
J. Neves, M. Santos, and J. Machado (Eds.): EPIA 2007, LNAI 4874, pp. 160–169, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Halt Condition in Genetic Programming

José Neves, José Machado, Cesar Analide, António Abelha, and Luis Brito

Department of Informatics, University of Minho, Braga, Portugal
{jneves,jmac,analide,abelha,lbrito}@di.uminho.pt

Abstract. In this paper we address the role of divergence and convergence in
creative processes, and argue about the need to consider them in Computational
Creativity research in the Genetic or Evolutionary Programming paradigm,
being one´s goal the problem of the Halt Condition in Genetic Programming.
Here the candidate solutions are seen as evolutionary logic programs or
theories, being the test whether a solution is optimal based on a measure of the
quality-of-information carried out by those logical theories or programs.
Furthermore, we present Conceptual Blending Theory as being a promising
framework for implementing convergence methods within creativity programs,
in terms of the logic programming framework.

Keywords: Computational Creativity, Genetic or Evolutionary Programming,
Extended Logic Programming, Quality-of-Information, Conceptual Blending
Theory.

1 Introduction

While the discussion around the phenomenon of creativity runs about fundamental
issues like clarification of concepts, evaluation, psychological factors or philosophical
questions, the quest for creativity in Artificial Intelligence (AI) has begun, raising its
unavoidable subjects such as knowledge representation, search methods, domain
modelling, just to name a few. In this paper, we propose a theme around the subject of
modelling creativity, from the point of view of the process. We start by considering
the divergence/convergence characteristics of the creative process as an argument for
the need of divergent methods that, at some point, are able to detect a convergent
solution as a way of goal accomplishment. Although this may seem the description of
search methods in general, it is clear that we may deal with wider amplitudes of
divergence in tasks that demand higher creativity. These tasks do not necessarily
have to present a particular form or be of a specific kind. However, the quest for a
previously unseen and correct solution is surely expected. It is a solution that
traditional methods do not seem to find. We think that some qualitative jump must be
made in AI, such that classical methods become more able to diverge or at least to
combine with other processes, in order to enter the realms of creativity.

On the other hand, Genetic Programming (GP) may be seen as one of the most
useful, general-purpose problem solving techniques available nowadays. It has been
used to solve a wide range of problems, such as symbolic regression, data mining,
optimization, and emergent behavior in biological communities. GP is one instance of

 The Halt Condition in Genetic Programming 161

the class of techniques called evolutionary algorithms, which are based on insights
from the study of natural selection and evolution. Evolutionary algorithms solve
problems not by explicit design and analysis, but by a process akin to natural
selection. An evolutionary algorithm solves a problem by first generating a large
number of random problem solvers (programs). Each problem solver is executed and
rated according to a fitness metric defined by the developer. In the same way that
evolution in nature results from natural selection, an evolutionary algorithm selects
the best problem solvers in each generation and breeds them. Genetic programming
and genetic algorithms are two different evolutionary algorithms. Genetic algorithms
involve encoded strings that represent particular problem solutions. These encoded
strings are run through a simulator and the best strings are mixed to form a new
generation. Genetic programming, the subject of this article, follows a different
approach. Instead of encoding a representation of a solution, GP breeds executable
computer programs, here defined in terms of logic programs or logical theories.

2 The Problem

A genetic or evolutionary algorithm applies the principles of evolution found in
nature to the problem of finding an optimal solution to a solver problem. In a genetic
algorithm the problem is encoded in a series of bit strings that are manipulated by the
algorithm; in an evolutionary algorithm the decision variables and problem functions
are used directly. A drawback of any evolutionary algorithm is that a solution is better
only in comparison to other, presently known solutions; such an algorithm actually
has no concept of an optimal solution, or any way to test whether a solution is
optimal. This also means that an evolutionary algorithm never knows for certain when
to stop, aside from the length of time, or the number of iterations or candidate
solutions, that one may wish to explore. In this paper it is addressed the problem of
the halt condition in genetic programming, where the candidate solutions are seen as
evolutionary logic programs or theories, being the test whether a solution is optimal
based on a measure of the quality-of-information carried out by those logical theories
or programs.

2.1 The Past

For example, let us consider the case where we had a series of data that was produced
from a set of water’s reservoir results taken over time. In this case we have the values
that define the output of the function, and we can guess at some parameters which
might inter-operate to produce these values - such as a measure of the acidity or
alkalinity of the water’s reservoir, the dissolved oxygen, the nitrates, the phosphates,
the chlorophyll, and so on. We might like to predict how the water’s reservoir results
will fare in the future, or we may want to fill in some missing data in the series. To do
so, we need to find the relationship between the parameters which will generate
values as close to the observed values as possible. Therefore, our optimum will be fit
to the observed values.

To give a very different example, consider the problem a glazier might have in
deciding how best to cut up a large sheet of glass in order to achieve the minimum

162 J. Neves et al.

wastage if a known number of different sized panes are to be produced from the sheet.
The function is therefore the area of glass needed, and the parameters are the sizes of
the panes required. The optimum is the minimum area of glass left over after all the
panes have been cut out. Whereas traditional search algorithms seek to search such
problem spaces in a linear fashion, one search route at a time, i.e., Genetic
Algorithms maintain a population of candidate solutions, all competing against one
another. At each iteration of the GA search engine, each candidate solution is
evaluated against the optimality criteria specified, and assigned a measure of
goodness. All the candidate solutions are then replaced with new candidates by a
reproduction process which seeks to combine parts of one solution with parts of
another. By a stochastic process, only the better candidates are selected to perform in
this process. As a result, some of the good candidate solutions will be replicated, and
some new candidates will be produced based on the existing ones. This forms a kind
of directed search with controlled stochastic effects to provide exploration where
needed.

The GA operates upon a population of candidate solutions to the problem. These
solutions can be held in the type of their parameter representation. For example, if the
candidate solutions were for a function optimisation problem in which the function
took a fixed number of floating point parameters, then each candidate could be
represented as an array of such floating point numbers.

Clearly, we want to search only the most promising search paths into the
population, although we must remain aware that sometimes non-promising search
paths can be the best route to the result we are looking for. In order to work out which
are the most promising candidates, we evaluate each candidate solution using a user
supplied evaluation function. In general, this assigns a single numeric goodness
measure to each candidate, so that their relative merit is readily ascertained during the
application of the genetic operators. Undoubtedly, the amount of meaning and the
interpretation that can be gleaned from this single value, is crucial to a successful
search [3].

2.2 The Future

With respect to the computational paradigm it were considered extended logic
programs with two kinds of negation, classical negation, ¬, and default negation, not.
Intuitively, not p is true whenever there is no reason to believe p (close world
assumption), whereas ¬p requires a proof of the negated literal. An extended logic
program (program, for short) is a finite collection of rules and integrity constraints,
standing for all their ground instances, and is given in the form:

p ← p1 ∧ … ∧ pn ∧ not q1 ∧ … ∧ not qm; and
 ? p1 ∧ … ∧ pn ∧ not q1 ∧ … ∧ not qm, (n,m ≥ 0)

where ? is a domain atom denoting falsity, the pi, qj, and p are classical ground
literals, i.e. either positive atoms or atoms preceded by the classical negation sign ¬
[7]. Every program is associated with a set of abducibles. Abducibles can be seen as
hypotheses that provide possible solutions or explanations of given queries, being
given here in the form of exceptions to the extensions of the predicates that make the
program.

 The Halt Condition in Genetic Programming 163

These extended logic programs or theories stand for the population of candidate
solutions to model the universe of discourse. Indeed, in our approach to GP, we will
not get a solution to a particular problem, but rather a logic representation (or
program) of the universe of discourse to be optimized. On the other hand, logic
programming enables an evolving program to predict in advance its possible future
states and to make a preference. This computational paradigm is particularly
advantageous since it can be used to predict a program evolution employing the
methodologies for problem solving that benefit from abducibles [8,9], in order to
make and preserve abductive hypotheses. It is on the preservation of the abductive
hypotheses that our approach will be based to present a solution to the problem of The
Halt Condition in GP.

Designing such a selection regime presents, still, unique challenges. Most
evolutionary computation problems are well defined, and quantitative comparisons of
performance among the competing individuals are straightforward. By contrast, in
selecting an abstract and general logical representation or program, performance
metrics are clearly more difficult to devise. Individuals (i.e., programs) must be tested
on their ability to adapt to changing environments, to make deductions and draw
inferences, and to choose the most appropriate course of action from a wide range of
alternatives. Above all they must learn how to do these things on their own, not by
implementing specific instructions given to them by a programmer, but by
continuously responding to positive and negative environmental feedback.

In order to accomplish such goal, i.e., to model the universe of discourse in a
changing environment, the breeding and executable computer programs will be
ordered in terms of the quality-of-information that stems out of them, when subject to
a process of conceptual blending [10]. In blending, the structure or extension of two
or more predicates is projected to a separate blended space, which inherits a partial
structure from the inputs, and has an emergent structure of its own. Meaning is not
compositional in the usual sense, and blending operates to produce understandings of
composite functions or predicates, the conceptual domain, i.e., a conceptual domain
has a basic structure of entities and relations at a high level of generality (e.g., the
conceptual domain for journey has roles for traveler, path, origin, destination). In our
work we will follow the normal view of conceptual metaphor, i.e., metaphor will
carry structure from one conceptual domain (the source) to another (the target)
directly.

Let i (i ∈ {1,…,m}) denote the predicates whose extensions make an extended
logic program or theory that model the universe of discourse, and j (j ∈ {1,…,n}) the
attributes for those predicates. Let xj ∈ [minj, maxj] be a value for attribute j. To each
predicate it is also associated a scoring function Vi

j [minj, maxj] → 0…1, that gives
the score predicate i assigns to a value of attribute j in the range of its acceptable
values, i.e., its domain (for the sake of simplicity, scores are kept in the interval
0…1), here given in the form all(attribute exception list, sub expression, invariants).
This states that sub expression should hold for each combination of the exceptions to
the extension of the predicate of the attributes in the attribute exception list and the
invariants. This is further translated by introducing three new predicates. The first
predicate creates a list of all possible value combinations (e.g., pairs, triples) as a list
of sets determined by the domain size (and the invariants). The second predicate
recurses through this list, and makes a call to the third predicate for each exception

164 J. Neves et al.

combination. The third predicate denotes sub expression and is constructed
accordingly. The quality of the information with respect to a generic predicate K is
therefore given by QK=1/Card, where Card denotes the cardinality of the exception
set for K, if the exception set is not disjoint. If the exception set is disjoint, the quality
of information is given by:

card
card

CardK CC
Q

++
=

...
1

1
where

card
cardC is a card-combination subset, with card elements.

The next element of the model to be considered, it is the relative importance that a
predicate assigns to each of its attributes under observation; wi

j stands for the
relevance of attribute j for predicate i (it is also assumed that the weights of all
predicates are normalized, i.e. [1],

∑
≤≤ nj1

wi
j = 1, for all i.

It is now possible to define a predicate’s scoring function, i.e., for a value
x = (x1,…,xn) in the multi-dimensional space defined by the attributes domains, which
is given in the form:

Vi(x) = ∑
≤≤ nj1

wi
j V

 i
j(xj).

It is now possible to measure the quality of the information that stems from a logic
program or theory, by posting the Vi(x) values into a multi-dimensional space, whose
axes denote the logic program or theory, with a numbering ranging from 0 (at the center)
to 1. For example, one may have what is illustrated by Figure 1, where the dashed area
stands for the quality of information that springs from an extended logic program or
theory P, built on the extension of 5 (five) predicates, here named as p1…p5. It not only
works out which are the most promising extended logic programs or theories to model
the universe of discourse, making the Halt Condition in Genetic Programming.

As an example, let us now consider the case referred to above, where we had a
series of data that was produced from a set of water’s reservoir results taken over
time. In this case we will not have the values that define the output of the function,
but a measure of the quality of the water’s reservoir (Program 1).

pH(january,0.32).

¬ pH(X,Y) ←
 not pH(X,Y) ∧
 not exceptionpH(X,Y).

¬ (pH(X,Y) ∧ Y ≥ 0 ∧ Y ≤ 1). / This invariant states that pH takes values on the
interval 0…1/

¬ ((exceptionpH(X,Y) ∨ exceptionpH(X,Z)) ∧ ¬ (exceptionpH(X,Y) ∧
exceptionpH(X,Z))).

/This invariant states that the exceptions to the predicate pH follow an exclusive or/

Program 1. The extended logic program for pH with respect to January

 The Halt Condition in Genetic Programming 165

p1

p2

p3
p4

p5

1

11

11

0

Fig. 1. A measure of the quality-of-information for logic program or theory P

true

∧

∧

∧

←

¬ ∧

pH(X,Y) not not

pH(X,Y) exception (X,Y)pH

Y 1

¬

∧

pH(X,Y) ∧

Y 0

≤≥

pH(jan,0.32) ...

Fig. 2. The evolutionary logic program for pH with respect to January

Therefore we will not guess at some parameters which might inter-operate to
produce these values - such as a measure of the acidity or alkalinity of the water’s
reservoir, the dissolved oxygen, the nitrates, the phosphates, the chlorophyll, and so
on - but to have such parameters aggregated and giving rise to a set of predicates,
which will be given in the form (for the sake of simplicity it will be considered only
three predicates, namely those denoting the acidity or alkalinity of the water’s
reservoir (i.e., the pH), the dissolved oxygen (i.e., the dO), and the phosphates (i.e.,

166 J. Neves et al.

the tP) whose extensions, with respect to January are given, as it is depicted below, in
Program 1 (Figure2), Program 2 (Figure 3), Program 3 (Figure 4) [2].

dO(january,dO).

¬ dO(X,Y) ←
 not dO(X,Y) ∧
 not exceptiondO(X,Y).

exceptiondO(X,Y) ←
 dO(X,dO).

¬ (dO(X,Y) ∧ Y ≥ 0 ∧ Y ≤ 1).

 /This invariant states that dO takes values on the interval 0…1/

Program 2. The extended logic program for dO with respect to January

true

∧

∧

∧

∧

←

¬ ∧

dO(X,Y) not not

dO(X,Y) exception (X,Y)dO

Y 1

¬

∧

dO(X,Y) ∧

Y 0

≤≥

dO(jan,dO)

←

exception (X,Y)dO dO(X,oD)

...

Fig. 3. The evolutionary logic program for dO with respect to January

tP(january,0.21).

¬ tP(X,Y) ← /The closed word assumption is being softened/
 not tP(X,Y) ∧
 not exceptiontP(X,Y).

¬ (tP(X,Y) ∧ Y ≥ 0 ∧ Y ≤ 1). /This invariant states that pH takes values on the
interval 0…1/

Program 3. The extended logic program for tP with respect to January

 The Halt Condition in Genetic Programming 167

true

∧

∧

∧

←

¬ ∧

tP(X,Y) not not

tP(X,Y) exception (X,Y)tP

tP(jan,0.21)

Y 1

¬

∧

tP(X,Y) ∧

Y 0

≤≥

...

Fig. 4. The evolutionary logic program for tP with respect to January

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

∧

∧

∧

∧

←

¬ ∧

comp(X,Y) not not

comp(X,Y) exception (X,Y)

Y 1

¬

∧

comp(X,Y) ∧

Y 0

≤≥

comp(ag ,unknown)

←

exception (X,Y) comp(X,unknown)

true

∧

∧

∧

←

¬ ∧

imp(X,Y) not not

imp(X,Y) exception (X,Y)

Y 1

¬

∧

imp(X,Y) ∧

Y 0

≤≥

imp(ag ,0.21) true

pH

dO

tP

INPUT

...

...
?

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

...

OUTPUT

Fig. 5. A blended of the extensions of the predicates pH, dO and tP

Considering what it is illustrated by Figure 5, we might now want to predict how
the water’s reservoir results will fare in the future, or we may want to fill in some
missing data into the series. To do so, we need to evolve the logic theories or logic
programs, evolving the correspondent evolutionary logic programs, according to the
rules of GP, resulting in what it is depicted by Figures 6,7 [4].

What we are doing, is to put evolution to work for us as well. Indeed, in the present
case there is nones change on the quality-of-information when one moves from March
to April, i.e., the computational process must stop, once the halt condition is
accomplished (Figure 7).

168 J. Neves et al.

pH

dO tP
Fig. 6. A measure of the reservoir water’s quality for January is given by the paint area

Fig. 7. A measure of the evolution of the reservoir water’s quality from January to February

JANUARY FEBRUARY MARCH APRIL

Fig. 8. A measure of the evolution of the reservoir water’s quality from January to April

3 Conclusions

This paper shows how to construct a dynamic virtual world of complex and
interacting populations, entities that are built as evolutionary logic programs that
compete against one another in a rigorous selection regime, where the halt condition
of the search process is formalized. In order to produce the optimal solution to a

 The Halt Condition in Genetic Programming 169

particular problem, one must evolve the logic program or theory that models the
universe of discourse, in which fitness is judged by one criterion alone, the quality-of-
information.

Clearly, we work out:

What is the model?
A model in this context is to be understood as the composition of the predicates

that denote the objects and the relations that may be established between them, that
model the universe of discourse.

What parameters are we seeking to discover?
The extensions of predicates of the kind just referred to above [5].

What do we mean by optimal?
By optimal we mean the logic program or theory that models the universe of

discourse and maximizes its quality-of-information factor [6].

How can we measure and assign values to possible solutions?
Via mechanical theorem proving, and program blending [10].

References

[1] Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., Brien, O., Wiegand, M.E.:
Journal of Cooperative Information Systems 5(2-3), 105–130 (1996)

[2] Angeline, P.J.: Parse Trees. In: Bäck, T., et al. (eds.) Evolutionary Computation 1: Basic
Algorithms And Operators, Institute of Physics Publishing, Bristol (2000)

[3] Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions
on Neural Networks, Special Issue on Evolutionary Computation 5(1), 96–101 (1994)

[4] Teller, A.: Evolving programmers: The co-evolution of intelligent recombination
operators. In: Kinnear, K., Angeline, P. (eds.) Advances in Genetic Programming 2, MIT
Press, Cambridge (1996)

[5] Analide, C., Novais, P., Machado, J., Neves, J.: Quality of Knowledge in Virtual Entities.
In: Encyclopedia of Communities of Practice in Information and Knowledge
Management, pp. 436–442. Idea Group Inc., USA (2006)

[6] Mendes, R., Kennedy, J., Neves, J.: Avoiding the Pitfalls of Local Optima: How
topologies can Save the Day. In: ISAP 2003. Proceedings of the 12th Conference on
Intelligent Systems Application to Power Systems, IEEE Computer Society, Lemnos,
Greece (2003)

[7] Neves, J.C.: A Logic Interpreter to Handle Time and Negation in Logic Data Bases. In:
Proceedings of ACM 1984 Annual Conference, San Francisco, USA (October 24-27,
1984)

[8] Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In:
Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of logic in Artificial Intelligence
and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

[9] Kowalski, R.: The logical way to be artificially intelligent. In: Toni, F., Torroni, P. (eds.)
Proceedings of CLIMA VI. LNCS (LNAI), Springer, Heidelberg (2006)

[10] Turner, M., Fauconnier, G.: Conceptual Integration and Formal Expression. Johnson, M.:
Journal of Metaphor and Symbolic Activity 10(3) (1995)

	The Halt Condition in Genetic Programming
	Introduction
	The Problem
	The Past
	The Future

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

