
Change Detection in Learning Histograms from

Data Streams

Raquel Sebastião1 and João Gama1,2

1 LIAAD-INESC Porto L.A., University of Porto
2 Faculty of Economics, University of Porto

Rua de Ceuta, 118 - 6
4050-190 Porto, Portugal

{raquel,jgama}@liacc.up.pt

Abstract. In this paper we study the problem of constructing his-
tograms from high-speed time-changing data streams. Learning in this
context requires the ability to process examples once at the rate they
arrive, maintaining a histogram consistent with the most recent data,
and forgetting out-date data whenever a change in the distribution is
detected. To construct histogram from high-speed data streams we use
the two layer structure used in the Partition Incremental Discretization
(PiD) algorithm. Our contribution is a new method to detect whenever
a change in the distribution generating examples occurs. The base idea
consists of monitoring distributions from two different time windows: the
reference time window, that reflects the distribution observed in the past;
and the current time window reflecting the distribution observed in the
most recent data. We compare both distributions and signal a change
whenever they are greater than a threshold value, using three different
methods: the Entropy Absolute Difference, the Kullback-Leibler diver-
gence and the Cosine Distance. The experimental results suggest that
Kullback-Leibler divergence exhibit high probability in change detection,
faster detection rates, with few false positives alarms.

1 Introduction

Histograms are one of the most used tools for exploratory data analysis. Data
analysis is complex, interactive, and exploratory over very large volumes of his-
toric data. Traditional pattern discovery process requires online ad-hoc queries,
not previously defined, that are successively refined. Due to the exploratory na-
ture of these queries, an exact answer may not be required. A user may prefer
a fast approximate answer. Histograms are one of the techniques used in data
stream management systems to solve range queries and selectivity estimation
(the proportion of tuples that satisfy a query), two illustrative examples where
fast but approximate answers are more useful than slow and exact ones.

Another aspect is that data arrives continuously in data streams and it’s nec-
essary to evaluate it, detecting if there is a change in the distribution. Therefore
it’s not reasonable to allow processing algorithms enough memory capacity to

J. Neves, M. Santos, and J. Machado (Eds.): EPIA 2007, LNAI 4874, pp. 112–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Change Detection in Learning Histograms from Data Streams 113

store the full history of the stream. So based on a previous work [1], we per-
form incremental discretization and use it to detect changes. Change detection
in data streams was the main motivation for this work. The paper is organized
as follows. The next section presents an algorithm to continuously maintain his-
tograms over a data stream. In Section 3 we extend the algorithm for predictive
data mining. Section 4 presents preliminary evaluation of the algorithm in bench-
mark datasets and one real-world problem. Last section concludes the paper and
presents some future research lines.

2 Histograms

Histograms are one of the most used tools in exploratory data analysis. They
present a graphical representation of data, providing useful information about
the distribution of a random variable. A histogram is visualized as a bar graph
that shows frequency data. The basic algorithm to construct a histogram consists
of sorting the values of the random variable and places them into bins. Next we
count the number of data samples in each bin. The height of the bar drawn on
the top of each bin is proportional to the number of observed values in that bin.

A histogram is defined by a set of non-overlapping intervals. Each interval is
defined by its boundaries and a frequency count. In the context of open-ended
data streams, we never observe all values of the random variable. For that reason,
and allowing to consider extreme values and outliers, we define an histogram as
a set of break points b1, ..., bk−1 and a set of frequency counts f1, ..., fk−1, fk that
define k intervals in the range of the random variable:
] −∞, b1],]b1, b2], ...,]bk−2, bk−1],]bk−1,∞[.

The most used histograms are either equal width, where the range of observed
values is divided into k intervals of equal length (∀i, j : (bi−bi−1) = (bj −bj−1)),
or equal frequency, where the range of observed values is divided into k bins such
that the counts in all bins are equal (∀i, j : (fi = fj)).

When all the data is available, there are exact algorithms to construct his-
tograms [2]. All these algorithms require a user defined parameter k, the number
of bins. Suppose we know the range of the random variable (domain informa-
tion) and the desired number of intervals k. The algorithm to construct equal
width histograms traverses the data once; whereas in the case of equal frequency
histograms a sort operation is required.

One of the main problems of using histograms is the definition of the number
of intervals. A rule that has been used is the Sturges’ rule: k = 1 + log2n, where
k is the number of intervals and n is the number of observed data points. This
rule has been criticized because it is implicitly using a binomial distribution
to approximate an underlying normal distribution1. Sturges rule has probably
survived because, for moderate values of n (less than 200) produces reasonable
1 Alternative rules for constructing histograms include Scott’s (1979) rule for the class

width: k = 3.5sn−1/3 and Freedman and Diaconis’s (1981) rule for the class width:
k = 2(IQ)n−1/3 where s is the sample standard deviation and IQ is the sample
interquartile range.

114 R. Sebastião and J. Gama

histograms. However, it does not work for large n. In exploratory data analysis,
histograms are used iteratively. The user tries several histograms using different
values of k (the number of intervals), and choose the one that better fits his
purposes.

2.1 The Partition Incremental Discretization

The Partition Incremental Discretization algorithm (PiD for short) is composed
by two layers. The first layer simplifies and summarizes the data; the second
layer constructs the final histogram.

The first layer is initialized without seeing any data. As described in [1], the
input for the initialization phase is the number of intervals (that should be much
larger than the desired final number of intervals) and the range of the variable.

Instead of initialize the algorithm with the number of bins, we manage a way
such that the numbers of bins depends on the upper bound on relative error and
on the desirable confidence level:

nBins1 = 50INT (ln(1
δ) ∗ ln(1

ε2)).

Figure 1 shows that the number of bins increase when the relative error (ε)
decreases and the confidence (1 − δ) increases.

Fig. 1. Representation of the number of bins of layer1. The top figure shows the
dependency from ε and δ and bottom figures shows it according to only one variable.

Figure 1 (top) represents the number of bins of layer1 in function of ε and δ.
The bottom figures give a projection of the number of bins according with the
variables ε and δ (respectively).

So, the input for the initialization phase is a pair of parameters (that will be
used to express accuracy guarantees) and the range of the variable:

Change Detection in Learning Histograms from Data Streams 115

– The upper bound on relative error ε.
– The desirable confidence level δ.
– The range of the variable.

The range of the variable is only indicative. It is used to initialize the set
of breaks using an equal-width strategy. Each time we observe a value of the
random variable, we update layer1. The update process determines the interval
corresponding to the observed value, and increments the counter of this interval.
Whenever the counter of an interval is above a user defined threshold (a per-
centage of the total number of points seen so far), a split operator triggers. The
split operator generates new intervals in layer1.

If the interval that triggers the split operator is the first or the last, a new
interval with the same step is inserted. In all the other cases, the interval is
split into two, generating a new interval. Figure 2 describes the layer1 update
process. The process of updating layer1 works online, performing a single scan
over the data stream. It can process infinite sequences of data, processing each
example in constant time and space.

The second layer merges the set of intervals defined by the first layer. It
triggers whenever it is necessary (e.g. by user action). The input for the second

Update-Layer1(x, breaks, counts, NrB, alfa, Nr)
x - Observed value of the random variable
breaks - Vector of actual set of break points
counts - Vector of actual set of frequency counts
NrB - Actual number of breaks
alfa - Threshold for Split an interval
Nr - Number of observed values

If (x < breaks[1]) k = 1; Min.x = x
Else If (x > breaks[NrB] k = NrB; Max.x = x
Else k = 2 + integer((x - breaks[1]) / step)

while(x < breaks[k-1]) k <- k - 1
while(x > breaks[k]) k <- k + 1

counts[k] = 1 + counts[k]
Nr = 1 + Nr
If ((1+counts[k])/(Nr+2) > alfa) {

val = counts[k] / 2
counts[k] = val
if (k == 1) {

breaks = append(breaks[1]-step, breaks)
counts <- append(val,counts)

}
else {

if(k == NrB) {
breaks <- append(breaks, breaks[NrB]+step)
counts <- append(counts,val)

}
else {

breaks <- Insert((breaks[k]+ breaks[k+1])/2, breaks, k)
counts <- Insert(val, counts, k)

}
}

NrB = NrB + 1
}

Fig. 2. The PiD algorithm for updating layer1

116 R. Sebastião and J. Gama

layer is the breaks and counters of layer1, the type of histogram (equal-width
or equal-frequency) and the number of intervals. The algorithm for the layer2

is very simple. For equal-width histograms, it first computes the breaks of the
final histogram, from the actual range of the variable (estimated in layer1). The
algorithm traverses the vector of breaks once, adding the counters corresponding
to two consecutive breaks. For equal-frequency histograms, we first compute the
exact number F of points that should be in each final interval (from the total
number of points and the number of desired intervals). The algorithm traverses
the vector of counters of layer1 adding the counts of consecutive intervals till F .

The two-layer architecture divides the histogram problem into two phases.
In the first phase, the algorithm traverses the data stream and incrementally
maintains an equal-width discretization. The second phase constructs the final
histogram using only the discretization of the first phase. The computational
costs of this phase can be ignored: it traverses once the discretization obtained
in the first phase. We can construct several histograms using different number
of intervals and different strategies: equal-width or equal-frequency. This is the
main advantage of PiD in exploratory data analysis.

2.2 Analysis of the Algorithm

The histograms generated by PiD are not exact. There are two sources of error:

1. The set of boundaries. The breaks of the histogram generated in the second
layer are restricted to the set of breaks defined in the first layer.

2. The frequency counters. The counters of the second layer are aggregations
of the frequency counters in the first layer. If the splitting operator does not
trigger, counters in first layer are exact, and also counters in second layer.
The splitting operator can produce inexact counters. If the merge operation
of the second layer aggregate those intervals, final counters are correct.

A comparative analysis of the histograms produced by PiD and histograms
produced by exact algorithms using all the data reveals some properties of the
PiD algorithm. Assuming a equal-width discretization (that is the split oper-
ator did not trigger) for the first layer and any method for the second layer,
the error of PiD boundaries (that is the sum of absolute differences between
boundaries between PiD and batch discretization) is bound, in the worst case,
by: R ∗N2/(2 ∗N1), where N1 denotes the number of intervals of layer1, N2 the
number of intervals of layer2, and R is the range of the random variable. This
indicates that when N1 increases, the error decreases. The algorithm guaran-
tees that frequencies at second layer are exact (for the second layer’ bound-
aries). We should note that the splitting operator will always decrease the
error.

The time complexity of PiD depends on the discretization methods used in
each layer. The time complexity of the second layer is constant because its in-
put is the first layer that has a (almost) fixed number of intervals. The time
complexity for the first layer is linear in the number of examples.

Change Detection in Learning Histograms from Data Streams 117

3 Change Detection

The algorithm described in the previous section assumes that the observations
came from a stationary distribution. When data flows over time, and at least
for large periods of time, it is unlikely the assumption that the observations are
generated at random according to a stationary probability distribution. At least
in complex systems and for large time periods, we should expect changes in the
distribution of the data.

3.1 Related Work

A fundamental question when monitoring a stream of values is: Are the obser-
vations we are receiving now from the same distribution we have observed in the
past?.

There are several methods in machine learning to deal with changing con-
cepts [3,4,5,6]. In machine learning drifting concepts are often handled by time
windows or weighted examples according to their age or utility. In general, ap-
proaches to cope with concept drift can be classified into two categories: i) ap-
proaches that adapt a learner at regular intervals without considering whether
changes have really occurred; ii) approaches that first detect concept changes,
and next, the learner is adapted to these changes. Examples of the former ap-
proaches are weighted examples and time windows of fixed size. Weighted ex-
amples are based on the simple idea that the importance of an example should
decrease with time (references about this approach can be found in [4,6,7]).
When a time window is used, at each time step the learner is induced only from
the examples that are included in the window. Here, the key difficulty is how
to select the appropriate window size: a small window can assure a fast adapt-
ability in phases with concept changes but in more stable phases it can affect
the learner performance, while a large window would produce good and stable
learning results in stable phases but can not react quickly to concept changes.
In the latter approaches, with the aim of detecting concept changes, some indi-
cators (e.g. performance measures, properties of the data, etc.) are monitored
over time (see [5] for a good classification of these indicators). If during the
monitoring process a concept drift is detected, some actions to adapt the learner
to these changes can be taken. When a time window of adaptive size is used
these actions usually lead to adjusting the window size according to the extent
of concept drift [5]. As a general rule, if a concept drift is detected the window
size decreases, otherwise the window size increases.

3.2 Monitoring Distributions on Two Different Time Windows

Most of the methods in this approach monitor the evolution of a distance func-
tion between two distributions: from past data in a reference window and in a
current window of the most recent data points. An example of this approach, in
the context of learning from Data Streams, has been present by [8]. The author
proposes algorithms (statistical tests based on Chernoff bound) that examine

118 R. Sebastião and J. Gama

samples drawn from two probability distributions and decide whether these dis-
tributions are different.

3.3 Entropy Based Change Detection

As a measurement of information (from Information Theory [9]), we conveniently
adapted the entropy as a measurement of change detection. Entropy between
the probabilities absolute difference measures the dispersion of the Distributions
Differences and is defined by the following equation:

H(p||q) = −∑
i |q(i) − p(i)| ∗ log2(|q(i) − p(i)|)

were qi and pi represents the probability of a point belongs to the bin i of the
current window and the probability of belongs to the correspondent reference
bin. From the properties of the above equation, we can derive the bounds: 0 ≤
H(q||p) ≤ 2. Smaller values of H(p||q), corresponds to smaller dispersion between
the distributions of the two variables.

3.4 Kullback-Leibler Based Change Detection

From information theory [9], the Relative Entropy is one of the most general
ways of representing the distance between two distributions [10]. Also known as
the Kullback-Leibler’s distance or divergence, it measures the distance between
two probability distributions and so it can be used to test for change. Given
a reference window with empirical probabilities pi, and a sliding window with
probabilities qi, the KL distance is:

KL(p||q) =
∑

i p(i)log2p(i)/q(i).

The KL divergence is non negative and asymmetric and as higher is his value,
the more distinct the distribution of the two variables. A higher value of the
distance represents distributions that are further apart.

3.5 Cosine Distance Based Change Detection

Instead of comparing the distance between two probability distributions we com-
pare the angle between them. The cosine distance [11] is derived from the dot
product of two vectors and is given by the following equation:

C(p||q) = 1 −
∑

i p(i)q(i)

‖p‖‖q‖

We considered this definition in order to have non-negative values and guarantee
that 0 ≤ C(q||p) ≤ 2. This measure is symmetric and a lower value means that
two distributions are closer.

4 Experimental Evaluation

The advantage of the two-layer architecture of PiD is that after generating the
layer1, the computational costs, in terms of memory and time, to generate the

Change Detection in Learning Histograms from Data Streams 119

final histogram (the layer2) is low: only depends on the number of intervals of
the layer1. From layer1, we can generate histograms with different number of in-
tervals and using different strategies (equal-width or equal-frequency). We should
note that the standard algorithm to generate equal-frequency histograms requires
a sort operation, which could be costly for large n. This is not the case of PiD.
Generation of equal-frequency histograms from the layer1 is straightforward.

4.1 Methodology and Design of Experiments

In order to analyze the capacity to detect changes using different kinds of dis-
tributions we design three different datasets:

– 100000 points of a random variable from a Normal distribution. This dataset
is composed by two samples from a normal distribution (with different pa-
rameters) of 50000 values each one. The initial 50000 points are generated
from the standard normal distribution and then we force an abrupt change
using parameters distinct enough to guarantee that in spite of the similar
shape of distributions, the algorithm should detect changes.

– 100000 points of a random variable from a Normal distribution. This dataset
is composed by two samples from a normal distribution (with different pa-
rameters) of 50000 values each one. The initial 50000 points are generated
from the standard normal distribution and then we force a smooth change,
using similar parameters expecting that the algorithm should not detect
changes.

– 100000 points of a random variable from LogNormal and Normal distribu-
tions of 50000 points each one.

The data is received at any time producing an equal-with histogram. The
number of bins were defined according to the equation on section 2.1, setting
both the variables ε and δ as 5%. We considered that the initial data points
should be used as a representation of data and that the number of initial points
should be chosen according to the number of intervals of the layer1. So we
decided that the first 30 ∗nBins1 data points are part of a stabilization process
and that no change occurs in this range. The windows size was also defined as
dependent on the number of intervals of the layer1, being half of these ones:
nBins1

2 .
Assuming that sample in the stabilization set has distribution P and that the

current windows has distribution Q, we use as a measure to detect whether has
occurred a change in the distribution the measures described above. For all the 3
measures the more distinct the distributions P and Q the higher is the distance
between them. According to this, we define that had occurred a change in the
distribution of the current window relatively to the reference distribution if the
distance computed based on those distributions is greater that μ+z1−α

2
σ, where

μ and σ represents the sample mean and the estimate standard deviation, and
z1−α

2
represents the point on the standard normal density curve such that the

probability of observing a value lower than z1−α
2

is equal to 1 − α
2 . For instance,

we established a confidence level of 95% (α = 0.05), so z1−α
2

= 1.96. If no

120 R. Sebastião and J. Gama

change occurs we maintain the reference distribution and consider more nBins1
2

data points in the current window, and start a new comparison. If we detect a
change we clean the reference data set and initialize the process of search for
changes.

4.2 Controlled Experiments with Artificial Data

In this Section we evaluate the 3 change detection methods in controlled exper-
iments using artificial data. The goals of these experiments are:
1. Capacity to Detect and React to drift.
2. Resilience to False Alarms when there is no drift, that is not detect drift

when there is no change in the target concept.
3. The number of examples required to detect a change after the occurrence of

a change.

Table 1. Results of the 3 change detection methods using artificial data

Datasets
TP FP Ne (mean) Ne (std)

Cos Ent KLD Cos Ent KLD Cos Ent KLD Cos Ent KLD
D1 1 1 1 0.1 0 0 1964 707 258 189.3 0 0
D2 1 0.9 1 0 0 0 7038 12400 5691 1427 5228 933.5
D3 0.95 0.95 0.95 0.65 0 0 9285 801 258 8906 188 0

Table 1 shows the results of the 3 change detection methods using the de-
scribed artificial data. It can be observed that the use of the Kullback-Leibler
Distance as a measure to decide if there is a drift achieve better results and
reaches those requiring a smaller number of examples. It also shows that all
the measures have a good resilience to false alarms when there are no drifts.
Notice that even in the second dataset, where the change was very smooth, the
cosine and the Kullback-Leibler distances detected it in all the experiments. The
entropy of the absolute differences also detected it almost the times. Although
the cosine distance detects changes when there not existing, the performance
of other measures were very consistent and precise. The results obtained with
those data sets clearly show that the cosine distance presents the worse results.

To evaluate the performance of the 3 algorithms we also use quality metrics
such as Precision and Recall. The Precision gives a ratio between the correct
detected changes and all the detected changes and Recall is defined as a ratio
between the correct detected changes and all the occurred changes:

Precision = TP
TP+FP

Recall = TP
TP+FN

Table 2 shows the precision and recall achieved by the 3 change detection
methods using artificial data. For both quality metrics, the closest to one, the
better are the results. Those results sustain the above observations, showing that
Kullback-Leibler Distance is the algorithm that reaches better results and that
the algorithm based on the cosine distance is the worst one.

Change Detection in Learning Histograms from Data Streams 121

Table 2. The Precision and the Recall obtained using the 3 algorithms to detect
changes

Datasets
Precision Recall

Cos Ent KLD Cos Ent KLD
D1 0.9091 1 1 1 1 1
D2 1 1 1 1 0.9000 1
D3 0.5938 1 1 1 1 1

4.3 Data and Experimental Setup

To obtain data, tests were carried out in a Kondia HS1000 machining centre
equipped with a Siemens 840D open-architecture CNC. The blank material used
for the tests was a 170 mm profile of Aluminum with different hardness. The
maximum radial depth of cut was 4.5 mm using Sandvik end-mill tools with two
flutes and diameter 8, 12 and 20 mm. Tests were done with different cutting
parameters, using sensors for registry vibration and cutting forces.

A multi-component dynamometer with an upper plate was used to measure
the in-process cutting forces and piezoelectric accelerometers in the X and Y
axis for vibrations measure. A Karl Zeiss model Surfcom 130 digital surface
roughness instrument was used to measure surface roughness.

Each record includes information on the following seven main variables used
in a cutting process:

– Fz - feed per tooth
– Diam - tool diameter
– ae - radial depth of cut
– HB - Hardness on the type of material
– Geom - tools geometry
– rpm - spindle speed
– Ra - average surface roughness

This factors was proceeding the Design of Experiment explained in [12] was
used for validation a bayesian model for prediction of surface roughness. A multi-
component dynamometer with an upper plate was used to measure the in-process
cutting forces (X and Y axis). The cutting speed on X and Y axis was also
measured.

We use these sensors measures to detect when a change had occurred in the
experiments. We must point out that a change in the activity does not mean a
change in the data coming from sensors.

Our goal is to study the three detection methods in a real data problem. For
each sensor we record the points where each method signals a change. We study
concordances in change points for the different methods. As the sensors response
to different incentives, the agreement in change points for the sensors was not
carried out.

For the second sensor, neither the entropy of the absolute differences nor
cosine distances detected any change.

122 R. Sebastião and J. Gama

The obtained results shows that the changes detected by Kullback-Leibler dis-
tance for the data points from the second sensor agree with the results obtained
with the first sensor, supporting that this measure is consistent.

Comparing the results obtained with the three detected methods on the data
points from the first sensor, we found out 21 conformities in changes points
between the Kullback-Leibler and the cosine distances. The entropy of the ab-
solute differences reached 23 and 21 accordance’s with the Kullback-Leibler and
the cosine distances, respectively.

5 Conclusion and Future Work

The main conclusion we found is that the Kullback-Leibler Distance reach better
performances than the other algorithms for all the kinds of artificial datasets we
had study and that the cosine distance were the worst algorithm. From the
artificial data results we can also conclude that both entropy of the absolute
differences algorithm and Kullback-Leibler Distance has a good resilience to
false alarms when there are no drifts on the datasets.

From the experiments with real data, we must take into consideration that
we don’t have information if there are changes and when they occur; and so on
we can’t extract strong or well based conclusions from the results obtained with
that data. Although this lack, we can conclude that the concordances in changes
points between the detection methods supports their capacity to detect changes.
As a final conclusion, one can say that the results achieved so far are quite
encouraging and motivate the continuation of the work. As an improvement
of this initial work we intend to apply the described algorithms into dataset
collect in a medical and in an industrial context. We also intend to improve the
algorithms in order to reduce the number of points that are needed to detect a
change.

Acknowledgments

Thanks to the financial support given by the FEDER, the Plurianual support
attributed to LIAAD, project ALES II (POSI/EIA/55340/2004), and project
RETINAE.

References

1. Gama, J., Pinto, C.: Discretization from Data Streams: applications to Histograms
and Data Mining. In: ACM Symposium on Applied Computing, pp. 662–667. ACM
Press, New York (2006)

2. Pestana, D.D., Velosa, S.F.: Introdução á Probabilidade e á Estat́ıstica. Fundação
Calouste Gulbenkian (2002)

3. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-
ing. Intelligent Data Analysis 8(3), 281–300 (2004)

Change Detection in Learning Histograms from Data Streams 123

4. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector ma-
chines. In: Langley, P. (ed.) Proceedings of ICML 2000. 17th International Con-
ference on Machine Learning, Stanford, US, pp. 487–494. Morgan Kaufmann Pub-
lishers, San Francisco (2000)

5. Klinkenberg, R., Renz, I.: Adaptive information filtering: Learning in the presence
of concept drifts. In: Learning for Text Categorization, pp. 33–40. AAAI Press,
Stanford, California, USA (1998)

6. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23, 69–101 (1996)

7. Maloof, M., Michalski, R.: Selecting examples for partial memory learning. Machine
Learning 41, 27–52 (2000)

8. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: VLDB
2004: Proceedings of the 30th International Conference on Very Large Data Bases,
pp. 180–191. Morgan Kaufmann Publishers Inc., San Francisco (2004)

9. Berthold, M., Hand, D.: Intelligent Data Analysis - An Introduction. Springer,
Heidelberg (1999)

10. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An Information-Theoretic
Approach to Detecting Changes in Multi-Dimensional Data Streams. In: Interface
2006 (Pasadena, CA) Report (2006)

11. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2006)

12. Correa, M., de Ramı́rez, M.J., Bielza, C., Pamies, J., Alique, J.R.: Prediction of
surface quality using probabilistic models. In: 7th Congress of the Colombian As-
sociation of Automatic, Cali, Colombia, March 21–24, 2007 (2007) (in Spanish)
Domingos, P., Hulten, G.: Learning from infinite data in finite time. In: Advances
in Neural Information Processing Systems 14. MIT Press, Cambridge, MA (2002)

	Change Detection in Learning Histograms from Data Streams
	Introduction
	Histograms
	The Partition Incremental Discretization
	Analysis of the Algorithm

	Change Detection
	Related Work
	Monitoring Distributions on Two Different Time Windows
	Entropy Based Change Detection
	Kullback-Leibler Based Change Detection
	Cosine Distance Based Change Detection

	Experimental Evaluation
	Methodology and Design of Experiments
	Controlled Experiments with Artificial Data
	Data and Experimental Setup

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

