Freshness-Aware Caching
in a Cluster of J2EE Application Servers

Uwe R6hm! and Sebastian Schmidt?

! The University of Sydney, Sydney NSW 2006, Australia
2 University of Karlsruhe, Karlsruhe, Germany

Abstract. Application servers rely on caching and clustering to achieve
high performance and scalability. While queries benefit from middle-
tier caching, updates introduce a distributed cache consistency problem.
The standard approaches to this problem, cache invalidation and cache
replication, either do not guarantee full cache consistency or impose a
performance penalty.

This paper proposes a novel approach: Freshness-Aware Caching
(FAC). FAC tracks the freshness of cached data and allows clients to ex-
plicitly trade freshness-of-data for response times. We have implemented
FAC in an open-source application server and compare its performance
to cache invalidation and cache replication. The evaluation shows that
both cache invalidation and FAC provide better update scalability than
cache replication. We also show that FAC can provide a significant better
read performance than cache invalidation in the case of frequent updates.

1 Introduction

Large e-business systems are designed as n-tier architectures: Clients access a
webserver tier, behind which an application server tier executes the business
logic and interacts with a back-end database. Such n-tier architectures scale-
out very well, as both the web and the application server tier can be easily
clustered by adding more servers into the respective tier. However, there is a
certain limitation to the performance and scalability of the entire system due
to the single database server in the back-end. In order to alleviate this possible
bottleneck, it is essential to keep the number of database calls to a minimum.

For this reason, J2EE application serverd] have an internal EJB cache (EJB
= enterprise java bean). One type of EJBs, entity beans, encapsulate the tuples
stored in the back-end database. Their creation is especially costly, because their
state has first to be loaded from the database. Hence, the typical caching strategy
of an application server is to cache entity beans as long as possible and hence to
avoid calling the database again for the same data.

In the presence of clustering, things become more complex. The separate EJB
caches of the application servers in the cluster form one distributed EJB cache,

! This paper concentrates on the J2EE standard and entity beans; the principles of
FAC are however applicable to any middle-tier application server technology.

B. Benatallah et al. (Eds.): WISE 2007, LNCS 4831, pp. 74 2007.
© Springer-Verlag Berlin Heidelberg 2007

Freshness-Aware Caching in a Cluster of J2EE Application Servers 75

where a copy of the same entity bean can be cached by several nodes. Distributed
caching involves managing a set of independent caches so that it can be presented
to the client as a single, unified cache. While queries clearly benefit from this
caching at the middle-tier, updates introduce a distributed cache consistency
problem. Two standard approaches to solve this problem are cache invalidation
and cache replication. But both either do not guarantee full cache consistency
or impose a performance penalty.

This paper presents a new approach to distributed cache management that
guarantees clients the freshness and consistency of cached data: Freshness-aware
Caching (FAC). The core idea is that clients can explicitly ask for stale data up
to a specific freshness limit. FAC keeps track of the freshness of data in all caches
and provides clients with a consistent and staleness-bound view of data. Stale
objects can be cached as long as they meet the clients’ freshness requirements.
This allows clients to trade freshness of data for improved cache utilisation, and
hence shorter response times. The main contributions of this paper are as follows:

1. We present two novel freshness-aware caching algorithms, FAC and FAC-6,
that guarantee clients the freshness and consistency of cached data.

2. We give an overview of our implementation of FAC in the JBoss open-source
J2EE application server.

3. We present results of a performance evaluation and quantify the impact of
the different parameters of FAC on its performance and scalability.

We evaluated our approach versus JBoss’ standard cache invalidation algo-
rithm and a cache replication solution. In these experiments with varying cluster
sizes up to 7 nodes, both cache invalidation and FAC provided similar update
scalability much better than cache replication. It also showed that FAC can pro-
vide a significant better read performance than cache invalidation in the case of
frequent updates.

The remainder of this paper is organised as follows: In the subsequent sec-
tion, we give an overview of related work. We formally define freshness-aware
caching in Section [l and briefly discuss its implementation in Section . Sec-
tion [B] presents the results of an experimental evaluation of our approach with
other J2EE caching solutions. Section [6] concludes.

2 Distributed Cache Management for J2EE Clusters

State-of-the-art is an asynchronous cache invalidation approach, as used in, e.g.,
the Bea WebLogic and JBoss application servers [I2]: When an entity bean is
updated in one application server node, that server multicasts a corresponding
invalidation message throughout the cluster after the commit of the update
transaction. Due to this invalidation message, any old copy of the updated bean
is removed from the other caches. JBoss sends its invalidation messages using
a group communication protocol which provides guaranteed delivery [2]. Cache
invalidation falls short with regard to two important aspects:

76 U. Rohm and S. Schmidt

1. It cannot give any consistency guarantees for the whole distributed cluster
cache, because the invalidation is done asynchronous and decoupled from
the commit at the originating cache node.

2. Cache invalidation leads to more cache misses. After an update, all copies
of the updated bean get invalidated in the remaining cluster nodes. Hence,
the next access to that bean will result in a cache miss.

This has triggered interest on cache replication which gives strong consistency,
but for the price of reduced update scalability (e.g. [3]). There are several third
party in-process caching solutions for J2EE servers [AI5I6l7]. They typically pro-
vide no transparent caching for entity beans, but rather expose special caching
data structures which have to be explicitly used in an J2EE application. BEA
WebLogic provides in-memory replication for stateful session beans, but not for
persistent entity beans which are the scope of this work [I]. Hence we did not
compare to those solutions; rather, in our evaluation, we used our own cache
replication framework for JBoss that is completely transparent to the applica-
tion programmer and that supports entity beans [g].

In recent years, middle-tier database and query caching has gained some at-
tention in database research [QUIOITIIT2]. In a nutshell, a middle-tier database
cache is a local proxy DBMS that is deployed on the same machine as the applica-
tion server and through which all data requests are routed. The whole database
is still maintained in a central back-end DBMS server. From the client-view,
the access is transparent because the middle-tier database cache has the same
schema as the back-end database. But it does cache only a subset of the back-end
data. Queries are answered from the local cache as often as possible, otherwise
they are routed automatically to the back-end system. Updates are always ex-
ecuted on the back-end database, and later propagated with an asynchronous
replication mechanism into the middle-tier database caches. All these approaches
such as IBM’s DBCache [9] or MTCache from Microsoft [I1] are out-of-process
caching research prototypes with an relatively heavy-weight SQL interface. Due
to the lazy replication mechanisms, the solutions cannot guarantee distributed
cache consistency, although some recent work around MTCache started at least
specifying explicit currency and consistency constraints [13].

There are also some commercial products available: TimesTen offers a mid-
tier caching solution built on their in-memory database manager [14]. Oracle
was also offering a database cache as part of its Oracle9i Application Server [15],
but has dropped support for this database cache in its latest version Oracle 10g.

3 Freshness-Aware Caching

The design goal of FAC is a fast and consistent caching solution with less cache
misses than cache invalidation, and with better update scalability than cache
replication. The core idea is that FAC neither immediately evicts nor replicates
updated objects, but each cache keeps track of how stale its content is, and only
returns data that is fresher than the freshness limits requested by clients.

Freshness-Aware Caching in a Cluster of J2EE Application Servers 7

3.1 Assumptions

Our approach is based on the following assumptions that represent the typical
behaviour and setup of today’s business applications:

Firstly, we assume a cluster of application servers with a single, shared database
server in the back-end that is owned by the application servers. In other words,
the database will be only accessed and modified via the application servers — no
external transaction can affect the consistency of the database.

Secondly, our approach assumes an object cache inside the application server
that caches all data accessed from the back-end database. Because of the exclu-
sive database access, it is safe for application servers to cache persistent objects
across several transactions. In the context of the J2EE standard, this is called
Commit Option A when using container managed persistent (CMP). Our imple-
mentation specifically assumes CMP entity beans with Commit Option A.

Further, we assume that one client request spans exactly one transaction and
no transaction spans more than one client request. A client request in our case
is a method invocation issued by the client that requests or updates one or more
entity bean values. We further assume that each such transaction remains local
to one cluster node, i.e. we do not allow distributed transactions (transactions
that are executed on more than one application server in their lifetime).

We finally assume that no bean will be updated and then read within the
same transaction, i.e. we either have update or read-only transactions.

3.2 Freshness Concept

Freshness of data is a measure on how outdated (stale) a cached object is as
compared to the up-to-date master copy in the database. There are several ap-
proaches to measure this: Time-based metrics rely on the time duration since the
last update of the master copy, while value-based metrics rely on the value differ-
ences between cached object and its master copy. A time-based staleness metric
has the advantages that it is independent of data types and that it does not need
to access the back-end database (a value-based metric needs the up-to-date value
to determine value differences). Hence, FAC uses a time-based metric, and the
freshness limit is a requirement for staleness to be less than some amount.

Definition 1 (Staleness Metric). The staleness of an object o is the time
duration since the object’s stale-point, or O for freshly cached objects. The stale-
point tga1e(0) of object o is the point in time when the master copy of o got
updated while the cached object itself remained unchanged.

stale(o) = (tnow — tstaie(0)) | if master(o) has been updated at tstqre(0)
"0 | otherwise

3.3 Plain FAC Algorithm

We first present a limited algorithm with exact consistency properties, called
plain FAC algorithm. This guarantees clients that they always access a consis-
tent (though potentially stale) snapshot of the cache. The algorithm keeps track

78 U. Rohm and S. Schmidt

of the freshness of all cached objects in the middle-tier to be able to always
meet the clients’ freshness requirements. Clients issue either read-only or up-
date transactions; read-only transactions include an additional parameter, the
freshness limit, as central QoS-parameter for FAC.

Definition 2 (Freshness-Aware Caching). Freshness-aware caching (FAC)
18 an object cache that keeps metadata about the freshness of each cached object.
Let treaq = ({7(01),...,7(0n)}, 1) be a read-only transaction that reads a set of
objects o; with freshness limit . FAC gives the following guarantees to t,eqq:

(freshness) stale(o;) <1 | for i=1,..,n

(consistency) stale(o;) = stale(o;) | if stale(o;) #0, for i,5=1,...,n

The core idea of FAC is to allow clients to trade freshness-of-data for caching
performance (similar to the rationale of [16]). The staleness of data returned by
FAC is bound by the client’s freshness limit. The rationale is to achieve higher
cache-hit ratios because stale cache entries can be used longer by FAC; if the
cached objects are too stale to meet the client’s freshness limit, the effect is the
same as with a cache miss: the stale object is evicted from the cache and replaced
by the latest state from the back-end database.

The plain FAC algorithm guarantees clients to always access a consistent
(although potentially stale) snapshot of the cache. This means that for read-
only transactions, all accessed objects are either freshly read from the back-end
database or they have the same stale point. Update transactions only update
fresh objects. If one of these consistency conditions is violated, FAC aborts the
corresponding transaction.

FAC Algorithm. Our FAC algorithm extends the object caches of an appli-
cation server with an additional staleness attribute: a freshness-aware cache is a
set of tuples Cache := {(o,)}, where o is a cached object and s is the stale point
of object o, or 0 for freshly cached objects. Furthermore, to provide consistent

Algorithm 1. Freshness-aware caching algorithm.

1 function read(t,eqq, 0id, 1)

2 if (J(0oid,s) € Cache : (now —s)>1) then

3 Cache — Cache \ (00id, S) // evict too stale 0oiq
4 fi

5 if (A(0oid,s) € Cache) then

6 00id — master(0oid) // load from database
7 Cache «— (00id, 0)

8 fi

9 (o0,8) «— (00id,s) € Cache : (now—s)<lI

10 if (s=0 V s=s,.,,,) then // consistency check
11 if (s#0) then s
12 return o

13 else abort treqq fi

— s fi

read

Freshness-Aware Caching in a Cluster of J2EE Application Servers 79

access to several cached objects, FAC keeps track of the first staleness value > 0
seen be a read-only transaction (s, ,). If FAC cannot guarantee that all ac-
cessed objects have the same staleness value, it aborts the request. Algorithm [I]
shows the pseudo-code of our algorithm.

3.4 Delta-Consistent FAC

The plain FAC algorithm will give full consistency for cache accesses, but high
numbers of updates can lead to high abort rates of readers. Following an idea
from [I7], we are introducing delta-consistent FAC to address this problem.
This approach, called FAC-§, is to introduce an additional drift parameter to
FAC that allows clients to read data from different snapshots within the same
transaction — as long as those snapshots are within a certain range.

Definition 3 (FAC-$). Let t = ({r(o1),...,7(on)},1,8) be a read-only transac-
tion that reads a set of objects o; with a freshness-limit [and drift percentage 6
(0 <6 <1); let Crac be a freshness-aware cache. FAC-6 is a freshness-aware
caching algorithm that gives client transactions the following two guarantees:

(freshness) stale(o;) <1 | for i=1,...,n

(delta — consistency) |stale(o;) — stale(o;)| <6 x 1| fori,j=1,...,n

Delta-consistent FAC will abort transactions if they are accessing objects that
come from different snapshots which are too far apart as compared to the ¢ drift
value (percentage of the maximum staleness). This requires only two changes to
plain FAC: Firstly, our FAC-6 algorithm has to keep track of two stale-points per
transaction (the oldest and the newest accessed). Secondly, line 10 of Algorithm/[I]
changes to check delta-consistency as defined in Definition

4 Implementation

We prototypically implemented freshness-aware caching into the JBoss open
source J2EE server [I§] for container-managed persistent (CMP) entity beans.
Our framework is totally transparent to the CMP entity beans that are deployed
into the custom EJB container: there is no special caching API to be called and
the whole caching behaviour can be changed just in the deployment descriptor.
In the following, we give an overview of our implementation; for space reasons,
we restrict the overview to the main concepts of the FAC framework.

FAC maintains freshness values for each cache object. Our implementation
extends the J2EE container’s entity enterprise context so that it additionally
keeps a timestamp with each entity bean. This timestamp is the bean’s stale
point, i.e. the point in time when the cached object got updated somewhere
in the cluster and hence its cached state became stale. Newly loaded objects
have an empty timestamp as by definition fresh objects have no stale point. The
timestamp is checked by the freshness interceptor to calculate the staleness of

80 U. Rohm and S. Schmidt

a cache object as the time difference between the current time and the stale-
timestamp associated with each object.

The freshness interceptor is an additional trigger in the interceptor chain of
the J2EE container that contains the FAC caching logic. It checks each objects
freshness against the current freshness limit and evicts too stale objects before
the request is executed; such objects will be automatically freshly loaded by
the next interceptor in the chain (the CachedConnectionInterceptor). The
freshness interceptor also detects state changes of an entity bean and sends
those state changes to the FAC collector. The FAC collector groups all state
changes of one or more entity beans in a given transaction.

When a transaction commits, this collection is forwarded to the freshness
cache manager that informs all caches in the cluster about the stale point of the
changed objects. Our implementation uses JBoss’ group communication toolkit
[2] for all communication between the independent caches. This toolkit guaran-
tees atomicity and message ordering and hence offloads this functionality from
our implementation. Each node checks which of the modified beans it also caches
and whether they have no stale point associated with them so far, and if both
is the case, sets their corresponding stale point.

5 Evaluation

In the following, we present the results of a performance evaluation of FAC
versus JBoss’ standard cache invalidation and our own cache replication solution
[8]. We are in particular interested on the impact of the different configuration
parameters on the performance and scalability of FAC.

5.1 Experimental Setup

We used a simple J2EE test application that allows us to concentrate on the
application server tier to clearly identify any caching effects. The benchmark
application consists of two components: a J2EE application and a test driver
in the form of a standalone Java client. The application consists of two entity
beans and one stateless session bean. Each entity bean has 10 integer attributes
that can be both read and updated; there are corresponding getter and setter
methods. The session bean provides two methods to update and to read a several
beans. The back-end database consists of the two tables with 2000 tuples each.

All experiments have been conducted on an application server cluster consist-
ing of eight nodes, each with a 3.2GHz Intel Pentium IV CPU and 2 GBytes
memory under Redhat Enterprise Linux version 4. One node was used as ded-
icated database server running Oracle 10.1g. The application server was JBoss
4.0.2 with container managed persistence. The different tests for FAC, invalida-
tion and replication were run using separate JBoss configurations.

The middle-tier database caching solution was TimesTen 5.1 with Oracle as
back-end. In TimesTen, we configured the cache schema as one user-defined cache
group with incremental auto-refresh every 5 seconds, and automatic propagation

Freshness-Aware Caching in a Cluster of J2EE Application Servers 81

of updates from TimesTen to the back-end server at commit time. The dis-
tributed cache was managed using the JBoss invalidation method.

5.2 Evaluation of Cache-Miss Costs

First of all, we want to quantify the costs of a cache-miss at the J2EE server,
and the improvements possible by using a freshness-aware cache. To do so, we
measured inside JBoss the duration of accessing 1000 individual CMP-based
entity beans in different system configurations:

1. cache-hit in the EJB cache of JBoss,

2. cache-miss with state loading from a local middle-tier database cache,

3. cache-miss with state loading from the remote back-end database (without
any middle-tier database cache).

This gives us the costs at the middle-tier for accessing a cached entity bean
or for creating a new CMP-based entity bean instance in case of a cache miss.
In the case of a cache hit, the call corresponds to a lookup in the internal EJB
cache and returning a pointer to an already existing bean instance. In the case
of a cache miss, the requested entity bean must first be created and its state
loaded from the underlying relational database.

The resulting access time distribu-
tions, as shown in Figure [I clearly ———
demonstrate the benefits of caching at ™ ‘, T eeeacne
the middle-tier. The access latency for :
the internal EJB cache hit is about ¢
0.117 ms on average (median). This =
is factor 23 times faster than a cache- ™ i
miss with loading of the state of the ° —— : J
CMP entity bean from the remote -
back-end database (with a median of
2,723 ms and for a warm database
cache). Moving the persistent data
nearer to the application server on the
same middle-tier machine reduces those cache-miss costs drastically. However,
having an ’out-of-process cache-hit’ in the middle-tier database cache is still
about 5 times slower than a cache-hit inside the J2EE process. This is the mo-
tivation behind FAC: to improve cache usage by allowing clients to access stale
cached data rather than to experience an up-to 23-times slower cache-miss.

— — Back-end Database

Fig. 1. Histogram of server-internal access
times to access one EJB

5.3 Evaluation of Update Scalability

Next, we are interested in quantifying the scalability of FAC for updates with
regard to varying update complexities and varying cluster sizes.

Influence of Update Complexity on Scalability. We start by evaluating
the efficiency of FAC with regard to varying update complexity. We do so by

82 U. Rohm and S. Schmidt

—+— freshness (update)
o0 | —=— invalidation (updiate)
—— replication (updiate)

201 2014 2018 w001 4014 018 60/1 6074 60/8 2 3 4 5 6
updates per tx # fiolds per update cluster size

(a) Varying update complexity (b) Varying cluster size

Fig. 2. Influence of update complexity and cluster size on update response times

varying the number of updates per update transaction and the complexity of
updates in terms of how many attributes are modified on a fixed size cluster
with 3 nodes. Figure shows the results.

We see only a slight variance between the response times for the different num-
ber of fields for cache invalidation and FAC, as both send only one message per
updated object. On the other side, replication has to send one message per field,
which should show up with a higher response time for a growing number of fields.
The only reason why this can not be seen in Figure is that replication uses
a hashmap to save the (field, value) pairs and the minimum size for a hashmap
is 12 entries. The figure also shows higher response times for transactions with
more updates. All three approaches show a linear update scalability, with cache
invalidation and FAC around the same performance, while cache replication is
about 15% slower.

Influence of Cluster Size on Scalability. Next, we are interested in the
influence of the cluster size on the update performance of the different caching
approaches. This will tell us the costs of the overhead of FAC. We ran a number
of update transactions of fixed complexity consisting of 40 update operations
each using a J2EE cluster of varying size between two and six nodes. The results
are shown in Figure

All three methods, replication, invalidation, and freshness-aware caching, show
a linearly increasing update response time with increasing cluster size. Cache
replication shows the slowest update performance and the worst scalability, with
a 37% increase of its update time from two to six nodes. In contrast, FAC and
cache invalidation show a similar update performance with a very good scala-
bility. This is to be expected as our implementation of freshness-aware caching
uses the same update-time propagation mechanism than cache invalidation.

5.4 Influence of Read/Write Ratio

In the following, we concentrate on a comparison between cache invalidation and
FAC with regard to multiple concurrent read and update transactions. The next

Freshness-Aware Caching in a Cluster of J2EE Application Servers 83

300 /
14 ||+ freshness (read) |
—+— freshness (read) /’ ~®- invalidation (read)
250 = invalidation (read) 12
0 /

——

200

- /

100 — /
/ 4

50 2

abort rate (%]
®

mean response time [ms]

0

25 3.4 1:6 2:5 3:4
ratio of updaters : readers ratio of updaters : readers

(a) MRT with varying read/write ratios (b) Aborts with varying r/w ratios

1:6

Fig.3. MRT and abort rates with varying ratios of read- and update-transactions

test is designed to show the influence of higher cache hit rates in freshness-aware
caching and in replication with increasing ratio of updaters to readers. This test
runs on a cluster of 7 nodes and simulates 7 concurrent clients, some of which
issue read-only transactions, some of which issue update transactions (from 6
readers and 1 updater to 4 readers and 3 updates). Each read-only transaction
accessed 100 objects, while each update transaction modified 500 objects.

Figure shows how the varying read-write ratios affect the cache per-
formance. The more updaters, the slower the mean response times for readers
because more cache misses occur. However, FAC is always faster than cache
invalidation, in particular with higher number of updaters (up to 80% faster
response time with 3 writers and 4 readers). This is due to the fact that with
increasing number of updates cache invalidation evicts more and more objects
from the cache. In contrast, FAC can still use many stale objects in the cache
due to the freshness limits given by the readers (max staleness was 2.5s).

As Figure shows, the performance of FAC has also a drawback: higher
abort rates. With increasing number of updaters, the cache contains objects with
more different staleness values. This increases the chance, that FAC cannot pro-
vide a client with a consistent set of stale objects from the cache and hence must
abort the reader. Cache invalidation is not affected by this, and consequently
shows much lower abort rates due to conflicting reads and writes.

5.5 Influence of Freshness Limit

Next, we want to explore the effect of trading freshness of data for read perfor-
mance. The experiment was done on a cluster of six nodes and with 60 concurrent
clients consisting of 85% readers and 15% updaters. Each read-only transaction
was accessing 10 objects, while each update transaction was changing 50 ob-
jects. We varied the freshness limit of the readers and measured the effect of the
different freshness limits on the mean response times for readers.

The results in Figure show how applications which tolerate a higher
staleness of the cached data can yield faster response times. There is however a

84 U. Rohm and S. Schmidt

abort rate in porcont

/

. AN

—— || —

156 12 625 1250 2500 5000 156 312 625 1250 2500 5000

maximum stal lenoss. maximum staloness

(a) MRT with varying freshness limit (b) Abort rates vs. freshness limit.

Fig. 4. Mean response times and abort rates with varying freshness limits

limitating effect on the performance by the number of aborts due to inconsistent
objects within the same read transaction. This is illustrated in Figure

The more readers accept to access outdated data, the higher is the probability
that they access objects of different staleness within the same transaction. If
those different staleness values exceed the drift value tolerated by the application,
the corresponding transaction is aborted. In our case, we configured a maximum
drift value of 80%. As shown in Figure the abort rate increases from below
1% up to 8% with increasing staleness value. From a maximum staleness of about
625ms onwards, the number of aborted readers exceeds 2% and the throughput
in the system actually decreases from now on.

5.6 Influence of Drift Constraint

The previous experiments showed that the costs of lower response times via wider
freshness limits are more aborts. In Section [3.4] we had hence introduced FAC-§
that does only provide delta consistency to clients. In the last experiment, we are
now investigating the influence of the drift constraint on the read performance
with FAC-6. The following test uses again a cluster of seven nodes and simulates
60 concurrent clients, of which 15% are updaters. Each read-only transaction was
accessing 100 objects, while each update transaction was changing 500 objects.

w ‘\\\
’ \\ \
o —— \

abort rate in porcent

o% 20% 0% 0% a0% 100% 0% 20% % 0% 0% 100%
o madmumadiftvalue

(a) MRT with varying drift values. (b) Abort rate wth varying drift values.

Fig. 5. Mean response times and abort rates with varying drift values

Freshness-Aware Caching in a Cluster of J2EE Application Servers 85

The results in Figure [l show that the drift parameter of FAC-6 has the de-
sired performance effect: larger drift values result in lower abort rates and sub-
sequently to faster mean response times. A drift value of 0% represents the basic
FAC algorithm, from where the abort rate decreases linearly with increasing
drift percentage (cf. Figure . With a drift of 100, the abort rate is finally
zero, as reads are allowed to read any stale data below the freshness limit.

6 Conclusions

This paper presented a novel approach to caching in a cluster of application
servers: freshness-aware caching (FAC). FAC tracks the freshness of cached data
and allows clients to explicitly trade freshness-of-data for response times. We
have implemented FAC in the JBoss open-source application server. In an ex-
perimental evaluation, we studied the influence of the different parameters of
FAC on its performance and scalability.

It showed that there are significant performance gains possible by allowing
access to stale data and hence avoid cache misses. However, because FAC also
guarantees clients a consistent cache snapshot, higher freshness limits increase
the abort rates. We addressed by introducing delta-consistent FAC that al-
lows clients to tolerate stale data from different snapshots within a maximum
delta. When comparing our approach with JBoss’ standard cache invalidation, it
showed that both have a similar scalability and update performance. However,
with higher read-write ratios, FAC clearly outperforms cache invalidation.

We are currently working on extending FAC to support consistency con-
straints to provide scalable full consistency for multi-object requests.

References

1. BEA: BEA WebLogic Server 10.0 Documentation (2007), ledocs.bea.com

2. Stark, S.: JBoss Administration and Development. JBoss Group, 3rd edn. (2003)

3. Wu, H., Kemme, B., Maverick, V.: Eager replication for stateful J2EE servers. In:
Proceedings of DOA2004, Cyprus, pp. 1376-1394 (October 25-29, 2004)

4. JBoss Cache: A replicated transactional cache,

http://labs. jboss.com/jbosscache/

SwarmCache: Cluster-aware caching for java, [swarmcache.sourceforge.net

ehcache: ehcache project (2007), [ehcache.sourceforge.net

Progress: DataXtend CE (2007), http://www.progress.com/dataxtend/

Hsu, C.C.: Distributed cache replication framework for middle-tier data caching.

Master’s thesis, University of Sydney, School of IT, Australia (2004)

9. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.,
Naughton, J.: Middle-tier database caching for e-business. In: SIGMOD (2002)

10. Altinel, M., Bornhévd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,:
Cache tables: Paving the way for an adaptive database cache. In: VLDB (2003)

11. Larson, P.A., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database
caching in SQL Server. In: Proceedings of ICDE2004, pp. 177-189. Boston, USA
(2004)

® N o

 edocs.bea.com
http://labs.jboss.com/jbosscache/
swarmcache.sourceforge.net
ehcache.sourceforge.net
 http://www.progress.com/dataxtend/

86

12.

13.

14.

15.

16.

17.

18.

U. Rohm and S. Schmidt

Amza, C., Soundararajan, G., Cecchet, E.: Transparent caching with strong con-
sistency in dynamic content web sites. In: Proceedings of ICS 2005, pp. 264273
(2005)

Guo, H., Larson, P.A., Ramakrishnan, R., Goldstein, J.: Relaxed currency and
consistency: How to say ’good enough’ in SQL. In: SIGMOD 2004, pp. 815-826
(2004)

TimesTen Team: Mid-tier caching: The TimesTen approach. In: Proceedings of
ACM SIGMOD 2002, pp. 588-593 (June 3-6, 2002)

Oracle: Oracle 9i application server: Database cache. White paper (2001)

Rohm, U., Bohm, K., Schek, H.J., Schuldt, H.: FAS — a freshness-sensitive coor-
dination middleware for a cluster of OLAP components. In: VLDB, pp. 754-765
(2002)

Bernstein, P., Fekete, A., Guo, H., Ramakrishnan, R., Tamma, P.: Relaxed-
currency serializability for middle-tier caching & replication. In: SIGMOD (2006)
JBoss Group: JBoss (2007), http://www. jboss.org

http://www.jboss.org

	Freshness-Aware Cachingin a Cluster of J2EE Application Servers
	Introduction
	Distributed Cache Management for J2EE Clusters
	Freshness-Aware Caching
	Assumptions
	Freshness Concept
	Plain FAC Algorithm
	Delta-Consistent FAC

	Implementation
	Evaluation
	Experimental Setup
	Evaluation of Cache-Miss Costs
	Evaluation of Update Scalability
	Influence of Read/Write Ratio
	Influence of Freshness Limit
	Influence of Drift Constraint

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

