 = k) | Gt, xt+1] + O(ηk(Gt, xt+1)). (6)

Let At be the event

{|T (xt+1) − 2mIt| ≤ C1Imtγ ln n}

where
max{2/α, θ} < γ < 1

and C1 is some sufficiently large constant.

A Geometric Preferential Attachment Model of Networks II 47

Note that if
t ≥ t0 = (lnn)2/(1−γ) (7)

then
At implies T (xt+1) ≤ αmIt.

Then, for t ≥ t0,

E

⎡

⎣

∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, T (xt+1)}

⎤

⎦

= E

⎡

⎣

∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, T (xt+1)}

∣

∣

∣

∣

At

⎤

⎦Pr [At]

+ E

⎡

⎣

∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, T (xt+1)}

∣

∣

∣

∣

¬At

⎤

⎦Pr [¬At]

=
k

αmt
E [dk(t)|At]Pr [At] + O (1)Pr [¬At]

=
kdk(t)
αmt

− k

αmt
E [dk(t)|¬At]Pr [¬At] + O (1)Pr [¬At]

=
kdk(t)
αmt

+ O (k)Pr [¬At]

In Lemma 2 below we prove that

Pr [¬At] = O
(

n−2) . (8)

Thus, if t ≥ t0 then

E

⎡

⎣

∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, T (xt+1)}

⎤

⎦ =
kdk(t)
αmt

+ O
(

k/n2) . (9)

In a similar way

E

⎡

⎣

∑

v∈Dk−1(t)

(k − 1)F (|xt+1 − v|)
max{αmIt, T (xt+1)}

⎤

⎦ =
(k − 1)dk−1(t)

αmt
+ O

(

k/n2) . (10)

On the other hand, given Gt, xt+1, if

p = 1 − T (xt+1)
max (T (xt+1), αmIt)

then
Pr

[

degt+1(xt+1 = k) | Gt, xt+1
]

= Pr [Bi(m, p) = k − m]

48 A.D. Flaxman, A.M. Frieze, and J. Vera

So, if t ≥ t0,

Pr
[

degt+1(xt+1=k)
]

=
(

m

k − m

)

E
[

pk−m(1−p)2m−k

∣

∣

∣

∣

At

]

Pr [At]+O(Pr [¬At])

=
(

m

k − m

)(

1 − 2
α

)k−m (

2
α

)2k−m

(1 + O(tγ−1 ln n))Pr [At] + O(n−2)

=
(

m

k − m

)(

1 − 2
α

)k−m (

2
α

)2k−m

+ O(tγ−1 ln n).

Now note that from equations (5) and (8) that if

t ≥ t1 = n(γ+θ)/2γ

and
k ≤ k0(t) = n(γ−θ)/4

then, from (1), we see that

E(ηk(Gt, xt+1)) = O

(

k2nθ

t

)

= O(tγ−1). (11)

Taking expectations on both sides of (6) and using (9,10,11), we see that if t ≥ t0
and k ≤ k0(t) then

dk(t + 1) = dk(t) +
k − 1
αt

dk−1(t) − k

αt
dk(t)

+
(

m

k − m

)(

1 − 2
α

)k−m (

2
α

)2m−k

+ O
(

tγ−1 ln n
)

(12)

We consider the recurrence given by fm−1 = 0 and for k ≥ m,

fk =
k − 1

α
fk−1 − k

α
fk +

(

m

k − m

)(

1 − 2
α

)k−m (

2
α

)2m−k

, (13)

which, for k > 2m, has solution

fk = f2m

k
∏

i=2m+1

i − 1
i + α

= f2meϕk(m,α)
(m

k

)α+1
. (14)

Here ϕk(m, α) = O(1) tends to a limit ϕ∞(m, α) depending only on m, α as
k → ∞. Furthermore, limm→∞ ϕ∞(α, m) = 0. We also have

fm+i ≤ f2m

m
∏

j=i+1

(

1 +
α + 1

m + j − 1

)

≤ e2α+3f2m.

It follows that (14) is also valid for m ≤ k ≤ 2m with ϕk(m, α) = O(1).

A Geometric Preferential Attachment Model of Networks II 49

We finish the proof of (2) by showing that there exists a constant M > 0 such
that

|dk(t) − fkt| ≤ M(n1−(γ−θ)/4 + tγ ln n) (15)

for all 0 ≤ t ≤ n and m ≤ k ≤ k0(t).
We have that (15) is trivially true for t < t1, and for t ≥ t1 and k > k0(t) it

follows from dk(t) ≤ 2mt/k.
Now, let Θk(t) = dk(t) − fkt. Then for t ≥ t1 and m ≤ k ≤ k0(t),

Θk(t + 1) =
k − 1
αt

Θk−1(t) − k

αt
Θk(t) + O(tγ−1 ln n). (16)

Let L denote the hidden constant in O(tγ−1 ln n) of (16). Our inductive hypoth-
esis Ht is that

|Θk(t)| ≤ M(t1 + tγ ln n)

for every m ≤ k ≤ k0(t) and M sufficiently large. Assume that t ≥ t1. Then
k 	 t in the current range of interest, and so from (16),

|Θk(t + 1)| ≤ M(t1 + tγ ln n) + Ltγ−1 ln n

≤ M(t1 + (t + 1)γ ln n).

This verifies Ht+1 and completes the proof by induction.

3.2 Concentration of T (u)

Now we turn our attention to prove that T (u) is concentrated around its mean.

Lemma 1. Let u ∈ S and t > 0 then E [T (u)] = 2Imt.

Proof

E [T (u)] = E

[

∑

v∈Vt

degt(v)F (|u − v|)
]

= I
∑

v∈Vt

degt(v) = 2Imt. �

Lemma 2. If t > 0 and u is chosen randomly from S then

Pr
[

|T (u) − 2Imt| ≥ mI(t2/α + t1/2 ln t) ln n
]

= O
(

n−2) .

Proof. We use the Azuma-Hoeffding inequality. One may be a little concerned
here that our probability space is not discrete. Although it is not really neces-
sary, one could replace S by 22n

randomly chosen points X and sample uni-
formly from these. Then whp the change in distribution would be negligi-
ble. With this re-assurance, fix τ , with 1 ≤ τ < t. Fix Gτ and let Gt =
Gt(Gτ , xτ+1, y1, . . . , ym) and Ĝt = Gt(Gτ , x̂τ+1, ŷ1, . . . , ŷm), where xτ+1, x̂τ+1 ∈
S and y1, . . . , ym, ŷ1, . . . , ŷm ∈ Vτ . We couple the construction of Gt and Ĝt,

50 A.D. Flaxman, A.M. Frieze, and J. Vera

starting at time step τ + 1 with the graph Gτ and Ĝτ respectively. Then, for
every step σ > τ + 1 we choose the same point xσ ∈ S in both and for ev-
ery i = 1, . . . , m we choose ui, ûi ∈ Vσ such that each marginal is the cor-
rect marginal and such that the probability of choosing the same vertex is
maximized.

Notice that we have

Pr [ui =v= ûi]=min

⎛

⎝

degGσ−1
(v)F (|v − xσ|)

max (T (xσ), αmI(σ − 1))
,

degĜσ−1
(v)F (|v − xσ|)

max
(

T̂ (xσ), αmI(σ − 1)
)

⎞

⎠

for every v ∈ Vσ−1. Also,

Pr [ui =xσ = ûi]=1−max

⎛

⎝

T (xσ)
max (T (xσ), αmI(σ−1))

,
T̂ (xσ)

max
(

T̂ (xσ), αmI(σ−1)
)

⎞

⎠

Now, for u ∈ S let

Δσ(u) := Δσ,τ (u) =
σ
∑

ρ=τ

m
∑

i=1

|F (|u − uρ
i |) − F (|u − ûρ

i |)|.

Lemma 3. Let t ≥ 1 and let u be a random point in S. Then for some constant
C > 0,

E [Δt(u)] ≤ CmI

(

t

τ

)2/α

.

Proof. We begin with

E
[

|F (|w − uρ
i |) − F (|w − ûρ

i |)|
∣

∣uj
i , û

j
i : i = 1, . . . , m, j = 1, . . . , σ

]

≤ 2I1uρ
i �=ûρ

i
.

Therefore if we define for every τ < σ ≤ t

Δσ =
σ
∑

ρ=τ

m
∑

i=1

1uσ
i �=ûσ

i
,

we have
E [Δσ(u)] ≤ 2IE [Δσ] .

Fix τ < σ ≤ t. We have then

Δσ = Δσ−1 +
m
∑

i=1

1uσ
i �=ûσ

i
. (17)

A Geometric Preferential Attachment Model of Networks II 51

Now fix 1 ≤ i ≤ m. Taking expectations with respect to our coupling,

E
[

1uσ
i �=ûσ

i
|Gσ−1, Ĝσ−1, xσ

]

= 1 − Pr
[

uσ
i = ûσ

i |Gσ−1, Ĝσ−1, xσ

]

= max

⎛

⎝

T (xσ)
max (T (xσ), αmI(σ − 1))

,
T̂ (xσ)

max
(

T̂ (xσ), αmI(σ − 1)
)

⎞

⎠

−
∑

v∈Vσ−1

min

⎛

⎝

degGσ−1
(v)F (|v − xσ |)

max (T (xσ), αmI(σ − 1))
,

degĜσ−1
(v)F (|v − xσ |)

max
(

T̂ (xσ), αmI(σ − 1)
)

⎞

⎠

≤
max

(

T (xσ), T̂ (xσ)
)

−
∑

v∈Vσ−1
min

(

degGσ−1
(v), degĜσ−1

(v)
)

F (|v − xσ |)

max
(

T (xσ), T̂ (xσ), αmI(σ − 1)
)

(18)

≤
∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|F (|v − xσ |)

max
(

T (xσ), T̂ (xσ), αmI(σ − 1)
) (19)

≤
∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|F (|v − xσ |)

αmI(σ − 1)

Inequality (18), follows from

max
(

a

max (a, c)
,

b

max (b, c)

)

=
max (a, b)

max (a, b, c)

and

min
(a

b
,
c

d

)

≥ min (a, c)
max (b, d)

.

Inequality (19) is a consequence of max{
∑

i ai,
∑

i bi} −
∑

i min{ai, bi} ≤
∑

i |ai − bi|.

Therefore

E
[

Δσ

∣

∣

∣

∣

Gσ−1, Ĝσ−1

]

≤ Δσ−1 +

∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|

α(σ − 1)
. (20)

But, for each v ∈ Vσ−1 we have

| degGσ−1
(v) − degĜσ−1

(v)| ≤
σ−1
∑

j=τ

m
∑

i=1

(1uj
i=v, ûj

i �=v + 1uj
i �=v, ûj

i =v)

and thus

∑

v∈Vσ−1

| degGσ−1
(v)−degĜσ−1

(v)|≤
σ−1
∑

j=τ

m
∑

i=1

∑

v∈Vσ−1

(

1uj
i=v, ûj

i �=v+1uj
i �=v, ûj

i=v

)

≤2Δσ−1.

52 A.D. Flaxman, A.M. Frieze, and J. Vera

Going back to (20) we have

E [Δσ] ≤ E [Δσ−1]
(

1 +
2

α(σ − 1)

)

,

so, E [Δt] ≤ eO(1)
(

t
τ

)2/α
E [Δτ]. Now, Δτ ≤ m, because the graphs Gτ and Ĝτ

differ at most in the last m edges. Therefore E [Δt] ≤ eO(1)m
(

t
τ

)2/α. �

To apply Azuma’s inequality we note first that

∣

∣EGt [T (u)] − EĜt
[T (u)]

∣

∣=
∣

∣

∣ E

[

t
∑

ρ=τ

m
∑

i=1

(F (|u−uρ
i |)−F (|u−ûρ

i |))
]

∣

∣

∣≤E [Δt(u)] ,

(21)
and from Lemma 3

t
∑

τ=1

E [Δt(u)]2 ≤ (eO(1)mI)2t4/α
t
∑

τ=1

τ−4/α = O
(

I2m2(t ln t + t4/α)
)

Therefore, there is C1 such that

Pr
[

|T (u) − E [T (u)] | ≥ C1Im(t2/α + t1/2 ln t)(ln n)1/2
]

≤ e−2 ln n = n−2. �

3.3 Concentration of dk(t)

We follow the proof of Lemma 3, replacing T (u) by dk(t) and using the same
coupling, When we reach (21) we find that

∣

∣EGt [dk(t)] − EĜt
[dk(t)]

∣

∣ ≤ 2E[Δt],
the rest is the same.

This proves (1) and completes the proof of Theorem 1(a).

4 Small Separators

In this section we prove Theorem 1(b). For this, we assume α > 0 and m0 ≤ m
where m0 is a sufficiently large constant and ϕ, η = o(1) are such that ηn → ∞
and Jη ≤ ϕI.

We use the geometry of the instance to obtain a sparse cut. Consider parti-
tioning the vertices in Vn using a great circle of S. This will divide Vn into sets
T and T̄ which each contain about n/2 vertices. More precisely, we have

Pr [|T | < (1 − ξ)n/2] = Pr
[

|T̄ | < (1 − ξ)n/2
]

≤ e−ξ2n/5.

To bound e(T, T̄), the number of edges crossing the cut, we divide the edges
in two types. We call an edge {u, v} in Gn long if |u−v| ≥ η, otherwise we call it
short. We will show that whp the number of long edges is small, and therefore

A Geometric Preferential Attachment Model of Networks II 53

we just need to consider short edges in a cut. Let Z denote the number of long
edges. Then

E [Z] ≤ mt0 +m
∑

t≥t0

∑

v∈Vt

degt(v)Jη

αmIt
≤ mt0 +m

∑

t≥t0

Jη

αI
= mt0 +O(nϕ). �

Now whp there are at most E [Z] /ϕ1/2 long edges. Apart from these, edges only
appear between vertices within distance η, so only edges incident with vertices
appearing in the strip within distance η of the great circle can appear in the cut.
Since η = o(1), this strip has area less than 3η

√
π, and, letting U denote the

vertices appearing in this strip, we have

Pr
[

|U | ≥ 4
√

πηn
]

≤ e−2
√

πηn/27 = o(1).

Even if every one of the vertices chooses its m neighbors on the opposite side
of the cut, this will yield at most 4

√
πηnm edges whp. So the graph has a cut

with
e(T, T̄) = Õ((η + ϕ1/2)n)

with probability at least 1 − o(1). �

The proofs of Theorems 2 and 3 are left to the full version.

Acknowledgement. We thank Henri van den Esker for pointing out some errors
and for some very useful comments.

References

1. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs.
In: Proc. of the 32nd Annual ACM Symposium on the Theory of Computing, pp.
171–180 (2000)

2. Aiello, W., Chung, F.R.K., Lu, L.: Random Evolution in Massive Graphs. In: Proc.
of IEEE Symposium on Foundations of Computer Science, pp. 510–519 (2001)

3. Albert, R., Barabási, A., Jeong, H.: Diameter of the world wide web. Nature 401,
103–131 (1999)

4. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

5. Berger, N., Bollobas, B., Borgs, C., Chayes, J., Riordan, O.: Degree distribution
of the FKP network model. In: Proc. of the 30th International Colloquium of
Automata, Languages and Programming, pp. 725–738 (2003)

6. Berger, N., Borgs, C., Chayes, J., D’Souza, R., Kleinberg, R.D.: Competition-
induced preferential attachment. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 208–221. Springer, Heidelberg (2004)

7. Blandford, D., Blelloch, G.E., Kash, I.: Compact Representations of Separable
Graphs. In: Proc. of ACM/SIAM Symposium on Discrete Algorithms, pp. 679–688
(2003)

8. Bollobás, B., Riordan, O.: Mathematical Results on Scale-free Random Graphs.
In: Handbook of Graphs and Networks, Wiley-VCH, Berlin (2002)

54 A.D. Flaxman, A.M. Frieze, and J. Vera

9. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 4, 5–34 (2004)

10. Bollobás, B., Riordan, O.: Coupling scale free and classical random graphs. Internet
Mathematics 1(2), 215–225 (2004)

11. Bollobás, B., Riordan, O., Spencer, J., Tusanády, G.: The degree sequence of a
scale-free random graph process. Random Structures and Algorithms 18, 279–290
(2001)

12. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. In: Proc. of the 9th Intl.
World Wide Web Conference, pp. 309–320 (2002)

13. Buckley, G., Osthus, D.: Popularity based random graph models leading to a scale-
free degree distribution. Discrete Mathematics 282, 53–68 (2004)

14. Chung, F.R.K., Lu, L., Vu, V.: Eigenvalues of random power law graphs. Annals
of Combinatorics 7, 21–33 (2003)

15. Chung, F.R.K., Lu, L., Vu, V.: The spectra of random graphs with expected de-
grees. Proceedings of national Academy of Sciences 100, 6313–6318 (2003)

16. Cooper, C., Frieze, A.M.: A General Model of Undirected Web Graphs. Random
Structures and Algorithms 22, 311–335 (2003)

17. Cooper, C., Frieze, A.M., Vera, J.: Random deletions in a scale free random graph
process. Internet Mathematics 1, 463–483 (2004)

18. Drinea, E., Enachescu, M., Mitzenmacher, M.: Variations on Random Graph Mod-
els for the Web, Harvard Technical Report TR-06-01 (2001)

19. Estrada, E.: Spectral scaling and good expansion properties in complex networks.
Europhysics Letters 73(4), 649–655 (2006)

20. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6,
290–297 (1959)

21. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.H.: Heuristically Optimized
Trade-Offs: A New Paradigm for Power Laws in the Internet. In: Proc. of 29th
International Colloquium of Automata, Languages and Programming (2002)

22. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the
Internet Topology. ACM SIGCOMM Computer Communication Review 29, 251–
262 (1999)

23. Flaxman, A.: Expansion and lack thereof in randomly perturbed graphs. In: Proc.
of the Web Algorithms Workshop (to appear, 2006)

24. Flaxman, A., Frieze, A.M., Vera, J.: A Geometric Preferential Attachment Model
of Networks, Internet Mathematics (to appear)

25. Gómez-Gardeñes, J., Moreno, Y.: Local versus global knowledge in the Barabási-
Albert scale-free network model. Physical Review E 69, 037103 (2004)

26. Hayes, B.: Graph theory in practice: Part II. American Scientist 88, 104–109 (2000)

27. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
Web as a Graph: Measurements, Models and Methods. In: Asano, T., Imai, H.,
Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
Springer, Heidelberg (1999)

28. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.:
Stochastic Models for the Web Graph. In: Proc. IEEE Symposium on Foundations
of Computer Science, p. 57 (2000)

29. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal,
E.: The Web as a Graph. In: PODS 2000. Proc. 19th ACM SIGACT-SIGMOD-
AIGART Symp. Principles of Database Systems, pp. 1–10 (2000)

A Geometric Preferential Attachment Model of Networks II 55

30. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a Theory of Scale-Free
Graphs: Definition, Properties, and Implications. Internet Mathematics 2(4), 431–
523

31. Mihail, M.: private communication
32. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for

emerging cyber-communities. Computer Networks 31, 1481–1493 (1999)
33. McDiarmid, C.J.H.: Concentration. Probabilistic methods in algorithmic discrete

mathematics, 195–248 (1998)
34. Mihail, M., Papadimitriou, C.H.: On the Eigenvalue Power Law. In: Proc. of the

6th International Workshop on Randomization and Approximation Techniques,
pp. 254–262 (2002)

35. Mihail, M., Papadimitriou, C.H., Saberi, A.: On Certain Connectivity Properties
of the Internet Topology. In: Proc. IEEE Symposium on Foundations of Computer
Science, p. 28 (2003)

36. Mitzenmacher, M.: A brief history of generative models for power law and lognor-
mal distributions. Internet Mathematics 1(2), 226–251 (2004)

37. Newman, M., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Net-
works, Princeton University Press (2006)

38. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford
(2003)

39. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440
(1955)

40. van der Hofstad, R.: Random Graphs and Complex Networks, unpublished
manuscript (2007)

41. Watts, D.J.: Small Worlds: The Dynamics of Networks between Order and Ran-
domness. Princeton University Press, Princeton (1999)

42. Yule, G.: A mathematical theory of evolution based on the conclusions of Dr. J.C.
Willis. Philosophical Transactions of the Royal Society of London (Series B) 213,
21–87 (1925)

Clustering Social Networks

Nina Mishra1,4, Robert Schreiber2, Isabelle Stanton1,�, and Robert E. Tarjan2,3

1 Department of Computer Science, University of Virginia
{nmishra,istanton}@cs.virginia.edu

2 HP Labs
{rob.schreiber,robert.tarjan}@hp.com

3 Department of Computer Science, Princeton University
4 Search Labs, Microsoft Research

Abstract. Social networks are ubiquitous. The discovery of close-knit
clusters in these networks is of fundamental and practical interest. Exist-
ing clustering criteria are limited in that clusters typically do not over-
lap, all vertices are clustered and/or external sparsity is ignored. We
introduce a new criterion that overcomes these limitations by combining
internal density with external sparsity in a natural way. An algorithm
is given for provably finding the clusters, provided there is a sufficiently
large gap between internal density and external sparsity. Experiments on
real social networks illustrate the effectiveness of the algorithm.

1 Introduction

Social networks have gained popularity recently with the advent of sites such
as MySpace, Friendster, Facebook, etc. The number of users participating in
these networks is large, e.g., a hundred million in MySpace, and growing. These
networks are a rich source of data as users populate their sites with personal
information. Of particular interest in this paper is the graph structure induced
by the friendship links.

A fundamental problem related to these networks is the discovery of clusters
or communities. Intuitively, a cluster is a collection of individuals with dense
friendship patterns internally and sparse friendships externally. We give a pre-
cise definition of a cluster shortly. There are many reasons to seek tightly-knit
communities in networks, for instance, target marketing schemes can be de-
signed based on clusters, and it has been claimed that terrorist cells can be
identified [12].

What is a good cluster in a social network? There are numerous existing
criteria for defining good graph clusters, and accompanying each criterion is a
multitude of algorithms. One popular criterion is based on finding clusters of high
conductance. The conductance of a cut A, B is the ratio of the number of edges
crossing the cut to the minimum of the volume of A and B, where the volume
of A is the number of edges emanating from the vertices in A. The conductance

� Supported by an NPSC Graduate Fellowship and Google Anita Borg Scholarship.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 56–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Clustering Social Networks 57

of a cluster is the minimum conductance of any cut in the cluster. A spectral
algorithm is typically used to discover these clusters where the eigenvector of a
matrix related to the adjacency matrix can be used to find a good cut of the graph
into subgraphs A, B. The process is then recursively repeated (on A and B) until
k clusters are found (where k is an input parameter) or until the conductance
of the next best cut is larger than some threshold. Formal guarantees can be
proved for some variants of this basic algorithm [9].

�������	c

��
��

��
��

������g

��
�� ��

��

������h

������b
������d ��������f
������i

�������	a

����
����

�������	e

����
����

Fig. 1. Overlapping clusters

Cut-based graph clustering algorithms produce a strict partition of the
graph. This is particularly problematic for social networks as illustrated in
Fig. 1. In this graph, d belongs to two clusters {a, b, c, d} and {d, e, f, g}. Fur-
thermore, h and i need not be clustered. A cut-based approach will either put
{a, b, c, d, e, f, g} into one cluster, which is not desirable since e, f, g have no
edges to a, b, c, or cut at d, putting d into one of the clusters, say {a, b, c, d}, but
leaving d out of {e, f, g} which then leaves a highly connected vertex outside of
the cluster.

This example motivates a new formulation of the graph clustering problem
that does not stipulate that each vertex belong to exactly one cluster. Our ob-
jective is to identify clusters that are internally dense, i.e., each vertex in the
cluster is adjacent to at least a β-fraction of the cluster, and externally sparse,
i.e., any vertex outside of the cluster is adjacent to at most an α-fraction of the
vertices in the cluster. For a vertex v and a subset of vertices C, the notation
E(v, C) below denotes the set of edges between v and C.

Definition 1. Given a graph, G = (V, E), where every vertex has a self-loop1

C ⊂ V is an (α, β)-cluster if

1. Internally Dense: ∀v ∈ C, |E(v, C)| ≥ β|C|
2. Externally Sparse: ∀u ∈ V \ C, |E(u, C)| ≤ α|C|

Given 0 ≤ α < β ≤ 1, the (α, β)-clustering problem is to find all (α, β)-clusters.

The new clustering criterion does not seek a strict partitioning of the data. To
see why clusters can overlap, return to Fig. 1. Both {a, b, c, d} and {d, e, f, g}
are (1

4 , 1)-clusters. Furthermore, h and i do not fall into an (α, β)-cluster if
0 ≤ α < 1

2 < β ≤ 1, and consequently would not be clustered.

1 This is a technical assumption needed to ensure that β = 1 clusters are possible.

58 N. Mishra et al.

Observe that as β → 1, the cluster C approaches a clique and as α → 0,
C tends to a disconnected component. We want α < β, since we want vertices
outside of a cluster to have fewer neighbors in the cluster than vertices that
belong to the cluster.

While we use social networks as a motivating context, our problem statement
and algorithms apply to the more general context of graph clustering.

Contributions. We begin by investigating combinatorial properties of (α, β)-
clusters. We bound the extent to which two clusters can overlap. For two clusters
of equal size, we show that they overlap in at most min{1−(β−α), α/(2β−1)}|C|
vertices. For certain values of α and β, it is possible for one cluster to be contained
in another. However, we show that if the ratio of the size of the largest cluster
to the smallest cluster is at most 1−α

1−β then one cluster cannot be contained in
another. Finally, we give a loose upper bound on the number of (α, 1)-clusters
of size s, O((n/s)αs+1), where n is the number of vertices.

Next, we introduce the notion of a ρ-champion of a cluster: a vertex with at
most ρ|C| neighbors outside of the cluster C. We prove that in the case that
there is a large gap between α/2 and β i.e., β > 1

2 + ρ+α
2 , there can be at most

n (α, β)-clusters with ρ-champions of a given cluster size and there is a simple
deterministic algorithm for finding all such clusters in time O(m0.7n1.2+n2+o(1)),
where m is the number of edges.

To determine whether the theoretical constructs we introduced actually exist
in practice, we tested our algorithms on three real networks: High Energy Physics
Co-authors, Theory Co-authors and Live Journal. Experiments show that our
algorithm is able to find 90% of the ground-truth clusters of practical interest
more quickly than previous algorithms.

2 Related Work

Our (α, β)-clustering formulation is new, but has been considered in restricted
settings under different guises. The problem of finding the (0, β)-clusters in a
graph can be reduced to first finding connected components and then outputting
the components that are β-connected. This problem can be solved efficiently
via depth first search in O(|E| + |V |) time for a graph G = (V, E). Also, the
problem of finding (1− 1

n , 1)-clusters is equivalent to finding the maximal cliques
in a graph. This problem has a rich history. Known algorithms find all maximal
cliques in time that depends polynomially on the size of the graph and the
number of maximal cliques [18,8].

The problem of finding ((1 − ε)β, β)-clusters, for small ε, has also been stud-
ied under the name of finding quasi-cliques. Abello et al. [1] present a method
for finding subgraphs with average connectivity β. Hartuv and Shamir [6] find
densely connected subgraphs where β > 1/2 via a min-cut algorithm. These
algorithms do not consider an external sparsity (α) criterion. We will give an ex-
ample (Fig. 2) where if these algorithms were used to find (1/n, 1−1/2n)-clusters
(of which there is only 1), they return 2n (n−1

n , 1)-clusters.

Clustering Social Networks 59

Spectral clustering is a very popular method that involves recursively splitting
the graph using various criteria, e.g., the principal eigenvector of the adjacency
matrix. Successful approaches have been employed by [9,16,10,17,15], among
many others. All of these approaches do not allow overlapping clusters which is
one of the main goals of our work.

Newman and others have advocated modularity as an optimization criterion
for graph partitioning [15]. The modularity of a partition is the amount by
which the number of edges between vertices in the same subset exceeds the
number predicted by the degree-distribution preserving random graph model of
Chung [2]. Newman proposed several methods for optimizing modularity, among
them a spectral approach, and others have found competitive methods as well.

Flake et al. [4] use a recursive cut approach intended to optimize the expan-
sion of the clustering but use Gomory-Hu trees [5] to find the cut instead of
eigenvectors. The expansion of a cut is very similar to the conductance of a cut.
The minimum quality of the clustering is guaranteed by adding a sink to the
graph. Again, the goal of this work is different from ours in that a partitioning
is constructed, disallowing overlapping clusters.

Modeling flow through a network is another way to cluster a graph [4,3]. MCL
models flow through two alternating Markov processes, expansion and inflation.
MCL has been widely used for clustering in biological networks but requires
that the graph be sparse and only finds overlapping clusters in restricted cases.
(α, β)-Clustering has no restrictions on the general structure of the graph and
allows clusters of different sizes to overlap.

There has also been considerable work in finding communities on the web.
Kumar et al. [13] approach the problem as one of finding bicliques as the cores
of communities. While our approach can be adapted to find bicliques, we deal
with more general community structures.

3 Combinatorics of (α, β)-Clusters

In this section, we discuss various combinatorial properties of (α, β)-clusters
including cluster overlap, containment and number of clusters.

Prior to doing so, we make a quick remark about the value of β. If β < 1
2

then it is possible to have a cluster containing two disconnected components,
i.e., a subset of vertices with a cut of size 0 could form a cluster. Imagine two
cliques Kn with no edges in between them. If β < 1

2 then these two disconnected
cliques form one (0, 1

2)-cluster. Consequently, we insist that β > 1
2 . In that case,

a cluster is necessarily connected; select any two vertices u and u′ in the cluster,
since u is adjacent to more than half of the cluster and so is u′, there must be at
least one vertex that they both neighbor. Thus, there is a path of length at most
two between any two vertices in a cluster. We will use this fact later in some
of our analysis. In this paper, we assume that β > 1/2 so that all clusters are
connected, although it would be interesting to consider other restrictions that
enforce connectedness.

60 N. Mishra et al.

Notation. We use the following notation to describe our results. For a graph
G = (V, E), n denotes the number of vertices and m denotes the number of edges.
For a subset of vertices A ⊆ V , |A| denotes the number of vertices in A. E(v, A)
denotes the set of edges between a vertex v and a subset of vertices A. The
neighbors of a vertex v are denoted by Γ (v). The function τ(v) = Γ (v)∪Γ (Γ (v))
indicates all neighbors of path distance 1 or 2 from v.

Cluster Overlap. Given two (α, β)-clusters A, B where |A| ≥ |B|, we now deter-
mine the maximum size of the overlap, namely |A∩B|. In the case where β = 1,
|A∩B| can be no larger than α|B| (otherwise, there would be a vertex outside of
B that is adjacent to more than α of B). Alternatively, in the case where α = 0,
|A∩B| must be 0. More generally, we seek a bound for arbitrary values of α and
β. We express the overlap as the fraction of vertices in A, i.e., γ = |A∩B|

|A| .

Proposition 1. For two (α, β)-clusters, A and B, where |A| ≥ |B|, an upper
bound on the ratio of the intersection, |A ∩ B|, to the larger one, |A|, is γ =
min(1− (β −α |B|

|A|),
α

2β−1
|B|
|A|). When β −α |B|

|A| > 1
2 , α

2β−1
|B|
|A| is the minimum and

otherwise 1 − (β − α |B|
|A|) is the minimum.

Cluster Containment. Given that clusters can overlap, it is natural to ask if one
cluster can be contained in another. In some circumstances, α and β may be such
that clusters are contained in each other. For example, consider two cliques, C
and D, each containing n vertices. Assume that each vertex in C is adjacent to
two vertices in D. When β = 1

2 + 2
n and α = 2

n , C ∪ D is an (α, β) cluster that
contains both C and D.

If we want to prevent our algorithm from finding clusters where one is con-
tained in another, we can do so by requiring that the ratio of the largest to the
smallest cluster is at most 1−α

1−β .

Corollary 1. Let A and B be (α, β)-clusters and assume that |B| ≤ |A|. If
|A|
|B| < 1−α

1−β then B can not be contained in A.

The larger the gap between α and β, the larger the bound. For example, if
α = 1/4 and β = 3/4, then the larger cluster must be at least 3 times larger
than the smaller before the smaller can be contained in the larger. Similarly, if
α = 1/8 and β = 7/8 then the ratio is 7.

Bounding the Number of (α, 1)-clusters. We next consider the problem of upper
bounding the number of (α, 1)-clusters. We give a superpolynomial bound on the
number of clusters of a fixed size s = f(n). More generally, it would be interesting
to bound the number of possible (α, β)-clusters, but our analysis here is focused
on cliques.

We wish to bound the number of (α, 1)-clusters of size s = f(n) in a graph
G = (V, E) where |V | = n. We know that no two clusters can overlap in more
than αs vertices from Prop. 1.

Clustering Social Networks 61

Proposition 2. Let G = (V, E) where |V | = n. If C is the set of (α, 1)-clusters
of size s in G then |C| = O(

(

n
s

)αs+1).

Proof. From Prop. 1, two clusters of size s can share at most αs vertices. Let
us ignore the edges in the graph and consider clusters as subsets of vertices.
Now we can say that every subset of size αs + 1 must appear in at most one
set in our collection. There are a total of

(

n
s

)

subsets of size s and each of these
subsets contains

(

s
αs+1

)

subsets of size αs + 1. By simple combinatorics we can
have at most

(

n
αs+1

)

/
(

s
αs+1

)

clusters of size s. The bound |C| ≤
(

n
αs+1

)

/
(

s
αs+1

)

=

O(
(

n
s

)αs+1) follows from Stirling’s Approximation.2 ��

We note that this bound is tight when α = 0 and when α approaches 1. If we let
α = 0 then the bound indicates that the number of clusters is at most n

k . This is
tight because clusters cannot overlap at all. At the other extreme, consider the
complement of the graph shown in Fig. 2. Let α = n−1

n and β = 1. For k = n the
bound on the number of clusters from our bound is 2n. This number is realized
since the set of clusters is B = {b1 . . . bn|bi = xi ∨ yi}. |B| = 2n so the bound
is tight in this case. We can construct a graph of this type for all α of the form
n−1

n so we have a tight exponential bound for these α values.

��������x1 ��������x2 ��������xn

· · ·
��������y1 ��������y2 ��������yn

Fig. 2. A graph G where G has exponentially many clusters

We believe that the bound given in Prop. 2 overcounts the number of clusters
when α ≤ 1

2 . We note that our examples of graphs that meet the exponential
bound all have α ≥ 1

2 . Consider the case where we have two (α, 1)-clusters, A
and B that overlap in αs vertices. Let D be a third cluster such that |A ∩ D| =
|B ∩D| = αs but A∩B ∩D = ∅. This is allowed by the construction in Prop. 2.
Let u ∈ A ∩ C and v ∈ B ∩ C. Since u, v ∈ C and β = 1 (u, v) ∈ E. However,
u is already connected to α|B| in the form of A ∩ B, so we have an α violation.
Therefore, we counted D as an (α, β)-cluster when we should not have.

Another criticism of counting (α, 1)-clusters with Prop. 2 is that edges are
completely ignored. Consider K4 where s = 3 and α = 1/3. The bound allows 3
clusters of size 3. In reality, due to α violations, there are none.

4 An Algorithm for Finding Clusters with Champions

In this section, we make some restrictions to the general (α, β)-clustering prob-
lem, motivate these restrictions and then give an algorithm for finding clusters of
2 This exactly corresponds to the construction of a Steiner System.

62 N. Mishra et al.

this restricted form. Specifically, we first justify a gap between internal density
and external sparsity. Next, we introduce the notion of a champion of a cluster.
Intuitively, a vertex champions a cluster if it has more affinity into the cluster
than out of it. We then give a simple, deterministic algorithm for finding all
(α, β)-clusters with ρ-champions in a graph, assuming that β > 1

2 + ρ+α
2 .

Gap Between Internal Density and External Sparsity. To motivate a gap between
internal density and external sparsity, consider Fig. 2. Observe that depending
on the choice of α and β, the number of clusters may be exponential in the size
of the graph. In practice, an algorithm that outputs more clusters than vertices
is quite undesirable – especially given that social networks are massively large
data sets. Thus, we seek a restriction that will reduce the number of clusters.
The restriction considered in this paper is a large gap between β and α/2.

Champions. To motivate champions, observe that for G of G given in Fig. 2,
each vertex in each cluster has as many neighbors outside the cluster as within
it. There is no vertex that “champions” the cluster in the sense that many
of its neighbors are in the cluster. For example, theoretical physicists form a
community in part because there are some champions that have more friends
that are theoretical physicists than not. Specifically, if every vertex in a subset
A has as many neighbors out of A as into A, then it is arguable if A is really
even a cluster. This motivates us to formally define the notion of a ρ-champion.

Definition 2. A vertex c ∈ C ρ-champions a cluster C if |Γ (c)∩V \C| ≤ ρ|C|,
for some 0 ≤ ρ ≤ 1.

Deterministic Algorithm. We now claim that if β > 1
2+ ρ+α

2 or α < (2β−1)(β−ρ)
then there are at most n clusters with ρ-champions and further that there is a
simple deterministic algorithm for finding the clusters. In the following, we make
the simplifying assumption that every cluster has the same size. The lemma can
be suitably modified in the case of clusters of different sizes.

Lemma 1. If either β > 1
2 + ρ+α

2 or α < (2β − 1)(β − ρ) then there are at most
n (α, β)-clusters of size s with ρ-champions.

A large gap between β and 1
2 + α+ρ

2 yields a simple algorithm for deterministically
pinning down all the clusters. Let the input to the algorithm be α, β, the graph
G and the size s of the clusters to be found.

Algorithm 1. Deterministic Clustering Algorithm, when β > 1
2 + α+ρ

2 .
1: Input: α, β, s, G
2: for each c ∈ V do
3: C = ∅
4: for each v ∈ τ (c) do
5: if |Γ (v) ∩ Γ (c)| ≥ (2β − 1)s then add v to C.
6: end for
7: if C is an (α, β)-cluster then output C.
8: end for

Clustering Social Networks 63

The following lemma shows that if v and c share sufficiently many neighbors,
then v is necessarily part of the cluster C that c champions.

Lemma 2. Let C be an (α, β)-cluster and c its ρ-champion. Let β > 1
2 + ρ+α

2 .
A vertex v is in the cluster C if and only if |Γ (v) ∩ Γ (c)| ≥ (2β − 1)|C|.

When the size of the cluster is fixed, Lemma 2 also implies that C is unique.
Since we can bound the number of clusters of each size to n, we can also bound
the total number of (α, β)-clusters with ρ-champions to be O(n2). Additional
bounds to guarantee uniqueness when the size of the cluster is allowed to vary
can be easily obtained.

Consequently, we have the following theorem.

Theorem 1. Let G = (V, E) be a graph and β > 1
2 + ρ+α

2 . Algorithm 1 exactly
finds all (α, β)-clusters of size s that have ρ-champions in time O(m0.7n1.2 +
n2+o(1)).

To interpret the theorem, when clusters have ρ-champions where ρ = α, a sepa-
ration of 1

2 is needed between β and α in order for the algorithm to find all the
clusters. The worse the champion, the fewer the number of valid α and β values
where the algorithm is guaranteed to succeed. For example, if ρ = 3α then the
gap between β and α must be larger, namely β > 2α + 1

2 .
The running time follows from the fact that the algorithm computes the num-

ber of neighbors that each pair of vertices share. We can precompute |Γ (vi) ∩
Γ (vj)| for all i, j ∈ V by noting that if A is the adjacency matrix of G then
(AT A)i,j = |Γ (vi) ∩ Γ (vj)|. Yuster and Zwick [19] show that matrix multi-
plication can be performed in O(m0.7n1.2 + n2+o(1)) time. Checking the α, β
conditions requires O(m0.7n1.2 + n2+o(1) + n(τ(c) + n)) = O(m0.7n1.2 + n2+o(1))
time.

In the case G is a typical social network, G has small average degree and A is
a sparse matrix . If we let d be the average degree of the graph then m = dn/2.
Thus, for small d, the algorithm runs in O(d0.7n1.9 + n2+o(1)) time.

5 Experiments

We introduced the notion of a ρ-champion and gave an algorithm for finding
(α, β)-clusters with ρ-champions. A natural next question is: Do (α, β)-clusters
with ρ-champions even exist in real graphs? And, if so, do most (α, β)-clusters
have ρ-champions? To answer the first question, we study three real networks
induced by co-authorship among high energy physicists, co-authorship among
theoretical computer scientists, as well as a real, online social networking site
known as LiveJournal. To answer the second question, we need an algorithm that
can find (α, β)-clusters independent of whether they have ρ-champions. The best
previous algorithm for this problem is due to Tsukiyama et al [18] that finds all
maximal cliques in a graph, i.e., all (α, 1)-clusters.

64 N. Mishra et al.

Our experiments uncovered a few surprising facts. First, our simple algorithm
was able to find ≈ 90% of the maximal cliques in these graphs where α ≤ 1

2 . Next,
among the cliques we missed, we found that there was no strong ρ-champion.
Finally, our algorithm was orders of magnitudes faster than Tsukiyama’s. In
short, our algorithm more quickly discovers clusters of practical interest, i.e.,
small α, small ρ and large β.

Data Sets and Tsukiyama’s Algorithm. As mentioned, three data sets were used:
the High Energy Physics Theory Co-Author graph (HEP) [7], the Theory Co-
Author graph (TA) and a subset of the LiveJournal graph (LJ) [14]. LiveJournal
is a website that allows users to create weblogs and befriend other LiveJournal
users. We obtained a crawl of a subset of this site. In our graph the vertices
correspond to usernames and the edges to friendships. In the Theory and HEP
Co-Author graphs, authors are vertices and edges correspond to co-authors.
Some basic statistics about these graphs are given below.

Data set Size Avg Deg. Min Deg. Max Deg. Avg τ(v) Min τ(v) Max τ(v)
HEP 8,392 4.86 1 63 40.58 2 647
TA 31,862 5.75 1 567 172.85 1 8,116
LJ 581,220 11.68 1 1,980 206.15 6 15,525

Tsukiyama’s algorithm finds all maximal cliques in a graph via an induc-
tive characterization: given the maximal cliques involving the first i vertices,
the algorithm shows how to extend this set to the maximal cliques involving
the first i + 1 vertices. The algorithm’s running time is polynomial in the size
of the graph and the number of maximal cliques. More details can be found
in [18].

Results. In this section we present numerical results comparing the ground truth
of Tsukiyama’s Algorithm with our Algorithm 1. For this experiment we were
only interested in cliques of size 5 or larger with α values of 0.5 or less. These
are the cliques that Algorithm 1 could reasonably find. We pruned the output
of Tsukiyama’s algorithm to contain just these cliques. We found that the HEP
graph had a total of 126 cliques satisfying this definition; our algorithm found
115, or 91%. Similarly, the Theory graph had 854 cliques and our algorithm
found 797 or 93%. In Figures 3, 4 and 5 we show the α and ρ distributions of the
cliques found by Tsukiyama compared with the α distribution of those found
by Algorithm 1. When a bar is cut off a number is placed next to the bar to
indicate the true value. Bars have only been cut off when Algorithm 1 found all
of the cliques that Tsukiyama’s Algorithm found.

In both Theory and HEP, the distribution of ρ-values among the clusters
found is exactly as our theorems predict, i.e., ρ is almost always less than 1

2 .
And, interestingly, for LiveJournal, the distribution of ρ-values is better than
our theorems predict in that we find 876 clusters where ρ is larger than 1/2.
Indeed, we find some clusters where ρ is as large as 1.2.

Clustering Social Networks 65

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
10

20
30

40
50 Tsukiyama

Algorithm 1

0

0.
16

7

0.
2

0.
25

0.
28

6

0.
33

3

0.
4

0.
42

9

0.
5

ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
1

2
3

4
5

0

0.
14

3

0.
16

7

0.
2

0.
25

0.
33

3

0.
4

0.
5

0.
6

0.
66

7

0.
8

0.
83

3 1

1.
2

1.
66

7

100

Fig. 3. For the HEP graph, α and ρ distributions are shown for the cliques found by
Tsukiyama’s algorithm vs. the cliques found by Algorithm 1. Our algorithm found 115
out of 126 maximal cliques.

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
20

40
60

80
10

0
12

0

140 267
Tsukiyama
Algorithm 1

0
0.

07
7

0.
09

1
0.

11
1

0.
12

5
0.

13
3

0.
14

3
0.

16
7

0.
18

8
0.

2
0.

22
2

0.
25

0.
26

7
0.

27
3

0.
28

6
0.

3
0.

30
8

0.
33

3
0.

35
7

0.
37

5
0.

4
0.

42
9

0.
44

4
0.

45
5

0.
5

ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
5

10
15

20
25

30

0
0.

1
0.

12
5

0.
14

3
0.

16
7

0.
2

0.
25

0.
28

6
0.

33
3

0.
4

0.
5

0.
6

0.
62

5
0.

66
7

0.
71

4
0.

8
0.

83
3 1

1.
16

7
1.

2
1.

33
3

1.
4

1.
5

1.
6

1.
66

7 2
2.

2
2.

4
2.

5
2.

6
3.

2
3.

33
3

4.
4

4.
8

673

Fig. 4. For the TA graph, α and ρ distributions are shown for the cliques found by
Tsukiyama’s Algorithm vs. the cliques found by Algorithm 1. Our algorithm found 797
out of 854 maximal cliques.

Timing. Our experiments were run on a machine with 2 dual core 3 GHz In-
tel Xeons and 16 Gigabytes of RAM. We report wall-clock time for all of our
experiments.

Experiment HEP TA LJ
Alg. 1, (α, β) = (0.5, 1) 8 secs 2 min 4 sec 3 hours 37 min

Tsukiyama 8 hours 36 hours N/A

Note that after one week of running Tsukiyama et al.’s algorithm on the LJ
data set, the algorithm did not complete. In fact, only 6% of the graph had been
considered. However, our Algorithm 1 found 4289 cliques of size greater than 5
with α ≤ .5 in a few hours.

66 N. Mishra et al.

α

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
20

40
60

80
10

0
759 359

0.
07 0.

1

0.
14

2

0.
16

6

0.
2

0.
22

0.
25

0.
28

0.
33

0.
37

5

0.
4

0.
42

0.
44

0.
46 0.

5
ρ

N
um

be
r

of
 c

liq
ue

s
fo

un
d

0
50

10
0

15
0

20
0

25
0

0
0.

12
5

0.
14

0.
16 0.
2

0.
22

0.
25

0.
28 0.
3

0.
33

0.
37

5
0.

4
0.

42 0.
5

0.
57 0.
6

0.
62

5
0.

71
0.

83
0.

85
0.

87
5

0.
8 1

1.
14

3
1.

16
7

1.
2

1471 946 648 368

Fig. 5. α and ρ distributions for Algorithm 1 for the LJ graph. Tsukiyama’s algorithm
was too slow to generate ground truth results for this graph. Our Algorithm 1 found
4289 cliques.

6 Summary and Future Work

We introduced a new criterion for discovering overlapping clusters that cap-
tures intuitive notions of internal density and external sparsity. We also give
a deterministic algorithm for discovering clusters assuming each cluster has a
champion and there is a sufficiently large gap between internal density and ex-
ternal sparsity. Experiments indicate that our algorithm succeeds in finding good
clusters.

While we assume β > 1
2 to enforce cluster connectedness, we believe this

assumption is too strong. In particular, a subgraph can be connected while β is
much less than 1

2 , e.g., a long cycle. Furthermore, β > 1
2 precludes our algorithm

from finding very large clusters because the average degree of a vertex in a social
network is typically small.

Generalizations of (α, β)-clustering to weighted and directed graphs are also
of interest. Our work assumes that edges are not weighted. But in real social
networks, there is a strength of connectivity between pairs of individuals cor-
responding to how often they communicate. This weight could be exploited in
the discovery of close-knit communities. In addition, some networks induce di-
rected graphs. For example, the direction of edges in email networks plays an
important role in definining communities otherwise spam mailers would belong
to every cluster.

Decentralized and streaming algorithms are essential for modern networks
such as instant messaging or email graphs. In particular, it is often difficult to
even collect the graph in one centralized location [11]. Thus, algorithms that
can compute clusters with only local information are needed. Further, given
that social networks are dynamic data sets, i.e., vertices and edges come and
go, streaming graph clustering algorithms are an important avenue for future
research.

Clustering Social Networks 67

Acknowledgments. We are grateful to Mark Sandler for early discussions, Ying
Xu for the LiveJournal crawl and the anonymous reviewers for their useful
comments.

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Ra-
jsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002)

2. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC
2000. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
Portland, Oregon, pp. 171–180 (May 21-23, 2000)

3. Van Dongen, S.: A new cluster algorithm for graphs. Technical report, Universiteit
Utrecht (July 10, 1998)

4. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut
trees. Internet Mathematics 1(4), 385–408 (2004)

5. Gomory, R.E., Hu, T.C.: Multi terminal network flows. Journal of the Society for
Industrial and Applied Mathematics 9, 551–571 (1961)

6. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. IPL:
Information Processing Letters 76, 175–181 (2000)

7. KDD Cup 2003 HEP-TH (2003),
http://www.cs.cornell.edu/projects/kddcup/datasets.html

8. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal
independent sets. Information Processing Letters 27(3), 119–123 (1988)

9. Kannan, R., Vempala, S., Vetta, A.: On clusterings — good, bad and spectral. In:
Proceedings of the 41th Annual Symposium on Foundations of Computer Science,
pp. 367–377 (2000)

10. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. J. Parallel Distrib. Comput. 48(1), 71–95 (1998)

11. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In:
STOC-2004. Proceedings of the thirty-sixth annual ACM Symposium on Theory
of Computing, pp. 561–568. ACM Press, New York (June 13-15, 2004)

12. Krebs, V.: Uncloaking terrorist networks. First Monday 7(4) (2002)
13. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for

emerging cyber-communities. Computer Networks 31(11-16), 1481–1493 (1999)
14. LiveJournal, http://www.livejournal.com
15. Newman, M.E.J.: Modularity and community structure in networks. National

Academy of Sciences 103, 8577–8582 (2006)
16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern

Analysis and Machine Intelligence 22(8), 888–905 (2000)
17. Spielman, D.A., Teng, S.: Spectral partitioning works: Planar graphs and finite

element meshes. In: Proceedings of the 37th Annual Symposium on Foundations
of Computer Science, vol. 37, pp. 96–105 (1996)

18. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

19. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Transactions on
Algorithms 1(1), 2–13 (2005)

http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://www.livejournal.com

Manipulation-Resistant Reputations Using

Hitting Time�

John Hopcroft and Daniel Sheldon

Cornell University

Abstract. Popular reputation systems for linked networks can be ma-
nipulated by spammers who strategically place links. The reputation of
node v is interpreted as the world’s opinion of v’s importance. In PageR-
ank [4], v’s own opinion can be seen to have considerable influence on her
reputation, where v expresses a high opinion of herself by participating
in short directed cycles. In contrast, we show that expected hitting time
— the time to reach v in a random walk — measures essentially the same
quantity as PageRank, but excludes v’s opinion. We make these notions
precise, and show that a reputation system based on hitting time resists
tampering by individuals or groups who strategically place outlinks. We
also present an algorithm to efficiently compute hitting time for all nodes
in a massive graph; conventional algorithms do not scale adequately.

1 Introduction

Reputation and ranking systems are an essential part of web search and e-
commerce. The general idea is that the reputation of one participant is de-
termined by the endorsements of others; for example, one web page endorses
another by linking to it. However, not all participants are honorable — e.g.,
spammers will do their best to manipulate a search engine’s rankings. A natural
requirement for a reputation system is that individuals should not be able to
improve their own reputation using simple self-endorsement strategies, like par-
ticipating in short cycles to boost PageRank. Since PageRank enjoys many nice
properties, it is instructive to see where things go wrong.

Let G = (V, E) be a directed graph (e.g, the web). PageRank assigns a score
π(v) to each node v, where π is defined to be the stationary distribution of a
random walk on G, giving the pleasing interpretation that the score of page v
is the fraction of time a web surfer spends there if she randomly follows links
forever. For technical reasons, the random walk is modified to restart in each
step with probability α, jumping to a page chosen uniformly at random. This
ensures that π exists and is efficient to compute. Then a well-known fact about
� This material is based upon work supported by the National Science Foundation

under Grant No. 0514429, and by the AFOSR under Award No. FA9550-07-1-0124.
Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF) or the AFOSR.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 68–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Manipulation-Resistant Reputations Using Hitting Time 69

Markov chains [1] says that 1/π(v) is equal to the expected return time of v, the
number of steps it takes a random walk starting at v to return to v. A heuristic
argument for this equivalence is that a walk returning to v every r steps on
average should spend 1/r of all time steps there.

Despite its popularity as a ranking system, one can easily manipulate return
time by changing only outlinks. Intuitively, a node v should link only to nodes
from which a random walk will return to v quickly (in expectation). By partner-
ing with just one other node to form a 2-cycle with no other outlinks, v ensures
a return in two steps — the minimum possible without self-loops — unless the
walk jumps first. In this fashion, v can often boost its PageRank by a factor of 3
to 4 for typical settings of α [6]. However, this strategy relies on manipulating the
portion of the walk before the first jump: the jump destination is independent
of v’s outlinks, and return time is determined once the walk reaches v again, so
v’s outlinks have no further effect. This suggests eliminating the initial portion
of the walk and measuring reputation by the time to hit v following a restart,
called the hitting time of node v from the restart distribution. This paper de-
velops a reputation system based on hitting time that is provably resistant to
manipulation. Our main contributions are:

– In Theorem 1, we develop a precise relationship between expected return
time and expected hitting time in a random walk with restart, and show
that the expected hitting time of v is equal to (1 − p)/αp, where p is the
probability that v is reached before the first restart. We will adopt p as our
measure of the reputation of v.

– We prove that the resulting reputation system resists manipulation, using a
natural definition of influence. For example, node v has a limited amount of
influence that depends on her reputation, and she may spread that influence
using outlinks to increase others’ reputations. However, node v cannot alter
her own reputation with outlinks, nor can she damage w’s reputation by
more than her original influence on w. Furthermore, the advantage that v
gains by purchasing new nodes, often called sybils of v, is limited by the
restart probability of the sybils.

– We present an efficient algorithm to simultaneously compute hitting time for
all nodes. In addition to one PageRank calculation, our algorithm uses Monte
Carlo sampling with running time that is linear in |V | for given accuracy and
confidence parameters. This is a significant improvement over traditional
algorithms, which require a large-scale computation for each node.1

The rest of the paper is structured as follows. In section 2 we discuss re-
lated work. In section 3 we present Theorem 1, giving the characterization of
hitting time that is the foundation for the following sections. In section 4 we
develop a reputation system using hitting time and show that it is resistant to
manipulation. In section 5 we present our algorithm for hitting time.
1 Standard techniques can simultaneously compute hitting time from all possible

sources to a single target node using a system of linear equations. However, what is
desired for reputation systems is the hitting time from one source, or in this case a
distribution, to all possible targets.

70 J. Hopcroft and D. Sheldon

2 Related Work

Since the introduction of PageRank [4], it has been adapted to a variety of
applications, including personalized web search [22], web spam detection [14],
and trust systems in peer-to-peer networks [17]. Each of these uses the same
general formulation and our work applies to all of them.

Much work has focused on the PageRank system itself, studying computa-
tion methods, convergence properties, stability and sensitivity, and, of course,
implementation techniques. See [18] for a survey of this wide body of work. Com-
putationally, the Monte Carlo methods in [8] and [2] are similar to our algorithms
for hitting time. They use a probabilistic formulation of PageRank in terms of
a short random walk that permits efficient sampling. In particular, we will use
the same idea as [8] to efficiently implement many random walks simultaneously
in a massive graph, without requiring random access.

Recent works have addressed the manipulability of PageRank: how can a
group of selfish nodes place outlinks to optimize their PageRank, and how can
we detect such nodes [3, 6, 11, 12, 13, 20, 23]? In particular, [3, 6, 12] all describe
the manipulation strategy mentioned in the introduction.

For a more general treatment of reputation systems in the presence of strategic
agents, see [9] for a nice overview with some specific results from the literature.
Cheng and Friedman [5] prove an impossibility result that relates to our work
— a wide class of reputation systems (including ours) cannot be resistant to a
particular attack called the sybil attack [7]. However, their definition of resistance
is very strong, requiring that no node can improve its ranking using a sybil
attack; our results can be viewed as positive results under a relaxation of this
requirement by limiting the damage caused by a sybil attack. We will discuss
sybils in section 4.3.

Hitting time is a classical quantity of interest in Markov chains. See chapter 2
of [1] for an overview. The exact terminology and definitions vary slightly: we
define hitting time as a random variable, but sometimes it is defined as the
expectation of the same random variable. Also, the term first passage time is
sometimes used synonymously. In a context similar to ours, hitting time was
used as a measure of proximity between nodes to predict link formation in a
social network [19]; also, the node similarity measure in [16] can be formulated
in terms of hitting time.

Finally, the relationship between hitting time and return time in a random
walk with restart is related to regenerative stochastic processes. In fact, Theo-
rem 1 can be derived as a special case of a general result about such processes.
See equation (15) in [15] and the references therein for details.

3 Characterizing Hitting Time

This section paves the way toward a reputation system based on hitting time by
stating and proving Theorem 1. Part (i) of the theorem relates expected hitting
time to expected return time — the two are essentially the same except for

Manipulation-Resistant Reputations Using Hitting Time 71

nodes where the random walk is likely to return before jumping, the sign of a
known manipulation strategy. Part (ii) proves that the expected hitting time of
v is completely determined by the probability that v is reached before the first
jump; this will lead to precise notions of manipulation-resistance in section 4.

3.1 Preliminaries

Let G = (V, E) be a directed graph. Consider the standard random walk on
G, where the first node is chosen from starting distribution q, then at each
step the walk follows an outgoing link from the current node chosen uniformly
at random. Let {Xt}t≥0 be the sequence of nodes visited by the walk. Then
Pr [X0 = v] = q(v), and Pr [Xt = v | Xt−1 = u] = 1/outdegree(u) if (u, v) ∈ E,
and zero otherwise. Here, we require outdegree(u) > 0.2 Now, suppose the walk
is modified to restart with probability α at each step, meaning the next node is
chosen from the starting distribution (henceforth, restart distribution) instead
of following a link. The new transition probabilities are:

Pr [Xt = v | Xt−1 = u] =

{

αq(v) + 1−α

outdegree(u) if (u, v) ∈ E

αq(v) otherwise
.

We call this the α-random walk on G, and we parametrize quantities of interest
by the restart probability α. A typical setting is α = 0.15, so a jump occurs every
1/.15 ≈ 7 steps in expectation. The hitting time of v is Hα(v) = min{t : Xt = v}.
The return time of v is Rα(v) = min{t ≥ 1 : Xt = v | X0 = v}. When v is
understood, we simply write Hα and Rα. We write H and R for the hitting time
and return time in a standard random walk.

3.2 Theorem 1

Before stating Theorem 1, we make the useful observation that we can split
the α-random walk into two independent parts: (1) the portion preceding the
first jump is the beginning of a standard random walk, and (2) the portion
following the first jump is an α-random walk independent of the first portion.
The probability that the first jump occurs at time t is (1 − α)t−1α, i.e., the first
jump time J is a geometric random variable with parameter α, independent of
the nodes visited by the walk. Then we can model the α-random walk as follows:
(1) start a standard random walk, (2) independently choose the first jump time
J from a geometric distribution, and (3) at time J begin a new α-random walk.
Hence we can express the return time and hitting time of v recursively:

Rα =
{

R if R < J
J + H ′

α otherwise , Hα =
{

H if H < J
J + H ′

α otherwise . (1)

Here H ′
α is an independent copy of Hα. It is convenient to abstract from our

specific setting and state Theorem 1 about general random variables of this form.
2 This is a technical condition that can be resolved in a variety of ways, for example,

by adding self-loops to nodes with no outlinks.

72 J. Hopcroft and D. Sheldon

Theorem 1. Let R and H be independent, nonnegative, integer-valued random
variables, and let J be a geometric random variable with parameter α. Define
Rα and Hα as in (1). Then,

(i) E [Rα] = Pr [R ≥ J]
(1

α + E [Hα]
)

,
(ii) E [Hα] = 1

α · Pr[H≥J]
Pr[H<J] ,

(iii) E [Rα] = 1
α · Pr[R≥J]

Pr[H<J] .

Part (i) relates expected return time to expected hitting time: Pr [R ≥ J] is the
probability that the walk does not return before jumping. On the web, for ex-
ample, we expect Pr [R ≥ J] to be close to 1 for most pages, so the two measures
are roughly equivalent. However, pages attempting to optimize PageRank can
drive Pr [R ≥ J] much lower, achieving an expected return time that is much
lower than expected hitting time.

For parts (ii) and (iii), we adopt the convention that Pr [H < J] = 0 implies
E [Hα] = E [Rα] = ∞, corresponding to the case when v is not reachable from
any node with positive restart probability. To gain some intuition for part (ii)
(part (iii) is similar), we can think of the random walk as a sequence of inde-
pendent explorations from the restart distribution “looking” for node v. Each
exploration succeeds in finding v with probability Pr [H < J], so the expected
number of explorations until success is 1/Pr [H < J]. The expected number of
steps until an exploration is terminated by a jump is 1/α, so a rough estimate
of hitting time is 1

α · 1
Pr[H<J] . Of course, this is an overestimate because the

final exploration is cut short when v is reached, and the expected length of an
exploration conditioned on not reaching v is slightly shorter than 1/α. It turns
out that Pr [H ≥ J] is exactly the factor needed to correct the estimate, due to
the useful fact about geometric random variables3 stated in Lemma 1. We stress
that the expected hitting time of v in the α-random walk is completely deter-
mined by Pr [H < J], the probability that a given exploration succeeds; this will
serve as our numeric measure of reputation.

Lemma 1. Let X and J be independent random variables such that X is non-
negative and integer-valued, and J is a geometric random variable with parameter
α. Then E [min(X, J)] = 1

αPr [X ≥ J].

Lemma 1 is proved in the appendix.

Proof (Theorem 1). We rewrite Rα = min(R, J)+I{R ≥ J}H ′
α, where I{R ≥ J}

is the indicator variable for the event R ≥ J . Note that I{R ≥ J} and H ′
α are

independent. Then, using linearity of expectation and Lemma 1,

3 We mentioned that Theorem 1 can be derived from a result about regenerative
stochastic processes [15]. In fact, Theorem 1 captures most of the generality; to
write recurrences as in (1), the process need not be Markovian, it is only neces-
sary that the process following a restart is a replica of the original. The only non-
general assumption made is that J is a geometric random variable; this simplifies the
conclusions.

Manipulation-Resistant Reputations Using Hitting Time 73

E [Rα] = E [min(R, J)] + Pr [R ≥ J] E [H ′
α]

=
1
α

Pr [R ≥ J] + Pr [R ≥ J] E [Hα]

= Pr [R ≥ J]
(

1
α

+ E [Hα]
)

.

This proves part (i). For part (ii), we take R to be a copy of H in part (i), giving

E [Hα] = Pr [H ≥ J]
(

1
α

+ E [Hα]
)

.

Solving this expression for E [Hα] gives (ii). Part (iii) is obtained by substituting
(ii) into (i). ��

4 Manipulation-Resistance

In this section we develop a reputation system based on hitting time, and quan-
tify the extent to which an individual can tamper with reputations. It is intu-
itively clear that node u cannot improve its own hitting time by placing outlinks,
but we would also like to limit the damage that u can cause to v’s reputation.
Specifically, u should only be able to damage v’s reputation if u was responsi-
ble for v’s reputation in the first place. Furthermore, u should not have a great
influence on the reputation of too many others. To make these ideas precise,
we define reputation using Pr [H < J] instead of E [Hα]. By Theorem 1, either
quantity determines the other — they are roughly inversely proportional — and
Pr [H < J] is convenient for reasoning about manipulation.

Definition 1. Let rep(v) = Pr [H(v) < J] be the reputation of v.

In words, rep(v) is the probability that a random walk hits v before jumping. Of
all walks that reach v before jumping, an attacker u can only manipulate those
that hit u first. This leads to our notion of influence.

Definition 2. Let infl(u, v) = Pr [H(u) < H(v) < J] be the influence of u on v.

Definition 3. Let infl(u) =
∑

v infl(u, v) be the total influence of u.

When the graph G is not clear from context, we write these quantities as PrG [·],
repG(·) and inflG(·, ·) to be clear. To quantify what can change when u manipu-
lates outlinks, let Nu(G) be the set of all graphs obtained from G by the addition
or deletion of edges originating at u. It is convenient to formalize the intuition
that u has no control over the random walk until it hits u for the first time.

Definition 4. Fix a graph G and node u. We say that an event A is u-invariant
if PrG [A] = PrG′ [A] for all G′ ∈ Nu(G). If A is u-invariant, we also say that
the quantity Pr [A] is u-invariant.

74 J. Hopcroft and D. Sheldon

Lemma 2. An event A is u-invariant if the occurrence or non-occurrence of A
is determined by time H(u).

Lemma 2 is proved in the appendix. With the definitions in place, we can quantify
how much u can manipulate reputations.

Theorem 2. For any graph G = (V, E) and u, v ∈ V ,

(i) infl(u, u) = 0,
(ii) infl(u, v) ≥ 0,
(iii) infl(u, v) ≤ rep(u),

(iv) infl(u) ≤ 1
α

rep(u).

Let G′ ∈ Nu(G). Then

(v) repG′(v) = repG(v) + inflG′(u, v) − inflG(u, v).

Parts (i)-(iv) bound the influence of u in terms of its reputation. Part (v) states
that when u modifies outlinks, the change in v’s reputation is equal to the change
in u’s influence on v. Substituting parts (i-iii) into part (v) yields some simple
but useful corollaries.

Corollary 1. Let G′ ∈ Nu(G). Then

(i) repG′(u) = repG(u),
(ii) repG′(v) ≥ repG(v) − inflG(u, v),
(iii) repG′(v) ≤ repG(v) − inflG(u, v) + repG(u).

No matter what actions u takes, it cannot alter its own reputation (part (i)).
Nor can u damage the portion of v’s reputation not due to u’s influence (part
(ii)). On the other hand, u may boost its influence on v, but its final influence
cannot exceed its reputation (part (iii)).

Proof (Theorem 2). For the most part, these are simple consequences of the
definitions. Parts (i) and (ii) are trivial:

infl(u, u) = Pr [H(u) < H(u) < J] = 0,

infl(u, v) = Pr [H(u) < H(v) < J] ≥ 0.

For part (iii), a walk that hits u then v before jumping contributes equally to
u’s reputation and u’s influence on v:

infl(u, v) = Pr [H(u) < H(v) < J] ≤ Pr [H(u) < J] = rep(u).

Part (iv) uses the observation that not too many nodes can be hit after u but
before the first jump. Let L = |{v : H(u) < H(v) < J}| be the number of all
such nodes. Then,

E [L] = E

[

∑

v

I{H(u) < H(v) < J}
]

=
∑

v

Pr [H(u) < H(v) < J] = infl(u).

Manipulation-Resistant Reputations Using Hitting Time 75

But L cannot exceed J − min(H(u), J), so

infl(u) = E [L] ≤ E [J] − E [min(H(u), J)]
= E [J] (1 − Pr [H(u) ≥ J]) (by Lemma 1)
= E [J] Pr [H(u) < J]

=
1
α

rep(u).

For part (v), we split walks that hit v before jumping into those that hit u first
and those that don’t:

repG(v) = PrG [H(v) < J]
= PrG [H(u) < H(v), H(v) < J] + PrG [H(u) ≥ H(v), H(v) < J]
= inflG(u, v) + PrG [H(u) ≥ H(v), H(v) < J]

The event [H(u) ≥ H(v), H(v) < J] is determined by time H(u), and hence it
is u-invariant. By the above, Pr [H(u) ≥ H(v), H(v) < J] is equal to repG(v) −
inflG(u, v), and repeating the calculation for G′ gives repG′(v) = inflG′(u, v) +
repG(v) − inflG(u, v). ��

4.1 Manipulating the Rankings

The previous results quantify how much node u can manipulate reputation val-
ues, but often we are more concerned with how much u can manipulate the
ranking, specifically, how far u can advance by manipulating outlinks only. The
following two corollaries follow easily, and are proved in the appendix. Suppose
repG(u) < repG(v) and u manipulates outlinks to produce G′ ∈ Nu(G). We say
that u meets v if repG′(u) = repG′(v), and u surpasses v if repG′(u) > repG′(v).

Corollary 2. Node u cannot surpass a node that is at least twice as reputable.

Corollary 3. Node u can meet or surpass at most 1
αγ nodes that are more

reputable than u by a factor of at least (1 + γ).

4.2 Reputation and Influence of Sets

We have discussed reputation and influence in terms of individual nodes for
ease of exposition, but all of the definitions and results generalize when we
consider the reputation and influence of sets of nodes. Let U, W ⊆ V , and
recall that H(W) = minw∈W H(w) is the hitting time of the set W . Then
we define rep(W) = Pr [H(W) < J] to be the reputation of W , we define
infl(U, W) = Pr [H(U) < H(W) < J] to be the influence of U on W , and we
define infl(U) =

∑

v∈V infl(U, {v}) to be the total influence of U . With these def-
initions, exact analogues of Theorem 2 and its corollaries hold for any U, W ⊆ V ,
with essentially the same proofs. Note that U and W need not be disjoint, in
which case it is possible that H(U) = H(W). We omit further details.

76 J. Hopcroft and D. Sheldon

4.3 Sybils

In online environments, it is often easy for a user to create new identities, called
sybils, and use them to increase her own reputation, even without obtaining any
new inlinks from non-sybils. A wide class of reputation systems is vulnerable to
sybil attacks [5], and, in the extreme, hitting time can be heavily swayed as well.
For example, if u places enough sybils so the random walk almost surely starts
at a sybil, then adding links from each sybil to u ensures the walk hits u by
the second step unless it jumps. In this fashion, u can achieve reputation almost
1 − α and drive the reputation of all non-sybils to zero. We’ll see that this is
actually the only way that sybils can aid u, by gathering restart probability and
funneling it towards u. So an application can limit the effect of sybils by limit-
ing the restart probability granted to new nodes. In fact, applications of hitting
time analogous to Personalized PageRank [22] and TrustRank [14] are already
immune, since they place all of the restart probability on a fixed set of known or
trusted nodes. Applications like web search that give equal restart probability
to each node are more vulnerable, but in cases like the web the sheer number of
nodes requires an attacker to place many sybils to have a substantial effect. This
stands in stark contrast with PageRank, where one sybil is enough to employ the
2-cycle self-endorsement strategy and increase PageRank by several times [6].

To model the sybil attack, suppose G′ = (V ∪ S, E′) is obtained from G by
a sybil attack launched by u. That is, the sybil nodes S are added, and links
originating at u or inside S can be set arbitrarily. All other links must not change,
with the exception that those originally pointing to u can be directed anywhere
within S ∪ {u}. Let q′ be the new restart distribution, assuming that q′ diverts
probability to S but does not redistribute probability within V . Specifically,
if ρ =

∑

s∈S q′(s) is the restart probability alloted to sybils, we require that
q′(v) = (1 − ρ)q(v) for all v ∈ V .

Theorem 3. Let U = {u}∪S be the nodes controlled by the attacker u, and let
v be any other node in V . Then

(i) repG′(u) ≤ repG′(U) = (1 − ρ)repG(u) + ρ,
(ii) repG′(v) ≥ (1 − ρ)(repG(v) − inflG(u, v)),
(iii) repG′(v) ≤ (1 − ρ)(repG(v) − inflG(u, v) + repG(u)) + ρ.

Compared with Corollary 1, the only additional effect of sybils is to diminish all
reputations by a factor of (1 − ρ), and increase the reputation of certain target
nodes by up to ρ.

Proof (Theorem 3). We split the attack into two steps, first observing how repu-
tations change when the sybils are added but no links are changed, then applying
Theorem 2 for the step when only links change. Let G+ be the intermediate graph
where we add the sybils but do not change links. Assume the sybils have self-
loops so the transition probabilities are well-defined. We can compute repG+(U)
by conditioning on whether X0 ∈ V or X0 ∈ S, recalling that Pr [X0 ∈ S] = ρ.

Manipulation-Resistant Reputations Using Hitting Time 77

repG+(U) =(1 − ρ) · PrG+ [H(U)<J | X0 ∈ V] + ρ · PrG+ [H(U) < J | X0 ∈ S]
= (1 − ρ) · PrG [H(u) < J] + ρ

= (1 − ρ)repG(u) + ρ.

In the second step, PrG+ [H(U) < J | X0 ∈ V] = PrG [H(u) < J] because hit-
ting U in G+ is equivalent to hitting u in G; all edges outside U are un-
changed, and all edges to U originally went to u. Also the conditional distri-
bution of X0 given [X0 ∈ V] is equal to q, by our assumption on q′. The term
PrG+ [H(U) < J | X0 ∈ S] is equal to one, since X0 ∈ S implies H(U) = 0 < J .
A similar calculation gives

repG+(v) = (1 − ρ)repG(v) + ρ · PrG+ [H(v) < J | X0 ∈ S] = (1 − ρ)repG(v).

The term PrG+ [H(v) < J | X0 ∈ S] vanishes because S is disconnected, so a
walk that starts in S cannot leave. Another similar calculation gives inflG+(U,v)=
(1 − ρ)inflG(u, v). Finally, we complete the sybil attack, obtaining G′ from G+

by making arbitrary changes to edges originating in U , and apply Corollary 1
(the version generalized to deal with sets) to G+. Parts (i-iii) of this theorem
are obtained by direct substitution into their counterparts from Corollary 1. ��

Theorem 3 can also be generalized to deal with sets.

5 Computing Hitting Time

To realize a reputation system based on hitting time, we require an algorithm
to efficiently compute the reputation of all nodes. Theorem 1 suggests several
possibilities. Recall that π(v) is the PageRank of v. Then E [Rα(v)] = 1/π(v) can
be computed efficiently for all nodes using a standard PageRank algorithm, and
the quantity Pr [R(v) ≥ J] can be estimated efficiently by Monte Carlo sampling.
Combining these two quantities using Theorem 1 yields E [Hα(v)].

It is tempting to estimate the reputation Pr [H(v) < J] directly using Monte
Carlo sampling. However, there is an important distinction between the quanti-
ties Pr [R(v) ≥ J] and Pr [H(v) < J]. We can get one sample of either by run-
ning a random walk until it first jumps, which takes about 1/α steps. However
Pr [H(v) < J] may be infinitesimal, requiring a huge number of independent
samples to obtain a good estimate. On the other hand, Pr [R(v) ≥ J] is at least
α since the walk has probability α of jumping in the very first step. If self-loops
are disallowed, we obtain a better lower bound of 1 − (1 − α)2, the probability
the walk jumps in the first two steps. For this reason we focus on Pr [R(v) ≥ J].

5.1 A Monte Carlo Algorithm

In this section we describe an efficient Monte Carlo algorithm to simultaneously
compute hitting time for all nodes. To obtain accuracy ε with probability at
least 1 − δ, the time required will be O(log(1/δ)

ε2α2 |V |) in addition to the time of
one PageRank calculation. The algorithm is:

78 J. Hopcroft and D. Sheldon

1. Compute π using a standard PageRank algorithm.4 Then E [Rα(v)]=1/π(v).
2. For each node v, run k random walks starting from v until the walk either re-

turns to v or jumps. Let yv = 1
k ·(# of walks that jump before returning to v).

3. Use yv as an estimate for Pr [R(v) ≥ J] in part (i) or (iii) of Theorem 1 to
compute E [Hα(v)] or Pr [H(v) < J].

How many samples are needed to achieve high accuracy? Let μ = Pr [R(v) ≥ J]
be the quantity estimated by yv. We call yv an (ε, δ)-approximation for μ if
Pr [|yv − μ| ≥ εμ] ≤ δ. A standard application of the Chernoff bound (see [21]
p. 254) shows that yv is an (ε, δ)-approximation if k ≥ (3 ln(2/δ))/ε2μ. Using
the fact that μ ≥ α, it is sufficient that k ≥ (3 ln(2/δ))/ε2α. Since each walk
terminates in 1

α steps in expectation, the total expected number of steps is no
more than 3 ln(2/δ)

ε2α2 |V |.
For massive graphs like the web that do not easily fit into main memory, it is

not feasible to collect the samples in step 2 of the algorithm sequentially, because
each walk requires random access to the edges, which is prohibitively expensive
for data structures stored on disk. We describe a method from [8] to collect all
samples simultaneously making efficient use of disk I/O.

Conceptually, the idea is to run all walks simultaneously and incrementally by
placing tokens on the nodes recording the location of each random walk. Then
we can advance all tokens by a single step in one pass through the entire graph.
Assuming the adjacency list is stored on disk sorted by node, we store the tokens
in a separate list sorted in the same order. Each token records the node where it
originated to determine if it returns before jumping. Then in one pass through
both lists, we load the neighbors of each node into memory and process each of
its tokens, terminating the walk and updating yv if appropriate, else choosing
a random outgoing edge to follow and updating the token. Updated tokens are
written to the end of a new unsorted token list, and after all tokens are processed,
the new list is sorted on disk to be used in the next pass.

The number of passes is bounded by the walk that takes the longest to jump,
which is not completely satisfactory, so in practice we can stop after a fixed
number of steps t, knowing that the contribution of walks longer than t is nominal
for large enough t, since Pr [R ≥ J, J > t] ≤ Pr [J > t] = (1 − α)t, which decays
exponentially.

References

[1] Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs.
Monograph in Preparation,
http://www.stat.berkeley.edu/users/aldous/RWG/book.html

[2] Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods
in PageRank computation: When one iteration is sufficient. Memorandum 1754,
University of Twente, The Netherlands (2005)

4 PageRank algorithms are typically iterative and incur some error. Our analysis
bounds the additional error incurred by our algorithm.

http://www.stat.berkeley.edu/users/aldous/RWG/book.html

Manipulation-Resistant Reputations Using Hitting Time 79

[3] Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Inter.
Tech. 5(1), 92–128 (2005)

[4] Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

[5] Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: P2PECON 2005:
Proceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer
systems, pp. 128–132. ACM Press, New York (2005)

[6] Cheng, A., Friedman, E.: Manipulability of PageRank under sybil strategies. In:
Proceedings of the First Workshop of Networked Systems (2006)

[7] Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, Springer, Heidelberg (2002)

[8] Fogaras, D., Rácz, B.: Towards fully personalizing PageRank. In: Leonardi, S.
(ed.) WAW 2004. LNCS, vol. 3243, Springer, Heidelberg (2004)

[9] Friedman, E., Resnick, P., Sami, R.: Manipulation-resistant reputation systems.
In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game
Theory, Cambridge University Press, Cambridge (to appear)

[10] Gade, K., Prakash, A.: Using transient probability distributions of random walk
to estimate spam resistant authority scores. Unpublished manuscript (2007)

[11] Gyöngyi, Z., Berkhin, P., Garcia-Molina, H., Pedersen, J.: Link spam detection
based on mass estimation. In: Proceedings of the 32nd International Conference
on Very Large Databases, ACM, New York (2006)

[12] Gyöngyi, Z., Garcia-Molina, H.: Link spam alliances. In: Proceedings of the 31st
International Conference on Very Large Databases, pp. 517–528. ACM, New York
(2005)

[13] Gyöngyi, Z., Garcia-Molina, H.: Web spam taxonomy. In: First International
Workshop on Adversarial Information Retrieval on the Web (2005)

[14] Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with
TrustRank. In: Proceedings of the 30th International Conference on Very Large
Databases, pp. 576–587. Morgan Kaufmann, San Francisco (2004)

[15] Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995)

[16] Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2002)

[17] Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in P2P networks. In: WWW 2003: Proceedings of the
12th international conference on World Wide Web, pp. 640–651. ACM Press,
New York (2003)

[18] Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Mathemat-
ics 1(3), 335–380 (2004)

[19] Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
In: CIKM 2003. Proceedings of the 12th International Conference on Information
and Knowledge Management (2003)

[20] Mason, K.: Detecting Colluders in PageRank - Finding Slow Mixing States in a
Markov Chain. PhD thesis, Stanford University (2005)

[21] Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

[22] Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

80 J. Hopcroft and D. Sheldon

[23] Zhang, H., Goel, A., Govindian, R., Mason, K., Van Roy, B.: Making eigenvector-
based reputation systems robust to collusion. In: Leonardi, S. (ed.) WAW 2004.
LNCS, vol. 3243, Springer, Heidelberg (2004)

A Proofs

A.1 Lemma 1

Proof. Recall that J is the time of the first success in a sequence of independent
trials that succeed with probability α, so Pr [J > t] = (1 −α)t, and Pr [J ≤ t] =
1 − (1 − α)t.

E [min(X, J)]=
∞
∑

t=0

Pr [min(X, J) > t]

=
∞
∑

t=0

∞
∑

x=0

Pr [X =x]Pr [min(X, J)>t |X =x]

=
∞
∑

x=0

Pr [X = x]
∞
∑

t=0

Pr [min(x, J) > t] (using independence)

=
∞
∑

x=0

Pr [X = x]
x−1
∑

t=0

Pr [J > t]

=
∞
∑

x=0

Pr [X = x]
x−1
∑

t=0

(1 − α)t

=
∞
∑

x=0

Pr [X = x]
1 − (1 − α)x

1 − (1 − α)

=
∞
∑

x=0

Pr [X = x]
Pr [J ≤ x]

α

=
1
α

Pr [X ≥ J]

��

A.2 Lemma 2

Proof. Let G′ ∈ Nu(G). It is enough to show that PrG [A ∩ [H(u) = t]] =
PrG′ [A ∩ [H(u) = t]] for all t ≥ 0. Let Wu,t be the set of all walks that first
hit u at step t. Specifically, Wu,t = {w0 . . . wt : wt = u, wi �= u for i < t}. For
w = w0 . . . wt, let Pr [w] be shorthand for the probability of the walk w:

Pr [w] = Pr [X0 = w0] Pr [X1 = w1 | X0 = w0] . . . Pr [Xt = wt | Xt−1 = wt−1] .

Then for w ∈ Wu,t, the transition probabilities in the expression above are
independent of u’s outlinks, so PrG [w] = PrG′ [w]. Finally, since A is determined

Manipulation-Resistant Reputations Using Hitting Time 81

by time H(u), there is a function IA : Wu,t → {0, 1} that indicates the occurrence
or non-occurrence of A for each w ∈ Wu,t. Putting it all together,

PrG [A ∩ [H(u) = t]] = PrG [H(u) = t] PrG [A | H(u) = t]

=
∑

w∈Wu,t

PrG [w] IA(w)

=
∑

w∈Wu,t

PrG′ [w] IA(w)

= PrG′ [A ∩ [H(u) = t]]

��

A.3 Corollary 2

Proof. Suppose repG(v) ≥ 2 · repG(u), then repG′(v) ≥ repG(v) − inflG(u, v) ≥
repG(v) − repG(u) ≥ 2 · repG(u) − repG(u) = repG(u) = repG′(u).

A.4 Corollary 3

Proof. Let A = {v : repG(v) ≥ (1 + γ)repG(u), repG′(v) ≤ repG′(u)} be the set
of all nodes with reputation at least (1 + γ) times the reputation of u that are
met or surpassed by u. Then

∑

v∈A

repG(v) ≥ |A|(1 + γ)repG(u),

∑

v∈A

repG′(v) ≤ |A|repG′(u) = |A|repG(u),

so
∑

v∈A(repG(v) − repG′(v)) ≥ γ|A|repG(u). But by Corollary 1, repG(v) −
repG′(v) ≤ inflG(u, v), so

γ|A|repG(u) ≤
∑

v∈A

(repG(v)− repG′(v) ≤
∑

v∈A

inflG(u, v) ≤ inflG(u) ≤ 1
α

repG(u),

hence |A| ≤ 1
αγ . ��

Using Polynomial Chaos to Compute the

Influence of Multiple Random Surfers in the
PageRank Model

Paul G. Constantine and David F. Gleich

Stanford University
Institute for Computational and Mathematical Engineering

{paul.constantine,dgleich}@stanford.edu

Abstract. The PageRank equation computes the importance of pages
in a web graph relative to a single random surfer with a constant tele-
portation coefficient. To be globally relevant, the teleportation coefficient
should account for the influence of all users. Therefore, we correct the
PageRank formulation by modeling the teleportation coefficient as a ran-
dom variable distributed according to user behavior. With this correc-
tion, the PageRank values themselves become random. We present two
methods to quantify the uncertainty in the random PageRank: a Monte
Carlo sampling algorithm and an algorithm based the truncated poly-
nomial chaos expansion of the random quantities. With each of these
methods, we compute the expectation and standard deviation of the
PageRanks. Our statistical analysis shows that the standard deviation
of the PageRanks are uncorrelated with the PageRank vector.

1 Introduction

In its purest form, the PageRank model ignores the text underlying pages on the
web and creates an irreducible, aperiod Markov chain model for a hypothetical
random surfer on the link structure of the web [1]. Each entry of the stationary
distribution measures the global importance of a page.

The PageRank model, however, is not unique. A PageRank value depends
upon a parameter α which controls how the putative random surfer “teleports”
around the web. Upon visiting a website, the random surfer chooses an outlink
uniformly at random with probability α and chooses a page according to a
prior distribution with probability 1 − α. This paper focuses on the modeling
assumptions for the value of α and suggests a new model for PageRank that
fixes a modeling error in the original PageRank formulation.

To continue our discussion, we must define the PageRank model and estab-
lish some notation. Let W be an adjacency matrix for a web graph, wi,j = 1
when node i links to node j. We set P to be a fully row-stochastic random walk
transition matrix on W. The matrix P has dangling nodes corrected in an ar-
bitrary way (for example, see [2,3]) such that Pe = e where e is the vector of
all ones. Let 1 − α be the teleportation probability and v be the personalization

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 82–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Polynomial Chaos and PageRank 83

distribution. The PageRank model requires that 0 ≤ α < 1, vi ≥ 0, and vT e = 1.
With these definitions, the PageRank vector x(α) is the unique eigenvector with
||x(α)||1 = 1 satisfying

[

αPT + (1 − α)veT
]

x(α) = x(α) (1)

or equivalently [4,5] the solution of the linear system

(

I − αPT
)

x(α) = (1 − α)v. (2)

The key error in the PageRank model is that it only accounts for a single
surfer because it only permits a single value of α. The choice of α is quite myste-
rious. Most researchers take α = 0.85 [6]. Recently, Avrachenkov et al. suggested
choosing α = 1/2 [7]. Their suggestion follows from graph theoretic properties
of the PageRank solution vector as a function of α. If we believe the PageRank
random surfer model, then α should be estimated from Internet usage logs, so
that α = E[A] where A is a random variable representing the teleportation pa-
rameter for each user. We are not aware of any studies that attempt to determine
α using this methodology.

However, assuming α = E[A] does not yield the “correct” PageRank vector
This fact follows because in general E[x(A)] �= x(E[A]). Intuitively, this issue
arises because the PageRank model consolidates everyone into a single user. Ap-
pendix A demonstrates a formal counterexample. A more realistic model would
consider that each user should have a small contribution to the final PageRank
values.

To reiterate, computing x(E[A]) does not yield a PageRank vector that ex-
presses all of the users. Instead, we propose using E[x(A)] as a new PageRank
vector that accurately models the underlying user population.

While our model for PageRank using a random parameter better represents
the reality of random surfers, we would not expect the rankings generated by the
model to be qualitatively different from those generated by the approximation
of using α = E[A]. We expect E[x(A)] ≈ x(E[A]) for “reasonable” distributions
of A. Our results confirm this expectation, which justifies use of the PageRank
vector as a global ranking for all users.

However, by modeling each component of the PageRank vector as a random
variable, we gain a distinct advantage when quantifying the importance of a
page. Namely, we can compute the standard deviation of each PageRank value
with respect to the distribution of A. The standard deviation is a key tool in
uncertainty quantification and allows us to examine the pages most sensitive to
changes in PageRank based on the underlying distribution of A. In the results
section, we employ the standard deviation of the PageRank vector to generate
rankings that are uncorrelated with the original PageRank vector. Uncorrelated
vectors are important because they provide additional useful input to a machine
learning framework for generating a web search ranking function.

84 P.G. Constantine and D.F. Gleich

2 Choice of Distribution

One of the mysteries in the original PageRank model was the choice of α. In
our new model, we replace α with a random variable A. Immediately, we face
a new question: what should the distribution of A be? This question is much
easier to answer! We estimate a value α̂i from usage statistics for each user i
and compute the resulting discrete distribution. Unfortunately, this represents
a daunting computational and statistical analysis task.

We do not attempt to determine the underlying discrete distribution and pro-
ceed to the limiting case where A is a continuous random variable with support
in the interval [0, 1]. There are two distributions that potentially model the user
behavior of interest: the uniform distribution over [l, r] with 0 ≤ l < r ≤ 1 and
the Beta distribution with parameters a and b, a, b ≥ −1. The density functions
are

fU [l,r](x) =
1

r − l
I[l,r](x) and fBeta(a,b)(x) =

xb(1 − x)a

B(a + 1, b + 1)
I[0,1](x),

where B(x, y) = Γ (x)Γ (y)
Γ (x+y) and Γ (x) is the Euler Γ function. The Beta density

becomes the uniform density with l = 0 and r = 1 when a = b = 0. (This
form of the Beta density may differ from other presentations. In particular, the
Beta distribution implemented in Matlab assumes the uniform distribution when
a = b = 1.)

3 A Consequence of the Modeling Change

Recall that our proposed change in the PageRank model is to replace the de-
terministic parameter α with a random variable A and to use E[x(A)] instead
of x(E[A]) as the PageRank vector. One attractive feature of this change is
that using E[x(A)] incorporates more influence from longer paths in the graph.
Appendix A derives (5),

E[x(A)] =
∞
∑

n=0

E[An − An+1]PT n
v.

The coefficient E[An − An+1] expresses the weight placed on paths of length n
in the graph. Following Baeza-Yates et al., we call these coefficients the path
damping coefficients [8]. Figure 1 shows these coefficients as functions of n along
with the path damping coefficients in the deterministic case. Appendix A, then,
demonstrates that the TotalRank model proposed in that paper is equivalent to
using E[x(A)] in our model with A distributed uniformly over [0, 1].

4 Computing the Solution

Given the randomness in the PageRank model introduced by the random pa-
rameter A, our objective is to quantify the uncertainty in the solution x(A)

Polynomial Chaos and PageRank 85

10−5

10−4

10−3

10−2

10−1

100

E
[A

n
−

A
n
+

1
]

100 101 102 103

n

A ∼ Beta(2, 16)
A ∼ U[0.7, 1]
A = 0.85

Fig. 1. Different choices of the underlying distribution of A have significant conse-
quences for the influence of long paths in the final PageRank vector. From formula (5)
the influence of a path of length n is E[An − An+1] which we call the path damping
coefficient. Assuming that A is uniform puts the most weight on long paths. The three
distributions displayed in this plot satisfy E[A] = 0.85. All the methods put similar
weight on paths up to length 10.

of the system. In concrete terms, this amounts to computing the mean of the
stationary distribution E[x(A)] as well as its standard deviation Std[x(A)].

4.1 Monte Carlo Approach

One straightforward way to compute these quantities is to use a Monte Carlo
approach. First generate M realizations of A from a chosen distribution, and
then solve each resulting PageRank problem. With the M different realizations
of xi(A), i = 1, . . . , M , we can compute unbiased estimates for E[x(A)] and
Var[x(A)] with the formulas

E[x(A)] ≈ 1
M

M
∑

i=1

xi ≡ μ̂x, Std[x(A)] ≈

√

√

√

√

1
M − 1

M
∑

i=1

(xi − μ̂x)2

from [9]. Unfortunately, as with any Monte Carlo method, these estimates con-
verge as 1/

√
M [10], which makes this approach prohibitively expensive for large

systems such as the web graph.

4.2 The Polynomial Chaos Approach

A more efficient way to compute E[x(A)] and Std[x(A)] — and the one that we
advocate in this paper — employs a technique known as the stochastic Galerkin
method. This technique utilizes a specific representation of the random param-
eter A and random response vector x(A) called the polynomial chaos expansion

86 P.G. Constantine and D.F. Gleich

(PCE). The PCE expresses the random quantities as an infinite series of or-
thogonal polynomials that take a vector of random variables as arguments. This
representation has its roots in the work of Wiener [11] who expressed a Gaus-
sian process as an infinite series of Hermite polynomials. In the early 1990s,
Ghanem and Spanos [12] truncated Wiener’s representation to finitely many
terms and used this truncated PCE as a primary component of their stochastic
finite element method; this truncation made computations possible. In 2002, Xiu
and Karniadakis [13] expanded this method to non-Gaussian processes via the
more general Wiener-Askey scheme of orthogonal polynomials. The use of the
stochastic Galerkin method has become fashionable in the uncertainty quantifi-
cation community as a technique for measuring the effect of random inputs on
partial differential equation models [14,15,16]. This paper presents a straight-
forward application of this technique to a linear system with a single random
parameter.

To introduce the method, let {Ψk(ξ(ω))}, k ∈ N denote a set of orthogonal
polynomials where ξ(ω) is a vector of i.i.d. random variables. We use the de-
pendence on ω to represent a random quantity. Assume {Ψk(ξ(ω))} have the
following properties:

E[Ψ0] = 1, E[Ψk] = 0 for k > 0, E[ΨjΨk] = δjk for j, k ≥ 0

where δjk is the Kronecker delta. The PCE of a random quantity u(ω) is given
by

u(ω) =
∞
∑

k=0

ukΨk(ξ(ω))

where {ui} are the PCE coefficients. By the Cameron-Martin theorem [17], this
series converges in an L2 sense, i.e.

E

⎡

⎣

(

u −
N
∑

k=0

ukΨk(ξ(ω))

)2⎤

⎦ → 0

as N → ∞. The L2 convergence of this expansion motivates truncating the
series at a finite number of terms for the sake of computation. Thus we can
approximate u with the finite series

u(ω) ≈
N
∑

k=0

ukΨk(ξ(ω)).

Then the problem of computing u(ω) transforms into the problem of finding the
coefficients of its truncated PCE. From this point onward, we drop the explicit
dependence on ω in our notation.

Since our particular model has only one random variable, we can fully account
for this single random dimension by letting ξ have only one component, which
we denote by ξ = ξ. For the random parameter A and response quantity x in
our model, we can write their respective PCEs as

Polynomial Chaos and PageRank 87

A =
∞
∑

k=0

AkΨk(ξ), x =
∞
∑

k=0

xkΨk(ξ),

For A ∼ Beta(a, b), we can achieve exponential convergence in the coefficients
xk by choosing {Ψk} to be the 1-D Jacobi polynomials with parameters a and b
[13]. Note that when a = b = 0, A ∼ U [0, 1] and the Jacobi polynomials reduce
to the Legendre polynomials.

Now we substitute these representations into our model,
(

I −
∞
∑

k=0

AkΨk(ξ)PT

)(∞
∑

k=0

xkΨk(ξ)

)

=

(

1 −
∞
∑

k=0

AkΨk(ξ)

)

v.

To make this problem amenable to computation, we truncate the PCEs to N
terms,

(

I −
N
∑

k=0

AkΨk(ξ)PT

)(

N
∑

k=0

xkΨk(ξ)

)

=

(

1 −
N
∑

k=0

AkΨk(ξ)

)

v.

In the next section we perform a convergence study on the order of the expansion
for our particular application, Fig. 2.

With the distribution of A known explicitly, we can solve directly for Ak.
By multiplying both sides of the truncated PCE representation of A by Ψj and
taking the expectation, the orthogonality of {Ψk} gives the formula

Aj =
E[AΨj(ξ)]
E[Ψj(ξ)2]

, j = 0, . . . , N.

From this formula, we have that A0 = E[A] and Aj = 0 for j ≥ 2. Thus our
system reduces to

(I − (A0 + A1Ψ1)PT)

(

N
∑

k=0

xkΨk(ξ)

)

= (1 − (A0 + A1Ψ1))v.

Multiplying both sides by Ψj and taking the expectation, the orthogonality of
{Ψk} leaves

E[Ψ2
j]I −

N
∑

k=0

E[(A0 + A1Ψ1)ΨjΨk]PT xk

= ((1 − A0) E[Ψj] − A1 E[ΨjΨ1])v

(3)

for j = 0 . . .N . Therefore we have N + 1 coupled linear systems to solve for
xj . Note that the dimension of this larger system is N + 1 times the dimension
of P.

Once we solve for the PCE coefficients xj , we can compute the mean of the
PageRank vector,

88 P.G. Constantine and D.F. Gleich

E[x] = E

⎡

⎣

N
∑

j=0

xjΨj

⎤

⎦ = x0 E[Ψ0]
︸ ︷︷ ︸

=1

+
N
∑

j=0

xj E[Ψi]
︸ ︷︷ ︸

=0

= x0.

To compute the standard deviation, we first compute the variance.

Var[x] = E[(x − E[x])2]

= E

⎡

⎢

⎣

⎛

⎝

⎛

⎝

N
∑

j=0

xjΨj

⎞

⎠ − x0

⎞

⎠

2
⎤

⎥

⎦

=
N
∑

j=1

x2
j E[Ψ2

j]; (by orthogonality)

and then Std[x] =
√

Var[x] is computed element-wise.

5 Datasets

Our experimental datasets came from four sources [18,19,20,21]. We downloaded
and modified two datasets compressed using the Webgraph framework [22]. Ta-
ble 1 summarizes our datasets.

From the webbase dataset, we extracted the web graph corresponding to the
http://cs.stanford.edu host and computed the largest strongly connected
component of this graph. We also computed and used the largest strongly con-
nected component of the cnr-2000 graph. The wikipedia graph is discussed in
Sect. 5.1, and the us2004 comes from [20]. Each of the graphs stanford-cs, cnr-
2000, and wikipedia is a largest strongly connected component and has a natural
random walk

P = D−1W, (4)

Here D is the diagonal matrix of outdegrees for each node, and Pe = e. The
us2004 graph was not strongly connected and we added self loops to all dan-
gling nodes before computing P according to (4). The graphs for stanford-cs and
wikipedia, prior to extracting the largest connected component, are available in
the University of Florida Sparse Matrix Collection as Gleich/wb-cs-stanford
and Gleich/wikipedia-20051105 [23].

5.1 Wikipedia

On a semi-regular basis, Wikipedia provides a dump of their database. We col-
lected the dump from November 5, 2005 [21] and processed the results into a
graph by identifying all links between Wikipedia articles in the text. We decided
to remove many pages that were not articles because we wanted the results to be
true to the underlying Encyclopedic nature of Wikipedia and felt that pages in
the “User” and “User talk” categories did not meet that requirement. The cate-
gories we kept were “Category” and “Portal” because they represent overviews

http://cs.stanford.edu

Polynomial Chaos and PageRank 89

Table 1. The datasets used in this paper vary in scale over three orders of magnitude.
The term id(v) is used to represent the indegree of a vertex. Each of the first three
graphs listed is a strongly connected component from a larger graph. The final graph
is not strongly connected and has dangling nodes adjusted by adding a self-loop.

Name |V| |E| max id(v) Source
stanford-cs 2,759 13,895 340 [18,22]
cnr-2000 112,023 1,646,332 18,235 [19,22]
wikipedia 1,103,453 18,245,140 71,524 Sect. 5.1
us2004 6,411,252 23,940,956 116,393 [20]

N stanford-cs cnr-2000
0 3.29 × 10−2 3.20 × 10−2

1 1.48 × 10−4 1.47 × 10−4

2 7.56 × 10−8 7.54 × 10−8

3 4.46 × 10−12 4.47 × 10−12

4 2.31 × 10−17 2.75 × 10−17

10−16

10−8

100

0 1 2 3 4

Values of
∥

∥E[x(N+1)(A)] − E[x(N)(A)]
∥

∥

1

Fig. 2. The order study for the polynomial chaos expansion shows that a fourth order
expansion is sufficient and that the convergence of the expansion is independent of the
graph size; the plots are indistinguishable and we have plotted the data from cnr-2000

of different areas of the Encyclopedia. Finally, we removed all pages in the graph
not in the largest strongly connected component. The result of this processing
is our wikipedia dataset.

6 Convergence Results

We conducted simple convergence studies with A ∼ Beta(2, 16) on our two
small datasets, stanford-cs and cnr-2000, that motivate choices used on the re-
sults for our larger datasets. From Figs. 2 and 3, we observed both the predicted

0

0.02

0.04

0.06

0.08

‖µ
(M

+
1)

x
−

µ
(M

)
x

‖ 1

101 102 103 104

M

Fig. 3. Monte Carlo sampling theory predicts that the estimates converge proportional
to 1/

√
M . In this figure, we demonstrate this convergence on our problem. The dashed

curve is 0.15/
√

M where the scaling was matched by hand to the underlying data.

90 P.G. Constantine and D.F. Gleich

exponential convergence of the PCE coefficients and the characteristic slow con-
vergence of the Monte Carlo algorithm. Therefore, we use a fourth order PCE
truncation (N = 4) in the our subsequent computations and do not consider
Monte Carlo as a feasible computational algorithm. Appendix B describes the
implementation for these experiments.

7 Results and Discussion

Tables 2-5 present our main results. In the experiments, we computed E[x(A)]
and Std[x(A)] under the following modeling assumptions: (1) A = 0.85 is de-
terministic; (2) A has a Beta distribution with a = 2, b = 16; and (3) A is
distributed uniformly over [0.7, 1]. We chose these two distributions because
E[A] = 0.85 in both cases. The two graphs used for experiments are wikipedia
and us2004. In the remainder of this section, we will adopt the notation that
x̂α = x(0.85), x̂Beta = E[x(A)] where A ∼ Beta(2, 16), and x̂U = E[x(A)] where
A ∼ U [0.7, 1]. Similarly, ŝBeta = Std[x(A)] and ŝU = Std[x(A)] for the respective
distributions.

Table 2 presents the time required for the major computational task in each
evaluation. For the PageRank problem with a deterministic α, the major com-
putational task is the iterative method used to solve the linear system (2). For
the problem with a random variable A, the major computational task is solving
the coupled linear systems for the coefficients of the PCE (3). The time required
to compute the PCE coefficients is approximately 100 times larger than the time
required to compute the PageRank vector. This implies that using our codes, we
have an allowance of only 100 Monte Carlo samples before the PCE approach
becomes more efficient. The computational codes for the PCE coefficients are not
optimized. Therefore, using well known results and techniques from numerical
linear algebra (for example [24]) will yield a substantial improvement in these
computational times.

Next, we evaluated the top 10 pages for each of the ordering induced by x̂α,
x̂Beta, and x̂U . Unsurprisingly, these groups of pages are identical. We evaluate
the difference between these three vectors in Tab. 3 using the 1-norm, ∞-norm,
and Kendall-τ correlation coefficient. The results in the table clearly demonstrate
that while E[x(A)] �= x(E[A]), E[x(A)] ≈ x(E[A]). From the strong τ correlation
coefficients, the rankings induced by these vectors are nearly indistinguishable.
These results justify using a deterministic approximation of PageRank to the
underlying model where A is a random variable.

The next set of our results concerns the standard deviation of the PageR-
ank vector with respect to the distribution of A. Table 4 displays the top 10
pages in each graph according to the PageRank vector and the top 10 pages
with highest standard deviation under both distributions. The results first show
that countries and years make up the most important pages in Wikipedia ac-
cording to the PageRank model. Next, the pages with highest standard de-
viation are the category pages if A is sampled from a Beta distribution. This

Polynomial Chaos and PageRank 91

Table 2. The time required to solve the major computational task in each model

wikipedia us2004
A = α = 0.85 60.4 sec. 25.2 sec.
A ∼ Beta(2, 16) 2210 sec. 3248 sec.
A ∼ U [0.7, 1.0] 1936 sec. 2712 sec.

Table 3. In this table, x̂α represents x(0.85), x̂U represents E[x(A)], A ∼ U [0.7, 1],
and x̂Beta = E[x(A)],A ∼ Beta(2, 16). We present the difference between each of
these vectors in the 1-norm, ∞-norm, and Kendall-τ correlation coefficient. These
results show that the PageRank vector with a deterministic α is extremely close to the
expected PageRank vectors for random variable A. In particular, the τ results indicate
the rankings induced by each of the vectors are almost identical.

wikipedia us2004
y, z ||y − z||1 ||y − z||∞ τ (y,z) ||y − z||1 ||y − z||∞ τ (y,z)

x̂α, x̂U 0.04996 0.00018 0.99997 0.04996 0.00013 0.99999
x̂α, x̂Beta 0.03211 0.00012 0.99702 0.03209 8 ×10−5 0.99872
x̂U , x̂Beta 0.01792 5 ×10−5 0.99705 0.01807 5 ×10−5 0.99873

implies that these pages have the highest uncertainty in their ranking. A ma-
chine learning framework could theoretically use this additional information
with user reviews of pages to generate more accurate rankings. Alternatively,
pages with high standard deviation might make good suggestions if a search
algorithm got a second chance to present results, given that the first set were
unsatisfactory. In the second case, category pages are a logical set of sugges-
tions. We were unable to determine any pattern to the pages with highest
standard deviation if A is sampled from a uniform distribution. For the us2004
graph, the pages with highest PageRank tend to have high standard deviation
as well.

We now attempt to analyze the standard deviation vectors using the Kendall-
τ ranking correlation. Table 5 presents the correlation coefficients. The major
result of this table is that the standard deviation vector for both distributions on
the wikipedia graph is uncorrelated with any of the PageRank vectors whereas
the standard deviation for both distributions on the us2004 graph are anti-
correlated. When we evaluate the rank correlation in the us2004 graph with
dangling nodes removed, then the rank correlation is positive. We believe that
the difference between these results is a consequence of the structural differences
between the graphs. The wikipedia graph is the largest strongly connected com-
ponent of a larger graph and there are no dangling nodes. We believe that the
dangling nodes in the us2004 graph are the cause of the strong anti-correlation
between the standard deviation and the PageRank vector. The considerable
change in the rank-correlation after removing the dangling nodes supports this
hypothesis.

92 P.G. Constantine and D.F. Gleich

Table 4. This table compares the 10 best pages from each of the two experimental
graphs with the 10 pages of highest standard deviation under each distributions for the
random variable A. While each set of pages is significantly different in the wikipedia
graph, the corresponding sets for the us2004 graph are similar.

wikipedia
Top 10 by PageRank Largest std for Beta(2, 16) Largest std for U[0.7, 1.0]

United States Category:Wikiportals 2000

Race (U.S. Census) Category:Politics Square kilometer

United Kingdom Category:Categories Population density

France Category:Culture Race (U.S. Census)

2005 Category:Geography Per capita income

2004 Category:Countries Poverty line

2000 Category:Human societies Census

Canada Race (U.S. Census) Marriage

England Category:Categories by country Square mile

Category:Categories by country Category:North American countries Category:Categories by country

us2004
Top 10 by PageRank Largest std for Beta(2, 16) Largest std for U[0.7, 1.0]

lxr.linux.no/ lxr.linux.no/ lxr.linux.no/

kernel.org/ kernel.org/ kernel.org/

examples.oreilly.com/linuxdrive2/ examples.oreilly.com/linuxdrive2/ examples.oreilly.com/linuxdrive2/

www.fsmlabs.com/[...]/openrtlinux/ www.fsmlabs.com/[...]/openrtlinux/ www.fsmlabs.com/[...]/openrtlinux/

www.datadosen.se/jalbum www.datadosen.se/jalbum www.datadosen.se/jalbum

linguistics.buffalo.edu/ssila/index.htm www.iub.edu/ www.indiana.edu/copyright.html

www.iub.edu/ www.indiana.edu/& www.indiana.edu/

www.uiowa.edu/ ournews/index.html www.indiana.edu/copyright.html registrar.indiana.edu/[...]/index.html

catalog.arizona.edu/ www.indiana.edu/ www.uky.edu/

validator.w3.org/check/referer www.uiowa.edu/õurnews/index.html www.arizona.edu/

Table 5. This table shows the Kendall-τ ranking correlation coefficient between the
standard deviation of the PageRank vector under both distributions for A and the
expectations of the PageRank vector. See the text for the interpretation of the vectors in
the table. For both the uniformly and Beta distributed random variables, the standard
deviation of the wikipedia vector is uncorrelated with the PageRank vector itself. In
contrast, the standard deviation of the us2004 vectors are anti-correlated with the
PageRank vectors. The label us2004nd indicates the vector from the us2004 graph
restricted to the non-dangling pages. On the non-dangling pages, we observe a more
mild positive correlation between the PageRank vector and the standard deviation.

wikipedia us2004 us2004nd
τ (̂sU , x̂α) -0.0032 -0.7846 0.4611
τ (̂sU , x̂U) -0.0032 -0.7846 0.4611
τ (̂sU , x̂Beta) -0.0020 -0.7851 0.4625

τ (̂sBeta, x̂α) 0.0488 -0.7909 0.5920
τ (̂sBeta, x̂U) 0.0488 -0.7909 0.5920
τ (̂sBeta, x̂Beta) 0.0021 -0.7918 0.5933

8 Conclusions and Future Work

The PageRank model for computing a global importance vector over web pages
makes a critical modeling error by assuming that all users can be represented by
a single teleportation parameter. We propose a new model for PageRank where
the teleportation coefficient is a random variable supported on the interval [0, 1].

Polynomial Chaos and PageRank 93

Using a truncated polynomial chaos expansion to represent the random tele-
portation coefficient and PageRank, we compute the expectation and standard
deviation of the PageRank vector for two distributions of the random variable
in the PageRank model. Our results indicate two important conclusions. First,
the expectation of the PageRank model assuming a random variable for the
teleportation coefficient yields almost the same ranking as the PageRank model
assuming a deterministic teleportation coefficient. This result justifies using the
deterministic approximation as a global ranking vector for all users. Second,
the standard deviation of the PageRank vector can be uncorrelated with the
PageRank vector itself.

There is a significant amount of remaining work to fully investigate the use of
the new model for PageRank. First, we need to investigate other distributions
for the teleportation parameter, particularly distributions based on statistical
analysis of actual usage data. Also, we suspect that the time required to com-
pute the PCE coefficients can be significantly reduced. Additionally, we need
to continue to investigate the impact of dangling nodes and strongly connected
components on the standard deviation of the PageRank. We hypothesize that
there is a significant relationship between these factors.

References

1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford University (1999)

2. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th
international conference on the World Wide Web, Budapest, Hungary, pp. 271–279.
ACM, New York (2003)

3. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation meth-
ods for accelerating PageRank computations. In: Proceedings of the 12th interna-
tional conference on the World Wide Web, pp. 261–270. ACM Press, New York
(2003)

4. Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the
structure of the web: Experiments and algorithms. In: Proceedings of the 11th
international conference on the World Wide Web (2002)

5. Del Corso, G.M., Gulĺı, A., Romani, F.: Fast PageRank computation via a sparse
linear system. Internet Mathematics 2(3), 251–273 (2005)

6. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press (2006)

7. Avrachenkov, K., Litvak, N., Pham, K.S.: A singular perturbation approach for
choosing PageRank damping factor. arXiv e-prints (2006)

8. Baeza-Yates, R., Boldi, P., Castillo, C.: Generalizing PageRank: Damping func-
tions for link-based ranking algorithms. In: Proceedings of ACM SIGIR, Seattle,
Washington, USA, pp. 308–315. ACM Press, New York (2006)

9. Rice, J.A.: Mathematical Statistics and Data Analysis, 2nd edn. Duxbury Press,
Boston (1995)

10. Ripley, B.D.: Stochastic Simulation, 1st edn. Wiley, Chichester (1987)
11. Wiener, N.: The homogeneous chaos. American Journal of Mathematics 60, 897–

936 (1938)

94 P.G. Constantine and D.F. Gleich

12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach,
1st edn. Springer, New York (1991)

13. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

14. Babus̆ka, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of
stochastic elliptic differential equations. SIAM Journal of Numeical Analysis 42(2),
800–825 (2004)

15. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial
chaos method for stochastic differential equations. Journal of Computational
Physics 209, 617–642 (2005)

16. Mâıtre, O.P.L., Knio, O.M., Najm, H.N., Ghanem, R.G.: A stochastic projection
method for fluid flow. Journal of Computational Physics 173, 481–511 (2001)

17. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear function-
als in series of fourier-hermite functionals. The Annals of Mathematics 48, 385–392
(1947)

18. Hirai, J., Raghavan, S., Garcia-Molina, H., Paepcke, A.: WebBase: a repository of
web pages. Computer Networks 33(1-6), 277–293 (2000)

19. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: A scalable fully dis-
tributed web crawler. Software: Practice & Experience 34(8), 711–726 (2004)

20. Thelwall, M.: A free database of university web links: Data collection issues. Inter-
national Journal of Scientometrics, Informetrics and Bibliometrics 6/7(1) (2003)

21. Various: Wikipedia XML database dump from November 5, 2005 (November 2005),
Accessed from http://en.wikipedia.org/wiki/Wikipedia:Database download

22. Boldi, P., Vigna, S.: Codes for the world wide web. Internet Mathematics 2, 407–
429 (2005)

23. Davis, T.: University of Florida sparse matrix collection. NA Digest, vol. 92(42),
October 16, 1994, NA Digest, vol. 96(28), July 23, 1996, and NA Digest, vol. 97(23),
June 7, 1997 (2007), http://www.cise.ufl.edu/research/sparse/matrices/

24. Golub, G.H., van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in
Mathematical Sciences). The Johns Hopkins University Press, Baltimore (1996)

A A Counterexample

We demonstrate E[x(A)] �= x(E[A]) with a counterexample. Set

P =

⎛

⎝

0 1/2 1/2
0 0 1
0 0 1

⎞

⎠ ,

and v =
[

1/3 1/3 1/3
]T . If A is a uniform random variable on [0, 1], then E[A] =

1/2 and
x(E[A]) =

[

1/6 5/24 5/8
]T

.

For the random variable model, the computations are more complicated.

E[x(A)] = E

[∞
∑

n=0

(AnPT n
)(1 − A)v

]

=
∞
∑

n=0

(E[An] − E[An+1])PT n
v.

(5)

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://www.cise.ufl.edu/research/sparse/matrices/

Polynomial Chaos and PageRank 95

In the first step, we used the Neumann series for the inverse of the matrix
I−APT . Fubini’s theorem then justifies interchanging the sum and expectation
because the inner quantity is always bounded and positive. The raw moments
of the uniform distribution are E[An] = 1

n+1 and consequently,

E[x(A)] =
∞
∑

n=0

(

1
n+1 − 1

n+2

)

PT n
v =

∞
∑

n=0

1
(n+1)(n+2)P

T n
v.

For n ≥ 2, PT nv =
[

0 0 1
]T

E[x(A)] = 1
2v + 1

6P
Tv +

[

0 0
∑∞

n=2
1

(n+1)(n+2)

]T

=
[

1/6 7/36 23/36
]T

.

In this case, the first component of the vector is identical, but the second two
components show a small change from the modeling difference.

B Engineering Details

Our Matlab implementations, which we provide for download from
http://www.stanford.edu/∼dgleich/pagerankpce, fall into three categories:
PageRank codes, polynomial chaos codes, and large scale linear system codes.

PageRank codes. Our PageRank codes use a Gauss-Seidel algorithm [24] to solve
the linear system formulation of the PageRank problem. We wrote a mex func-
tion to implement the Gauss-Seidel iteration efficiently in a Matlab code. The
convergence metric for the PageRank computation was

||αPT x + (1 − α)v − x||1 ≤ δ

where δ = 10−10 for the PageRank vectors discussed in the results section and
δ = 10−8 for the PageRank vectors used to form the Monte Carlo approximation.

Polynomial chaos codes. In the polynomial chaos approach, we must integrate
products of the basis polynomials. We computed these quantities exactly with
Matlab’s symbolic toolbox. We used the output of these symbolic computations
when forming the large linear system to solve for the PCE coefficients xj .

Large scale linear systems. We employed two linear system solvers to compute
the solution for the large systems generated by the polynomial chaos approach.
For the results in Sect. 6 we solved the final linear systems using the SOR
algorithm with ω = 1.05. For the results in Sect. 7, Matlab did not have sufficient
memory to construct the large linear system in memory. We represented these
matrices implicitly as linear operators and used the Jacobi algorithm to solve
the linear systems until the relative residual was smaller than 10−10.

http://www.stanford.edu/~dgleich/pagerankpce

A Spatial Web Graph Model with Local Influence

Regions�

W. Aiello1, A. Bonato2, C. Cooper3, J. Janssen4, and P. Pra�lat4

1 University of British Columbia
Vancouver, Canada
aiello@cs.ubc.ca

2 Wilfrid Laurier University
Waterloo, Canada

abonato@rogers.com
3 King’s College

London, UK
colin.cooper@kcl.ac.uk

4 Dalhousie University
Halifax, Canada

janssen@mathstat.dal.ca,pralat@mathstat.dal.ca

Abstract. The web graph may be considered as embedded in a topic
space, with a metric that expresses the extent to which web pages are
related to each other. Using this assumption, we present a new model
for the web and other complex networks, based on a spatial embedding
of the nodes, called the Spatial Preferred Attachment (SPA) model. In
the SPA model, nodes have influence regions of varying size, and new
nodes may only link to a node if they fall within its influence region.
We prove that our model gives a power law in-degree distribution, with
exponent in [2, ∞) depending on the parameters, and with concentration
for a wide range of in-degree values. We also show that the model allows
for edges that span a large distance in the underlying space, modelling
a feature often observed in real-world complex networks.

1 Introduction

Current stochastic models for complex networks (such as those described in [1,2])
aim to reproduce a number of graph properties observed in real-world networks
such as the web graph. On the other hand, experimental and heuristic treatments
of real-life networks operate under the tacit assumption that the network is a
visible manifestation of an underlying hidden reality. For example, it is commonly
assumed that communities in a social network can be recognized as densely linked
subgraphs, or that web pages with many common neighbours contain related
topics. Such assumptions imply that there is an a priori community structure or
relatedness measure of the nodes, which is reflected by the link structure of the
graph.
� The authors gratefully acknowledge support from NSERC and MITACS grants.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Spatial Web Graph Model with Local Influence Regions 97

A common method to represent relatedness of objects is by an embedding in a
metric space, so that related objects are placed close together, and communities
are represented by clusters of points. Following a common text mining technique,
web pages are often represented as vectors in a word-document space. Using La-
tent Sematic Indexing, these vectors can then be embedded in a Euclidean topic
space, so that pages on similar topics are located close together. Experimental
studies [7] have confirmed that similar pages are more likely to link to each other.
On the other hand, experiments also confirm a large amount of topic drift : it is
possible to move to a completely different topic in a relatively short number of
hops. This points to a model where nodes are embedded in a metric space, and
the edge probability between nodes is influenced by their proximity, but edges
that span a larger distance in the space are not uncommon.

The Spatial Preferred Attachment (SPA) model proposed in this paper com-
bines the above considerations with the often-used preferential attachment prin-
ciple: pages with high in-degree are more likely to receive new links. In the SPA
model, each node is placed in space and surrounded by an influence region. The
area of the influence region is determined by the in-degree of the node. Moreover,
in each time-step all regions decrease in area as a function of time. A new node
v can only link to an existing node u if v falls within the influence region of u. If
v falls within the region of influence u, then v will link to u with probability p.
Thus, the model is based on the preferential attachment principle, but only im-
plicitly: nodes with high in-degree have a large region of influence, and therefore
are more likely to attract new links.

A random graph model with certain similarities to the SPA model is the
geometric random graph; see [8]. In that model, all influence regions have the
same size, and the link probability is p = 1. Flaxman, Frieze, and Vera in [5]
supply an interesting geometric model where nodes are embedded on a sphere,
and the link probability is influenced by the relative positions of the nodes.
This model is a generalization of a geometric preferential attachment models
presented by the same authors in [4], which influenced our model.

There are at least three features that distinguish the SPA model from previous
work. First, a new node can choose its links purely based on local information.
Namely, the influence region of a node can be seen as the region where a web
page is visible: only web pages that are close enough (in topic) to fall within
the influence region will be aware of the give page, and thus have a possibility
to link to it. Moreover, a new node links independently to each node visible
to it. Consequently, the new node needs no knowledge of the invisible part of
the graph (such as in-degree of other nodes, or total number of nodes or links)
to determine its neighbourhood. Second, since a new node links to each visible
node independently, the out-degree is not a constant nor chosen according to
a pre-determined distribution, but arises naturally from the model. Third, the
varying size of the influence regions allows for the occasional long links, edges
between nodes that are spaced far apart. This implies a certain ”small world”
property.

98 W. Aiello et al.

We formally define the SPA model as follows. Let S be the surface of the
sphere of area 1 in R

3. For each positive real number α ≤ 1, and u ∈ S, define
the cap around u with area α as

Bα(u) = {x ∈ S : ||x − u|| ≤ rα},

where || · || is the usual Euclidean norm, and rα is chosen such that Bα has
area α.

The SPA model has parameters A1, A2, A3, p ≥ 0 such that p ≤ 1, A1 ≤ 1
and A2 > 0. It generates stochastic sequences of graphs (Gt : t ≥ 0), where
Gt = (Vt, Et), and Vt ⊆ S. Let d−(v, t) (d+(v, t)) be the in-degree (out-degree)
of node v in Gt. We define the influence region of node v at time t ≥ 1, written
R(v, t), to be the cap around v with area

|R(v, t)| =
A1d

−(v, t) + A2

t + A3
,

or R(v, t) = S if the righ-hand-side is greater than 1.
The process begins at t = 0, with G0 being the empty graph, and we let G1

be just K1. Time-step t, t ≥ 2, is defined to be the transition between Gt−1 and
Gt. At the beginning of each time-step t, a new node vt is chosen uniformly at
random (uar) from S, and added to Vt−1 to create Vt. Next, independently, for
each node u ∈ Vt−1 such that vt ∈ R(u, t − 1), a directed edge (vt, u) is created
with probability p. Thus, the probability that a link (vt, u) is added in time-step
t equals p|R(u, t − 1)|.

Because new nodes choose independently whether to link to each visible node,
and the size of the influence region of a node depends only on the edges from
younger nodes, the distribution of the random graph Gn produced by the SPA
model with parameters A1, A2, A3, p is equivalent to the graph Gn+A3

produced
by the SPA model with the same values for A1, A2, p, but with A3 = 0, where
the first A3 nodes have been removed. Since the results presented in this paper
do not depend on the first nodes, we will assume throughout that A3 = 0.

Note that the model could be defined on any compact set of measure 1.
However, if the set has non-empty boundary, the definiton of the influence regions
should be adjusted. If higher dimensions are desired, S could be chosen to be
the boundary of a hypersphere in R

k for some k. The results in Sections 2
and 3 will still hold, while Section 4 can be easily extended to this case.

We prove in Section 2 that with high probability a graph Gn generated by
the SPA model has an in-degree distribution that follows a power law in-degree
distribution with exponent 1 + 1

pA1
, with concentration up to nif , where if =

(

n
log4 n

)pA1/(6pA1+2)
. If pA1 = 10/11, then the power law in-degree exponent

is 2.1, the same as observed in the web graph (see, for example [2]). We also
give a precise expression for the probability distribution of each individual node
vi, provided that pA1 < 1. In Section 3, we show that, if pA1 < 1, the number
of edges of Gn is linear, and strongly concentrated around the mean, while if
pA1 = 1 the expected number of edges is n log n. In Section 4 we explore a
geometric version of the small world property. We show that the expected sum

A Spatial Web Graph Model with Local Influence Regions 99

of (geometric) lengths of new edges added at time t in the SPA model is Θ(t2−b),
where b = 1 + 1

pA1
is the exponent of the power law. For the in-degree power

law exponent b = 2.1 commonly observed in the web graph, this expected sum
of lengths is greater than the corresponding expected sum in a corresponding
geometric random graph with equal-sized influence regions.

2 In-Degree Distribution

In the rest of the paper, (Gt : t ≥ 0) refers to a sequence of random graphs
generated by the SPA model with parameters A1, A2, A3 = 0, and p. In this
section, we explore the in-degree of the nodes in Gn. We say that an event holds
asymptotically almost surely (aas) if it holds with probability tending to one as
n → ∞; an event holds with extreme probability (wep) if it holds with probability
at least 1 − exp(−Θ(log2 n)) as n → ∞. Let Ni,t denote the number of nodes of
in-degree i in Gt. For an integer n ≥ 0, define

if = if (n) =
(

n

log4 n

)pA1/(6pA1+2)

. (1)

Our main result in this section is the following.

Theorem 1. Fix p ∈ (0, 1]. Then for any i ≥ 0,

E(Ni,n) = cin(1 + o(1)), (2)

where

c0 =
1

1 + pA2
, (3)

and for 1 ≤ i ≤ n,

ci =
pi

1 + pA2 + ipA1

i−1
∏

j=0

jA1 + A2

1 + pA2 + jpA1
. (4)

For i = 0, . . . , if , wep

Ni,n = cin(1 + o(1)). (5)

Since ci = ci−(1+ 1
pA1

)(1 + o(1)) for some constant c, this shows that for large
i, the expected proportion Ni,n/n follows a power law with exponent 1 + 1

pA1
,

with concentration for all values of i up to if . The proof of the Theorem 1 is
contained in the rest of this section.

2.1 Expected Value

The equations relating the random variables Ni,t are described as follows. As G1
consist of one isolated node, N0,1 = 1, and Ni,1 = 0 for i > 0. For all t > 0, we
derive that

100 W. Aiello et al.

E(N0,t+1 − N0,t | Gt) = 1 − N0,tp
A2

t
, (6)

E(Ni,t+1 − Ni,t | Gt) = Ni−1,tp
A1(i − 1) + A2

t
− pNi,t

A1i + A2

t
. (7)

Recurrence relations for the expected values of Ni,t can be derived by taking
the expectation of the above equations. To solve these relations, we use the
following lemma on real sequences, which is Lemma 3.1 from [2].

Lemma 1. If (αt), (βt) and (γt) are real sequences satisfying the relation

αt+1 =
(

1 − βt

t

)

αt + γt,

and limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞ αt

t exists and equals
γ

1+β .

Applying this lemma with αt = E(N0,t), βt = pA2, and γt = 1 gives that
E(N0,t) = c0t + o(t) with c0 as in (3). For i > 0, the lemma can be inductively
applied with αt = E(Ni,t), βt = p(A1i + A2), and γt = E(Ni−1,t)

A1(i−1)+A2

t to
show that E(Ni,t) = cit + o(t), where

ci = ci−1
A1(i − 1) + A2

1 + p(A1i + A2)
.

It is easy to verify that the expression for ci as defined in (3) and (4) satisfies
this recurrence relation.

2.2 Concentration

We prove concentration for Ni,t when i ≤ if by using a relaxation of Azuma-
Hoeffding martingale techniques. The random variables Ni,t do not a priori
satisfy the c-Lipschitz condition: it is possible that a new node may fall into
many overlapping regions of influence. Nevertheless, we will prove that devia-
tion from the c-Lipschitz condition occurs with exponentially small probability.
The following lemma gives a bound for |Ni,t+1 − Ni,t| which holds with extreme
probability.

Lemma 2. Wep for all 0 ≤ t ≤ n − 1 the following inequalities hold.

i |Ni,t+1 − Ni,t| ≤ 2(A1i + A2) log2 n, for 0 ≤ i ≤ t.

ii |Ni,t+1 − Ni,t| ≤ 2(A1i + A2), for log2 n < i ≤ t.

Proof. Fix t, let i, j ≤ t, and let Xj(i, t) denote the indicator variable for the
event that vj has degree i at time t and vt+1 links to vj . Thus,

Ni,t+1 − Ni,t =
t

∑

j=1

Xj(i − 1, t) −
t

∑

j=1

Xj(i, t),

A Spatial Web Graph Model with Local Influence Regions 101

and so

|Ni,t+1 − Ni,t| ≤ max

⎛

⎝

t
∑

j=1

Xj(i − 1, t),
t

∑

j=1

Xj(i, t)

⎞

⎠ . (8)

Let Zj(i, t) denote the indicator variable for the event that vt+1 is chosen
in the cap of area (A1i + A2)/t around node vj . Clearly, if Xj(i, t) = 1, then
Zj(i, t) = 1 as well, so Xj(i, t) ≤ Zj(i, t). Thus, to bound |Ni,t+1−Ni,t| it suffices
to bound the values of Z(i, t), where

Z(i, t) =
t

∑

j=1

Zj(i, t).

The variables Zj(i, t) for j = 1, . . . , t are pairwise independent. To see this, we
can assume the position of vt+1 to be fixed. Then, the value of Zj(i, t) depends
only on the position of vj . Since the position of each node is chosen independently
and uniformly, the value of Zj(i, t) is independent from the value of any other
Zj′(i, t) where j �= j′. Therefore, Z(i, t) is the sum of independent Bernouilli
variables with probability of success equal to

P(Zj(i, t) = 1) =
A1i + A2

t
.

Using Chernoff’s inequalities (see, for instance Theorem 2.1 [6]), we can show
that Z(i, t) < A1i + A2 + (A1i + A2) log2 n < 2(A1i + A2) log2 n. and Z(i, t) <
2(A1i+A2) if i > log2 n. Using these bounds, the proof now follows since by (8),

|Ni,t+1 − Ni,t| ≤ max(Z(i − 1, t), Z(i, t)). 	

To sketch the technique of the proof of Theorem 1, we consider N0,t, the number
of nodes of in-degree zero. We use the supermartingale method of Pittel et al. [9],
as described in [10].

Lemma 3. Let G0, G1, . . . , Gn be a random graph process and Xt a random
variable determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β
and constants γi,

E(Xt − Xt−1|G0, G1, . . . , Gt−1) < β

and
|Xt − Xt−1 − β| ≤ γi

for 1 ≤ t ≤ n. Then for all α > 0,

P

(

For some t with 0 ≤ t ≤ n : Xt − X0 ≥ tβ + α
)

≤ exp
(

− α2

2
∑

γ2
j

)

.

Note that we use the concept of a stopping time in the proof of Lemma 3 to
obtain a stronger result. Stopping times aid by showing that the bound for the
deviation of Xn applies with the same probability for all of the Xt, with t ≤ n.

102 W. Aiello et al.

Theorem 2. Wep for every t, 1 ≤ t ≤ n

N0,t =
t

1 + A2p
+ O(n1/2 log3 n) .

Proof. We first transform N0,t into something close to a martingale. Consider
the following real-valued function

H(x, y) = xpA2y − x1+pA2

1 + pA2
(9)

(note that we expect H(t, N0,t) to be close to zero). Let wt = (t, N0,t), and
consider the sequence of random variables (H(wt) : 1 ≤ i ≤ n). The second-
order partial derivatives of H evaluated at wt are all O(tpA2−1). Therefore, we
have

H(wt+1) − H(wt) = (wt+1 − wt) · grad H(wt) + O(tpA2−1), (10)

where “·” denotes the scalar product and grad H(wt) = (Hx(wt), Hy(wt)).
Observe that, from our choice of H ,

E(wt+1 − wt | Gt) · grad H(wt) = 0,

since H was chosen so that H(w) is constant along every trajectory w of the
differential equation that approximates the recurrence relation (6).

Hence, taking the expectation of (10) conditional on Gt, we obtain that

E(H(wt+1) − H(wt) | Gt) = O(tpA2−1).

From (10), noting that

grad H(wt) =
(

pA2t
pA2−1N0,t − tpA2 , tpA2

)

,

and using Lemma 2 to bound the change in N0,t, we have that wep

|H(wt+1) − H(wt)| ≤ tpA22(A1i + A2) log2 n + O(tpA2) = O(tpA2 log2 n).

Now we may apply Lemma 3 to the sequence (H(wt) : 1 ≤ i ≤ n), and sym-
metrically to (−H(wt) : 1 ≤ i ≤ n), with α = n1/2+pA2 log3 n, β = O(tpA2−1)
and γt = O(tpA2 log2 n), to obtain that wep

|H(wt) − H(w0)| = O(n1/2+pA2 log3 n)

for 1 ≤ t ≤ n. As H(w0) = 0, this implies from the definition (9) of the function
H , that wep

N0,t =
t

1 + pA2
+ O(n1/2 log3 n) (11)

for 1 ≤ t ≤ n which finishes the proof of the theorem. 	

We may repeat the argument as in the proof of Theorem 2 for Ni,t with i ≥ 1.
We omit the details here, which will follow in the long version of the paper.

A Spatial Web Graph Model with Local Influence Regions 103

2.3 In-Degree of Given Node

In contrast to the large-scale behaviour of the degree distribution described in
the previous subsection, here we focus on the distribution of the in-degree of an
individual node. The indicator variable Yt for the increase in d−(v, t) by receiving
a link from vt+1 is Bernoulli Be(p(A1d

−(v, t) + A2)/t). Thus,

E(d−(v, t + 1)|Gt) = d−(v, t) +
p(A1d

−(v, t) + A2)
t

. (12)

This is very similar to the growth of the degree in the Preferential Attachment
model as analized in [3]. As in the PA model, a ”rich get richer” principle ap-
plies for the in-degrees, and the richer nodes are those that were born first.
Theorem 2.1 of [3] can be used to obtain results on the concentration of Ni,t,
but the methods employed in the previous sections give a stronger result.

The results on the distribution of d−(v, n) are summarized in parts (a) and
(b) of the theorem below (use Theorem 2.2 of [3] with minor reworking). Part
(c) will be discussed in the next section, and used to establish the concentration
of the edges of Gt.

Theorem 3. Let ω = log n and let l∗ = nmin{pA1,1/2}/ω4. For 0 < pA1 < 1,

(a) For ω8 ≤ j ≤ (n − n/ω) and 0 ≤ l ≤ l∗ or for (n − n/ω) < j < n and
l = 0, 1,

P(d−(vj , n) = l) = (1+O(1/ω2))
(

n

j

)pA1

(

1 −
(

n

j

)pA1

(1+O(1/ω2))

)l

.

(b) For (n − n/ω) < j < n and l ≥ 2,

P(d−(vj , n) = l) = O(lpA1−1/ωl).

(c) For all K > 0,

P(There exists j ≤ n : d−(vj , n) ≥ Kω2(n/j)pA1) = O
(

n−Ke−18
)

.

Theorem 3(c) implies that aas the maximum in-degree of node vj is at most
(n/j)pA1Kω2. Conditional on this, (a) and (b) characterize the distribution of
d−(vj , n) for all j ≥ ω8 when pA1 ≤ 1/2 and for j ≥ ω8npA1−1/2 when pA1 >
1/2.

3 The Number of Edges of Gt

We derive a concentration result for the number of edges in graphs generated by
the SPA model. Let Mt = |Et|, the number of edges in Gt, and let mt = E(Mt).
Then we have that

104 W. Aiello et al.

E(Mt+1 | Mt) = Mt +
t

∑

j=1

p
A1d

−(vj , t) + A2

t
= Mt +

pA1Mt

t
+ pA2,

and so m1 = 0, and for t ≥ 1,

mt+1 = mt

(

1 +
pA1

t

)

+ pA2.

The (first-order) solutions of this recurrence are

mn ∼

⎧

⎨

⎩

pA2

1−pA1
n, pA1 < 1

n log n, pA1 = 1.

Theorem 4. If pA1 < 1, then aas the number of edges is concentrated around
its expected value:

Mn = mn(1 + o(1)).

The following lemma (whose proof is left to the long version of the paper) is
used in the proof of Theorem 4, and proves Theorem 3 (c).
Lemma 4. For all vj, j > 0 and K > 0,

P(d−(vj , n) ≥ K log2 n(n/j)pA1) = O(n−Ke−18

).

Proof of Theorem 4. We count the number of edges by counting the in-degree
of nodes. Our approach is as follows: by Theorem 1 wep for i ≤ if the number
of nodes Ni,n of in-degree i at time n is concentrated. Let a be the solution of
(n/a)pA1 = if and let ω′ = (K log2 n)1/(pA1) be the solution of

(

t

aω′

)pA1

K log2(n) =
(n

a

)pA1

,

where K ≥ 4e18. From Lemma 4, with probability 1 − O(n−3) no node v ≥ aω′

has degree exceeding if . Let μ(n) =
∑

i≤if
ENi,n, and let λ(n) =

∑aω′

j=1 d−(vj , n).
We prove, conditional on Lemma 4, that λ(n) = o(mn) and thus the number of
edges is concentrated around mn. We have that for pA1 < 1.

λ(n) =
aω′
∑

j=1

d−(vj , n)

≤ Kω2
aω′
∑

j=1

(

n

j

)pA1

= O(1/(1 − pA1)) log2/(pA1)(n)npA1a1−pA1

= O(1/(1 − pA1)) log2/(pA1)(n) + 4(1 − pA1)/(6pA1 + 2)n
7pA1+1

6pA1+2

= o(n).

However, μ(t) ≥ ct for some constant c > 0. 	

A Spatial Web Graph Model with Local Influence Regions 105

4 A Geometric Small World Property

In Section 2 it was shown that the number of nodes in a graph generated by the
SPA model of in-degree zero in Gn is linear in n. Also, with positive probability a
new node will land in an area of S not covered by any influence regions, and thus
have out-degree zero. Therefore, the underlying undirected graph of Gn is not
connected. In fact, we expect that for the majority of distinct pairs u, v, there
will not be a directed path from u to v. Since this is a property also observed in
the web graph, it does not detract from the SPA model, but rather indicates that
we should consider another variable rather than diameter to indicate a “small
world” property. Thus, we focus on the (geometric) distance, in S, spanned by
the links.

For a pair of points u, v ∈ S. let L(u, v) be the length of the shortest curve
embedded in the surface of S that connects u and v. Define

Lt =
∑

(vt,vi)∈Et

L(vt, vi);

that is, Lt is the sum of the lengths of new edges added at time t in the SPA
model. Note that Lt is a continuous random variable.

Theorem 5. Suppose that pA1 > 2/3. For the expectation of Lt,

E(Lt) = Θ

(

t
−

(

1−pA1
pA1

)
)

.

To prove Theorem 5 we need the following lemma whose (straightforward) proof
is omitted.

Lemma 5. Let u be chosen uar from a cap with centre v and area α. If X is the
distance between u and v, measured over the surface of S, then E(X) = 2

3

√

α
π .

Proof of Theorem 5. Define

Zj,t =
{

L(vt, vj) if (vt, vj) ∈ Et

0 else.

Then Lt =
∑t−1

j=1 Zj,t. Let Bt,j be the event that (vt, vj) ∈ Et. Then using
Lemma 5 we have that

E(Zj,t+1 | Gt) = P(Bt,j)E(Zj,t+1 | Gt, Bt,j) + P(Bt,j)E(Zj,t+1 | Gt, Bt,j)
= P(Bt,j)E(L((vt+1, vj) | Gt)

=
(

p
A1d

−(vj , t) + A2

t

)

(

2
3

√

A1d−(vj , t) + A2

πt

)

=
2p

3
√

π

(

A1d
−(vj , t) + A2

t

)3/2

,

106 W. Aiello et al.

where the second last equality follows by Lemma 5 and the definition of the
model, and the second equality follows from the definition of Zj,t+1. Thus

E(Lt+1 | Gt) =
t

∑

k=0

∑

{j:d−(vj ,t)=k}
E(Zj,t+1|Gt) =

2p

3
√

π

t
∑

k=0

(

A1k + A2

t

)3/2

Nk,t.

(13)
Taking expectations on both sides, and using that ck = ck−(1+ 1

pA1
)(1 + o(1)),

we have that

E(Lt+1) =
2p

3
√

π

t
∑

k=0

(

A1k + A2

t

)3/2

E(Nk,t)

=
2p

3
√

πt

t
∑

k=0

(A1k + A2)3/2ck(1 + o(1))

=
2pc

3
√

πt

∫ t

0
x1/2−1/(pA1)(1 + o(1))dx

= Θ(t1−1/(pA1)),

where the second equality follows by Theorem 1 (2). The last step is justified
since it can be shown that the o(1) term in the integrand is in fact O(x−ε) for
some ε > 0. 	

Theorem 5 contrasts with the analogous result for graphs generated with a sim-
ilar process to the SPA model, but where all influence regions have area d/t
for d > 0 a constant. We call this a threshold model. In the threshold model,
E(Lt) decreases much faster than for the SPA model with p large, such as when
p > 2/3 and A1 = 1. For example, if pA1 = 1, then E(Lt) = O(1).

Theorem 6. In the threshold model with areas of influence d/t, where d is a
constant,

E(Lt) ∼ ct−1/2.

Proof. With the same notation as in the proof of Theorem 5 and using Lemma 5,
we have that

E(Zj,t+1 | Gt) = P(Bj,t+1)E(L(vt+1, vj) | Bj,t+1)

=
2d

3t

√

d

πt
.

Hence,

E(Lt+1 | Gt) =
t

∑

i=1

E(Zj,t+1|Gt) =
2d

3

√

d

πt
= Θ(t−1/2).

Taking expectations completes the proof. 	

A Spatial Web Graph Model with Local Influence Regions 107

5 Conclusions and Further Work

We have proved that graphs produced by the SPA model have some of the graph
properties observed in real-world complex networks: a power law in-degree dis-
tribution, and constant average degree. In future work, we will investigate addi-
tional graph properties, such as the expected length of a directed path between
two nodes (when such a path exists), expansion properties, and spectral values.
We are also interested in aspects suggesting self-similarity: is it true that the
subgraph induced by all nodes that fall in a certain compact region of the sphere
S share some of the graph properties of the whole graph?

Several generalizations of this model may be proposed. An undirected version
could be developed, where the link probability depends on the influence regions
of both endpoints. In a more realistic model, both the addition of edges without
adding a node and the deletion of edges and nodes should be incorporated.
The effect of replacing S with other underlying geometric spaces, either with
boundaries or of higher dimension, would be interesting to investigate.

Last but not least, a realistic spatial model gives the possibility for reverse
engineering of real-life networks: given a real-life network and assuming a spatial
graph model by which the network was generated, it should be possible to give
reliable estimates about the positions of the nodes in space. This direction has
important applications to web graph clustering and development of link-based
similarity measures.

References

1. Bonato, A.: A survey of web graph models. Proceedings of Combinatorial and
Algorithm Aspects of Networking (2004)

2. Chung, F.R.K., Lu, L.: Complex Graphs and Networks. American Mathematical
Society, Providence (2006)

3. Cooper, C.: The age specific degree distribution of web-graphs. Combinatorics
Probability and Computing 15, 637–661 (2006)

4. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of
networks. Internet Mathematics 3, 187–205 (2006)

5. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of
networks II (preprint)

6. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)
7. Menczer, F.: Lexical and semantic clustering by Web links. JASIST 55(14), 1261–

1269 (2004)
8. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
9. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a

random graph. Journal of Combinatorial Theory, Series B 67, 111–151 (1996)
10. Wormald, N.: The differential equation method for random graph processes and

greedy algorithms. In: Karoński, M., Prömel, H.J. (eds.) Lectures on Approxima-
tion and Randomized Algorithms, PWN, Warsaw, pp. 73–155 (1999)

Determining Factors Behind the PageRank

Log-Log Plot

Yana Volkovich1, Nelly Litvak1, and Debora Donato2

1 University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
2 Yahoo! Research, Barcelona Ocata 1, 1st floor, 08003, Barcelona Catalunya, Spain

Abstract. We study the relation between PageRank and other para-
meters of information networks such as in-degree, out-degree, and the
fraction of dangling nodes. We model this relation through a stochas-
tic equation inspired by the original definition of PageRank. Further, we
use the theory of regular variation to prove that PageRank and in-degree
follow power laws with the same exponent. The difference between these
two power laws is in a multiplicative constant, which depends mainly on
the fraction of dangling nodes, average in-degree, the power law expo-
nent, and the damping factor. The out-degree distribution has a minor
effect, which we explicitly quantify. Finally, we propose a ranking scheme
which does not depend on out-degrees.

Keywords: PageRank, Power laws, Ranking algorithms, Stochastic
equations, Web graph, Wikipedia.

1 Introduction

Originally created for Web ranking, PageRank has become a major method for
evaluating popularity of nodes in information networks. Besides its primary ap-
plication in search engines, PageRank is successfully used for solving other im-
portant problems such as spam detection [1], graph partitioning [2], and finding
gems in scientific citations [3], just to name a few. The PageRank [4] is defined
as a stationary distribution of a random walk on a set of Web pages. At each
step, with probability c, the random walk follows a randomly chosen outgoing
link, and with probability 1−c, the walk starts afresh from a page chosen at ran-
dom according to some distribution f . Such random jump also occurs if a page
is dangling, i.e. it does not have outgoing links. In the original definition, the
teleportation distribution f is uniform over all Web pages. Then the PageRank
values satisfy the equation

PR(i) = c
∑

j→i

1
dj

PR(j) +
c

n

∑

j∈D
PR(j) +

1 − c

n
, i = 1, . . . , n, (1)

where PR(i) is the PageRank of page i, dj is the number of outgoing links of
page j, the sum is taken over all pages j that link to page i, D is a set of dangling
nodes, and c is the damping factor, which is a constant between 0 and 1.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 108–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Determining Factors Behind the PageRank Log-Log Plot 109

From (1) it can be expected that the distribution of PageRank should be
related to the distribution of in-degree, the number of incoming links. Most of
experimental studies of the Web agree that in-degree follows a power law with
exponent α = 1.1 for cumulative plot. Further research [5,6,7,8] confirmed that
PageRank also follows a power law with the same exponent. Mathematical justifi-
cations have been proposed in [9,10] for the preferential attachment models [11],
and in [12], where the relation between PageRank and in-degree is modelled
through a stochastic equation.

At this point, it is important to realize that PageRank is a global characteris-
tic of the Web, which depends on in-degrees, out-degrees, correlations, and other
characteristics of the underlying graph. In contrast to in-degrees, whose impact
on the PageRank log-log plot is thoroughly explored and relatively well under-
stood, the influence of out-degrees and dangling nodes has hardly received any
attention in the literature. It is however a common belief that dangling nodes
are important [13] whereas out-degrees (almost) do not affect the PageRank [7].
We also note that in the literature, there is no common agreement on the out-
degree distribution. On the Web data, Broder et al. [14] report a power law
with exponent about 2.6 for the density, whereas e.g. Donato et al. [6] ob-
tain a distribution, which is clearly not a power law. On the other hand, for
Wikipedia [15], out-degree seems to follow a power law with the same exponent
as in-degree.

In the present paper we investigate the relations between PageRank and
in/out-degrees, both analytically and experimentally. Our analytical model is
an extension of [12]. We view the PageRank of a random page as a random
variable R that depends on other factors through a stochastic equation resem-
bling (1). We are concerned with the tail probability P(R > x), i.e. the fraction
of pages with PageRank greater than x, when x is large. Our goal is to deter-
mine the asymptotic behavior of P(R > x), that is, we want to find a known
function r(x) such that P(R > x)/r(x) → 1 as x → ∞. In this case, we say that
P(R > x) and r(x) are asymptotically equivalent, which essentially means that
for large enough x, P(R > x) and r(x) are close, and their log-log plots look
the same. We formally describe power laws in terms of regular varying random
variables, and we use recent results on regular variation to obtain the PageRank
asymptotics. To this end, we provide a recurrent stochastic model for the power
iteration algorithm commonly used in PageRank computations [16], and we ob-
tain the PageRank asymptotics after each iteration. The necessary background
on regular variation can be found in Appendix A.1.

The analytical results suggest that the PageRank and in-degree follow power
laws with the same exponent. The out-degrees and dangling nodes affect only
a multiplicative constant, for which we find an exact expression. Moreover, it
turns out that the out-degree sequence has a truly minor influence. We verify
our analytical results in Section 5, where we present the experiments on the
Indochina-2004 and EU-2005 Web samples [17], on Wikipedia, and on a synthetic
graph. Finally, in Section 6 we suggest a ranking scheme that does not depend
on the out-degrees.

110 Y. Volkovich, N. Litvak, and D. Donato

2 The Model

2.1 In-Degree

It is a common knowledge that in-degrees in the Web graph obey a power law
with exponent about 1.1 for cumulative plot. The power law exponent may
deviate somewhat depending on a data set [18] and an estimator [19]. As in
our previous work [12], we model the in-degree as an integer regularly varying
random variable. To this end, we assume that the in-degree of a random page
is distributed as N(T), where T is regularly varying with index α and N(t)
is the number of Poisson arrivals on the time interval [0, t]. If T is regularly
varying then N(T) is also regularly varying and asymptotically identical to T
(see e.g. [12]). Thus, N(T) is indeed integer and obeys the power law. To simplify
the notation, we will use N instead of N(T) throughout the paper. The proposed
formalization for the in-degree distribution allows us to model the number of
terms in the summation in (1).

2.2 Out-Degree and Inspection Paradox

Now, we want to model the weights 1/dj in (1). Recall that dj is the out-degree
of page j that has a link to page i. In [12] we studied the relation between in-
degree and PageRank assuming that out-degrees of all pages are constant, equal
to the expected in-degree d. In this work, we make a step further allowing for
random out-degrees.

We model out-degrees of pages linking to a randomly chosen page as indepen-
dent and identically distributed random variables with arbitrary distribution.
Thus, consider a random variable D, which represents the out-degree of a page
that links to a particular randomly chosen page i. Note that D is not the same
random variable as an out-degree of a random page since the additional informa-
tion that a page has a link to i, alters the out-degree distribution. This famous
phenomenon, called inspection paradox, finds its mathematical explanations in
Renewal Theory. The inspection paradox roughly states that an interval contain-
ing a random point tends to be larger than a randomly chosen interval [20]. For
instance, in [21], a number of children in a family, to which a randomly chosen
child belongs, is stochastically larger than a number of children in a randomly
chosen family. Likewise, a number of out-links D from a page containing a ran-
dom link, should be stochastically larger than an out-degree of a random page.
We will refer to D as effective out-degree. The term is motivated by the fact that
the distribution of D is the one that participates in the PageRank formula.

Now, let pj be a fraction of pages with out-degree j ≥ 0. Then we have

lim
n→∞ P(D = j) = jpj/d, j ≥ 1. (2)

where d is the average in/out-degree, and n is the number of pages in the Web.
For sufficiently large networks, we may assume that the distribution of D equals
to its limiting distribution defined by (2). Note that, naturally, the probability

Determining Factors Behind the PageRank Log-Log Plot 111

that a random link comes from a page with out-degree k is proportional to k.
This was implicitly observed by Fortunato et al. in [7], who in fact used (2) in
their computations for the mean-field approximation of the PageRank.

2.3 Stochastic Equation

It is clear that the PageRank values in (1) scale as 1/n with the number of
pages. In the analysis, it is more convenient to deal with corresponding scale-
free PageRank scores

R(i) = nPR(i), i = 1, . . . , n, (3)

assuming that n goes to infinity. In this setting, it is easier to compare the pro-
babilistic properties of PageRank and in/out-degrees, which are also scale-free.
In the remainder of the paper, by PageRank we mean the scale-free PageRank
scores (3).

We view the scale-free PageRank of a random page as a random variable
R with E(R) = 1. Further, we assume that the PageRank of a random page
does not depend on the fact whether the page is dangling. Indeed, it can be
shown that the PageRank of a page can not be altered significantly by modifying
outgoing links [22]. Moreover, experiments e.g. in [13] show that dangling nodes
are often just regular pages whose links have not been crawled. Besides, even
authentically dangling pages such as .pdf or .ps files, often contain important
information and gain a high ranking independently of the fact that they do
not have outgoing links. We note that such independence immediately implies
that in large networks, the fraction of the total PageRank mass concentrated in
dangling nodes, equals to the fraction of dangling nodes p0, simply by the law
of large numbers: p0 = (1/n)

∑

j∈D R(j).
Our goal is to model and analyze to which extent the tail probability P(R > x)

for large enough x depends on the in-degree N , the effective out-degree D, and
the fraction of dangling nodes p0. To this end, we model PageRank R as a
solution of a stochastic equation involving N and D. Inspired by the original
formula (1), the stochastic equation for the scale-free PageRank is as follows:

R
d= c

N
∑

j=1

1
Dj

Rj + [1 − c(1 − p0)]. (4)

Here N , Rj ’s and Dj ’s are independent; Rj ’s are distributed as R, Dj ’s are

distributed as D, and a
d= b means that a and b have the same probability

distribution. As before, c ∈ (0, 1) is a damping factor.
We note that the independence assumption for PageRanks and effective out-

degrees of pages linking to the same page, is obviously not true in general. Howe-
ver, there is also no direct relation between these values as there is no experi-
mental evidence that such dependencies would crucially influence the PageRank
distribution. Thus, we assume independence in this study.

112 Y. Volkovich, N. Litvak, and D. Donato

The stochastic equation (4) is a generalization of the equation analyzed in [12],
where it was assumed that Dj ’s are constant. In order to demonstrate applica-
bility of our model, we will use (4) to derive a mean-field approximation for the
PageRank of a page with given in-degree. It follows from (2) that

E

(

1
D

)

=
∞
∑

k=1

1
k

P(D = k) =
∑

k=1

1
k

kpk

d
=

1 − p0

d
. (5)

Then, assuming that E(Rj) = 1, j = 1, 2, . . ., we obtain

E(R|N) =
c(1 − p0)

d
N + [1 − c(1 − p0)]. (6)

If p0 = 0 then this coincides with the mean-field approximation by Fortunato et
al. in [7], obtained directly from the PageRank definition under minimal inde-
pendence assumptions and without considering dangling nodes.

Equation (4) belongs to the class of stochastic recursive equations that were
discussed in detail in the recent survey by Aldous and Bandyopadhyay [23]. In
particular, (4) has an apparent similarity with distributional equations moti-
vated by branching processes and branching random walks. Such equations were
studied in detail by Liu in [24] and his other papers. Taking expectations in (6),
we see that if E(Rj) = 1, j = 1, 2, . . ., then E(R) also equals 1. In Section 4 we
will show that (4) has a unique solution R such that E(R) = 1.

3 Power Iterations

In this section, we shall introduce an iteration procedure for solving (4). This
procedure can be seen as a stochastic model for the power iteration method
commonly used in PageRank computations. We first present the notations, which
are in lines with Liu [24].

Let {(Nu, 1/Du1
, 1/Du2

, . . .)}u be a family of independent copies of (N, 1/D1,
1/D2, . . .) indexed by all finite sequences u = u1 . . . un, ui ∈ {1, 2, . . .}. And let
T be the Galton-Watson tree with defining elements {Nu} : we have ∅ ∈ T and,
if u ∈ T and i ∈ {1, 2, . . .}, then concatenation ui ∈ T if and only if 1 ≤ i ≤ Nu.
In other words, we indexed the nodes of the tree with root ∅ and the first level
nodes 1, 2, ..N∅, and at every subsequent level, the ith offspring of u is named ui
(see Figure 1).

Now, we will iterate the equation (4). We start with initial distribution R(0),
and for every k ≥ 1, we define the result of the kth iteration through a distribu-
tional identity

R(k) d= c
N

∑

j=1

1
Dj

R
(k−1)
j + [1 − c(1 − p0)], (7)

where N , R
(k−1)
j and Dj , j ≥ 1, are independent. If R(0) ≡ 1 then R(k) serves as

a stochastic model for the result of the kth power iteration in standard PageRank
computations.

Determining Factors Behind the PageRank Log-Log Plot 113

Fig. 1. An example of Galton-Watson tree

Since PageRank vector is always a result of a finite number of iterations, it
follows that R(k) describes the distribution of PageRank if the power iteration
algorithm stops after k steps. Assuming that in-degrees, effective out-degrees
and R

(0)
u , u ∈ T, are independent, and repeatedly applying (7), we derive the

following representation for R(k), k ≥ 1:

R(k) = ck
∑

u=u1..uk∈T

1
Du1

. . .
1

Du1..uk

R(0)
u1..uk

+ [1 − c(1 − p0)]
k−1
∑

n=0

cnY (n) (8)

where
Y (n) =

∑

u=u1...un∈T

1
Du1

. . .
1

Du1...un

, n ≥ 1.

The random variable Y (n) represents the sum of the weights of the nth level of
the Galton-Watson tree, where the root has weight 1, each edge has a random
weight distributed as 1/D, and the weight of a node is a product of weights of
the edges that lead to this node from the root.

In the subsequent analysis we will prove that iterations R(k), k ≥ 1, converge
to a unique solution of (4), and we will obtain the tail behavior of R(k) for each
k ≥ 1. This will give us the asymptotic behavior of the PageRank vector after
an arbitrary number of power iterations.

4 Analytical Results

First, we establish that our main stochastic equation (4) indeed defines a unique
distribution R, that can serve as a model for the PageRank of a random page. The
result is formally stated in the next theorem (the proof is given in Appendix A.2).

Theorem 1. Equation (4) has a unique non-trivial solution with mean 1 given
by

R(∞) = lim
k→∞

R(k) = [1 − c(1 − p0)]
∞
∑

n=0

cnY (n). (9)

Now we are ready to describe the tail behavior of R(k), k ≥ 1, which models the
PageRank after k power iterations. The main result is presented in Theorem 2
below.

114 Y. Volkovich, N. Litvak, and D. Donato

Theorem 2. If P

(

R(0) > x
)

= o(P(N > x)), then for all k ≥ 1,

P(R(k) > x) ∼ CkP(N > x) as x → ∞,

where Ck =
(

c(1−p0)
d

)α
∑k−1

j=0 cjαbj, and b = dE (1/Dα) =
∑∞

j=1
pj

jα−1 .

The form of the coefficient Ck arises from the proof (see A.2), which relies on
the results from [25]. For large enough k, Ck can be approximated by

C = lim
k→∞

Ck =
cα(1 − p0)α

dα(1 − cαb)
.

From the Jensen’s inequality E(1/Dα) ≥ (E(1/D))α and (5), it follows that
b ≥ (1 − p0)αd1−α, and hence,

C ≥ cα(1 − p0)α

dα(1 − cα(1 − p0)αd1−α)
. (10)

The last expression is the value of C if out-degree of all non-dangling nodes is
a constant. Note that if α ≈ 1.1, then the difference between the left- and the
right-hand sides of (10) is really small for any reasonable out-degree distribution.

From Theorem 2 we see that the power law exponent of the PageRank is
the same as the power law exponent of in-degree. Thus, in-degree remains a
major factor shaping the PageRank distribution. The multiple factor Ck, k ≥ 1,
depends mainly on the mean in-degree d, damping factor c, and the fraction of
non-dangling nodes (1 − p0). The out-degree distribution {pj, j ≥ 1} influences
the coefficient b, but this results in a truly minor impact on the PageRank
asymptotics. In the next section we will compare out analytical findings with
experimental results.

5 Experiments

5.1 Web Data

We performed experiments on Indochina-2004 and EU-2005 Web samples col-
lected by The Laboratory for Web Algorithmics (LAW), Dipartimento di Scienze
dell’Informazione (DSI) of the Università degli studi di Milano [17]. In Figures 2,3
below we present cumulative log-log plots for in-degree/PageRank. The y-axis
corresponds to the fraction of pages with in-degree/PageRank greater than the
value on the x-axis. For in-degree, the power law exponent in evaluated using
the maximum likelihood estimator from [19], and the straight line is fitted ac-
cordingly. For the PageRank, we plot the theoretically predicted straight lines
obtained from Theorem 2.

The Indochina set contains 7,414,866 nodes and 194,109,311 links. The results
are presented in Figure 2 below. The in-degree plot resembles a power law except
for the excessively large fraction of pages with in-degree about 104. The presence

Determining Factors Behind the PageRank Log-Log Plot 115

of bump was observed also in other data samples in the past [14,26]. In [26], the
authors suggested that it could be probably due to a huge clique created by
a single spammer. For more detail on this data set see [18]. For Indochina, we
obtain a power law exponent 1.17 for cumulative plot, which is quite different
from the result in [18]. This demonstrates the sensitivity of estimators for the
power law exponent. Indeed, the exponent 0.6 in [18] reflects the behavior in the
first part of the plot, whereas 1.17 gives more weight on the tail of the in-degree
distribution.

We fit the straight line y = −1.17x + 0.8 into the in-degree plot and then
compute the distance

log10(C) = log10

(

cα(1 − p0)α

dα(1 − cαb)

)

between the in-degree and the PageRank log-log plots for c = 0.2, 0.5, and 0.85.
With d = 26.17, p0 = 0.18, and b = 0.65, we obtain the following prediction for
the PageRank log-log plot: y = −1.17x − 1.73 for c = 0.2, y = −1.17x − 1.16
for c = 0.5, and y = −1.17x − 0.70 for c = 0.85. In Figure 2 we show these
theoretically predicted lines and the experimental PageRank log-log plots. We see
that for this data set, our model provides the linear fit with a striking accuracy.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

in−degree

F
ra

ct
io

n
 o

f
P

ag
es

in−degree
−1.17+0.80

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PageRank

Fr
ac

tio
n

of
 P

ag
es

PageRank (c=0.2)
−1.17x−1.73

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PageRank

F
ra

ct
io

n
 o

f
P

ag
es

PageRank (c=0.5)
−1.17x−1.16

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PageRank

Fr
ac

tio
n

of
 P

ag
es

PageRank (c=0.85)
−1.17x−0.70

Fig. 2. Indochina data set: cumulative log-log plots for in-degree/PageRank. The
straight lines for the PageRank plots are predicted by the model.

We performed the same experiment for EU-2005 of 862,664 nodes and
19,235,140 links. In this data set in-degree shows a typical power law behav-
ior, which is fitted perfectly by y = −1.1x + 0.61. We use the same approach to
calculate the difference between the in-degree and PageRank plots for d = 22.3,
p0 = 0.08, b = 0.70. Thus, the theoretical prediction for the PageRank are
y = −1.1x − 1.63, y = −1.1x − 1.07, and y = −1.1x − 0.60 for c = 0.2, 0.5, and
0.85, respectively. The log-log plots for experimental data, the fitted straight
line for in-degree, and corresponding theoretical straight lines for PageRank, are
presented in Figure 3.

116 Y. Volkovich, N. Litvak, and D. Donato

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

in−degree, PageRank

F
ra

ct
io

n
 o

f
P

ag
es

in−degree
PageRank (c=0.2)
PageRank (c=0.5)
PageRank (c=0.85)
−1.1x+0.61
−1.1x−1.63
−1.1x−1.07
−1.1x−0.60

Fig. 3. EU-2005 data set: cumulative log-log plots for in-degree/PageRank. The
straight lines for the PageRank plots are predicted by the model.

5.2 Wikipedia

In order to further verify our results, we performed the experiments on the
Wikipedia (English) data, whose structure is slightly different from the Web
graph [15], in particular, in its out-degree distribution. In Figure 4 we plot the
in/out-degree distributions for our data set, which contains 4,881,983 nodes and
42,062,836 links. In Figure 5 we show the in-degree and PageRank plots, with
fitted straight line y = −1.18x + 0.30 for the in-degree and predicted lines for
the PageRank. In this data set we have d = 8.6159, p0 = 0 and b = 0.8668. Fig-
ure 5 (left) shows the PageRank plot for c = 0.5 and c = 0.85. In Figure 5 (right)
we depict the PageRank plots after the first, the second and the last iterations
for c = 0.85.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, Out−degree

F
ra

ct
io

n
 o

f
P

ag
es

in−degree
out−degree

Fig. 4. Wikipedia data set: cumulative log-log plots for in/out-degree

Although the obtained lines do not match perfectly the PageRank plots, we
see that our model correctly captures the dynamics of the PageRank distribution
in successive power iterations and for different values of c. Most importantly, we
observe that the PageRank for Wikipedia retains its power law distribution, and
the exponent is again the same as the one for in-degree. Clearly, this crucial
property is not influenced by the out-degree distribution.

Determining Factors Behind the PageRank Log-Log Plot 117

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank

F
ra

ct
io

n
 o

f
P

ag
es

In−degree
PageRank (c=0.5)
PageRank (c=0.85)
y=−1.18x+0.30
y=−1.18x−0.95
y=−1.18x−0.32

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank

F
ra

ct
io

n
 o

f
P

ag
es

In−degree
PageRank (1)
PageRank (2)
PageRank
−1.18x+0.30
−1.18x−0.89
−1.18x−0.65
−1.18x−0.34

Fig. 5. Wikipedia data set: cumulative log-log plots for PageRank/in-degree and pre-
dicted straight lines for different values of c (left) and for different number of iterations
(right)

5.3 Synthetic Graph

Next, we performed the experiments on a synthetic graph with out-degree close
to constant. The graph of 5,000,000 nodes and 41,577,523 links was generated
using the growing network model from [11]. Further, 30% of the links were redi-
rected in order to make the graph more realistic and comparable to Wikipedia.
The original out-degree was 9, however, due to the duplicated edges, the average
out-degree became 8.3155.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank

F
ra

ct
io

n
 o

f
P

ag
es

In−degree
PageRank (c=0.5)
PageRank (c=0.85)
y=−1.16x−0.14
y=−1.16x−1.38
y=−1.16x−0.90

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank

F
ra

ct
io

n
of

 P
ag

es

In−degree
PageRank (1)
PageRank (2)
PageRank (c=0.85)
y=−1.16x−0.14
y=−1.16x−1.29
y=−1.16x−1.09
y=−1.16x−0.90

Fig. 6. Synthetic data: cumulative log-log plots for PageRank/in-degree and predicted
straight lines for different values of c (left) and for different number of iterations (right)

The results on the PageRank distribution are presented in Figure 6. For the
in-degree, we computed α = 1.14. The predicted lines for the PageRank are
obtained with d = 8.3155, b = 0.7134 (≈ d1−α), p0 = 0. In Figure 6 (left)
we show the PageRank plot for c = 0.5 and c = 0.85, and Figure 6 (right)
displays the PageRank plots after the first, the second and the last iterations
for c = 0.85. One can see that our model provides a good estimation for the
difference between the graphs. Furthermore, the lines look parallel as before,
although in the growing network models, the PageRank power law exponent is
proved to depend on the damping factor [9]. Here we clearly face the fact that
the nuances of the ‘real’ slope are hard to capture on the data. Consequently, our

118 Y. Volkovich, N. Litvak, and D. Donato

model works well in this case. We note however that in our previous work [12]
we studied another version of the growing network graph that showed a quite
different behavior.

6 PAR Ranking Scheme

The negligible effect of out-degree distribution on the PageRank behavior made
us wonder about the role of out-degrees in link-based ranking in general. In
HITS [27], the ranking of a page i is determined by its authority score, which
in turn depends on hub scores of pages linking to i. Furthermore, a hub score is
high for pages with high out-degree, and thus getting a link from such a page is
advantageous in HITS whereas it is disadvantageous in PageRank according to
(1). Since both HITS and PageRank work well in practice, one may try to think
of some ranking scheme where out-degree does not play a role at all.

We propose one such ranking scheme that we call a Pure Authority Rank
(PAR). This algorithm is a mixture between HITS and PageRank. The PAR is
defined iteratively. The initial score of each page i = 1, . . . , n is s

(0)
i = 1/n, and

the results of successive iterations are computed as

s
(k)
i =

c

d

∑

j→i

s
(k−1)
j +

1 − c

n
, k ≥ 1, (11)

and then normalized so that
∑n

i=1 s
(k)
i = 1. Here again d is the average in/out-

degree and the summation is over all pages j that link to i.
Now, let A be an adjacency matrix of the Web Graph. Then denoting Ã =

(c/d)A + (1 − c)E/n, where E is the matrix of ones, we can write (11) with the
subsequent normalization in a matrix-vector form as s(k) = s(k−1)Ã/||s(k−1)Ã||,
where s(k) = (s(k)

1 , . . . , s
(k)
n) and || · || is the L1 norm. Since Ã is a positive

matrix, the convergence and uniqueness of the PAR scores are guaranteed by
the Perron-Frobenius theorems. If we take c = 1 we obtain an algorithm close
to HITS but without the hub-iteration. In this case, the algorithm will converge
but the resulting vector might depend on the initial vector, as in HITS and
SALSA [28]. We refer to [29] for the detailed uniqueness analysis of link-based
ranking schemes.

We computed the PAR scores for Wikipedia and the synthetic graph. The
algorithm converges fast and, remarkably, the speed of convergence does not
depend on c (see Table 1). In Figure 7 we present the log-log plots for PAR
and PageRank. Since the two methods are similar, it is not surprising that the
PAR distribution seems to follow a power law with the same exponent as in-
degree. A more interesting observation is that the PAR plot for Wikipedia in
Figure 7 (right) behaves similar to a PageRank plot computed for a higher value
of c.

Finally, we computed Kendall’s tau, Spearman’s rho, and the correlation co-
efficient between PAR and PageRank scores for the top 1% pages. The results
are presented in Table 1.

Determining Factors Behind the PageRank Log-Log Plot 119

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank, PAR

F
ra

ct
io

n
 o

f
P

ag
es

In−degree
PageRank (c=0.5)
PageRank (c=0.85)
PAR (c=0.5)
PAR (c=0.85)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree, PageRank, PAR

F
ra

ct
io

n
 o

f
P

ag
es

In−degree
PageRank (c=0.5)
PageRank (c=0.85)
PAR (c=0.5)
PAR (c=0.85)

Fig. 7. PageRank and PAR log-log plots: synthetic data (left) and Wikipedia (right)

Table 1. Comparison of PageRank and PAR

Scores Ranks Iterations
Data c Correlation coefficient Kendall’s τ Spearman’s ρ PR PAR

Synthetic graph 0.5 0.8112 0.1234 0.1827 8 7
0.85 0.9753 0.1002 0.1488 13 9

Wikipedia 0.5 0.2474 0.3510 0.4304 8 17
0.85 0.4675 0.3629 0.4422 29 18

The high correlation between the scores for synthetic graph is expected since
in this case the difference between PAR and PageRank is minimal. On the other
hand, the correlation between the ranks is on a lower side. Here we observe that
the ranking order is very sensitive to the nuances of the algorithm. For a more
fair comparison of the two algorithms, future research should reveal which pages
were demoted and which were promoted. We believe that the advantages of the
PAR algorithm, such as fast convergence and insensitivity to out-degrees, should
definitely attract more studies.

Acknowledgments

This work is supported by NWO Meervoud grant no. 632.002.401.

References

1. Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating Web spam with
TrustRank. In: VLDB 2004: 30th International Conference on Very Large Data
Bases, pp. 576–587 (2004)

2. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vec-
tors. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 475–486 (2006)

3. Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Google.
Technical Report 0604130, arxiv/physics (2006)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Comput. Networks 33, 107–117 (1998)

120 Y. Volkovich, N. Litvak, and D. Donato

5. Pandurangan, G., Raghavan, P., Upfal, E.: Using PageRank to characterize Web
structure. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387,
Springer, Heidelberg (2002)

6. Donato, D., Laura, L., Leonardi, S., Millozi, S.: Large scale properties of the Web-
graph. Eur. Phys. J. 38, 239–243 (2004)

7. Fortunato, S., Boguna, M., Flammini, A., Menczer, F.: How to make the top
ten: Approximating PageRank from in-degree. Technical Report 0511016, arXiv/cs
(2005)

8. Becchetti, L., Castillo, C.: The distribution of PageRank follows a power-law only
for particular values of the damping factor. In: WWW 2006: Proceedings of the
15th International Conference on World Wide Web, pp. 941–942. ACM Press, New
York (2006)

9. Avrachenkov, K., Lebedev, D.: PageRank of scale-free growing networks. Internet
Math. 3(2), 207–231 (2006)

10. Fortunato, S., Flammini, A.: Random walks on directed networks: the case of
PageRank. Technical Report 0604203, arXiv/physics (2006)

11. Albert, R., Barabási, A.L.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

12. Litvak, N., Scheinhardt, W.R.W., Volkovich, Y.: In-degree and PageRank of Web
pages: Why do they follow similar power laws? Memorandum 1807, University of
Twente, Enschede (2006) (to appear in Internet Mathematics)

13. Eiron, N., McCurley, K.S., Tomlin, J.A.: Ranking the Web frontier. In: WWW
2004: Proceedings of the 13th International Conference on World Wide Web, pp.
309–318. ACM Press, New York (2004)

14. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Statac, R.,
Tomkins, A., Wiener, J.: Graph structure in the Web. Comput. Networks 33, 309–
320 (2000)

15. Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardiand,
S., Caldarelli, G.: Preferential attachment in the growth of social networks: the
case of Wikipedia. Technical Report 0602026, arXiv/physics (2006)

16. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Math. 1, 335–380
(2003)

17. http://law.dsi.unimi.it/ (Accessed in January 2007)
18. Baeza-Yates, R., Castillo, C., Efthimiadis, E.: Characterization of national Web

domains. ACM TOIT 7(2) (May 2007)
19. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Cont. Phys. 46,

323–351 (2005)
20. Ross, S.M.: Stochastic processes, 2nd edn. John Wiley & Sons Inc., New York

(1996)
21. Ross, S.M.: The inspection paradox. Probab. Engrg. Inform. Sci. 17, 47–51 (2003)
22. Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stoch.

Models 22(2), 319–331 (2006)
23. Aldous, D.J., Bandyopadhyay, A.: A survey of max-type recursive distributional

equations. Ann. Appl. Probab. 15, 1047–1110 (2005)
24. Liu, Q.: Asymptotic properties and absolute continuity of laws stable by random

weighted mean. Stochastic Process. Appl. 95(1), 83–107 (2001)
25. Jessen, A.H., Mikosch, T.: Regularly varying functions. Publications de l’institut

mathematique, Nouvelle série 79(93) (2006)
26. Donato, D., Laura, L., Leonardi, S., Millozzi, S.: The Web as a graph: How far we

are. ACM Trans. Inter. Tech. 7(1) (February 2007)

http://law.dsi.unimi.it/

Determining Factors Behind the PageRank Log-Log Plot 121

27. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. JACM 46(5),
604–632 (1999)

28. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis
(SALSA) and the TKC effect. Comput. Networks 33(1-6), 387–401 (2000)

29. Farahat, A., LoFaro, T., Miller, J.C., Rae, G., Ward, L.A.: Authority rankings from
HITS, PageRank, and SALSA: Existence, uniqueness, and effect of initialization.
SISC 27(4), 1181–1201 (2006)

30. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge Uni-
versity Press, Cambridge (1989)

Appendix

A.1 Preliminaries on Regular Variation

The theory of regular variation is a natural formalization of power laws. More
comprehensive details could be found, for instance, in [30]. We also refer to Jessen
and Mikosch [25] for an excellent recent review.

Definition 1. A function L(x) is slowly varying if for every t > 0,

L(tx)
L(x)

→ 1 as x → ∞.

Definition 2. A non-negative random variable X is said to be regularly varying
with index α if

P(X > x) ∼ x−αL(x) as x → ∞, (A.1)

for some positive slowly varying function L(x).

Here, as in the remainder of this paper, the notation a(x) ∼ b(x) means that
a(x)/b(x) → 1.

The asymptotic equivalence (A.1) is a formalization of a power law. In words,
it means that for large enough x, the tail distribution P(X > x) can be approx-
imated by the regularly varying function x−αL(x), which is, in turn, approxi-
mately proportional to x−α due to the definition of L.

Regularly varying random variables represent a subclass of a much broader
class of long-tailed random variables.

Definition 3. A random variable X is long-tailed if for any y > 0,

P(X > x + y) ∼ P(X > x) as x → ∞. (A.2)

Next lemma describes the behavior of a product and random sums of regular
varying random variables. The relation (i) is known as Breiman’s theorem (see
e.g. Lemma 4.2.(1) in [25]). Properties (ii) and (iii) are, respectively, statements
(2) and (5) of Lemma 3.7 in [25].

122 Y. Volkovich, N. Litvak, and D. Donato

Lemma A.1. (i) Assume that X1 and X2 are two independent non-negative
random variables such that X1 is regularly varying with index α and that
E(Xα+ε

2) < ∞ for some ε > 0. Then

P(X1X2 > x) ∼ E(Xα
2)P(X1 > x).

(ii) Assume that N is regularly varying with index α ≥ 0; if α = 1, then assume
that E(N) < ∞. Moreover, let (Xi) be i.i.d. sequence such that E(X1) < ∞
and P(X1 > x) = o(P(N > x)). Then as x → ∞,

P (
N

∑

i=1

Xi > x) ∼ (E(X1))αP (N > x).

(iii) Assume that P (N > x) ∼ rP (X1 > x) for some r > 0, that X1 is regularly
varying with index α ≥ 1, and E(X1) < ∞. Then

P (
N

∑

i=1

Xi > x) ∼ (E(N) + r(E(X1))α)P (X1 > x).

A.2 Proofs

Proof (of Theorem 1)
It is easy to verify that R(∞) in (9) is a well-defined solution of (4). In particular,
according to the monotone convergence theorem,

E(R(∞)) = [1 − c(1 − p0)] lim
k→∞

k
∑

n=1

cn
E(Y (n)) = 1.

To prove the uniqueness, assume that there is another solution with mean 1 and
take this solution as an initial distribution R(0) with E(R(0)) = 1. Now, the first
part of (8) has a mean ck(1 − p0)k, and hence it converges in probability to 0
because, by the Markov inequality, the probability that this term is greater than
some ε > 0 is at most ck(1 − p0)k/ε → 0 as k → ∞. Moreover, the second part
of (8) converges a.s. to R(∞) as k → ∞. It follows that (8) converges to R(∞) in
probability. We conclude that there is no other fixed point of (4) with mean 1
except R(∞).

Proof (of Theorem 2). We will use the induction. For k = 1, we derive

P

(

R(1) > x
)

∼ P

⎛

⎝

N
∑

j=1

c

Dj
R

(0)
j + [1 − c(1 − p0)] > x

⎞

⎠

∼
(

c(1 − p0)
d

)α

P(N > x − [1 − c(1 − p0)])

∼ C1P(N > x) as x → ∞,

Determining Factors Behind the PageRank Log-Log Plot 123

where the second relation follows from Lemma A.1(ii) because E(N) = d < ∞,

E

(

R
(0)
1

)

= 1, E

(

cD−1
1 R

(0)
1

)

= c(1 − p0)d−1 < ∞, and P

(

cD−1
1 R

(0)
1 > x

)

=
o(P(N > x)), and the last relation follows from (A.2).

Now, assume that the result has been shown for (k − 1)th iteration, k ≥ 2.
Then Lemma A.1(i) yields

P

(c

D
R(k−1) > x

)

∼ cα
E

(

1
Dα

)

Ck−1P(N > x)

=
cα

d
b Ck−1P(N > x),

where

E

(

1
Dα

)

=
∞
∑

j=1

pj

jα
=

1
d

∞
∑

j=1

pj

jα−1 =
1
d
b.

Then, since E

(

cD−1R(k−1)
)

= c(1 − p0)d−1 < ∞ and E(N) = d, we apply
Lemma A.1(iii) to obtain

P(R(k) > x) ∼ P

⎛

⎝

N
∑

j=1

c

Dj
R(k−1) + [1 − c(1 − p0)] > x

⎞

⎠

∼
(

cαbCk−1 +
(

c(1 − p0)
d

)α)

P(N > x − [1 − c(1 − p0)])

∼
(

cαbCk−1 +
(

c(1 − p0)
d

)α)

P(N > x) as x → ∞,

for any k ≥ 2. Here the last relation again follows from the property of long-tailed
random variables (A.2).

Then for the constant Ck we have

Ck = cα b Ck−1 +
(

c(1 − p0)
d

)α

=

⎛

⎝cαb

(

c(1 − p0)
d

)α k−2
∑

j=0

cjαbj +
(

c(1 − p0)
d

)α
⎞

⎠

=
(

c(1 − p0)
d

)α k−1
∑

j=0

cjαbj .

Approximating Betweenness Centrality

David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail

College of Computing
Georgia Institute of Technology

{bader, kintali, kamesh, mihail}@cc.gatech.edu

Abstract. Betweenness is a centrality measure based on shortest paths,
widely used in complex network analysis. It is computationally-expensive
to exactly determine betweenness; currently the fastest-known algorithm
by Brandes requires O(nm) time for unweighted graphs and O(nm +
n2 log n) time for weighted graphs, where n is the number of vertices
and m is the number of edges in the network. These are also the worst-
case time bounds for computing the betweenness score of a single vertex.
In this paper, we present a novel approximation algorithm for comput-
ing betweenness centrality of a given vertex, for both weighted and un-
weighted graphs. Our approximation algorithm is based on an adaptive
sampling technique that significantly reduces the number of single-source
shortest path computations for vertices with high centrality. We conduct
an extensive experimental study on real-world graph instances, and ob-
serve that our random sampling algorithm gives very good betweenness
approximations for biological networks, road networks and web crawls.

1 Introduction

One of the fundamental problems in network analysis is to determine the impor-
tance (or the centrality) of a particular vertex (or an edge) in a network. Some
of the well-known metrics for computing centrality are closeness [1], stress [2]
and betweenness [3,4]. Of these indices, betweenness has been extensively used
in recent years for the analysis of social-interaction networks, as well as other
large-scale complex networks. Some applications include lethality in biological
networks [5,6,7], study of sexual networks and AIDS [8], identifying key actors in
terrorist networks [9,10], organizational behavior [11], and supply chain manage-
ment processes [12]. Betweenness is also used as the primary routine in popular
algorithms for clustering and community identification [13] in real-world net-
works. For instance, the Girvan-Newman [14] algorithm iteratively partitions a
network by identifying edges with high betweenness scores, removing them and
recomputing centrality scores.

Betweenness is a global centrality metric that is based on shortest-path enu-
meration. Consider a graph G = (V, E), where V is the set of vertices represent-
ing actors or nodes in the complex network, and E, the set of edges representing
the relationships between the vertices. The number of vertices and edges are
denoted by n and m respectively. The graphs can be directed or undirected.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 124–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximating Betweenness Centrality 125

We will assume that each edge e ∈ E has a positive integer weight w(e). For
unweighted graphs, we use w(e) = 1. A path from vertex s to t is defined as a
sequence of edges 〈ui, ui+1〉, 0 ≤ i < l, where u0 = s and ul = t. The length of
a path is the sum of the weights of edges. We use d(s, t) to denote the distance
between vertices s and t (the minimum length of any path connecting s and t
in G). Let us denote the total number of shortest paths between vertices s and
t by λst, and the number passing through vertex v by λst(v). Let δst(v) denote
the fraction of shortest paths between s and t that pass through a particular
vertex v i.e., δst(v) = λst(v)

λst
. We call δst(v) the pair-dependency of s, t on v.

Betweenness centrality [3,4] of a vertex v is defined as

BC(v) =
∑

s�=v �=t∈V

δst(v)

Currently, the fastest known algorithm for exactly computing betweenness
of all the vertices, designed by Brandes [15], requires at least O(nm) time for
unweighted graphs and O(nm + n2 log n) time for weighted graphs, where n
is the number of vertices and m is the number of edges. Thus, for large-scale
graphs, exact centrality computation on current workstations is not practically
viable. In prior work, we explored high performance computing techniques [16]
that exploit the typical small-world graph topology to speed up exact centrality
computation. We designed novel parallel algorithms to exactly compute various
centrality metrics, optimized for real-world networks. We also demonstrate the
capability to compute exact betweenness on several large-scale networks (vertices
and edges in the order of millions) from the Internet and social interaction data;
these networks are three orders of magnitude larger than instances that can be
processed by current social network analysis packages.

Fast centrality estimation is thus an important problem, as a good approxi-
mation would be an acceptable alternative to exact scores. Currently the fastest
exact algorithms for shortest path enumeration-based metrics require n shortest-
path computations; however, it is possible to estimate centrality by extrapolat-
ing scores from a fewer number of path computations. Using a random sampling
technique, Eppstein and Wang [17] show that the closeness centrality of all ver-
tices in a weighted, undirected graph can be approximated with high probability
in O(log n

ε2 (n log n + m)) time, and an additive error of at most εΔG (ε is a fixed
constant, and ΔG is the diameter of the graph). However, betweenness central-
ity scores are harder to estimate, and the quality of approximation is found to
be dependent on the vertices from which the shortest path computations are
initiated from (in this paper, we will refer to them as the set of source vertices
for the approximation algorithm). Recently, Brandes and Pich [18] presented
centrality estimation heuristics, where they experimented with different strate-
gies for selecting the source vertices. They observe that a random selection of
source vertices is superior to deterministic strategies. In addition to exact par-
allel algorithms, we also discussed parallel techniques to compute approximate
betweenness centrality in [16], using a random source selection strategy.

126 D.A. Bader et al.

While prior approaches approximate centrality scores of all vertices in the
graph, there are no known algorithms to compute the centrality of a single
vertex in time faster than computing the betweenness of all vertices. In this
paper, we present a novel adaptive sampling-based algorithm for approximately
computing betweenness centrality of a given vertex. Our primary result is as
follows:

Theorem: For 0 < ε < 0.5, if the centrality of a vertex v is n2/t for some
constant t ≥ 1, then with probability ≥ 1 − 2ε its centrality can be estimated to
within a factor of 1/ε with εt samples of source vertices.

The rest of this paper is organized as follows. We review the currently-known
fastest sequential algorithm by Brandes in Section 2. We present our approxima-
tion algorithm based on adaptive sampling and its analysis in Section 3. Section 4
is an experimental study of our approximation technique on several real-world
networks. We conclude with a summary of open problems in Section 5.

2 Exact Computation of Betweenness Centrality

Brandes’ algorithm [15] shows how to compute centrality scores of all the vertices
in the graph in the same asymptotic time bounds as n SSSP computations.

2.1 Brandes’ Algorithm

Define the dependency of a source vertex s ∈ V on a vertex v ∈ V as δs∗(v) =
∑

t�=s�=v∈V δst(v). Then the betweenness score of v can be then expressed as
BC(v) =

∑

s�=v∈V δs∗(v). Also, let Ps(v) denote the set of predecessors of a
vertex v on shortest paths from s: Ps(v) = {u ∈ V : 〈u, v〉 ∈ E, d(s, v) =
d(s, u) + w(u, v)}. Brandes shows that the dependencies satisfy the following
recursive relation, which is the most crucial step in the algorithm analysis.

Theorem 1. The dependency of s ∈ V on any v ∈ V obeys

δs∗(v) =
∑

w:v∈Ps(w)

λsv

λsw
(1 + δs∗(w))

First, n SSSP computations are done, one for each s ∈ V . The predecessor
sets Ps(v) are maintained during these computations. Next, for every s ∈ V ,
using the information from the shortest paths tree and predecessor sets along
the paths, compute the dependencies δs∗(v) for all other v ∈ V . To compute
the centrality value of a vertex v, we finally compute the sum of all dependency
values. The O(n2) space requirements can be reduced to O(m+n) by maintaining
a running centrality score. For additional details, we refer the reader to Brandes’
paper [15].

Approximating Betweenness Centrality 127

3 Adaptive-Sampling Based Approximation

The adaptive sampling technique was introduced by Lipton and Naughton [19]
for estimating the size of the transitive closure of a digraph. Prior to their work,
algorithms for estimating transitive closure were based on randomly sampling
source-vertices, solving the single-source reachability problem for the sampled
vertices, and using this information to estimate the size of the transitive closure.
The Lipton-Naughton algorithm introduces adaptive sampling of source-vertices,
that is, the number of samples varies with the information obtained from each
sample.

In this section, we give an adaptive sampling algorithm for computing be-
tweenness of a given vertex v. It is a sampling algorithm in that it estimates
the centrality by sampling a subset of vertices and performing SSSP computa-
tions from these vertices. It is termed adaptive, because the number of samples
required varies with the information obtained from each sample.

The following lemma is easy to see and the proof is omitted.

Lemma 1. BC(v) is zero iff its neighboring vertices induce a clique.

Let ai denote the dependency of the vertex vi on v i.e., ai = δvi∗(v). Let A =
∑

ai = BC(v). It is easy to verify that 0 ≤ ai ≤ n − 2 and 0 ≤ A ≤ (n −
1)(n − 2)/2. The quantity we wish to estimate is A. Consider doing so with the
following algorithm:

Algorithm 1. Repeatedly sample a vertex vi ∈ V ; perform SSSP (using BFS or
Dijkstra’s algorithm) from vi and maintain a running sum S of the dependency
scores δvi∗(v). Sample until S is greater than cn for some constant c ≥ 2. Let
the total number of samples be k. The estimated betweenness centrality score of

v, BC(v) is given by
nS

k
.

Let Xi be the random variable representing the dependency of a randomly sam-
pled vertex on v. The probability of an event x is denoted by Pr [x]. We establish
the following lemmas to analyze the above algorithm.

Lemma 2. Let E[Xi] denote the expectation of Xi and V ar[Xi] denote the vari-
ance of Xi. Then, E[Xi] = A/n, E[Xi

2] ≤ A, and V ar[Xi] ≤ A.

The next lemma is useful in proving a lower bound on the expected number of
samples made before stopping. The proof is presented in the Appendix.

Lemma 3. Let k = εn2/A. Then,

Pr [X1 + X2 + · · · + Xk ≥ cn] ≤ ε

(c − ε)2

Lemma 4. Let k ≥ εn2/A and d > 0. Then

Pr

[

|n
k

(

k
∑

i=1

Xi

)

− A| ≥ dA

]

≤ 1
εd2

128 D.A. Bader et al.

Theorem 2. Let Ã be the estimate of A in the above procedure and let A > 0.
Then for 0 < ε < 0.5 with probability ≥ 1 − 2ε, Algorithm 1 estimates A to
within a factor of 1/ε.

Proof. There are two ways that the algorithm can fail: (i) it can stop too early
to guarantee a good error bound, (ii) it can stop after enough samples but with
a bad estimate.

First we claim that the procedure is unlikely to stop with k ≤ n2/A. We have
that

Pr [(∃j)(j ≤ k) ∧ (X1 + X2 + · · · + Xj ≥ cn)] ≤ Pr [X1 + X2 + · · · + Xk ≥cn]

where k =
εn2

A
, because the event to the right of the inequality implies the event

to the left. But by Lemma 3, the right side of this equation is at most ε/(c− ε)2.
Substituting c = 2 and noting that 0 < ε < 0.5, we get that this probability is
less than ε.

Next we turn to the accuracy of the estimate. If k = εn2/A, by Lemma 4 the
estimate,

Ã =
n

k

k
∑

i=1

Xi

is within dA of A with probability ≥ 1/(εd2). Letting d = 1/ε, this is just ε.
Putting the two ways of failure together, we get that the total probability of

failure is less than ε + (1 − ε)ε, which is less than 2ε. Finally, note that if A > 0,
there must be at least one i such that ai > 0, so the algorithm will terminate.
The case when A = 0 (i.e., centrality of v is 0) can be detected using Lemma 1
(before running the algorithm).

An interesting aspect of our theorem is that the sampling is adaptive. usually
such sampling procedures perform a fixed number of samples. Here it is critical

that the algorithm adapts it behavior. Substituting A =
n2

t
in our analysis we

get the following theorem.

Theorem 3. For 0 < ε < 0.5, if the centrality of a vertex v is n2/t for some
constant t ≥ 1, then with probability ≥ 1 − 2ε its centrality can be estimated to
within a factor of 1/ε with εt samples of source vertices.

Although our theoretical result is valid only for high centrality nodes, our ex-
perimental results (presented in the next section) show a similar behavior for all
the vertices.

4 Experimental Study

We assess the quality of the sampling-based approximation algorithm on several
real-world graph instances (see Table 1). We use the parallel centrality analysis

Approximating Betweenness Centrality 129

toolkit SNAP [20] to compute exact betweenness scores. Since the execution time
and speedup achieved by the approximation approach are directly proportional
to the number of BFS/shortest path computations, we do not report performance
results in this section. For a detailed discussion of exact centrality computation
in parallel, and optimizations for small-world graphs, please refer to [16].

Network Data

We experiment with two synthetic graph instances and four real networks in this
study. rand is an unweighted, undirected random network of 2000 vertices and
7980 edges, generated using the Erdős–Rényi graph model [27]. This synthetic
graph has a low diameter, low clustering, and a Gaussian degree distribution.
pref-attach is a synthetic graph generated using the Preferential attachment
model proposed by Barabási and Albert [28]. This model generates graphs with
heavy-tailed degree distributions and scale-free properties. Vertices are added
one at a time, and for each of them, we create a fixed number of edges connecting
to existing vertices, with probability proportional to their degree. bio-pin is a
biological network that represents interactions in the human proteome [29,23].
This graph is undirected, unweighted and exhibits small-world characteristics.
crawl corresponds to the wb-cs-stanford network in the UF sparse matrix
collection [24]. It is a directed graph, where vertices correspond to pages in the
Stanford Computer Science domain, and edges represent links. cite is a directed
graph from the Pajek network collection [25]. It corresponds to papers by and
citing J. Lederberg (1945-2002). road is a weighted graph of 3353 vertices and
4435 edges that corresponds to a large portion of the road network of Rome,
Italy from 1999 [26]. Vertices correspond to intersections between roads, and
edges correspond to roads or road segments. Edge weights are physical distances
in metres. Road networks have more structure and a higher diameter than the
other networks considered in this study.

Table 1. Networks used in the experimental study

Label Network n m Details Source

rand random graph 2000 7980 synthetic, undirected [21]
pref-attach preferential attachment 2000 7980 synthetic, undirected [22]
bio-pin human protein interactions 8503 32,191 undirected [23]
crawl web-crawl (stanford.edu) 9914 36,854 directed [24]
cite Lederberg citation network 8843 41,601 directed [24,25]
road Rome, Italy road network 3353 4435 weighted, undirected [26]

Methodology

Our goal in this study is to quantify the approximation quality, and so we pri-
marily compare the approximation results to exact scores. We first compute
exact centrality scores of all the networks in Table 1. In most data sets, we are

130 D.A. Bader et al.

interested in high-centrality vertices, as they are the critical entities and are used
in further analysis. From the exact scores, we identify vertices whose centrality
scores are an order of magnitude greater than the rest of the network. For these
vertices, we study the trade-off between computation and approximation qual-
ity by varying the parameter c in Algorithm 1. We also show that it is easy to
estimate scores of low-centrality vertices. We chose small networks for ease of
analysis and visualization, but the approximation algorithm can be effectively
applied to large networks as well (see, for instance, the networks considered
in [16]).

Experiments

Figure 1 plots the distribution of exact and approximate betweenness scores
for the six different test instances. Note that the synthetic networks, rand
and pref-attach show significantly lower variation in exact centrality scores
compared to the real instances. Also, there are a significant percentage of low-
centrality vertices (scores less than, or close to, n) in cite, crawl and bio-pin.

We apply Algorithm 1 to estimate betweenness centrality scores of all the
vertices in the test instances. In order to visualize the data better, we plot a
smoothed curve of the estimated betweenness centrality data that is superim-
posed with the exact centrality score scatter-plot. We set the parameter c in
Algorithm 1 to 5 for these experiments. In addition, we impose a cut-off of n

20 on
the number of samples. Observe that in all the networks, the estimated central-
ity scores are very close to the exact ones, and we are guaranteed to cut down
on the computation by a factor of nearly 20.

To further study the quality of approximation for high-centrality vertices, we
select the top 1% of the vertices (about 30) ordered by exact centrality score in
each network, and compute their estimated centrality scores using the adaptive-
sampling algorithm. Since the source vertices in the adaptive approach are chosen
randomly, we repeat the experiment five times for each vertex and report the
mean and variance in approximation error. Figure 2 plots the mean percentage
approximation error in the computed scores for these high centrality vertices,
when the value of c (see Algorithm 3) is set to 5. The vertices are sorted by exact
centrality score on the X-axis. The error bars in the charts indicate the variance
in estimated score due to random runs, for each network. For the random graph
instance, the average error is about 5%, while it is roughly around 10% for the
rest of the networks. Except for a few anomalous vertices, the error variance is
within reasonable bounds in all the graph classes.

Figure 3 plots the percentage of BFS/SSSP computations required for ap-
proximating the centrality scores, when c is set to 5. This algorithmic count is
an indicator of the amount of work done by the approximation algorithm. The
vertices are ordered again by their exact centrality scores from left to right, with
the vertex with the least score to the left. A common trend we observe across all
graph classes is that the percentage of source vertices decreases as the central-
ity score increases – this implies that the scores of high centrality vertices can
be approximated with lesser work using the adaptive sampling approach. Also,

Approximating Betweenness Centrality 131

(a) rand (b) pref-attach

(c) bio-pin (d) crawl

(e) cite (f) road

Fig. 1. A scatter plot of exact betweenness scores of all the vertices (in sorted order),
and a line plot of their estimated betweenness scores (the approximate betweenness
scatter data is smoothed by a local smoothing technique using polynomial regression)

this value is significantly lower for crawl, bio-pin and road compared to other
graph classes.

We can also vary the parameter c, which affects both the percentage of
BFS/SSSP computations and the approximation quality. Table 2 summarizes

132 D.A. Bader et al.

(a) rand (b) pref-attach

(c) bio-pin (d) crawl

(e) cite (f) road

Fig. 2. Average estimated betweenness error percentage (in comparison to the exact
centrality score) for multiple runs. The adaptive sampling parameter c is set to 5 for
all experiments and the error bars indicate the variance.

the average performance on each graph instance, for different values of c. Taking
only high-centrality vertices into consideration, we report the mean approxima-
tion error and the number of samples for each graph instance. As expected, we

Approximating Betweenness Centrality 133

(a) rand (b) pref-attach

(c) bio-pin (d) crawl

(e) cite (f) road

Fig. 3. The number of samples/SSSP computations as a fraction of n, the total number
of vertices. This algorithmic count is an indicator of the amount of work done by the
approximation algorithm. The adaptive sampling parameter c is set to 5, and the error
bars indicate the variance from 5 runs.

find that the error decreases as the parameter c is increased, while the number
of samples increases. Since the highest centrality value is around 10 ∗ n for the
citation network, a significant number of shortest path computations have to
be done even for calculating scores with a reasonable accuracy. But for other

134 D.A. Bader et al.

Table 2. Observed average-case algorithmic counts, as the value of the sampling pa-
rameter c is varied. The average error percentage is the deviation of the estimated score
from the exact score, and the k

n
percentage indicates the number of samples/SSSP com-

putations.

Network rand pref-attach bio-pin crawl cite road
t = 2
Avg. error 16.28% 29.39% 46.72% 33.69% 32.51% 22.58%

Avg.
k

n
11.31% 5.36% 1.30% 0.96% 17.00% 0.68 %

t = 5
Avg. error 6.51% 10.28% 10.49% 10.31% 9.98% 8.79%

Avg.
k

n
27.37% 12.38% 3.20% 2.42% 43.85% 1.68%

t = 10
Avg. error 5.62% 6.13% 7.17% 7.04% – 7.39%

Avg.
k

n
54.51% 24.66% 6.33% 4.89% – 3.29%

graph instances, particularly the road network, web-crawl and the protein in-
teraction network, c = 5 offers a good trade-off between computation and the
approximation quality.

5 Conclusion and Open Problems

We presented a novel approximation algorithm for computing betweenness cen-
trality, of a given vertex, in both weighted and unweighted graphs. Our approx-
imation algorithm is based on an adaptive sampling technique that significantly
reduces the number of single-source shortest path computations for vertices with
high centrality. We conduct an extensive experimental study on real-world graph
instances, and observe that the approximation algorithm performs well on web
crawls, road networks and biological networks.

Approximating the centrality of all vertices in time less than O(nm) for un-
weighted graphs and O(nm+n2 log n) for weighted graphs is a challenging open
problem. Designing a fully dynamic algorithm for computing betweenness is very
useful.

Acknowledgments

The authors are grateful to the ARC (Algorithms and Randomness Center) of the
College of Computing, Georgia Institute of Technology, for funding this project.
This work was also supported in part by NSF Grants CAREER CCF-0611589,
NSF DBI-0420513, ITR EF/BIO 03-31654, and DARPA Contract NBCH
30390004. Kamesh Madduri’s work is supported in part by the NASA Grad-
uate Student Researcher Program Fellowship (NASA NP-2005-07-375-HQ). We
thank Richard Lipton for helpful discussions.

Approximating Betweenness Centrality 135

References

1. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)
2. Shimbel, A.: Structural parameters of communication networks. Bulletin of Math-

ematical Biophysics 15, 501–507 (1953)
3. Freeman, L.: A set of measures of centrality based on betweenness. Sociome-

try 40(1), 35–41 (1977)
4. Anthonisse, J.: The rush in a directed graph. In: Report BN9/71, Stichting Math-

ematisch Centrum, Amsterdam, Netherlands (1971)
5. Jeong, H., Mason, S., Barabási, A.L., Oltvai, Z.: Lethality and centrality in protein

networks. Nature 411, 41–42 (2001)
6. Pinney, J., McConkey, G., Westhead, D.: Decomposition of biological networks

using betweenness centrality. In: McLysaght, A., Huson, D.H. (eds.) RECOMB
2005. LNCS (LNBI), vol. 3678, Springer, Heidelberg (2005)

7. del Sol, A., Fujihashi, H., O’Meara, P.: Topology of small-world networks of protein-
protein complex structures. Bioinformatics 21(8), 1311–1315 (2005)

8. Liljeros, F., Edling, C., Amaral, L., Stanley, H., Åberg, Y.: The web of human
sexual contacts. Nature 411, 907–908 (2001)

9. Krebs, V.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)
10. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence

analysis. Communications of the ACM 47(3), 45–47 (2004)
11. Buckley, N., van Alstyne, M.: Does email make white collar workers more produc-

tive? Technical report, University of Michigan (2004)
12. Cisic, D., Kesic, B., Jakomin, L.: Research of the power in the supply chain. In:

International Trade, Economics Working Paper Archive EconWPA (April 2000)
13. Newman, M.: The structure and function of complex networks. SIAM Review 45(2),

167–256 (2003)
14. Girvan, M., Newman, M.: Community structure in social and biological networks.

Proceedings of the National Academy of Sciences, USA 99(12), 7821–7826 (2002)
15. Brandes, U.: A faster algorithm for betweenness centrality. J. Mathematical Soci-

ology 25(2), 163–177 (2001)
16. Bader, D., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-

world networks. In: ICPP. Proc. 35th Int’l Conf. on Parallel Processing, Columbus,
OH, IEEE Computer Society, Los Alamitos (2006)

17. Eppstein, D., Wang, J.: Fast approximation of centrality. In: SODA 2001. Proc.
12th Ann. Symp. Discrete Algorithms, Washington, DC, pp. 228–229 (2001)

18. Brandes, U., Pich, C.: Centrality estimation in large networks. In: To appear in Intl.
Journal of Bifurcation and Chaos, Special Issue on Complex Networks’ Structure
and Dynamics (2007)

19. Lipton, R., Naughton, J.: Estimating the size of generalized transitive closures. In:
VLDB, pp. 165–171 (1989)

20. Madduri, K., Bader, D.: Small-world Network Analysis in Parallel: a toolkit for
centrality analysis (2007), http://www.cc.gatech.edu/∼kamesh

21. Madduri, K., Bader, D.: GTgraph: A suite of synthetic graph generators (2006),
http://www.cc.gatech.edu/∼kamesh/GTgraph

22. Barabási, A.L.: Network databases (2007),
http://www.nd.edu/∼networks/resources.htm

23. Bader, D., Madduri, K.: A graph-theoretic analysis of the human protein inter-
action network using multicore parallel algorithms. In: HiCOMB 2007. Proc. 6th
Workshop on High Performance Computational Biology, Long Beach, CA (March
2007)

http://www.cc.gatech.edu/~kamesh
http://www.cc.gatech.edu/~kamesh/GTgraph
http://www.nd.edu/~networks/resources.htm

136 D.A. Bader et al.

24. Davis, T.: University of Florida Sparse Matrix Collection (2007),
http://www.cise.ufl.edu/research/sparse/matrices

25. Batagelj, V., Mrvar, A.: PAJEK datasets (2006),
http://www.vlado.fmf.uni-lj.si/pub/networks/data/

26. Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge
– Shortest Paths (2006), http://www.dis.uniroma1.it/∼challenge9/

27. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

28. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

29. Peri, S., et al.: Development of human protein reference database as an initial
platform for approaching systems biology in humans. Genome Research 13, 2363–
2371 (2003)

Appendix

Lemma 3

Let k = εn2/A. Then,

Pr [X1 + X2 + · · · + Xk ≥ cn] ≤ ε

(c − ε)2

Proof. We have

Pr [X1 + · · · + Xk ≥ cn] = Pr
[(

X1 − A

n

)

+ · · · +
(

Xk − A

n

)

≥ cn − kA

n

]

= Pr
[(

X1 − A

n

)

+ · · · +
(

Xk − A

n

)

≥ cn − εn

]

≤
∑

i

Pr
[

Xi − A

n
≥ (c − ε)n

]

≤
∑

i

1
(c − ε)2n2 V ar[Xi]

=
1

(c − ε)2n2

∑

i

V ar[Xi]

≤ 1
(c − ε)2n2 kA

=
ε

(c − ε)2

Note that we have used Chebychev’s inequality and union bounds in the above
proof. We bound the error in the estimated value of A with the following lemma.

Lemma 4

Let k ≥ εn2/A and d > 0. Then

Pr

[

|n
k

(

k
∑

i=1

Xi

)

− A| ≥ dA

]

≤ 1
εd2

http://www.cise.ufl.edu/research/sparse/matrices
http://www.vlado.fmf.uni-lj.si/pub/networks/data/
http://www.dis.uniroma1.it/~challenge9/

Approximating Betweenness Centrality 137

Proof

Pr

[

|n
k

(

k
∑

i=1

Xi

)

− A| ≥ t

]

= Pr

[

|
(

k
∑

i=1

Xi

)

− k

n
A| ≥ kt

n

]

= Pr

[

|
(

k
∑

i=1

Xi − 1
n

A

)

| ≥ kt

n

]

≤ n2

k2t2
k·V ar[Xi]

Let k = λ
n2

A
, where λ ≥ ε. Then the above probability is less than or equal

to
n2

k2t2
k·V ar[Xi] ≤ n2

λn2

A t2
A

which is just
A2

λt2
. Setting Ad = t gives

1
λd2 ≤ 1

εd2

Random Dot Product Graph Models for Social

Networks

Stephen J. Young1 and Edward R. Scheinerman2

1 Georgia Institute of Technology, Atlanta GA 30332-0160
2 Johns Hopkins University, Baltimore MD 21218-2682

Abstract. Inspired by the recent interest in combining geometry with
random graph models, we explore in this paper two generalizations of
the random dot product graph model proposed by Kraetzl, Nickel and
Scheinerman, and Tucker [1,2]. In particular we consider the properties of
clustering, diameter and degree distribution with respect to these models.
Additionally we explore the conductance of these models and show that
in a geometric sense, the conductance is constant.

1 Introduction

With the ubiquity and importance of the Internet and genetic information in
medicine and biology, the study of complex networks relating to the Internet and
genetics continues to be an important and vital area of study. This is especially
true for networks such as the physical layer of the Internet, the link structure of
the world wide web, and protein-protein and protein-gene interaction networks.
Due to the size of these networks [3] and the difficulty of determining complete
link information [4,5] a significant amount of research has gone into finding
models that match observed properties of these graphs in order to empirically
(via simulation) and theoretically understand and predict properties of these
complex networks. There are three models that, together with their variations,
are the core models for these complex networks [6]. The configurational model
and its variants attempt to generate complex networks by specifying the degree
sequence and creating edges randomly with respect to that degree sequence. On
the other hand, the Barabási-Albert preferential attachment model attempts to
model the process by which the network grows, specifically, it posits that vertices
with high degree are more likely to increase in degree when a new vertex is added
to the network. In a similar vein, the copying model [7,8], also attempts to
model the growth process of a complex networks. However, the copying model
takes the more distinctly biological viewpoint of replication of existing nodes
combined with mutation. All three of these types of models have had success
in reproducing the hallmark features of complex networks, namely a power-law
degree distribution, a diameter that grows slowly or is constant with the size of
the graph, and one of several clustering properties; see [6,9] for a collection of
such results.

However, there are many other aspects of complex networks that fail to be
captured by these models, for example non-uniform assortativity [10] and the

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 138–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Random Dot Product Graph Models for Social Networks 139

existence of directed cycles, among others. Thus there is considerable interest in
new models for complex networks that exhibit a power-law like degree sequence,
small diameter, and clustering, and are different enough from the three main
model classes to exhibit other properties of complex networks that are not ex-
hibited by the current models. One potential method to create new models is
to incorporate geometry into already existing models. Flaxman, et al. used ge-
ometry coupled with the preferential attachment model to create a model that
generates a random power-law graph that has small separators [11].

Taking this idea one step further, one can add semantic information to an
already existing model. One such model is the random dot product graph model
applied by Caldarelli, et al. and Azar, et al. [12,13] and formalized by Kraetzl,
Nickel, Scheinerman, and Tucker [1,2]. In their work they assign to each vertex
a vector in IRd and then any edge is present with probability equal to the dot
product of the endpoints. Thus, thinking of the vertices as members of a social
network, the vectors together with the dot product encode semantically the idea
of differing “interests” and varying levels of “talkativeness.” We discuss the two
natural generalizations of the random dot product graph model proposed by
Kraetzl, et al, specifically, we remove the restrictions on the vectors imposed in
their earlier work and develop directed generalization. First we briefly outline
in Sect. 2 their model and the known results on diameter, clustering and degree
distribution in order to provide a framework for the rest of this paper. We then
present the two natural generalizations of the random dot product model. In
Sect. 3 and Sect. 4 we demonstrate that an arbitrarily large fraction of the
graph has constant diameter and that both the undirected and directed models
demonstrate clustering. We derive in Sect. 5 explicit formulas for the degree
sequence leading to a super-linear number of edges, which is consistent with
recent results of Leskovec, Kleinberg and Faloutsos [14]. Finally, in Sect. 6 we
turn our attention to conductance. We show that any small separators present
are essentially non-semantic and leave open the question of general conductance.
In Sect. 7 we discuss some areas for future work.

2 Model Specification

Kraetzl, Nickel and Scheinerman develop a new family of random graph model
for social networks based on the dot product. In particular, they consider in detail
the following model. Each vertex v is independently assigned a random vector,
Wv, in IRd, where each coordinate is independently and identically distributed as
1√
d
Uα[0, 1]; that is a scaled copy the uniform distribution on [0, 1] to the α power.

Then each edge {u, v} is present independently with probability 〈Wv, Wu〉. They
go on to show that the resulting graph G, has the following properties for d = 1:

1. The giant component of G has diameter almost surely at most 6 as n → ∞.
2. For all vertices u, v, and w,

P (u ∼ w | u ∼ v ∼ w) =
(

α + 1
2α + 1

)2

> P (u ∼ w) =
1

(α + 1)2
. (1)

140 S.J. Young and E.R. Scheinerman

3. The expected number of vertices of degree k on a n vertex graph generated
in this manner is

1
k!α

(1 + α)
1
α Γ

(

1
α

+ k

)

n
α−1

α . (2)

They proceed to show that for higher dimensions the probability of an arbi-
trary edge is independent of the dimension, but the degree distribution develops
a “bend” in the power law. That is, the slope of the log-log plot of the degree
distribution in numerical studies (and confirmed analytically for d = 2) decreases
sharply for some given degree, which they conjecture to be n/(dα + d).

We consider the two natural generalizations of this model, one undirected
and one directed, and show that they behave similarly to the model described
by Kraetzl, Nickel and Scheinerman and resolve some of the higher dimensional
questions posed regarding the nature of clustering and the diameter in the model.

First we consider the undirected generalization. Let W be a random variable
on a IRd such that if Wi and Wj are distributed as W, P (〈Wi, Wj〉 ∈ (0, 1)) = 1.
Then we define G(W, n) as the graph on n vertices where each vertex v is as-
signed a vector Wv distributed as W and each edge {u, v} is present indepen-
dently with probability 〈Wu, Wv〉. It is clear from this construction that the
restriction on the nature of the distribution W is necessary in order to guaran-
tee that the inner products are all valid, nontrivial probabilities. When a dis-
tribution satisfies this condition, we shall say that it satisfies the inner product
condition. Note that the inner product condition implies that P (‖W‖ < 1) = 1,
and guarantees that there is always some probability of an edge appearing (or
not appearing) between any two pairs of vertices. Although it may seem more
natural to allow for 0 or 1 inner products, precluding these values simplifies the
analysis by forbidding pathological and uninteresting cases that can come about
when there is a positive probability of guaranteeing or forbidding an edge.

The natural generalization of G(W, n) is to consider a directed graph with
similar properties. Suppose (X,Y) is a pair of distributions on IRd×IRd such that
if Xu is distributed as X and Yv is distributed as Y, P (〈Xu, Yv〉 ∈ (0, 1)) = 1. We
will abuse terminology slightly and say that such a (X,Y) pair satisfies the inner
product condition. Then we consider the random directed graph

−→
G(X,Y, n) as

the graph on n vertices, where each vertex v is assigned a pair of vectors (Xv, Yv)
and each directed edge (u, v) is present independently with probability 〈Xu, Yv〉.
Again, the inner product condition is a natural condition driven by the necessity
for the quantity associated to an arc being a probability. Note that it is clearly
not necessary for either of X or Y to have bounded norm, however we believe
that the nature of those distributions such that (X,Y) satisfies the inner product
condition and has unbounded norm are so pathological as to be uninteresting.
Thus, for the remainder of this paper we assume that there is some compact
set K such that P (X ∈ K) = P (Y ∈ K) = 1. Note as well that for clarity of
presentation, we will abuse notation and say that a vertex belongs to a region
R whenever its assigned vector(s) lie in that region.

We observe that G(W, n) generalizes both the Erdős-Rényi model and a ver-
sion of the configurational random graph model. The first is achieved by letting

Random Dot Product Graph Models for Social Networks 141

W be a constant random variable. Then it is clear that the model under con-
sideration is just the Erdős-Rényi model with parameter 〈W,W〉. Also note
that this holds for

−→
G(X,Y, n) by letting both X and Y be constant. Now by

letting d = 1 and P (W = k/c) be proportional to k−α, where c is a normalizing
constant, we have a model that generalizes a randomized configurational model.

In addition to generalizing the Erdős-Rényi and configurational models, there
is a natural interpretation of the vectors and the interaction of those vectors in
the (directed) random dot product graph model. By considering each component
of the vector associated with a vertex as a property or interest of that vertex, we
may interpret the value of the component in a natural way. Furthermore, recent
research into the nature of links in the blogosphere, specifically the Live Journal
networks, have shown that a significant percentage of links can be explained
by properties of the blog, such as the location of the author, interest lists, age,
gender, etc. [15]. This interpretation of random dot product graphs provides a
ready-made collection of tools for creating distributions by applying previous
research into the singular value decomposition and related methods for feature
extraction.

Just as representing entities as vectors, or pairs of vectors, is a natural idea,
we feel that the inner product is a natural way of encapsulating two primary
barriers to “linking”. More explicitly, two websites are unlikely to have a direct
link if their topics are completely unrelated, this corresponds to their vectors
having a large angle between them in the dot product graph representation. On
the other hand, if two websites have nearly identical topics, they still may not be
linked due to the selectivity of one of the websites. That is, if one of the websites
doesn’t link to many things overall, then no matter how close another website’s
interests are there is still a significant barrier to “linking”. The inner product
encapsulates both these barriers in that both the angle between the vector and
the norm of the vectors impact the inner (dot) product.

3 Diameter of “Giant” Component

In this section, we show that an arbitrarily large fraction of the graph generated
by G(W, n) almost surely forms a connected graph with diameter at most 5.
In a slight abuse of standard terminology, we will refer to this arbitrarily large
fraction of the graph as the “giant” component. A key step in the proof of the
diameter of the “giant” component for

−→
G(X,Y, n) is the following lemma, which

generalizes the result on the diameter of the Erdős-Rényi random graph model.

Lemma 1. Let D be a directed random graph on v vertices such that each di-
rected edge is present independently with probability at least p. Then D is almost
surely strongly connected with directed diameter 2.

Proof. Consider some pair of vertices, u and v. The probability that there is not
a directed path of length at most 2 from u to v is at most (1−p2)|V (D)|−2(1−p).
Thus the probability that u and v are not strongly connected by paths of length
at most 2 is at most 1−(1−(1−p2)n−2(1−p))2. But then, the expected number

142 S.J. Young and E.R. Scheinerman

of such pairs that are not strongly connected by paths of length at most 2 is at
most

n(n − 1)(2(1 − p2)n−2(1 − p) − (1 − p2)2n−4(1 − p)2) (3)

which approaches 0 as n → ∞. Thus D is almost surely strongly connected with
directed diameter at most 2 [16].

We will denote by B (c; r) (respectively B (c; r)) the open (respectively closed)
ball of radius r centered at c.

Theorem 1. Let W,X,Y be distributions on IRd such that W and (X,Y)
satisfy the inner product condition. Further assume that there is some compact
region K such that X and Y lie inside K almost surely. Then an arbitrarily
large fraction of G(W, n) is connected with diameter 5 and an arbitrarily large
fraction of

−→
G(X,Y, n) is strongly connected with directed diameter at most 5.

We prove only the undirected case here as the directed case follows a similar but
more complicated argument.

Proof. We may assume without loss of generality that W ∈ B (0; 1). Letting
0 < δ < 1

4 , choose ε > 0 such that P (W ∈ B (0; ε)) < δ. Then let A be the
closed annulus B (0; 1) − B (0; ε). For all α ∈ A, choose

rα ∈
{

r > 0| ∀x, y ∈ B (α; r), xT y >
ε2

4

}

, (4)

which is non-empty by the continuity of the inner product. Then ∪α∈AB (α; rα)
is an open cover of the compact set A with some finite subcover, say {B (αi; rαi)}.

Fix i such that P (W ∈ B (αi; rαi)) �= 0. Then, as n → ∞, there are almost
surely infinitely many vertices that lie in B (αi; rαi). It then follows from a result
of Erdős and Renyi, since the probability of every edge is at least ε2

4 and for fixed
{Wv} each edge is present independently, the graph induced by B (αi; rαi) has
diameter at most 2, almost surely. Clearly, if P (W ∈ B (αi; rαi)) = 0, then there
are almost surely no vertices in that region, and moreover those regions do not
affect the diameter of G(W, n).

Now consider two regions Ri = B (αi; rαi) and Rj = B
(

αj ; rαj

)

occurring
with positive probability. There is a naturally defined probability measure on
Ri × Rj . Furthermore, since P

(

WT
i Wj = 0

)

= 0, there exist ε̂, δ̂ > 0 such that

P

(

WT
i Wj > δ̂ | Wi ∈ Ri, Wj ∈ Rj

)

> ε̂. But, since δ̂ and ε̂ are independent of
n, and since Ri and Rj almost surely contain an infinite number of vertices;
there is almost surely an edge between the regions. Now given vertices u ∈ Ri

and v ∈ Rj , there is almost surely an edge e between Ri and Rj , a path of
length 2 from u to e, and a path of length 2 from e to v. Thus, for any pair of
vertices in A there is almost surely a path of length at most 5 between them.
But A asymptotically contains (1 − δ)n vertices, and since δ was arbitrary, A
contains an arbitrarily large fraction of the vertices.

Random Dot Product Graph Models for Social Networks 143

4 Clustering

In this section, we examine the clustering of G(W, n) and
−→
G(X,Y, n) and find

that except in the case of constant random variables, the presence clustering is
independent of the random variables. In order to show the clustering results we
need the following convexity result, which will allow the use of Jensen’s Inequality
in the proof of Theorem 2.

Lemma 2. Let a, b ∈ IRd. Let D ⊆ IRd be a region such that for all x ∈ D,
〈a, x〉 ∈ (0, 1) and 〈b, x〉 ∈ (0, 1). Then u : D −→ IR defined by x −→ 〈a, x〉 〈b, x〉
is a convex function of x.

Proof. Let F : (0, 1) × (0, 1) −→ IR be defined by (x, y) −→ xy. We note that

∇2F =
(

0 1
1 0

)

. This matrix, although not positive semi-definite, is positive

semidefinite over [0, 1] × [0, 1], and hence F (x, y) is convex over its domain [17].
Now note that since 〈a, x〉 is a real inner product, for any λ ∈ [0, 1] and x, y ∈ D,
〈a, λx + (1 − λ)y〉 = λ 〈a, x〉 + (1 − λ) 〈a, y〉. Thus 〈a, x〉 is a convex function in
x and similarly for 〈b, x〉. Thus u(x) = F (〈a, x〉 , 〈b, x〉) is the composition of
convex functions and hence is convex.

Theorem 2. Let Wv, Ww, Wu, Xu, Xv, Xw, Yu, Yv, Yw be independent random
variables distributed over IRd, not necessarily identically distributed, such that
〈Wi, Wj〉 and 〈Xi, Yj〉 satisfy the inner product condition for all i �= j . For the
undirected graph where each edge {i, j} is present with probability 〈Wi, Wj〉, we
have that

P (u ∼ v | u ∼ v, v ∼ w) ≥ P (u ∼ v) . (5)

Now consider the random directed graph where each arc i → j is present, inde-
pendently, with probability 〈Xi, Yj〉. Then we have that

1. P (u → w | u → v, v → w) ≥ P (u → w),
2. P (u → w | u → v, w → v) ≥ P (u → w),
3. P (u → w | v → u, v → w) ≥ P (u → w), and
4. P (u → w | w → v, v → u) = P (u → w).

As an immediate corollary, we get that for any set of vertices u, v and w in
G(W, n), we get P (u ∼ v | u ∼ v, v ∼ w) ≥ P (u ∼ v) and for any set of vertices
u, v and w in

−→
G(X,Y, n)

1. P (u → w | u → v, v → w) ≥ P (u → w),
2. P (u → w | u → v, w → v) ≥ P (u → w),
3. P (u → w | v → u, v → w) ≥ P (u → w), and
4. P (u → w | w → v, v → u) = P (u → w) .

Note that in G(W, n), equality holds bounds on clustering if and only if W is a
constant random variable.

144 S.J. Young and E.R. Scheinerman

5 Degree Distribution

We derive, in this section, a set of natural formulas for the degree distributions of
both G(W, n) and

−→
G(X,Y, n). In Sect. 5.1, we discuss the application of these

formulas to the construction of specific random models meeting desired degree
sequence considerations.

Proposition 1. Let G = G(W, n) where W satisfies the inner product condi-
tion and let D =

−→
G (X,Y, n) where X and Y are distributions over IRd where

(X,Y) satisfies the inner product condition. Then, for a vertex w ∈ V (G)

P (deg(w) = k) =
∫ (

n − 1
k

)

〈E [W] , W 〉k (1 − 〈E [W] , W 〉)n−k−1
dW. (6)

Furthermore, for a vertex v ∈ V (D)

P

(

deg+(v) = k
)

=
∫ (

n − 1
k

)

〈E [X] , Y 〉k (1 − 〈E [X] , Y 〉)n−1−k
dY (7)

P

(

deg−(v) = k
)

=
∫ (

n − 1
k

)

〈E [Y] , X〉k (1 − 〈E [Y] , X〉)n−1−k
dX . (8)

This leads to an immediate result on the density of edges in G(W, n) and
−→
G(X,Y, n).

Corollary 1. Let G = G(W, n) where W satisfies inner product condition and
let D =

−→
G(X,Y, n) where X and Y are distributions over IRd where (X,Y)

satisfies the inner product condition. Then E [|E(G)|] =
(

n
2

)

〈E [W] , E [W]〉 and
E [|E(D)|] = n(n − 1) 〈E [X] , E [Y]〉.

This implies that the edge density is Ω
(

n2
)

, contrary to conventional wisdom
regarding complex networks. However we feel that this trade off is accept-
able in practice for several reasons. The first being that 〈E [W] , E [W]〉 and
〈E [X] , E [Y]〉 are typically small. Furthermore, although the results regarding
the diameter of the graph would not hold, one could consider X and Y as func-
tions of n and introduce sparsity in that manner. We also note that, particularly
for the world wide web, gene-protein networks, and the Internet, it is widely
accepted that empirical studies are not capturing all the edges present. Combine
this fact with recent work showing that the incompleteness can severely skew
some statistics of the data [4,5], and it is plausible that one or more of these
networks is not truly sparse. In addition, the recent work of Leskovec, Kleinberg
and Faloutsos [14] has shown that for many social networks the number of edges
is becoming super-linear in the number of vertices as these networks evolve.

5.1 Sample Distributions

Although it is obvious that not every distribution W or pair of distributions
(X,Y) can lead to a power law, it is useful to discuss a few means of generating

Random Dot Product Graph Models for Social Networks 145

power law degree distributions. We will focus on the directed model, as Kraetzl,
Nickel and Scheinerman have already shown one manner in which to achieve a
power law degree distribution for the undirected model [1].

It is natural to consider directed versions of complex network where the in-
degrees are distributed as a power law, while the out-degrees tend to be more
concentrated, in order to capture situations where the for physical reasons the
the out-degree is limited. Thus since we know that the Erdős-Rényi graph model
tends to produce a concentrated degree sequence and further if each component
is independently distributed as 1√

d
Uα(0, 1) in the undirected random dot product

graph model tends to produce a power law, it is natural to attempt to emulate
these two in the directed model. Thus, taking each component of X to be in-
dependently distributed as 1√

d
U(0, 1) (that is, having low variance, similarly to

the Erős-Rényi model) and each component of X to be 1√
d
Uα(0, 1) (and thus

having high variance), with α = 16, d = 5, n = 10000, and with 200 trials,
yields the average degree distributions shown in Fig. 5.1. Note that this roughly
models the desired behavior, in that the out-degree is strongly clustered around
a single value and the in-degrees are distributed as a power-law. Further empir-
ical refinement can lead to a closer approximation, and thus through repeated
simulation and tuning it is reasonable to assume that this degree distribution
and others like it, can be well approximated.

We now note that for any orthonormal matrix Q and any non-zero constant
c,

−→
G (X,Y, n) =

−→
G(cQX, 1

cQY, n). Thus we may assume that

1. 〈E [X] , e1〉 = 〈E [Y] , e1〉 =
√

〈E [X] , E [Y]〉,
2. 〈E [X] , e2〉 ≥ 0,
3. 〈E [Y] , e2〉 = 0, and
4. 〈E [X] , ei〉 = 〈E [Y] , ei〉 = 0 for i > 2.

In particular, combining these observations with (7) and (8), we obtain moments
for some components of X and Y if

−→
G(X,Y, n) satisfies a given degree distri-

bution. However, these moments do not fully characterize X and Y, but rather
limit the space of feasible distributions.

Perhaps more useful from a modeling point of view is the possibility of using
Kernel Density Estimators of Hörmann and Leydold [18] to develop estimated
distributions for (X,Y). In particular, given a graph G and a vector {Vi} for
each vertex so that G is “generated” by {Vi} under the random dot product
graph model, Kernel Density Estimation provides a means to rapidly generate
approximate samples from the sample distribution. (For more details on extract-
ing vectors from a given graph see [19,20,21].) Thus using {Vi} it is theoretically
possible to generate a random graph that “looks-like” G.

6 On the Nature of Bad Cuts

In light of the work of Flaxman, Frieze and Vera which showed that the geo-
metric preferential attachment graph has bad cuts that are due to the geometry

146 S.J. Young and E.R. Scheinerman

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

(a) out-degree

10
1

10
2

10
3

10
0

10
1

10
2

(b) log-log out-degree

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

100

120

140

160

180

200

(c) in-degree

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

(d) log-log in-degree

Fig. 1. Average degree sequences for given directed random dot product graph

of the underling space [11], it is natural to consider whether the random dot
product graphs exhibit similar behavior. In this section we characterize the con-
ductance of the geometric cuts in the undirected random dot product graph
model. Specifically, we show that any bad cuts have no semantic content. That
is, if low conductance cuts exist they are essentially non-geometric.

Before discussing the nature of the geometric cuts in G(W, n) we first need
some preliminary definitions. For any region R we will abuse notation and re-
fer to the set of vertices whose vectors are contained in the region as R. We
will also, for notational convenience, denote by WR the expectation of W re-
stricted to R for any W-measurable set R. Using notation standard from con-
ductance we will denote by Vol(R) the sum of the degrees for all vertices in R
and by C(R, R) the number of edges crossing the cut (R, R). Finally, we also
denote by P (R) the probability that a random variable distributed as W lies
within the region R. The conductance of the cut (R, R), ΦR(G(W, n)), is defined
as C(R, R)/ min

{

VolR, Vol R
}

. With these definitions and a multidimensional
generalization of the Chernoff Bound [22], we have the following results on the
nature of geometric cuts in G(W, n).

Random Dot Product Graph Models for Social Networks 147

Theorem 3. Let R be a fixed subset of IRd and let W be a distribution on IRd

that satisfies the inner product condition. Then almost surely

lim
n→∞ΦR(G(W, n)) ≥

P

(

R
)

〈WR, WR〉
〈WR, E [W]〉 , (9)

when P (R) ‖WR‖2 ≤ P

(

R
)

‖WR‖2.

This results establishes that any fixed region does not induce a bad cut. However
it leaves open the possibility that there is some sequence of regions giving arbi-
trarily small conductance. That is, it may be possible that for an arbitrary c > 0
there is some region Rc such that the conductance induced by the cut (Rc, Rc)
is constant but less than c. In fact, by using the inner product condition we may
show the following result:

Theorem 4. For a fixed distribution W satisfying the inner product condition,
infR limn→∞ ΦR(G(W, n)) is bounded below, where the infimum is taken over
W-measurable sets R.

By combining the results of Theorem 3 and Theorem 4, we conclude that if W
satisfies the inner product condition there is some α > 0, depending only on
W, such that for any region R ⊆ IRd, limn→∞ ΦR(G(W, n)) > α, with high
probability. Specifically, any fixed partition (R, R) of IRd has constant conduc-
tance independent of (R, R). Thus, in contrast to the work of Flaxman, Frieze
and Vera, where they showed that the geometric preferential attachment model
has bad cuts induced entirely by the geometry, if the random dot product graph
model has bad cuts they are entirely non-geometric. This does, however, leave
open the question of what happens for non-fixed geometric regions and non-
geometric partitions. Although we believe that the conductance of the random
dot product graph model is asymptotically constant, the slow rate of conver-
gence of this result leaves open the possibility that for every n there is a positive
probability that some region has conductance smaller than α. Furthermore, since
this result is inherently geometric, it says little about the case where W is not
a continuous distribution. For instance, if W contains a point mass, then there
is no way to geometrically place vertices generated by a point mass on oppos-
ing sides of a partition, whereas a partition of the vertices can clearly separate
those vertices. Thus, fully resolving the conductance of the random dot product
graph model will require a fundamental non-geometric insight into the structure
of these graphs as in the work of Mihail, et al. [23].

7 Future Work

There are some natural questions that this work brings up. Perhaps the most
pressing is the development of a sparse, or preferably, a variable density analogue
of both G(W, n) and

−→
G(X,Y, n). Although, as we noted above, the presence of

Ω
(

n2
)

edges is not as major an objection as it once was for social networks, it

148 S.J. Young and E.R. Scheinerman

still limits the models’ general applicability. Thus a natural sparse generalization
would broaden the applicability of these models. We have positive results in a
preliminary work in this direction [24].

Also, given that the result that reinvigorated the study of social networks
was Milgram’s experimental result on the navigability of the “real world” social
network, [25,26], it is reasonable to consider under what conditions short paths
can be found in G(W, n). Kleinberg’s result on the navigation of the grid with
power-law shortcuts showed that navigation is sensitive to parameters of the
model [27], however we feel that the additional semantic information in G(W, n)
will allow navigation under more general conditions.

Finally, from a simulation point of view, it would be desirable to have a means
of rapidly generating samples from G(W, n) or

−→
G(X,Y, n). Kraetzl, Nickel, and

Scheinerman [1] discuss a thresholding modification of the natural means of gen-
eration that will produce an approximate sample. However, it is not immediately
obvious how much the loss of edges due to thresholding will affect any given prop-
erty of the sample graph. Thus, for serious simulation purposes, some means of
estimating the effect of the thresholding or a clever way of reducing the overall
computation time would seem to be necessary.

Acknowledgments. The first author is grateful to Milena Mihail for her advice
and support in the preparation of this document. The authors would also like to
thank the anonymous referees for the helpful comments.

References

1. Kraetzl, M., Nickel, C., Scheinerman, E.R.: Random dot product graphs: A model
for social netowrks. Preliminary Manuscript (2005)

2. Kraetzl, M., Nickel, C., Scheinerman, E.R., Tucker, K.: Random dot product graphs
(July 2005), http://www.ipam.ucla.edu/abstract.aspx?tid=5498

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern
Phys. 74(1), 47–97 (2002)

4. Achlioptas, D., Kempe, D., Clasuet, A., Moore, C.: On the bias of traceroute
sampling or, power-law degree distributions in regular graphs. In: STOC 2005.
Proc. of the 37th ACM Symposium on the Theory of Computer Science (2005)

5. Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling biases in IP topology
measurements. In: INFOCOM 2003. 22nd Joint Conference of the IEEE Computer
and Communications Societies (2003)

6. Durrett, R.: Random graph dynamics. In: Cambridge Series in Statistical and Prob-
abilistic Mathematics, Cambridge University Press, Cambridge (2007)

7. Chung, F., Galas, D.J., Dewey, T.G., Lu, L.: Duplication models for biological
networks. Journal of Computational Biology (2003)

8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.:
The web as a graph. In: PODS 2000. Proc. of the 19th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 1–10. ACM Press,
New York (2000)

9. Bornholdt, S., Schuster, H.G. (eds.): Handbook of graphs and networks. From the
genome to the internet. Wiley-VCH, Weinheim (2003)

http://www.ipam.ucla.edu/abstract.aspx?tid=5498

Random Dot Product Graph Models for Social Networks 149

10. Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89
(2002)

11. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks. Internet Math. 3(2), 187–205 (2006)

12. Caldarelli, G., Capocci, A., de Los Rios, P., Muñoz, M.A.: Scale-Free Networks
from Varying Vertex Intrinsic Fitness. Physical Review Letters 89(25) (2002)

13. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data.
In: STOC 2001. Proc. of the 33rd ACM Symposium on Theory of Computing, pp.
619–626. ACM Press, New York (2001)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007)

15. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geo-
graphic routing in social networks. Proceedings of the National Academy of Sci-
ences 102(33), 11623–1162 (2005)

16. Bollobás, B.: Modern graph theory. In: Bollobás, B. (ed.) Graduate Texts in Math-
ematics, vol. 184, Springer, New York (1998)

17. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization; Analysis,
Algorithms, and Engineering Applications, SIAM, Philadelphia, PA (2001)

18. Hörmnn, W., Leydold, J.: Random-number and random-variate generation: au-
tomatic random variate generation for simulation input. In: Winter Simulation
Conference, pp. 675–682 (2000)

19. Scheinerman, E.R., Tucker, K.: Exact and asymptotic dot product representations
of graphs i: Fundamentals (Submitted, 2007)

20. Scheinerman, E.R., Tucker, K.: Exact and asymptotic dot product representations
of graphs ii: Characterization and recognition (Submitted, 2007)

21. Scheinerman, E.R., Tucker, K.: Modelling graphs using dot product representa-
tions. (preparation, 2007)

22. Alon, N., Spencer, J.H.: The Probabilistic Method. In: Wiley-Interscience Series in
Discrete Mathematics and Optimization, 2nd edn., Wiley-Interscience, New York
(2000)

23. Mihail, M., Papadimitriou, C., Saberi, A.: On certain connectivity properties of
the internet topology. J. Comput. System Sci. 72(2), 239–251 (2006) (FOCS 2003
Special Issue)

24. Young, S.J.: Sparse random dot product graphs. (preparation, 2007)
25. Milgram, S.: The small world problem. Psychology Today (1967)
26. Milgram, S., Travers, J.: An experimental study of the small world problem. So-

ciometry 32(4), 425–443 (1969)
27. Kleinberg, J.M.: The small world phenomenon: an algorithmic perspective. In:

STOC 1999. Proc. of the 32nd ACM Symposium on the Theory of Computer Sci-
ence (1999)

Local Computation of PageRank Contributions

Reid Andersen1, Christian Borgs2, Jennifer Chayes2, John Hopcraft3,
Vahab S. Mirrokni2, and Shang-Hua Teng4

1 University of California at San Diego, San Diego, CA
randerse@math.ucsd.edu

2 Microsoft Research, Redmond, WA
{borgs,jchayes,mirrokni}@microsoft.com

3 Cornell University, Ithaca, NY
jeh@cs.cornell.edu

4 Boston University, Boston, MA
steng@cs.bu.edu

Abstract. Motivated by the problem of detecting link-spam, we con-
sider the following graph-theoretic primitive: Given a webgraph G, a
vertex v in G, and a parameter δ ∈ (0, 1), compute the set of all vertices
that contribute to v at least a δ fraction of v’s PageRank. We call this set
the δ-contributing set of v. To this end, we define the contribution vector
of v to be the vector whose entries measure the contributions of every
vertex to the PageRank of v. A local algorithm is one that produces a
solution by adaptively examining only a small portion of the input graph
near a specified vertex. We give an efficient local algorithm that com-
putes an ε-approximation of the contribution vector for a given vertex by
adaptively examining O(1/ε) vertices. Using this algorithm, we give a lo-
cal approximation algorithm for the primitive defined above. Specifically,
we give an algorithm that returns a set containing the δ-contributing set
of v and at most O(1/δ) vertices from the δ/2-contributing set of v, and
which does so by examining at most O(1/δ) vertices. We also give a local
algorithm for solving the following problem: If there exist k vertices that
contribute a ρ-fraction to the PageRank of v, find a set of k vertices that
contribute at least a (ρ − ε)-fraction to the PageRank of v. In this case,
we prove that our algorithm examines at most O(k/ε) vertices.

1 Introduction

In numerous applications of PageRank one needs to know, in addition to the rank
of a given web page, which pages or sets of pages contribute most to its rank.
These PageRank contributions have been used for link spam detection [4,10] and
in the classification of web pages [12]. A set of pages that contributes significantly
to the PageRank of a page is often called a contribution set or supporting set of
the page [4,10].

The contribution that a vertex u makes to the PageRank of a vertex v is
defined rigorously in terms of personalized PageRank. For a webgraph G =
(V, E) and a teleportation constant α (sometimes called the restart probability),

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 150–165, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Local Computation of PageRank Contributions 151

let PRMα be the matrix whose uth row is the personalized PageRank vector of
u. The PageRank contribution of u to v, written prα(u → v), is defined to be
the entry (u, v) of this matrix. The PageRank of a vertex v is the sum of the vth

column of the matrix PRMα, and thus the PageRank of a vertex can be viewed
as the sum of the contributions from all other vertices. The contribution vector
of v is defined to be the vth column of the matrix PRMα, whose entries are the
contributions of every vertex to the PageRank of v.

Given that the web graph is massive and getting larger at a substantial rate,
it is essential to compute contribution vectors and identify supporting sets by
examining as small a fraction of the graph as possible. In particular, it is helpful
to design a local algorithm for computing the supporting sets of a particular
vertex. Local algorithms search for a solution near a specified vertex by adap-
tively examining only a small subset of the input graph. They have been studied
previously in distributed computing [16] and in graph partitioning and cluster-
ing [20,2]. Personalized PageRank vectors can be approximated locally. Using
one of several possible algorithms [14,5,19], it is possible to compute an approx-
imation of the personalized PageRank vector of a vertex u by examining only
O(1/ε) vertices, where ε is the desired amount of error at each vertex.

Problem Formulation. Inspired by local algorithms for computing personalized
PageRank, and motivated by the importance of supporting sets in link-spam
detection, we consider the problem of directly computing the contribution vector
of a given vertex to quickly identify its supporting sets. In particular, we consider
following graph-theoretic primitive: Given a webgraph G, a vertex v in G, and
a parameter δ ∈ (0, 1), compute the set of all vertices each contributing at least
a δ fraction to the PageRank of v. We call this set the δ-contributing set of v.

Such a primitive is useful for spam detection, since, given a webpage whose
PageRank has recently increased suspiciously, we can quickly identify the set
of pages that contribute significantly to the PageRank of that suspicious page.
The above primitive may also be useful for analyzing social networks. In social
networks in which the links capture the influence of vertices on each other, we
can identify the nodes with the most influence to a given node.

Our Results. We give an efficient, local algorithm for computing an
ε-approximation of the contribution vector for a given vertex v, a vector whose
difference from the contribution vector is at most ε at each vertex. We prove that
the number of the vertices examined by the algorithm is O(1/ε). The algorithm
performs a sequence of probability-pushing operations on vertices of the graph,
which we call pushback operations. When the pushback operation is applied to
a vertex u, we perform a small amount of computation for each in-neighbor of
u. Particularly, we add a fraction of a number stored at u to a number stored
at each in-neighbor of u. The number of such operations that our algorithm
performs is O(1/ε), and its running time can be bounded by the sum of the
in-degrees of the vertices from which these operations were performed. To derive
this algorithm, we adapt Jeh and Widom’s technique for computing personalized
PageRank vectors [14] to directly compute contribution vectors. To analyze the

152 R. Andersen et al.

algorithm’s running time and error bounds, we use techniques developed for the
local clustering algorithm in [2].

Using our algorithm for approximating contribution vectors, we give an ap-
proximation algorithm to the primitive defined above. Explicitly, we give a local
algorithm that returns a set containing the δ-contributing set of v and at most
O(1/δ) vertices from the δ/2-contributing set of v. Our algorithm applies at
most O(1/δ) pushback operations. We also give a local algorithm for solving the
following problem: If there are k vertices which contribute a ρ-fraction to the
PageRank of v, find a set of k vertices which contribute at least (ρ − ε)-fraction
to the PageRank of v. In this case, we prove that our algorithm needs at most
O(k/ε) pushback operations.

Finally, we remark that, in principle, one could directly compute the contri-
bution vector for a vertex v by approximating the personalized PageRank vector
of v in the time-reversal of the random walk Markov chain. We describe the
computation required for this approach, and argue that for most graphs it is not
as efficient as the method we propose.

Related Work. Supporting sets and PageRank contributions have been stud-
ied before as a tool for spam detection, notably in the SpamRank algorithm
of Benczúr et al. [4], and in the Spam Mass algorithm of Gyöngyi et al. [10].
However, none of these papers developed a local algorithm for computing the
contribution vector or supporting set. In the SpamRank algorithm [4], the con-
tribution vectors are computed in the following way. One computes an approxi-
mation of each personalized PageRank vector in the graph to create an approxi-
mate PageRank matrix, and then takes the transpose of this matrix to obtain the
approximate contribution vectors. This method is efficient for the task of com-
puting the contribution vectors for every vertex in the graph, and it leverages
fast algorithms for computing many personalized PageRank vectors simultane-
ously [9,19], but it does not provide an efficient way to compute the contribution
vectors of a few selected suspicious vertices. Furthermore, the relative error in
the resulting approximate contribution vectors may be larger than the relative
error in the computed personalized PageRank vectors, since this is not preserved
by the transpose operation.

PageRank contributions have also been used to estimate the PageRank of a
target vertex. The algorithm in [7] heuristically identifies the top contributors
to a vertex v by adaptively choosing vertices with high likelihood of being large
contributors, and then locally computes personalized PageRank from those ver-
tices. This is different from our approach of directly computing the contribution
vector, and more difficult to analyze rigorously.

Local algorithms have been studied in distributed computing [16] and in graph
partitioning and clustering [20,2]. Personalized PageRank vectors can be com-
puted locally using a number of methods [5,2,19], many of which are based on
the algorithm of Jeh and Widom [14]. None of these algorithms can be used
directly to compute a contribution vector or supporting set.

There are numerous methods for detecting link spam besides the SpamRank-
type algorithms we have mentioned here. Examples include applying machine

Local Computation of PageRank Contributions 153

learning to link-based features [3], the analysis of page content [15,17], TrustRank
[11] and Anti-TrustRank [18], and statistical analysis of various page features [8].
Finally, in a follow-up to this paper we use the local algorithm developed here
to design several locally computable page features for link spam detection, and
evaluate these features experimentally [1].

Organization. This paper will be organized as follows. In Section 2, we review the
basic concepts used in this paper, including PageRank, personalized PageRank,
and PageRank contribution vectors. In Section 3, we derive an alternate for-
mula for the PageRank contribution vector. Using this formula, we present an
efficient local algorithm for computing PageRank contribution and analyze its
performance. In Section 4, we consider several notions of supporting sets, which
are sets of vertices that contribute significantly to the PageRank of a target
vertex, and show how to efficiently compute approximate supporting sets. In
Section 5 we make a few concluding remarks. We also show that, in principle,
the time-reverse Markov chain can be used to compute the contribution vector,
but argue that our method is more efficient.

2 Preliminaries

The web can be modeled by a directed graph G = (V, E) where V are webpages
and a directed edge (u → v) ∈ E represents a hyperlink in u that references v.
Although the web graph is usually viewed as an unweighted graph, our discussion
can be extended to weighted models. To deal with the problem of dangling nodes
with no out-edges, we assume an artificial node with a single self-loop has been
added to the graph, and an edge has been added from each dangling node to
this artificial node. Let A denote the adjacency matrix of G. For each u ∈ V , let
dout(u) denote the out-degree of u and let din(u) denote the in-degree of u. Let
Dout be the diagonal matrix of out-degrees.

We will now define PageRank vectors and contribution vectors. For conve-
nience, we will view all vectors as row vectors, unless explicitly stated otherwise.

For a teleportation constant α, the PageRank vector prα defined by Brin and
Page [6] satisfies the following equation:

prα = α · 1 + (1 − α) · prα · M, (1)

where M is the random walk transition matrix given by M = D−1
outA and 1 is the

row vector of all 1’s (always of proper size). The PageRank of a page u is then
prα(u). When there is no danger of confusion, we may drop the subscript α. Note
that the above definition corresponds to the normalization

∑

u prα(u) = |V |.
Similarly, the personalized PageRank vector ppr(α, u) of a page u ∈ V , de-

fined by Haveliwala [13], satisfies the following equation.

ppr(α, u) = α · eu + (1 − α) · ppr(α, u) · M, (2)

where eu is the row unit vector whose uth entry is equal to 1.

154 R. Andersen et al.

Let PRMα denote the (personalized) PageRank matrix, whose uth row is the
personalized PageRank vector ppr(α, u). The (global) PageRank vector prα is
then 1·PRMα, the sum of all the personalized PageRank vectors. The PageRank
contribution of u to v is defined to be the (u, v)th entry of PRMα, and will be
written pprα(u → v). The contribution vector cpr(α, v) for the vertex v is
defined to be the row vector whose transpose is the vth column of PRMα. If
c = cpr(α, v) is the contribution vector for v, then we denote by c(S) the total
contribution of the vertices in S to the PageRank of v. In particular, we have
c(V) = prα(v) and c(u) = pprα(u → v).

3 Local Approximation of PageRank Contributions

In this section, we describe an algorithm for computing an approximation of the
contribution vector c = cpr(α, v) of a vertex v.

Definition 1 (Approximate Contribution). Avector c̃ is an ε-approximation
of the contribution vector c = cpr(α, v) if c̃ ≥ 0 and, for all vertices u,

c(u) − ε · prα(v) ≤ c̃(u) ≤ c(u).

A vector c̃ is an ε-absolute-approximation of the contribution vector c=cpr(α, v)
if c̃ ≥ 0 and, for all vertices u,

c(u) − ε ≤ c̃(u) ≤ c(u).

Clearly, an ε-approximation of cpr(α, v) is an (ε·prα(v))-absolute-approximation
of cpr(α, v). In the algorithm below, we will focus on the computation of an ε-
absolute-approximation of the contribution vector.

The support of a non-negative vector c̃, denoted by Supp(c̃), is the set of all
vertices whose entries in c̃ are strictly positive. The vector c has a canonical
ε-absolute-approximation. Let c̄ denote the vector

c̄(u) =
{

c(u) if c(u) > ε
0 otherwise .

Clearly, c̄ is the ε-absolute-approximation of c with the smallest support. More-
over, ‖c̄‖1 ≤ ‖c‖1 and thus, |Supp(c̄)| ≤ ‖c‖1/ε. Our local algorithm attempts
to find an approximation c̃ of c which has a similar support structure to that
of c̄.

3.1 High Level Idea of the Local Algorithm

It is well known that for each α, the personalized PageRank vector which satisfies
Equation 2 also satisfies

ppr(α, u) = α

∞
∑

t=0

(1 − α)t ·
(

euM t
)

. (3)

Local Computation of PageRank Contributions 155

The contribution of u to v can then be written in the following way.

pprα(u → v) = 〈ppr(α, u) , ev 〉 (4)

=

〈

α

∞
∑

t=0

(1 − α)t(euM t) , ev

〉

(5)

=

〈

eu , α

∞
∑

t=0

(1 − α)t(evMT)t

〉

. (6)

The standard way to compute the contribution of u to v is based on Equa-
tion 5. We refer to this approach as the time-forward calculation of pprα(u → v).
Recall that euM t is the t-step random walk distribution starting from u. In the
time-forward calculation, we emulate the random walk from u step by step and
add up the walk distributions scaled by the power sequence of (1−α)t. Without
knowing in advance which vertices u make large contributions to v, one may
have to perform the time-forward calculation of ppr(α, u) for many vertices u
to obtain a good approximation of cpr(α, v).

To overcome this difficulty, we can directly calculate cpr(α, v) in the manner
suggested by Equation 6. This equation implies that

cpr(α, v) = α

∞
∑

t=0

(1 − α)t ·
(

ev(MT)t
)

. (7)

Thus, the contribution vector can be computed by starting with ev, iteratively
computing ev(MT)t, and adding up the resulting vectors scaled by the power
sequence of (1−α)t. Note that the matrix MT is no longer a random walk matrix,
since the sum of each row will not generally be equal to 1. Unlike the time-forward
calculation, the direct calculation of cpr(α, v) is no longer an emulation of the
random walk starting from v. This fact complicates the error analysis of the next
subsection.

The discussion above provides a way to directly compute cpr(α, v), but our lo-
cal algorithm will perform a different calculation. Instead of iteratively computing
the vectors ev(MT)t, we adapt the technique of Jeh and Widom [14] for comput-
ing personalized PageRank to the task of computing contribution vectors. Using
this method, we can compute the contribution vector in a decentralized way, and
avoid spending computational effort manipulating small numerical values. This
enables us to bound the running time required to obtain a fixed level of error.

Equation 7 also enables us to compute the vector of contributions to a specified
subset S of vertices, which we define to be cpr(α, S) =

∑

v∈S cpr(α, v). Let
eS =

∑

v∈S ev. Then,

cpr(α, S) = α
∞
∑

t=0

(1 − α)t ·
(

eS(MT)t
)

. (8)

To further abuse notation, for any non-negative vector s, we define

cpr(α, s) = α

∞
∑

t=0

(1 − α)t ·
(

s(MT)t
)

. (9)

156 R. Andersen et al.

3.2 The Local Algorithm and Its Analysis

The theorem below describes our algorithm ApproxContributions for comput-
ing an ε-absolute-approximation of the contribution vector of a target vertex v.
We give an upper bound on the number of vertices examined by the algorithm
that depends on prα(v), ε, and α, but is otherwise independent of the number of
vertices in the graph. The algorithm performs a sequence of operations, which
we call pushback operations. Each pushback operation is performed on a single
vertex of the graph, and requires time proportional to the in-degree of that ver-
tex. We place an upper bound on the number of pushback operations performed
by the algorithm, rather than the total running time of the algorithm. The to-
tal running time of the algorithm depends on the in-degrees of the sequence
of vertices on which the pushback operations were performed. The number of
pushback operations is an upper bound on the number of vertices in the support
of the resulting approximate contribution vector.

Theorem 1. The algorithm ApproxContributions(v, α, ε,pmax) has the fol-
lowing properties. The input is a vertex v, two constants α and ε in the interval
(0, 1], and a real number pmax. The algorithm computes a vector c̃ such that
0 ≤ c̃ ≤ c, and either

1. c̃ is an ε-absolute approximation of cpr(α, v), or
2. ‖c̃‖1 ≥ pmax.

The number of pushback operations P performed by the algorithm satisfies the
following bound,

P ≤ min (prα(v),pmax)
αε

+ 1.

The proof of Theorem 1 is based on a series of facts which we describe below.
The starting point is the following observation, which is easy to verify from
Equation 9. For any vector s,

cpr(α, s)MT = cpr(α, sMT). (10)

We can further derive the following equation,

cpr(α, s) = αs + (1 − α) · cpr(α, s)MT

= αs + (1 − α) · cpr(α, sMT). (11)

This is the transposed version of the equation that was used Jeh and Widom
to compute approximate personalized PageRank vectors [14]. Very naturally, we
will use it to compute approximate contribution vectors.

The algorithm ApproxContributions(v, α, ε,pmax) maintains a pair of vec-
tors p and r with nonnegative entries, starting with the trivial approximation
p = 0 and r = ev, and applies a series of pushback operations that increase
‖p‖1 while maintaining the invariant p + cpr(α, r) = cpr(α, v). Each pushback
operation picks a single vertex u, moves an α fraction of the mass at r(u) to

Local Computation of PageRank Contributions 157

p(u), and then modifies the vector r by replacing r(u)eu with (1−α)r(u)euMT .
Note that ‖r‖1 may increase or decrease during this operation. We will define
the pushback operation more formally below, and then verify that each pushback
operation does indeed maintain the invariant.

pushback (u):
Let p′ = p and r′ = r, except for these changes:

1. p′(u) = p(u) + αr(u).
2. r′(u) = 0.
3. For each vertex w such that w → u:

r′(w) = r(w) + (1 − α)r(u)/dout(w).

Lemma 1 (Invariant). Let p′ and r′ be the result of performing pushback(u)
on p and r. If p and r satisfy the invariant p + cpr(α, r) = cpr(α, v), then p′

and r′ satisfy the invariant p′ + cpr(α, r′) = cpr(α, v).

Proof. After the pushback operation, we have, in vector notation,

p′ = p + αr(u)eu.

r′ = r − r(u)eu + (1 − α)r(u)euMT .

We will apply equation (11) to r(u)eu to show that p+cpr(α, r) = p′+cpr(α, r′).

cpr(α, r) = cpr(α, r − r(u)eu) + cpr(α, r(u)eu)

= cpr(α, r − r(u)eu) + αr(u)eu + cpr(α, (1 − α)r(u)euMT)

= cpr(α, r − r(u)eu + (1 − α)r(u)euMT) + αr(u)eu

= cpr(α, r′) + p′ − p.

During each pushback operation, the quantity ‖p‖1 increases by αr(u). The
quantity ‖p‖1 can never exceed ‖cpr(α, v)‖1, which is equal to prα(v). By per-
forming pushback operations only on vertices where r(u) ≥ ε, we can ensure that
‖p‖1 increases by a significant amount at each step, which allows us to bound the
number of pushes required to compute an ε-absolute-approximation of the con-
tribution vector. This is the idea behind the algorithm ApproxContributions.

ApproxContributions(v, α, ε,pmax):

1. Let p = 0, and r = ev.
2. While r(u) > ε for some vertex u:

(a) Pick any vertex u where r(u) ≥ ε.
(b) Apply pushback (u).
(c) If ‖p‖1 ≥ pmax, halt and output c̃ = p.

3. Output c̃ = p.

158 R. Andersen et al.

This algorithm can be implemented by maintaining a queue containing those
vertices u satisfying r(u) ≥ ε. Initially, v is the only vertex in the queue. At each
step, we take the first vertex u in the queue, remove it from the queue, and
perform a pushback operation from that vertex. If the pushback operation raises
the value of r(x) above ε for some in-neighbor x of u, then x is added to the back
of the queue. This continues until the queue is empty, at which point all vertices
satisfy r(u) < ε, or until ‖p‖1 ≥ pmax. We now show that this algorithm has
the properties promised in Theorem 1.

Proof (Proof of Theorem 1). Let T be the total number of push operations
performed by the algorithm, and let pt and rt be the states of the vectors
p and r after t pushes. The initial setting of p0 = 0 and r0 = ev satisfies
the invariant pt + cpr(α, rt) = cpr(α, v), which is maintained throughout the
algorithm. Since rt is nonnegative at each step, the error term cpr(α, rt) is
also nonnegative, so we have cpr(α, v) − pt ≥ 0. In particular, this implies
‖pt‖1 ≤ ‖cpr(α, v)‖1 = prα(v).

Let c̃ = pT be the vector output by the algorithm. When the algorithm
terminates, we must have either ‖c̃‖1 ≥ pmax or ‖rT ‖∞ ≤ ε. In the latter
case, the following calculation shows that c̃ is an ε-absolute-approximation of
cpr(α, v).

‖cpr(α, v) − c̃‖∞ = ‖cpr(α, rT)‖∞
≤ ‖rT ‖∞
≤ ε.

The fact that ‖cpr(α, rT)‖∞ ≤ ‖rT ‖∞ holds because rT is nonnegative and each
row of M sums to 1.

The vector pT−1 must have satisfied ‖pT−1‖1 < pmax, since the algorithm
decided to push one more time. We have already observed that ‖pT−1‖1 ≤
prα(v). Each push operation increased ‖p‖1 by at least αε, so we have

αε(T − 1) ≤ ‖pT−1‖1 ≤ min (‖cpr(α, v)‖1,pmax).

This gives the desired bound on T .

It is possible to perform a pushback operation on the vertex u, and to perform the
necessary queue updates, in time proportional to din(u). Therefore, the running
time of the algorithm is proportional to the sum over all pushback operations of
the in-degree of the pushed vertex.

We can compute an ε-approximation of cpr(α, v), provided that prα(v) is
known, by calling the algorithm ApproxContributions(v, α, ε · prα(v), prα(v)).

Corollary 1 (ε-Approximation of contribution vectors). Given prα(v),
an ε-approximation of cpr(α, v), can be computed with 1

αε+1 pushback operations.

We also observe that, using Equation 8, our algorithm can be easily adapted
to compute an ε-absolute-approximation and ε-approximation of cpr(α, S) for a
group S of vertices, with a similar bound on the number of pushback operations.

Local Computation of PageRank Contributions 159

3.3 The Support of the Approximate Contribution Vector

The number of vertices in the support of the ε-approximate contribution vector
c̃ is upper bounded by the number of pushback operations used to compute it,
which is at most 1

αε + 1. In this section we give a stronger upper bound on
the size of the support. To do this, we need to modify the pushback operation
slightly. Instead of moving all the mass from r(u) during the pushback operation,
we move all but ε/2 units of mass, and leave ε/2 units on r(u). This increases
the running time bound for the algorithm by a factor of 2, but ensures that
r(x) ≥ ε/2 at each vertex in Supp(c̃). We use this fact to give a family of bounds
on the size of Supp(c̃).

We will abuse our notation a bit by defining the following,

prα(x → y) = 〈xMα , y 〉,

where Mα = PRMα is the PageRank matrix. In particular, prα(x → eS) is the
amount probability from the PageRank vector with starting distribution x on
the set S.

Proposition 1. Let c̃ be the ε-approximate contribution vector for v computed
by the modified algorithm described above, and let S = Supp(c̃). For any non-
negative vector z, we have the following upper bound on S,

prα(z → eS) ≤ 2
ε
prα(z → ev).

Proof. Note that ppr(α, v) = evMα and cpr(α, v) = evM
T
α . We know that

cpr(α, r) ≤ cpr(α, ev), which can also be written rMT
α ≤ evM

T
α . Let S =

Supp(c̃) and recall that r(x) ≥ ε/2 for any vertex x ∈ S. Then,

〈 zMα , ev 〉 =
〈

z , evM
T
α

〉

≥
〈

z , rMT
α

〉

= 〈 zMα , r 〉 ≥ (ε/2)〈 zMα , eS 〉.

In the second step we needed z to be nonnegative, and in the last step we needed
zMα to be nonnegative, which is true whenever z is nonnegative.

In words, this proposition states that for any starting vector z, the amount of
probability from the PageRank vector ppr(α, z) on the set S = Supp(c̃) is at
most 2/ε times the amount on the vertex v. If we let z = eV , then we obtain a
bound on the amount of global PageRank on the set S,

prα(S) ≤ 2
ε
prα(v).

To see that this bound is at least as strong as what we knew before, recall
that the PageRank of any given vertex is at least α. If we make the pessimistic
assumption that prα(u) = α for each u ∈ Supp(c̃), then the bound we have just
proved reduces to our earlier bound on the number of pushback operations,

|Supp(c̃)| ≤ 2prα(v)/αε.

160 R. Andersen et al.

4 Computing Supporting Sets

In this section, we use our local algorithm for approximating contribution vec-
tors to compute approximate supporting sets, sets of vertices that contribute
significantly to the PageRank of a target vertex. There are several natural no-
tions of supporting sets, which we define below. For a vertex v, let πv be the
permutation that orders the entries cpr(α, v) from the largest to the smallest.
Ties may be broken arbitrarily.

– top k contributors: the first k pages of πv.
– δ-significant contributors: {u | pprα(u → v) > δ}.
– ρ-supporting set: a set S of pages such that

pprα(S → v) ≥ ρ · prα(v).

In addition, let kρ(v) be the smallest integer such that

pprα(πv(1 : kρ(v)) → v) ≥ ρ · prα(v).

Clearly the set of the first kρ(v) pages of πv is the minimum size ρ-supporting
set for v. Also, we define ρk(v) = pprα(πv(1 : k) → v)/prα(v) to be the fraction
of v’s PageRank contributed by its top k contributors.

4.1 Approximating Supporting Sets

Without precisely computing cpr(α, v) it might be impossible to identify sup-
porting sets exactly, so we consider approximate supporting sets. For a precision
parameter ε, we define the following.

– ε-precise top k contributors: a set of k pages that contains all pages
whose contribution to v is at least pprα(πv(k) → v)+ ε ·prα(v), but no page
with contribution to v less than pprα(πv(k) → v) − ε · prα(v).

– ε-precise δ-significant contributors: a set that contains the set of δ-
significant contributors and is contained in the set of (δ − ε)-significant con-
tributors.

The results in the remainder of this section assume that prα(v) is known.

Theorem 2. An ε-precise set of top k contributors of a vertex v can be found
by performing 1/αε + 1 pushback operations.

Proof. Call c̃ = ApproxContributions(v, α, ε·prα(v), prα(v)). Let C = Supp(c̃).
If |C| > k, then return the vertices with the top k entries in c̃; otherwise,
return C together with k−Supp(c̃) arbitrarily chosen vertices not in C. Consider
a page u with cpr(u, v) ≥ cpr(πv(k), v) + ε · prα(v). Clearly u ∈ C because
c̃(u) ≥ cpr(πv(k), v), implying c̃(u) is among the top k entries in c̃. On the
other hand, c̃(πv(j)) is at least cpr(πv(k), v) − ε · prα(v) for all j ∈ [1 : k].
Thus, each of the vertices with the top k entries in c̃ must contribute at least
cpr(πv(k), v) − ε · prα(v) to v.

Local Computation of PageRank Contributions 161

Theorem 3. An ε-precise δ-significant contributing set of a vertex v can be
found by performing 1/αε + 1 pushback operations.

Proof. Call c̃ = ApproxContributions(v, α, ε · prα(v), prα(v)) and return the
vertices whose entries in c̃ are at least (δ − ε) · prα(v). Clearly, the set contains
the δ-contributing set of v and is contained in the (δ − ε)-supporting set of v.
Moreover, the number of pages not in the δ-supporting set that are included is
at most 1/(δ − ε).

In the remainder of this section, we consider the computation of approximate
ρ-supporting sets. We give two different algorithms, one for finding a supporting
set on a fixed number of vertices with the largest contribution possible, and
one for finding a supporting set with a fixed contribution on as few vertices as
possible.

Theorem 4. Given a vertex v and an integer k, a set of k vertices that is a
(ρk − ε)-supporting set for v can be found by performing k/αε + 1 pushback
operations.

Proof. Compute c̃ = ApproxContributions(v, α, εprα(v)/k, prα(v)). Let Sk be
the set of k top contributors to v, which are the k vertices with the highest values
in c, and let S̃k be the set of k vertices with the highest values in c̃. The set S̃k

meets the requirements of the theorem, since we have

c̃(S̃k) ≥ c(Sk) − k(εprα(v)/k)
≥ ρk · prα(v) − ε · prα(v)
= prα(v)(ρk − ε).

Theorem 5. Assume we are given ρ but not kρ. A set of at most kρ vertices
that is a (ρ − ε)-supporting set for v can be found by performing O(kρ log kρ/αε)
pushback operations.

Proof. The challenge here is that we do not know kρ, so we need to use a binary
search procedure to find a proxy for kρ. We will proceed in two phases. In
the first phase, we guess a value of k, starting with k = 1, and compute c̃ =
ApproxContributions(v, α, ε ·prα(v)/k, prα(v)). As in Theorem 4, let S̃k be the
set of k vertices with the highest values in c̃, which we know satisfies c̃(S̃k) ≥
(ρk − ε). If we observe that c̃(S̃k) < (ρ − ε), then we double k and repeat the
procedure. If we observe that c̃(S̃k) ≥ (ρ − ε), then we halt and proceed to the
second phase, and set k1 to be the value of k for which this happens. We must
have k1 ≤ 2kρ, since we are guaranteed to halt if k ≥ kρ.

Let k0 = k1/2 be the value of k from the step before the first phase halted.
In the second phase, we perform binary search within the interval [k0, k1] to
find the smallest integer kmin for which c̃(S̃kmin) ≥ (ρ − ε), which must satisfy
kmin ≤ kρ. We output S̃kmin .

Each time we call the subroutine c̃ = ApproxContributions(v, α, εprα(v)/k,
prα(v)), it requires k/αε + 1 push operations. In the first phase we call this

162 R. Andersen et al.

subroutine with a sequence of k values that double from 1 up to at most 2kρ,
so the number of push operations performed is O(kρ/αε + log kρ). In the second
phase, the binary search makes at most log kρ calls to the subroutine, with k
set to at most 2kρ in each step, so the number of push operations performed is
O(kρ log kρ/αε+log kρ). The total number of push operations performed in both
phases is O(kρ log kρ/αε).

4.2 Local Estimation of PageRank

Up to this point, we have assumed when computing the supporting set of a vertex
that its PageRank is known. We now consider how to apply our approximate
contribution algorithm when nothing is known about the PageRank of the target
vertex. In particular, we consider the problem of computing a lower bound on
the PageRank of a vertex using local computation.

A natural lower bound on the PageRank prα(v) is provided by the contribution
to v of its top k contributors, pk = cpr(πv(1 : k), v). The theorem below shows
we can efficiently certify that prα(v) is approximately as large as pk without
prior knowledge of prα(v) or pk. This should be contrasted with the algorithms
from the previous section, for which we needed to know the value prα(v) in order
to set ε to obtain the stated running times.

Theorem 6. Given k and δ, we can compute a real number p such that

pk(1 + δ)−2 ≤ p ≤ prα(v),

where pk = cpr(πv(1 : k), v), by performing 10k log(k/αδ)/α pushback opera-
tions.

Proof. Fix k and δ, choose a value of p, and compute c̃ = ApproxContributions
(v, α, ε, p) with ε = δp/k. The number of pushback operations performed is at
most

1 + p/αε = 1 + p/α(δp/k) = 1 + 10k/α.

When the algorithm halts, we either have ‖c̃‖1 ≥ p, in which case we have
certified that prα(v) ≥ p, or else we have ‖c̃ − cpr(α, v)‖∞ ≤ δp/k, in which
case we have certified that pk ≤ (1 + δ)p, by the following calculation:

pk = cpr(πv(1 : k), v) ≤ c̃(πv(1 : k), v) + (δp/k)k ≤ p + δp.

We now perform binary search over p in the range [α, k]. Let plow be the
largest value of p for which we have certified that prα(v) ≥ p, and let phigh be
the smallest value of p for which we have certified that pk ≤ (1+δ)p. We perform
binary search until phigh ≤ plow(1 + δ), which requires at most log(k/αδ) steps.
Then, plow has the property described in the theorem,

prα(v) ≥ plow ≥ phigh(1 + δ)−1 ≥ pk(1 + δ)−2.

The total number of pushback operations performed during the calls to
ApproxContributions during the binary search is at most 10k log(k/αδ)/α.

Local Computation of PageRank Contributions 163

5 Final Remarks

5.1 Improving the Dependency on In-Degrees

In our performance analysis, we give a bound of prα(v)/(αε) + 1 on the total
number of pushback operations performed by our algorithm. In a pushback at
a vertex u, we update the entry for u in the vector p as well the as entries in r
for all vertices that point to u. As a result, the overall time complexity of our
algorithm is proportional to the sum of the in-degrees of the sequence of vertices
that we pushback from. A possible direction for future research is to devise an
algorithm whose running time can be bounded in terms of the total in-degree
of the supporting set that the algorithm attempts to approximate. This type
of bound would offer stronger control over the running time than the result
obtained in this paper, where the number of pushback operations operations
is bounded in terms of the number of vertices in the supporting set, but the
running time depends on the in-degrees of the vertices from which the sequence
of push operations is performed.

5.2 Computing Contribution Vectors Via the Time-Reverse Chain

As noted earlier, the matrix MT in the formula of Equation 7 may not be
Markov. It is natural ask whether the time-reverse Markov chain of the random
walk matrix M may be used to compute the contribution vector for a vertex v,
and, if so, whether this method is efficient.

For the following discussion, we assume that M has a unique stationary dis-
tribution, which will not be true for general directed graphs. Recall that,

Definition 2 (Time-reverse chain). Given a Markov chain M with transi-
tion probability mij , and stationary distribution π, the time-reverse chain is the
Markov chain R with transition probability rij = π(j)mji/π(i).

In other words, let Π be the matrix whose (i, j)th entry is π(j)/π(i), then
R = Π · ∗MT , where the operation ·∗ is the component-wise multiplication of
two matrices. The time-reverse chain has the following properties.

– R has the same stationary distribution as M ,
– for all i, k, and t, consider the t-step random walk starting from i in M and

k in R, then

〈

eiM
t , ek

〉

=
(

π(k)
π(i)

)

〈

ekRt , ei

〉

(12)

Recall 〈 eiM
t , ek 〉 is equal to the probability that k is the vertex reached by a

t-step random walk from i. Let pprM
α (u → v) denote the personalized PageRank

contribution from u to v in a Markov chain M .

164 R. Andersen et al.

Theorem 7. Suppose a Markov chain M has a stationary distribution π and R
is its time-reverse chain. Then

pprM
α (u → v) =

(

π(v)
π(u)

)

pprR
α (v → u). (13)

Proof. The result follows from Equations 5 and 12.

Thus, if the stationary distribution exists, we can in principle compute the con-
tribution vector of M by computing the personalized PageRank vector for v in
the time-reverse chain. We argue that the method we presented in Section 3 is
preferable to the time-reverse Markov chain method for the following reasons.
Our method does not require that M has a stationary distribution. Computing a
personalized PageRank vector in the time-reverse Markov chain requires that we
first compute the stationary distribution π of M , which may be computationally
expensive. Perhaps most important is the difference in the error analysis. If the
stationary distribution exists, one can compute an ε-approximate contribution
vector by computing a personalized PageRank vector in R for which the error
at each vertex i is at most επ(i). If π(i) is extremely small at some vertices, and
it may be exponentially small in the number of vertices in the graph, this will
require a large amount of computation.

We prefer the method presented in Section 3 to the time-reverse method for
most graphs that are likely to be encountered in practice. However, there are
special cases where the time-reverse method will be efficient. In particular, if the
Markov chain has a stationary distribution that is nearly proportional to the in-
degrees of the vertices, as it would be in an undirected graph, then computing
a personalized PageRank vector in the time-reverse chain is an efficient way to
compute a contribution vector.

References

1. Andersen, R., Borgs, C., Chayes, J., Hopcroft, J., Jain, K., Mirrokni, V., Teng,
S.: Experimental evaluation of locally computable link-spam features (submitted,
2007)

2. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 475–486. IEEE Computer Society, Washington,
DC (2006)

3. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R.: Link-based
characterization and detection of web spam (2006)

4. Benczúr, A.A., Csalogány, K., Sarlós, T., Uher, M.: Spamrank - fully automatic
link spam detection. In: First International Workshop on Adversarial Information
Retrieval on the Web (2005)

5. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing.
Internet Math. 3(1), 41–62 (2006)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

Local Computation of PageRank Contributions 165

7. Chen, Y., Gan, Q., Suel, T.: Local methods for estimating pagerank values. In:
Proc. of CIKM, pp. 381–389 (2004)

8. Fetterly, D., Manasse, M., Najork, M.: Spam, damn spam, and statistics: using
statistical analysis to locate spam web pages. In: WebDB 2004: Proceedings of the
7th International Workshop on the Web and Databases, pp. 1–6. ACM Press, New
York (2004)

9. Fogaras, D., Racz, B.: Towards scaling fully personalized pagerank. In: Leonardi,
S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 105–117. Springer, Heidelberg (2004)

10. Gyöngyi, Z., Berkhin, P., Garcia-Molina, H., Pedersen, J.: Link spam detection
based on mass estimation. In: Proceedings of the 32nd International Conference
on Very Large Databases, ACM, New York (2006)

11. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank.
In: VLDB, pp. 576–587 (2004)

12. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Web content categorization using
link information. Technical report, Stanford University (2006)

13. Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm
for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

14. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW 2003. Proceedings
of the 12th World Wide Web Conference, pp. 271–279 (2003)

15. Mishne, G., Carmel, D.: Blocking blog spam with language model disagreement
(2005)

16. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

17. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages
through content analysis. In: WWW 2006: Proceedings of the 15th international
conference on World Wide Web, pp. 83–92. ACM Press, New York (2006)

18. Raj, R., Krishnan, V.: Web spam detection with anti-trust rank. In: Proc. of the
2nd International Worshop on Adversarial Information Retreival on the Web, pp.
381–389 (2006)

19. Sarlós, T., Benczúr, A.A., Csalogány, K., Fogaras, D.: To randomize or not to
randomize: space optimal summaries for hyperlink analysis. In: WWW, pp. 297–
306 (2006)

20. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: ACM STOC-04, pp. 81–90.
ACM Press, New York (2004)

Local Partitioning for Directed Graphs Using

PageRank

Reid Andersen1, Fan Chung2, and Kevin Lang3

1 Microsoft Research, Redmond WA 98052
reidan@microsoft.com

2 University of California, San Diego, La Jolla CA 92093-0112
fan@ucsd.edu

3 Yahoo! Research, Santa Clara CA 95054
langk@yahoo-inc.com

Abstract. A local partitioning algorithm finds a set with small conduc-
tance near a specified seed vertex. In this paper, we present a generaliza-
tion of a local partitioning algorithm for undirected graphs to strongly
connected directed graphs. In particular, we prove that by computing a
personalized PageRank vector in a directed graph, starting from a single
seed vertex within a set S that has conductance at most α, and by per-
forming a sweep over that vector, we can obtain a set of vertices S′ with
conductance ΦM (S′) = O(

√

α log |S|). Here, the conductance function
ΦM is defined in terms of the stationary distribution of a random walk
in the directed graph. In addition, we describe how this algorithm may
be applied to the PageRank Markov chain of an arbitrary directed graph,
which provides a way to partition directed graphs that are not strongly
connected.

1 Introduction

In directed networks like the world wide web, it is critical to develop algorithms
that utilize the additional information conveyed by the direction of the links. Algo-
rithms for web crawling, web mining, and search ranking, all depend heavily on the
directedness of the graph. For the problem of graph partitioning, it is extremely
challenging to develop algorithms that effectively utilize the directed links.

Spectral algorithms for graph partitioning have natural obstacles for gener-
alizations to directed graphs. Nonsymmetric matrices do not have a spectral
decomposition, meaning there does not necessarily exist an orthonormal basis of
eigenvectors. The stationary distribution for random walks on directed graphs
is no longer determined by the degree sequences. In the earlier work of Fill [7]
and Mihail [12], several generalizations for directed graphs were examined for
regular graphs. Lovász and Simonovits [11] established a bound for the mixing
rate of an asymmetric ergodic Markov chain in terms of its conductance. When
applied to the Markov chain of a random walk in a strongly connected directed
graph, their results can be used to identify a set of states of the Markov chain
with small conductance. Algorithms for finding sparse cuts, based on linear and
semidefinite programming and metric embeddings, have also been generalized to

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 166–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Local Partitioning for Directed Graphs Using PageRank 167

directed graphs [3,6]. A Cheeger inequality for directed graphs which relies on
the eigenvalues of a normalized Laplacian for directed graphs can also be used
to find cuts of small conductance [5].

This paper is concerned with a different type of partitioning algorithm, called
a local partitioning algorithm. A local partitioning algorithm finds a set with
small conductance near a specified seed vertex, and can produce such a cut by
examining only a small portion of the input graph. In a recent paper, the authors
introduced a local partitioning algorithm, for undirected graphs, that finds a cut
with small conductance by performing a sweep over a personalized PageRank
vector. Personalized PageRank traditionally has been applied and studied in
directed web graphs, so it is natural to ask whether this local partitioning algo-
rithm can be generalized to find sets with small conductance in a directed graph
by sweeping over a personalized PageRank vector computed in a directed graph.

In this paper, we generalize the basic local partitioning results from [1] to
strongly connected directed graphs. We prove that by computing a personal-
ized PageRank vector in a directed graph, and sorting the vertices of the graph
according to their probability in this vector divided by their probability in the
stationary distribution, we can identify a set with small conductance, where the
notion of conductance must be generalized appropriately. Directed graphs that
arise in practice are typically not strongly connected, and this generalized local
partitioning algorithm cannot be applied directly to such a graph. We address
this problem by describing how our algorithm may be applied to the PageRank
Markov chain of a directed graph, which is ergodic even when the underlying
graph is not strongly connected. When applied to the PageRank Markov chain,
the generalized local partitioning algorithm has a natural interpretation: we com-
pute a personalized PageRank vector with a single starting vertex, and a global
PageRank vector with a uniform starting vector, and sort the vertices of the
graph according to the ratio of their entries in the personalized PageRank vec-
tor and global PageRank vector. We prove that by sorting the vertices of the
graph according to this ratio, our algorithm finds a set with small conductance
in the PageRank Markov chain. We also show that the required computation
can be carried out efficiently.

The generalized local partitioning algorithm has advantages and disadvan-
tages when compared to the undirected algorithm. One advantage is that our
algorithm follows outlinks exclusively, and does not travel backwards over in-
links. This ensures that all the vertices in the resulting cut are reachable from
the starting vertex, and is particularly useful in settings where outlinks are more
easily accessible than inlinks. One disadvantage is that the appropriate general-
ization of conductance to directed graphs requires reweighting the edges of the
graph according to the amount of probability moving over them in the station-
ary distribution π of a random walk, which is more complicated in a directed
graph than in the undirected case. The generalized local partitioning algorithm
is guaranteed to find a cut for which the total weight of outlinks crossing the cut
is small, but this weight depends on π, and the cut may have a large number of
outlinks with small weight.

168 R. Andersen, F. Chung, and K. Lang

Here is an outline of the paper. In the next section, we define the general-
izations of the key ingredients of the local partitioning algorithm from [1] to
strongly connected directed graphs, including personalized PageRank, conduc-
tance, sweeps, and the Lováasz-Simonovits potential function. In the main sec-
tion, we prove a generalization of our basic local partitioning results to strongly
connected directed graphs. We prove that that a sweep over a personalized
PageRank vector in the directed graph produces a set with small conductance.
In Section 6, we describe how to apply our algorithm to the PageRank matrix of
an arbitrary directed graph, which is always strongly connected. We will show
that our local algorithm can find sets with small conductance by computing per-
sonalized PageRank vectors in the original directed graph, provided we compute
two global PageRank vectors offline.

2 Preliminaries

Let G be a directed graph, consisting of a vertex set V and a set of directed
edges E, each of which is an ordered pair (u, v) of vertices from V . Let n be the
number of vertices, and m be the number of directed edges. We write dout(v) for
the out-degree of a vertex v.

The adjacency matrix A = A(G) is the n × n matrix where Ai,j = 1 if and
only if there is a directed edge (vi, vj), given some fixed ordering v1, . . . , vn of the
vertices. The out-degree matrix D = D(G) is the n × n diagonal matrix where
Di,i = dout(vi).

For a given directed graph, we will consider several different Markov chains.
For our purposes, a Markov chain M is the matrix of a random walk on a
weighted directed graph on the vertex set V . Equivalently, it is an n × n prob-
ability matrix, for which the sum of each row is 1. A Markov chain is said to
be ergodic if the corresponding random walk converges to a unique stationary
distribution. That is, if there exists a vector π that is nonzero at each ver-
tex, that satisfies π = πM , and such that for every vertex v in V , we have
limt→∞ 1vM

t = π. The vector π is the stationary distribution of M . We remark
that a Markov chain is ergodic if and only if it is a random walk on a graph that
is strongly connected and aperiodic. Efficient numerical methods for computing
the stationary distribution of an ergodic Markov chain M are described in [16].

Let p be a probability distribution on the vertices of V , and let M be a Markov
chain. For each set S ⊆ V , we define the sum of p over S to be

p(S) =
∑

u∈S

p(u),

For each edge (u, v), we define

p(u, v) = p(u)M(u, v).

This is the amount of probability that moves from u to v when a step of the
Markov chain is applied to the vector p. For each set A of directed edges, we
define

Local Partitioning for Directed Graphs Using PageRank 169

p(A) =
∑

(u,v)∈A

p(u, v),

which is the total amount of probability moving over the set of directed edges.
This notation is overloaded, but it is unambiguous if the type of input is known.

2.1 Conductance and Sweeps

We now assume that the Markov chain M is ergodic with a unique stationary
distribution π, and define the generalizations to ergodic Markov chains of con-
ductance, of the sweep procedure for finding cuts with small conductance (which
is often used in spectral partitioning [4,15]), and of the potential function p[x]
(which was introduced by Lovàsz and Simonovits to bound the mixing rate of
random walks). In the case of ergodic Markov chains, all of these are normalized
by the stationary distribution π.

Given a set S of states, we define π̄(S) = min(π(S), 1 − π(S)) to be the
measure of the smaller side of the partition induced by S, and define the outgoing
edge border ∂(S) as follows,

∂(S) = {(u, v) ∈ E | u ∈ S and v ∈ S̄}.

Definition 1. Let M be an ergodic Markov chain, and let π be its unique sta-
tionary distribution. We define the M -conductance ΦM (S) of a set of vertices S
to be

ΦM (S) =
π(∂(S))

π̄(S)
.

Definition 2. Let M be an ergodic Markov chain with stationary distribution
π, and let p be a probability distribution on the vertices. Let v1, . . . , vn be an
ordering of the vertices such that

p(vi)
π(vi)

≥ p(vi+1)
π(vi+1)

.

For each integer j in {1, . . . , n}, we define Sp
j = {v1, . . . , vj} to be the set con-

taining the top j vertices in this ordering. We define ΦM (p) to be the smallest
M -conductance among the sets Sp

1 , . . . Sp
n,

ΦM (p) = min
j∈[1,n]

ΦM (Sp
j).

The process of sorting the vertices according to this ordering and choosing the
set of smallest M-conductance is called a sweep.

Definition 3. Let M be an ergodic Markov chain with stationary distribution
π, and let p be a probability distribution on the vertices. We define p [x] to be the
unique function from [0, 1] to [0, 1] such that

170 R. Andersen, F. Chung, and K. Lang

p
[

π(Sp
j)

]

= p(Sp
j) for each j ∈ [0, n],

and such that p [x] is piecewise linear between these points.

Proposition 1. We have the following facts about the function p [x].

1. The function p [x] is concave.
2. For any set S of vertices,

p(S) ≤ p [π(S)] .

3. For any set of directed edges A, we have

p(A) ≤ p [π(A)] .

The facts in this proposition are proved in [11], and are not difficult to verify.

2.2 Global PageRank and Personalized PageRank

Definition 4. Given a Markov chain M , the PageRank vector prM (α, s), de-
fined by Brin and Page [13], is the unique solution of the linear system

prM (α, s) = αs + (1 − α)prM (α, s)M. (1)

Here, α is a constant in (0, 1] called the jump probability, s is a probability
distribution called the starting vector.

We will use the following basic facts about PageRank.

Proposition 2. For any Markov chain M , starting vector s, and jump proba-
bility α ∈ (0, 1], there is a unique vector prM (α, s) satisfying

prM (α, s) = αs + (1 − α)prM (α, s)M.

Proposition 3. For any Markov chain M and any fixed value of α in (0, 1],
there is a linear transformation Rα such that prM (α, s) = sRα. Furthermore,
Rα is given by the matrix

Rα = αI + α

∞
∑

t=1

(1 − α)tM t. (2)

We omit the proofs, which may be found elsewhere.
We let ψ = 1

n1V be the uniform distribution. If a PageRank vector has ψ for its
starting vector, we call it a global PageRank vector. If a PageRank vector has for
its starting vector the indicator vector 1v, with all probability on a single vertex
v, we call it a personalized PageRank vector, and use the shorthand notation
prM (α, v) = prM (α, 1v).

There are a plenitude of algorithms for computing global PageRank and per-
sonalized PageRank, so we will treat the computation of PageRank as a primitive
operation. We assume we have the following two black-box algorithms,

Local Partitioning for Directed Graphs Using PageRank 171

– GlobalPR(M, α) computes the global PageRank vector prM (α, ψ).
– LocalPR(M, α, v) computes the personalized PageRank vector prM (α, v).

We make the distinction between these two black boxes because personalized
PageRank can be computed more efficiently that global PageRank. One may use
for LocalPR any of the algorithms described by Jeh and Widom [10], Berkhin [2],
Sarlos [14], or Gleich [8], each of which can compute an approximation of the
personalized PageRank vector prM (α, v) by examining only a small fraction of
the input graph near v, provided that M is a sparse matrix. The global PageRank
can be computed efficiently in numerous ways, for example the Arnoldi method
described in [9], but requires performing a computation over the entire graph.
We will endeavor to use LocalPR instead of GlobalPR as much as possible.

3 Local Partitioning for Ergodic Markov Chains

We now state the main theorem of the paper, which shows that a sweep over
a personalized PageRank vector in an ergodic Markov chain M can produce a
set with small M -conductance. This is a natural generalization of the theorem
proved for undirected graphs in [1].

Theorem 1. Let M be an ergodic Markov chain with stationary distribution π.
Let S be a set of vertices such that π(S) ≤ 1

2 and ΦM (S) ≤ α/16, for some
constant α. If v is a vertex sampled from S according to the probability distri-
bution π(v)/π(S), then with probability at least 1/2, we have ΦM (prM (α, v)) =
O(

√

α log |S|).

The proof of the theorem is given at the end of this section. Here is the outline
of how we will proceed. Given a personalized PageRank vector p = prM (α, s) in
an ergodic Markov chain M, we place an upper bound on p[x] that depends on α
and Φ(p), and place a lower bound on p[π(S)] that depends on the conductance
of a certain set S near the starting vertex. These upper and lower bounds will be
combined to show that Φ(p) is small. We establish the upper and lower bounds
in the following lemmas.

Lemma 1. Let M be an ergodic Markov chain with stationary distribution π,
let p = prM (α, v) be a personalized PageRank vector in M , and let φ = ΦM (p)
be the smallest M-conductance found by the sweep over p. Then,

p[x] ≤ x + αt +
(

1 − φ2

72

)t √

x/π(v) for all x ∈ [0, 1] and all t ≥ 0.

Lemma 2. Let M be an ergodic Markov chain with stationary distribution π,
let S be a set of vertices, and let v be a vertex sampled from S according to the
probability distribution π(v)/π(S). With probability at least 3/4,

prM (α, v)(S) ≥ 1 − 4
ΦM (S)

α
.

172 R. Andersen, F. Chung, and K. Lang

The proofs of these two lemmas are contained in the full version. We use them
now to derive the main theorem.

Proof (Proof of Theorem 1)
Let p = prM (α, v) and let φ = Φ(p). If v is sampled from S with probability
π(v)/π(S), Lemma 2 implies the following bound holds with probability at least
3/4,

prM (α, v)(S) ≥ 1 − 4
ΦM (S)

α
≥ 1 − 4

α/16
α

≥ 3/4. (3)

We will now show that with probability at least 3/4,

π(v)
π(S)

≥ 1
4|S| . (4)

To see this, consider the set of vertices S′ in S such that π(v) ≥ π(S)
4|S| . Clearly

π(S \ S′) < π(S)/4, which shows that π(S′) > (3/4)π(S).
The probability that the two events described in (3) and (4) both occur is at

least 1/2. We will assume for the rest of the proof that both events hold.
Lemma 1 gives us the following upper bound on prM (α, v)(S).

prM (α, v)(S) ≤ prM (α, v)[π(S)]

≤ (4/3)π(S) + αT +
(

1 − φ2

72

)T
√

π(S)/π(v)

≤ (4/3)(1/2) + αT +
(

1 − φ2

72

)T
√

4|S|.

If we let T = (72/φ2) ln 24
√

4|S|, then

prM (α, v)(S) ≤ 2/3 + αT + 1/24.

This contradicts our lower bound from (3) if α < 1/25T , so we have shown
that α ≥ 1/25T , which implies the following bound,

φ ≤
√

72 · 25 · α ln 24
√

4|S| = O(
√

α log |S|).

4 Partitioning a Strongly Connected Graph

In the next two sections we describe two possible approaches to partitioning
a directed graph. In this section, we describe the straightforward method that
applies only when the directed graph is strongly connected.

If the graph is strongly connected, then we may apply Theorem 1 to the lazy
random walk Markov chain W , which is defined to be

W = W(A) =
1
2
(I + AD−1).

Local Partitioning for Directed Graphs Using PageRank 173

Here, D is the diagonal matrix whose nonzero elements are the out-degrees of
the vertices. The laziness of the walk ensures that W is ergodic whenever A is
strongly connected, which allows us to apply our main theorem to W .

To apply Theorem 1 to the lazy walk Markov chain W , we must compute and
perform a sweep over a personalized PageRank vector. When performing the
sweep, we must know the stationary distribution of W to sort the vertices into
the proper order. The stationary distribution needs to be computed only once,
and afterwards we can find numerous cuts by computing a single personalized
PageRank vector per cut. The necessary computation is summarized below.

Applying Theorem 1 to the lazy walk Markov chain of a strongly
connected graph.
We are given as input a strongly connected directed graph with lazy walk
matrix W . The following procedure may be used to apply Theorem 1 with
several different starting vertices and values of α. The offline preprocessing
must be done once, after which the local computation may be performed as
many times as desired.

Offline Preprocessing:

1. Compute the stationary distribution π of W .

Local computation:

1. Pick a starting vertex v and a value of α.
2. Compute p = prW(α, v), using LocalPR.
3. Sort the vertices in nonincreasing order of p(x)/π(x).
4. Let Sj be the set of the top j vertices in this ranking.
5. Compute the W-conductance of each set Sp

j , and output the set with
the smallest W-conductance.

5 Partitioning the PageRank Markov Chain

The majority of directed graphs that arise in practice are not strongly connected,
so we cannot directly apply the results of the previous section to such a graph. In
this section, we describe how Theorem 1 can be applied to the PageRank Markov
chain of an arbitrary graph, which is always ergodic. We show that the notion
of conductance associated with this Markov chain has a natural interpretation
in terms of PageRank. We describe how to find a large number of sets with
low conductance in the PageRank Markov chain by performing a small number
(two) of global PageRank computations as a preprocessing step, followed by any
desired number of local computations.

5.1 The PageRank Markov Chain

We now define the PageRank Markov chain Mβ = Mβ(A) in terms of the ad-
jacency matrix A of an arbitrary directed graph. To do so, we first modify the

174 R. Andersen, F. Chung, and K. Lang

adjacency matrix by adding a self-loop to each vertex, to ensure that no ver-
tex has out-degree zero. This ensures the random walk matrix W = D−1A is
a Markov chain, where D is the diagonal matrix containing the modified out-
degrees after the self-loops have been added.

Let ψ = 1
n1V be the uniform distribution, and let β be a constant in [0, 1],

which we will call the global jump probability. Recall that the global PageRank
vector prW (β, ψ) is the unique solution of the linear system

prW (β, ψ) = βψ + (1 − β)prW (β, ψ)W. (5)

The PageRank Markov chain Mβ is defined to be

Mβ = βKψ + (1 − β)W,

where Kψ = 1T ψ is the dense rank-1 matrix obtained by taking the outer
product of ψ with the all-ones vector. The global PageRank vector prW (β, ψ) is
the stationary distribution of the PageRank Markov chain Mβ . In other words,
we have prW (β, ψ) = prW (β, ψ)Mβ. The PageRank Markov chain Mβ is ergodic
for any value of β ∈ (0, 1].

The notion of conductance associated with the PageRank Markov chain Mβ

has a natural interpretation in terms of the global PageRank vector prW (β, ψ).
To describe this, we will use the shorthand notation prβ = prW (β, ψ) for the
global PageRank, and Φβ(S) = ΦMβ

(S) for the Mβ-conductance. Then, for any
a set of vertices S, we have

Φβ(S) =
prβ(∂(S))

prβ(S)
.

This is the probability that if we choose a vertex from S with probability pro-
portional to its PageRank, and then take a single step in the PageRank Markov
chain Mβ, we end up at a vertex outside of S.

5.2 Computing Personalized PageRank in the PageRank Markov
Chain

To apply our local partitioning theorem to Mβ, we must compute a personalized
PageRank vector in the Markov chain Mβ . The personalized PageRank vector
prMβ

(α, s) is the unique solution of the linear system

prMβ
(α, s) = αs + (1 − α)prMβ

(α, s)Mβ .

Although this is a personalized PageRank vector, the Markov chain Mβ is dense
because of its global random jump, so it is not possible to compute prMβ

(α, s)
efficiently using LocalPR(Mβ , α, s). We will show that prMβ

(α, s) can be com-
puted efficiently in another way, by taking a linear combination of a personalized
PageRank vector and a global PageRank vector in the random walk Markov
chain W .

Local Partitioning for Directed Graphs Using PageRank 175

We now present two interpretations of the PageRank vector prMβ
(α, s). By

definition, prMβ
(α, s) is a personalized PageRank vector in the Markov chain

Mβ. It can also be viewed as a PageRank vector in the random walk Markov
chain W . When viewed as a PageRank vector in W , its starting vector is a
linear combination of the uniform distribution ψ and the starting vector s, and
its jump probability is γ = α + β − αβ.

prMβ
(α, s) = αs + (1 − α)prβ(α, s)Mβ

= αs + (1 − α)βψ + (1 − α)(1 − β)prβ(α, s)W

= γ

(

α

γ
s +

(1 − α)β
γ

ψ

)

+ (1 − γ)prβ(α, s)W

= prW (γ, s′).

Here γ = α + β − αβ, and s′ = α
γ s + (1−α)β

γ ψ. Using the fact that a PageRank
vector is a linear function of its starting vector, we can write

prMβ
(α, s) = prW (γ,

α

γ
s +

(1 − α)β
ψ

)

=
α

γ
prW (γ, s) +

(1 − α)β
γ

prW (γ, ψ).

In summary, we have taken a personalized PageRank vector prMβ
(α, s) from

the PageRank Markov chain Mβ, and written it as a linear combination of two
PageRank vectors from the walk Markov chain W . One of these is a personalized
PageRank vector in W with starting vector s, and the other is a global PageRank
vector in W with starting distribution ψ.

5.3 Local Partitioning in the PageRank Markov Chain

By applying our main theorem to the PageRank Markov chain, we obtain the
following corollary, which shows a sweep over the PageRank vector prMβ

(α, v)
produces a set with small Mβ-conductance.

Corollary 1. Let S be a set of vertices such that prβ(S) ≤ 1
2 and Φβ(S) ≤ α/16,

for some constants α and β. If a vertex v is sampled from S according to the
probability distribution prβ(v)/prβ(S), then with probability at least 1/2 we have
Φβ(prMβ

(α, v)) = O(
√

α log |S|).

Proof. The corollary is immediate, by applying Theorem 1 to the ergodic Markov
chain Mβ.

To carry out the computation required by the corollary, we need to compute
the stationary distribution of Mβ, which is just the global PageRank vector
prW (β, ψ). For each cut we want to find, we also need to compute a personal-
ized PageRank vector prMβ

(α, v) in the Markov chain Mβ . This can be done by
computing prW (γ, v) and prW (γ, ψ), and then taking a linear combination of

176 R. Andersen, F. Chung, and K. Lang

these two PageRank vectors, as described in the previous section. If we fix the
values of α and β, we can compute the two global PageRank vectors prW (β, ψ)
and prW (γ, ψ) ahead of time, and then compute a large number of personal-
ized PageRank vectors prW (γ, v) using LocalPR. This procedure is summarized
below.

Applying Corollary 1 to the PageRank Markov chain.
We are given as input the adjacency matrix A of a directed graph (not
necessarily strongly connected), the global jump probability β, and the
local jump probability α. The following procedure may be used to apply
Theorem 1 at several different starting vertices with these fixed values of α
and β. The offline preprocessing must be done once, after which the local
computation may be performed as many times as desired.

Offline Preprocessing:
We must compute two global PageRank vectors.

1. Let γ = α + β − αβ.
2. Let W = W (A) be the random walk matrix of A.
3. Compute the two global PageRank vectors prβ = prW (β, ψ) and prγ =

prW (γ, ψ) using the algorithm GlobalPR.

Local Computation:

1. Pick a starting vertex v.
2. Compute prW (γ, v), using LocalPR.
3. Obtain p = prMβ

(α, v) by taking a linear combination of prW (γ, v) and
prW (γ, ψ),

p = prMβ
(α, v) =

α

γ
prW (γ, v) +

(1 − α)β
γ

prW (γ, ψ).

4. Rank the vertices in nonincreasing order of p(x)/prβ(x).
5. Let Sj be the set of the top j vertices in this ranking.
6. Compute the β-conductances Φβ(Sj) for each set Sj , and output the set

with the smallest β-conductance.

6 Concluding Remarks

6.1 When Is Partitioning the PageRank Markov Effective?

Corollary 1 can be applied to partition the PageRank Markov chain of an ar-
bitrary directed graph, and to an arbitrary starting vertex. Because it may be
applied to any graph (even the empty graph), the approximation guarantee it
provides may become vacuous for some graphs and starting vertices. In this sec-
tion we will describe this concern in more detail, and give a positive result that

Local Partitioning for Directed Graphs Using PageRank 177

describes when the approximation guarantee it provides is strong rather than
vacuous. We caution that this section contains high-level discussion rather than
rigorous proofs.

As we increase β, we increase the probability of the global jump, which ensures
that the β-conductance of every set in the graph is at least roughly β. If we
partition the PageRank Markov chain of a graph with no edges, every subset
of vertices will have conductance roughly β, so the approximation guarantee of
Corollary 1 will be vacuous (which is what we should expect when partitioning a
graph with no edges). On the other hand, if we partition the PageRank Markov
chain of an undirected graph, using a very small value of β, the best partitions of
the graph will have β-conductance larger than β, so the approximation guarantee
of Corollary 1 will give a meaningful result.

Loosely speaking, we claim that partitioning the PageRank Markov chain Mβ

gives interesting results exactly when there are interesting partitions of the graph
that have β-conductance larger than β. To provide evidence for this claim, we
separate the β-conductance Φβ(S) into two parts, the contribution Ψβ(S) from
real graph edges in W , and the contribution from the random jump. We define

Ψβ(S) =

∑

(u,v)∈S×S̄ prβ(u)W (u, v)

prβ(S)
.

Then, Φβ(S) and Ψβ(S) are related by the following equation.

Φβ(S) = (1 − β)Ψβ(S) + β
|S̄|
n

.

It is not hard to see that if a set S has β-conductance significantly larger than
β, our algorithm finds a set S′ for which Ψβ(S′) is nearly as small as Ψβ(S).
In particular, if S is a set of vertices for which Ψβ(S) = Ω(Φβ(S)), and S′ is a
set of vertices for which Φβ(S′) = O(

√

Φβ(S) log n), which is the conductance
guaranteed by Corollary 1, then we have

Ψβ(S′) = O(
√

Ψβ(S) log n).

6.2 Cuts from Approximate PageRank Vectors

For the case of undirected graphs, it has been proved that a cut with small con-
ductance can be found efficiently by sweeping over an approximate personalized
PageRank vector. This was proved in [1], and requires a careful error analysis.
We remark that a similar error analysis may be carried out for the directed case,
although we have not described such an analysis in this paper.

Acknowledgements

We thank Zoltán Gyöngyi for his expert advice during the formative stages of
this research.

178 R. Andersen, F. Chung, and K. Lang

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vec-
tors. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 475–486. IEEE Computer Society, Washington,
DC (2006)

2. Berkhin, P.: Bookmark-coloring algorithm for personalized PageRank computing.
Internet Math. 3(1), 41–62 (2006)

3. Charikar, M., Makarychev, K., Makarychev, Y.: Directed metrics and directed
graph partitioning problems. In: SODA 2006: Proceedings of the seventeenth an-
nual ACM-SIAM symposium on Discrete algorithm, pp. 51–60. ACM Press, New
York (2006)

4. Chung, F.: Spectral graph theory. In: CBMS Regional Conference Series in Math-
ematics, vol. 92, American Mathematical Society, Providence (1997)

5. Chung, F.: Laplacians and Cheeger inequalities for directed graphs. Annals of Com-
binatorics 9, 1–19 (2005)

6. Chuzhoy, J., Khanna, S.: Hardness of cut problems in directed graphs. In: STOC
2006: Proceedings of the thirty-eighth annual ACM symposium on Theory of com-
puting, pp. 527–536. ACM Press, New York (2006)

7. Fill, J.A.: Eigenvalue bounds on convergence to stationarity for nonreversible
Markov chains, with an application to the exclusion process. Ann. Appl.
Probab. 1(1), 62–87 (1991)

8. Gleich, D., Polito, M.: Approximating personalized PageRank with minimal use of
webgraph data. Internet Mathematics (to appear)

9. Golub, G., Greif, C.: Arnoldi-type algorithms for computing stationary distribution
vectors, with application to PageRank. 10543 BIT Numerical Mathematics 46(4)
(2006)

10. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW 2003. Proceedings
of the 12th World Wide Web Conference, pp. 271–279 (2003)

11. Lovász, L., Simonovits, M.: The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume. In: FOCS, pp. 346–354 (1990)

12. Mihail, M.: Conductance and convergence of markov chains—a combinatorial treat-
ment of expanders. In: Proc. of 30th FOCS, pp. 526–531 (1989)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

14. Sarlós, T., Benczúr, A.A., Csalogány, K., Fogaras, D.: To randomize or not to
randomize: space optimal summaries for hyperlink analysis. In: WWW, pp. 297–
306 (2006)

15. Spielman, D.A., Teng, S.-H.: Spectral partitioning works: Planar graphs and finite
element meshes. In: IEEE Symposium on Foundations of Computer Science, pp.
96–105 (1996)

16. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press (1994)

Stochastic Kronecker Graphs

Mohammad Mahdian1 and Ying Xu2,�

1 Yahoo! Research
mahdian@yahoo-inc.com

2 Stanford University
xuying@cs.stanford.edu

Abstract. A random graph model based on Kronecker products of prob-
ability matrices has been recently proposed as a generative model for
large-scale real-world networks such as the web. This model simultane-
ously captures several well-known properties of real-world networks; in
particular, it gives rise to a heavy-tailed degree distribution, has a low
diameter, and obeys the densification power law. Most properties of Kro-
necker products of graphs (such as connectivity and diameter) are only
rigorously analyzed in the deterministic case. In this paper, we study the
basic properties of stochastic Kronecker products based on an initiator
matrix of size two (which is the case that is shown to provide the best
fit to many real-world networks). We will show a phase transition for the
emergence of the giant component and another phase transition for con-
nectivity, and prove that such graphs have constant diameters beyond
the connectivity threshold, but are not searchable using a decentralized
algorithm.

1 Introduction

A generative model based on Kronecker matrix multiplication was recently pro-
posed by Leskovec et al. [10] as a model that captures many properties of real-
world networks. In particular, they observe that this model exhibits a heavy-
tailed degree distribution, and has an average degree that grows as a power
law with the size of the graph, leading to a diameter that stays bounded by a
constant (the so-called densification power law [12]). Furthermore, Leskovec and
Faloutsos [11] fit the stochastic model to some real world graphs, such as Internet
Autonomous Systems graph and Epinion trust graphs, and find that Kronecker
graphs with appropriate 2×2 initiator matrices mimic very well many properties
of the target graphs.

Most properties of the Kronecker model (such as connectivity and diameter)
are only rigorously analyzed in the deterministic case (i.e., when the initiator
matrix is a binary matrix, generating a single graph, as opposed to a distribution
over graphs), and empirically shown in the general stochastic case [10]. In this
paper we analyze some basic graph properties of stochastic Kronecker graphs
with an initiator matrix of size 2. This is the case that is shown by Leskovec
� Work performed in part while visiting Yahoo! Research.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 179–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 M. Mahdian and Y. Xu

and Faloutsos [11] to provide the best fit to many real-world networks. We give
necessary and sufficient conditions for Kronecker graphs to be connected or to
have giant components of size Θ(n) with high probability1. Our analysis of the
connectivity of Kronecker graphs is based on a general lemma (Theorem 1) that
might be of independent interest. We prove that under the parameters that the
graph is connected with high probability, it also has a constant diameter with
high probability. This unusual property is consistent with the observation of
Leskovec et al. [12] that in many real-world graphs the effective diameters do
not increase, or even shrink, as the sizes of the graphs increase, which is violated
by many other random graph models with increasing diameters. Finally we show
that Kronecker graphs do not admit short (poly-logarithmic) routing paths by
decentralized routing algorithms based on only local information.

1.1 The Model and Overview of Results

In this paper we analyze stochastic Kronecker graphs with an initiator matrix
of size 2, as defined below:

Definition 1. A (stochastic) Kronecker graph is defined by

(i) an integer k, and
(ii) a symmetric 2 × 2 matrix θ: θ[1, 1] = α, θ[1, 0] = θ[0, 1] = β, θ[0, 0] = γ,

where 0 ≤ γ ≤ β ≤ α ≤ 1. We call θ the base matrix or the initiator matrix.
The graph has n = 2k vertices, each vertex labeled by a unique bit vector of

length k; given two vertices u with label u1u2 . . . uk and v with label v1v2 . . . vk, the
probability of edge (u, v) existing, denoted by P [u, v], is

∏

i θ[ui, vi], independent
on the presence of other edges.

In particular, when α = β = γ, the Kronecker graph becomes the well studied
random graph G(n, p) with p = αk. Leskovec and Faloutsos [11] showed that
the Kronecker graph model with 2 × 2 initiator matrices satisfying the above
conditions is already very powerful in simulating real world graphs. In fact, their
experiment shows that the matrix [.98, .58; .58, .06] is a good fit for the Internet
AS graph. When the base matrix does not satisfy the condition stated in the
above definition (i.e., when α ≥ γ ≥ β or β ≥ α ≥ γ), Kronecker graphs appear
to have different structural properties, and require different analytic techniques.
We can prove some of our results in these regimes as well; however, due to lack
of space and since this setting of parameters is less appealing as a generative
model for the web, we omit the results in this paper; more detail can be found
in our technical report [13].

We analyze basic graph properties of the stochastic Kronecker graph model.
In particular, we prove that the necessary and sufficient condition for Kronecker
graphs to be connected with high probability is β + γ > 1 or α = β = 1, γ = 0
(Section 2.2); the necessary and sufficient condition for Kronecker graphs to have
a giant component of size Θ(n) with high probability is (α + β)(β + γ) > 1, or
1 Throughout the paper by “with high probability” we mean with probability 1−o(1).

Stochastic Kronecker Graphs 181

(α + β)(β + γ) = 1 and α + β > β + γ (Section 2.3); if β + γ > 1, the diameters
of Kronecker graphs are constant with high probability (Section 3); and that no
decentralized search algorithm can find a path of length o(n(1−α) log2 e) between
a given pair of vertices in Kronecker graphs, unless the graph is deterministic
(Section 4).

Besides Kronecker graphs, we also define a general family of random graphs
G(n, P), which generalizes all random graph models where edges are indepen-
dent, including Kronecker graphs and G(n, p).

Definition 2. A random graph G(n, P), where n is an integer and P is an
n × n matrix with elements in [0, 1], has n vertices and includes each edge (i, j)
independently with probability P [i, j].

Throughout this paper we consider undirected G(n, P): P is symmetric and
edges are undirected. We prove two useful theorems about connectivity and
searchability in this model, which may be of independent interest; namely, we
show that if the min-cut size of the weighted graph defined by P is at least
c ln n (c is a sufficiently large constant), then with high probability G(n, P) is
connected (Section 2.1), and prove a monotonicity property for searchability in
this model (Section 4).

2 Connectivity and Giant Components

We first state a sufficient condition for connectivity of general random graphs
G(n, P) (Section 2.1), then use this condition to analyze connectivity and giant
components of Kronecker graphs (Section 2.2, 2.3).

2.1 Connectivity of G(n, P)

We give a sufficient condition of the matrix P for G(n, P) graphs to be con-
nected. Let V be the set of all vertices. For any S, S′ ⊆ V , define P (i, S) =
∑

j∈S P [i, j]; P (S, S′) =
∑

i∈S,j∈S′ P [i, j].

Theorem 1. If the min-cut size of the weighted graph defined by P is c ln n (c
is a sufficiently large constant), i.e. ∀S ⊂ V, P (S, V \ S) ≥ c ln n, then with high
probability G(n, P) is connected.

Proof. A k-minimal cut is a cut whose size is at most k times the min-cut size.
We use the following result about the number of k-minimal cuts due to Karger
and Stein [5]: In any weighted graph, the number of k-minimal cuts is at most
O((2n)2k).

Consider the weighted graph defined by P . Denote its min-cut size by t. We
say a cut is a k-cut if its size is between kt and (k + 1)t. By the above result
there are at most O((2n)2k+2) k-cuts. Now consider a fixed k-cut in a random
realization of G(n, P): the expected size of the cut is at least kt, so by Chernoff
bound the probability that the cut has size 0 in the realization is at most e−kt/2.

182 M. Mahdian and Y. Xu

Taking the union bound over all k-cuts, for all k = 1, 2, . . . , n2, the probability
that at least one cut has size 0 is bounded by

∑

k=1,...,n2

e−kt/2O((2n)2k+2)

For t = c ln n where c is a sufficiently large constant, this probability is o(1).
Therefore with high probability G(n, P) is connected.

Note that G(n, p) is known to be disconnected with high probability when p ≤
(1 − ε) ln n/n, i.e., when the min-cut size is (1 − ε) ln n. Therefore the condition
in the above theorem is tight up to a constant factor. Also, extrapolating from
G(n, p), one might hope to prove a result similar to the above for the emergence
of the giant component; namely, if the size of the min-cut in the weighted graph
defined by P is at least a constant, G(n, P) has a giant component. However,
this result is false, as can be seen from this example: n vertices are arranged on
a cycle, and P assigns a probability of 0.5 to all pairs that are within distance
c (a constant) on the cycle, and 0 to all other pairs. It is not hard to prove that
with high probability G(n, P) does not contain any connected component of size
larger than O(log n).

2.2 Connectivity of Kronecker Graphs

We define the weight of a vertex to be the number of 1’s in its label; denote the
vertex with weight 0 by 0, and the vertex with weight k by 1. We say a vertex
u is dominated by vertex u′, denoted by u ≤ u′, if for any bit i, ui ≤ u′

i. Recall
that P [u, v] is as defined in Definition 1.

The following lemmas state some simple facts about Kronecker graphs.
Lemma 1 is trivially true given the condition α ≥ β ≥ γ. The proof of Lemma 2
is omit due to the lack of space and can be found in our technical report [13].

Lemma 1. For any vertex u, ∀v, P [u, v] ≥ P [0, v]; ∀S, P (u, S) ≥ P (0, S). Gen-
erally, for any vertices u ≤ u′, ∀v, P [u, v] ≤ P [u′, v]; ∀S, P (u, S) ≤ P (u′, S).

Lemma 2. The expected degree of a vertex u with weight l is (α+β)l(β+γ)k−l.

Theorem 2. The necessary and sufficient condition for Kronecker graphs to be
connected with high probability (for large k) is β + γ > 1 or α = β = 1, γ = 0.

Proof. We first show that this is a necessary condition for connectivity.

Case 1. If β + γ < 1, the expected degree of vertex 0 is (β + γ)k = o(1), with
high probability vertex 0 is isolated and the graph is thus disconnected.
Case 2. If β + γ = 1 but β < 1, we again prove that with constant probability
vertex 0 is isolated:

Pr[0 has no edge] =
∏

v

(1 − P [0, v]) =
k

∏

w=0

(1 − βwγk−w)(
k
w) ≥

k
∏

w=0

e−2(k
w)βwγk−w

= e−2
∑ k

w=0 (k
w)βwγk−w

= e−2(β+γ)k

= e−2

Stochastic Kronecker Graphs 183

Now we prove it is also a sufficient condition. When α = β = 1, γ = 0, the graph
embeds a deterministic star centered at vertex 1, and is hence connected. To
prove β + γ > 1 implies connectivity, we only need to show the min-cut has size
at least c ln n and apply Theorem 1. The expected degree of vertex 0 excluding
self-loop is (β + γ)k − γk > 2ck = 2c lnn given that β and γ are constants
independent on k satisfying β + γ > 1, therefore the cut ({0}, V \ {0}) has size
at least 2c lnn. Remove 0 and consider any cut (S, V \S) of the remaining graph,
at least one side of the cut gets at least half of the expected degree of vertex
0; without loss of generality assume it is S i.e. P (0, S) > c lnn. Take any node
u in V \ S, by Lemma 1, P (u, S) ≥ P (0, S) > c ln n. Therefore the cut size
P (S, V \ S) ≥ P (u, S) > c ln n.

2.3 Giant Components

Lemma 3. Let H denote the set of vertices with weight at least k/2, then for
any vertex u, P (u, H) ≥ P (u, V)/4.

Proof. Given u, let l be the weight of u. For a vertex v let i(v) be the number of
bits where ub = vb = 1, and let j(v) be the number of bits where ub = 0, vb = 1.
we partition the vertices in V \ H into 3 subsets: S1 = {v : i(v) ≥ l/2, j(v) <
(k − l)/2}, S2 = {v : i(v) < l/2, j(v) ≥ (k − l)/2}, S3 = {v : i(v) < l/2, j(v) <
(k − l)/2}.

First consider S1. For a vertex v ∈ S1, we flip the bits of v where the corre-
sponding bits of u is 0 to get v′. Then i(v′) = i(v) and j(v′) ≥ (k − l)/2 > j(v).
It is easy to check that P [u, v′] ≥ P [u, v], v′ ∈ H , and different v ∈ S1 maps to
different v′. Therefore P (u, H) ≥ P (u, S1).

Similarly we can prove P (u, H) ≥ P (u, S2) by flipping the bits corresponding
to 1s in u, and P (u, H) ≥ P (u, S3) by flipping all the bits. Adding up the three
subsets, we get P (u, V \ H) ≤ 3P (u, H). Thus, P (u, H) ≥ P (u, V)/4.

Theorem 3. The necessary and sufficient condition for Kronecker graphs to
have a giant component of size Θ(n) with high probability is (α + β)(β + γ) > 1,
or (α + β)(β + γ) = 1 and α + β > β + γ.

Proof. When (α + β)(β + γ) < 1, we prove that the expected number of non-
isolated nodes are o(n). Let (α + β)(β + γ) = 1 − ε. Consider vertices with
weight at least k/2 + k2/3, by Chernoff bound the fraction of such vertices is at
most exp(−ck4/3/k) = exp(−ck1/3) = o(1), therefore the number of non-isolated
vertices in this category is o(n); on the other hand, for a vertex with weight less
than k/2 + k2/3, by Lemma 2 its expected degree is at most

(α + β)k/2+k2/3

(β + γ)k/2−k2/3

= (1 − ε)k/2(
α + β

β + γ
)k2/3

= n−ε′
co(log n) = o(1)

Therefore overall there are o(n) non-isolated vertices.
When α + β = β + γ = 1, i.e. α = β = γ = 1/2, the Kronecker graph is

equivalent to G(n, 1/n), which has no giant component of size Θ(n) [4].

184 M. Mahdian and Y. Xu

When (α + β)(β + γ) > 1, we prove that the subgraph induced by H =
{v : weight(v) ≥ k/2} is connected with high probability, hence forms a giant
connected component of size at least n/2. Again we prove that the min-cut size of
H is c ln n and apply Theorem 1. For any vertex u in H , its expected degree is at
least ((α+β)(β + γ))k/2 = ω(ln n); by Lemma 3 P (u, H) ≥ P (u, V)/4 > 2c lnn.
Now given any cut (S, H \ S) of H , we prove P (S, H \ S) > c ln n. Without
loss of generality assume vertex 1 is in S. For any vertex u ∈ H , either P (u, S)
or P (u, H \ S) is at least c ln n. If ∃u such that P (u, H \ S) > c ln n, then
since u ≤ 1, by Lemma 1 P (S, H \ S) ≥ P (1, H \ S) ≥ P (u, H \ S) > c ln n;
otherwise ∀u ∈ H, P (u, S) > c ln n, since at least one of the vertex is in H \ S,
P (S, H \ S) > c ln n.

Finally, when (α+β)(β+γ) = 1 and α+β > β+γ, let H1 = {v : weight(v) ≥
k/2 + k1/6}, and we will prove that the subgraph induced by H1 is connected
with high probability by proving its min-cut size is at least c lnn (Claim 1), and
that |H1| = Θ(n) (Claim 2), therefore with high probability H1 forms a giant
connected component of size Θ(n). The proofs of these claims is omit due to the
lack of space and can be found in our technical report [13].

3 Diameter

We analyze the diameter of a Kronecker graph under the condition that the
graph is connected with high probability. When α = β = 1, γ = 0, every vertex
links to 1 so the graph has diameter 2; below we analyze the case where β+γ > 1.
We will use the following result about the diameter of G(n, p), which has been
extensively studied in for example [6,2,3].

Theorem 4. [6,2] If (pn)d−1/n → 0 and (pn)d/n → ∞ for a fixed integer d,
then G(n, p) has diameter d with probability approaching 1 as n goes to infinity.

Theorem 5. If β + γ > 1, the diameters of Kronecker graphs are constant with
high probability.

Proof. Let S be the subset of vertices with weight at least β
β+γ k. We will prove

that the subgraph induced by S has a constant diameter, and any other vertex
directly connects to S with high probability.

Claim 3. With high probability, any vertex u has a neighbor in S.

Proof (Proof of Claim 3.). We compute the expected degree of u to S:

P (u, S) ≥
∑

j≥ β
β+γ k

(

k

j

)

βjγk−j = (β + γ)k
∑

j≥ β
β+γ k

(

k

j

)

(
β

β + γ
)j(

γ

β + γ
)k−j

The summation is exactly the probability of getting at least β
β+γ k HEADs in

k coin flips where the probability of getting HEAD in one trial is β
β+γ , so this

probability is at least a constant. Therefore P (u, S) ≥ (β + γ)k/2 > c ln n for
any u; by Chernoff bound any u has a neighbor in S with high probability.

Stochastic Kronecker Graphs 185

Claim 4. |S| · minu,v∈S P [u, v] ≥ (β + γ)k.

Proof (Proof of Claim 4.). We have

min
u,v∈S

P [u, v] ≥ β
β

β+γ kγ
γ

β+γ k

and

|S| ≥
(

k
β

β+γ k

)

≈
(k

e)k

(βk
(β+γ)e)

β
β+γ k(γk

(β+γ)e)
γ

β+γ k
=

(β + γ)k

β
β

β+γ kγ
γ

β+γ k

Therefore |S| · minu,v∈S P [u, v] ≥ (β + γ)k.

Given Claim 4, it follows easily that the diameter of the subgraph induced
by S is constant: let β + γ = 1 + ε where ε is a constant, the diameter of
G(|S|, (β + γ)k/|S|) is at most d = 1/ε by Theorem 4; since by increasing
the edge probabilities of G(n, P) the diameter cannot increase, the diameter
of the subgraph of the Kronecker graph induced by S is no larger than that of
G(|S|, (β +γ)k/|S|). Therefore, by Claim 3, for every two vertices u and v in the
Kronecker graph, there is a path of length at most 2 + 1/ε between them.

4 Searchability

In Section 3 we showed that the diameter of a Kronecker graph is constant with
high probability, given that the graph is connected. However it is yet a question
whether a short path can be found by a decentralized algorithm where each
individual only has access to local information. We use a similar definition as
used by Kleinberg [7,8,9].

Definition 3. In a decentralized routing algorithm for G(n, P), the message is
passed sequentially from a current message holder to one of its neighbors until
reach the destination t, using only local information. In particular, the message
holder u at a given step has knowledge of:

(i) the probability matrix P ;
(ii) the label of destination t;
(iii) edges incident to all visited vertices.

A G(n, P) graph is d-searchable if there exists a decentralized routing algo-
rithm such that for any destination t, source s, with high probability the algorithm
can find an s-t path no longer than d.

We first give a monotonicity result on general random graphs G(n, P), then use
it to prove Kronecker graphs with α < 1 is not poly-logarithmic searchable.
It is possible to directly prove our result on Kronecker graphs, but we believe
the monotonicity theorem might be of independent interests. More results on
searchability in G(n, P) using deterministic memoryless algorithms can be found
in [1]. The proof of Theorem 6 can be found in our technical report [13].

186 M. Mahdian and Y. Xu

Theorem 6. If G(n, P) is d-searchable, and P ≤ P ′ (∀i, j, P [i, j] ≤ P ′[i, j]),
then G(n, P ′) is d-searchable.

Theorem 7. Kronecker graphs are not n(1−α) log2 e-searchable.

Proof. Let P be the probability matrix of the Kronecker graph, and P ′ be the
matrix where each element is p = n−(1−α) log2 e. We have P ≤ P ′ because
maxi,jP [i, j] ≤ αk ≤ e−(1−α)k = n−(1−α) log2 e = p. If the Kronecker graph
is n(1−α) log2 e-searchable, then by Theorem 6 G(n, p) where p = n−(1−α) log2 e is
also n(1−α) log2 e-searchable. However, G(n, p) is not 1

p -searchable. This is because
given any decentralized algorithm, whenever we first visit a vertex u, indepen-
dent on the routing history, the probability that u has a direct link to t is no
more than p, hence the routing path is longer than the geometry distribution
with parameter p, i.e. with constant probability the algorithm cannot reach t in
1/p steps.

References

1. Arcaute, E., Chen, N., Kumar, R., Liben-Nowell, D., Mahdian, M., Nazerzadeh,
H., Xu, Y.: Searchability in random graphs. In: Proceedings of the 5th Workshop
on Algorithms and Models for the Web-Graph (2007)

2. Bollobás, B.: The diameter of random graphs. IEEE Trans. Inform. Theory 36(2),
285–288 (1990)

3. Chung, F., Lu, L.: The diameter of random sparse graphs. Advances in Applied
Math. 26, 257–279 (2001)

4. Erdös, P., Rényi, A.: On random graphs I. Publications Mathematics, Debrecen 6,
290–297 (1959)

5. Karger, D., Stein, C.: A new approach to the minimum cut problem. Journal of
the ACM 43(4) (1996)

6. Klee, V., Larmann, D.: Diameters of random graphs. Canad. J. Math. 33, 618–640
(1981)

7. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proc.
32nd ACM Symposium on Theory of Computing (2000)

8. Kleinberg, J.: Small-world phenomena and the dynamics of information. In: NIPS
2001. Advances in Neural Information Processing Systems (2001)

9. Kleinberg, J.: Complex networks and decentralized search algorithms. In: ICM
2006. Proc. the International Congress of Mathematicians (2006)

10. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathemati-
cally tractable graph generation and evolution, using kronecker multiplication. In:
Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, Springer, Heidelberg (2005)

11. Leskovec, J., Faloutsos, C.: Scalable modeling of real graphs using kronecker mul-
tiplication. In: ICML 2007. International Conference on Machine Learning (2007)

12. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data 1(1)
(2007)

13. Mahdian, M., Xu, Y.: Stochastic kronecker graphs. Technical Report (2007)

Deterministic Decentralized Search

in Random Graphs

Esteban Arcaute1,�, Ning Chen2,�, Ravi Kumar3, David Liben-Nowell4,�,
Mohammad Mahdian3, Hamid Nazerzadeh1,�, and Ying Xu1,�

1 Stanford University
{arcaute,hamidnz,xuying}@stanford.edu

2 University of Washington
ning@cs.washington.edu

3 Yahoo! Research
{ravikuma,mahdian}@yahoo-inc.com

4 Carleton College
dlibenno@carleton.edu

Abstract. We study a general framework for decentralized search in
random graphs. Our main focus is on deterministic memoryless search
algorithms that use only local information to reach their destination in a
bounded number of steps in expectation. This class includes (with small
modifications) the search algorithms used in Kleinberg’s pioneering work
on long-range percolation graphs and hierarchical network models. We
give a characterization of searchable graphs in this model, and use this
characterization to prove a monotonicity property for searchability.

1 Introduction

Since Milgram’s famous “small world” experiment [14], it has generally been
understood that social networks have the property that a typical node can reach
any other node through a short path (the so-called “six degrees of separation”).
An implication of this fact is that social networks have small diameter. Many
random graph models have been proposed to explain this phenomenon, often by
showing that adding a small number of random edges causes a highly structured
graph to have a small diameter (e.g., [16,3]). A stronger implication of Milgram’s
experiment, as Kleinberg observed [8], is that for most social networks there are
decentralized search algorithms that can find a short path from a source to a
destination without a global knowledge of the graph. As Kleinberg proved, even
many of the random graph models with small diameter do not have this property
(i.e., any decentralized search algorithm in such graphs can take many steps to
reach the destination), while in certain graph models with a delicate balance
of parameters, decentralized search is possible. Since Kleinberg’s work, there
have been many other models that provably exhibit the searchability property
[10,7,15,12,9,5]; however, we still lack a good understanding of what contributes
to this property in graphs.
� Work performed in part while visiting Yahoo! Research.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 187–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 E. Arcaute et al.

In this paper, we look at a general framework for searchability in random
graphs. We consider a general random graph model in which the set of edges
leaving a node u is independent of that of any other node v �= u. This frame-
work includes models such as the directed variant of the classical Erdős–Rényi
graphs [6], random graphs with a given expected degree sequence (e.g., [4]),
long-range percolation graphs [8], hierarchical network models [9], and graphs
based on Kronecker products [11,13], but not models such as preferential attach-
ment [2] in which the distribution of edges leaving a node is dependent on the
other edges of the graph. It is worth noting that, in a random graph model where
edges can have arbitrary dependencies, the search problem includes arbitrarily
difficult learning problems as special cases, and therefore one cannot expect to
have a complete characterization of searchable graphs in such a model.

Throughout most of this paper, we restrict the class of decentralized search al-
gorithms that we consider to deterministic memoryless algorithms that succeed
in finding a path to the destination with probability 1. This is an important
class of search algorithms, and includes the decentralized search algorithms used
in Kleinberg’s work on long-range percolation graphs and hierarchical network
models. For this class, we give a simple characterization of graphs that are search-
able in terms of a node ordering property. We will use this characterization to
show a monotonicity property for searchability: if a graph is searchable in our
model, it stays searchable if the probabilities of edges are increased.

The rest of this paper is organized as follows: Section 2 contains the description
of the model. Section 3 presents a characterization of searchable random graphs.
The monotonicity theorem is presented in Section 4.

2 The Model

Given a positive integer n and an n × n matrix P with entries pi,j ∈ [0, 1],
we define a directed random graph G(n,P) with the node set V = {1, . . . , n}
and with a directed edge connecting node i to node j with probability pij ,
independently of all other edges. As we will see later (Remark 1), our results
hold for a more general random graph model where the edges originating from a
node i can be dependent on each other but are independent of the edges leaving
other nodes. However, for the sake of simplicity, we state and prove our results
in the G(n,P) model.

We fix two nodes s, t ∈ V of G(n,P) as the source and the destination. For
v ∈ V , let Γ (v) denote the set of out-neighbors of u in G. We investigate the
existence of a decentralized search algorithm that finds a path from s to t of at
most a given length d in expectation.1 We restrict our attention to deterministic
memoryless algorithms. A deterministic memoryless algorithm can be defined
1 Alternatively, we could ask for which graphs a decentralized search algorithm can

find a path between every pair of nodes s and t, or between a random pair of nodes s
and t. Our techniques apply to these alternative formulations of the problem as well.
The only point that requires some care is that the orderings in the characterization
theorem can depend on s and t.

Deterministic Decentralized Search in Random Graphs 189

as a partial function A : V × 2V → V . Such an algorithm A defines a path
v0, v1, v2, . . . on a given graph G as follows: v0 = s, and for every i ≥ 0, vi+1 =
A(vi, Γ (vi)). The length of this path is defined as the smallest integer i such that
vi = t. If no such i exists, we define the length of the path as infinity.

We are now ready to define the notion of searchability. For a given matrix P,
source and destination nodes s and t, and a number d, we say that G(n,P) is d-
searchable using a deterministic memoryless algorithm A if the expected length
of the path defined by A on G(n,P) is at most d. Note that this definition
requires that the algorithm find a path from s to t with probability 1.

3 A Characterization of Searchable Random Graphs

In this section, we provide a complete characterization of searchable random
graphs. We begin by defining a class of deterministic memoryless search algo-
rithms parameterized by two orderings of V , and then prove that if a graph is
d-searchable, it is also d-searchable using an algorithm from this narrow class.

Definition 1. Let σ, π be two orderings (i.e., permutations) of the node set V .
We define a deterministic memoryless algorithm Aσ,π corresponding to these
orderings as follows: for every u ∈ V , Aσ,π(u, Γ (u)) is defined as the maximum
element according to π of the set {v ∈ Γ (u) : σ(v) > σ(u)} ∪ {u}.

In other words, algorithm Aσ,π never goes backwards according to the ordering σ,
and, subject to this restriction, makes the maximum possible progress according
to π.

We are now ready to state our main theorem.

Theorem 1. For a given probability matrix P, source and destination nodes s
and t, and number d, if G(n,P) is d-searchable using a deterministic memoryless
algorithm A, then there exist two orderings σ and π of V such that G(n,P) is
d-searchable by using Aσ,π.

To prove this theorem, we will first construct the ordering σ using the structure
of the search algorithm A. Next, we define an ordering π using σ. Finally, we
use induction with respect to the ordering σ to show that the expected length
of the path defined by Aσ,π on G(n,P) is not more than the one defined by A.

We assume, without loss of generality, that for every set S ⊆ V , A(t, S) = t.
In other words, we assume that A never leaves t once it reaches this node.

Define a graph H with the node set V as follows: for every pair u, v ∈ V , the
edge (u, v) is in H if and only if this edge is on the path from s to t defined
by A on some realization of G(n,P) (i.e., on some graph that has a non-zero
probability in the distribution G(n,P)). We have the following important lemma.

Lemma 1. The graph H is acyclic.

Proof. Assume, for contradiction, that H contains a simple cycle C. Note that
by the definition of H , if an edge (u, v) is in H , then u must be reachable from s

190 E. Arcaute et al.

in H . Therefore, every node of C must be reachable from s in H . Let v∗ be a
node in C that has the shortest distance from s in H , and s = v0, v1, . . . , v� = v∗

be a shortest path from s to v∗ in H . Also, let v∗ = v�, v�+1, . . . , vk, vk+1 = v∗

denote the cycle C. Therefore, v0, v1, . . . , vk are all distinct nodes, and for every
i ∈ {0, . . . , k}, there is an edge from vi to vi+1 in H .

By the definition of H , for every i ∈ {0, . . . , k}, there is a realization of G(n,P)
in which A traverses the edge (vi, vi+1). This means that there is a realization of
G(n,P) in which the set Γ (vi) of out-neighbors of vi is S∗

i , for some set S∗
i such

that A(vi, S
∗
i) = vi+1. Recall that in G(n,P), all edges are present independently

at random, and thus the random variables Γ (u) are independent. Hence, since
vi’s are all distinct and for each i, there is a realization satisfying Γ (vi) = S∗

i ,
there must be a realization in which Γ (vi) = S∗

i for all i. In this realization,
the algorithm A falls in the cycle C, and therefore will never reach t. Thus the
path found by A in this realization is infinitely long, and therefore the expected
length of the path found by A is infinite. This is a contradiction. �	

By Lemma 1, we can find a topological ordering of the graph H . Furthermore,
since by assumption t has no outgoing edge in H , we can find a topological
ordering that places t last. Let σ be such an ordering, i.e., σ is an ordering of V
such that (i) t is the maximum element of V under σ; (ii) for every edge (u, v)
in H , we have σ(v) > σ(u); and (iii) all nodes not in H precede s and are ordered
arbitrarily, i.e., σ(s) > σ(v) for any such node v. By the definition of H , these
conditions mean that the algorithm A (starting from the node s) never traverses
an edge (u, v) with σ(u) > σ(v).

Given the ordering σ, we define numbers ru for every u ∈ V recursively as
follows: rt = 0, and for every u �= t,

ru =

⎧

⎨

⎩

1 +
∑

S⊆Tu,S �=∅
qu,S · min

v∈S
{rv} if qu,∅ = 0

∞ if qu,∅ > 0,

(1)

where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we write

qu,S :=

(

∏

v∈S

puv

)

⎛

⎝

∏

v∈Tu\S

(1 − puv)

⎞

⎠

to denote the probability that the subset of nodes of Tu that are out-neighbors
of u is precisely S. Note that the above formula defines ru in terms of rv for
σ(v) > σ(u), and therefore the definition is well founded.

We can now define the ordering π as follows: let π(u) > π(v) if ru < rv. Pairs
u, v with ru = rv are ordered arbitrarily by π.

The final step of the proof is the following lemma, which we will prove by
induction using the ordering σ. To state the lemma, we need a few pieces of
notation. For a search algorithm B, let d(B, u) denote the expected length of the
path that the algorithm B, started at node u, finds to t. Also, let V0 denote the

Deterministic Decentralized Search in Random Graphs 191

set of non-isolated nodes of H—i.e., V0 is the set of nodes that the algorithm A
(started from s) has a non-zero chance of reaching.

Lemma 2. Let σ and π be the orderings defined as above. Then for every node
u ∈ V0, we have that d(A, u) ≥ d(Aσ,π, u) = ru.

Proof (sketch). We prove this statement by induction on u, according to the
ordering σ. The statement is trivial for u = t. We now show that for u ∈ V0 \ {t}
if the statement holds for every node v ∈ V0 with σ(v) > σ(u), then it also holds
for u. Observe that for any deterministic memoryless algorithm B,

d(B, u) = 1 +
∑

S⊂V,S �=∅
q′u,S · d(B, B(u, S)), (2)

where q′u,S := (
∏

v∈S puv)(
∏

v∈V \S(1 − puv)) is the probability that the set of
out-neighbors of u in G(n,P) is precisely S. This statement follows from the
fact that the algorithm B is memoryless, and the fact that q′u,∅ = 0 since u ∈ V0.
Applying Equation (2) to Aσ,π and using the fact that, by definition, Aσ,π(u, S)
only depends on u and S ∩ Tu, we obtain

d(Aσ,π , u) = 1 +
∑

S⊆Tu,S �=∅
qu,S · d(Aσ,π, Aσ,π(u, S)). (3)

We have that d(Aσ,π, Aσ,π(u, S)) = rAσ,π(u,S) by the induction hypothesis. Also,
by the definition of Aσ,π and π, we have that rAσ,π(u,S) = minv∈S{rv}. Combined
with Equation (3) and the definition of ru, this shows d(Aσ,π, u) = ru, as desired.

To prove d(A, u) ≥ ru, note that since A(u, S) ∈ S ∩ Tu ∩ V0, we have

d(A, A(u, S)) ≥ min
v∈S∩Tu∩V0

{d(A, v)}.

By the induction hypothesis, we have that d(A, v) ≥ rv for every v ∈ Tv ∩ V0.
Therefore, we have that d(A, A(u, S)) ≥ minv∈S∩Tu∩V0

{rv}. Substituting this in
Equation (2), we obtain

d(A, u) ≥ 1 +
∑

S⊂V,S �=∅
q′u,S · min

v∈S∩Tu∩V0

{rv}

= 1 +
∑

S⊆Tu,S �=∅
qu,S · min

v∈S∩Tu∩V0

{rv}

≥ ru.

This completes the proof of the induction step. �	

Proof (of Theorem 1). Define the graph H , the ordering σ, the values ru, and
the ordering π as above. By Lemma 2, we have that d(Aσ,π , s) ≤ d(A, s). Since
G(n,P) is d-searchable using A by assumption, we have that d(A, s) ≤ d. Hence
we have d(Aσ,π, s) ≤ d, as desired. �	

192 E. Arcaute et al.

Remark 1. It is not hard to see that the only property of G(n,P) that was
used in the above proof was the fact that the random variables Γ (u) (the set
of out-neighbors of u) are independent. Therefore, the above proof (with minor
modifications in the definitions of qu,S and q′u,S) also works for a more general
model of random graphs. This includes the directed ACL graphs [1] and the
long-range percolation graphs.

Note that in the above proof, the second ordering π was defined in terms of the
first ordering σ and P. Therefore, the condition for the searchability of G(n,P)
can be stated in terms of only one ordering σ as follows:

Corollary 2. G(n,P) is d-searchable if and only if there is an ordering σ on
the nodes for which rs ≤ d, where r is defined as in (1).

It is not hard to see that even though the expression on the right-hand side of
(1) has exponentially many terms, given σ, the value of ru can be computed in
polynomial time for every u. Therefore, the above corollary reduces the prob-
lem of d-searchability of G(n,P) to a node-ordering property with a tractable
objective function.

4 The Monotonicity Property

Armed with the characterization theorem of the previous section, we can now
prove the following natural monotonicity property for searchability.

Theorem 3. Let P, P′ be two n × n probability matrices such that for every i
and j, we have pij ≤ p′ij. Fix the source and destination nodes s and t. Then, if
G(n,P) is d-searchable for some d, so is G(n,P′).

Proof (sketch). By Corollary 2, since G(n,P) is d-searchable, there is an order-
ing σ such that the value rs defined using Equation (1) is at most d. To show
d-searchability of G(n,P′), we apply the same ordering σ. Let {r′u} denote the
values computed using Equation (1), but with P replaced by P′. All we need
to do is to show that r′s ≤ d and then use Corollary 2. To do this, we prove by
induction that for every u ∈ V0, we have r′u ≤ ru. This statement is trivial for
u = t. We assume it is proved for every v ∈ V0 with σ(v) > σ(u), and prove it
for u.

We have

r′u = 1 +
∑

S⊆Tu,S �=∅

∏

v∈S

p′uv

∏

v∈Tu\S

(1 − p′uv) · min
v∈S

{r′v}

≤ 1 +
∑

S⊆Tu,S �=∅

∏

v∈S

p′uv

∏

v∈Tu\S

(1 − p′uv) · min
v∈S

{rv}

Let 1, 2, . . . , k be the nodes of Tu, ordered in such a way that r1 ≥ r2 ≥ · · · ≥ rk.
It is not hard to see that the above expression can be written as follows.

r′u ≤ 1 + r1 −
k−1
∑

i=1

PrG(n,P′)[Γ (u) ∩ {i + 1, . . . , k} �= ∅] · (ri − ri+1)

Deterministic Decentralized Search in Random Graphs 193

The coefficient of (ri − ri+1) in the above expression is the probability of the
event that the set of nodes that have an edge from u in G(n,P′) contains at least
one of the nodes i+1, . . . , k. This event is monotone; therefore the probability of
this event under G(n,P) is less than or equal to the probability under G(n,P′).
Therefore,

r′u ≤ 1 + r1 −
k−1
∑

i=1

PrG(n,P)[Γ (u) ∩ {i + 1, . . . , k} �= ∅] · (ri − ri+1).

This completes the proof of the induction step, since the right-hand side of the
above inequality is precisely ru. �	

Note that, simple as the statement of Theorem 3 sounds, we do not know whether
a similar statement holds for randomized memoryless algorithms. On the other
hand, we proved the monotonicity property for randomized algorithms with
memory; the proof can be found in [13].

Acknowledgments

We thank Amin Saberi for many useful discussions.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Ex-
perimental Mathematics 10(1), 53–66 (2001)

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(15), 509–512 (1999)

3. Bollobás, B., Chung, F.R.K.: The diameter of a cycle plus a random matching.
SIAM Journal on Discrete Mathematics 1(3), 328–333 (1988)

4. Chung, F., Lu, L.: The average distance in a random graph with given expected
degrees. Internet Mathematics 1(1), 91–114 (2003)

5. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned
into a small world? Theoretical Computer Science 355(1), 96–103 (2006)

6. Erdös, P., Rényi, A.: On random graphs I. Publications Mathematics Debrecen 6,
290–297 (1959)

7. Fraigniaud, P.: Greedy routing in tree-decomposed graphs. In: Proceedings of the
13th Annual European Symposium on Algorithms, pp. 791–802 (2005)

8. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Pro-
ceedings of the 32nd ACM Symposium on Theory of Computing, pp. 163–170
(2000)

9. Kleinberg, J.: Small-world phenomena and the dynamics of information. Advances
in Neural Information Processing Systems 14, 431–438 (2001)

10. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating low-dimensional and hier-
archical population networks. In: Proceedings of the 14th Annual European Sym-
posium on Algorithms, pp. 480–491 (2006)

194 E. Arcaute et al.

11. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathemat-
ically tractable graph generation and evolution, using Kronecker multiplication.
In: Proceedings of the 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pp. 133–145 (2005)

12. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geo-
graphic routing in social networks. Proceedings of the National Academy of Sci-
ences 102(33), 11623–11628 (2005)

13. Mahdian, M., Xu, Y.: Stochastic Kronecker graphs. In: Proceedings of the 5th
Workshop on Algorithms and Models for the Web-Graph (2007)

14. Milgram, S.: The small world problem. Psychology Today 1, 61–67 (1967)
15. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:

Proceedings of the 16th ACM Symposium on Principles of Distributed Computing,
pp. 41–50 (2005)

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-
ture 393, 440–442 (1998)

Using Bloom Filters to Speed Up HITS-Like

Ranking Algorithms

Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy

Microsoft Research, Mountain View CA 94043, USA

Abstract. This paper describes a technique for reducing the query-
time cost of HITS-like ranking algorithm. The basic idea is to compute
for each node in the web graph a summary of its immediate neighbor-
hood (which is a query-independent operation and thus can be done
off-line), and to approximate the neighborhood graph of a result set at
query-time by combining the summaries of the result set nodes. This ap-
proximation of the query-specific neighborhood graph can then be used
to perform query-dependent link-based ranking algorithms such as HITS
and SALSA. We have evaluated our technique on a large web graph and a
substantial set of queries with partially judged results, and found that its
effectiveness (retrieval performance) is comparable to the original SALSA
algorithm, while its efficiency (query-time speed) is substantially higher.

1 Introduction

One of the fundamental problems in Information Retrieval is the ranking prob-
lem: how to arrange the documents that satisfy a query into an order such that
the documents most relevant to the query rank first. Traditional ranking algo-
rithms proposed by the pre-web IR community were mostly based on similarity
measures between the terms (words) in the query and the documents satisfying
the query.

In addition to structured text, web pages also contain hyperlinks between web
pages, which can be thought of as peer endorsements between content providers.
Marchiori suggested early on to leverage incoming hyperlinks as another feature
in ranking algorithms [9], and the simplistic idea of merely counting in-links
quickly evolved into more sophisticated link-based ranking algorithms that take
the quality of an endorsing web page into account.

Link-based ranking algorithms can be grouped into two classes: query-
independent ones such as in-link count or Google’s famous PageRank [12], and
query-dependent ones such as Kleinberg’s HITS [4,5] and Lempel & Moran’s
SALSA [6,7]. The aforementioned algorithms were described in seminal papers
that inspired a great deal of subsequent work; however, there has been little pub-
lished work on the effectiveness (that is, the accuracy of the ranking) of these
algorithms.

A recent study using a 17-billion edge web graph and a set of 28,043 queries
with partially judged results concluded that SALSA, a query-dependent link-
based ranking algorithm, is substantially more effective than HITS, PageRank

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 195–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 S. Gollapudi, M. Najork, and R. Panigrahy

and in-degree, although it is not as effective as the state-of-the-art textual rank-
ing algorithm.

Unfortunately, SALSA in particular and HITS-like algorithms in general re-
quire a substantial amount of expense at query-time. The vast fraction of this
expense is devoted to determining the neighborhood graph of the results to a
query; the subsequent computation of scores for the nodes in the neighborhood
graph is cheap in comparison, despite the fact that most HITS-like algorithms
use power iteration to compute the fixed-points of the score vectors. The fact
that HITS-like algorithms incur substantial computational cost at query-time
puts them at a crippling disadvantage to query-independent algorithms such as
PageRank: according to Marissa Mayer, Google’s VP of Search Products & User
Experience, delaying Google’s response time by half a second led to a 20% drop
in query traffic (and revenue) from the user population subjected to the delay [8].

This paper describes a technique that dramatically lowers the query-time cost
of HITS-like ranking algorithms, i.e. algorithms that perform computations on
the distance-one neighborhood graph of the results to a query. The basic idea
is to compute a summary of the neighborhood of each page on the web (an op-
eration that is query-independent and thus can be done off-line, say at index
construction time), and to use these summaries at query time to approximate
the neighborhood graph of the result set and to compute scores using the approx-
imate graph. We have evaluated this approach using the same methodology and
the same data sets that were used in the earlier comparisons of in-degree, Page-
Rank, HITS, and SALSA, and found that applying our technique to SALSA does
not impair its effectiveness and at the same substantially improves its efficiency.

The remainder of this paper is structured as follows: section 2 reviews the
HITS and SALSA algorithms; section 3 explains our technique for summariz-
ing the neighborhood of each web page; section 4 describes the experimental
validation of our technique; and section 5 offers concluding remarks.

2 HITS and SALSA

Both HITS and SALSA are query-dependent link-based ranking algorithms:
given a web graph (V, E) with vertex set V and edge set E ⊆ V × V (where
edges/links between vertices/pages on the same web server are typically omit-
ted), and the set of result URLs to a query (called the root set R ⊆ V) as input,
both compute a base set B ⊆ V , defined to be:

B = R ∪
⋃

u∈R

{v ∈ V : (u, v) ∈ E} ∪
⋃

v∈R

Sn[{u ∈ V : (u, v) ∈ E}]

where Sn[X] denotes a uniform random sample of n elements from set X (Sn[X]=
X if |X | < n). The sampling parameter n will typically be below 100, and its
choice has a significant impact on the effectiveness of SALSA in particular [11].
The neighborhood graph (B, N) consists of base set B and edge set N = {(u, v) ∈
E : u ∈ B ∧ v ∈ B}.

Using Bloom Filters to Speed Up HITS-Like Ranking Algorithms 197

Both HITS and SALSA compute two scores for each node u ∈ B: an author-
ity score A(u), estimating how authoritative u is on the topic induced by the
query, and a hub score H(u), indicating whether u is a good reference to many
authoritative pages. In the case of HITS, hub scores and authority scores are
computed in a mutually recursive fashion:

1. For all u ∈ B do H(u) :=
√

1
|B| , A(u) :=

√

1
|B| .

2. Repeat until H and A converge:
(a) For all v ∈ B do A′(v) :=

∑

(u,v)∈N H(u)
(b) For all u ∈ B do H ′(u) :=

∑

(u,v)∈N A(v)
(c) For all u ∈ B do H(u) := 1

‖H′‖2
H ′(u), A(u) := 1

‖A′‖2
A′(u)

where ‖X‖2 is the euclidean norm of vector X .
By contrast, SALSA authority scores can be computed independently of hub

scores, which is interesting insofar as that SALSA (and HITS) hub scores are
poor ranking features. The algorithm for computing SALSA authority scores is:

1. Let BA be {u ∈ B : in(u) > 0}

2. For all u ∈ B do A(u) :=
{ 1

|BA| if u ∈ BA

0 otherwise
3. Repeat until A converges:

(a) For all u ∈ BA do A′(u) :=
∑

(v,u)∈N

∑

(v,w)∈N
A(w)

out(v)in(w)

(b) For all u ∈ BA do A(u) := A′(u)

For reasons of space, we omit the algorithm for computing SALSA hub scores;
the interested reader is referred to [6] or [11]. The latter paper compares the
effectiveness of HITS and SALSA, and finds that SALSA authority scores are
a substantially better ranking feature than HITS authority scores. Our experi-
mental validation in section 4 employs the same methodology and data sets.

When performed on a web-scale corpus, both HITS and SALSA require a sub-
stantial amount of query time processing. Much of this processing is attributable
to the computation of the neighborhood graph. The reason for this is that the
entire web graph is enormous. A document collection of five billion web pages
induces a set of about a quarter of a trillion hyperlinks. Storing this web graph
on disk would make lookup operations unacceptably slow due to the inherent
seek time limitations of hard drives. On the other hand, the graph is too big
to be stored in the main memory of any single machine; therefore, it has to be
partitioned across many machines. In such a setup, the cost of a link lookup
is governed by the cost of a remote procedure call (RPC). A sophisticated im-
plementation of the SALSA algorithm against a distributed link database will
batch many lookup operations into a single RPC request to reduce latency and
will query all link servers in parallel, but even so it will require four rounds of
concurrent requests: one round to map the root set URLs to short representa-
tions; the second round to determine the pages linking to the root set; the third
round to determine the pages pointed to by the root set; and the fourth round
to determine the edges induced by the base set. The SALSA implementation

198 S. Gollapudi, M. Najork, and R. Panigrahy

used to perform the experiments described in [11] required 235 milliseconds per
query for the most effective parametrization of SALSA, and 2.15 seconds per
query for the most expensive parametrization. Over 90% of the time spent was
spent on performing the RPC calls to the link servers in order to assemble the
neighborhood graph, as opposed to computing scores on that graph.

3 Summarizing Neighborhood Graphs

In this paper, we present a technique to substantially lower the query-time cost
of HITS and SALSA. We do so by moving the most expensive part of the com-
putation off-line. At index-construction time, we build a database mapping web
page URLs to summaries of their neighborhoods. At query time, we rank the
results satisfying a query by looking up each result in the summary database (an
operation that requires only one round of RPCs, as opposed to four), approx-
imating the neighborhood graph of the result set based on the neighborhood
summaries of the constituent results, and computing SALSA (or HITS) scores
using that approximation of the neighborhood graph. In the experimental eval-
uation below, we will show that this approximation has no detrimental effect on
the quality of the ranking.

As outlined above, our summary of the neighborhood graph of a web page u
consists of a summary of the ancestors (the pages that link to u) and a summary
of the descendants (the pages that u links to), each consisting of a Bloom filter
containing a limited-size subset of ancestors or descendants plus a much smaller
subset containing explicit web page identifiers (64-bit integers). A Bloom filter
is a space-efficient probabilistic data structure that can be used to test the
membership of an element in a given set; the test may yield a false positive
but never a false negative. A Bloom filter represents a set using an array A of
m bits (where A[i] denotes the ith bit), and uses k hash functions h1 to hk to
manipulate the array, each hi mapping some element of the set to a value in
[1,m]. To add an element e to the set, we set A[hi(e)] to 1 for each 1 ≤ i ≤ k; to
test whether e is in the set, we verify that A[hi(e)] is 1 for all 1 ≤ i ≤ k. Given
a Bloom filter size m and a set size n, the optimal (false-positive minimizing)
number of hash functions k is m

n ln 2; in this case, the probability of false positives
is (1

2)k. For an in-depth description of Bloom filters, the reader is referred to [1,3].
In the following, we will write BF [X] to denote the Bloom filter representing
the set X .

While the original SALSA algorithm samples the neighborhood (and in par-
ticular the ancestors) uniformly at random, we use consistent sampling [2]. Let
Cn[X] denote a consistent unbiased sample of n elements from set X , where
Cn[X] = X if |X | < n. Consistent sampling is deterministic; that is, when
sampling n elements from a set X , we will always draw the same n elements.
Moreover, any element x that is sampled from set A is also sampled from
subset B ⊂ A if x ∈ B. We define the set In(u) to be a consistent sam-
ple Cn[{v ∈ V : (v, u) ∈ E}] of (at most) n of the ancestors of u; and the
set On(u) to be a consistent sample Cn[{v ∈ V : (u, v) ∈ E}] of n of the

Using Bloom Filters to Speed Up HITS-Like Ranking Algorithms 199

descendants of u. For each page u in the web graph, we compute a summary
(BF [Ia(u)], Ib(u), BF [Oc(u)], Od(u)).

At query time, given a result set R, we first look up the summaries for all the
results in R. Having done so, we compute a cover set

C = R ∪
⋃

u∈R

Ib(u) ∪
⋃

u∈R

Od(u)

Next, we construct a graph consisting of the vertices in C. We fill in the edges as
follows: For each vertex u ∈ R and each vertex v ∈ C, we perform two tests: If
BF [Ia(u)] contains v, we add an edge (v, u) to the graph; if BF [Oc(u)] contains
v, we add an edge (u, v) to the graph. This graph serves as our approximation
of the neighborhood graph of R; we use it to compute SALSA (or HITS) scores
using the same algorithm as described above in section 2.

Observe that the approximate neighborhood graph differs from the exact
neighborhood graph in three ways:

– In the exact graph, we do not sample the vertices directly reachable from
the root set, but rather include them all.

– The approximate graph only contains edges from C ∩ Ia(u) to u ∈ R and
from u ∈ R to C ∩ Oc(u). In other words, it excludes edges between nodes
in C that are not part of the root set.

– We do not use exact set representations for Ia(u) and Oc(u), but approximate
them by using Bloom filters. This introduces additional edges whose number
depends on the false positive probability of the Bloom filter. Using k hash
functions, we add about 2−k+1|C||R| spurious edges in the graph.

At first glance, it is non-obvious why this approximation of the neighborhood
graph should preserve any of the properties relevant to ranking algorithms. After
all, the approximation may exclude actual edges due to the sampling process,
and add phantom edges due to the potential for false positives inherent to Bloom
filters. However, it is worth noting that consistent sampling preserves co-citation
relationships between pages in the result set. The experimental validation de-
scribed in the following section confirms that the summarization algorithm in-
deed preserves properties relevant to link-based ranking.

4 Experimental Validation

Our experimental validation is based on the two data sets used in [10,11]: a
large web graph with 2.9 billion nodes and 17.7 billion edges, and a set of 28,043
queries, each with 2,838 results on average, 17.3 of which were rated by human
judges on a six-point scale. For more details on how the graph was collected
and how results were judged, the reader is referred to the earlier papers. We use
three popular measures of effectiveness (or retrieval performance): the normalized
discounted cumulative gain (NDCG), the mean average precision (MAP), and
the mean reciprocal rank (MRR) measures. All three measures are normalized

200 S. Gollapudi, M. Najork, and R. Panigrahy

0.14

0.15

0.16

0.17

0.18

0.19

0 5 10 15 20
Number of samples per result

N
D

C
G

@
10

approximate SALSA
SALSA (random sampling)
SALSA (consistent sampling)

0.05

0.06

0.07

0.08

0 5 10 15 20
Number of samples per result

M
A

P
@

10

approximate SALSA
SALSA (random sampling)
SALSA (consistent sampling)

0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26

0 5 10 15 20
Number of samples per result

M
R

R
@

10

approximate SALSA
SALSA (random sampling)
SALSA (consistent sampling)

Fig. 1. Effectiveness of authority scores computed using different parameterizations of
original and approximate SALSA; measured in terms of NDCG, MAP and MRR

to range between 0 and 1; higher values indicate better performance. Again, the
reader is referred to [10,11] for the full definitions of these measures.

In our experiments, we used k = 10 hash functions, and we fixed the param-
eters a and c at 1000; that is, we included a sample of (up to) 1000 ancestors
or descendants into each Bloom filter. The Bloom filters averaged 227 bytes for
ancestor sets and 72 bytes for descendant sets. We measured the effectiveness
of SALSA using our summarization technique for b and d ranging from 2 to 20,
and compared it to original SALSA with the same sampling values. Figure 1
depicts the results. The figure contains three graphs, one for each performance
measure (NDCG, MAP, and MRR). The horizonal axis shows the number of
samples (the b and d parameters of our summarization-based SALSA, and the
n parameter of the original SALSA); the vertical axis shows the retrieval per-
formance. Each graph contains three curves; the blue (dark) curve showing the
performance of the original SALSA; the green (medium) curve shows the perfor-
mance of the original SALSA with consistent instead of random sampling; and
the red (light) curve showing that of our summarization-based version. Using
consistent instead of random sampling substantially improves the performance
under all measures. However, our new approximate version of SALSA outper-
forms the original SALSA algorithm under all measures. Performance is maximal
for b and d between 4 and 5, depending on the measure. For b = d = 5, each
summary is 379 bytes in size (227 bytes for BF [I1000], 40 bytes for I5, 72 bytes
for BF [O1000], and 40 bytes for O5).

Our current implementation of summarization-based SALSA does not yet em-
ploy a distributed summary server; we use our distributed link server to compute
summaries. However, since a summary server is similar to, and indeed simpler
than, a link server, we can draw on our experiences with the latter to estimate
what the query-time performance of a production system would be. We measured
the performance of our current implementation, subtracted the time required to
compute the summaries, and added the time we have observed for retrieving a
vector of links of the size of an average summary from our link server. These mea-
surements suggest that it would take us an average of 171 milliseconds per query
to compute approximate SALSA scores. This compares favorably to the 235
milliseconds per query of our implementation of the original SALSA algorithm.
Moreover, we have not spent any time on optimizing the code for constructing ap-
proximate neighborhood graphs, and believe that further speedups are possible.

Using Bloom Filters to Speed Up HITS-Like Ranking Algorithms 201

5 Conclusion

This paper describes a technique for reducing the query-time cost of query-
dependent link-based ranking algorithms that operate on the distance-one neigh-
borhood graph of the result set, such as HITS and SALSA. Our technique com-
putes a summary of each page on the web ahead of query-time, and combines
these summaries at query-time into approximations of the neighborhood graph
of the result set. We tested our technique by applying it to a large real web
graph and a sizable collection of real queries with partially assessed results, and
were able to demonstrate that the approximate nature of our technique does not
have any negative impact on the effectiveness (retrieval performance). Future
work includes implementing a distributed summary server and verifying that
our technique is indeed faster than the original (all-online) implementation.

References

1. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

2. Broder, A., Charikar, M., Frieze, A., Mitzenmacher, M.: Min-Wise Independent
Permutations. Journal of Computer and System Sciences 60(3), 630–659 (2000)

3. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey.
Internet Mathematics 1(4), 485–509

4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Proc.
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677
(1998)

5. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

6. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis
(SALSA) and the TKC effect. Computer Networks and ISDN Systems 33(1-6),
387–401 (2000)

7. Lempel, R., Moran, S.: SALSA: The stochastic approach for link-structure analysis.
ACM Transactions on Information Systems 19(2), 131–160 (2001)

8. Linden, G.: Marissa Mayer at Web 2.0, Online at
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

9. Marchiori, M.: The quest for correct information on the Web: Hyper search engines.
Computer Networks and ISDN Systems 29(8-13), 1225–1236 (1997)

10. Najork, M., Zaragoza, H., Taylor, M.: HITS on the Web: How does it Compare? In:
30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 471–478 (2007)

11. Najork, M.: Comparing the Effectiveness of HITS and SALSA. In: 16th ACM
Conference on Information and Knowledge Management (to appear, 2007)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

Parallelizing the Computation of PageRank

John Wicks and Amy Greenwald

Department of Computer Science
Brown University, Box 1910

Providence, RI 02912
{jwicks,amy}@cs.brown.edu)

Abstract. This paper presents a technique we call ParaSolve that ex-
ploits the sparsity structure of the web graph matrix to improve on the
degree of parallelism in a number of distributed approaches for computat-
ing PageRank. Specifically, a typical algorithm (such as power iteration
or GMRES) for solving the linear system corresponding to PageRank,
call it LinearSolve, may be converted to a distributed algorithm, Dis-
trib(LinearSolve), by partitioning the problem and applying a stan-
dard technique (i.e., Distrib). By reducing the number of inter-partition
multiplications, we may greatly increase the degree of parallelism, while
achieving a similar degree of accuracy. This should lead to increasingly
better performance as we utilize more processors. For example, using
GeoSolve (a variant of Jacobi iteration) as our linear solver and the 2001
web graph from Stanford’s WebBase project, on 12 processors Para-
Solve(GeoSolve) outperforms Distrib(GeoSolve) by a factor of 1.4,
while on 32 processors the performance ratio improves to 2.8.

1 Introduction

The first order, homogeneous, linear recurrence:

wn+1 = Awn + b (1)

occurs naturally in various settings. When ‖A‖1 < 1, it is well-known that wn =
Anw0 +

∑n−1
j=0 Ajb and wn → w ≡

∑∞
j=0 Ajb, the fixed-point of Equation 1,

independent of w0.1 In other words,

w = Aw + b (2)

For example, computing PageRank [10] via power iteration leads to an in-
stance of this recurrence. Specifically, given a web graph matrix, M ≥ 0, with
“normalized” columns (i.e., each column sums to 1), a (normalized) personal-
ization vector, v ≥ 0, and a teleportation probability, ε, define the perturbed
Markov matrix, Mv,ε = (1 − ε)M + εvJ t, where J i = 1, ∀ i. Power iteration
takes an arbitrary, normalized initial vector, v0 ≥ 0, computes rn+1 = Mv,εrn,
with r0 = v0, and terminates when ‖rn − rn−1‖1 < δ. Since Mv,ε and v0 are

1 ‖A‖1 ≡ max‖w‖1=1 ‖Aw‖1, with ‖w‖1 ≡ maxi |wi|.

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 202–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallelizing the Computation of PageRank 203

normalized, so is rn, ∀ n. This implies that rn+1 = (1 − ε)Mrn + εv, which is
just Equation 1 with A = (1 − ε)M and b = εv. Therefore, rn converges to
r = ε

∑∞
j=0 [(1 − ε)M]j v for any v0. In particular, r is the unique positive, nor-

malized eigenvector of Mv,ε with eigenvalue 1, which is the usual definition of
the PageRank vector.

There have been many attempts to speed up the PageRank computation.
Since Equation 2 is just a linear equation, there are a wide variety of algorithms
for computing approximate solutions, including the Jacobi, Gauss-Seidel, Gener-
alized Minimum Residual (GMRES) and Biconjugate Gradient (BiCG) methods
[8, 6]. Although they vary in many respects, such algorithms tend to require the
computationally intensive step of matrix-vector multiplication, Aw. One class of
approaches involves partitioning A and distributing the partitions among several
machines, so that A may be kept in main memory and the multiplication may be
performed in a distributed fashion, using a standard technique described below.

By exploiting the sparsity structure of the web graph matrix, it should be
possible, in principle, to perform the computation efficiently in parallel. Kam-
var, et al. [7] have observed that, when the pages are properly ordered, this
matrix is concentrated along the diagonal. Moreover, Kohlschütter et al. [8]
noted that when pages are grouped according to “site” name (e.g., “brown.edu”
or “http://www.cs.brown.edu/people/”), the matrix is almost block-diagonal,
with blocks corresponding to sites. By merging site blocks, one obtains an al-
most block-diagonal matrix with relatively few large blocks.

Define A0 to be the matrix consisting only of the diagonal blocks of A, and
let A1 = A − A0. That is, A0 consists (primarily) of links within any given site,
while A1 consists entirely of links between sites. Multiplication by A = A0 + A1
is effectively multiplication by A0 plus multiplication by A1. Since sites tend to
have more internal than external links, A1 is much more sparse than A0, which
is what we mean by “almost block-diagonal”.

Multiplication by A0 can be performed in parallel, since A0 is block-diagonal.
Moreover, since A0w dominates A1w, it may be worthwhile to perform A0 mul-
tiplications more often than A1 ones. Since, as we will see, multiplication by A1
is the major bottle-neck in the distributed multiplication, this should lead to an
increase in performance. In particular, by reducing the number of A1 multiplica-
tions, we should be able to increase the amount of computation done in parallel,
without sacrificing accuracy. This intuition leads to our technique, ParaSolve,
which we believe will yield more efficient distributed algorithms to solve Equa-
tion 2, when A is almost block-diagonal, and hence to compute PageRank.

To illustrate, suppose for simplicity that w is partitioned into three segments,
wi, and A is partitioned into 9 corresponding blocks, Ai,j , i, j = 0, . . . , 2. Three
machines may then compute w = Aw, in straightforward manner as follows.
Machine j stores Ai,j and wj , computes ŵi,j = Ai,jwj , i = 0, . . . , 2, sends
ŵi,j , i �= j to machine i, and accumulates the results, wj = ŵj,j +

∑

i�=j ŵj,i.
When A is the web graph, Kohlschütter et al. [8] found that the off-diagonal
products, ŵi,j , i �= j contributing to A1w are sparse, and noted that they may
be transmitted at negligible cost over a 1Gb network.

204 J. Wicks and A. Greenwald

Some have used this manner of distributed multiplication to solve Equation 2
in a distributed fashion [8, 6]. Each method used was, at heart, the result of
applying this technique to a standard linear solution algorithm, call it Linear-
Solve, to obtain a distributed version of the algorithm, Distrib(LinearSolve).
While those researchers referred to these methods as “parallel”, this terminology
is a bit misleading.

While, in theory, the multiplications, Ai,jwj , can be performed in time pro-
portional to the number of non-zero entries in Ai,j , as the number of rows in
the matrix grows, the cost of cache misses in storing the resulting vectors, ŵi,j ,
becomes a significant factor. In the case of the Web, the dimension of A is
sufficiently large for this to dominate so that the cost of performing the multipli-
cations on any one processor stays essentially constant, even as the number of
partitions is increased. In particular, the speed of computation does not increase
proportional to the number of processors, as one would expect with a truly par-
allel algorithm. Moreover, distributed multiplication by A1 is a synchronized
operation, requiring a great deal of inter-process communication, while “par-
allel” suggests that the computations can be carried out (for the most part)
independently.

In this paper, we will present an alternative technique, ParaSolve, to dis-
tribute any given algorithm, LinearSolve, to compute approximate solutions
to linear systems. We claim that, when applied to almost block-diagonal sys-
tems, such as that for computing PageRank, the resulting distributed algorithm,
ParaSolve(LinearSolve), will be superior to the standard distributed version,
Distrib(LinearSolve), due to its higher degree of parallelism, decreased need
for synchronization, reduced volume of interprocess communication, and, in some
cases, reduced memory load.

We have currently applied ParaSolve to a variant of Jacobi iteration, Geo-
Solve, and present experiments to compare how ParaSolve(GeoSolve) be-
haves in practice on the 2001 web graph from Stanford’s WebBase project. In
particular, we show that, due to the reduced number of A1 multiplications, Para-
Solve(GeoSolve) scales well as the number of machines increases. For example,
on 12 processors ParaSolve(GeoSolve) outperforms Distrib(GeoSolve) by
a factor of 1.4, while on 32 processors the performance ratio improves to 2.8. We
go on to indicate why, as the number of processors increases, this performance
ratio can be expected to improve even more. We also discuss why this ratio may
be even better for other linear solvers, such as GMRES.

2 ParaSolve

Our ParaSolve technique is closely related to Jacobi iteration. Ignoring the
preconditioning of A by its diagonal entries, Jacobi iteration simply iterates
Equation 1 to its fixed-point, w ≡

∑∞
j=0 Ajb = [I − A]−1

b ≡ A∞b. If we take b
as w0 and iterate Equation 1, we obtain the partial sums of A∞b, which converge
if ‖A‖1 < 1. In general, any approximate linear solver for Equation 2 may be
viewed as yielding an approximation to the operation of multiplying b by A∞.

Parallelizing the Computation of PageRank 205

Now assume, as in the Introduction, that A ≥ 0 has been decomposed into
A0 ≥ 0 and A1 ≥ 0. Expanding out the powers of [A0 + A1]

j in A∞ yields
a sum over words in Ai. Notice that A∞

0 =
∑∞

j=0 Aj
0 is the sum over arbi-

trary length words only in A0. Grouping terms according to the number of A1
factors gives w = A∞b =

∑∞
j=0 [A0 + A1]

j
b =

∑∞
j=0

∑

d∈{0,1}j

∏j−1
i=0 Adib =

[A∞
0 + A∞

0 A1A
∞
0 + . . .] b, i.e.:

w =
∞
∑

j=0

A∞
0 [A1A

∞
0]j b (3)

This is all legitimate, since we are dealing with absolutely convergent series.
Since multiplication by A∞

0 may be approximated using a linear solver, Equa-
tion 3 suggests the following algorithm:

ParaSolve(A0, A1, b, δ)
initialize α, s0 = b, t0 = LinearSolve (A0, s0, αδ), and w0 = t0
update sn+1 = A1tn, tn+1 = LinearSolve (A0, sn+1, αδ), and
wn+1 = wn + tn+1

terminate ‖tn‖1 < δ

When A0 = 0, so we may take tn = sn, we obtain a linear solver, akin to Jacobi
iteration, which we call GeoSolve.

When A is almost block-diagonal, with diagonal component A0, then the
update, tn+1 = LinearSolve (A0, sn, αδ) may be performed in parallel, while
sn+1 = A1tn may be distributed, as described in the Introduction, yielding
the corresponding distributed algorithm, ParaSolve(LinearSolve). Since A1
is small, ParaSolve will converge after very few iterations.

Notice that, since any error in an approximation of tn is decreased by its subse-
quent multiplication by A1, LinearSolve may be computed to a proportionately
larger error tolerance, αδ. For example, we could take α = ‖A1‖−1. Assuming
that LinearSolve is continuous in its inputs, ParaSolve(LinearSolve) will
converge to the solution of Equation 2. Moreover, since wn converges, tn con-
verges to 0. In particular, since we need only compute tn to within αδ, the cost
of subsequent calls to LinearSolve decreases.

3 Experiments

To see how ParaSolve and Distrib compare in practice, we used the (decom-
pressed) version of Stanford’s web graph, based on a 2001 crawl as part of its
WebBase project and GeoSolve (cf. Section 2) as our linear solver. The data
provided by WebBase was filtered to eliminate invalid links and to normalize
URLs and distributed courtesy of the WebGraph project [2]. Both algorithms
were implemented in C++, using the Matrix Template Library (MTL) [4].

This graph has about 108 nodes and 109 links. We re-indexed the pages so that
those within common sites (defined by primary host name) were contiguous. The
(normalized) web graph matrix and ranking vector were partitioned, by merging

206 J. Wicks and A. Greenwald

sites, so that the number of links was approximately equal across machines. We
used a uniform distribution personalization vector, v, i.e., vi = (dim v)−1.

The following experiments used a cluster of Apple PowerPC G5 (3.0) XServes
with dual 2GHz processors, 2G of RAM, 512 KB L2 cache per CPU, running
OS X Server 10.4.7 connected by a 1Gb ethernet in the Brown Internet Lab
[3]. There was only one other user on these machines, and he continuously ran
a few background jobs with low CPU usage. Although these machines were
not completely dedicated, all runs were performed under identical conditions.
Timings are in CPU-seconds, excluding time to load the web graph and write
the final results out to disk. Table 1 shows how the two algorithms performed
as we varied the number of machines with δ fixed at 10−3.

Table 1. ParaSolve vs. Distrib with GeoSolve

ParaSolve Distrib# of Machines
Time A0 A1 Time A

Ratio

12 581 5.9 26 831 26 1.4

16 405 4.2 18 685 21 1.7

20 327 3.3 18 669 21 2.1
24 276 2.7 19 653 20 2.4

28 250 2.3 19 649 20 2.6

32 230 2.1 19 650 20 2.8

We consider, in some detail a typical run of each algorithm with k = 20
machines. Each partition was roughly 6 × 106 dimensional and, on average, the
number of non-zero entries in Aj,j , nnz (Aj,j) ≈ 5×107, while nnz (Ai,j) ≈ 105 for
i �= j, which confirms our hypothesis that A0 is much larger than A1. Likewise, on
average, the size of the component of t in the ith partition, nnz (ti) ≈ 3 × 105,
which confirms our sparsity assumption on the off-diagonal products. Para-
Solve converged by i = 3 in 327 sec. Each GeoSolve call took, on average,
3.3 sec./mult., with 41 multiplications at i = 0, 24 multiplications at i = 1, 11
multiplications at i = 2, and 2 multiplications at i = 3. The remaining com-
putational time was spent in performing the off-diagonal multiplications (i.e.,
multiplying by A1), which took, on average, 18 sec. per iteration, for a total cost
per machine of 54 sec., which was less than one sixth of the total time.

While ParaSolve effectively performed 78 multiplications by A0 and 3 mul-
tiplications by A1, by comparison, Distrib required 31 multiplications by A0
and A1 to converge. Since the cost of an A1 multiplication is on the order of
10 times that of an A0 multiplication, over 90% of the time in Distrib is spent
multiplying by A1. In contrast, ParaSolve spends only about 17% of its time
performing off-diagonal multiplications. While the total number of multiplica-
tions is less to carry out Distrib as compared to ParaSolve, the cost of an
off-diagonal multiplication is much higher, so that Distrib took 2.1 times as
much CPU time.

As we varied the number of machines, both algorithms required roughly the
same number of multiplications of each type (i.e., A0 vs. A1). But as the number

Parallelizing the Computation of PageRank 207

of machines increases, the factor by which ParaSolve outperforms Distrib in-
creases. This is because, as we pointed out in the Introduction, the the cost of
an A1 multiplications does not decrease as we increase the number of machines.
In contrast, as the dimensions of the diagonal blocks decrease, the cost of A0
multiplications tends to 0. Thus, asyptotically the performance ratio should ap-
proach the ratio of the respective number of A1 multiplications, which in this
case is 31/3 ≈ 10.

4 Future Work

While our experiments have shown that ParaSolve can improve a particular
distributed algorithm for computing PageRank, much more work remains to
be done. Timing experiments have shown that an alternative matrix package,
PETSc [5], can perform sparse matrix multiplication on average 30 times faster
than MTL. Moreover, it provides a wide variety of linear solvers in both single
machine and distributed settings. By retooling our implementation with PETSc,
we will be able to quickly evaluate ParaSolve when applied to other linear
solvers, such as GMRES and Biconjugate Gradient.

In contrast to GeoSolve which is a stateless solver, GMRES is based on an
iterative decomposition of A. Since PETSc saves the state of the decomposition
between subsequent calls, successive calls to a GMRES solver should be quite
fast. While Gleich et al. [6] have shown Distrib(GMRES) to work well on
smaller web graphs, the additional state leads to an increasing and excessive
memory load as the algorithm progresses. In contrast, the memory requirements
of ParaSolve(GMRES) are much more modest, since GMRES is only applied
locally to the diagonal blocks of A0.

We should point out that, although he did not actually implement it as a dis-
tributed system, McSherry [9] has suggested an alternative scheme to reduce the
amount of cross-machine multiplications. While it is not as general as our tech-
nique, it has the advantage that results may be easily updated as the web graph
evolves. We need to explore the extent to which our technique accommodates
the computation of such updates.

The time of each call to LinearSolve depends strongly on our choice of α. We
used a very conservative estimate for our experiments. The L1-norm is based on
a worst-case analysis and so is inherently conservative. A better choice of α might
follow from considering the average case. In general, further numerical analysis
of our algorithm is necessary to improve performance and provide strong error
bounds.

Acknowledgments

Thanks to the Laboratory for Web Algorithmics[1] for providing the web graph
data, as well as Prof. Steven P. Reiss for the use of the Brown University Internet
Laboratory[3] for our experiments.

208 J. Wicks and A. Greenwald

References

[1] http://law.dsi.unimi.it/
[2] http://webgraph.dsi.unimi.it/
[3] http://www.cs.brown.edu/rooms/ilab/
[4] http://www.osl.iu.edu/research/mtl/
[5] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley,

M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004)

[6] Gleich, D., Zhukov, L., Berkhin, P.: Fast parallel pagerank: A linear system ap-
proach. In: WWW 2005: Proceedings of the 14th international conference on
World Wide Web, ACM Press, New York (2005)

[7] Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Exploiting the block struc-
ture of the web for computing pagerank. Technical report, Stanford University
Technical Report (2003)

[8] Kohlschütter, C., Chirita, P.-A., Nejdl, W.: Efficient parallel computation of page-
rank. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlin-
sky, A. (eds.) Advances in Information Retrieval. LNCS, vol. 3936, pp. 241–252.
Springer, Heidelberg (2006)

[9] McSherry, F.: A uniform approach to accelerated pagerank computation. In:
WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 575–582. ACM Press, New York (2005)

[10] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

http://law.dsi.unimi.it/
http://webgraph.dsi.unimi.it/
http://www.cs.brown.edu/rooms/ilab/
http://www.osl.iu.edu/research/mtl/

Giant Component and Connectivity in Geographical
Threshold Graphs

Milan Bradonjić1, Aric Hagberg2, and Allon G. Percus3,4

1 Department of Electrical Engineering, UCLA, Los Angeles, CA 90095
milan@ee.ucla.edu

2 Mathematical Modeling and Analysis, Theoretical Division,
Los Alamos National Laboratory, Los Alamos, NM 87545

hagberg@lanl.gov
3 Department of Mathematics, UCLA, Los Angeles, CA 90095

4 Information Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545
percus@ipam.ucla.edu

Abstract. The geographical threshold graph model is a random graph model
with nodes distributed in a Euclidean space and edges assigned through a func-
tion of distance and node weights. We study this model and give conditions for
the absence and existence of the giant component, as well as for connectivity.

Keywords: random graph, geographical threshold graph, giant component,
connectivity.

1 Introduction

Large networks such as the Internet, World Wide Web, phone call graphs, infections
disease contacts, and financial transactions have provided new challenges for modeling
and analysis [1]. For example, Web graphs may have billions of nodes and edges, which
implies that the analysis on these graphs, i.e., processing and extracting information on
these large sets of data, is “hard” [2]. Extensive theoretical and experimental research
has been done in web-graph modeling. Early measurements suggested that the Inter-
net exhibits a power-law degree distribution [3] and that the web graph also follows a
power-law distribution in in- and out-degree of links [4]. Modeling approaches using
random graphs have attempted to capture both the structure and dynamics of the web
graph [5,6,7,8,9].

In this short paper we study geographical threshold graphs (GTGs), a static model for
networks that includes both geometric information and node weight information. The
motivation for analyzing this model is that many real networks need to be studied by
using a “richer” stochastic model (which in this case includes both a distance between
nodes and weights on the nodes). This model has already been applied in the study of
wireless ad hoc networks for systems where the wireless nodes have different capabil-
ities [10]. The weights, in this case, represent power or bandwidth resources available
to wireless nodes in the network. By varying the weights in a GTG model, properties
such as the diameter or degree distribution can be tuned. Other possible applications of
GTGs are in epidemic modeling, where the weights might represent susceptibility to

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 209–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

210 M. Bradonjić, A. Hagberg, and A.G. Percus

infection, or other social networks where the weights may be related to attractiveness
or other individual characteristic.

2 Geographical Threshold Graph Model

In addition to unstructured random graphs [11,12], recent research has focused on ran-
dom geometric graphs (RGG) where edges are created according to a distance between
nodes [13], and threshold graphs [14,15] with edges created according to a function
of node weights. Geographical threshold graphs, which combine aspects of RGG and
threshold graphs, have only recently begun to receive attention [16,10].

The GTG model is constructed from of a set of n nodes placed independently in Rd

according to a Poisson point-wise process. A non-negative weight wi, taken randomly
and independently from a probability distribution function f (w) : R+

0 → R+
0 , is assigned

to each node vi for i ∈ [n]. Let F(x) =
∫ x

0 f (w)dw be the cumulative density function.
For two nodes i and j at distance r, the edge (i, j) exists if and only if the following
connectivity relation is satisfied:

G(wi,wj)h(r) ≥ θn , (1)

where θn is a given threshold parameter that depends on the size of the network. The
function h(r) is assumed to be decreasing in r. We use h(r) = r−α, for some positive
α, which is typical for e.g., the path-loss model in wireless networks [10]. The inter-
action strength between nodes G(wi,wj) is usually taken to be symmetric and either
multiplicatively or additively separable, i.e., in the form of G(wi,wj) = g(wi)g(wj) or
G(wi,wj) = g(wi)+ g(wj).

Some basic results have already been shown. For the case of uniformly distributed
nodes over a unit space it has been shown [16,10] that the expected degree of a node
with weight w is

E[k(w)] =
nπd/2

Γ(d/2 + 1)

∫

w′
f (w′)

(

h−1(θn/G(w,w′))
)d

dw′, (2)

where h−1 is the inverse of h. The degree distribution has been studied for specific
weight distribution functions f (w) [16]. In both the multiplicative and additive case
of G(w,w′), questions of diameter, connectivity, and topology control have been ad-
dressed [10].

Here we restrict ourselves to the case of g(w) = w, α = 2, and nodes distributed
uniformly over a two-dimensional space. For analytical simplicity we take the space
to be a unit torus. We concentrate on the analysis of the additive model, i.e., when the
connectivity relation is given by

wi + wj

r2 ≥ θn. (3)

Our techniques may be generalized to other cases in a straightforward manner. Our
contribution in this short paper is to provide the first bounds on θn for the emergence of
the giant component, and for connectivity.

Giant Component and Connectivity in Geographical Threshold Graphs 211

3 Giant Component in GTG

Definition 1 (Giant Component). The giant component is a connected component
with size Θ(n).

In this section we analyze the conditions for the existence of the giant component,
giving bounds on the threshold parameter value θn where it first appears. For θn = cn,
we specify positive constants c′ > c′′ and prove that whp, if c > c′ the giant component
does not exist whereas if c < c′′ the giant component exists.

3.1 Absence of Giant Component

Lemma 1. Let θn = cn for c > c′, where c′ = 2πE[w]. Then whp there is no giant
component in GTG.

Proof. We use an approach similar to one given in [17]. Divide the nodes into three
classes: alive, dead and neutral. Denote the number of alive nodes as Yi. The algorithm
works as follows. At time t = 0, designate one node (picked u.a.r.) as being alive and
all others as neutral. Now, at each subsequent time step t, pick a node vt u.a.r. from
among those that are alive, and then consider all neutral nodes connected to vt . Denote
the number of these nodes as Zt . Change these nodes from neutral to alive, and change
vt itself from alive to dead. The random variables Yi,Zi satisfy the following recursion
relation: Y0 = 1 and Yt = Yt−1 + Zt − 1, for t ≥ 1. The number of alive nodes satisfies

Yt − 1 =
t

∑
k=1

Zk − t. (4)

At a time step k, let dk be the degree of node vk. Since Zk only includes the neutral nodes
connected to vk,

Zk ≤ dk. (5)

Now let T be the largest t such that Yt > 0. Then T is the size of the component contain-
ing v0, and the giant component exists if and only if T = Θ(n) with some nonvanishing
probability. The variable T satisfies the following relation

Pr[T ≥ t] = Pr[Yt > 0] = Pr[Yt ≥ 1] = Pr[
t

∑
k=1

Zk ≥ t] ≤ Pr[
t

∑
k=1

dk ≥ t]. (6)

Consider the threshold θn = cn for some c > 0. It is shown in the Appendix that for
a node vk with random weight wk, the vertex degree distribution is Poisson: d(wk) ∼
Po(a(wk + µ)), where a = nπ/θn and µ = E[w]. Since the sum of independent random
Poisson variables is a Poisson random variable,

Pr
[t

∑
k=1

dk ≥ t
]

= Pr
[

Po(a
t

∑
k=1

(wk + µ)) ≥ t
]

. (7)

We now use the following inequality. For any ε ∈ (0,1),

212 M. Bradonjić, A. Hagberg, and A.G. Percus

Pr
[

Po(a∑(wk + µ)) ≥ t
]

≤ Pr
[

Po(a∑(wk + µ)) ≥ t|∑wk ∈ (1 ± ε)tµ
]

+ Pr
[

∑wk /∈ (1 ± ε)tµ
]

.

By the central limit theorem, for t → ∞, the sum (∑wk − tµ)/(
√

tσ) tends to the normal
distribution N(0,1). That is,

Pr
[

∑wk /∈ (1 ± ε)tµ
]

= Pr
[∑wk − tµ√

tσ
/∈ (−ε,ε)

√
t

µ
σ

]

→ 0. (8)

Finally, we use the concentration on the Poisson random variable [13]. Define λ =
E[a∑(wk + µ)] = 2atµ. Given any ε0 ∈ (0,1), for t → ∞, i.e., λ → +∞, it follows that

Pr[Po(λ) /∈ (1 ± ε0)λ] ≤ e−λH(1−ε0) + e−λH(1+ε0) → 0, (9)

where the function H(x) = 1 − x + x lnx, for x > 0. It is now sufficient to choose a
small enough that t > 2atµ(1 + ε0) for some positive constant ε0. This is equivalent to
1 > 2aµ, i.e., c > 2πµ. It follows that Pr[Po(a∑(wi +µ)) ≥ t] = o(1) for t = Θ(n), which
completes the proof.

3.2 Existence of Giant Component

Lemma 2. Let θn = cn for c < c′′ = supα∈(0,1) αF−1(1−α)/λc, where πλc ≈ 4.52 is the
mean degree at which the giant component first appears in Random Geometric Graphs
(RGG) [13]. Then whp the giant component exists in GTG.

Proof. For any constant α ∈ (0,1), we prove that whp there are αn “high-weighted”
nodes, all with weights greater than or equal to some sn; we state sn later. Let Xi be
the indicator of the event Wi ≥ sn. Then Pr[Xi = 1] = 1−F(s) =: q. Let X = ∑n

i=1 Xi be
the number of high-weighted nodes. Using the Chernoff bound Pr[X ≤ (1 − δ)E[X]] ≤
exp(−E[X]δ2/2), with δ = 1 − α/q,

Pr[X ≤ αn] = Pr[X ≤ (1 − δ)E[X]] ≤ exp
(

− n(q − α)2/(2q)
)

= n−β (10)

for some constant β > 1 satisfying (q − α)2 = 2qβ lnn/n. Solving that quadratic equa-
tion in q gives q = α+Θ(ln n/n), so F(sn) = 1−q = 1−α−Θ(lnn/n). For any ε > 0
and n sufficiently large the following is satisfied

F−1(1 − α) ≥ sn ≥ F−1(1 − α− ε). (11)

Thus, let us define the sequence sn by its limit

sn → F−1(1 − α) = Θ(1). (12)

Now we consider the set of αn high-weighted nodes. For each such node vi with weight
wi, define its characteristic radius to be

r2
t (wi) = wi/θn. (13)

Giant Component and Connectivity in Geographical Threshold Graphs 213

Then it follows that any other high-weighted node v j within this radius is connected to
vi, since the connectivity relation is satisfied:

(wi + wj)/r2 ≥ wi/r2
t = θn. (14)

Let θn = cn, where c < αF−1(1 − α)/λc. For the radius rt , whp it follows

r2
t (wi) =

wi

θn
≥ sn

θn
>

λc

αn
. (15)

Let us therefore consider small circles, with a fixed radius r0 s.t.
√

sn/θn > r0 >
√

λc/(αn), around each of these αn nodes. A subgraph of this must be a RGG with
mean degree > λc, which whp contains a giant component. Since its size is Θ(αn) =
Θ(n), it is a giant component of the GTG too. We may optimize the bound by taking
the supremum of c over α ∈ (0,1), and the lemma follows.

4 Connectivity in GTG

Definition 2 (Connectivity). The graph on n vertices is connected if the largest com-
ponent has size n.

In this section we analyze sufficient conditions for the entire graph to be connected. We
consider the connectivity threshold θn = cn/ lnn and specify a bound on c.

Lemma 3. Let θn = cn/ lnn for c < supα∈(0,1) αF−1(1 − α)/4. Then the GTG is con-
nected whp.

Proof. The proof is divided into two parts. In the first part, we prove that a constant
fraction of nodes αn are connected. In the second part we prove that the rest of the
(1 − α)n nodes are connected to the first set of αn nodes.

First part: Invoking the proof of the appearance of the giant component, there are αn
nodes all with weights ≥ sn → F−1(1 − α) = Θ(1).

Let θn = cn/ lnn, where c < αF−1(1−α)π. Analogously to rt , define the connectiv-
ity radius rc

r2
c (wi) =

wi

θn
≥ sn

θn
>

lnn
απn

. (16)

Similarly to Lemma 2 let us consider small circles around each of these αn nodes, and
consider these nodes as a RGG. It is known that rn =

√

lnn/(πn) is the connectivity
threshold in RGG [18]. The connectivity of RGG implies the connectivity of these αn
nodes in our GTG.

Second part: Color the αn high-weighted nodes blue, and the remaining (1−α)n nodes
red. Now let us tile our space into n/(c0 lnn) squares of size c0 lnn/n. We state c0 later.
Consider any square Si, and let Bi be the number of blue nodes in Si. In expectation there
are E[Bi] = αc0 lnn blue nodes in each square. From the Chernoff bound it follows

Pr[Bi ≥ (1 − δ)αc0 lnn] ≥ 1 − n−αc0δ2/2. (17)

214 M. Bradonjić, A. Hagberg, and A.G. Percus

Let us consider one red node r. The node r belongs to some square Si. Let Mr be the
event that the red node r is connected to some blue node b ∈ Si. Let the weights of r,b
be wr,wb, respectively. The probability of the complement of Mr, conditioned on there
being at least one blue node in Si, is given by

Pr[Mc
r |Bi ≥ 1] = Pr[wr + wb ≤ r2θn] ≤ Pr[wr + wb ≤ 2c0

lnn
n

c
n

lnn
]

= Pr[wr + wb ≤ 2c0c]. (18)

As long as F−1(1 − α) > 2c0c, wb > 2c0c and hence Pr[Mc
r |Bi ≥ 1] = 0. For large

enough n it must hold that (1 − δ)αc0 lnn > 1, and so from Eq. (17),

Pr[Mc
r] ≤ Pr[Mc

r |Bi ≥ (1 − δ)αc0 lnn]+ Pr[Bi < (1 − δ)αc0 lnn]

≤ 0 + n−αc0δ2/2. (19)

If αc0δ2/2 ≥ 1 + ε for some ε > 0, then by the union bound,

Pr[
⋃

r

Mc
r] ≤ ∑

r
Pr[Mc

r] ≤ (1 − α)nn−(1+ε) = (1 − α)n−ε. (20)

Finally, the probability that all red nodes are connected to the set of blue nodes is given
by the following relation

Pr[
⋂

r

Mr] = 1 − Pr[
⋃

r

Mc
r] ≥ 1 − (1 − α)n−ε → 1. (21)

The requirements we have imposed on constants so far are: c < αF−1(1 − α)π, c <
F−1(1 − α)/(2c0) and αc0 ≥ 2(1 + ε)/δ2. These conditions combine to give

c < αF−1(1 − α)min(π,
δ2

4(1 + ε)
). (22)

Since α ∈ (0,1), δ ∈ (0,1) and ε > 0 are arbitrary, we obtain

c < sup
α∈(0,1)

αF−1(1 − α)/4. (23)

5 Discussion

The GTG model is a versatile one and can be used not only for the generation and analy-
sis of web-graphs or large complex networks, but more generally for relation graphs in a
large data set. If the data have a metric and can be mapped to nodes in Euclidean space,
much of the foregoing analysis applies: one may hope to control structural properties
of the data set by studying it as a GTG.

Furthermore, while we considered the GTG model as a static structure, the set of
weights in the model could vary in time. This would introduce dynamics, as might be
appropriate for particular applications such as wireless networking.

Giant Component and Connectivity in Geographical Threshold Graphs 215

Acknowledgements

Part of this work was funded by the Department of Energy at Los Alamos National
Laboratory under contract DE-AC52-06NA25396 through the Laboratory Directed Re-
search and Development Program.

References

1. Bonato, A.: A survey of models of the web graph. In: López-Ortiz, A., Hamel, A.M. (eds.)
CAAN 2004. LNCS, vol. 3405, pp. 159–172. Springer, Heidelberg (2005)

2. Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of massive data sets. Kluwer
Academic Publishers, Norwell, MA (2002)

3. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topol-
ogy. In: SIGCOMM 1999: Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, pp. 251–262. ACM Press, New
York (1999)

4. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a
graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i.,
Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg
(1999)

5. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic
models for the web graph. In: FOCS 2000: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, Washington, DC, USA, p. 57. IEEE Computer Society,
Los Alamitos (2000)

6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512
(1999)

7. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC 2000:
Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 171–
180. ACM Press, New York (2000)

8. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free
random graph process. Random Struct. Algorithms 18, 279–290 (2001)

9. Cooper, C., Frieze, A.M.: A general model of undirected Web graphs. In: Meyer auf der
Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 500–511. Springer, Heidelberg (2001)

10. Bradonjić, M., Kong, J.: Wireless ad hoc networks with tunable topology. In: Proceedings of
the 45th Annual Allerton Conference on Communication, Control and Computing (to appear,
2007)

11. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Inst. Hungar. Acad. Sci. (1959)
12. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.

Sci. (1960)
13. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
14. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Annals of discrete math-

ematics, vol. 56. Elsevier, New York (1995)
15. Hagberg, A., Swart, P.J., Schult, D.A.: Designing threshold networks with given structural

and dynamical properties. Phys. Rev. E 74, 056116 (2006)
16. Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and

scale-free properties. Physical Review E 71, 036108 (2005)
17. Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. John Wiley & Sons, Inc., New

York (2000)
18. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity. In: Proceedings of the

37th IEEE Conference on Decision and Control, vol. 1, pp. 1106–1110 (1998)

216 M. Bradonjić, A. Hagberg, and A.G. Percus

Appendix

Degree Distribution

The nodes are placed into the unit torus. W.l.o.g. let us consider the degree of the node
v1. Let the weight vector be w. Let the position vector of the nodes be x. It is straight-
forward to show that the probability of v1 having degree k, given weights w, is

Pr[d1 = k|w] =
(

n − 1
k

) k+1

∏
i=2

Area(B(xi,ri1))
n

∏
j=k+2

(1 − Area(B(x j,r j1))), (24)

where Area(B(xi,ri1)) is the area of the ball at center xi with radius ri1, and due to (3)
the radii are given by

ri1 =
√

w1 + wi

θn
(25)

for i = 2, . . . ,n. After marginalization, it follows

Pr[d1 = k|w1] =
(n

∏
i=2

∫

wi

dwi f (wi)
)

Pr[d1 = k|w]

=
(

n − 1
k

)

(
∫

w
dw f (w)

(w1 + w)π
θn

)k(

1 −
∫

w
dw f (w)

(w1 + w)π
θn

)n−1−k

=
(

n − 1
k

)

((w1 + µ)π
θn

)k(

1 − (w1 + µ)π
θn

)n−1−k

→ e−λ λk

k!
,

where
λ = (w1 + µ)nπ/θn. (26)

That is, the degree distribution of a node with weight w, in the limit follows the Poisson
distribution

d(k|w) ∼ Po((w+ µ)nπ/θn). (27)

Author Index

Aiello, W. 96
Andersen, Reid 150, 166
Arcaute, Esteban 187
Avrachenkov, Konstantin 16

Bader, David A. 124
Bonato, A. 96
Borgs, Christian 150
Bradonjić, Milan 209

Chayes, Jennifer 150
Chen, Ning 187
Chung, Fan 166
Constantine, Paul G. 82
Cooper, C. 96

Donato, Debora 108

Flaxman, Abraham D. 1, 41
Frieze, Alan M. 41

Gleich, David F. 82
Gollapudi, Sreenivas 195
Gonen, Mira 29
Greenwald, Amy 202

Hagberg, Aric 209
Hopcroft, John 68, 150

Janssen, J. 96

Kintali, Shiva 124
Kumar, Ravi 187

Lang, Kevin 166
Liben-Nowell, David 187
Litvak, Nelly 16, 108

Madduri, Kamesh 124
Mahdian, Mohammad 179, 187
Mihail, Milena 124
Mirrokni, Vahab S. 150
Mishra, Nina 56

Najork, Marc 195
Nazerzadeh, Hamid 187

Panigrahy, Rina 195
Percus, Allon G. 209
Pham, Kim Son 16
Pra�lat, P. 96

Ron, Dana 29

Scheinerman, Edward R. 138
Schreiber, Robert 56
Sheldon, Daniel 68
Stanton, Isabelle 56

Tarjan, Robert E. 56
Teng, Shang-Hua 150

Vera, Juan 1, 41
Volkovich, Yana 108

Weinsberg, Udi 29
Wicks, John 202
Wool, Avishai 29

Xu, Ying 179, 187

Young, Stephen J. 138

	Title page
	Preface
	Organization
	Table of Contents
	Bias Reduction in Traceroute Sampling –Towards a More Accurate Map of the Internet
	Introduction
	Our Contribution
	Related Work
	Outline of What Follows

	Estimation Technique
	Theoretical Analysis
	Computer Experiments
	Random Graph, Gn,m
	Preferential Attachment Graph
	Random Geometric Graph, G(X;r)
	Western States Power Graph

	AS Graph
	Conclusion

	Distribution of PageRank Mass AmongPrinciple Components of the Web
	Introduction
	Datasets
	The Structure of the Hyper-link Transition Matrix
	PageRank Mass of IN+SCC
	PageRank Mass of ESCC

	Finding a Dense-Core in Jellyfish Graphs
	Introduction
	Background and Motivation
	Defining a Dense-Core
	Contributions

	Definitions and Notations
	The JellyCore Algorithm for Finding a Dense-Core in Jellyfish Graphs
	A Sublinear Algorithm
	Implementation
	Accuracy of the JellyCore Algorithm
	Execution Times

	Conclusions

	A Geometric Preferential Attachment Model ofNetworks II
	Introduction
	The Random Process

	Outline of the Paper
	Proving a Power Law
	Establishing a Recurrence for dk(t): The Expected Number of Vertices of Degree k at Time t
	Concentration of T(u)
	Concentration of dk(t)

	Small Separators

	Clustering Social Networks
	Introduction
	Related Work
	Combinatorics of (,)-Clusters
	An Algorithm for Finding Clusters with Champions
	Experiments
	Summary and Future Work

	Manipulation-Resistant Reputations UsingHitting Time
	Introduction
	Related Work
	Characterizing Hitting Time
	Preliminaries
	Theorem 1

	Manipulation-Resistance
	Manipulating the Rankings
	Reputation and Influence of Sets
	Sybils

	Computing Hitting Time
	A Monte Carlo Algorithm

	Proofs
	Lemma 1
	Lemma 2
	Corollary 2
	Corollary 3

	Using Polynomial Chaos to Compute theInfluence of Multiple Random Surfers in thePageRank Model
	Introduction
	Choice of Distribution
	A Consequence of the Modeling Change
	Computing the Solution
	Monte Carlo Approach
	The Polynomial Chaos Approach

	Datasets
	Wikipedia

	Convergence Results
	Results and Discussion
	Conclusions and Future Work
	A Counterexample
	Engineering Details

	A Spatial Web Graph Model with Local InfluenceRegions
	Introduction
	In-Degree Distribution
	Expected Value
	Concentration
	In-Degree of Given Node

	The Number of Edges of Gt
	A Geometric Small World Property
	Conclusions and Further Work

	Determining Factors Behind the PageRankLog-Log Plot
	Introduction
	The Model
	In-Degree
	Out-Degree and Inspection Paradox
	Stochastic Equation

	Power Iterations
	Analytical Results
	Experiments
	Web Data
	Wikipedia
	Synthetic Graph

	PAR Ranking Scheme
	Preliminaries on Regular Variation
	Proofs

	Approximating Betweenness Centrality
	Introduction
	Exact Computation of Betweenness Centrality
	Brandes' Algorithm

	Adaptive-Sampling Based Approximation
	Experimental Study
	Conclusion and Open Problems

	Random Dot Product Graph Models for SocialNetworks
	Introduction
	Model Specification
	Diameter of ``Giant'' Component
	Clustering
	Degree Distribution
	Sample Distributions

	On the Nature of Bad Cuts
	Future Work

	Local Computation of PageRank Contributions
	Introduction
	Preliminaries
	Local Approximation of PageRank Contributions
	High Level Idea of the Local Algorithm
	The Local Algorithm and Its Analysis
	The Support of the Approximate Contribution Vector

	Computing Supporting Sets
	Approximating Supporting Sets
	Local Estimation of PageRank

	Final Remarks
	Improving the Dependency on In-Degrees
	Computing Contribution Vectors Via the Time-Reverse Chain

	Local Partitioning for Directed Graphs UsingPageRank
	Introduction
	Preliminaries
	Conductance and Sweeps
	Global PageRank and Personalized PageRank

	Local Partitioning for Ergodic Markov Chains
	Partitioning a Strongly Connected Graph
	Partitioning the PageRank Markov Chain
	The PageRank Markov Chain
	Computing Personalized PageRank in the PageRank Markov Chain
	Local Partitioning in the PageRank Markov Chain

	Concluding Remarks
	When Is Partitioning the PageRank Markov Effective?
	Cuts from Approximate PageRank Vectors

	Stochastic Kronecker Graphs
	Introduction
	The Model and Overview of Results

	Connectivity and Giant Components
	Connectivity of G(n,P)
	Connectivity of Kronecker Graphs
	Giant Components

	Diameter
	Searchability

	Deterministic Decentralized Searchin Random Graphs
	Introduction
	The Model
	A Characterization of Searchable Random Graphs
	The Monotonicity Property

	Using Bloom Filters to Speed Up HITS-LikeRanking Algorithms
	Introduction
	HITS and SALSA
	Summarizing Neighborhood Graphs
	Experimental Validation
	Conclusion

	Parallelizing the Computation of PageRank
	Introduction
	ParaSolve
	Experiments
	Future Work

	Giant Component and Connectivity in GeographicalThreshold Graphs
	Introduction
	Geographical Threshold Graph Model
	Giant Component in GTG
	Absence of Giant Component
	Existence of Giant Component

	Connectivity in GTG
	Discussion

	Author Index

