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Abstract. In this paper we address the role of divergence and convergence in 
creative processes, and argue about the need to consider them in Computational 
Creativity research in the Genetic or Evolutionary Programming paradigm, 
being one´s goal the problem of the Halt Condition in Genetic Programming. 
Here the candidate solutions are seen as evolutionary logic programs or  
theories, being the test whether a solution is optimal based on a measure of the 
quality-of-information carried out by those logical theories or programs. 
Furthermore, we present Conceptual Blending Theory as being a promising 
framework for implementing convergence methods within creativity programs, 
in terms of the logic programming framework.  

Keywords: Computational Creativity, Genetic or Evolutionary Programming,  
Extended Logic Programming, Quality-of-Information, Conceptual Blending 
Theory. 

1   Introduction 

While the discussion around the phenomenon of creativity runs about fundamental 
issues like clarification of concepts, evaluation, psychological factors or philosophical 
questions, the quest for creativity in Artificial Intelligence (AI) has begun, raising its 
unavoidable subjects such as knowledge representation, search methods, domain 
modelling, just to name a few. In this paper, we propose a theme around the subject of 
modelling creativity, from the point of view of the process. We start by considering 
the divergence/convergence characteristics of the creative process as an argument for 
the need of divergent methods that, at some point, are able to detect a convergent 
solution as a way of goal accomplishment. Although this may seem the description of 
search methods in general, it is clear that we may deal with wider amplitudes of 
divergence in tasks that demand higher creativity. These tasks do  not necessarily 
have to present a particular form or be of a specific kind. However, the quest for a 
previously unseen and correct solution is surely expected. It is a solution that 
traditional methods do not seem to find. We think that some qualitative jump must be 
made in AI, such that classical methods become more able to diverge or at least to 
combine with other processes, in order to enter the realms of creativity. 

On the other hand, Genetic Programming (GP) may be seen as one of the most 
useful, general-purpose problem solving techniques available nowadays. It has been 
used to solve a wide range of problems, such as symbolic regression, data mining, 
optimization, and emergent behavior in biological communities. GP is one instance of 
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the class of techniques called evolutionary algorithms, which are based on insights 
from the study of natural selection and evolution. Evolutionary algorithms solve 
problems not by explicit design and analysis, but by a process akin to natural 
selection. An evolutionary algorithm solves a problem by first generating a large 
number of random problem solvers (programs). Each problem solver is executed and 
rated according to a fitness metric defined by the developer. In the same way that 
evolution in nature results from natural selection, an evolutionary algorithm selects 
the best problem solvers in each generation and breeds them. Genetic programming 
and genetic algorithms are two different evolutionary algorithms. Genetic algorithms 
involve encoded strings that represent particular problem solutions. These encoded 
strings are run through a simulator and the best strings are mixed to form a new 
generation. Genetic programming, the subject of this article, follows a different 
approach. Instead of encoding a representation of a solution, GP breeds executable 
computer programs, here defined in terms of logic programs or logical theories. 

2   The Problem 

A genetic or evolutionary algorithm applies the principles of evolution found in 
nature to the problem of finding an optimal solution to a solver problem. In a genetic 
algorithm the problem is encoded in a series of bit strings that are manipulated by the 
algorithm; in an evolutionary algorithm the decision variables and problem functions 
are used directly. A drawback of any evolutionary algorithm is that a solution is better 
only in comparison to other, presently known solutions; such an algorithm actually 
has no concept of an optimal solution, or any way to test whether a solution is 
optimal. This also means that an evolutionary algorithm never knows for certain when 
to stop, aside from the length of time, or the number of iterations or candidate 
solutions, that one may wish to explore. In this paper it is addressed the problem of 
the halt condition in genetic programming, where the candidate solutions are seen as 
evolutionary logic programs or  theories, being the test whether a solution is optimal 
based on a measure of the quality-of-information carried out by those logical theories 
or programs. 

2.1   The Past 

For example, let us consider the case where we had a series of data that was produced 
from a set of water’s reservoir results taken over time. In this case we have the values 
that define the output of the function, and we can guess at some parameters which 
might inter-operate to produce these values - such as a measure of the acidity or 
alkalinity of the water’s reservoir, the dissolved oxygen, the nitrates, the phosphates, 
the chlorophyll, and so on. We might like to predict how the water’s reservoir results 
will fare in the future, or we may want to fill in some missing data in the series. To do 
so, we need to find the relationship between the parameters which will generate 
values as close to the observed values as possible. Therefore, our optimum will be fit 
to the observed values. 

To give a very different example, consider the problem a glazier might have in 
deciding how best to cut up a large sheet of glass in order to achieve the minimum 



162 J. Neves et al. 

wastage if a known number of different sized panes are to be produced from the sheet. 
The function is therefore the area of glass needed, and the parameters are the sizes of 
the panes required. The optimum is the minimum area of glass left over after all the 
panes have been cut out. Whereas traditional search algorithms seek to search such 
problem spaces in a linear fashion, one search route at a time, i.e.,  Genetic 
Algorithms maintain a population of candidate solutions, all competing against one 
another. At each iteration of the GA search engine, each candidate solution is 
evaluated against the optimality criteria specified, and assigned a measure of 
goodness. All the candidate solutions are then replaced with new candidates by a 
reproduction process which seeks to combine parts of one solution with parts of 
another. By a stochastic process, only the better candidates are selected to perform in 
this process. As a result, some of the good candidate solutions will be replicated, and 
some new candidates will be produced based on the existing ones. This forms a kind 
of directed search with controlled stochastic effects to provide exploration where 
needed. 

The GA operates upon a population of candidate solutions to the problem. These 
solutions can be held in the type of their parameter representation. For example, if the 
candidate solutions were for a function optimisation problem in which the function 
took a fixed number of floating point parameters, then each candidate could be 
represented as an array of such floating point numbers.  

Clearly, we want to search only the most promising search paths into the 
population, although we must remain aware that sometimes non-promising search 
paths can be the best route to the result we are looking for. In order to work out which 
are the most promising candidates, we evaluate each candidate solution using a user 
supplied evaluation function. In general, this assigns a single numeric goodness 
measure to each candidate, so that their relative merit is readily ascertained during the 
application of the genetic operators. Undoubtedly, the amount of meaning and the 
interpretation that can be gleaned from this single value, is crucial to a successful 
search [3]. 

2.2   The Future 

With respect to the computational paradigm it were considered extended logic 
programs with two kinds of negation, classical negation,  ¬, and default negation, not. 
Intuitively, not p is true whenever there is no reason to believe p (close world 
assumption), whereas ¬p requires a proof of the negated literal. An extended logic 
program (program, for short) is a finite collection of rules and integrity constraints, 
standing for all their ground instances, and is given in the form: 
 

p ← p1 ∧ … ∧ pn ∧ not q1 ∧ … ∧ not qm; and 
   ?  p1 ∧ … ∧ pn ∧ not q1 ∧ … ∧ not qm, (n,m ≥ 0) 

 

where ? is a domain atom denoting falsity,  the pi, qj, and p are classical ground 
literals, i.e. either positive atoms or atoms preceded by the classical negation sign ¬ 
[7]. Every program is associated with a set of abducibles. Abducibles can be seen as 
hypotheses that provide possible solutions or explanations of given queries, being 
given here in the form of exceptions to the extensions of the predicates that make the 
program. 
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These extended logic programs or theories stand for the population of candidate 
solutions to model the universe of discourse. Indeed, in our approach to GP, we will 
not get a solution to a particular problem, but rather a logic representation (or 
program) of the universe of discourse to be optimized. On the other hand, logic 
programming enables an evolving program to predict in advance its possible future 
states and to make a preference. This computational paradigm is particularly 
advantageous since it can be used to predict a program evolution employing the 
methodologies for problem solving that benefit from abducibles [8,9], in order to 
make and preserve abductive hypotheses. It is on the preservation of the abductive 
hypotheses that our approach will be based to present a solution to the problem of The 
Halt Condition in GP. 

Designing such a selection regime presents, still, unique challenges. Most 
evolutionary computation problems are well defined, and quantitative comparisons of 
performance among the competing individuals are straightforward. By contrast, in 
selecting an abstract and general logical representation or program, performance 
metrics are clearly more difficult to devise. Individuals (i.e., programs) must be tested 
on their ability to adapt to changing environments, to make deductions and draw 
inferences, and to choose the most appropriate course of action from a wide range of 
alternatives. Above all they must learn how to do these things on their own, not by 
implementing specific instructions given to them by a programmer, but by 
continuously responding to positive and negative environmental feedback.  

In order to accomplish such goal, i.e., to model the universe of discourse in a 
changing environment, the breeding and executable computer programs will be 
ordered in terms of the quality-of-information that stems out of them, when subject to 
a process of conceptual blending [10]. In blending, the structure or extension of two 
or more predicates is projected to a separate blended space, which inherits a partial 
structure from the inputs, and has an emergent structure of its own. Meaning is not 
compositional in the usual sense, and blending operates to produce understandings of 
composite functions or predicates, the conceptual domain, i.e., a conceptual domain 
has a basic structure of entities and relations at a high level of generality (e.g., the 
conceptual domain for journey has roles for traveler, path, origin, destination). In our 
work we will follow the normal view of conceptual metaphor, i.e., metaphor will 
carry structure from one conceptual domain (the source) to another (the target) 
directly. 

Let i (i ∈  {1,…,m}) denote the predicates whose extensions make an extended 
logic program or theory that model the universe of discourse, and j (j ∈  {1,…,n}) the 
attributes for those predicates. Let xj ∈  [minj, maxj] be a value for attribute j. To each 
predicate it is also associated a scoring function Vi

j [minj, maxj] → 0…1, that gives 
the score predicate i assigns to a value of attribute j in the range of its acceptable 
values, i.e., its domain (for the sake of simplicity, scores are kept in the interval 
0…1), here given in the form all(attribute exception list, sub expression, invariants). 
This states that sub expression should hold for each combination of the exceptions to 
the extension of the predicate of the attributes  in the attribute exception list and the 
invariants. This is further translated by introducing three new predicates. The first 
predicate creates a list of all possible value combinations (e.g., pairs, triples) as a list 
of sets determined by the domain size (and the invariants). The second predicate 
recurses through this list, and makes a call to the third predicate for each exception 
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combination. The third predicate denotes sub expression and is constructed 
accordingly. The quality of the information with respect to a generic predicate K is 
therefore given by QK=1/Card, where Card denotes the cardinality of the exception 
set for K, if the exception set is not disjoint. If the exception set is disjoint, the quality 
of information is given by: 

card
card

CardK CC
Q

++
=

...
1

1  
where 

card
cardC is a card-combination subset, with card elements. 

The next element of the model to be considered, it is the relative importance that a 
predicate assigns to each of its attributes under observation; wi

j stands for the 
relevance of attribute j for predicate i (it is also assumed that the weights of all 
predicates are normalized, i.e. [1], 

∑
≤≤ nj1

wi
j = 1,  for all i. 

It is now possible to define a predicate’s scoring function, i.e., for a value 
x = (x1,…,xn) in the multi-dimensional space defined by the attributes domains, which 
is given in the form: 

Vi(x) = ∑
≤≤ nj1

wi
j V

 i
j(xj). 

It is now possible to measure the quality of the information that stems from a logic 
program or theory, by posting the Vi(x) values into a multi-dimensional space, whose 
axes denote the logic program or theory, with a numbering ranging from 0 (at the center) 
to 1. For example, one may have what is illustrated by Figure 1, where the dashed area 
stands for the quality of information that springs from an extended logic program or 
theory P, built on the extension of 5 (five) predicates, here named as p1…p5. It not only 
works out which are the most promising extended logic programs or theories to model 
the universe of discourse, making the Halt Condition in Genetic Programming. 

As an example, let us now consider the case referred to above, where we had a 
series of data that was produced from a set of water’s reservoir results taken over 
time. In this case we will not have the values that define the output of the function, 
but a measure of the quality of the water’s reservoir (Program 1). 

pH( january,0.32 ). 

¬ pH( X,Y ) ←  
    not pH( X,Y ) ∧ 
    not exceptionpH( X,Y ). 

¬ ( pH( X,Y ) ∧ Y ≥ 0 ∧ Y ≤ 1 ).  / This invariant states that pH takes values on the 
interval 0…1/ 

¬ ( (exceptionpH( X,Y ) ∨ exceptionpH(X,Z)) ∧ ¬ (exceptionpH(X,Y) ∧ 
exceptionpH(X,Z))). 

/This invariant states that the exceptions to the predicate pH follow an exclusive or/ 

Program 1. The extended logic program for pH with respect to January 
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p1

p2

p3
p4

p5

1

11

11

0

 
Fig. 1. A measure of the quality-of-information for logic program or theory P 

true

∧

∧

∧

←

¬ ∧

pH(X,Y) not not

pH(X,Y) exception (X,Y)pH

Y 1

¬

∧

pH(X,Y) ∧

Y 0

≤≥

pH(jan,0.32) ...

 
Fig. 2. The evolutionary logic program for pH with respect to January 

Therefore we will not guess at some parameters which might inter-operate to 
produce these values - such as a measure of the acidity or alkalinity of the water’s 
reservoir, the dissolved oxygen, the nitrates, the phosphates, the chlorophyll, and so 
on - but to have such parameters aggregated and giving rise to a set of predicates, 
which will be given in the form (for the sake of simplicity it will be considered only 
three predicates, namely those denoting the acidity or alkalinity of the water’s 
reservoir (i.e., the pH), the dissolved oxygen (i.e., the dO), and the phosphates (i.e., 
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the tP) whose extensions, with respect to January are given, as it is depicted below, in 
Program 1 (Figure2), Program 2 (Figure 3), Program 3 (Figure 4) [2]. 

 

dO( january,dO ). 

¬ dO( X,Y ) ←  
    not dO( X,Y ) ∧ 
    not exceptiondO( X,Y ). 

exceptiondO( X,Y ) ← 
    dO( X,dO ). 

¬ ( dO( X,Y ) ∧ Y ≥ 0 ∧ Y ≤ 1 ).  

 /This invariant states that dO takes values on the interval 0…1/  

Program 2. The extended logic program for dO with respect to January 

true

∧

∧

∧

∧

←

¬ ∧

dO(X,Y) not not

dO(X,Y) exception (X,Y)dO

Y 1

¬

∧

dO(X,Y) ∧

Y 0

≤≥

dO(jan,dO)

←

exception (X,Y)dO dO(X,oD)

...

 
Fig. 3. The evolutionary logic program for dO with respect to January 

tP( january,0.21 ). 

¬ tP( X,Y ) ←  /The closed word assumption is being softened/ 
    not tP( X,Y ) ∧ 
    not exceptiontP( X,Y ). 

¬ ( tP( X,Y ) ∧ Y ≥ 0 ∧ Y ≤ 1 ).  /This invariant states that pH takes values on the 
interval 0…1/ 

Program 3. The extended logic program for tP with respect to January 
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true

∧

∧

∧

←

¬ ∧

tP(X,Y) not not

tP(X,Y) exception (X,Y)tP

tP(jan,0.21)

Y 1

¬

∧

tP(X,Y) ∧

Y 0

≤≥

...

 
Fig. 4. The evolutionary logic program for tP with respect to January 

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

∧

∧

∧

∧

←

¬ ∧

comp(X,Y) not not

comp(X,Y) exception (X,Y)

Y 1

¬

∧

comp(X,Y) ∧

Y 0

≤≥

comp(ag ,unknown)

←

exception (X,Y) comp(X,unknown)

true

∧

∧

∧

←

¬ ∧

imp(X,Y) not not

imp(X,Y) exception (X,Y)

Y 1

¬

∧

imp(X,Y) ∧

Y 0

≤≥

imp(ag ,0.21) true

pH

dO

tP

INPUT

...

...
?

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

∧

∧

∧

←

¬ ∧

hon(X,Y) not not

hon(X,Y) exception (X,Y)

Y 1

¬

∧

hon(X,Y) ∧

Y 0

≤≥

hon(ag ,0.32) true

...

OUTPUT

 

Fig. 5. A blended of the extensions of the predicates pH, dO and tP 

Considering what it is illustrated by Figure 5, we might now want to predict how 
the water’s reservoir results will fare in the future, or we may want to fill in some 
missing data into the series. To do so, we need to evolve the logic theories or logic 
programs, evolving the correspondent evolutionary logic programs, according to the 
rules of GP, resulting in what it is depicted by Figures 6,7 [4]. 

What we are doing, is to put evolution to work for us as well. Indeed, in the present 
case there is nones change on the quality-of-information when one moves from March 
to April, i.e., the computational process must stop, once the halt condition is 
accomplished (Figure 7). 
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pH

dO tP 
Fig. 6. A measure of the reservoir water’s quality for January is given by the paint area 

 
Fig. 7. A measure of the evolution of the reservoir water’s quality from January to February 

JANUARY FEBRUARY MARCH APRIL

 
Fig. 8. A measure of the evolution of the reservoir water’s quality from January to April 

3   Conclusions  

This paper shows how to construct a dynamic virtual world of complex and 
interacting populations, entities that are built as evolutionary logic programs that 
compete against one another in a rigorous selection regime, where the halt condition 
of the search process is formalized. In order to produce the optimal solution to a 
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particular problem, one must evolve the logic program or theory that models the 
universe of discourse, in which fitness is judged by one criterion alone, the quality-of-
information. 

Clearly, we work out: 
 

What is the model? 
A model in this context is to be understood as the composition of the predicates 

that denote the objects and the relations that may be established between them, that 
model the universe of discourse. 
 

What parameters are we seeking to discover? 
The extensions of predicates of the kind just referred to above [5]. 
 

What do we mean by optimal? 
By optimal we mean the logic program or theory that models the universe of 

discourse and maximizes its quality-of-information factor [6]. 
 

How can we measure and assign values to possible solutions? 
Via mechanical theorem proving, and program blending [10]. 
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