Running on Karma —
P2P Reputation and Currency Systems

Sherman S.M. Chow

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University, NY 10012, USA

schow@cs.nyu.edu

Abstract. Peer-to-peer (P2P) systems allow users to share resources
with little centralized control. Malicious users can abuse the system by
contributing polluted resources. Moreover, selfish users may just connect
for their own benefits without donating any resources. The concepts of
reputation and currency give possible approaches to address these prob-
lems. However, to implement these ideas is non-trivial, due to the non-
existence of a single trusted party. Existing works circumvent this by
placing trust assumption on certain nodes of an overlay network. This
work presents a new reputation system and a new currency system. Our
designs are simple thanks to the full use of the trust assumption.

Keywords: Decentralized systems, peer-to-peer, reputation, currency,
micropayments, free riding, Byzantine agreement.

1 Introduction

In a peer-to-peer (P2P) network, every user is playing the roles of server and
client simultaneously, i.e. there is a minimum central control. The last decade
demonstrated many successful applications of the P2P computing model. The
most popular one may be P2P file sharing, such as BitTorrent [5], Gnutella [12],
etc. Thanks to the network’s flat structure, P2P systems scale very well with the
number of nodes. However, the lack of centralized control makes P2P systems
suffer from many security problems.

Since every user can play the role of the “server” and share their resources
(e.g. music files) to others, malicious users can abuse the system by contributing
polluted resources. On the other hand, P2P systems suffer from the “free rider”
problem, which means users only connect to the network for the resources they
want, but not contribute any resources. A traffic study has shown that 70% of
Gnutella network’s users (at the time of the study) are not donating any file at
all [1].

You will not ask for a file from someone who is notorious in polluting the
network. This is where a reputation system comes to play. Generally speaking, a
reputation system establishes trust among members of a community where each
member does not have prior knowledge of each other, by integrating feedback
from the peers to conjecture the trustworthiness of other peers.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 146 2007.
© Springer-Verlag Berlin Heidelberg 2007

Running on Karma — P2P Reputation and Currency Systems 147

To fight against free riders, a natural solution is to offer users some “tokens”
for their contributions, which enables them to retrieve their wanted resources at a
later stage. Old approaches realize this concept in the software level. For example,
KaZaA uses a measure of participation level [I7], defined by upload/download
ratio and the integrity rating, to prioritize among peers during periods of high
demand. The participation level is stored locally. As one may expect, cracking
tools are available. What we need is some kind of currency or barter that is
transferable for exchanging resources, i.e. an electronic currency system over
P2P networks.

1.1 Owur Contribution

Putting a reputation system or an electronic currency system over P2P net-
works is non-trivial, due to the non-existence of a trusted party. Existing works
circumvent this by placing a trust assumption on certain nodes of an overlay
network. However, these solutions are rather inefficient, in terms of bandwidth
or computational requirements.

Since we place trust on some nodes in the network anyway, why don’t we
fully utilize this trust assumption to avoid unnecessary operations? This work
tries to make full use of these trusted nodes, to propose two simple and efficient
systems.

1. Simple P2P Reputation System from Byzantine Agreement (SPRBA): Cur-
rent approaches either require cryptographic schemes that cannot be realized
in a P2P network (e.g. [9]), or require contacting with every online node to
get responses about one’s behavior history (e.g. [6]). The latter approach is
expensive in terms of storage capacity and bandwidth. Moreover, it is dif-
ficult to enforce security in a large-scale dynamic system. In the face of a
sybil attack that returns many negative comments, the security of the sys-
tem depends on whether most of the responding nodes are trustworthy. On
the other hand, SPRBA just places trust on a smaller set of nodes that are
determined by a cryptographic hash function.

2. Simplified Karma (Karma™): Off-line Karma [§] is a completely decentral-
ized currency system for dynamic P2P networks. Extensive use of digital
signatures is used to certify the transfer of electronic coins (e-coins), which
means that the size of a e-coin will eventually get hugeﬂ. To resolve this issue,
it is assumed that a set of nodes in the overlay network chosen by a crypto-
graphic hash function will reduce the coin size by re-issuing signatures. Since
the new signatures certify the current ownership of the coin, these re-issuing
nodes are assumed trustworthy. If such an assumption is made, why don’t
we just assume these nodes to take the role of a “bank”? This gives the
underlying idea of our proposed Karma™.

! Even an aggregate signature scheme [3] is used; the messages being signed must be
stored, which makes the coin bulky.

148 S.S.M. Chow

2 System Model

2.1 Reputation System

Our system only cares about the retrieval, casting and maintenance of the votes.
Issues like how the reputation is modeled (e.g. [10]) and assessed (e.g. [I1]), and
whether a bad vote is cast even the resource is good, are beyond the scope of
this work.

Our general mechanism is as follows. Before initiating the download, re-
questors can assess the reliability of the sources by polling peers (vote main-
tainers, or VM). After the transfer, the requestors now take the role of voters,
returning their opinions to the peers for later retrieval by others. We also discuss
how these votes are maintained in face of offline VMs.

Apart from the obvious constraint of no centralized control, our system should
satisfy the following properties.

1. Scalability. Transaction cost should be independent of the size of the network.
For example, our system would not flood the whole network.

2. Load balance. The overhead incurred by our system should be evenly dis-
tributed over the nodes, on average.

3. Robustness. Our system should be robust against denial-of-service attack.
For example, the adversary cannot manipulate the protocol messages to turn
the internal state distributively held by different nodes into an inconsistent
state.

2.2 Currency System

There are only three components in our currency system: minting, spending and
double-spending detection. Users first mint their own e-coins. In spending, the
ownership of a coin is transferred. When a coin is spent, the receiver should check
whether the coin has been double-spent. It is possible to come up with a proof
when some user double-spends his coin. In additional to the above properties for
a P2P reputation system, the objectives of our e-coin system are:

1. Efficient verification. It is efficient to verify the validity of the coin (e.g.
whether it has been double-spent). This also implies the e-coin size should
be small.

2. Oblivious transaction history. The transaction history related to the coin
should not be included in the coin.

Other issues, like coin stripping and the fair exchange of coins and resources,
are outside our scope. We note that double-spending prevention is generally not
possible for an offline currency system, without tamper-proof hardware.

2.3 Overlay Network

This work assumes the existence of an underlying overlay network that provides
primitives for both user look-up and message routing. In such a network, every

Running on Karma — P2P Reputation and Currency Systems 149

node is assigned a uniform random identifier v € U from an identifier space,
and one can always efficiently and reliably compute the neighbor set X(u), which
consists of all currently online nodes close to an identifier u. The exact definition
of “close” depends on the actual overlay network one is using, but it is one of the
essential and well-defined components of overlay network. Readers are suggested
to refer routing overlays like CAN [13], Chord [15], Pastry [14] and Tapestry
[16], as reviewed in [4].

We assume an ideal situation for the updating of routing information, where
the overlay network instantaneously detects any change in the network topol-
ogy. This depends on how well the underlying overlay network emulates this
ideal functionality by a discrete approximation from constantly fingering to see
whether a joined node has left. We also assume joining and leaving are atomic
operations.

Finally, we assume that the overlay network has a blacklist mechanism. When-
ever a fraud is detected, a user can somehow submit a proof of it to the overlay
network and a blacklist will then be safely distributed.

In the rest of the paper, we use a cryptographic hash function h : {0,1}* — U
to map an arbitrary bit-string to an element in the identifier space U of the
overlay network. We use the notation of R*(y) = X(h(y)) to denote the “neighbor
set” corresponding to the bit-string y.

2.4 Certificate Authority

In Karma™, we assume every user has his/her own public key and private key
pair (PK, SK) along with a certificate certifying the binding between the public
key and a node identifier. A certificate authority (CA) is only needed when a new
user joins the system, and no other communication with the CA is needed. We
require the CA to perform any task that substantiates the assumption required
in the unforgeability of the underlying signature scheme, e.g. the knowledge of
secret key assumption. No CA is required in SPRBA.

2.5 Threat Model

Our basic threat model assumes the network has a total of n users, and at most
t of which are under the adversary’s control.

For an overlay network, one can actually make a distinction between adding
a user to the network and compromising an existing user. Let ¢ (0 < ¢ <) be
an integer denoting the number of users corrupted by the adversary after they
join the overlay network. An adversary who can compromise whoever he wishes
means ¢ = t, while ¢ = 0 means all he can do is injecting random users. We also
assume the adversary cannot make excessively many nodes to join the system.
In practice, this can be done by requiring a node to compute a time-intensive
operation (e.g. [7]) for each joining. Looking ahead, this is also the way an e-coin
is minted in Karma™.

150 S.S.M. Chow

3 Related Work

3.1 A Reputocracy System

A “reputocracy” system is presented in [9], which is a reputation system based
on electronic voting from homomorphic encryption and storage enforcement pro-
tocols. The votes are for the resource requesters to make comments which affect
the reputation of a resource contributor. The enforcement protocol is for show-
ing a file of a certain complexity has been transmitted. We discuss this work to
exemplify that some required cryptographic schemes cannot be easily deployed
in a P2P setting.

Reputation is maintained by the votes that one receives. These votes are stored
by the nodes responsible for tallying, which are called the tallying center. The
tallying center of a node is determined by some globally-known hash function,
i.e. different nodes will have different tallying centers, instead of a single global
one. After a file transfer is done, the tallying center uses the storage enforcement
protocol to get the cost of the communication $ > 0. Then, the requester will
cast an encrypted vote that is either +$ or —$, depending on whether he/she is
satisfied with the file obtained. A zero-knowledge proof of the vote is either +$
or —$ is prepared. The tallying center has no idea whether a vote is good.

Problems: Note that only a single node is assigned as the vote maintainer,
thus attack is relatively easy. Besides, it is not specified that who is responsible
for the decryption of the tally. A natural choice is the tallying center, but it
is meaningless to have the zero-knowledge proof in this case since he/she can
decrypt anyway. Moreover, to the best of our knowledge, e-voting systems require
the use of a bulletin board, even for those that are “self-tallying”. Such a bulletin
board is essentially a public-broadcast channel with memory, which is costly, if
not unavailable, in a P2P network.

3.2 P2PRep

P2PRep [6] is a reputation system enabled by a peer review process. Each node
keeps track of and shares with others the information about the reputation of
their peers. Reputation sharing is based on a distributed polling protocol. After
locating a list of servants who owns the wanted resources, the requester polls
his/her peers about the reputation of servants in this list. Peers wishing to re-
spond send back a reply, then the requestor selects a subset of them and contacts
them directly. Their replies are integrated to make a decision. Additional mecha-
nism can be added to poll for servant credibility, representing the trustworthiness
of a servant in providing correct votes.

Problems: The requesters just ask around about one’s reputation, and these
broadcast messages occupy the network bandwidth significantly. Moreover, one’s
reputation depends on whether the peers in the previous transaction remain
online. In the face of the free rider problem, this reliance is not desirable.
Regarding security, no mechanism is controlling who can respond. It is entirely
possible that a whole bunch of malicious nodes respond with negative comments.

Running on Karma — P2P Reputation and Currency Systems 151

The suggested solution in [6] is to have “suspects identification”, by computing
cluster of voters whose characteristics suggest that they may have been created
by a single malicious user. However, it depends on how good the clustering
algorithm distinguishes between “consistent votes for bad behavior from many
users” and “forged votes from a single malicious user”. Even such an algorithm
exists, it is implemented in the software level. Nothing prevents the adversary
from re-engineering the algorithm and tailor-making bad votes accordingly.

3.3 Off-Line Karma

Off-line Karma [§] is a decentralized electronic currency system. A coin is minted
by finding a collision of a hash function (of “small” output domain size) [2] with
hash input including the owner of the coin, a serial number and the current
time. At the very beginning, a user finds collisions and prepares a list of coins.
Specifically, the user needs to find a y such that H(Ul|snl||ts) = H'(y), where
H(:) and H'(-) are two different hash functions, U is his node identifier, sn is a
serial number and ts is a time stamp.

Transfer of a coin (i.e. spending) is done by a chain of signing. Suppose y
is a coin corresponding to node A (i.e. H'(y) = H(A||sn'||ts’) for some serial
number sn’ and time stamp ts’), A gives it to another node B by signing on
(y,A — B,za) where z4 is a random nonce. B spends this coin with Ug by
signing on (y, B — C, zp). Everyone can verify that C' is the current owner of
the coin since it is originally owned by A, A has certified the transfer A — B
and B has certified B — C.

As a result of a series of spending, the coin size will get huge eventually. To
slim it, re-minting is done. Re-minting party is the neighbor set of the coin X(y)
(i.e. treating the coin as a user) of the overlay network. All of them sign on y
and the current time to certify the current ownership.

The timestamp associated with a coin also serves as an expiry time. Re-
minting must be done before expiration. Double-spending is detected in re-
minting. The nodes in the set X*(y) will check whether there exists two different
signatures signed by the same party. A random nonce is introduced to avoid the
uncertainty about who is the traitor when a user spends the same coin twice
with the same user.

Problems: Before re-minting, the coin size is large. One needs to do a series
of signature verifications to verify the current ownership of a coin. Yet, these
computations do not help double-spending detection at all. A shorter time frame
can make the re-minting happen more often, but keep in mind that one needs
to contact every node in X*(y) for re-minting. On one hand, the coin may expire
before every such node can be reached. On the other hand, it gives a higher
computational burden (to verify all signatures associated with the coin and issue
a new one) to these nodes.

Double-spending can only be detected at the stage of re-minting, but not when
the coin is spent. To make the double-spending detection “happens earlier”, the
suggested solution in [] is to ask each user to spend a coin that is the nearest (in
the context of neighbor set) to the one whom he wants to initiate a transaction.

152 S.S.M. Chow

However, a malicious user who wants to double-spend a coin can do anything
deviated from the protocol. Only having good users following such a suggestion
is clearly not sufficient to make double-spending detection any earlier.

Finally, the transaction history is included in every coin, which violates the
requirement of oblivious transaction history and is undesirable.

4 SPRBA - Simple P2P Reputation System from
Byzantine Agreement

The main components of our proposed SPRBA are as follows.

4.1 Retrieval

Suppose A is the requestor and B is a candidate who owns some resources A
wants. A performs the following:

1. A computes R*(B) to get the VM groups maintaining B’s reputation,

2. A sends an enquiry to each node in N*(B) for B’s reputation.

3. A makes a decision according to the information received (e.g. taking the
majority).

Suppose a node C'is being asked for B’s reputation, C first performs a (one-
time) verification to confirm his/her membership in the set 8*(B). If C' has no
record about B, he/she just returns so. From this point, C knows the list of VMs
for B, which will be used in the maintenance phase.

4.2 Casting

After the file transfer, A now wants to cast a vote about B. The voting infor-
mation will include his/her identity A, the current time ts and other auxiliary
information (e.g. the name of the file being transferred). What A needs to do is
just broadcasting his/her vote to X*(B). The consistency functionality we want
from the broadcast is ensured by a Byzantine agreement protocol among the
nodes in X*(B).

4.3 Maintenance

VMs may go offline. When they go online next time, they should catch up
with other VMs. The first retrieval request gives the list of the “partners” in
maintaining the reputation of someone. Synchronization is done by identifying
which vote is missing in one’s own record but exists in a threshold portion of
the partners.

4.4 Analysis

Our system is scalable in the sense that no flooding of the whole network is
needed to retrieve one’s reputation. Due to the uniformity of the hash function’s

Running on Karma — P2P Reputation and Currency Systems 153

output, the incurred computational burden and the storage load are uniformly
distributed across the network. Thus load balance is achieved.

There is a subtle difference between a resource requestor retrieving the reputa-
tion and VMs retrieving the reputation. For the former case, it just affects the one-
time decision of whether a transaction should be carried. On the other hand, VMs
do it for updating their own record to truly reflect the reputation of those nodes
they are responsible for, which affects all the future reputation requests. Consider
a malicious voter who sends different votes to different VMs, VMs who were offline
before have no idea which vote is the “real” one during synchronization. Eventu-
ally, nothing useful can be inferred from the votes maintained distributively across
the VMs. This is why Byzantine agreement is needed for each vote.

Byzantine agreement is a rather costly procedure, so we should keep the size of
the VM group N*(B) as small as possible. However, this parameter also governs
the probability for the adversary to succeed in biasing the reputation.

Suppose 7 denotes the number of nodes output by X*(B), f denotes the per-
centage of malicious nodes in this set of » nodes (0 < f < 1). Under the basic
threat model that the adversary can only inject random nodes to the network;
if 50% majority is the rule to make a decision, the probability for an adversary
to succeed, i.e. having more than a half of nodes under his control, is given by

I/Q(f(l — f))"/2. Depending on the actual scenario, says the security level we
want, we should tune r accordingly.

5 Karma®™ — Simple Offline Electronic Currency System

Utilizing SPRBA, we can actually realize a simple electronic currency system.
Instead of having the node-group chosen by the function 8*(-) to manage the
reputation of a node, we require the node-group to certify the current ownership
of a coin. However, different from the reputation system that every node can
cast a vote, there is only one node that can “change” the current ownership
of a coin — the coin owner. We thus require cryptographic primitives providing
authentication and non-repudiation to make it possible, i.e. digital signature
schemes.

If signatures are used, Byzantine agreement is not necessary in our case since
the recipient of the coin will actively check whether he/she is the new owner of
the coin, and signatures signing on different messages can be used as a proof of
misbehavior.

With these ideas in mind, our system turns out to be a simplified version
of Off-line karma. We assume all nodes in the P2P network get the same set
of system parameters, e.g. the maximum number of coins one can mint, the
description of the hash function, and the signature scheme to be used, etc. The
main components of our proposed SPRBA are as follows.

5.1 Minting

Minting of a coin involves finding a hash function collision [2] similar as that in
Off-line Karma [§].

154 S.S.M. Chow

The user needs to find a p + ¢-long bit-string y € {0,1}#*+9 such that]
H(x) = H'(y), for x = (Ul||sn), where U is his node identifier of length p, sn
is a bit string denoting a coin’s serial number of length |sn| = ¢. This length
restriction, together with the logic governing how the nodes managing this coin
is determined, limits every user to mint up to 29 karma coins.

The node identifier and the serial number uniquely determine the coin. The
coin is defined as (z,y). For brevity, we call it “coin y”. In contrast to Off-line
Karma, a coin does not include the timestamp denoting the minting time.

5.2 Spending

We start by the case that a newly-minted coin is spent, followed by the case that
a coin is spent by the one who did not mint it.

Suppose node A is spending a coin (x,y) minted by him/her with another
node B. A sends y to each node in ®*(y) and notifies them B is now the coin
owner of y by signing y together with a current timestamp ts.

The current owner of coin y is determined by the record held by the node-
group X*(y). We can view the node-group X*(y) is performing the bank function
of the coin y. They will keep track of the current coin ownership. We call these
nodes the “bank-nodes”.

Even though a bank-node obtains the collision pair from someone else and is
the authority to say who is the current owner of the coin. It is not true that a
bank-node of a coin cannot be the initial owner of a coin, (when he/she is lucky
enough to mint a coin y having the node-group N*(y) including him/herself).
The reason is that the minting node is specified in the z component of the coin.
No other node would mint a coin on other’s behalf. Even a malicious bank-node
claims the ownership of a coin after obtained a collision pair (z,y) from some
other node is not convincing since the node identifier in & does not match.

Each bank-node needs to check whether « is in the correct form (i.e. including
A’s identifier and a bit-string sn of length q), (z,y) really gives a collision, and
A gives a signature that signs on the coin, the recipient’s node identifier, and a
recent enough timestamp, i.e. (y||B||ts). If all the verifications go through, the
coin (x,y) is then sent to B. B is convinced he/she is the new owner if responses
from a threshold number of bank-nodes are obtained.

In the second case, the spender is not the original owner. Suppose B is the
spender and C'is the “merchant” that B is dealing with. B signs on the coin
with the recipient C’s identifier and a new timestamp, and gives the coin to C.
C' contacts each bank-node in ®*(y) to see whether B is the current owner of the
coin. Specifically, this is done by taking the latest ownership status purported
by ®*(y) as the current ownership status of the coin.

2 Instead of using two different hash functions, one can actually use a single hash
function by appending x with a bit 0 and y with a bit 1. Otherwise, an attack
exploiting the symmetry is possible so that a single coin can be interpreted in two
ways corresponding to different minting-node.

Running on Karma — P2P Reputation and Currency Systems 155

5.3 Maintaining the Current Ownership

In a dynamic P2P network, the bank-nodes of a coin may not be online at
the same time. Each of them should keep the signatures certifying the transfer
of ownership, until a threshold number of the bank-nodes got the same set of
signatures and update their own records. In this way, the storage requirement
on the bank-node is minimized. The latest ownership can be easily identified
since the signature is binding with a timestamp. It can be considered as a hybrid
approach that combines a pure-updating of the coin ownership and the signature
chain approach used in Off-line Karma.

5.4 Double-Spending Detection

Double spending means the current owner of a coin spends it at two different
users. To do so, the double-spender must have signed on two different messages
specifying different recipients, which give a cryptographic evidence of the mis-
behavior.

On the other hand, someone who wants to “spend” the coin once he/she
owned will not be treated as a double-spending. It will be treated as just an
invalid request instead since it is essentially the same thing as having a random
node claiming for the ownership of someone else’s coin. Depending on the level
of service one desires, the signature can also be submitted to the blacklist mech-
anism of the network to impose a certain kind of penalty on the one making the
invalid request.

On the other hand, a bank-node may be malicious in falsely-accusing someone
has double-spent. An accusation thus requires a signature by a bank-node on a
message stating the current owner as well. If any abnormality is observed, one
can simply forward the signature to all other bank-nodes for further investigation
of whether a bank-node is being malicious or just not-up-to-date.

5.5 Efficiency Analysis

Load balancing follows from the uniform distribution of the hash output. Scala-
bility can be seen from the simple design of our system. We require no flooding
of the network and no complex operations other than minting of the coin. The
complexity involved in minting a coin is actually a good thing to hinder the
extent of sybil attack.

No heavy cryptographic operations are involved other than signature genera-
tion and verification. The current state-of-art signatures offer a short signature
size that makes the protocol bandwidth-efficient. In contrast with Off-line Karma
[]], each node only needs to verify a single signature instead of a series of them.

The storage and complexity requirements of the bank-nodes are minimal. Each
node needs to sign every time the current owner of the coin is about to change,
but it can always be pre-computed. Besides, the message to be signed is short,
in contrast with the signature on the huge coin in Off-line Karma. It is true
that the bank-node needs to perform signature verification every time the coin
ownership is changed. The total number of signature verification is the same as

156 S.S.M. Chow

that in the re-minting phase in Off-line Karma. However, the computational cost
is amortized in our case.

5.6 Security Analysis

It is easy to see that aslong as there exists one honest node with up-to-date informa-
tion among the bank-nodes, security is guaranteed. Here we assume the extended
threat model that ¢ nodes are controlled by the adversary and c¢ of them are cor-
rupted after they joined the overlay network (i.e. after they became the bank-nodes
of a certain coin). Our analysis is similar to that of Off-line Karma [§].

Theorem 1. Let r be the size of the bank-node set X*(y) of a coiny. If r > vs+c
for some constant v, the probability that N*(y) contains no honest nodes is less
than 27°.

Proof. By assumption, the adversary can compromise ¢ nodes in the set N*(y).
All we need to show the probability that the remaining r — ¢ nodes happen to be
taken from the remaining ¢ — ¢ corrupted nodes to be included in the set X*(y).
Let X be the random variable of the number of honest nodes in the set R*(y),
we have

Pr[X = 0] = g:;_
_ (@ _46)!/((7“—0)!(15—70)!)
(n—=ao)l/((r—c)l(n—r)!)
T

Since we want to upper-bound the success probability of the adversary by
27%, note that '~¢ <1, we have
t—c
(r—c) < 978
(,_)
r-ezlogi g/
r2 _S(log(t—c)/(n—c) 2) +c

Setting v = —(10g(;—¢)/(n—¢) 2) completes the proof.

5.7 Improvements over Off-Line Karma

Apart from the efficiency gain like smaller coin size as revealed in the previous
analysis sections, Karma™ enjoys the following features over Off-line Karma.

No Coin Expiration. Timestamp is used in Off-line Karma for expiring the
coin, and it forces the re-minting and let the re-minting party to have a chance
to do double-spending detection. In Karma™, a coin would not expire so the
situation that a coin cannot be re-minted before its expiration is avoided. Besides,
Karma™ detects double-spending in every transaction, but not well after the coin
is double-spent as in Off-line Karma.

Running on Karma — P2P Reputation and Currency Systems 157

Limit on the Maximum Number of Minting. Off-line Karma aims to
limiting the number of coin one can mint by imposing a maximum length on the
serial numbers. It is claimed that (U, sn) uniquely determines a coin. However,
in addition to the owner identifier U and the serial number sn , time stamp ts is
another varying factor. Note that the bank-node group N*(U||sn||ts) is unlikely
to contain a node that also appears in X*(Ul||sn||ts’) for a timestamp ts’ # ts. It
is difficult to discover two coins in the world are actually sharing the same U and
sn. The number of coin one can mint is thus limited within a time period, and
depends on the granularity of the time periods. However, the time-complexity
of finding a collision already imposes an inherent limit on the number of coins
one can mint at a given time.

Since the expiration mechanism is not necessary in our system, we can remove
the inclusion of the timestamp in finding a collision pair, which means (U, sn)
really serves as a unique identifier of a coin. In this way, we pose a limit on the
maximum number of coins one can mint.

Higher Security in a Dynamic Network. Karma™ works better in the case
of dynamic network when compared with Off-line Karma [§]. The security of Off-
line Karma depends on the nodes that are responsible for re-minting at the re-
minting time, since the re-minting of the coin is done by asking all those nodes to
give signatures to certify the new ownership of the coin. One has no information
about the state of the network at that time, so an adversary may have unfairly
constructed a re-mint set with only nodes that are under his control, giving
signatures certifying himself, and claiming all other nodes were offline at that
time. Karma™ does not have this problem, since it is the verifier who computes
this set and contacts the nodes according to the protocol for his own good.

6 Conclusion

We have presented two completely decentralized systems to address the pollu-
tion problem and the free-rider problem in peer-to-peer resources sharing ap-
plications. One is a reputation system and the other is an electronic currency
system. Our systems outperform existing systems of similar functionalities un-
der similar trust assumptions. Our simple design and efficiency gain are obtained
from making full use of the trusted nodes.

Acknowledgements

Thanks to Lakshminarayanan Subramanian for his comments and support. Also
thanks to Joél Alwen, Saurabh Kumar and Ning Ma for the discussions.

References

1. Adar, E., Huberman, B.A.: Free Riding on Gnutella. First Monday 5(10) (October
2000), http://firstmonday.org/issues/issueb 10/adar

2. Back, A.: Hashcash - a Denial of Service Counter Measure,
http://www.hashcash.org/papers/hashcash.pdf

http://firstmonday.org/issues/issue5_10/adar
http://www.hashcash.org/papers/hashcash.pdf

158

3.

10.

11.

12.

13.

14.

15.

16.

17.

S.S.M. Chow

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS,
vol. 2656, pp. 416-432. Springer, Heidelberg (2003)

. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure Rout-

ing for Structured Peer-to-Peer Overlay Networks. SIGOPS Operating Systems
Review 36/SI, 299-314 (2002)

. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Workshop on Economics

of Peer-to-peer Systems (2003)

. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P., Violante,

F.: A Reputation-based Approach for Choosing Reliable Resources in Peer-to-Peer
Networks. Computer and Communications Security 2002 , 207-216 (2002)

. Dwork, C., Goldberg, A., Naor, M.: On Memory-Bound Functions for Fighting

Spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426-444. Springer,
Heidelberg (2003)

. Garcia, F.D., Hoepman, J.-H.: Off-line Karma: A Decentralized Currency for Peer-

to-peer and Grid Applications. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 364-377. Springer, Heidelberg (2005)

. Garcia-Martinez, A., Chuang, J.: A Cryptographic Reputation Scheme for Peer-

to-peer Networks, http://citeseer.ist.psu.edu/550626.html

Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Net-
works. In: NOSSDAV 2003. Network and Operating Systems Support for Digital
Audio and Video, pp. 144-152 (2003)

Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust Algorithm for
Reputation Management in P2P Networks. In: World Wide Web Conference 2003,
pp. 640-651 (2003)

Kirk, P.: Gnutella, http://rfc-gnutella.sourceforge.net

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. Computer Communication Review 31(4), 161-172
Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329-350. Springer, Heidelberg (2001)

Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In: SIGCOMM
2001, pp. 149-160

Zhao, B.Y., Huang, L., Rhea, S.C., Stribling, J., Joseph, A.D., Kubiatowicz,
J.D.: Tapestry: A Global-Scale Overlay for Rapid Service Deployment. IEEE J-
SAC 22(1), 41-53 (2004)

KaZaA.com. The Guide - The Glossary: Participation Level, Available at
http://www.kazaa.com/us/help/glossary/participation ratio.htm

http://citeseer.ist.psu.edu/550626.html
http://rfc-gnutella.sourceforge.net
http://www.kazaa.com/us/help/glossary/participation_ratio.htm

	Running on Karma – P2P Reputation and Currency Systems
	Introduction
	Our Contribution

	System Model
	Reputation System
	Currency System
	Overlay Network
	Certificate Authority
	Threat Model

	Related Work
	A Reputocracy System
	P2PRep
	Off-Line Karma

	SPRBA -- Simple P2P Reputation System from Byzantine Agreement
	Retrieval
	Casting
	Maintenance
	Analysis

	Karma+ -- Simple Offline Electronic Currency System
	Minting
	Spending
	Maintaining the Current Ownership
	Double-Spending Detection
	Efficiency Analysis
	Security Analysis
	Improvements over Off-Line Karma

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

