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Abstract. We consider a key distribution scheme for securing node-to-node
communication in sensor networks. While most schemes in use are based on
random predistribution, we consider a system of dynamic pairwise keys based on
design due to Ren, Tanmoy and Zhou. We design and analyze a variation of this
scheme, in which capturing a node does not lead to security threats for the past
communication.

Instead of bit-flipping, we use a cryptographic one-way function. While this
immediately guarantees forward-security, it is not clear whether the pseudoran-
dom transformation of the keys does not lead to subtle security risks due to a spe-
cific distribution of reachable keys, such as existence of small attractor subspaces.
(This problem does not occur for the design of Ren, Tanmoy and Zhou.) We show,
in a rigorous, mathematical way, that this is not the case: after a small number of
steps probability distribution of keys leaves no room for potential attacks.

Keywords: communication in sensor networks, key management, key distribu-
tion, forward security, directed random graphs.

1 Introduction

Applications of sensor networks are sometimes constrained by security requirements.
In order to be attractive from economic point of view, nodes of a sensor network need to
be very cheap. This results in lack of tamperproofness (and tamper-resistance), limited
computing power and memory space, inability to perform public-key cryptography ef-
ficiently, and limited communication bandwidth (due to battery capacity). This creates
challenges for communication security: no public-key cryptography can be used, only
symmetric algorithms are admissible, communication volume of the security protocols
should be kept as small as possible. However, one of the crucial security threats in sen-
sor networks is that communication can be recorded and the secret keys can be retrieved
from a captured device. This may lead to disclosure of all data sent so far with the keys
contained in this device. On the other hand, lack of connection to the device captured is
nothing uncommon – it can be due to battery exhaustion or any physical failure. Also,
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it might be hard to find a device that is not responding to radio signals, so it is difficult
to check if a device has been captured.

Recently, a simple scheme of dynamically evolving keys [1] has been proposed. It
supports pairwise symmetric keys for each pair of communicating nodes, which change
the key at every transmission. Namely, the sender chooses a key bit at random, flips it,
and encodes current data transmission with the obtained key. The receiver makes trial
decryptions and, based on the results, recovers which bit has been changed.

The idea of this solution is remarkably simple; it is both efficient and easy to imple-
ment. Obviously, in this way it only takes a small number of steps to change a key into
any other key. This solves a lot of problems – for instance if some encrypted transmis-
sion has been recorded and cryptanalysis reveals the key used for encryption, it cannot
be used to eavesdrop later transmissions. Simply, in the meantime the sensors trans-
formed their keys completely. An attack in this case requires uninterrupted monitoring
communication activities of a sensor. Replay and replication attacks become very lim-
ited. A nice feature especially for the sensor networks is that there is no communication
overhead due to evolution of keys – this is important, since energy consumption for
communication is of order of magnitudes higher than for any internal computations by
the processor. For further discussion see the original proposal [1].

Problem Description. The major weakness of the scheme [1] is that if the current key
is compromised, and the adversary has recorded the traffic beforehand, it is possible to
reverse key transitions step by step.Ourgoal is to design an efficient framework that shares
all advantages of the scheme from [1], but is resistant to the mentioned security threat.

Previous work. Since the most energy-intensive operation for a sensor node is wireless
communication, protocols dedicated to the sensor networks should be optimized with
respect to communication volume. Sending a bit is a typically orders of magnitude
more expensive than encryption or decryption. On specialized hardware, energy cost
of 9nJ per bit is achievable for AES encryption [2], but sending a bit requires around
21 μJ, which is a difference of three orders of magnitude. It is to be expected that
the relative difference will increase as processor technology matures; in fact, modern
optimized hardware achieves energy costs of AES encryption on order of 60pJ per bit
[3]. For these reasons any key management protocol should avoid large communication
overhead, and most solutions designed for wired networks (such as the SSL protocol)
are useless in the context of sensor networks. The second limitation of this type is
memory size and communication speed. A typical sensor network node has no more
than 4KB of memory, and is capable of communicating at speeds of about 38.4 Kbps
to a distance of around 30m. The nodes are also usually equipped with coprocessors to
handle AES encryption and decryption efficiently. Asymmetric methods, on the other
hand, require millions of multiplications per asymmetric operation, as well as large
amounts of memory and currently are not considered suitable for sensor networks.

Most of the recent work on the problem of key distribution and management in sensor
networks has been focused on random predistribution schemes (see e.g. [4,5,6]). Let us
recall their general framework:

1. Key predistribution phase is conducted offline. It consists of generating a large pool
of keys and loading a small number of different randomly-drawn keys into each
sensor device. An identifier should be assigned to each key.
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2. Shared key discovery phase takes place in the target environment, after the sensor
nodes are deployed. Every node discovers its neighbors, and tries to establish a
common key with each neighbor. The simplest method of achieving this goal is
that each node broadcasts in plaintext the list of identifiers of all keys it possesses.
This phase establishes network topology, as two nodes are “linked” only if they
share at least one pre-installed key.

3. Path-key establishment phase allows pairs of nodes that are in communication range
to establish a common key, even if they did not share any after the previous phase.

Adversary model for sensor networks has some peculiarities. Due to reliance on radio
communication it is quite easy to record the traffic, or at least a part of it. The second
point is that it is hardly possible to prevent an adversary from compromising some of
the sensor nodes and extracting their keys. Moreover, due to failures occurring in usual
field conditions, lack of response from a node might be regarded as a normal failure.
Checking a node on-site is seldom possible. This is a serious problem for predistribution
schemes. In case of compromising a node all its keys should not be used anymore.
However, in practice, is it hard to distinguish between node compromise and battery
exhaustion or any other failure. Large pools of keys help a little: only a fraction of
traffic becomes insecure in this way.

On the other hand, some assumptions about the capabilities of the adversary can be
relaxed in the context of sensor nodes. For example, it can be assumed that an adversary
is not omnipresent and can not eavesdrop on all communication links all the time. This
allows for construction of counterintuitively secure protocols, such as the key infection
protocol, which is based on broadcasting the keys in the clear [7]. We can assume
that in real-world scenarios within a few seconds immediately after deployment of the
network, the adversary is unable to eavesdrop on all communications, but only a certain
fraction of them.

The solution presented in [1] works with keys that are derived dynamically from
the initial pairwise keys (which might be established in the clear or be derived from
predistributed keys). The principal advantage is that evolution of the pairwise keys does
not require any communication overhead. It is performed at a very modest energy cost,
provided that encryption and decryption could be done efficiently. It also forces the
adversary to keep monitoring communication all the time after compromising a key;
otherwise the adversary loses control of the key as it diverges.

2 KEP – Key Evolution Protocol

Initialization. As in [1], the system initializes the nodes so that each pair of neighbor
nodes establishes a key for this pair. Any method can be used: preloading with a com-
mon key, key infection, or a random predistribution scheme. At the end of this phase,
every node knows its neighbors and shares a separate pairwise key with each neighbor.

Communication with Key Divergence. Consider nodes A and B sharing a pairwise
key, say kAB . We describe the steps executed by A. It waits until either it sends a
message to B, or it receives one addressed to itself from B.
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Case 1: A initializes key transition while sending a message to B
The following steps are executed:

1. A encrypts the message to be sent with a key k′, called proposed key, that is derived
from kAB as follows:

k′ := F (kAB , i) (1)

where F is a cryptographic one-way function and i ≤ l is chosen uniformly at
random. The parameter l is a small constant, l ≥ 2, controlling convergence rate.
In the second version of the protocol

k′ := F (kAB, i, t) (2)

for t denoting the so called current index of kAB . Initially, this index is set to 1,
and then increased after each transformation of kAB .

2. If A has to send more messages, but has not yet received a message from B (neither
valid nor invalid), it sends every next message encrypted to proposed key k′.

3. Finally, A receives a message from B. If it is encrypted to proposed key k′ and
the message counter indicates the message is fresh, the message is accepted, A
substitutes

kAB := k′ ,

and increments the current index of kAB by one. If the message was encrypted to
a different key than k′, the message is rejected, node A abandons proposed key k′

remembering that it tried to change kAB to k′ but failed. This situation occurs if
B has not received any message with the proposed key k′ and has proposed a key
itself.

4. If the counter in the received message is older than the one stored by A, this indi-
cates a replay attack — the adversary is trying to make A change the key using an
old message (for instance a message sent by A itself). As before, A should reject
the message and abandon proposed key k′ remembering that it tried to change the
key to k′ but failed. Note that in this situation it might be the case that B has ac-
cepted k′, but A is unaware of it. Recording k′ will enable to accept k′ in this case
(see the procedure below).

Case 2: A receives a message from B while not waiting for a reply as in Case 1

1. If A receives a message from B encrypted with a certain key k′′, then it tries to
decrypt it by brute force. Namely,

– A checks if k′′ = kAB ,
– if not, A tries keys of the form F (kAB, i) for all i ≤ l (or F (kAB, i, t) in the

variant of the protocol, where t is the current index of kAB),
– if none of those keys work, and if A has previously tried to change the key to k′

but failed, A tries keys of the form F (k′, i) (or F (k′, i, t) in the variant of the
protocol). This option is necessary for the case in which B has accepted a new
key k′ proposed by A, while A received some invalid message and, according
to the protocol, reverted to kAB .
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If a valid decryption key is found and the message is fresh, then A waits until
an opportune time to send its reply encrypted to k′′. If k′′ �= kAB , then the cur-
rent index is incremented by one and kAB is set to k′′. If the message can not be
decrypted or is not fresh, it is discarded.

2. If A receives further messages encrypted to k′′, it processes them normally.
3. When A wants to send a message to B, it encrypts it with key k′′.

Protocol Properties. For space limitations we skip here the analysis of protocol cor-
rectness (which is essentially the same as for [1]). As in case of the scheme from [1], our
protocol has several advantages: there is no communication overhead due to evolution
of keys, rate of key evolution is automatically controlled by traffic volume, capturing
a node does not compromise other nodes’ keys, the scheme scales to any number of
nodes, it can be used with any predistribution scheme. Extra energy consumption also
remains negligible as in [1], as the only substantial difference is the addition of the
one-way function, which can be based on AES [8], and performed using the same co-
processor that handles AES encryption/decryption. Another important point is that if
the adversary somehow breaks a pairwise key from some moment, but transmissions
between these nodes are not constantly monitored, then after a while the broken key
becomes worthless.

The most important point is that KEP offers an important advantage over the one
described in [1] in the event of node compromise. Even if an adversary has been eaves-
dropping on communications of the node, and recording them, the key extracted after
compromising the node cannot be used to decrypt any of the recorded messages, as it is
impossible to reverse the function F .

Main Problem. In case of the protocol from [1] it is obvious that starting from an
arbitrary key one can reach any key in the keyspace in a quite short time. Moreover,
probability distribution describing the chances to reach each key converges quickly to
the uniform distribution over the keyspace.

It is unclear whether these uniformity and reachability properties hold for our KEP
protocol: function F is pseudorandom but fixed. For this reason, key divergence process
can have certain peculiarities. Consider a directed graph G = (K, E), where the set of
vertices K is the keyspace, and an arc kk′ is in E if it is possible to make transition
from key k to k′ using rule (1). Even if F is pseudorandom it is not clear whether G is
strongly connected (due to some reasons analogous to the birthday paradox). If digraph
G is not strongly connected, then it may happen that there is a small subgraph G′ of G
such that after entering G′ it it is impossible to leave G′ (so G′ would be like a black
hole). For such subgraphs G′ time-memory tradeoff attack [9] becomes very effective
and endangers all keys contained in G′. In particular, in this case it would be possible to
reverse key evolution without reversing F . Similarly, it would be easier to find the cur-
rent pairwise key after breaking an old key even if the intermediate transmissions have
not been recorded. We show in a rigorous, mathematical way that this is not the case –
under certain assumptions G is strongly connected and has a small diameter with high
probability (depending on the choice of F ). This result would be much easier to obtain
for rule (2). However, we concentrate on a mathematically hard case of rule (1) which is
more elegant and easier to implement. For undirected random graphs connectivity and
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the diameter length were already widely studied, see for example B. Bollobás [10,11]
F. Chung and L. Lu [12]. Unfortunately those results can not be translated directly to
the case of the directed graph model. Let us also remark that from combinatorial point
of view connectivity for directed and undirected graphs are quite different issues.

Due to attacks like exhaustive search another property of key evolution is necessary.
Namely, we have to show that there no “attractors”, that is, the keys that are relatively
often “visited” during key divergence process. If probability of visiting certain attrac-
tors is sufficiently large, an adversary can perform exhaustive search confined to the set
of attractors. In such a way time complexity can be reduced considerably, while success
probability might be still acceptable. We show that for rule (2) there are no attractors.
Moreover, we show that probability distribution of a pairwise key is very close to uni-
form distribution after a small number of steps. By “similarity” we mean here a very
strong measure of distance between probability distributions (much stronger than usu-
ally considered in papers on anonymous communication). Such a result for rule (1) is
related to mixing time for directed graphs. However, known results concern undirected
expander graphs [13]. Recent results were achieved for random graphs as well, but only
undirected ones, or special forms of directed deterministic graphs [14,15,16]. These re-
sults are not applicable to our case. Moreover, our results are not asymptotic and apply
in the case of relatively small graphs (on order of 232–264 nodes).

Due to size limitation, we had to skip some details in the proof that we think can be
reconstructed by a reader.

3 Key Reachability – Random Digraph Model

Preliminaries. In this section we consider directed graph G = (K, E), where the set
of vertices K is the keyspace, and an arc kk′ is in E if it is possible to make transition
from key k to k′ in one step of KEP according to rule (1). Let K = {0, 1}n and N = 2n

denote the size of K .
We assume that the one-way function F changes a key into one of l keys, picked

independently, uniformly at random. As there is a possibility of a collision, the actual
number of possible keys in every step and for any initial key is a random variable X
strongly concentrated around l. So, more generally, we consider the model of the ran-
dom digraph G(X) = (K, E) introduced in [17] (see also [18]) which is constructed in
the following way:

– each vertex v chooses its out-degree lv according to the distribution of Xv = X
independently of all other vertices,

– then, also independently of all other vertices, it chooses the set of lv out–neighbors
uniformly from all lv-element subsets of K .

In this section, for a graph G(X) defined by X such that E(X) ≥ ln N and X is
concentrated around the expected value we shall formalize and find the lower bound on
the probability that:

– G(X) is strongly connected. This means, in the context of KEP protocol, that every
key can eventually be transformed into every other key and there are no isolated
groups of keys.
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– The diameter of G(X) is concentrated around ln N
ln l . So, any two keys can be trans-

formed quickly into one another.

Let d(u, v) = k mean that the shortest directed path from u to v has length k. Let us
denote:

Γ+
k (v) := {w ∈ K : d(v, w) = k} , Γ−

k (v) := {w ∈ K : d(w, v) = k} ,

N+
k (v) :=

k⋃

i=0

Γ+
i (v) , N−

k (v) :=
k⋃

i=0

Γ−
i (v) ,

diamG := max{d(u, v) : u, v are connected by a path}.

Since the the proofs include many estimations, and are rather technical, we will
present sketches saving the exact calculations for the appendix. For clarity of calcu-
lations, we also make an assumption that l

2 ≤ X ≤ 2l, which need not always be true
in KEP. See Corollary 1 for remarks on a more general model.

Lemma 1. Let X be a random variable such that E(X) = l and Pr( l
2 ≤ X ≤ 2l) = 1.

In a graph G(X) let A and B be disjoint subsets of K . If PAB is the probability that
v has an out–neighbor in A conditioned by the event that v has no out–neighbor in B,
then for N − |A| − |B| ≥ l

2

l|A|
N−|B| − l2|A|2

(N−|B|)2 ≤ PAB ≤ l|A|
N−|B| + l2|A|

(N−|B|)(N−|B|−2l) . (3)

Furthermore, if Y is a random variable counting those vertices in K \ (A ∪ B), which
have out-neighbors in A, under the assumption that they do not have out–neighbors in
B, then Y is binomially distributed with parameters N − |A| − |B| and PAB .

Proof. See appendix.

Theorem 1. Let X be a random variable such that E(X) = l. If Pr(
⌈

l
2

⌉
≤ X ≤ 2l) =

1, N ≥ 232 and ln N ≤ l ≤
√

N/90 − 1, then with probability at least 1 − p(N)

�ln N/ ln 2l	 ≤ diam G(X) ≤ 
ln N/(2 ln�l/2	)� + 
ln N/(2 ln
l/4�)� + 4 ,

where: p(N) = 1.6(ln N)7

N1.5 + 1+0.0016(ln N)15

N1.99 + 1
N0.59 + 1

N0.16l−1 + 1
N0.5

In the proof we will frequently use simple probabilistic fact that if events H1 and H2
occur with probability at least 1 − r1 and 1 − r2 respectively and event H3 conditioned
on H1 occurs with probability at least 1 − r3, then

Pr(H1 ∩ H2) = Pr(H1) + Pr(H2) − Pr(H1 ∪ H2) ≥ 1 − r1 − r2 and
Pr(H1 ∩ H3) = Pr(H3|H1) Pr(H1) ≥ (1 − r1)(1 − r3) ≥ 1 − r1 − r3.

Proof (Sketch). To indicate the upper bound we will prove that with probability at least
1 − p(N) if there exists a path between two vertices, then the shortest one has length at

most
⌈

lnN
2 ln� l

2 �

⌉
+

⌈
ln N

2 ln� l
4 �

⌉
+ 4 . Namely, for vertices v1 and v2 we will estimate the

number of vertices in Γ+
k1

(v1) and in Γ−
k2

(v2). Then we will prove that with probability
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close to one either these sets intersect, or there is an edge pointing from Γ+
k1

(v) to

Γ−
k2

(w) for k1 + k2 + 1 at most
⌈

lnN
2 ln� l

2 �

⌉
+

⌈
lnN

2 ln� l
4 �

⌉
+ 4 . To prove the lower bound

on diamG(X) we will estimate the size of N+
k (v). In fact we will show that for any

vertex v there are some vertices at distance larger than
⌊ ln N

ln 2l

⌋
from v.

First, for a given vertex v ∈ K , we will be considering sets of out–neighbors. Let
us consider the process of labeling vertices, starting in vertex v. After this process, the
set of vertices with label i will be the set Γ+

i (v). First, we will label vertex v with label
0. Then we will proceed one by one from i = 0. For given i if {w1, w2, . . . , wt} are
vertices with label i, then w1 first labels all its out-neighbors, which were not labeled
before, with label i + 1. Then w2 labels its out-neighbors in the same way, and so on.
We will keep going as long as the set of vertices with label i + 1 is smaller than

√
N .

Let W = W (v) be a set of vertices labeled during the process and Av(w) be the
event that during the process vertex w ∈ W labels at least 
 l

4� vertices. If event Av =⋂
w∈W Av(w) occurs, then each vertex with label i labels at least 
 l

4� vertices. Thus,
|Γ+

i+1(v)| ≥ 
 l
4�|Γ+

i (v)| and |Γ+
i (v)| ≥ 
 l

4�i for all i. Therefore, if Av occurs, then

the process will stop in at most k′ = 1
2

ln N
ln� l

4 �
steps (since 
 l

4�k′ ≥
√

N ) thus there exists

an index k1(v) = k1 ≤ k′ such that |Γ+
k1

(v)| ≥
√

N .

Then, using estimations on Pr(Av(w)) (where Av(w) is the complement of event
Av(w)), we can prove (see Appendix) that for N ≥ 232

Pr
(
∀v∈K∃0≤k1(v)≤k′ |Γ+

k1(v)(v)| ≥
√

N
)

≥ Pr
(⋂

v∈K Av
)

≥

≥ 1 − Pr
(⋃

v∈K

⋃
w∈W (v) Av(w)

)
≥

≥ 1 −
∑

v∈K

∑
w∈W (v) Pr

(
Av(w)

)
≥ 1 − p1(N),

(4)

where p1(N) = 1.6 · (ln N)7/N1.5.
Now we will estimate the sizes of sets of in–neighbors. Consider a vertex v ∈ V

such that v has at least two in–neighbors u1 �= v and u2 �= v or v has in–neighbor
u1 �= v which has in–neighbor u2 �= v, u1. We will call such vertex v a “good” vertex.
For a “good” vertex v, using Lemma 1 and the pigeonhole principle, we can prove (see

Appendix) that with probability at least 1 − q1(N) (where q1(N) = 1+0.0016(ln N)15

N2.99 )
there exists i0, 1 ≤ i0 ≤ 3, such that

|Γ−
i0

(v)| ≥ 6. (5)

From now on, we assume that v is “good”. Let k′′ =
⌈

1
2

ln N
ln�l/2�

⌉
+ 3.

For all 0 < j ≤ k′′ let:
– Bj(v) = Bj be the event that |Γ−

j (v)| ≥ 3
√

N .
For all i0 < j ≤ k′′ let:

– Cj(v) = Cj be the event that 3
⌊

l
2

⌋j−i0 ≤ |Γ−
j (v)| < 3

√
N ,

– Dj(v) = Dj be the event that |Γ−
j (v)| ≤ 3

⌊
l
2

⌋j−i0 .
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Also denote by:
– Ci0 (v) the event that 6 ≤ |Γ−

j (v)| < 3
√

N ,
– Di0(v) the event that |Γ−

j (v)| < 6.
Notice that by (5) we get:

Pr(Di0 ) ≤ q1(N). (6)

We will find a lower bound on the probability of the event
⋃k′′

i=0 Bi. Notice that if Ω is
the whole probability space, than for all i0 ≤ i ≤ k′′, we have Bi ∪Ci ∪Di = Ω. Thus

Ω = Bi0∪(Ci0 ∩ Ω) ∪ Di0 =
= Bi0∪(Ci0 ∩ Bi0+1) ∪ Di0 ∪ (Ci0 ∩ Di0+1) ∪ (Ci0 ∩ Ci0+1) = . . . =

= Bi0∪
⋃k′′−1

i=i0

(
Bi+1 ∩

( ⋂i
j=i0

Cj

))
∪ Di0∪

∪
⋃k′′−1

i=i0

(
Di+1 ∩

(⋂i
j=i0

Cj

))
∪

(⋂k′′

j=i0
Cj

)
.

Also, by definition,
⋂k′′

j=i0
Cj = ∅ since 3

√
N ≤ 3

⌊
l
2

⌋k′′−i0 . Thus

⋃k′′

i=i0
Bi ⊇ Bi0 ∪

⋃k′′−1
i=i0

(
Bi+1 ∩

( ⋂k′′

j=i0
Cj

))
∪

( ⋂k′′

j=i0
Cj

)
.

Using Lemma 1 and Chernoff inequality we can prove that

Pr(Di0+1 ∩ Ci0) ≤
(

1
N

)1.59
and Pr

(
Di+1 ∩

⋂i
j=i0

Cj

)
≤

(
1
N

)0.33·( l
2 )i−i0

(7)

for i0 + 1 ≤ i ≤ k′′ − 1. Thus from (6) and (7)

Pr
(⋃k′′

i=0 Bi(v)
)

≥ 1 − Pr(Di0) −
∑k′′−1

i=i0
Pr

(
Di+1 ∩

⋂i
j=i0

Cj

)
≥

≥ 1 − q1(N) −
( 1

N

)1.59 −
∑k′′−2

i=i0+1

( 1
N

)0.33( l
2 )

i−i0

≥ 1 − q2(N),
(8)

where q2(N) = (1 + 0.0016(lnN)15)/N2.99 + 1/N1.59 + 1/(N0.16l − 1).
Assume that

⋃k′′

i=i0
Bi holds. Then there exists such k ≤ k′′ that |Γ−

k (v)| ≥ 3
√

N . Let
k2 = k2(v) be the smallest such index k. Using Lemma 1 and Chernoff inequality we
can prove that

Pr(|Γ−
k2(v)(v)| ≥ 10

√
N) ≤ 1/N1.5. (9)

Thus from (8) and (9)

Pr
(
∀v∈K,v is “good”∃1≤k2≤k′′3

√
N ≤ |Γ−

k2(v)(v)| ≤ 10
√

N
)

≥

≥ 1 −
∑

v∈K

(
1 − Pr

(
∃1≤k2≤k′′3

√
N ≤ |Γ−

k2(v)(v)| ≤ 10
√

N
))

≥ 1 − p2(N),

(10)

where p2 = N
(
q2 + 1/N1.5

)
.

From now on we will assume that v1 and v2 are the vertices such that

∃1≤k1≤k′,1≤k2≤k′′ |Γ+
k1(v)(v)| ≥

√
N and 3

√
N ≤ |Γ+

k1(v)(v)| ≤ 10
√

N (11)
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holds. We will find a lower bound on the probability that these vertices are connected by
a directed path of length at most k1 +k2 +1. If Γ+

k1
(v1)∩Γ−

k2
(v2) �= ∅, then there exists

such a path. Otherwise, using Lemma 1, we may prove that the probability that there is
an edge pointing from Γ+

k1
(v1) to Γ−

k2
(v2) is at least 1 − 1/N

8
3 . Since there are at most

N2 pairs of vertices, thus with probability at least 1 − p3(N) (where p3(N) = 1/N
2
3 )

all pairs, for which (11) is fulfilled, are connected by a path of length at most k′+k′′+1.
Concluding, since for any two vertices v1 and v2, such that v2 is “good”, (11) is

fulfilled with probability at least 1 − p1(N) − p2(N), and so any pair of such vertices
is connected by a directed path of length at most k′ + k′′ + 1 with probability at least
1−p1(N)−p2(N)−p3(N). Therefore, with probability at least 1−p1(N)−p2(N)−
p3(N)

diam G(X) ≤ 
ln N/(2 ln�l/2	)� + 
ln N/(2 ln
l/4�)� + 4 .

Furthermore, if k′′′ =
⌊

ln N
ln(2l)

⌋
− 1, then |N+

k′′′ (v)| ≤
∑k′′′

i=0(2l)i = (2l)k′′′+1−1
2l−1 ≤

N−1
2l−1 < N . Thus, there exists a vertex w ∈ K \ N+

k (v). So diam G(X) ≥ k + 1 =⌊
ln N
ln(2l)

⌋
. Substituting p(N) = p1(N) + p2(N) + p3(N) finishes the proof. ��

Theorem 2. Let X be a random variable such that E(X) = l ≥ ln N and Pr( l
2 ≤

X ≤ 2l) = 1. If N ≥ 232 and ln N ≤ l ≤
√

N/90 − 1 then the graph G(X)
is strongly connected with probability at least 1 − p′(N, l), where p′(N, l) = l

N ·
N−l

(N−2l) exp
(

2l(2l+1)
N

)
+N exp

(
−l · N−l−1

N

)
+ 1.6(ln N)7

N1.5 + 1+0.0016(ln N)15

N1.99 + 1
N0.59 +

1
N0.16l−1 + 1

N0.5

Proof (Sketch). Now, we shall estimate the probability that for any two vertices v, w ∈
K , there exists a directed (w, v)-path. We will find the lower bound on probability that
any vertex in K is “good”. Let v ∈ K . Substitute in Lemma 1 for A = {v} and B = ∅,
then v does not have any in–neighbor in K \ {v} with probability:

(1 − PAB)N−1 ≤ exp(−PAB(N − 1)) ≤ p′1(N, l), (12)

where p′1(N, l) = exp
(
−l · N−l−1

N

)
. Moreover, using Lemma 1, we can estimate the

probability that v has in–neighbor u but there is no vertex which would be in–neighbor
of v or u by

∑
u∈K\{v}(1 − P{v,u},∅)N−2 · P{v},∅ ≤ p′2(N, l), (13)

where p′2(N, l) = l
N2 · N−l

(N−2l) exp
(

2l(2l+1)
N

)
. Thus

Pr(∃v∈Kv is not “good”) ≤
∑

v∈K Pr(v is not “good”) ≤ N(p′1(l, N) + p′2(l, N)).

From the proof of Theorem 1, we know that in the graph G(X) any two vertices
v1, v2 ∈ K , such that v2 is “good”, are connected by a directed path from v1 to v2 with
probability at least 1 − p(N). Moreover, with probability at least 1 − N(p′1(l, N) +
p′2(l, N)) each vertex in G(X) is “good”. Thus with probability at least 1 − p(N) −
N(p′1(l, N) − p′2(l, N)) graph G(X) is connected.
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Corollary 1
(a) For N = 232 and l = 32 ≥ ln N with probability larger than 0.98, graph G(X) is
connected and 5 ≤ diam(G(X)) ≤ 14.
(b) For N = 264 and l = 64 ≥ ln N with probability larger than 1 − 3

109 , graph G(X)
is connected and 9 ≤ diam(G(X)) ≤ 19.
(c) If Pr( l

2 ≤ X ≤ 2l) = 1−p, then in graph G(X) with probability at least 1−Np for
all vertices v ∈ K we have l

2 ≤ Xv ≤ 2l. Thus with probability at least 1 − p′(l, N) −
Np graph G(X) is connected and has diameter as stated in Theorem 1.

4 Equalizing Probability Distribution

Now we consider KEP with rule (2). We are interested in the state of a key for a pair
of nodes after t random transitions executed for a given initial state. Here, we model
one-way function F (−, −, τ) as random functions chosen independently for each τ .
The state of the key is a random variable with values that are keys reachable from the
initial key in t steps. The corresponding probability distribution can be described as a
vector P t = (P t

1 , P t
2 . . . P t

N ), assuming that for all non-reachable keys we have 0 in
this vector. Clearly, this vector depends on function F . The main issue is that certain
keys can be reached in multiple ways and, consequently, the corresponding coordinates
P t

i might be significantly higher.
While in the previous section we have been interested in how many steps are neces-

sary so that we can potentially reach every key, now our goal is to put an upper bound
for deviation of the coordinate P t

i from 1/N (corresponding to the uniform distribution
on the keyspace) that holds for almost all transition functions.

In order to model the behavior of the key transition mechanism we analyze a stochas-
tic process B expressed in terms of balls and bins. Let us consider N distinct bins and
a single ball put in the first bin at the beginning of the process, i.e. for t = 0. At each
step of the protocol each bin is linked to exactly l ≥ 2 distinct bins chosen uniformly
at random out of the set of all N bins. We demand that the connections chosen for bin
i at round t are stochastically independent of the connections chosen for bin j at round
t, for i �= j, and that the connections in round t are independent of the connections in
the previous rounds.

N bins correspond to all possible keys. The location of a ball indicates the current
state of the considered key, l connections from the current bin to other bins correspond
to possible key transitions. In order to simplify the considerations we assume that the
number of keys that can be reached in one transition is exactly l, despite a small collision
probability of a one-way function.

If the ball is in a particular bin at step t, it can be moved with equal probability to
each of l bins at step t + 1 linked to the bin holding the ball. Assume that for a given
number of rounds, we fix the transitions. At time t = 0, we place the ball in the first
bin. Then, for t = 1, it can be placed in each of l bins connected to the first bin with
probability 1/l. For t = 2, the potential number of reachable bins is within the interval
[l, l2]. Note that if a bin can be reached in multiple ways, then generally probability of
placing the ball in it is higher. After a number of steps the situation becomes highly
complex; the probabilities depend very much on the connections.
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The Result. Assuming the randomness of the transitions, P t
i becomes a random vari-

able. (Recall that for a given realization of connections P t
i is simply the probability that

in step t of process B the ball is in bin i.)

Theorem 3. For step t of process B described above, with parameters N > l ≥ 2, for
ε > 0, and δ = 1

l − 1
N we have:

Pr
(
maxi

∣∣P t
i − 1

N

∣∣ ≥ ε
)

≤
(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

Proof of Theorem 3. In the proof we consider the deviation of random vector P t from
the uniform distribution in terms of the random variable DN (P t):

DN (P t) =
∑N

i=1

(
P t

i − 1
N

)2
.

The proof is based on observations regarding the rate of decrease of the expectation of
DN (P t) and finding a t such that this distance is close to zero. Since random variables
P t+1

i have the same distribution for each i, we get:

E
(
DN (P t+1)|P t

)
= E

((
P t+1

1 − 1
N

)2
+ . . . +

(
P t+1

N − 1
N

)2 |P t
)

=

= N · E
((

P t+1
1 − 1

N

)2 |P t
)

.

Let φ(i, j, t) be a random variable describing the connection in round t, defined as
follows: φ(i, j, t) = 1 if bin i is linked to bin j at step t. Otherwise φ(i, j, t) = 0.

Obviously, E (φ(i, j, t)) = l
N . Moreover, according to our assumptions the random

variables φ(i0, j0, t0) and φ(i1, j1, t1) are independent if i0 �= i1 or t0 �= t1. By the
above definition,

E
((

P t+1
1 − 1

N

)2 |P t
)

= E
((∑

i
1
l · P t

i · φ(i, 1, t) − 1
N

)2 |P t
)

.

Since φ(i, 1, t) and φ(j, 1, t) are independent of P t, we get

E
(
DN (P t+1)|P t

)
= N · E

((∑
i

1
l P

t
i · φ(i, 1, t) − 1

N

)2 | P t
)

=

= N · E
((∑

i
1
l · P t

i · φ(i, 1, t) −
∑

i
1
l · P t

i · l
N

)2 |P t
)

=

= N · E
((∑

i
1
l · P t

i ·
(
φ(i, 1, t) − l

N

))2 |P t
)

=

= N
∑

i
1
l2 · (P t

i )2 · E
((

φ(i, 1, t) − l
N

)2
)

+

+ N
∑

i
=j
1
l2 · P t

i · P t
j · E

((
φ(i, 1, t) − l

N

)
·
(
φ(j, 1, t) − l

N

))
.

Let us note that φ(i, 1, t) and φ(j, 1, t) are independent for i �= j.
Since E(φ(j, 1, t)) = l/N , the second sum is equal to 0. Moreover, Var(φ(i, 1, t)) =

l/N · (1 − l/N), so

E
(
DN (P t+1)|P t

)
= N

∑
i

1
l2 · (P t

i )2 l
N ·

(
1 − l

N

)
=

( 1
l − 1

N

)∑
i(P

t
i )2

=
( 1

l − 1
N

)
·
(∑

i

(
(P t

i )2 − 2·P t
i

N + 1
N2

)
+ 2 ·

∑
i

P t
i

N −
∑

i
1

N2

)
=

=
( 1

l − 1
N

) (∑
i

(
P t

i − 1
N

)2 + 1
N

)
=

( 1
l − 1

N

)
·
(
DN (P t) + 1

N

)
.
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Hence, we have shown

E
(
DN (P t+1)|P t

)
=

( 1
l − 1

N

)
·
(
DN (P t) + 1

N

)
.

Taking expectation of both sides of the above equality gives us:

E
(
DN (P t+1)

)
=

( 1
l − 1

N

)
· E (DN (P t)) +

( 1
l − 1

N

)
· 1

N .

Let δ = 1
l − 1

N . It is easy to check that E
(
DN (P 1)

)
= δ. Therefore, solving the

recursive relation we get:

E
(
DN (P t)

)
= E(DN (P 1)) · δt−1 +

δ

N
·
(
1 + δ + . . . + δt−2) = δt +

δ(1 − δt−1)
N(1 − δ)

.

Since DN (P t) is nonnegative, we can apply Markov inequality:

Pr
(
DN (P t) ≥ ε2) ≤ E(DN (P t))/ε2

and get:

Pr
(
DN (P t) ≥ ε2

)
≤

(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

Therefore,

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
≤ Pr

(∑
i

(
P t

i − 1
N

)2 ≥ ε2
)

= Pr
(
DN (P t) ≥ ε2

)
≤

(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

This concludes the proof of Theorem 3. ��

From previous considerations we immediately obtain the following corollaries:

Corollary 2. For l = 2m1 and N = 2m2

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

((
2m2−m1−1

2m2

)t

+ 2m2−m1−1
22m2−22m2−m1+2m2

)
· ε−2 .

Corollary 3

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

((
N−2
2N

)t
+ N−2

N(N+2)

)
ε−2 .

for l = 2. In particular, for l = 2 and t = log N

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

( 2
N

)
ε−2 .
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Appendix

Proof of Lemma 1

Lemma 2. Let A and B be disjoint subsets of K , and let P s
AB be the probability

that in a graph G(X) a given vertex v with degree s has an out-neighbor in A,
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conditioned by the event that it does not have any out-neighbor in B. Then for N −
|A| − |B| ≥ s:

s|A|
N−|B| − s2|A|2

2(N−|B|)2 ≤ P s
AB ≤ s|A|

N−|B| + s2|A|
2(N−|B|)(N−|B|−s) . (14)

Proof. Assume that vertex v with degree s does not have any out-neighbor in B. Then

the probability that it does not have any out-neighbor in A is equal to
(N−|A|−|B|

s )
(N−|B|

s ) .

Substituting k = N − |B| and |A| = d we have:

(N−|A|−|B|
s )

(N−|B|
s ) = (k−d

s )
(k

s)
=

∏s−1
i=0

(
1 − d

k−i

)
.

Furthermore,

∏s−1
i=0

(
1 − d

k−i

)
≤

(
1 − d

k

)s ≤ 1 − sd
k +

(
s
2

)
d2

k2 ≤ 1 − sd
k + s2d2

2k2 =

= 1 − s|A|
N−|B| + s2|A|2

2(N−|B|)2

and

∏s−1
i=0

(
1 − d

k−i

)
≥ 1 −

∑s−1
i=0

d
k−i = 1 −

∑s−1
i=0

(
d

k−i − d
k

)
− sd

k =

= 1 − sd
k −

∑s−1
i=0

di
k(k−i) ≥ 1 − sd

k − d
k(k−s)

(
s
2

)
≥ 1 − sd

k − s2d
2k(k−s) =

= 1 − s|A|
N−|B| − s2|A|

2(N−|B|)(N−|B|−s)

which implies (14).

Proof (of Lemma 1). Using Lemma 2, since X < 2l with probability 1,

PAB =
2l∑

s=0

P s
AB · Pr(X = s) ≤

≤
∑2l

s=0
|A|s

N−|B| Pr(X = s) +
∑2l

s=0
|A|

2(N−|B|) · s2

(N−|B|−s) · Pr(X = s) ≤

≤ l|A|
N−|B| + 2l · |A|

2(N−|B|)·(N−|B|−2l)

∑
s Pr(X = s) =

≤ l|A|
N−|B| + l2|A|

(N−|B|)(N−|B|−2l)

PAB =
∑2l

s=0 P s
AB · Pr(X = s) ≥

≥
∑2l

s=0
|A|s

N−|B| Pr(X = s) −
∑2l

s=0
|A|s2

2(N−|B|)2 · Pr(X = s) ≥

≥ l|A|
N−|B| − 2l · |A|

2(N−|B|)2
∑2l

s=0 s Pr(X = s) ≥ l|A|
N−|B| − l2|A|

(N−|B|)2

Moreover each vertex in K\(A∪B) chooses its out–neighbors independently, therefore
Y has a binomial distribution with parameters N − |A| − |B| and PAB .
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Upper Bound on Pr(Av(w))

Assume that w has degree s ≥
⌈

l
2

⌉
in G(X). Notice that for N ≥ 232 the procedure

mentioned in the proof will not label more than N+ = k′√N ≤ ln N
√

N
2 ln� l

4 �
≤ ln N

√
N

4

vertices. Moreover, probability that w during procedure labels less than
⌈

l
4

⌉
vertices is

smaller than probability that w has at most
⌈

l
4

⌉
−1 out–neighbors in the set of unlabeled

vertices.

Pr(Av(w)) =
∑
 l

4�−1
j=0

(N−N+

j )(N+

s−j)
(N

s ) ≤
∑
 l

4�−1
j=0

(
s

s−j

) (
N+

N

)s−j

≤

≤
∑
 l

4�−1
j=0

(
se

s−j

)s−j (
N+

N

)s−j

≤
∑
 l

4�−1
j=0

(
l
2

l
2−j

)s−j (
e·N+

N

)s−j

≤

≤
∑
 l

4�−1
j=0

(
l
2

l
2− l

4

)s−j (
e·ln N
4
√

N

)s−j

≤
∑
 l

4�−1
j=0

(
2e·ln N
4
√

N

)s−j

≤

≤
(

e·ln N
2
√

N

)s−
 l
4�+1 ∑
 l

4�−1
j=0

(
e·ln N
2
√

N

)
 l
4�−1−j

≤ q3(N),

where g3(N) =
(

e·ln N
2
√

N

)6
2
√

N
2
√

N−e ln N
.

Thus for N ≥ 232

∑
v∈K

∑
w∈W (v) Pr(Av(w)) ≤ N ln N

√
N

4 q3(N) ≤ 1.6·(lnN)7

N1.5 .

Proof of (5)

Let v be a good vertex. Let Z be a random variable counting number of vertices in
K \ {v, u1, u2} having an out–neighbor in {v, u1, u2}. Thus

∑3
i=1 |Γ−

i (v)| − 2 ≥ |Z|.
According to Lemma 1, for A := {v, u1, u2} and B = ∅, Z has binomial distribution

Bin (N − 3, PAB). For those A,B since l+1
N ≤

√
N

90N + 1
N < 1

3·220 we have PAB ≤
3l
N

(
1 + l

N−2l

)
< 3l

N

(
1 + 3l

N

)
< 3(220+1)

240 and (N − 3)PAB ≥ (N − 3)
(

3l
N − 9l2

N

)
≥

3l
(
1 − 3(l+1)

N

)
> 3 lnN 220−1

220 .

Furthermore

Pr(Z ≤ 15) =
∑15

i=0

(
N−3

i

)
(PAB)i(1 − PAB)N−3−i ≤

≤ (1 − PAB)N−3 +
∑15

i=1

(
(N−3)PABe

i

)i

exp (−(N − 3 − i)PAB) ≤

≤
(

1 + exp(15 · PAB)
∑15

i=1

(
(N−3)PAB

i
e

)i
)

exp(−(N − 3)PAB) <

<

(
1 + 15 · exp

(
15 · 3(220+1)

240

)(
3 ln N 220−1

220
e

15

)15
)

exp
(
−3 lnN 220−1

220

)
<

<
(
1 + 15 · exp

(
15 · 3(220+1)

240

)
· (0.54 · ln N)15

) ( 1
N

)2.99
<

< 1+0.0016(ln N)15

N2.99 = q1(N),
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since the function f(x) = xi exp(−x) is decreasing for x > i and the function f(x) =
ax

xx is increasing for x < a
e .

Therefore, for a ”good” vertex v,
∑3

i=1 |Γ−
i (v)| − 2 ≥ |Z| ≥ 16 with probability at

least 1 − q1(N) , and thus by pigeonhole principle with probability at least 1 − q1(N)
there exists i0, 1 ≤ i0 ≤ 3, such that

|Γ−
i0

(v)| ≥ 6, (15)

which proves (5).

Proof of (7)

For any i0 < i ≤ k′′ =
⌈

ln N
2 ln� l

2 �

⌉
+ 3 and v – a ”good” vertex we will find a lower

bound on the size of Γ−
i (v). Notice that a set Γ−

i+1(v) consists of all vertices from
K \ (Γ−

i (v) ∪ N−
i−1(v)) having an out–neighbor in Γ−

i (v), thus by Lemma 1, if we
assume that |Γ−

i (v)| = Γ and |N−
i−1(v)| = Ni we have:

|Γ−
i+1(v)| ∼ Bin (N − Ni − Γ, PΓNi) , (16)

and
Γ l

N − Ni
− Γ 2l2

(N − Ni)2
≤ PΓNi .

Furthermore if we condition that event
⋂i

j=i0
Cj occurs, then: 3

(
l
2

)i−i0 ≤ |Γ−
i (v)| <

3
√

N and |N−
i−1(v)| ≤ 3k′′√N . Moreover since l ≤

√
N

90 − 1 for Γ ≤ 3
√

N and
Ni ≤ (1

2 ln N + 3)
√

N

EΓ−
i+1 = (N − Ni − Γ )PΓNi ≥

≥ Γ l − Γ 2l2

(N−Ni)
− Γ 2l

(N−Ni)
+ Γ 3l2

(N−Ni)2
≥ Γ l

(
1 − Γ (l+1)

(N−Ni)

)
≥ aΓ l

Where a = 28999
30000 .

By Fi(Γ ) we denote event that
⋂i

j=i0
Cj and Γ−

i (v) = Γ . Then by Chernoff in-
equality (see for example [19] theorem 2.1), for i ≥ i0

Pr(|Γ−
i+1| ≤ bΓ−

i l|Fi(Γ )) =

= Pr
(
|Γ−

i+1| ≤ b
aE(|Γ−

i+1||Fi(Γ ))|Fi(Γ )
)

≤
≤ Pr

(
|Γ−

i+1| ≤ E(|Γ−
i+1||Fi(Γ )) −

(
1 − b

a

)
E(|Γ−

i+1||Fi(Γ ))|Fi(Γ )
)

≤

≤ exp
(

− (1− b
a )2(E(|Γ −

i+1||Fi(Γ )))2

2E(|Γ −
i+1||Fi(Γ ))|

)
≤ exp

(
− (1− b

a )2

2 aΓ l
)

(17)

Thus substituting i = i0, a = 28999
30000 and b = 0.25 for 6 ≤ Γ ≤ 3

√
N :

Pr(|Γ−
i0+1| ≤ 0.25|Γ−

i0
|l||Γ−

i0
| = Γ ) ≤ exp

(
− (1−0.25 30000

28999 )2

2
28999
30000Γ l

)
≤

( 1
N

)1.59
.
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Therefore since 0.25 · 6 · l ≥ 3
⌊

l
2

⌋
thus:

Pr(Di0+1|Ci0 ) ≤
∑3

√
N

Γ=6 Pr(Γ−
i+1 ≤ 0.3Γ−

i0
l|Γ−

i0
= Γ ) ≤

( 1
N

)1.59

and
Pr(Di0+1 ∩ Ci0 ) = Pr(Di0+1|Ci0) Pr(Ci0 ) ≤

( 1
N

)1.59
,

which is the first part of (7).

Furthermore for i > i0 substituting a = 28999
30000 and b = 1

2 for 3
⌊

l
2

⌋i−i0 ≤ Γ ≤
3
√

N :

Pr(|Γ−
i+1| ≤ 1

2 |Γ−
i |l|Fi(Γ )) ≤ exp

(
− (1− 1

2
30000
28999 )2

2
28999
30000Γ l

)
≤

( 1
N

)0.33( l
2 )

i−i0

.

Therefore since 1
2 · 3

⌊
l
2

⌋i−i0 · l ≥ 3
⌊

l
2

⌋i+1−i0 and
⋂i

j=i0
Cj =

⋃3
√

N

Γ=3( l
2 )

i−i0 Fi(Γ )

thus

Pr
(
Di+1

∣∣∣∣
⋂i

j=i0
Cj

)
≤

∑ 3
√

N

Γ=3( l
2 )

i−i0
Pr(|Γ −

i+1|≤ 1
2 |Γ −

i |l|Fi(Γ )) Pr(Fi(Γ ))

Pr(⋂i
j=i0

Cj) ≤
( 1

N

)0.33� l
2	i−i0

and

Pr
(
Di+1 ∩

⋂i
j=i0

Cj

)
≤

( 1
N

)0.33� l
2	i−i0

,

which is the second part of (7).

Proof of (9) – An Upper Bound on Γ −
k2

(v)

Assume that there exists k2 ≤ k′′ - the smallest index such that Γ−
k2

(v) is larger then

3
√

N . Thus 1 ≤ |Γ−
k2−1(v)| ≤ 3

√
N and |Nk2−1| ≤ 3k′′√N . Since (16) holds thus

from Lemma 1 we have

PΓNi ≤ Γl
N−Ni

+ Γl2

(N−Ni)(N−Ni−2l)

and

E|Γ−
i+1| = (N − Ni − Γ )PΓNi ≤ (N − Ni)PΓNi ≤

≤ Γ l
(
1 + l

N−Ni−2l

)
≤ Γ l

(
1 + 3l

N−Ni

)
.

Then by Chernoff bound for 1 ≤ Γ ≤ 3
√

N and |Nk2−1| ≤ 3k′′√N :

Pr(|Γ−
k2

| ≥ 10
√

N ||Γ−
k2−1| = Γ ) ≤

≤ Pr
(
|Γ−

k2
| ≥ 3Γ l

(
1 + 3l

N−|Nk2−1|
)

||Γ−
k2−1| = Γ

)
≤

≤ Pr
(
|Γ−

k2
| ≥ E(|Γ−

k2
||Γ ) + 2Γ l

(
1 + 3l

N−|Nk2−1|
)

||Γ−
k2−1| = Γ

)
≤

≤ exp

⎛

⎝−
4Γ 2l2

(
1+ 3l

N−|Nk2−1|

)2

2
(

E(|Γ −
k2

||Γ )+ 1
3 Γl

(
1+ 3l

N−|Nk2−1|

))

⎞

⎠ ≤

≤ exp
(
− 3

2Γ l
(
1 + 3l

N−|Nk2−1|
))

≤ 1
N

3
2
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Thus conditioned on the fact that 1 ≤ Γ ≤ 3
√

N and |Nk2−1| ≤ 3k′′√N holds

Pr(|Γk2 | ≥ 10
√

N)≤
∑3

√
N

Γ=1 Pr(|Γ−
k2

|≥ 10
√

N ||Γ−
k2−1|= Γ ) Pr(|Γ−

k2−1|=Γ )≤ N
3
2 ,

which implies (9)

Existence of Paths

From Lemma 1 substituting A = Γ−
k2

(v2), and B = ∅ we know that the probability that
vertex u ∈ Γ−

k2
(v2) does not have any out-neighbor in Γ−

k2
(v2) is equal to 1−PAB. Thus

for Γ+
k1

(v1) and Γ−
k2

(v2) such that |Γ+
k1

(v1)| ≥
√

N and 3
√

N ≤ |Γ−
k2

(v2)| ≤ 10
√

N ,

since l ≤
√

N
90 , the probability that there are no edges pointing from Γ+

k1
(v) to Γ−

k2
(w)

is:

(1 − PAB)|Γ
+
k1

| ≤
(

1 − |Γ −
k2

|l
N +

|Γ −
k2

|2l2

N2

)|Γ+
k1

|
≤

≤ exp
((

− |Γ −
k2

|l
N +

|Γ −
k2

|2l2

N2

)
|Γ+

k1
|
)

≤

≤ exp
(

−|Γ−
k2

| · |Γ+
k1

|l
(

1 − |Γ −
k2

|l
N

))
≤

( 1
N

)3

(
1−

|Γ −
k2

|l
N

)

≤ 1
N

8
3
.

Proof of (12) and (13)

For A = {v} and B = ∅ from Lemma 1

(1 − PAB)N−1 ≤ exp(−PAB(N − 1)) ≤
≤ exp

(
−(N − 1) · l

N (1 − l
N )

)
=

= exp
(
−

(
l
(
1 − l

N

)
− l

N

(
1 − 1

N

)))
=

= exp
(
−l

(
1 − l

N − 1
N + l

N2

))
≤ exp

(
−l

(
1 − l+1

N

))
.

Using Lemma 1 twice we have

∑
v1∈K\{v}(1 − P{v,v1},∅)N−2 · P{v},∅ ≤

≤ (N − 1) ·
(
1 − 2l

N + 4l2

N2

)N−2
·
(

l
N + l2

N(N−2l)

)
≤

≤ (N − 1) · exp
(
−2l + 2l

N + 4l2

N − 8l2

N2

)
·
(

l
N + l2

N(N−2l)

)
≤

≤ (N − 1) · 1
N2 · exp

(
2l
N + 4l2

N

)
·
(

l
N + l2

N(N−2l)

)
≤

≤ exp
( 2l

N (1 + 2l)
)

· l
N2

(
1 + l

(N−2l)

)
.
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