
Generic Combination of Public Key Encryption
with Keyword Search and Public Key

Encryption

Rui Zhang and Hideki Imai

Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology, AIST

{r-zhang,h-imai}@aist.go.jp

Abstract. In this paper, we study the problem of secure integrating
public key encryption with keyword search (PEKS) with public key data
encryption (PKE). We argue the previous security model is not com-
plete regarding keyword privacy and the previous constructions are se-
cure only in the random oracle model. We solve these problems by first
defining a new security model, then give a generic construction which is
secure in the new security model without random oracles. Our construc-
tion is based on secure PEKS and tag-KEM/DEM schemes and achieves
modular design. We also point out some applications and extensions for
our construction. For example, instantiate our construction with proper
components, we have a concrete scheme without random oracles, whose
performance is even competitive to the previous schemes with random
oracles.

1 Introduction

Public key encryption with keyword search (PEKS) [7] is very useful to provide
the functionality of “searching on encrypted data” for public key cryptosystems.
For instance, it can be used to build a gateway to route an encrypted email
without knowing the content. We briefly review this mechanism here. Let (pk, sk)
be Alice’s public/secret key pair. Bob encrypts his message (email body) m
with a public key encryption (PKE) scheme under Alice’s public key pk and
let’s call the encrypted email σ. Bob also encrypts a keyword w using PEKS,
under Alice’s public key pk and let’s call the encrypted keyword τ . The resulting
ciphertext c = τ ||σ will be sent to Alice’s email server. Alice is able to specify
a few keywords, and upon receiving a trapdoor tw associated with a keyword
w from Alice, the server can check whether τ encrypts w. Then if the keyword
is “urgent”, the server sends c to Alice’s mobile phone, and if the keyword is
“lunch”, the server sends c to Alice’s desktop to be read later. The security of
PEKS is that the server should not know anything beyond the keyword. Readers
are recommended to refer [7] and the references thereafter for details.

The security requirements discussed in [7,1] have considered semantic security
of encryption of keywords against a powerful adversary that adaptively corrupts

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 159–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 R. Zhang and H. Imai

gateways. Since a PEKS scheme cannot be used alone but have to be paired
with a public key encryption (PKE) scheme, we have to consider the security
of the whole system rather than separate components. Hereafter we refer the
integrated scheme as PEKS/PKE. Unfortunately, secure PEKS and secure PKE
schemes may not remain secure when they are composed together, which was
pointed out by Baek, Safavi-Naini and Susilo [3]. Basically, they gave a coun-
terexample as follows: When an adversary observes a PEKS/PKE ciphertext
τ ||σ, it can produce another valid ciphertext τ ′||σ, where τ ′ is a valid tag under
different keyword. Querying τ ′||σ to a decryption oracle, the adversary obtains
the plaintext m.

We remark that the above attack is realistic in practice, since for most en-
crypted email systems, headers of an email remain even after routing, and the
decryption is done without integrity check on the header. On the other hand,
for keyword privacy, nothing was considered against chosen keyword/ciphertext
attack before this work.

Known Solutions and Their Limitations. As mentioned in [3], a trivial so-
lution may be simply appending an authentication tag generated from a message
authentication code (MAC), with a shared key between the sender and receiver.
While it works, the solution destroys the asymmetric nature of public key en-
cryption. Another possible solution is to attach a signature on the ciphertext.
However, this requires the sender has a pair of verification/signing keys, which
is not applicable for many practical scenarios.

Additionally, two solutions were given in [3], assuming that a MAC is provided
by the PKE component. One is based on the Boneh-Franklin identity based
encryption (IBE) [8] as a PEKS [7] with ElGamal [16] as a PKE. The other is a
generic construction based on a PEKS and a PKE with a MAC. The intuition
behind both constructions is borrowed from REACT [22], where a MAC is used
to protect the integrity of both parts of the ciphertext. However, to prove their
security, the authors of [3] have to assume the hash functions are random oracles
[6] and the underlying PKE is secure against plaintext checking attack (PCA),
which is inherent in all variants of REACT. These requirements may be too
stringent, and it is desirable to have other solutions, better without random
oracles.

1.1 Our Contributions

Formal Security Model of PEKS/PKE. Authors of [3] have given a security
model on data privacy of PEKS/PKE against adaptive chosen keyword attack
and chosen ciphertext attack, however, it is not clear which attack model is posed
on keyword privacy. Actually, no concrete discussions were given regarding this
point in [3].

Here we show an example with no keyword privacy at all when the attack
model of [3] is considered. To see this, one just appends the keyword as a part
of the ciphertext of data encryption scheme. It is easily verified that this doesn’t
violate the data privacy of the PEKS/PKE scheme, as long as the keyword is

Generic Combination of PEKS and Public Key Encryption 161

chosen independent from the encrypted message, but the scheme is not a secure
PEKS/PKE scheme since it leaks the information of the keyword. It seems that
keyword privacy has been assumed to remain even after compositions by [3].

We thus conclude the previous security model of PEKS/PKE is not complete
regarding keyword privacy, however, we emphasize that the two concrete con-
structions proposed in [3] are secure. In this paper, we formalize the requirement
of keyword privacy for secure PEKS/PKE schemes.

Generic Construction of PEKS/PKE. Principally, the design of PEKS/
PKE schemes without assuming random oracles is not new, e.g., one first put to-
gether PEKS and PKE components (each without random oracles), then applies
non-interactive zero-knowledge proof of “well-formness” for this integration, but
this is only theoretical and very inefficient. When speaking of practical schemes,
all known constructions have to assume random oracles. It is well-known that
a scheme with a security proof in the random oracle model implies no security
in the real world [11], therefore, it is desirable to build proofs without random
oracles. In this paper, we present such a generic construction.

Interesting Extensions. We also give some applications and extensions of
the generic construction. For example, instantiating the above construction with
concrete components, one obtains various PEKS/PKE schemes with many good
properties. For instance, combining a PEKS scheme from the Gentry IBE [18],
and the Kurosawa-Desmedt tag-KEM/DEM [20], we have a PEKS/PKE scheme
secure without random oracles. The scheme is quite efficient, which is even
comparable to previous constructions with random oracles. In fact, a secure
PEKS/PKE is achievable from a variety of assumptions, e.g., from the Waters
IBE [28] using asymmetric pairing [10], however, our scheme from the Gentry
IBE provides better efficiency.

1.2 Related Work

Public key encryption (PKE) is an important primitive in modern cryptography
which guarantees privacy of communications. The standard security notion for
PKE is indistinguishability against adaptively chosen ciphertext attack (IND-
CCA) [19,21,23,15,5]. While it is comparatively easy to build CCA-secure schemes
assuming random oracles [6], to have CCA-secure schemes such that security
reduction without random oracles is not easy. Only theoretical constructions of
CCA-secure PKE schemes [21,15,24] were known before Cramer and Shoup gave
the first practical solution [14]. Another recent approach was proposed by Boneh,
Canetti, Halevi and Katz [12,9] based on identity based encryption (IBE).

An IBE scheme is a public key encryption scheme where any string can be
the public key of a user, say, the identity of a user. It was advocated by Shamir
[25], whose original intuition was to simplify the management of public key cer-
tificates. It has been an open problem to construct full-fledged IBE schemes for
many years until [8], when Boneh and Franklin proposed the first IBE scheme
based on pairings. Cocks [13] independently proposed another IBE scheme based
on decisional quadratic residue problem. Public key encryption with keyword

162 R. Zhang and H. Imai

search (PEKS) was proposed in [7]. It was shown that to build a PEKS with ex-
ponential keyword space is at least as hard as build an identity based encryption
(IBE) [7].

Another security notion for public key encryption is key privacy [4], which
captures an adversary’s inability to know a receiver’s identity from a given
ciphertext. For identity based encryption, this was studied under the name
“anonymity” [1] (the precise definition postponed to Appendix A). Basically,
public key encryption schemes with key privacy provides the functionality of
PEKS, however, currently anonymous PKE schemes only provide polynomially
bounded keyword space [7,1], and one may need anonymous IBE schemes for a
keyword space of exponential size.

2 Preliminary

In this section, we give some notations and definitions.

Notations. If x is a string, let |x| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s ← S denotes the operation of picking
an element s of S uniformly at random. We write z ← A(x, y, . . .) to indicate
that A is an algorithm with inputs (x, y, . . .) and an output z. Denote x||y as
the string concatenation of x and y. If k ∈ N, a function f(k) is negligible if
∃ k0 ∈ N, ∀ k > k0, f(k) < 1/kc, where c > 0 is a constant.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE = (PKEkg,
PKEenc, PKEdec).

PKEkg: a randomized algorithm, taking a security parameter k as input, gener-
ates a public key pk and a corresponding secret key sk, denoted as (pk, sk) ←
PKEkg(1k).

PKEenc: a possibly randomized algorithm, taking a public key pk, and a plain-
text m taken from the message space as input, with internal coin flipping,
outputs a ciphertext c, denoted as c ← PKEenc(pk, m).

PKEdec: a deterministic algorithm, taking a secret key sk and a ciphertext c as
input, outputs the corresponding m, or “⊥” (indicating invalid ciphertext),
denoted as m ← PKEdec(sk, c).

We require a PKE scheme should satisfy the standard correctness requirement,
namely for all (pk, sk) ← PKEkg(1k) and all m, PKEdec(sk, PKEenc(pk, m)) = m.

Data Privacy. We say a public key encryption scheme is (ε, q, T)-IND-CCA
secure, if the advantage of any adversary A with at most q queries to a decryption
oracle DO, is at most ε within time T in the following experiment.

Advind-cca
PKE,A(k) = |Pr[(pk, sk) ← PKEkg(1k); (m0, m1, s) ← ADO(pk);

b ← {0, 1}; c∗ ← PKEenc(pk, mb); b′ ← ADO(c∗, s) : b′ = b] − 1/2|

Generic Combination of PEKS and Public Key Encryption 163

where DO returns the corresponding decryption result on a query on ciphertext
c, whereas A is forbidden to query c∗ to DO. We say a PKE scheme is IND-
CCA-secure, if for polynomially bounded q and T , ε is negligible.

2.2 Tag-KEM/DEM

Shoup introduced key encapsulation mechanism (KEM) and data encapsulation
mechanism (DEM) [27], to deal with efficient hybrid encryption. Tag-KEM/DEM
is a form of KEM which also takes as input a tag, which was introduced in [2].
A tag-KEM is a generalization of KEM/DEM, and together with a passively
secure DEM, it can be easily be extended to threshold settings.

Tag-KEM. Our definition of tag-KEM runs parallel with [2]. A tag-KEM con-
sists of four algorithms TK = (TKkg, TKkey, TKenc, TKdec).

TKkg: a randomized algorithm, taking a security parameter k as input, generates
a public key pk and a secret key sk, denoted as (pk, sk) ← TKEMgen(1k).

TKkey: a randomized algorithm, taking a public key pk as input, outputs a
random session key dk ∈ KD, where KD is a key space, and internal state
information η, denoted as (dk, η) ← TKEMkey(pk).

TKenc: a possible randomized algorithm, taking the internal state η and a tag λ
as input, encrypts dk (embedded in η) into ψ, denoted as ψ ← TKenc(η, λ).

TKdec: a deterministic algorithm, taking a secret key sk, a ciphertext ψ and a
tag λ as input, recovers dk from ψ and λ, denoted as dk ← TKdec(sk, ψ, λ).
We require TKdec(ψ, λ) = dk must hold for any sk, dk, ψ and λ, associated
by the above three algorithms. The algorithm outputs “⊥” when encounter-
ing an error.

Additionally, we require that given a public key pk, a tag λ, and an internal
state η for the encryption algorithm TKenc, the session key dk of a tag-KEM
should be uniquely decided. We call this property uniqueness of tag-KEM/DEM.

Security Notion. We define the security of tag-KEM as indistinguishability
against adaptive chosen ciphertext attack (IND-TK-CCA). We say a tag-KEM
scheme is (ε, q, T)-IND-TK-CCA secure, if the advantage of any adversary A with
at most q queries to a decryption oracle DO, is at most ε within time T in the
following experiment.

Advind-tk-cca
TK,A (k) = |Pr[(pk, sk) ← TKkg(1k); b ← {0, 1};

dk0 ← KD; (η, dk1) ← TKkey(pk); (λ∗, s) ← ADO(pk, dkb);

ψ∗ ← TKenc(η, λ∗); b′ ← ADO(ψ∗, s) : b′ = b] − 1/2|

where DO returns corresponding dk on input (ψ, λ), and A cannot query (ψ∗, λ∗)
to DO. We say a tag-KEM is IND-TK-CCA-secure, if for polynomially bounded
q and T , ε is negligible.

164 R. Zhang and H. Imai

DEM. A DEM consists of two deterministic algorithms, DEM = (DEMenc,
DEMdec), which is associated with a key space and a plaintext space defined by
a security parameter k.

DEMenc: taking a symmetric key dk ∈ KD, where KD is defined by k and a
plaintext m ∈ {0, 1}∗ as input, outputs a ciphertext χ, denoted as χ ←
DEMenc(dk, m).

DEMdec: taking a symmetric key dk ∈ KD and a ciphertext χ as input, outputs
a plaintext m, denoted as m ← DEMdec(dk, χ).

We require that for all m and all dk, DEMdec(dk, DEMenc(dk, m)) = m.

Semantic Security. We only require passive security for DEM. We say a DEM
scheme is (ε, T)-semantically secure, if the advantage of any adversary A, is at
most ε within time T in the following experiment.

Advss
DEM,A(k) = |Pr[b ← {0, 1}; dk ← KD; (m0, m1, s) ← A(1k);

χ ← DEMenc(mb); b′ ← A(χ, s) : b′ = b] − 1/2|

We say a DEM scheme is (ε, T)-semantically secure, if for polynomially bounded
T , ε is negligible.

2.3 PEKS

A public key encryption with keyword search (PEKS) scheme [7,1] consists of
four algorithms PEKS = (PEKSkg, PEKSenc, PEKStd, PEKStest).

PEKSkg: a randomized algorithm, taking a security parameter k as input, the
probabilistic key generation algorithm generates a public key pk and a secret
key sk, denoted as (pk, sk) ← PEKSkg(1k).

PEKSenc: a possibly randomized algorithm, taking a public key pk and a key-
word w as input, computes a ciphertext τ , denoted as τ ← PEKSenc(pk, w).

PEKStd: a possibly randomized algorithm, taking a secret key sk and a keyword
w as input, computes a trapdoor tw, denoted as tw ← PEKStd(sk, tw).

PEKStest: a deterministic algorithm, taking a trapdoor tw and a ciphertext τ
as input, tests whether c encrypts w and outputs a bit b, with 1 meaning
“yes” and 0 meaning “no”, denoted as b ← PEKStest(tw, τ).

Here we assume there is only one receiver (one public key) in the system, and it
is straightforward to extend the above definitions to multi-user settings.

Consistency. Several flavors of consistency were discussed in [1], and we only
define computational consistency here, since this notion suffices for most prac-
tical applications. A PEKS scheme is said to be computationally consistent, if
the advantage is negligible for all computationally bounded adversary A in the
following experiment.

Advpeks-consist
PEKS,A (k) = Pr[(pk, sk) ← PEKSkg(1k); (w, w′) ← A(pk);

tw′ ← PEKStd(sk, w′); τ∗ ← PEKSenc(pk, w) : PEKStest(tw′ , c∗) = 1]

Generic Combination of PEKS and Public Key Encryption 165

Keyword Privacy. We define indistinguishability of keywords against adaptive
chosen keywords attack (IK-CKA), as considered in [7,1]. We say a PEKS scheme
is (ε, q, T)-IK-CKA secure, if the advantage of any adversary A with at most q
queries to a trapdoor generation oracle T O, is at most ε within time T in the
following experiment.

Advik-cka/cca
PEKS,A (k) = |Pr[(pk, sk) ← PEKSkg(1k); (w0, w1, s) ← AT O(pk);

b ← {0, 1}; τ∗ ← PEKSenc(pk, wb); b′ ← AT O(τ∗, s) : b′ = b] − 1/2|

where T O is a trapdoor oracle, returns the corresponding trapdoor tw upon a
query on keyword w, whereas A cannot query w0 or w1 to T O. A PEKS scheme
is said to be IK-CKA-secure, if for polynomially bounded q and T , ε is negligible.

2.4 Bilinear Groups

We review some facts about bilinear groups for future use. Let G1 and GT be two
multiplicative cyclic groups of prime order p and g be a generator of G1. A bilin-
ear map e : G1 × G1 → GT satisfies the following properties: (i) Bilinearity: For
all x, y ∈ G1 and a, b ∈ Z, e(xa, yb) = e(x, y)ab. (ii) Non-degeneracy: e(g, g) �= 1.
(iii) Computability: There is an efficient algorithm to compute e(x, y) for any
x, y ∈ G1.

3 Our Model of PEKS/PKE

In this section, we give the syntax and security definitions for PEKS/PKE
schemes. The advantage of our model is that we have notational convenience
to define keyword privacy and data privacy.

3.1 PEKS/PKE

We focus on the integration of PEKS/PKE. A PEKS/PKE scheme consists of
five algorithms PEKS/PKE = (Kg, Enc, Dec, Td, Test).

Kg: a randomized algorithm, taking a security parameter k as input, generates
a public key pk and a secret key sk, denoted as (pk, sk) ← Kg(1k).

Enc: a possibly randomized algorithm, taking a public key pk, a keyword w
and a plaintext m as input, outputs a PEKS/PKE ciphertext c, denoted as
c ← Enc(pk, w, m).

Dec: a deterministic algorithm, taking a secret key sk and a PEKS/PKE cipher-
text c, outputs the decryption result m (or “⊥” if c is invalid). We denote
this as m ← Dec(sk, c).

Td: a possibly randomized algorithm, taking a secret key sk and a keyword w as
input, computes a trapdoor tw for keyword w, denoted as tw ← Td(sk, w).

Test: a deterministic algorithm, tests whether a given PEKS/PKE ciphertext
c encrypts keyword w, and outputs a bit b, with 1 meaning “yes” and 0
meaning “no”, denoted as b ← Test(tw, c).

166 R. Zhang and H. Imai

Our model simplifies the one in [3]. In the encryption algorithm Enc, we don’t
explicitly require a tag in the ciphertext, since otherwise the security definition
should additionally consider the tag. We remark the model is general enough
because the tag can be regarded as a part of the ciphertext.

Consistency. A PEKS/PKE scheme is said to be computationally consistent,
if the advantage is negligible for all computationally bounded adversary A in
the following experiment.

Advpeks/pke-consist
PEKS/PKE,A(k) = Pr[(pk, sk) ← Kg(1k); (w, w′, m) ← A(pk);

tw′ ← Td(sk, w′); c∗ ← Enc(pk, m, w) : Test(tw′ , c∗) = 1]

3.2 Security Notions

We consider two security requirements, keyword privacy, namely, indistinguisha-
bility of keywords against adaptive chosen keyword attack and chosen cipher-
text attack (IK-CKA/CCA), and data privacy, namely, indistinguishability of ci-
phertexts against adaptive chosen keyword attack and chosen ciphertext attack
(IND-CKA/CCA). Note that in a PEKS/PKE scheme, PEKS and PKE are both
regarded as components of the whole system.

Principally, the adversary is given two oracles, a trapdoor generation ora-
cle T O, that on a keyword w, generates the corresponding trapdoor tw and a
decryption oracle that on a ciphertext c, returns the corresponding plaintext m.

Keyword Privacy. We say a PEKS/PKE scheme is (ε, qt, qd, T)-IK-CKA/CCA
secure, if the advantage of any adversary A with at most qt queries to a trapdoor
generation oracle T O, at most qd queries to a decryption oracle DO, is at most
ε within time T in the following experiment.

Advik-cka/cca
PEKS/PKE,A(k) = |Pr[(pk, sk) ← Kg(1k); (w0, w1, m, s) ← AT O,DO(pk);

b ← {0, 1}; c∗ ← Enc(pk, m, wb); b′ ← AT O,DO(c∗, s) : b′ = b] − 1/2|

where T O is a trapdoor oracle, upon a query on keyword w returns the corre-
sponding trapdoor tw, and DO is a decryption oracle, upon a query on ciphertext
c returns the corresponding plaintext, whereas A cannot query w0 or w1 to T O.
We say a PEKS/PKE is IK-CKA/CCA-secure, if for polynomially bounded qt, qd

and T , ε is negligible.

Data Privacy. We say a PEKS/PKE scheme is (ε, qt, qd, T)-IK-CKA/CCA se-
cure, if the advantage of any adversary A with at most qt queries to a trapdoor
generation oracle T O, at most qd queries to a decryption oracle DO, is at most
ε within time T in the following experiment.

Advind-cka/cca
PEKS/PKE,A(k) = |Pr[(pk, sk) ← Kg(1k); (w, m0, m1, s) ← AT O,DO(pk);

b ← {0, 1}; c∗ ← Enc(pk, w, mb); b′ ← AT O,DO(c∗, s) : b′ = b] − 1/2|

Generic Combination of PEKS and Public Key Encryption 167

where T O is a trapdoor oracle, upon a query on keyword w returns the corre-
sponding trapdoor tw, and DO is a decryption oracle, upon a query on ciphertext
c returns the corresponding plaintext, whereas A cannot query c∗ to DO. We
say a PEKS/PKE is IK-CKA/CCA-secure, if for polynomially bounded qt, qd

and T , ε is negligible.

4 A Generic Construction of Secure PEKS/PKE

We need two ingredients for our generic construction, one is an IK-CKA secure
PEKS scheme, and the other is an IND-TK-CCA secure tag-KEM/DEM. The
main idea is to regard the ciphertext of PEKS as a proportion of the tag for
tag-KEM/DEM. The tag-KEM/DEM framework covers almost all the known
PEK schemes (see [2] for details), and can be built flexibly from a variety of
assumptions. Since a tag is a natural component for a tag-KEM/DEM scheme,
the structures of both parts persist. Another advantage of our methodology is
that a tag-KEM/DEM can be easily extended to threshold settings, since the
DEM only require passive security. We give our construction in Figure 1.

Kg(1k)
(pk1, sk1) ← PEKSkg(1k);
(pk2, sk2) ← TKkg(1k);
pk = (pk1, pk2);
sk = (sk1, sk2);
return (pk, sk);

Enc(pk, w, m)
pk = (pk1, pk2);
τ ← PEKSenc(pk1, w);
(dk, η) ← TKkey(pk2);
χ ← DEMenc(dk, m);
λ ← (τ ||χ);
ψ ← TKenc(η, λ);
c ← (τ, ψ, χ);
return c;

Dec(sk, c)
sk = (sk1, sk2);
c = (τ, ψ, χ);
dk ← TKdec(sk2, ψ, τ ||χ);
m ← DEMdec(dk, χ);
return m;

Td(sk, w)
sk = (sk1, sk2);
tw ← PEKStd(sk1, w);
return tw;

Test(tw, c)
c = (τ, ψ, χ);
b ← PEKStest(tw, τ);
return b;

For each algorithm of PEKS/PKE, we require it should ter-
minate and return “⊥” (denoting “abnormal termination”),
if any of its sub-algorithms terminates abnormally.

Fig. 1. Generic Construction of PEKS/PKE

It is easily verified that if both the PEKS and PKE used in the construction
are consistent, the resulting PEKS/PKE is consistent. We focus on the keyword
privacy and data privacy of the construction.

Theorem 1. The construction of PEKS/PKS shown in Figure 1 is IK-CKA/
CCA-secure and IND-CKA/CCA secure, provided that the underlying PEKS

168 R. Zhang and H. Imai

scheme is IK-CKA-secure, the tag-KEM scheme is IK-TK-CCA-secure and the
DEM scheme is semantically secure.

Intuitions. First, notice that a PEKS scheme aims at providing keywords pri-
vacy, while “naturally”, ciphertext χ of the tag-KEM/DEM will not leak infor-
mation of the keywords. By uniqueness property of tag-KEM, ψ is determined
once the public key pk2, the tag λ = (ψ||χ) and internal state η of the tag-KEM
are determined, and will be independent from a keyword w if τ doesn’t leak in-
formation on w. Moreover, because dk only depends on pk2 and internal random
coin-flipping of TKkey, and the algorithm DEMenc is deterministic, we have χ
is also independent from w. Finally, we conclude, if τ doesn’t leak information
on w, neither will ψ and χ. On the other hand, from our construction, τ does
not depend on m, thus leaks no information on m. Additionally, taking τ as a
part of the tag provides integrity guarantee also for τ , i.e., any adversary can-
not gain advantage in obtaining knowledge on a plaintext m by modifying this
part. Otherwise, the adversary breaks indistinguishability of session key for the
tag-KEM. We elaborate the above discussions in two lemmas.

Lemma 1. The construction shown in Figure 1 is (εK + εD, qt, qd, TK + TD)-
IND-CKA/CCA secure, provided that the tag-KEM scheme is (εK , qd, TK)-IK-TK-
CCA-secure and the DEM scheme is (εD, TD)-semantically secure.

Proof. First, notice that τ is independent from mb from the encryption algo-
rithm. Assume there is an IND-CKA/CCA adversary A, we can build an adver-
sary B against IND-TK-CKA/CCA of tag-KEM or semantic security of DEM. A
flips a fair coin, and runs in either of the following modes.

Mode 0 (Adversary against tag-KEM/DEM): A generates a pair of pub-
lic/secret keys for PEKS. Since A has the secret key, trapdoor queries are
handled perfectly. Decryption queries are forwarded to A’s own decryption
oracle and are also handled perfectly. For challenge, after receiving a pair of
plaintext (m0, m1) and a keyword w from B and dkb from its own challenger,
A chooses uniformly β ← {0, 1} and computes τ = PEKSenc(pk1, w), and
computes χ ← DEMenc(dkb, mβ), where b ← {0, 1}. A then sets λ = (τ, χ)
as the tag to its challenger. After receiving its challenge ψ, A gives B the
challenge c = (τ, ψ, χ). When B outputs a guess on β, A checks whether this
equals to β. A outputs 1 if yes and otherwise, 0. It is easily verified when dkb

is the real session key, then the challenge for B is valid and A will succeed
at least the probability as B. If dkb is a random session key, β is perfectly
hiding from B, and B’s probability in guessing b is exactly 1/2. Summarize
above discussions, we have the success probability of A is at least that of B.

Mode 1 (Adversary against DEM): For setup, A generates a pair of pub-
lic/secret keys for PEKS and tag-KEM. Trapdoor oracle queries and decryp-
tion oracle queries can perfectly simulated, since A has the secret keys. After
receiving a pair of plaintext (m0, m1) and a keyword w from B, A outputs
(m0, m1) to its challenger. After obtains a challenge χ∗ from its challenger,
A computes a ciphertext τ of PEKS and a ciphertext ψ with some random

Generic Combination of PEKS and Public Key Encryption 169

dk ∈ KD from a tag λ = (τ ||ψ). After B stops and outputs a guess, A
also outputs the same bit. Since neither τ or ψ contains information on b,
B can only gain advantage by inferring b from χ. One case to mention is
that if B is able to distinguish ψ is not a valid ciphertext, then the result
of B cannot be utilized and A should abort. However, in this case, we can
construct an attack against the tag-KEM. However, according to our as-
sumption, this happens at most εK . We then have in this case A’s success
probability breaking the DEM is at least that of B plus εK .

Summarizing the above two cases, we see the advantage of A is upper-bounded
by εK + εD and the queries and the running time of A are exactly the same as
the claim. 	

Lemma 2. The construction shown in Figure 1 is (εP , qt, qd, TP)-IK-CKA/CCA-
secure, provided that the PEKS scheme is (εP , qt, TP)-IK-CKA-secure.

Proof Sketch. The proof for the lemma is quite simple and we only give the
sketch. From the algorithms shown in Figure 1, only τ depends on a keyword w,
since the tag-KEM/DEM does not even take w as an input. a PEKS adversary A
generates the public/secret keys (pk2, pk2) for the tag-KEM/DEM scheme and
sets the public key as pk = (pk1, pk2), where pk1 is the public key of its target
PEKS scheme. Since A knows the the secret key of the tag-KEM scheme, all
decryption queries from a PEKS/PKE adversary B can be answered perfectly.
For B’s challenge query, A forwards (w0, w1) to its own trapdoor oracle and
extracts τ∗ from its challenge as the challenge for B, it is easy to verify that τ∗

is a valid challenge for B. Then A’s success probability is exactly the same as B.
This proves our claim. 	

Theorem 1 follows Lemma 1 and Lemma 2 naturally.

5 Applications and Extensions

In this section, we give some possible extensions of our generic construction.
In particular, we show a concrete PEKS/PKE scheme, whose security can be
proven without random oracles.

5.1 A Concrete Instantiation Without Random Oracles

We instantiate our generic construction with an anonymous IBE by Gentry [18],
and the Kurosawa-Desmedt tag-KEM/DEM [20]. The resulting PEKS/PKE is
secure without random oracles. The scheme is given in Figure 2.

The notion of anonymous IBE is reviewed in Appendix A. The consistency
condition is easy verified to be met since it is a straightforward instantiation of
BDOP construction of PEKS (based Gentry IBE) and a secure tag-KEM/DEM
scheme.

170 R. Zhang and H. Imai

Kg(1k)
g, h ← G1;
z ← e(g1, g2);
α ← Zp;
g1 ← gα;
pk1 ← (g, g1, h);
sk1 ← α;
z1, z2 ← G2;
x1, x2, y1, y2 ← Zp;
c ← zx1

1 zx2
2 ;

d ← zy1
1 zy2

2 ;
pk2 ← (c, d, G, F, H);
sk2 ← (x1, x2, y1, y2);
pk ← (pk1, pk2);
sk ← (sk1, sk2);
return (pk, sk);

Dec(sk, c)
c = (c1, c2), where c1 = (u1, u2, u3)

and c2 = (v1, v2, v3);
f ← v

x1+y1H(v1,v2)
1 v

x1+y1H(v1,v2)
2 ;

(K1, K2) ← F (K);
if v4 �= Mac(K1, v3||c1);

return “⊥”;
m ← v3 ⊕ G(K2);
return m;

Enc(pk,w, m)
s1, s2 ← Zp;
u1 ← gs1

1 g−s1w;
u2 ← e(g, g)s1 ;
u3 ← H(e(g,h)−s1);
c1 ← (u1, u2, u3);
v1 ← zs2

1 ;
v2 ← zs2

2 ;
K ← cs2ds2H(u1,u2);
(K1, K2) ← F (K);
v3 ← G(K2) ⊕ m;
v4 ← Mac(K2, v3||c1);
c ← (c1, c2);
return c;

Td(sk, w)
rw ← Zp;
dw ← hgrw ;
tw ← (rw, dw);
return tw;

Test(tw, c)
c = (c1, c2), where c1 = (u1, u2, u3)

and c2 = (v1, v2, v3);
if u3 = H(e(u1, dw)urw

2);
return 1;

otherwise
return 0;

‡ Let e : G1 × G1 → G2 be a bilinear group pair with prime order p. MAC =
(Mac, Vrfy) is a message authentication code. F is a key derivition function
(KDF) [27], G is a pseudorandom generator and H is a collision resistant hash
function. Without further descriptions, we simply assume the input domain
and output domain match.

Fig. 2. A Concrete Instantiation without Random Oracles

Theorem 2. The PEKS/PKE scheme shown in Figure 2 is IND-IK-CKA/CCA-
secure, provided that the Kurosawa-Desmedt tag-KEM/DEM is secure and the
Gentry IBE is anonymous.

The above proof is easily derived from Theorem 1 and known results [2,18].

Performance. Though our scheme relies on the DADHE assumption that seems
strong, however, the scheme is quite efficient in of key size and computation cost.
Note that the previous schemes have to adopt a large key size to compensate
security loss due to loose security reductions. Moreover, our scheme needs no
Map-to-Point computations [8], and it can be further optimized with a trick
mentioned in [17] and pre-computations. Consider all these and the fact that
our scheme is without random oracles, we conclude our scheme is efficient.

Generic Combination of PEKS and Public Key Encryption 171

PEKS/PKE without MACs. Our instantiation of tag-KEM/DEM is based
on Kurosawa-Desmedt, where a MAC is inevitable. One can use other tag-KEM
schemes, e.g., Cramer-Shoup tag-KEM [14,2], or OAEP+ [26,2], such that the
MAC is not explicitly needed.

5.2 Other Extensions

PEKS/PKE from General Assumptions. Our generic construction has im-
plicitly assumed an exponential keyword space, thus the constructions of PEKS
is restricted to anonymous IBE schemes. In fact, it is possible to base the PEKS
on general assumptions, e.g., existence of trapdoor one-way functions, with re-
laxation to a polynomial keywords space [7].

Randomness Reuse. We have required that the encryption algorithms of
PEKS and PKE choose independent randomness in our generic construction,
however, one can actually reuse the randomness without harming the security
of the scheme. The technique is standard, and the details are omitted here due
to space limitation.

PEKS/PKE with Threshold Decryption. Since a tag-KEM can be easily
extended to the threshold setting, it is natural to follow the strategy of [2] to
have non-interactive threshold decryption for PEKS/PKE.

Multi-Keyword and Multi-Receiver PEKS/PKE. PEKS/PKE with
multi-keywords and multi-receivers have been considered in [3]. We remark the
same problem of keyword privacy occurs when considering the ciphertext of PKE
leaks information on keyword. It is not hard to generate all our above discus-
sions to these settings. The techniques are quite standard, and again, we omit
the details here.

Acknowledgement

We thank the anonymous referees of CANS’07 for many helpful comments.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Pallier, P., Shi, H.: Searchable Encryptino Revisited: Consist-
necy Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for
Hybrid Encryption. Cryptology ePrint Archive (2005),
http://eprint.iacr.org/2005/027/

3. Baek, J., Safavi-Naini, R., Susilo, W.: On the Integration of Public Key Data
Encryption and Public Key Encryption with Keyword Search. In: Katsikas, S.K.,
Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176,
pp. 217–232. Springer, Heidelberg (2006)

http://eprint.iacr.org/2005/027/

172 R. Zhang and H. Imai

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

10. Boyen, X., Waters, B.: Anonymous Hierarchical Identity Based Encryption (with-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

11. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
In: STOC 1998, pp. 557–594. ACM, New York (1998), Full version available at
http://eprint.iacr.org/1998/011.pdf

12. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

13. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues.
In: Honary, B. (ed.) Cryptography and Coding. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

14. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. In: STOC 1991, pp.
542–552. ACM, New York (1991)

16. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEE Transactions on Information Theory 31(4), 469–472 (1985)

17. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and
Desmedt. Eprint Report 2004/194 (2004), Available at
http://eprint.iacr.org/2004/194

18. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

19. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

20. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

21. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

http://eprint.iacr.org/1998/011.pdf
http://eprint.iacr.org/2004/194

Generic Combination of PEKS and Public Key Encryption 173

22. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer, Heidelberg (2001)

23. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

24. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: FOCS 1999, pp. 543–553. IEEE Computer Society, Los
Alamitos (1999)

25. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

26. Shoup, V.: OAEP Reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 239–259. Springer, Heidelberg (2001)

27. Shoup, V.: ISO 18033-2: An Emerging Standard for Public-Key Encryption (com-
mittee draft) (June 2004), Available at http://shoup.net/iso/

28. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

A Identity Based Encryption

An identity based encryption (IBE) can be regarded as a special public key
encryption, where the receiver’s public key can be any string. Compared with
traditional public key encryption, an IBE scheme is equipped with an additional
extraction algorithm, with a master secret key and an identity as input, outputs
a secret key that is capable to decrypt ciphertext corresponding to this iden-
tity. An IBE scheme consists of four algorithms IBE = (IBEkg, IBEext, IBEenc,
IBEdec).

IBEkg: a randomized algorithm, taking a security parameter k as the input,
outputs a public parameter params and a master secret key msk, denoted
as (params, msk) ← TBEkg(1k).

IBEext: a possibly randomized algorithm, takes inputs of params, msk and an
identity id, outputs a secret key skid for id, denoted as skid ← IBEext
(params, msk, id), in brief skid ← IBEext(msk, id).

IBEext: a possibly randomized algorithm, taking params, an identity id and a
plaintext m taken from the message space as input, with internal coin flipping
r, outputs a ciphertext c, which is denoted as c ← IBEenc(params, id, m, r),
in brief c ← IBEenc(params, id, m).

IBEdec: a deterministic algorithm, taking a secret key skid, an identity id and a
ciphertext c as input, outputs a plaintext m, or a special symbol “⊥”, which
is denoted m ← IBEdec(skid, id, c).

We require for all (params, msk) ← IBEkg(1k), skid ← IBEext(msk, id) and all
m, we have IBEdec(skid, id, IBEenc(params, id, m)) = m.

http://shoup.net/iso/

174 R. Zhang and H. Imai

Anonymity. We consider anonymity of receiver against adaptively chosen-ID
and chosen plaintext attack (AONT-ID-CPA) [1]. We say an identity based en-
cryption is (ε, q, T)-IND-sID-CPA-secure if the advantage of any adversary A is
at most ε, with access q times to an extraction oracle EO within time T in the
following experiment.

Advaont-id-cpa
IBE,A (k) = Pr[(params, msk) ← IBEkg(1k);

(id0, id1, m, s) ← AEO(params); b ← {0, 1};

c∗ ← IBEenc(params, idb, m); b′ ← AEO(c∗, s) : b′ = b] − 1/2

where EO returns the corresponding secret key on a query on identity id, whereas
A is forbidden to query (id0, id1) at EO. We say an IBE is AONT-ID-CPA-Secure,
if for polynomially bounded q and T , ε is negligible.

	Generic Combination of Public Key Encryption with Keyword Search and Public Key Encryption
	Introduction
	Our Contributions
	Related Work

	Preliminary
	Public Key Encryption
	Tag-KEM/DEM
	PEKS
	Bilinear Groups

	Our Model of PEKS/PKE
	PEKS/PKE
	Security Notions

	A Generic Construction of Secure PEKS/PKE
	Applications and Extensions
	A Concrete Instantiation Without Random Oracles
	Other Extensions

	Identity Based Encryption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

