

Lecture Notes in Computer Science 4856
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Feng Bao San Ling Tatsuaki Okamoto
Huaxiong Wang Chaoping Xing (Eds.)

Cryptology
and Network
Security

6th International Conference, CANS 2007
Singapore, December 8-10, 2007
Proceedings

13

Volume Editors

Feng Bao
Institute for Infocomm Research
Singapore
E-mail: baofeng@i2r.a-star.edu.sg

San Ling
Nanyang Technological University
Singapore
E-mail: lingsan@ntu.edu.sg

Tatsuaki Okamoto
NTT Laboratories
Japan
E-mail: okamoto.tatsuaki@lab.ntt.co.jp

Huaxiong Wang
Nanyang Technological University
Singapore
E-mail: hxwang@ntu.edu.sg

Chaoping Xing
Nanyang Technological University
Singapore
E-mail: matxcp@nus.edu.sg

Library of Congress Control Number: 2007939802

CR Subject Classification (1998): E.3, D.4.6, F.2.1, C.2, J.1, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-76968-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76968-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12196395 06/3180 5 4 3 2 1 0

Preface

The sixth International Conference on Cryptology and Network Security (CANS
2007) was held at the Grand Plaza Park Hotel, Singapore, 8–10 December 2007.
The conference was sponsored by Nanyang Technological University and the Lee
Foundation, Singapore.

The goal of CANS is to promote research on all aspects of cryptology and
network security, as well as to build a bridge between research on cryptography
and network security. The first International Conference on Cryptology and Net-
work Security was held in Taipei, Taiwan, in 2001. The second one was held in
San Francisco, California, USA, on September 26–28, 2002, the third in Miami,
Florida, USA, on September 24–26, 2003, the fourth in Xiamen, Fujian, China,
on December 14–16, 2005 and the fifth in Suzhou, Jiangsu, China, on December
8–10, 2006.

The program committee accepted 17 papers from 68 submissions. The re-
viewing process took nine weeks, each paper was carefully evaluated by at least
three members of the program committee. We appreciate the hard work of the
members of the program committee and the external referees who gave many
hours of their valuable time.

In addition to the contributed papers, there were six invited talks:

– Artur Ekert: Quantum Cryptography
– Christian Kurtsiefer: Aspects of Practical Quantum Key Distribution

Schemes
– Keith Martin: A Bird’s-Eye View of Recent Research in Secret Sharing
– Mitsuru Matsui: The State-of-the-Art Software Optimization of Block

Ciphers and Hash Functions
– Josef Pieprzyk: Analysis of Modern Stream Ciphers
– David Pointcheval: Adaptive Security for Password-Based Authenticated Key

Exchange in the Universal-Composability Framework.

We would like to thank all the people involved in organising this conference.
In particular, we would like to thank the organising committee for their time
and efforts, and Krystian Matusiewicz for his help with LATEX.

December 2007 Feng Bao
San Ling

Tatsuaki Okamoto
Huaxiong Wang
Chaoping Xing

6th International Conference on Cryptology and

Network Security
(CANS 2007)

Sponsored by

Nanyang Technological University, Singapore
Lee Foundation, Singapore

CANS Steering Committee

Yvo Desmedt University College London, UK
Matt Franklin UC, David, USA
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS and ENS, France
Huaxiong Wang Nanyang Technological University, Singapore

General Chairs

San Ling Nanyang Technological University, Singapore
Chaoping Xing National University of Singapore, Singapore

Program Chairs

Feng Bao Institute for Infocomm Research, Singapore
Tatsuaki Okamoto NTT Labs, Japan

Program Committee

Michel Abdalla École Normale Supérieure, France
Colin Boyd QUT, Australia
Mike Burmester Florida State University, USA
Hao Chen Fudan University, China
Liqun Chen HP Bristol Labs, UK
Robert Deng SMU, Singapore
Alex Dent Royal Holloway, UK
Eiichiro Fujisaki NTT Labs, Japan
Jun Furukawa NEC, Japan
David Galindo École Normale Supérieure, France
Aline Gouget Gemalto, France
Amir Herzberg Bar Ilan University, Israel

VIII Organization

Atsuo Inomata JST, Japan
Akinori Kawachi Titech, Japan
Angelos Keromytis Columbia University
Aggelos Kiayias University of Connecticut, USA
Hiroaki Kikuchi Tokai University, Japan
Eike Kiltz CWI, Netherlands
Kwangjo Kim Info. and Comm. University, Korea
Arjen Lenstra EPFL, Switzerland
Peng Chor Leong NTU, Singapore
Javier Lopez University of Malaga, Spain
Mitsuru Matsui Mitsubishi Electric, Japan
Yi Mu University of Wollongong, Australia
Joern Mueller-Quade University of Karlsruhe, Germany
Antonio Nicolosi NYU & Stanford University, USA
Kenny Paterson Royal Holloway, UK
Olivier Pereira UCL, Belgium
Giuseppe Persiano Università di Salerno, Italy
Josef Pieprzyk Macquarie University, Australia
C. Pandu Rangan IIT, India
Frederic Rousseau EADS, France
Rei Safavi-Naini University of Calgary, Canada
Berry Schoenmakers TU Eindhoven, Netherlands
Jorge Villar Universitat Politècnica de Catalunya, Spain
Xiaoyun Wang Shandong University, China
Duncan Wong City University of Hong Kong, China
Sung-Ming Yen National Central University, Taiwan
Yiqun Lisa Yin Security Consultant, USA
Yunlei Zhao Fudan University, China
Jianying Zhou I2R, Singapore

Organising Committee

Huaxiong Wang Nanyang Technological University, Singapore
Eiji Okamoto Tsukuba, Japan
Guat Tin Goh Nanyang Technological University, Singapore
Hwee Jin Soh Nanyang Technological University, Singapore
Sen How Chia Nanyang Technological University, Singapore

External Referees

Frederik Armknecht
Sébastien Canard
Kai Yuen Cheong
Benoit Chevallier-Mames

Scott Contini
Cunsheng Ding
Gerardo Fernandez
Pierre-Alain Fouque

Eiichiro Fujisaki
Steven Galbraith
Clemente Galdi
Paul Hoffman

Organization IX

Qiong Huang
Tetsu Iwata
Shaoquan Jiang
Marcelo Kaihara
Tomi Klein
David Lacour
Byoungcheon Lee
Homin K. Lee
Wei-Chih Lien
Benoit Libert
Krystian Matusiewicz
Cedric Ng

Juan Gonzalez Nieto
Christopher Portmann
Geraint Price
M-R Reyhanitabar
Stefan Röhrich
Ryo Sakaguchi
Siamak F. Shahandashti
Tom Shrimpton
Martijn Stam
Kohtaro Tadaki
Qian Tang
Jheng-Hong Tu

Marion Videau
Nguyen Vo
Martin Vuagnoux
Bo-Ching Wu
Chi-Dian Wu
Qianhong Wu
Chih-Hung Wang
Guomin Yang
Kan Yasuda
Hong-Sheng Zhou

Table of Contents

Signatures

Mutative Identity-Based Signatures or Dynamic Credentials Without
Random Oracles . 1

Fuchun Guo, Yi Mu, and Zhide Chen

A Generic Construction for Universally-Convertible Undeniable
Signatures . 15

Xinyi Huang, Yi Mu, Willy Susilo, and Wei Wu

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 34
Loránd Szőllősi, Tamás Marosits, Gábor Fehér, and András Recski

Efficient ID-Based Digital Signatures with Message Recovery 47
Raylin Tso, Chunxiang Gu, Takeshi Okamoto, and Eiji Okamoto

Network Security

Achieving Mobility and Anonymity in IP-Based Networks 60
Rungrat Wiangsripanawan, Willy Susilo, and Rei Safavi-Naini

Perfectly Secure Message Transmission in Directed Networks Tolerating
Threshold and Non Threshold Adversary . 80

Arpita Patra, Bhavani Shankar, Ashish Choudhary,
K. Srinathan, and C. Pandu Rangan

Forward-Secure Key Evolution in Wireless Sensor Networks 102
Marek Klonowski, Miros�law Kuty�lowski, Micha�l Ren, and
Katarzyna Rybarczyk

A Secure Location Service for Ad Hoc Position-Based Routing Using
Self-signed Locations . 121

Jihwan Lim, Sangjin Kim, and Heekuck Oh

An Intelligent Network-Warning Model with Strong Survivability 133
Bing Yang, Huaping Hu, Xiangwen Duan, and Shiyao Jin

Running on Karma – P2P Reputation and Currency Systems 146
Sherman S.M. Chow

Secure Keyword Search and Private Information
Retrieval

Generic Combination of Public Key Encryption with Keyword Search
and Public Key Encryption . 159

Rui Zhang and Hideki Imai

XII Table of Contents

Extended Private Information Retrieval and Its Application in
Biometrics Authentications . 175

Julien Bringer, Hervé Chabanne, David Pointcheval, and Qiang Tang

Public Key Encryption

Strongly Secure Certificateless Public Key Encryption Without
Pairing . 194

Yinxia Sun, Futai Zhang, and Joonsang Baek

Intrusion Detection

Modeling Protocol Based Packet Header Anomaly Detector for Network
and Host Intrusion Detection Systems . 209

Solahuddin B. Shamsuddin and Michael E. Woodward

Email Security

How to Secure Your Email Address Book and Beyond 228
Erhan J. Kartaltepe, T. Paul Parker, and Shouhuai Xu

Denial of Service Attacks

Toward Non-parallelizable Client Puzzles . 247
Suratose Tritilanunt, Colin Boyd, Ernest Foo, and
Juan Manuel González Nieto

Authentication

Anonymity 2.0 – X.509 Extensions Supporting Privacy-Friendly
Authentication . 265

Vicente Benjumea, Seung Geol Choi, Javier Lopez, and Moti Yung

Author Index . 283

Mutative Identity-Based Signatures or Dynamic

Credentials Without Random Oracles

Fuchun Guo1, Yi Mu2,�, and Zhide Chen1,��

1 Key Lab of Network Security and Cryptology
School of Mathematics and Computer Science

Fujian Normal University, Fuzhou, China
fuchunguo1982@gmail.com,
zhidechen@fjnu.edu.cn

2 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong NSW 2522, Australia
ymu@uow.edu.au

Abstract. We introduce a new identity-based signature scheme that
possesses the feature of mutability in terms of its mutable signer identity.
We name this new signature scheme Mutative Identity-Based Signature
(MIBS). The merit of this proposed scheme lies in the novel property on
protection of private information such as birthdate, social security num-
ber, credit card number, etc. that have to be employed as part of a user
identity served as a public key. In MIBS, we allow all these private in-
formation to serve as a user identity, while only one of these information
(along with the user name, as non-secret part of a user identity) is re-
vealed to the verifier. For example, when using a signature to a legitimate
merchant, only the credit card number and the user name are revealed
without leaking other private information. This signature scheme is nat-
urally associated with a dynamic credential system, where a signature
accommodates the feature of a secret credential. We provide a security
model and then prove its security based on the q-Strong Diffie-Hellman
(q-SDH) problem and the Computational Diffie-Hellman (CDH) problem
in the standard model.

Keywords: ID-based Signature, Mutative Identity.

1 Introduction

In 1984, Shamir [11] first introduced the idea of Identity-Based (or ID-based)
Signature (IBS), aimed to create a signature on a message where any user can
verify the signature using the signer’s public information such as email address,
ID numbers or telephone numbers instead of a conventional public key in order
to simply the certificate management. Since Boneh and Franklin [2] introduced
the first ID-Based Encryption (IBE) from pairings in 2001, several novel IBS
� This project was partially supported by the UoW Near Miss grant.

�� Partially supported by Science and Technology of Fujian Province (2006F5036).

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 F. Guo, Y. Mu, and Z. Chen

schemes have been proposed (e.g., in the random oracle model [6,9,5] and in the
standard model [10]).

An ID-based system requires a constant identity of a user. This identity must
be fixed as the unique public key. We are motivated by the following scenario.

A normal identity such as a user name or an email address is not sufficient
to identify a user. For instance, two users could have the exactly same name.
Because of this, a compound identity accommodating multiple information about
a user identity such as name, birthdate, tax number, driver’s licence number,
credit card number, etc. is used. However, some information in this compound
identity are private to some parties but non-private to some others. For example,
a client can provide his name along with his credit card number to a legitimate
merchant, while his birthdate should not be revealed.

A clumsy solution to the privacy of compound identity is to allow the private
key generator to create a number of private keys for a user. Each private key is
associated with a piece of the compound identity, i.e., the public key is composed
of a general identity (e.g. a user’s name) and an extra identity (e.g. a credit card
number). A signature is created in terms of the piece of identity that can be
revealed to the verifier. This approach is obviously problematic due to difficulty
in key management.

Motivated by the above scenario, in this paper, we present a new notion of
IBS: Mutative Identity-Based Signature (MIBS). In MIBS, a public key (the
compound identity) is composed of the basic public information (non-private
identity) and extra information (private identities). A compound identity maps
a single private signing key. When a signature is formed, the signer can choose
which piece of the compound identity should be revealed to the verifier. Our
scheme can be considered as a private credential scheme with dynamic and
selective private contents. In this scenario, The private key generator can be
considered as a credential issuer. A credential can be dynamically generated
(signed) by the private key holder. Furthermore, our scheme can also be applied
to multi-identity-based access control. That is, a user has a number of identities
that form an unique compound identity. An identity in the compound identity
is associated with a key for accessing an entity.

We provide a security model and then prove its security based on the n-
Strong Diffie-Hellman (n-SDH, known as q-SDH) problem and the Computa-
tional Diffie-Hellman (CDH) problem in the standard model.

Road Map: In Section 2, we provide the definitions of MIBS, including the
security model and the complexity assumption. In Section 3, we review the
accumulator technique from Nguyen’s construction. In Section 4, we propose our
MIBS scheme and its security proof against chosen message attacks. In Section 5,
we give some discussions. We conclude our paper in Section 6.

2 Definition

A Mutative Identity-Based Signature (MIBS) can be described as the following
algorithms:

MIBSs or Dynamic Credentials Without Random Oracles 3

Setup: This algorithm is run by the Private Key Generator (PKG). On input a
security parameter 1k, it outputs master public parameters params and master
secret key. The PKG publishes params and keeps the master secret key.

KeyGen: This algorithm is run by the PKG. On input params, the master secret
key and a compound identity U = 〈ID, A1, A2, · · · , At〉 (1 ≤ t ≤ n), it outputs
the signing key du of U , where ID is the basic non-private information and Ai

are private information.

Sign: This algorithm is run by the signer. On input the signing key dU , a com-
pound identity U , a verification identity Vu = 〈ID, Ai〉, a message M and
params, it outputs the verification key vk (only the verification identity Vu ex-
poses to the verifier) and the signature σ, where Ai ∈ 〈A1, A2, · · · , At〉 is decided
by the original signer.

Verify: This algorithm is run by any verifier. On input the signature (M, vk, σ)
and params, it outputs accept if the signature is valid on M for verification
identity Vu; otherwise outputs reject.

2.1 Security Model

Mutative Identity-Based Signature (MIBS) is unforgeable against the chosen
message attack, denoted by UF-MIBS-CMA, where the game between a chal-
lenger and an adversary is described as follows:

Setup: The challenger runs the algorithm Setup of the MIBS scheme and gives
the master public paramas to the adversary.

Queries: The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.

– Signing Key Queries. The adversary makes queries on the signing key of
U = 〈ID, A1, A2, · · · , At〉. The challenger responds by running the algorithm
KenGen and forwarding the signing key du to the adversary.

– Signature Queries. The adversarymakes queries on the signature of (U, Vu, M)
of compound identity U = 〈ID, A1, A2, · · · , At〉, where Vu = 〈ID, Ai〉. The
challenger responds by first running algorithm KeyGen to generate the sign-
ing key du and then running the algorithm Sign to obtain a signature σ,
which is forwarded to the adversary.

Forgery: The adversary outputs a signature (M∗, v∗k, σ∗) of compound identity
U∗ and verification identity V ∗u . The adversary succeeds if the following hold
true:

– σ∗ is a valid signature on M∗ for verification identity V ∗u ;
– No signing key query on U∗. No signature query on (U∗, V ′u, M∗) for any V ′u.

The advantage of an adversary in the above game is defined as

AdvA = Pr[A succeeds]

4 F. Guo, Y. Mu, and Z. Chen

Definition 1. An adversary A is said to be an (ε, t, qk, qs)-forger of a MIBS if
A has at least ε advantage in the above game, runs in time at most t and makes
at most qk and qs queries on the signing key and the signature. A MIBS scheme
is said to be (ε, t, qk, qs)-secure if no (ε, t, qk, qs)-forger exists.

2.2 Bilinear Pairing

Let G and GT be two cyclic groups of prime order p. Let g be a generator of G.
A map e : G × G → GT is called a bilinear pairing (map) if this map satisfies
the following properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
– Non-degeneracy: e(g, g) �= 1. In other words, if g be a generator of G, then

e(g, g) generates GT ;
– Computability: There is an efficient algorithm to compute e(u, v) for all

u, v ∈ G.

2.3 Complexity Assumption

The security of our MIBS scheme will be reduced to the hardness of n-Strong
Diffie-Hellman (n-SDH) problem and the Computational Diffie-Hellman (CDH)
problem in the group in which the signature is constructed. So, We briefly review
the definition of the n-SDH problem and the CDH problem [7,10]:

Definition 2. Let G be the group defined as above with a generator g and ele-
ments gs, gs2

, · · · , gsn ∈ G where s is selected uniformly at random from Zp, the
n-SDH problem in G is to compute 〈c, g1/c+s〉 for any c ∈ Zp/{−s}.

Definition 3. We say that the (εA, tA) n-SDH assumption holds in the group
of G if there is no algorithm running in time tA at most can solve the n-SDH
problem in G with the probability at least εA.

Definition 4. Let G be the group defined as above with a generator g and ele-
ments ga, gb ∈ G where a, b are selected uniformly at random from Zp, the CDH
problem in G is to compute gab.

Definition 5. We say that the (ε, t)-CDH assumption holds in the group of G

if there is no algorithm running in time t at most can solve the CDH problem in
G with the probability at least ε.

3 Accumulator Overview

The idea of accumulator was first introduced by Benaloh and de Mare [1] and fur-
ther developed in [3]. Basically, an accumulator scheme is an algorithm where we
can combine a large set of elements into one short one. For a given element, if it
was included into the accumulator, then there must be a corresponding witness;
otherwise it is impossible to find such a witness. Camenisch and Lysyanskaya

MIBSs or Dynamic Credentials Without Random Oracles 5

introduced dynamic accumulators [4], which allow us to dynamically delete and
add elements from/into the original set. Recently, Nguyen [8] presented a dy-
namic accumulator scheme from bilinear pairings and used it to construct an
ID-based ring signature. Accumulators is a useful technique that has a number
of applications.

3.1 Definition

A secure accumulator f : X ×Y → X for a family inputs {yi} is a function with
the following properties:

– Efficient evaluation: On input (u, yi) ∈ X ×Y , outputs a value v ∈ X , where
X is an accumulator domain for the function f and Y is the domain whose
elements are to be accumulated;

– Quasi-commutative: f(f(u, y1), y2) = f(f(u, y2), y1), i.e. the communication
is independent of the order of yi for all accumulated elements;

– Witnesses: Let v ∈ X and x ∈ X . A value w ∈ X is called a witness for x in
v under f if f(w, x) = v;

– Security(Collision Resistant): Let A = f(u, Y ∗) be the accumulator of Y ∗ =
{yi}. It is hard for all adversaries to forge an accumulator value y′ /∈ Y ∗ and
a witness w′ such that A = f(w′, y′).

3.2 Accumulator from Bilinear Pairing

We make use of Nguyen’s accumulator scheme from Bilinear Pairing [8] defined
as follows: Let T = (g, gs, gs2

, · · · , gsn

) be the tuple of elements from G and
u = gz for some known z randomly from Zp. The secure accumulator based on
the number of elements in T is defined as:

f(u, yi) = uyi+s = gz(yi+s)

which satisfies the requirements of a secure accumulator.

– Efficient evaluation: For u ∈ G and Y ∗ = {y1, y2, · · · , yt} ∈ Zp \ {−s}, where
n elements in Y ∗ at most, the accumulator value is

f(u, Y ∗) = gz(y1+s)(y2+s)···(yt+s)

can be computed in time polynomial in t from T, z and {y1, y2, · · · , yt} with-
out the knowledge of the auxiliary information s.

– Quasi-commutative:

f(f(u, y1), y2) = gz(y1+s)(y2+s) = f(f(u, y2), y1).

– Witness: The witness for yt in f(u, Y ∗) are two elements W0, W1 ∈ G, where

W0 = gz(y1+s)(y2+s)···(yt−1+s), W1 = gzs(y1+s)(y2+s)···(yt−1+s)

6 F. Guo, Y. Mu, and Z. Chen

which can be verified by

e
(
W0, g

s
)

= e
(
gz(y1+s)(y2+s)···(yt−1+s), gs

)
= e

(
W1, g

)

A = (W0)ytW1 = gz(y1+s)(y2+s)···(yt+s).

– Security (Collision Resistant): It holds according to the following theorem.

Theorem 1. The accumulator is Collision Resistant if the n-SDH assump-
tion holds, where n is the upper bound on the number of elements to be
accumulated by the accumulator.

Proof. [8]. �

4 The MIBS Scheme

4.1 Construction

Let e : G × G → GT be the bilinear map, G, GT be two cyclic groups of order
p and g be the corresponding generator in G. We set z ≡ 1 of the accumulator
scheme in our MIBS scheme.

Setup: The system parameters are generated as follow: Select two secrets α, β ∈
Zp at random, choose g, g2, u0, m0 randomly from G, and set the value g1 =
gα, ki = gβi

for all i ∈ {1, 2, · · · , n}. Choose one vector u = (ui) of length nu

and one vector m = (mi) of length nm, where ui, mi ∈ G. A collision-resistant
hash functions H : {0, 1}∗ → {0, 1}nu. The master public params and the master
secret key are

params = (g, g1, g2, k1, k2, · · · , kq, u0, u, m0, m, H), secret key = α, β.

KeyGen: To generate a signing key for U = 〈ID, A1, A2, · · · , An〉, where all
Ai ∈ Zp, PKG does the following:

– Compute the accumulator value AU = g(A1+β)(A2+β)···(An+β) ∈ G;
– Compute the hash value hU = H(ID,AU) ∈ {0, 1}nu;
– Let hU [i] be the ith bit of hU . Define HU ⊂ {1, 2, · · · , nu}, the set of indices,

such that hU [i] = 1. Pick a random r and outputs dU , where

dU = (d1, d2) =
(
gα
2 (u0

∏
i∈HU

ui)r, gr
)

Note that there are two ways for the PKG to compute the accumulator: using
g, Ai and the master secret key β and using g, Ai and all ki in the master params
without the master secret key β. However, the computational cost of the second
way is higher.

Sign: To generate a signature σ on M ∈ {0, 1}nm of identity 〈ID, Ai〉 with dU ,
the signer does the following:

MIBSs or Dynamic Credentials Without Random Oracles 7

– Compute the two witnesses

W0 = g(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β),

W1 = gβ(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β),

from U and k1, k2, · · · , kn.
– Output the verification key

vk =
(
〈ID, Ai〉,W1,W2

)
≡ (〈ID, Ai〉, σ1, σ2).

– Let M [j] be the jth bit of M . Define M ⊂ {1, 2, · · · , nm}, the set of indices,
such that M [j] = 1. Pick a random s and outputs the signature:

σAi =
(
gα
2 (u0

∏
i∈HU

ui)r(m0

∏
j∈M

mj)s, gr, gs
)

≡ (σ3, σ4, σ5).

Verify: Let (vk, σAi) = (σ1, σ2, σ3, σ4, σ5) be a valid signature for (〈ID, Ai〉, M).
A verifier does the following:

– Check if the following equation holds:

e(σ1, k1) = e(σ2, g).

– Compute AU = σAi
1 σ2 and its hash value hU = H(ID,AU).

– Accept the signature σ if the following equation holds

e
(
σ3, g

)
= e

(
g2, g1

)
· e

(
u0

∏
i∈HU

ui, σ4

)
· e

(
m0

∏
j∈M

mj , σ5

)
.

Correctness

e(σ1, k1) = e
(
g(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β), gβ

)

= e
(
gβ(A1+β)···(Ai−1+β)(Ai+1+β)···(An+β), g

)

= e(σ2, g).

e(σ3, g) = e
(
gα
2 (u0

∏
i∈HU

ui)r(m0

∏
j∈M

mj)s, g
)

= e
(
gα
2 , g

)
e
(
(u0

∏
i∈HU

ui)r, g
)

e
(
(m0

∏
j∈M

mj)s, g
)

= e
(
g2, g1

)
e
(
u0

∏
i∈HU

ui, σ4

)
e
(
m0

∏
j∈M

mj , σ5

)
.

8 F. Guo, Y. Mu, and Z. Chen

4.2 Analysis

In both Waters identity-based encryption scheme [12] and Paterson and Schuldt
identity-based signature scheme [10], the identity space is {0, 1}nu for a fixed
nu and can be extended to an arbitrary string using a collision-resistant hash
function such that a hash value can only represent an “identity,” where the
extension can achieve the same level of security.

In our MIBS scheme, the verification key is the triple (Vu,W0,W1) and the
signer, knowing the full compound identity, can change the verifying key in
terms of the actual application. The extra information in a compound identity
is hidden in the witness, while the verifier can only know one of {Ai}. How-
ever, the final accumulated value for a compound identity is the same, i.e. the
final “public key” of H(ID,AU) is constant in each signing. So, when the secu-
rity of accumulator holds and collision-resistant hash function holds, the hash
value of H(ID,AU) represents the “identity” of U = 〈ID, A1, A2, · · · , At〉. I.e.
All adversaries cannot find U ′ �= U and U ′ = 〈ID′, A′1, A

′
2, · · · , A′t〉 such that

H(ID,AU) = H(ID′,AU ′).
According to the definition of the security model and our construction, we

know that the success of forging a valid signature on V ∗u by the adversary actually
is on H(ID∗,A∗U) of U∗ that cannot be queried. So, with the same idea of both
Waters and Paterson-Schuldt, we can only prove the security in the identity
space of {0, 1}nu, i.e., we define that the adversary is successful in forging a
valid signature of an identity H(ID∗,A∗U) even if it knows nothing about the
actually identity in H(ID∗,A∗U). The interaction between a challenger and an
adversary are described as follows:

Setup: The challenger runs the algorithm Setup of the MIBS scheme and gives
the master public paramas to the adversary.

Queries: The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.

– Signing Key Queries. The adversary makes an query on a bit string of hU =
{0, 1}nu. The challenger responds by running the algorithm KenGen and
forwarding the signing key du to the adversary. Note that, the challenger
can just run the last step of algorithm KeyGen.

– Signature Queries. The adversary makes query on the signature of (hU , M).
The challenger responds by first running algorithm KeyGen to generate the
signing key du and then running the algorithm Sign to obtain a signature σ
without W0,W1, which is forwarded to the adversary.

Forgery: The adversary outputs a signature (M∗, h∗U , σ∗) of string h∗U . The
adversary succeeds if the following hold true:

– σ∗ is a valid signature on M∗ for h∗U ;
– No signing key query on h∗U and no signature query on (h∗U , M∗).

MIBSs or Dynamic Credentials Without Random Oracles 9

4.3 Security

Theorem 2. The security of the accumulator algorithm where z ≡ 1 in our
MIBS scheme construction holds if the n-SDH assumption holds. I.e., the accu-
mulator algorithm is (εA, tA) secure, assuming that the (εA, t′A) n-SDH assump-
tion holds, where t′A = tA + ζ + nη + θ and ζ is the time in re-arranging the
polynomial, η is the average time in computing Bi (refer to the proof) and θ is
the time in an exponential computation.

Proof. Let T = (g, gs, gs2
, · · · , gsn

) be the challenge tuple that B receives and
let AU be the accumulator of the t elements U = {A1, A2, · · · , At} (1 ≤ t ≤ n)
in this tuple. Suppose an adversary A can find an element A /∈ U and its valid
witness W0,W1 in AU such that e(W0, k1) = e(W1, g), then we have:

AU = g(s+A1)(s+A2)···(s+At) = WA
0 W1 = WA+s

0

and
W0 = g

(s+A1)(s+A2)···(s+At)
s+A .

Since A /∈ {A1, A2, · · · , At}, there exist c0, c1, · · · , ct−1 ∈ Zp where c0 �= 0,
such that

(s + A1)(s + A2) · · · (s + At) = (s + A)t + ct−1(s + A)t−1 + · · · + c1(s + A)1 + c0.

With A, U,AU ,W0,W1 and T , B then outputs g1/(s+A) as follows:

– Compute c0, c1, · · · , ct satisfying the above equation;

– Compute Bi = g
ci(s+A)i

s+A = gci(s+A)i−1
from T and A for all i �= 0;

– Output A, g1/(s+A), since

(W0

B1B2 · · · Bt

) 1
c0 =

(g
(s+A1)(s+A2)···(s+At)

s+A

g
ct(s+A)t

s+A · · · g
c1(s+A)1

s+A

) 1
c0

=
(g

ct(s+A)t+ct−1(s+A)t−1+···+c1(s+A)1+c0
s+A

g
ct(s+A)t

s+A · · · g
c1(s+A)1

s+A

) 1
c0

=
(
g

c0
s+A

) 1
c0 = g

1
s+A .

�

Theorem 3. When the security of the accumulator based on n-SDH assump-
tion holds, the Mutative Identity-Based Signature scheme is (ε, t, qk, qs)-secure,
assuming that the (ε′, t′)-CDH assumption holds in G:

ε′ =
ε

16(qk + qs)qs(nu + 1)(nm + 1)
,

t′ = t + O
(
(qknu + qs(nu + nm))ρ + (qk + qs)τ

)
,

and ρ, τ are the time for a multiplication and an exponentiation in G, respec-
tively.

Proof. The proof is given in Appendix.

10 F. Guo, Y. Mu, and Z. Chen

5 Discussions

5.1 Witness-Indistinguishability of Private Identities

In MIBS, the verification of a signature requires the clear ID and one of private
ID’s; that is, when the verification identity for signature σ is VU = 〈ID, A1〉
of compound identity U = 〈ID, A1, A2, · · · , An〉, the other privacy identities
A2, A3, · · · , An are hidden in the witness W0,W1. Since the space of {Ai} is
rather small, the private ID’s could be subject to knowledgeable guess attacks.
Given the witness W0,W1, any verifier can guess a set of extra privacy identities
A′2, A

′
3, · · · , A′n and compute the guess witness W′

0 (any one can compute the
witness), if W′

0 = W0, the verifier (attacker) asserts that all privacy identities
hidden in witness W0,W1 has been found out.

We propose the following scheme to repair the problem. In the key generation
phase, the signer and the PKG arrange a random value ω, set as a piece of
privacy identity embedded in the compound identity. Because the secret ω is
only a random value, it is infeasible for an attacker to verify whether a guess
W′

0 is true or not. Accordingly, the signing key for signer is now the double dID

and ω.

5.2 Using Multiple Private Identities for Verification

In our construction, one of privacy identities is employed for a verification. It is
easy to extend our scheme to a multiple-private-identity case, where a verification
identity Vu = 〈ID, AI〉 and AI is a subset of 〈A1, A2, · · · , An〉.

The change required to make is minimal. Without losing generality, consider
two private identities as an example. Let us set Vu = 〈ID, A1, A2〉. The tuple of
vk is now Vu,W0,W1,W2:

W0 = g(A3+β)(A4+β)···(An+β)

W1 = gβ(A3+β)(A4+β)···(An+β)

W2 = gβ2(A3+β)(A4+β)···(An+β)

where W2 can be computed from g, gβ, · · · , gβn

and A3, A4, · · · , An, similarly to
W0,W1. The accumulator AU = g(A1+β)(A2+β)···(An+β) can be computed from
A1, A2,W0,W1,W2.

6 Conclusion

In this paper, we presented a novel Mutative Identity-Based Signature scheme,
where the signer identity can be mutable. The feature of mutability can protect
the signer’s higher bound of privacy when a compound identity is used as the
public key. We provided the definition and security model of MIBS and then
reduced its security to the n-SDH problem and the CDH problem based on
Paterson and Schuldt’s IBS scheme.

Acknowledgement. The authors would like to thank the anonymous reviewers
of CANS 2007 for their helpful comments on this work.

MIBSs or Dynamic Credentials Without Random Oracles 11

References

1. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized al ternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

3. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

4. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and applications to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

5. Cha, J., Cheon, J.: An Identity-Based Signature from Gap Diffie-Hellman Groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2002)

6. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Ny-
berg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer,
Heidelberg (2003)

7. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. E85-
A(2), 481–484 (2002)

8. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes,
A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

9. Paterson, K.G.: ID-based signatures from pairings on elliptic curves,
http://eprint.iacr.org/2002/004

10. Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signatures secure in the
standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

11. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

12. Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Appendix

Proof of Theorem 3. Suppose there exists a (t, qk, qs, ε)-adversary A against our
scheme, we construct an algorithm B that solves the CDH problem. Our approach
is actually the same as that in [10]. Algorithm B is given as input a random tuple
(g, ga, gb). B’s goal is to output gab. B works by interacting with A as follows:

Setup: To generate the master public params = (g, g1, g2, u
′, u, m′, m), B sets

lu, lm be two integers with 0 ≤ lu, lm ≤ p and randomly chooses two integers 0 ≤
ku ≤ nu and 0 ≤ km ≤ nm, such that li(ni + 1) < p, i = u, m. B then randomly
chooses two integers x′ ∈ Zlu , y′ ∈ Zlm and two vectors X = (xi), Y = (yj)
of length nu, nm with xi, yj randomly from Zlu , Zlm for all i, j, respectively. B

http://eprint.iacr.org/2002/004

12 F. Guo, Y. Mu, and Z. Chen

chooses two tuple of γ′i, Γi = (γj
i), i = 1, 2 (same as before) vectors except that

all of γj
i ∈ Zp. Now, B defines the master public params as:

g1 = ga g2 = gb

u′ = g−luku+x′

2 gγ′
1 ui = gxi

2 gγi
1

m′ = g−lmkm+y′

2 gγ′
2 mj = g

yj

2 gγi
2

Let
F (hU) = x′ +

∑
i∈HU

xi − luku, J(hU) = γ′1 +
∑

i∈HU

γi
1

K(M) = y′ +
∑
j∈M

yj − lmkm, L(M) = γ′2 +
∑
j∈M

γj
2

We have the following equations hold

u′
∏

i∈HU

ui = g
F (hU)
2 gJ(hU), m′

∏
j∈M

mj = g
K(M)
2 gL(M)

Then, B sends the master public params to A.

Queries

– A makes signing key queries. To generate a signing key query on hU =
{0, 1}nu, if F (hU) = 0 mod lu, abort. Otherwise, B chooses a random ru

and sets the signing key to be:

dhU = (d1, d2) = (g
− J(hU)

F (hU)

1 (gF (hU)
2 gJ(hU))ru , g

−1
F (hU)

1 gru).

Let r̃u = ru − a
F (hU) , we have

d1 = ga
2 (u′

∏
i∈HU

ui)r̃u

= ga
2 (gF (hU)

2 gJ(hU))ru− a
F (hU)

= ga
2 · gF (hU)ru

2 g−a
2 gJ(hU)rug

−J(hU)a

F (hU)

= g
− J(hU)

F (hU)

1 (gF (hU)
2 gJ(hU))ru

d2 = g
−1

F (hU)

1 gru = g
−a

F (hU) gru = g
ru− a

F (hU) = gr̃u

So, dhU is a valid signing key for hU . B gives it to the adversary.

Remark: Actually, B aborts only for F (hU) = 0 mod p. In order to use the
result of [10], we will force B to abort whenever F (hU) = 0 mod lu.

– A makes signature queries. To generate a signature query on (hU , M). If
F (hU) = 0 mod lu and K(M) = 0 mod lm, abort. Otherwise, B computes
the signatures as follows:

MIBSs or Dynamic Credentials Without Random Oracles 13

• If F (hU) �= 0 mod lu, compute the signing key which is the same as sign-
ing key query and then creates the signature on M using the algorithm
Sign.

• If F (hU) = 0 mod lu and K(M) �= 0 mod lm, B picks random ru, rm

and sets the signature as:

σ = (σ3, σ4, σ5)

= (g
− L(M)

K(M)
1 (gK(M)

2 gL(M))rm(gF (hU)
2 gJ(hU))ru , gru , g

−1
K(M)
1 grm)).

Let r̃m = rm − a
K(M) , we have

σ3 = ga
2 (u′

∏
i∈HU

ui)ru(m′
∏

j∈M
mj)r̃m

= ga
2 (gF (hU)

2 gJ(hU))ru(gK(M)
2 gL(M))r̃m

= ga
2 (gF (hU)

2 gJ(hU))ru(gK(M)
2 gL(M))rm− a

K(M)

= ga
2 (gF (hU)

2 gJ(hU))ru · g
rmK(M)
2 g−a

2 grmL(M)g
−aL(M)

K(M)

= g
− L(M)

K(M)
1 (gK(M)

2 gL(M))rm(gF (hU)
2 gJ(hU))ru

σ5 = g
−1

K(M)
1 grm = g

−a
K(M) +rm = gr̃m

So, σ is a valid signature of (hU , M). B gives it the adversary.

Forgery: The adversary outputs a valid forgery signature σ∗ on (h∗U , M∗). If
F (h∗U) �= 0 mod p or K(M∗) �= 0 mod p, abort. Otherwise, let the forgery
signature be

σ∗ = (σ∗3 , σ∗4 , σ∗5) = (gα
2 (u′

∏
i∈H∗

U

ui)ru(m′
∏

j∈M∗

mj)rm , gru, grm).

B computes and outputs

σ∗3
(σ∗4)J(h∗

U)(σ∗5)L(M∗)
=

gα
2 (u′

∏
i∈H∗

U
ui)ru(m′

∏
j∈M∗ mj)rm

gruJ(h∗
U)grmL(M∗)

=
gα
2 (gJ(h∗

U))ru(gL(M∗))rm

gruJ(h∗
U)grmL(M∗)

= ga
2

= gab

Which is the solution to the given CDH problem.
This completes the description of the simulation. It remains to analyze the

probability of B for not aborting. We divide the queries into two groups, one is
for the queries involving h∗U and the other is for the queries that does not involve
h∗U . The simulation for not aborting includes the following two cases.

14 F. Guo, Y. Mu, and Z. Chen

– hU = h∗U : the queries can only be (h∗U , M). Then, the probability for not
aborting is greater than qs in signature queries.

– hU �= h∗U : the queries can be (hU) and (hU , M). Then, the probability for
not aborting is greater than that of qk + qs in the signing key queries.

Define the following events Ai, A
∗, Bj , B

∗ as

Ai : F (hUi) �= 0mod lu, A∗ : F (h∗U) = 0mod p

Bj : K(Mj) �= 0mod lm, B∗ : K(M∗) = 0mod p

So, for both cases, the lower bound on the probability of B for not aborting is
that

Pr
[
¬abort

]
≥ Pr

[qu∧
i=1

Ai ∧ A∗
qm∧
j=1

Bj ∧ B∗
]

where qu = qk + qs and qm = qs.
The proof is based on Paterson and Schudlt’s scheme [10]. We omit the prob-

ability analysis and present the result directly. Let lu = 2(qk + qs) and lm = 2qs

as in the simulation, it gives

Pr
[qu∧

i=1

Ai ∧ A∗
]

≥ 1
4(qk + qs)(nu + 1)

, Pr
[qm∧

j=1

Bj ∧ B∗
]

≥ 1
4qs(nm + 1)

.

Because (
∧qu

i=1 Ai ∧ A∗) and (
∧qm

j=1 Bj ∧ B∗) are independent, we have

Pr[¬abort] ≥ Pr
[qu∧

i=1

Ai ∧ A∗
qm∧
j=1

Bj ∧ B∗
]

≥ Pr
[qu∧

i=1

Ai ∧ A∗
]
Pr

[qm∧
j=1

Bj ∧ B∗
]

≥ 1
4(qk + qs)(nu + 1)

· 1
4qs(nm + 1)

=
1

16(qk + qs)qs(nu + 1)(nm + 1)
.

If the simulation does not abort, A will create a valid forgery with probability
at least ε. The algorithm B can then compute gab from the forgery as shown
above. Since the time complexity of the B includes O(nu) and O(nu + nm) mul-
tiplication and O(1) exponentiations in signing key query and signature query,
the time complexity of B is t + O

(
(qknu + qs(nu + nm))ρ + (qk + qs)τ

)
, where

ρ, τ are the time for a multiplication and an exponentiation in G, respectively.
Thus, the theorem follows. �

A Generic Construction for

Universally-Convertible Undeniable Signatures

Xinyi Huang, Yi Mu, Willy Susilo, and Wei Wu

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{xh068,ymu,wsusilo,wei}@uow.edu.au

Abstract. Undeniable signatures are classic digital signatures which are
not universally verifiable and can only be verified with the help of the
signer. Its extended version, convertible undeniable signatures, equips
the signer with the additional ability to make his undeniable signatures
universally verifiable whenever required. A selectively-convertible unde-
niable signature scheme allows the signer to convert a single signature
into a universally verifiable signature by releasing a selective proof in a
later time, while “universally-convertible” refers to the case where the
signer has the additional ability to generate a universal proof which
can finally convert all his undeniable signatures into universally veri-
fiable signatures. In this paper, we propose a generic construction for
universally-convertible undeniable signatures. Our construction is based
on three building blocks: a strongly unforgeable classic signature scheme,
a selectively-convertible undeniable signature scheme and a collision-
resistant hash function. Formal proofs guarantee that our construction
has a tight security reduction to the underlying security assumptions. As
one of the applications of our generic construction, one can obtain the
first provable secure universally-convertible undeniable signature scheme
in the standard model.

Keywords: Undeniable Signature, Universally-Convertible, Generic
Construction, Provable Security.

1 Introduction

Universal verifiability is one of the most important properties in classic dig-
ital signatures. This property allows everybody to check the correctness of a
signature. However, for some personally or commercially sensitive applications,
universal verifiability is not required or even undesirable during certain periods.
Therefore, the concept of undeniable signature was introduced by Chaum and
van Antwerpen in Cypto’89 [6].

Undeniable signatures are like classic digital signatures, with the only differ-
ence that they are not universally verifiable. Instead, the validity or invalidity
of an undeniable signature can only be verified via the Confirmation/Disavowal

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 15–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 X. Huang et al.

protocol with the help of the signer. Undeniable signatures have found various
applications in cryptography such as in licensing software [6], electronic cash
[43], electronic voting and auctions. The first undeniable signature was pro-
posed by Chaum and van Antwerpen [6] and it was further improved by Chaum
in [7]. However, the unforgeability of the FDH (Full Domain Hash) variant of
Chaum’s scheme remains as an open problem and was recently proven formally
in the random oracle model [41]. There have been a wide range of research cov-
ering a variety of different schemes for undeniable signatures in the literature
[4,3,9,11,14,15,16,17,20,24,29,30,31,33,34,36,48,47,49,50].

The concept of convertible undeniable signatures was introduced by Boyar,
Chaum, Damg̊ard and Pedersen [4], where the convertibility refers to the abil-
ity of the signer to convert one or more his undeniable signatures into universally
verifiable. “Convert” in the undeniable signatures has two types: Selectively-
Convert and Universally-Convert. A selectively-convertible undeniable
signature scheme allows the signer to convert an undeniable signature into a uni-
versally verifiable signature by releasing a Selective Proof in a later time. Then,
one can check the validity of this signature using the selective proof and signer’s
public key. However, the validity of other undeniable signatures remains unknown
and can only be verified via the confirmation/disavowal protocol with the help of
the signer. Universally convertible refers that the signer has the additional ability
to generate a universal proof which can finally convert all his undeniable signa-
tures into universally verifiable signatures. Thus, one can check the validity of any
undeniable signature without requiring any help from the signer.

1.1 Previous Works

The first convertible undeniable signature scheme proposed in [4] has been bro-
ken by Michels, Petersen and Horster [34] who proposed a repaired version with
heuristic security. In Eurocrypt’96, Damg̊ard and Pedersen [9] proposed two con-
vertible undeniable signature schemes, in which forging signatures is provably
equivalent to forging El Gamal signature. An efficient convertible undeniable sig-
nature based on Schnorr signature was proposed by Michels and Stadler in [35].
The new scheme can be used as a basis of an efficient extension to threshold sig-
nature. Other constructions in RSA systems were also introduced. The first RSA
based (convertible) undeniable signature was proposed by Gennaro, Rabin and
Krawczyk in CRYPTO’97 [16], which was later improved by Miyazaki [33]. Very
recently, Kurosawa and Takagi [26] proposed a new approach for constructing
selectively-convertible undeniable signature schemes, and presented two schemes
based on RSA related assumptions. Furthermore, Kurosawa and Takagi’s second
scheme is the first selectively-convertible scheme whose security can be proven
without random oracles. Based on the computation of characters, Monnerat and
Vaudenay proposed a novel construction of undeniable signature which offers the
advantage of having an arbitrarily short signature (depending on the required
security level) [36]. Monnerat and Vaudenay also generalized and optimized
their scheme in [37] and [38], respectively, and claimed that their scheme pro-
posed in [37] can achieve the selective convertibility, without providing a formal

A Generic Construction for Universally-Convertible Undeniable Signatures 17

security proof to support this claim. Laguillaumie and Vergnaud proposed a
new (time-selective) convertible undeniable signature scheme from pairing [31]
which a short signature length. Very recently, Huang et al. [18] presented a
short convertible undeniable proxy signature from pairings. The first construc-
tion of identity based selectively-convertible undeniable signature was proposed
by Libert and Quisquater. Fig. 1 summarizes the known convertible undeniable
signatures.

Scheme Selectively-Convert Universally-Convert
Boyar-Chaum-Damg̊ard-Pedersen’s [4] � �

Damg̊ard-Pedersen’s [9] � �
Michels-Petersen-Horster’s [34] � �

Michels-Stadler’s [35] � �
Gennaro-Rabin-Krawczyk’s [17] � �

Miyazaki’s [33] � �
Libert and Quisquater’s (ID-based) [29] �

Monnerat-Vaudenay’s [37] �
Laguillaumie-Vergnaud’s [31] � �

Kurosawa-Takagi’s [26] �
Huang et al.’s [18] � �

Fig. 1. Convertible Undeniable Signature Schemes in the Literature

There are two main challenges in the construction of universally-convertible
undeniable signatures. The first one is how to generate the universal proof
which can convert all undeniable signatures to be universally verifiable. As
shown in the above table, some of the convertible undeniable signatures are not
universally-convertible, andonly selectively-convertible. It seems that“selectively-
convertible” is relatively easier to achieve. Very recently, Kurosawa and Takagi
showed the first example of selectively-convertible undeniable signature scheme
[26], which is provably secure in the standard model. However, there is no
universally-convertible undeniable signatures which is provably secure in the
standard model. Therefore, it is worthwhile to find an efficient way to construct
a universally-convertible undeniable signature scheme.

The other challenge is how to ensure the security of the universally-convertible
undeniable signatures. From information theory aspect, a universal proof con-
tains much more information than a selective proof, which might help the ad-
versary to break the scheme. For example, Boyar-Chaum-Damg̊ard-Pedersen’s
scheme [4] is unforgeable when the universal proof of their scheme is not pub-
lished. However, it turns out to be insecure after the signer releases the universal
proof. An adversary can generate a valid signature for any message after obtain-
ing the universal proof. We can see there are several constructions of universally-
convertible undeniable signatures with formal security analysis in the literature.
However, most of them only consider the security of the basic undeniable signa-
tures. That is, universal proofs of those schemes are not given to the adversaries,
which might weaken their security claims.

18 X. Huang et al.

1.2 Our Contributions

In this paper, we propose a generic construction for universally-convertible un-
deniable signatures which is based on the following three building blocks: (1)
A strongly existentially unforgeable classic signature scheme, (2) A selectively-
convertible undeniable signature scheme and (3) A collision-resistant hash
function.

We provide a formal proof to show that our construction is strongly unforge-
able against the adversary who even has the knowledge of the universal proof
of our construction, assuming that the underlying classic signature scheme is
strongly unforgeable and the hash function is collision resistant. We also prove
that the resulting signatures of our construction are invisible if the underlying
classic signature scheme is strongly unforgeable and the selectively-convertible
undeniable signature scheme is invisible as well.

As one of the applications of our generic construction, we can obtain the first
universally-convertible undeniable signature scheme in the standard model when
certain building blocks are used. In addition, one can also fix and improve some
known convertible undeniable signature schemes by applying our generic con-
struction. We believe that the generic construction proposed in this paper is a
useful tool for constructing other variants of undeniable signatures with univer-
sal convertibility, such as designated confirmer signatures, directed signatures
and etc.

Organizations of the Paper
In the next section, we will review some preliminaries required throughout the
paper. The outlines and security models of (universally) convertible undeniable
signature are proposed in Section 3. In Section 4, we describe our generic con-
struction of the universally-convertible undeniable signatures and its security
analysis. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Outline of Classic Signatures

A classic signature scheme Classic-Signature consists of the following algorithms:

CS-Setup: Given the system security number �, this algorithm outputs the
parameter CS-Params which is shared by all the users in the system.

CS-KeyGen: Given the system parameters CS-Params, this algorithm outputs
a public-secret key pair (PKCS, SKCS).

CS-Sign: Given a secret key SKCS, CS-Params and a message M to be signed,
this algorithm outputs a publicly verifiable signature σCS .

CS-Verify: Given a message-signature pair (M, σCS), a public key PKCS and
CS-Params, this algorithm will check whether (M, σCS) is valid under the
public key PKCS. If it is, outputs Acc. Otherwise, Rej.

A Generic Construction for Universally-Convertible Undeniable Signatures 19

2.2 Strong Unforgeability of Classic Signatures

The strong existential unforgeability of Classic-Signature under an adaptive
chosen-message attack is defined using the game in Fig. 2:

Setup: The challenger runs CS-Setup and CS-KeyGen. It gives the forger FCS the
resulting public key PKCS and the parameters CS-Params. The challenger keeps
the private key SKCS for itself.

CS-Sign Queries: The forger FCS can issue signature queries {M1, M2, · · · , MqS }.
To each message Mi, the challenger responds by running CS-Sign to generate a
valid signature σi

CS and sending it to FCS as the answer. These queries might
be asked adaptively such that each message Mi may depend on the previously
message-signature pairs {(M1, σ

1
CS), (M2, σ

2
CS), · · · , (Mi−1, σ

i−1
CS)}.

Output: Finally FCS outputs a pair (M∗, σ∗
CS). The forger FCS wins the game if

1. Acc ← CS-Verify(M∗, σ∗
CS , PKCS , CS−Params) and

2. (M∗, σ∗
CS) /∈ {(M1, σ

1
CS), (M2, σ

2
CS), · · · , (MqS , σqS

CS)}.

Fig. 2. Strong Unforgeability of Classic-Signature

We define the advantage of an adversary FCS in attacking the classic signature
scheme Classic-Signature as the probability that FCS wins the game in Fig. 2,
taken over the random bits of the challenger and the adversary.

Definition 1. A classic signature scheme Classic-Signature is (t, qS , ε)-strongly
existentially unforgeable under an adaptive chosen-message attack if no t-time
forger FCS making at most qS signature queries has advantage at least ε in the
game in Fig. 2.

Remark: The adversary can also have access to the random oracles if necessary.
It is also the same for the remaining security definitions.

Please refer to [12,2,45,46,27] for how to obtain a strongly existentially unforge-
able classic signature scheme.

2.3 Collision-Resistant Hashing

Let H = {Hk} be a keyed hash family of functions Hk : {0, 1}∗ → {0, 1}n

indexed by k ∈ K. We say that algorithm A has advantage ε in breaking the
collision-resistant of function H if:

Pr[F(k) = (m0, m1) : m0 �= m1, Hk(m0) = Hk(m1)] ≥ ε,

where the probability is over the random choice of k ∈ K and the random bits
of A.

Definition 2. A hash family H is (t, ε)-collision-resistant if no t-time adversary
has advantage at least ε in breaking the collision-resistance of H.

20 X. Huang et al.

3 Definitions of Undeniable Signatures

In this section, we will describe the definitions of the universally-convertible
undeniable signatures and selectively undeniable signatures, which are denoted
by UC-Undeniable-Signature and SC-Undeniable-Signature respectively.

3.1 Outline of Universally-Convertible Undeniable Signatures

Auniversally-convertible undeniable signature schemeUC-Undeniable-Signature
consists of the following algorithms:

UC-US-Setup: Given the system security number �, this algorithm outputs the
parameter UC-US-Params which is shared by all the users in the system.

US-KeyGen: Given the system parameters UC-US-Params, this algorithm
outputs a public-secret key pair (PKUC , SKUC).

UC-US-Sign: Given a secret key SKUC , UC-US-Params and a message M
to be signed, this algorithm outputs an undeniable signature σUC such that
the validity of the pair (M, σ) is not publicly verifiable.

UC-US-Verify: Given a message-signature pair (M, σUC), the signer’s public-
secret key (PKUC , SKUC) and UC-US-Params, this algorithm will check
whether (M, σUC) is a qualified pair. If it is not a qualified one, a symbol ⊥
will be returned. Otherwise, it will further check its validity using the secret
key SKUC . If it is, outputs V alid. Otherwise, Invalid.

UC-US-Confirmation: A protocol between the signer and verifier such that
given a message-signature pair (M, σUC), a public key PKUC and UC-US-
Params, this protocol allows the signer to convince the verifier that the given
message-signature pair is valid, with the knowledge of the corresponding
secret key SKUC .

UC-US-Disavowal: A protocol between the signer and verifier such that given a
message-signature pair (M, σUC), a public key PKUC and UC-US-Params,
this protocol allows the signer to convince the verifier that the given message-
signature pair is invalid, with the knowledge of the corresponding secret key
SKUC .

UC-US-SConvert: Given a qualified message-signature pair (M, σUC), the
signer’s public-secret key (PKUC , SKUC) and UC-US-Params, this algo-
rithm outputs a selective proof SelectiveProof{M, σUC , PKUC}.

UC-US-SVerify: Given a message-signature pair (M, σUC) , a pubic key PKUC ,
SelectiveProof{M, σUC , PKUC} and UC-US-Params, this algorithm will
check whether (M, σUC) is valid under the public key PKUC . If it is, outputs
Acc. Otherwise, Rej.

UC-US-UConvert: Given the signer’s public-secret key (PKUC , SKUC) and
UC-US-Params, this algorithm outputs a universal proof
UniversalProof{PKUC}.

UC-US-UVerify: Given any message-signature pair (M, σUC), a public key
PKUC , UniversalProof{PKUC} and UC-US-Params, this algorithm will
check whether (M, σUC) is valid under the public key PKUC . If it is, outputs
Acc. Otherwise, Rej.

A Generic Construction for Universally-Convertible Undeniable Signatures 21

The above algorithms should satisfy the following three properties:

1. Completeness and Soundness: the UC-US-Confirmation and UC-US-
Disavowal protocols and all the verify algorithms are complete and sound,
where completeness means that valid (invalid) signatures can always proven
to be valid (invalid), and soundness means that no valid (invalid) signature
can proven to be invalid (valid).

2. Non-Transferable: a verifier participating in an execution of the UC-US-
Confirmation and UC-US-Disavowal protocols does not obtain information
that could be used to convince a third party about the validity/invalidity of
a signature.

3. Impersonation: only the signer can execute the UC-US-Confirmation and
UC-US-Disavowal protocols. Anyone else who does not have the knowledge
of the secret key can not impersonate the signer to carry out these protocols.

3.2 Strong Unforgeability of UC-Undeniable-Signature

The strong existential unforgeability of UC-Undeniable-Signature under an
adaptive chosen message attack is defined using the game which is similar in
Fig. 2. The difference is that the forger is allowed to have the knowledge of the
universal proof, which will help the forger to verify the validity of any message-
signature pair. In addition, The forger can also obtain some selective proofs of
certain message-signature pairs chosen by himself. It is formally defined using
the game described in Fig. 3.

We define the advantage of an adversary FUS in attacking UC-Undeniable-
Signature as the probability that FUS wins the above game, taken over the
random bits of the challenger and the adversary.

Setup: The challenger runs UC-US-Setup and UC-US-KeyGen. It gives the forger
FUS the resulting public key PKUC and the parameters UC-US-Params. The
challenger also generates the universal proof UniversalProof{PKUC} and sends it
FUS as well.

US-Sign Queries: The forger FUS can adaptively issue up to qS signature queries
{M1, M2, · · · , MqS }. To each message Mi, the challenger responds by running UC-
US-Sign to generate a valid signature σi

UC and sending it to FCS as the answer.
Selective-Conversion Queries: The forger FUS can issue up to qSC selective-

conversion queries {(M1, σ
1
UC), (M2, σ

2
UC), · · · , (MqSC , σqSC

UC)} which are adap-
tively chosen by himself. To each pair (Mi, σ

i
UC),

1. If it is a qualified message-signature pair, then the challenger responds by
generating a valid SelectiveProof{Mi, σ

i
UC , PKSC} and sending it to FUS as

the answer.
2. Otherwise, the symbol ⊥ is returned which means (Mi, σ

i
UC) is not a qualified

message-signature pair.
Output: Finally FUS outputs a pair (M∗, σ∗

UC). The forger FUS wins the game if
1. V alid ← UC-US-Verify(M∗, σ∗

UC , PKUC , UC−US−Params) and
2. (M∗, σ∗) /∈ {(M1, σ

1
UC), (M2, σ

2
UC), · · · , (MqS , σqS

UC)}.

Fig. 3. Strong Unforgeability of UC-Undeniable-Signature

22 X. Huang et al.

Definition 3. A universally-convertible undeniable signature scheme
UC-Undeniable-Signature is (t, qS , qSC , ε)-strongly existentially unforgeable un-
der an adaptive chosen-message attack if no t-time forger FUS making at most
qS signature queries, qSC selective-conversion queries and has advantage at least
ε in the game in Fig. 3.

3.3 Invisibility of UC-Undeniable-Signature

Roughly speaking, the invisibility property requires that a valid message-
signature pair is indistinguishable from other qualified pairs, without the help
of the signer. It will be defined using the similar game in the Fig. 3. The only
difference is that the signer’s universal proof is not returned to the distinguisher.

Setup: The challenger runs UC-US-Setup and UC-US-KeyGen. It gives the distin-
guisher D the resulting public key PKUC and the parameters UC-US-Params.
The challenger keeps the private key SKUC to itself.

Phase 1: In this phase, D can adaptively issue the following queries :
US-Sign Queries and Selective-Conversion Queries: The challenger re-

sponds the same as defined in Fig. 3.
Verify Queries: The distinguisher D can issue up to qV verify queries

{(M1, σ
1
UC), (M2, σ

2
UC), · · · , (MqV , σqV

UC)} where (Mi, σ
i
UC) can either be the

message-signature pair returned as the answer to one of US-Sign Queries,
or adaptively chosen by the distinguisher himself. To each message-signature
pair (Mi, σ

i
UC), the challenger responds by first running the UC-US-Verify

algorithm. If it is not a qualified message-signature pair, the symbol ⊥ is re-
turned. Otherwise, the challenger then responds based on whether a passive
attack or an active/concurrent attack is mounted.
1. Active/Concurrent attack: The challenger executes the UC-US-

Confirmation (UC-US-Disavowal) protocol with adversary (acting as a
cheating verifier) if the verification result is V alid (Invalid).

2. Passive attack: The challenger returns a transcript of UC-US-
Confirmation protocol if the verification result is V alid. Otherwise, a tran-
script of UC-US-Disavowal protocol is returned.

Challenge: At the end of Phase 1, D will choose a message M∗ with the restriction
that M∗ has not been issued as one of the US-Sign queries. The challenger re-
sponds by selecting a random coin γ ∈ {0, 1}. If γ = 1, the challenger runs the
algorithm UC-US-Sign to generate a valid universally-convertible undeniable sig-
nature σ∗

UC of message M∗. Otherwise, σ∗
UC is randomly chosen such that (M∗, σ∗)

is a qualified message-signature pair. In both cases, σ∗
UC is returned to D as the

challenging signature.
Phase 2: In this phase, D can adaptively issue US-Sign Queries, Selective-

Conversion Queries and Verify Queries with the restrictions that:
1. If UC-US-Sign is a deterministic algorithm, M∗ cannot be issued as one of

the US-Sign Queries.
2. (M∗, σ∗

UC) can not be issued as one of the Verify Queries or Selective-
Conversion Queries.

The challenger will respond these queries as it does in Phase 1.
Output: Finally D outputs its guess γ′. The distinguisher D wins the game if γ = γ′.

Fig. 4. Invisibility of UC-Undeniable-Signature

A Generic Construction for Universally-Convertible Undeniable Signatures 23

It is formally defined in Fig. 4. The success probability that D outputs a correct
guess is defined as SuccD. We define the advantage of an distinguisher D in
attacking UC-Undeniable-Signature as |SuccD− 1

2 |, taken over the random bits
of the challenger and the adversary.

Definition 4. A universally-convertible undeniable signature scheme
UC-Undeniable-Signature is (t, qS , qSC , qV , ε)-invisible under an adaptive
chosen-message attack if no t-time distinguisher D making at most qS signature
queries, qSC selective-conversion queries, qV verify queries and has advantage
at least ε in the game defined in Fig. 4.

3.4 Definitions of Selectively-Convertible Undeniable Signatures

A selectively-convertible undeniable signature scheme SC-Undeniable-Signature
consists of 8 algorithms: SC-US-Setup, SC-US-KeyGen, SC-US-Sign, SC-US-
Verify, SC-US-Confirmation, SC-US-Disavowal, SC-US-SConvert and SC-US-
SVerify. All these algorithms are basically similar to the corresponding ones in
UC-Undeniable-Signature defined in Section 3.1, the only difference is that we
add “SC” to distinguish it from the latter. Therefore, the system’s parameters
in SC-Undeniable-Signature is denoted by SC-US-Params, user’s public-secret
key pair is (PKSC , SKSC), a selectively-convertible undeniable signature is de-
noted by (M, σSC) and etc..

SC-Undeniable-Signature should also satisfy the three properties: Complete-
ness and Soundness, Non-Transferable and Impersonation which are the same
as defined in Section 3.1. The security notions Strongly Unforgeable and Invis-
ibility can be defined similarly with some minor difference. Here, we only give
the definition of the invisibility in SC-Undeniable-Signature.

Definition 5. A selectively-convertible undeniable signature scheme
SC-Undeniable-Signature is (t, qS , qSC , qV , ε)-invisible under an adaptive
chosen-message distinguisher if no t-time distinguisher D making at most qS

signature queries, qSC selective-conversion queries, qV verify queries and has
advantage at least ε.

4 A Generic Construction of UC-Undeniable-Signature

In this section, we will describe our generic construction of the universally-
convertible undeniable signature scheme UC-Undeniable-Signature. Our con-
struction is based on the following three building blocks: a classic signature
scheme Classic-Signature which is strongly unforgeable as defined in Defini-
tion 1, a hash function which is collision-resistant as defined in Definition 2 and
a selectively undeniable signature scheme SC-Undeniable-Signature which is in-
visible as defined in Definition 5. Each algorithm of our generic construction is
described as below:

UC-US-Setup: Given the system security number �, this algorithm generates
the system parameter UC-US-Params = {CS-Params, SC-US-Params,

24 X. Huang et al.

Hk}, where CS-Params is the parameters in the classic signature scheme
Classic-Signature which is the output of CS-Setup(�), SC-US-Params is
the parameters in the selectively-convertible undeniable signature scheme
SC-Undeniable-Signature which is the output of SC-US-Setup(�) and Hk

is a random function in the collision-resistant keyed hash family H.
UC-US-KeyGen: Each signer of a universally-convertible undeniable signature

has two public-secret key pairs: (PKCS , SKCS) and (PKSC , SKSC) where
1. (PKCS , SKCS) is the public-secret key pair in the classic signature

scheme Classic-Signature which is generated by the algorithm
CS-KeyGen.

2. (PKSC , SKSC) is the public-secret key pair in the selective undeniable
signature scheme SC-Undeniable-Signature which is generated by the
algorithm SC-US-KeyGen.

The public key PKUC is set as (PKCS, PKSC) and the secret key SKUC is
set as (SKCS, SKSC).

UC-US-Sign: The universally-convertible undeniable signature of the message
M is σUC = (σSC , σCS) where
1. σSC is a selectively-convertible undeniable signature on the message M

which is generated by the algorithm SC-US-USign:
σSC ← SC-US-USign(M, SKSC , SC−US−Params).

2. σCS is a classic signature on the message Hk(M‖σSC‖Undeniable) which
is generated by the algorithm CS-Sign:

σCS ← CS-Sign(Hk(M‖σSC‖Undeniable), SKCS, CS−Params)1.
Here, the world Undeniable indicates that this signature is generated
in the scenario of undeniable signature.

UC-US-Verify: Given a message-signature pair (M, σSC , σCS), this
algorithm first checks whether σCS is a valid classic signature on
Hk(M‖σSC‖Undeniable).
1. If Rej←CS-Verify(Hk(M‖σSC‖Undeniable), σCS, PKCS, CS−Params),

then (M, σSC , σCS) is regarded as a non-qualified pair and the symbol
⊥ is output.

Here the definition of the “qualified pair” is different from the previous
one. In most undeniable signature schemes, it refers to the message-
signature pairs where the signature could be any element in the signature
space. In this sense, the invisibility of the proposed construction is a little
weaker than the traditional one, since we require that σCS must be a
valid signature.

2. Otherwise, it further runs the algorithm SC-US-Verify(M, σSC , SKSC ,
SC−US−Params) and forwards its output.

1 We note that σCS is not a classic (or, publicly verifiable) signature on the message
M . Instead, it is a signature on the string “ξ = M‖σSC‖Undeniable”. Since ‖
denotes the concatenation of the bit strings, ξ corresponds to many different pairs
(M i, σi

SC) provided that ξ = M i‖σi
SC‖Undeniable. Therefore, given the signature

σCS , one cannot decide if the signer has actually signed the message M . In the proof
of Theorem 1, we also discuss how to remove the message from the input of the hash
function.

A Generic Construction for Universally-Convertible Undeniable Signatures 25

UC-US-Confirmation: Given a message-signature pair (M, σSC , σCS), the veri-
fier first runs the algorithm CS-Verify(Hk(M‖σSC‖Undeniable), σCS,
PKCS, CS−Params).
1. If it outputs Rej, nothing is to be carried out between the verifier and

the signer.
2. Otherwise, the verifier will execute the SC-US-Confirmation protocol

with the signer.
UC-US-Disavowal: Given a message-signature pair (M, σSC , σCS), the verifier

first runs the algorithm CS-Verify(Hk(M‖ σSC‖Undeniable), σCS, PKCS,
CS−Params).
1. If it outputs Rej, nothing is to be carried out between the verifier and

signer.
2. Otherwise, the verifier will execute the SC-US-Disavowal protocol with

the signer.
UC-US-SConvert: Given a pair (M, σSC , σCS), it runs the algorithm CS-Verify

(Hk(M‖σSC‖Undeniable), σCS , PKCS, CS−Params).
1. If it outputs Rej, the symbol ⊥ is output, which means (M, σSC , σCS)

is not a qualified pair.
2. Otherwise, it runs the algorithm SC-US-SConvert(M, σSC , PKSC ,

SKSC , SC−US−Params) to generate SelectiveProof{M, σSC ,PKSC}.
UC-US-SVerify: Given a pair (M, σSC , σCS), and its selective proof

SelectiveProof{M, σSC , PKSC}, this algorithm outputs Acc if
Acc ← CS-Verify(Hk(M‖σSC‖Undeniable), σCS, PKCS, CS−Params) and
Acc ← SC-US-SVerify(M, σSC ,SelectiveProof{M, σSC , PKSC}, PKSC ,
SC−US−Params).

Otherwise, outputs Rej.
UC-US-UConvert: This algorithm outputs SKSC as the universal proof

Universal{PKSC}.
UC-US-UVerify: Given a pair (M, σSC , σCS), and the universal proof SKSC ,

this algorithm outputs Acc if

Acc ← CS-Verify(Hk(M‖σSC‖Undeniable), σCS, PKCS, CS−Params) and

Acc ← SC-US-Verify(M, σSC , SKSC , SC−US−Params).

Otherwise, outputs Rej.

5 Security Analysis

In this section, we will give a security analysis of our generic construction. Our
generic construction will directly satisfy the properties: Completeness and
Soundness, Non-Transferable and Impersonation if the underlying build-
ing blocks satisfy those properties as well. Due to the page limitation, we will
skip the analysis of those properties and focus on the the unforgeability and
invisibility of our construction.

26 X. Huang et al.

5.1 Strong Unforgeability of Our Generic Construction

Theorem 1. Our proposed universally-convertible undeniable signature scheme
UC-Undeniable-Signature is (t, qS , qSC , ε)-strongly existentially unforgeable as-
suming the underlying classic signature scheme Classic-Signature is (t, qS , ε/2)-
strongly existentially unforgeable and H is (t, ε/2)-collision-resistant.

Proof. Suppose there is a forger FUS that (t, qS , qSC , ε) breaks strong unforge-
ability of our generic construction proposed in Section 4, then we will show there
exists an algorithm A who can either (t, qS , ε/2)-break the strong unforgeability
of the underlying Classic-Signature or (t, ε/2)-break the collision-resistance of
H. Our proof will use the similar techniques in [2].

As defined in Fig 3, FUS can obtain the target public key (PKCS, PKSC), the
parameters (CS-Params, SC-US-Params, Hk) and the universal proof SKSC .

FUS can adaptively choose message Mi and is given corresponding signature
(Mi, σ

i
SC , σi

CS). Let S = {(Mi, σ
i
SC , σi

CS)} be the set of message-signature pairs
generated during the US-Sign queries. In our construction, the selective proof of
a message-signature pair is generated by using SKSC which has been already sent
to FUS . Therefore, FUS himself can generate the selective proof of any message-
signature pair and does not need to issue the Selective-Conversion Queries
any more. After all the queries, FUS will output a forgery (M∗, σ∗SC , σ∗CS) /∈ S.
This forgery must fall into one of the following two types:

Type I: For ∀(Mi, σ
i
SC , σi

CS) ∈ S, (Hk(Mi‖σi
SC‖Undeniable), σi

CS) �=(Hk(M∗‖
σ∗SC‖Undeniable), σ∗CS).

Type II: There exists at least one tuple (Mi, σ
i
SC , σi

CS) ∈ S such that (Hk(Mi‖
σi

SC‖Undeniable), σi
CS) = (Hk(M∗‖ σ∗SC‖Undeniable), σ∗CS).

We will show later that the Type I forgery can be used to break the strong
unforgeability of the underlying classic signature scheme Classic-Signature and
Type II forgery can be used to find a collision of H. The simulation will be
different due to different forgeries considered. At the beginning, the algorithm
A will flip a coin in {1, 2}. If coin = 1, A will guess that Type I forgery will be
the output of FUS . Otherwise, Type II forgery will be produced.

Type I: Suppose FUS is a Type I forger who can (t, qS , qSC , ε)-break strong
unforgeability of our generic construction. We will construct an algorithm A that
can (t, qS , ε)-break the strong unforgeability of the underlying Classic-Signature.
At the beginning, A is given a public key PKCS and the parameter CS-Params.
A will answer FUS ’s queries as described below:

Setup:A generatesSC-US-Paramsby running the algorithmSC-US-Setup(�).
Then, it runs the algorithm SC-US-KeyGen to generate the public-secret
key pair (PKSC , SKSC). It also chooses a random hash function Hk in the
collision-resistant keyed hash family H. At last, A returns (PKCS , PKSC ,
SKSC), CS-Params, SC-US-Params and Hk to FUS .

US-Sign Queries: For a sign query Mi from FUS , A responds as followings:
1. A first runs the algorithm SC-US-Sign using the secret key SKSC to

generate σi
SC .

A Generic Construction for Universally-Convertible Undeniable Signatures 27

2. A then sets Hk(Mi‖σi
SC‖Undeniable) as his own CS-Sign query. As the

model defined in Fig 2, a valid signature σi
CS will be returned to A.

At last, A will return (σi
SC , σi

CS) as the answer.
Selective-Conversion Queries: As we have explained earlier, FUS does not

need to issue these queries since the knowledge SKSC enables him to generate
the selective proof of our generic construction.

After all the queries, FUS will output a Type I forgery (M∗, σ∗SC , σ∗CS) /∈ S such
that (Hk(M∗‖ σ∗SC‖Undeniable), σ∗CS) �= (Hk(Mi‖σi

SC‖Undeniable), σi
CS) for

∀(Mi, σ
i
SC , σi

CS) ∈ S.
With probability at least ε, it is a valid message-signature pair of our proposed

construction. Thus, Acc ← CS-Verify(Hk(M∗‖σ∗SC‖Undeniable), σ∗CS, PKCS,
CS−Params). Note that the pair (Hk(M∗‖ σ∗SC‖ Undeniable), σ∗CS) is not gen-
erated during A’s CS-Sign Queries. Thus, (Hk(M∗‖ σ∗SC‖Undeniable), σ∗CS)
is a valid forgery of the underlying Classic-Signature as defined in Fig 2.

Type II: Suppose FUS is a Type II forger who can (t, qS , qSC , ε)-break strong
unforgeability of our generic construction. We will construct an algorithm A that
can (t, ε)-break the collision-resistance of H. Algorithm A is given a random key
k ∈ K. Its goal is to output a pair of messages (m1, m2) such that m1 �= m2 and
Hk(m1) = Hk(m2). A will answer FUS ’s queries as described below:

Setup:AgeneratesCS-Params,SC-US-Params, (PKSC, SKSC) and (PKCS,
SKCS) by running the corresponding algorithms defined in Section 4. It then
returns (PKSC , PKCS, SKSC , CS-Params, SC-US-Params, Hk) to FUS .
A keeps SKCS as secret to himself.

US-Sign Queries: To each sign query, A runs the algorithm UC-US-Sign
using the secret keys SKSC and SKCS.

After all the queries, FUS will output a Type II forgery (M∗, σ∗SC , σ∗CS) /∈ S

and there exists at least one tuple (Mi, σ
i
SC , σi

CS) ∈ S such that (Hk(Mi‖σi
SC‖

Undeniable), σi
CS)=(Hk(M∗‖ σ∗SC‖Undeniable), σ∗CS). Thus, (Mi, σ

i
SC) �=(M∗,

σ∗SC) due to the requirement that (M∗, σ∗SC , σ∗CS) /∈ S. As the assumption in [2],
we require that any selectively undeniable signature σSC has a unique encod-
ing. Therefore, A successfully find the collision (Mi‖σi

SC‖Undeniable, M∗‖σ∗SC‖
Undeniable) of H2.

In summary, we have showed how to use FUS to find a new message-signature
pair of the underlying classic signature scheme Classic-Signature or a collision
of H.
�
2 This explains why σCS must be a classic signature on Hk(M‖σSC‖Undeniable). If

we remove the message M from the input of hash function Hk, then the unforge-
ability of our construction relies on a stronger assumption: Given the signing key of
the SC-Undeniable-Signature scheme, it is impossible for an adversary to find two
different messages which share the same selectively convertible undeniable signature.
There is no evidence shows that all SC-Undeniable-Signature schemes satisfy this
requirement.

28 X. Huang et al.

Remark: As one can see from the above analysis, the unforgeability of the pro-
posed construction does not rely on the unforgeability of the underlying undeni-
able signature scheme. This is due to the fact the signer could publish his secret
key of the SC-Undeniable-Signature as the universal proof.

5.2 Invisibility of Our Generic Construction

Theorem 2. Our proposed universally-convertible undeniable signature scheme
UC-Undeniable-Signature is (t, qS , qSC , qV , ε)-invisible assuming the underlying
classic signature scheme Classic-Signature is (t, qS , ε′)-strongly existentially un-
forgeable and the selectively-convertible undeniable signature scheme
SC-Undeniable-Signature is (t, qS , qSC , qV , ε · (1 − ε′)qV +qSC)-invisible.

Proof. Suppose there is a distinguisher DUC that (t, qS , qSC , qV , ε)-breaks the
invisibility of our generic construction proposed in Section 4, then we will show
there exists an algorithm DSC who can (t, qSC , qSC , qV , (1 − ε′)qV +qSC)-break
the invisibility of SC-Undeniable-Signature if Classic-Signature is (t, qS , ε′)-
strongly existentially unforgeable.

At the beginning, DSC receives the public key PKSC and SC-US-Params of
SC-Undeniable-Signature. DSC will answer DUC ’s queries as described below:

Setup: DSC generates CS-Params by running the algorithm CS-Setup(�).
Then, he runs the algorithm CS-KeyGen to obtain the key pair (PKCS ,
SKCS). He also chooses a random hash function Hk ∈ H. At last, DSC

returns (PKCS, PKSC , CS-Params, SC-US-Params, Hk) to DUC .
US-Sign Queries: For a sign query Mi from DUC , DSC responds as following:

1. DSC first issues Mi as one of the US-Sign Queries to his own challenger
and obtains the selectively-convertible undeniable signature σi

SC .
2. DSC generates the signature σi

CS for Hk(Mi‖σi
SC‖Undeniable) by run-

ning the algorithm CS-Sign with the knowledge SKCS.
At last, DSC returns (σi

SC , σi
UC) to DUC as the answer.

Selective-Conversion Queries: For a selective-conversion query (Mi, σ
i
SC ,

σi
CS), DSC firstly runs the algorithm CS-Verify(Hk(Mi‖σi

SC‖Undeniable),
σi

CS , PKCS, CS−Params).
1. If it outputs Rej, the symbol ⊥ is returned which means (Mi, σ

i
SC , σi

CS)
is not a qualified pair.

2. Otherwise, DSC sets (Mi, σ
i
SC) as his own selective-conversion query

and issues it to his challenger. DSC will obtain SelectiveProof{Mi, σ
i
SC ,

PKSC} from its own challenger. Then, he returns it to DUC as the
answer.

Verify Queries: For each verify query (Mi, σ
i
SC , σi

CS), DSC firstly runs the al-
gorithm CS-Verify (Hk(Mi‖ σi

SC‖Undeniable), σi
CS, PKCS, CS−Params).

If it outputs Rej, the symbol ⊥ is returned which means (Mi, σ
i
SC , σi

CS) is
not a qualified pair. Otherwise, DSC will respond as following:
1. For an active/concurrent attack, DSC must execute the Confirmation

(Disavowal) protocol with DUC . It will act as the middle-man in the
sense that DSC will forward each DUC ’s query in the protocol as his
own query and return each response from his challenger to DUC .

A Generic Construction for Universally-Convertible Undeniable Signatures 29

2. For a passive attack, DSC will issue (Mi, σ
i
SC) as one of his Verify

Queries to his challenger. DSC will obtain a transcript of the Confir-
mation/Disavowal protocol. Then, he returns that transcript to DUC .

Challenging: At the end of Phase 1, DUC will output a challenging message
M∗. DSC will forward M∗ as his own challenging message and obtain the
challenging signature σ∗SC . Then, DSC runs the algorithm CS-Sign with
SKCS and generates the signature σ∗CS . At last, DSC returns the challenging
signature (σ∗SC , σ∗CS) to DUC .

Phase 2: DUC can continue to issue queries as defined in Fig. 4 and DSC can
answer these queries as described previously. In addition, There might be
some special queries (M∗, σ∗SC , σ†CS) during Phase 2. In these queries, the
first two parts M∗ and σ∗SC are the same as those in the challenging signature,
but σ†CS �= σ∗CS . We say these queries are special since DUC is allowed to
issue these queries as one of the Verify Queries or Selective-Conversion
Queries, but DUC is not allowed to issue (M∗, σ∗SC) as his own query. So,
DSC can not use his own challenger to respond these queries. For each special
query, DSC will act as described below. When (M∗, σ∗SC , σ†CS) is issued by
DUC , DSC firstly runs the algorithm CS-Verify(Hk(M∗‖σ∗SC‖Undeniable),
σ†CS , PKCS, CS−Params).
1. It outputs Rej, the symbol ⊥ is returned because (M∗, σ∗SC , σ†CS) is not

a qualified pair.
2. Otherwise, it outputs Acc and DSC will abort. However, if the algorithm

CS-Verify outputs Acc, then σ†CS and σ∗CS will be two different valid
signatures of the same message Hk(M∗‖σ∗SC‖Undeniable). Due to the
strong unforgeability of Classic-Signature, the probability that DUC can
find out the new pair (Hk(M∗‖σ∗SC‖Undeniable), σ†CS) is at most ε′.

If DSC does not abort during the simulation, then DUC will output his guess γ′

which is correct with advantage ε. DSC will forward γ′ as his own guess. It is
obvious that if (M∗, σ∗SC , σ∗CS) is a valid message-signature pair of our generic
scheme, then (M∗, σ∗SC) will be valid of SC-Undeniable-Signature as well. Thus,
If DSC does not abort during the simulation, DSC can also output a correct
guess with the same advantage ε. We now go to compute the probability that
DSC does not abort during the simulation. If the underlying Classic-Signature
is (t, qS , ε′)-strong unforgeable, then DSC could abort with probability at most
ε′ for each verify query or selective-conversion query. Therefore, the probability
that DSC does not abort during the simulation is at least (1−ε′)qV +qSC . Thus, the
advantage that DSC can break the invisibility of the underlying SC-Undeniable-
Signature scheme with advantage at least ε ·(1−ε′)qV +qSC which contradicts the
assumption that SC-Undeniable-Signature is (t, qS , qSC , qV , ε · (1 − ε′)qV +qSC)-
invisible.
�

5.3 Applications

A direct application of our generic construction is the first provably secure
universally-convertible undeniable signature scheme in the standard model. It

30 X. Huang et al.

can be constructed by a strongly existentially unforgeable Classic-Signature in
the standard model (e.g. BB’s scheme [1]) and an invisible selectively-convertible
undeniable signature scheme SC-Undeniable-Signature [26] in the standard
model. In addition, we can fix Boyar-Chaum-Damg̊ard-Pedersen’s scheme [4]
by applying a strongly unforgeable Classic-Signature. We also believe that the
ideas in our generic construction can be used for other variants of undeniable
signatures with universal convertibility, such as designated confirmer signatures
[5], directed signatures [28] and etc. Due to the page limitation, we cannot show
the details to these constructions.

6 Conclusion

We introduced a generic construction for universally-convertible undeniable
signatures. Our construction uses a strongly existentially unforgeable classic
signature scheme, an invisible selectively undeniable signature scheme and a
collision-resistant hash function as the building blocks. The security of the pro-
posed construction is formally analyzed, which is tightly related to the security
of underlying build blocks. When applying this construction to certain specific
schemes, we can obtain some useful results. One of these applications is the first
universally-convertible undeniable signature scheme in the standard model.

References

1. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400.
Springer, Heidelberg (2004)

2. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

3. Biehl, I., Paulus, S., Takagi, T.: Efficient Undeniable Signature Schemes Based
on Ideal Arithmetic in Quadratic Orders. In: Designs, Codes and Cryptography,
vol. 31(2), pp. 99–123. Springer, Netherlands (2004)

4. Boyar, J., Chaum, D., Damg̊ard, I.B., Pedersen, T.P.: Convertible Undeniable Sig-
natures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 189–205. Springer, Heidelberg (1991)

5. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

6. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

7. Chaum, D.: Zero-Knowledge Undeniable Signatures (Extended Abstract). In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer,
Heidelberg (1991)

8. Diffie, W., Hellman, M.: New directions in cryptography. IEEE IT 22, 644–654
(1976)

9. Damg̊ard, I.B., Pedersen, T.P.: New Convertible Undeniable Signature Schemes. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer,
Heidelberg (1996)

A Generic Construction for Universally-Convertible Undeniable Signatures 31

10. Desmedt, Y., Yung, M.: Weaknesses of Undeniable Signature Schemes (Extended
Abstract). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 205–
220. Springer, Heidelberg (1991)

11. Fujioka, A., Okamotoa, T., Ohta, K.: Interactive Bi-Proof Systems and Undeniable
Signature Schemes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 243–256. Springer, Heidelberg (1991)

12. Goldreich, O.: Foundations of Cryptography, Basic Applications, vol. II. Cambridge
University Press, Cambridge (2004)

13. Goldwasser, S., Micali, S., Rivest, R.: A Digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

14. Galbraith, S.D., Mao, W., Paterson, K.G.: RSA-Based Undeniable Signatures for
General Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217.
Springer, Heidelberg (2002)

15. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer
Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

16. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-Based Undeniable Signatures. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer,
Heidelberg (1997)

17. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatures. Journal
of Cryptology 13(4), 397–416 (2000)

18. Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably Secure Pairing-based Convert-
ible Undeniable Signature with Short Signature Length. In: Pairing 2007. LNCS,
vol. 4575, pp. 367–391. Springer, Heidelberg (2007)

19. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

20. Jongkook, L., Shiryong, R., Jeungseop, K., Keeyoung, Y.: A New Undeniable Sig-
nature Scheme Using Smart Cards. In: Honary, B. (ed.) Cryptography and Coding.
LNCS, vol. 2260, pp. 387–394. Springer, Heidelberg (2001)

21. Jakobsson, M.: Blackmailing Using Undeniable Signatures. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 425–427. Springer, Heidelberg (1995)

22. Furukawa, J., Kurosawa, K., Imai, H.: An Efficient Compiler from Σ-Protocol
to 2-Move Deniable Zero-Knowledge. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 46–57. Springer, Heidelberg
(2006)

23. Kudla, C., Paterson, K.G.: Non-interactive Designated Verifier Proofs and Undeni-
able Signatures. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796,
pp. 136–154. Springer, Heidelberg (2005)

24. Kim, S., Won, D.: Threshold Entrusted Undeniable Signature. In: Park, C.-s., Chee,
S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 195–203. Springer, Heidelberg (2005)

25. Kurosawa, K., Heng, S-H.: 3-Move Undeniable Signature Scheme. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 181–
197. Springer, Heidelberg (2005)

26. Kurosawa, K., Takagi, T.: New Approach for Selectively Convertible Undeni-
able Signature Schemes. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 428–443. Springer, Heidelberg (2006)

27. Huang, Q., Wong, D.S., Zhao, Y.: Generic Transformation to Strongly Unforgeable
Signatures. ACNS 2007, Available online
http://eprint.iacr.org/2006/346

http://eprint.iacr.org/2006/346

32 X. Huang et al.

28. Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally Convertible Directed Sig-
natures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701.
Springer, Heidelberg (2005)

29. Libert, B., Quisquater, J.-J.: Identity Based Undeniable Signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)

30. Lyuu, Y.-D., Wu, M.-L.: Convertible Group Undeniable Signatures. In: Lee, P.J.,
Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 48–61. Springer, Heidelberg
(2003)

31. Laguillaumie, F., Vergnaud, D.: Time-Selective Convertible Undeniable Signatures.
In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer,
Heidelberg (2005)

32. Laguillaumie, F., Vergnaud, D.: Short Undeniable Signatures Without Random
Oracles: The Missing Link. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)

33. Miyazaki, T.: An Improved Scheme of the Gennaro-Krawczyk-Rabin Undeniable
Signature System Based on RSA. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015,
pp. 135–149. Springer, Heidelberg (2001)

34. Michels, M., Petersen, H., Horster, P.: Breaking and Repairing a Convertible Un-
deniable Signature Scheme. In: Third ACM Conference on Computer and Com-
munications Security, pp. 148–152. ACM Press, New York (1996)

35. Michels, M., Stadler, M.: Efficient Convertible Undeniable Signature Schemes. In:
SAC 1997. The 4th International Workshop on Selected Areas in Cryptography,
pp. 231–244 (1997)

36. Monnerat, J., Vaudenay, S.: Undeniable Signatures Based on Characters: How
to Sign with One Bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 69–85. Springer, Heidelberg (2004)

37. Monnerat, J., Vaudenay, S.: Generic Homomorphic Undeniable Signatures. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg
(2004)

38. Monnerat, J., Vaudenay, S.: Optimization of the MOVA Undeniable Signature
Scheme. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp.
196–209. Springer, Heidelberg (2005)

39. Monnerat, J., Vaudenay, S.: Short 2-Move Undeniable Signatures. In: Nguyen, P.Q.
(ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 19–36. Springer, Heidelberg (2006)

40. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). Federal Information Processing Standards Publication 186-2 (January
2000)

41. Ogata, W., Kurosawa, K., Heng, S.-H.: The Security of the FDH Variant of
Chaum’s Undeniable Signature Scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 328–345. Springer, Heidelberg (2005)

42. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

43. Pointcheval, D.: Self-Scrambling Anonymizers. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 259–275. Springer, Heidelberg (2001)

44. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

45. Steinfeld, R., Pieprzyk, J., Wang, H.: How to Strengthen Any Weakly Unforgeable
Signature into a Strongly Unforgeable Signature. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

A Generic Construction for Universally-Convertible Undeniable Signatures 33

46. Teranishi, I., Oyama, T., Ogata, W.: General Conversion for Obtaining Strongly
Existentially Unforgeable Signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)

47. Wang, G.: An Attack on Not-interactive Designated Verifier Proofs for Undeniable
Signatures, Available online http://eprint.iacr.org/2003/243

48. Wang, G., Qing, S., Wang, M., Zhou, Z.: Threshold Undeniable RSA Signature
Scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229,
pp. 221–232. Springer, Heidelberg (2001)

49. Wang, G., Zhou, J., Deng, R.H.: On the Security of the Lee-Hwang Group-Oriented
Undeniable Signature schemes. In: Katsikas, S.K., Lopez, J., Pernul, G. (eds.)
TrustBus 2004. LNCS, vol. 3184, pp. 289–298. Springer, Heidelberg (2004), Avali-
able online http://eprint.iacr.org/2002/150

50. Zhang, F., Safavi-Naini, R., Susilo, W.: Attack on Han et al.’s ID-based Confirmer
(Undeniable) Signature at ACM-EC 2003, Avalibale online
http://eprint.iacr.org/2003/129

51. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairings and Its Application. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

http://eprint.iacr.org/2003/243
http://eprint.iacr.org/2002/150
http://eprint.iacr.org/2003/129

Fast Digital Signature Algorithm Based on
Subgraph Isomorphism

Loránd Szőllősi1, Tamás Marosits1, Gábor Fehér1, and András Recski2,�

1 Dept. of Telecommunications and Media Informatics, Budapest University of
Technology and Economics

2 Dept. of Computer Science and Information Theory, Budapest University of
Technology and Economics

Abstract. A major drawback of nearly all currently existing digital
signature schemes is their computational requirements. Fast algorithms
exist for PCs or hardware accelerated smart cards, but not for low-end
embedded devices which are found in e.g. sensor networks. Such algo-
rithms are also necessary for introduction of inexpensive signature cre-
ation devices to the civil sphere. Our purpose is to analyze a class of
problems that are based on graph theoretic problems instead of modular
arithmetics, and to provide very fast signature creation for embedded
systems at the cost of somewhat longer signatures.

1 Introduction

1.1 Digital Signature, One-Time Signature; Research Goals

From the beginning of network development, there has been a great need for an
algorithm to provide the transmission of “genuineness” of messages. Digital signa-
tures [1,2] warrant three properties: authenticity, integrity and non-repudiation.
A digital signature scheme always relies on a parametric hard problem, usually
but not exclusively based on modular arithmetics. The two parameters of the
problem are the user’s private key (which authenticates the user) and the mes-
sage hash (which depends on the message via a cryptographically strong hash
function). The user ought to be the only one who should be able to calculate the
signature (solve the given instance of the problem) in reasonable time, while - in
the case of asymmetric signature schemes - any person should be able to verify
the signature using the signer’s public key. Since the public key of the user first
has to be circulated amongst the users of the system, we usually have a Certifi-
cate Authority (CA) [3] that associates personal identification information with
public keys. To do this, the CA also uses asymmetric signatures: it signs the
public key and id of the user, therefore issues a certificate. As long as the public

� The authors wish to thank the High Speed Networks Laboratory and the Hungarian
National Research Fund (Grant Number OTKA 67651) for continuous support of
our research.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 34–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 35

key of the CA is known to all users and it is trusted, a new user can enter the
system without first exchanging keys with all the existing users.

A common weak point of currently existing digital signature schemes is their
speed. RSA and DSA are exceptionally slow when implemented on embedded
microprocessors, therefore an additional hardware accelerator has to be included,
increasing system cost. Albeit schemes like SFLASH [4,5] exist that have limited
computational requirements, this is still in the order of thousands of modular
multiplications per signature. Furthermore, according to a yet unpublished ar-
ticle referred by Ecrypt Newsletter [6], SFLASH, amongst other C*-schemes, is
fully broken. One of our goals in the research was to decrease the time of the
signature creation to a similar order as hash calculations.

Our other goal was purely theoretic: to estimate how well a signature algo-
rithm based on graph theory can perform. This is a much less researched field in
cryptography than modular arithmetics, but also offers problems that are much
simpler to calculate. A simple example is subgraph isomorphism [7] or subgraph
matching: given a graph H and a pattern graph G, find the latter in the former
in a way that an edge in H exists between two given vertices if there is an edge
between the corresponding two vertices in G. Most of the hard graph problems,
however, are hard to parameterize by both the message and the user key, be-
cause reusing such a problem multiple times might leak out enough information
to reconstruct the private key. The solution is to use One-Time Signatures (OT-
Ses), which are digital signature systems that can only sign exactly one message
with a user’s private key. To sign multiple messages, multiple keys have to be
constructed.

The relation between digital signatures and one-time signatures has been stud-
ied by Merkle [8], who constructed a tree for signing bits of a message. We will
use a similar concept, as shown in Section 3 but sign actual keys instead of
message bits. We do so to decrease the signature length and supply an infinite
sequence of user keys instead of a sequence with pre-specified length.

1.2 Legal Considerations

Since we are going to sign latter user keys with former ones of the same user (and
not of the CA), the legal basis of such signatures should also be investigated.
In the European Union, any document that is signed by a person should be
considered de jure legitimate [9]. Therefore, according to the current directive,
users are able to issue their own certificates on further keys (although they
certainly cannot assign a different personal identification information to it). In
the United States of America, Uniform Electronic Transactions Act (UETA,
[10]) states that the legal consequences of a document may not be denied solely
because it is in electronic form. Furthermore, Electronic Signatures in Global and
National Commerce Act (E-SIGN [11], in effect since the 1st of October, 2000)
contains some exceptions that prevent the use of electronic signatures in some
areas; according to these two acts, extension of OTS-based signature schemes to
digital signature schemes are legally achievable in both continents.

36 L. Szőllősi et al.

2 A Graph-Based One-Time Signature Algorithm

As described in Section 1.1, subgraph isomorphism (or as sometimes called,
subgraph matching) is the hard problem of finding a subgraph in a large graph
that is isomorphic to a pattern graph. Not only is this problem NP-hard [12,7]
in general (and NP-complete when considered as a decision problem), it is also
well studied for the purpose of pattern recognition and graph transformations,
yet no effective solution has been found. An other possible problems for reliable
signature creation would be Levin’s graph coloration [13,14], which is DistNP-
hard [12] (meaning that random instances tend to be hard to solve, not only
specific instances); or a simplified version of that problem, the graph 3-coloration,
which is NP-hard and studied by [15].

In order to create hard to solve instances of graph and subgraph isomor-
phism one needs to avoid some special, easy to solve graph types. These include
graph with many different degrees and graphs with low genus. Further studies
of when to consider an instance hard can be found in [16,17,18,19]. It should
be noted, that the hardness of this problem mainly relies in choosing proper
graphs; but a graph can be checked before applying for a certificate. Problem
size versus attack hardness was extensively studied by Shuichi Ichikawa and Shoji
Yamamoto [20]; hardware (custom FPGA-based logic) and software-based (Pen-
tium III/600MHz) solutions were compared. These results confirm the expected
exponential growth as problem size increases, and (with regression of measured
data) shows that a graph of 81 or more vertices cannot be mapped faster than in
100000 years with a software-based solution (for the same defense against cus-
tom hardware-based attacks, 264 nodes are required, 256 nodes provide security
for more than 70000 years with current technology and fits in a byte per node;
although actual implementation of such a hardware is unlikely due to the high
number of gates to be used).

The formal protocol of IzoSign OTS is as follows:

Key Generation

1. User generates a random graph G with n vertices having a constant degree
δ.

2. G is tested for being an easy to match pattern for the subgraph isomorphism
(as described in the beginning of Section 2). If it is such an instance, then
restart the algorithm.

3. Extend G randomly to 2n vertices, add edges randomly, keeping the graph
uniform degree.

4. Permute the nodes of the extended graph. The permuted graph will be called
H ; the mapping of the nodes of G to H will be called D(.).

– Public key: G, H (see 1 for a simplified example)
– Private key: D(.) (see 2 for a simplified example)

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 37

Fig. 1. Public key: G (round nodes) and H (rectangular nodes) graphs of IzoSign

Fig. 2. Private key: mapping (dashed) between the nodes of G (round) and H
(rectangular)

Signature Generation

Signature generation can be performed once per key as this is a one-time signa-
ture algorithm. To extend it to a digital signature algorithm, see Section 3. We
assume that the users of the system have agreed upon a secure hash algorithm
(denoted as h(.)) that maps messages to an integer between 0 and

(
n
k

)
−1, where

38 L. Szőllősi et al.

Fig. 3. Signature generation: subgraph chosen by the hash function in G (round) and
corresponding nodes in H (rectangular)

k ≤
(
n
k

)
specifies the required security level. Larger k means higher level but

longer signatures.

1. Calculate h(m) where m is the message.
2. Interpret this number as one of the possible choices of k of the n vertices of G.

Since this can be done in
(
n
k

)
different ways and h(m) can have

(
n
k

)
different

values, this is a one-to-one mapping between hash values and choices. The
chosen vertices will be denoted as vi, 0 < i ≤ k (see Figure 3 for a simplified
example).

3. Present D(vi) for all 0 < i ≤ k in the order as the vertices of G are indexed.
This step is simply k memory lookups. (In the above example, for the nodes
a, b, d, output f, g, e as seen in Figure 2).

Signature Verification

1. Calculate h(m) where m is the message.
2. Interpret this number as one of the possible choices of k of the n vertices of G.

Since this can be done in
(
n
k

)
different ways and h(m) can have

(
n
k

)
different

values, this is a one-to-one mapping between hash values and choices. The
chosen vertices will be denoted as vi, 0 < i ≤ k.

3. Check whether the subgraph of H specified by D(vi) is exactly the same as
the subgraph of G specified by vi. Since the vertices D(vi) in H will appear
in the order as vi appear in G, this is merely a memory compare operation
of the restricted adjacency matrices.

Security of the Algorithm

Security analysis of the IzoSign OTS protocol is a relatively easy task, as it relies
on a problem researched widely for the purpose of pattern recognition. Simple

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 39

Fig. 4. Speed comparison of software-based and custom logic hardware-based
(BOOT2) subgraph isomorphism algorithms (image from [20])

cases of the problem are known [16,17,18,19] and can be avoided at the time
of graph generation; for general graphs, both the fastest algorithms and custom
logics are exponential in the number of nodes. In particular, one should avoid
graph generation algorithms that produce graphs with fixed genus (especially
planar graphs), bounded valence, or graphs with adjacency matrices that have
bounded eigenvalue multiplicity. Trivially testable necessary criterion for each of
these properties exist. If all of them are tested and proven not to hold for a given
graph, then this graph can be used as a key, because with high probability we
can conclude that no currently known algorithm is able to break it in reasonable
time.

According to the available literature, the following graph classes are “easy”
for the algorithm:

– k-connected partial k-trees: having an algorithm in the order of O(nk+2) (that
is, polynomial in n but exponential in k) [21];

– partial k-trees of bounded degree: also having an algorithm in the order of
O(nk) [22]. Either k ∼ n, when this limit becomes exponential; or the k-tree
has a linear number of edges (explained below), which is impossible using
the graph generation specified in Section 2.

– trees: a subproblem of the above two cases, which is easy to match, but also
easy to detect; furthermore, a tree of n nodes will have exactly n − 1 edges,
whereas the algorithm described generates graphs with quadratic edge count;

– two-connected outerplanar graphs: these graphs can be matched in cubic
time[23], but outerplanar graphs are also planar and as such theycan be
recognized in linear time [24]. These graphs can also be avoided if the number
of edges is high (see below);

– two-connected series-parallel graphs: [25], series-parallel graphs are also out-
erplanar and therefore avoided;

– k-connected partial k-paths: [21,26], these graphs are a subset of k-connected
partial k-trees with very low edge count, and are therefore avoided;

40 L. Szőllősi et al.

– strongly regular graphs: are easy for isomorphism [27,28] (albeit not yet shown
to be polynomial for subgraph isomorphism), these graphs are avoided if the
criteria of strong regularity is checked for when the key graph is generated.

We have seen that, by avoiding two cases of problems (namely partial k-trees and
outerplanar graphs), we can avoid all currently known easy cases of the problem.
It should be noted here that, albeit the problem itself is very well analyzed, there
is no warranty that a research dated later than this paper will not find other
simple classes of this problem. As long as these classes do not cover the whole
set of key graphs, however, this will only break a given subset of keys and will
only need minor patches to the algorithm. We will now prove that the simple
cases are either avoided or are not that simple (i. e., polynomial) at all.

Partial k-trees of n nodes have kn − k2

2 − k
2 ≤ kn edges [29], while every

vertex of our key graph has a degree of n
2 , thus it has an edge count in the order

of n2. Therefore, if our graph is a partial k-tree, then k ∼ n. This results in
an execution time of O(nn), which is asymptotically worse than testing all the
possible permutations.

Outerplanar graphs are planar. Planarity, first of all, can be checked in linear
time [24]. One should also notice that the planarity criteria e ≤ 3n− 6 for n ≥ 3
leads to an edge count that is linear in the number of vertices. Our key graph,
however, has quadratic edge count, therefore, for all practical values of n, it
cannot be a planar graph.

We still need to specify the parameters of the graph. Extrapolating the re-
search results of [20] with exponential fitting (see Figure 4), we choose n = 256
and k = 128 as key size of the algorithm. With these choices the matching of
one resulting graph pattern is expected to require 70000 years to break using
data-dependent custom logic circuits. This specifies H as a graph of 512 vertices.

Properties of the Algorithm

As shown above, this is a very fast algorithm for both signature and verifica-
tion. Fine-tuning of the security level is possible both at key generation and
at signature creation time. One might choose to present a longer signature for
documents that require more confidence. With the parameters described above,
vertex index can be stored on 9 bits. With these choices, the signature size will
be 1152 bits; the public key is 130816 bits or 16 KB (if the adjacency matrix is
stored), while the private key is 2304 bits (by simply storing the index of mapped
vertices). These values are summarized in Figure 6.

Creating distributed signatures is feasible with the naive algorithm of dividing
the knowledge of D(.) between multiple users. A more sophisticated algorithm
would be to have one distinct mapping Du(.) for each user and specify D =
D1 ◦ D2 ◦ ... ◦ DU , where U is the count of users. This requires all the users
to participate in the signature creation. Extending this algorithm is one of our
current research directions.

All the above described properties will be preserved when IzoSign is converted
into a digital signature scheme.

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 41

3 Extending IzoSign to a Digital Signature Scheme

As presented in Section 1, Merkle tree scheme can be used to transform an OTS
into a digital signature scheme. We use a modified version of this scheme, where
we store (and thus sign) keys in the vertices rather than message bits. It is
important to notice that we still use public key signatures in the tree as opposed
to the original Merkle tree.

We first define the user’s private key as a graph, as in IzoSign (Section 2),
and a pseudorandom sequence of permutations and extensions of this graph. We
assume that this pseudorandom sequence can only be calculated by the user (i.e.,
it is a strong pseudorandom generator). We shall build a tree of this sequence;
each node of this tree will be used for exactly one signature creation over either
a message or a self-certificate.

A self-certificate can be thought of as a message saying “the messages signed
with the private key whose public key is included should be considered signed by
the owner of this key”. It is mathematically a signed hash of a list of public keys.
This way, by consuming only one key, a user can produce arbitrary many valid
(OTS) keypairs. In order to make these keypairs easy to calculate on the fly, they
shall be the elements of a random access pseudorandom sequence. Clearly, earlier
elements of this sequence are used to sign further elements. Public elements are
the public keys in the tree and the certificates; while private elements are private
keys and the pseudorandom number generator. The number of elements signed in
each round plays an important role as the list of keys (that are signed) should also
be transmitted with the signature; and, as we will see, they will be transmitted
with the signature of the message.

First, the CA issues 2z keys for the user. It does so by signing the hash of these
keys (concatenated into one message, which also includes personal identification
information) with one of its own keys. Then the user uses the first z keys to
sign messages, while the remaining z keys will be used later to sign key lists
of another 2z elements. We graphically represent the latter by connecting the
given key to the 2z keys that it signs (Figure 5). This results in a tree of keys,
with the root node being the key of the CA. We define the order of nodes as
the breadth-first search. Whenever the user wants to sign a message, he first
searches for the first unused key that can be used to sign a message. In order to
have this signature accepted, he has to present

1. the signature;
2. all the public keys on the path from the root node to this node;
3. the signatures of the public key lists that contain the above nodes; and
4. to be able to verify the signatures, all the remaining public keys in the above

key lists.

One might notice that, although a considerably large block is to be signed,
constructing this block only requires memory reads, evaluation of the pseudo-
random function and hash calculations. All these operations are very fast when
compared to modular arithmetic calculations. After testing several criteria on G

42 L. Szőllősi et al.

Fig. 5. Modified Merkle scheme

(before creating the first signature), only fast and memory-efficient operations
are performed on the signature creation device. Therefore, this signature scheme
is more useful in situations where computing performance and power consup-
tion are more restricted than either available bandwidth or transmission time.
It should also be noted that signature length is not constant, it grows over time.
The first z signatures can be transmitted in ∼ k log n bytes, while the further
nodes will require ∼ kz log n log i bytes (where i is the count of signatures already
consumed).

Another interesting property is that the signature security level (and thus
the signature size) can be fine-tuned at the time of signature creation. One
might choose a different k value for each message; larger k values provide more
confidence while smaller values allow for shorter signatures. With the choices
presented in Section 2 (that is, n = 256 and k = 128), and setting z = 10, the
public key of the algorithm will be around 320 KB (a list of 2z IzoSign keys plus
one signature on the hash), and the first 10 signatures will only require 1152 bits,
while the next 100 require about 320 KB (for transmitting the second key block
and its signature), and the next 1000 will need 640 KB. With one key, more
than 111000 signatures are possible that are shorter than 1.2 MB. One should
also note that, since all subtrees and signatures are generated on-the-fly, the
memory requirements on the signer does not exceed the memory requirements
for two IzoSign signatures. This adds up to 2.3 KB RAM and 576 bytes of
ROM (see summary in Figure 6) plus the requirements of the hash function. All
the memory-intensive calculations are done on the verification side, which does
not require as secure computations as the signature creation and thus can be
performed on a conventional PC.

4 Cached Subkeys Protocol

When two parties exchange messages regulary, it is quite impractical to send
everything described above along each message. These messages will share some
common parts as the whole path from the root node to the actual node (see
Figure 5) are parts of the signature. The first note one should take that parts

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 43

Performance of
algorithms

One-Time
Signature

Digital
Signature

Cached
Subkeys

RSA

Public key 16KB 320KB 16KB 1-4KB
Private key 2304 bits <300 bytes <300 bytes 1-4KB
Initialization - - 320KB -

1.2MB
-

Signature 1152 bits 320KB -
1.2MB

~34KB 1-4KB

Signature
creation

~1μs ~1ms (incl.
transmis-

sion)

~20μs ~1-3s

Signature
verification

~1μs ~1ms (incl.
transmis-

sion)

~20μs ~1-3s

Fig. 6. Comparison of presented algorithms and RSA (on embedded devices)

already sent should not be sent again; instead, they should be cached on the
other side. This, however, would not predict any decrease of the signature size
if one communicates with multiple parties.

A naive algorithm would be to use distinct keys for each partner. This would
increase the total number of keys in the system quadratically in the number of
users. If, however, self-generated keys are used, then these keys are not neces-
sarily known by the Certificate Authority, and thus will not put additional load
on the system. So we will build two types of modified Merkle trees (see Figure
5): the first type have a root node signed by the CA, sign their own keys and
the root key of the trees of the second type; while each second type tree will be
used for signing messages for a given communicating partner. Each user has one
first type tree, and will build one second type tree for each other party before
sending messages to him. Since trees are traversed breadth-first while generat-
ing signatures, using one node in a second type tree also means that every node
with a smaller index (“to the left or above” in Figure 5) are already transmitted.
Therefore, these nodes should not be transmitted again. One either transmits
these as required, or transmits key blocks ahead to avoid the variance of message
size.

The non-common parts require ∼ kz log n bytes, independent of the number
of already consumed signatures, while the pre-transmitted blocks require space
for 1/z graph and one signature. With the parameters above, this adds up to
∼ 34KB per message plus an initialization of 320KB to 1.2MB as seen in Figure 6,
the latter required only once per communicating partner.

5 Conclusions

We presented a simple one-time signature scheme, and an application of a mod-
ified Merkle scheme to convert it into a digital signature scheme. The scheme

44 L. Szőllősi et al.

is based on the hard problem of subgraph isomorphism, and is as hard as that
problem. The main property of this scheme is that it generates signatures very
fast (fast enough to make the hash calculation the bottleneck instead of actual
signatures), in the expense of logarithmically growing signature sizes. In practical
network use, the expected amount of data to be transmitted for each signature
converges to a constant. There are two practical areas where this algorithm
might be found useful: signature generation in sensor networks and inexpensive
signature generation devices for everyday use.

In sensor networks, the central node might request a signature on a set of
measurements that would generate an alert (we only sign important messages,
as signing all of the measurements is usually uneconomical because of bandwidth
requirements and key exposure). However, most currently existing algorithms are
slow on embedded devices to generate signatures in real-time, at the request of
the central node. With an IzoSign-based digital signature scheme, virtually any
low-end hardware device can be equipped with the signature creation capability.

The everyday use of signature creation devices is mainly limited by their price.
Decreasing the cost of signature creation devices by a factor of 10 would be
necessary to make them competitive in the areas of micro- and macropayment
and ticket vendor systems. In these areas, both the customer and the service
provider are interested in non-repudiable signatures, and its not unlikely that
a service provider would provide temporarily signature creation devices to the
customers free of charge (i.e., costs included in the service fee) if prices of these
devices would drop significantly.

Both the OTS and the digital signature scheme have fine-tunable parameters;
some of them can be decided at signature creation time, thus allowing shorter
signatures for transactions with lower requirements while maintaining the pos-
sibility of creating very strong signatures when needed.

References

1. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley & Sons, Inc., New York (1993)

2. Rivest, R.L., Shamir, A., Adelman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Technical Report MIT/LCS/TM-82 (1977)

3. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
x.509 public key infrastructure certificate and certificate revocation list (crl) profile
(internet-draft) (2006),
http://www.ietf.org/internet-drafts/draft-ietf-pkix-rfc3280bis-06.txt

4. Courtois, N.T., Goubin, L., Patarin, J.: Sflashv3, a fast asymmetric signature
scheme. Cryptology ePrint Archive, Report 2003/211 (2003),
http://eprint.iacr.org/

5. Gilbert, H., Minier, M.: Cryptanalysis of sflash. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg (2002)

6. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Breaking sflash,
http://www.ecrypt.eu.org/webnews/webnews1206.htm#sflash

http://www.ietf.org/internet-drafts/draft-ietf-pkix-rfc3280bis-06.txt
http://eprint.iacr.org/
http://www.ecrypt.eu.org/webnews/webnews1206.htm#sflash

Fast Digital Signature Algorithm Based on Subgraph Isomorphism 45

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge, MA (1990)

8. Merkle, R.C.: A certified digital signature. In: Proceedings on Advances in Cryp-
tology (1989)

9. European Parliament and Council: Directive 1999/93/ec on a community frame-
work for electronic signatures (1999),
http://europa.eu.int/ISPO/legal/en/ecommerc/digsig.html
http://www.legi-internet.ro/diresignature.htm

10. U.S. House of Representative: Uniform electronic transactions act (UETA),
http://www4.law.cornell.edu/uscode/15/7001.html

11. U.S. House of Representative: Electronic signatures in global and national
commerce act (e-sign) (2000),
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname1̄06_cong_
public_laws&docidf̄:publ229.106.pdf

12. Aaronson, S.: (Complexity zoo),
http://qwiki.caltech.edu/wiki/Complexity_Zoo

13. Venkatesan, R., Levin, L.: Random instances of a graph coloring problem are hard.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of comput-
ing, ACM Press, New York (1988)

14. Levin, L.A., Venkatesan, R.: An average case NP-complete graph problem. Com-
puter Science (2001)

15. Xu, S., Zhu, H., Zhang, G.: Digital signature schemes based on graph isomorphism
and graph 3-colorability problems In: Proceedings of CrypTEC 1999

16. Filotti, I.S., Mayer, J.N.: A polynomial time algorithm for determining isomor-
phism of graphs of fixed genus. In: Proceedings of the Twelfth Annual ACM Sym-
posium on Theory of Computing (1980)

17. Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proceedings of
the Twelfth Annual ACM Symposium on Theory of Computing (1980)

18. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. In: Proceedings of 21st IEEE FOCS Symp. (1980)

19. Babai, L., Grigoryev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded
eigenvalue multiplicity. In: Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing (1982)

20. Ichikawa, S., Yamamoto, S.: Data dependent circuit for subgraph isomorphism
problem. In: Proceedings of 12th Int’l Conf. on Field Programmable Logic and
Applications (2002)

21. Dessmark, A., Lingas, A., Proskurowski, A.: Faster algorithms for subgraph iso-
morphism of k-connected partial k-trees. In: European Symposium on Algorithms
(1996)

22. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of
partial k-trees. tcs 164 (1996)

23. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theor. Comput. Sci. 63(3) (1989)

24. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974)

25. Lingas, A., Syslo, M.M.: A polynomial-time algorithm for subgraph isomorphism of
two-connected series-parallel graphs. In: Lepistö, T., Salomaa, A. (eds.) Automata,
Languages and Programming. LNCS, vol. 317, Springer, Heidelberg (1988)

http://europa.eu.int/ISPO/legal/en/ecommerc/digsig.html
http://www.legi-internet.ro/diresignature.htm
http://www4.law.cornell.edu/uscode/15/7001.html
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbnameunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {1global mathchardef accent@spacefactor spacefactor }accent 9 1egroup spacefactor accent@spacefactor 06_cong_public_laws&docidunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {fglobal mathchardef accent@spacefactor spacefactor }accent 9 fegroup spacefactor accent@spacefactor :publ229.106.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbnameunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {1global mathchardef accent@spacefactor spacefactor }accent 9 1egroup spacefactor accent@spacefactor 06_cong_public_laws&docidunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {fglobal mathchardef accent@spacefactor spacefactor }accent 9 fegroup spacefactor accent@spacefactor :publ229.106.pdf
http://qwiki.caltech.edu/wiki/Complexity_Zoo

46 L. Szőllősi et al.

26. Gupta, A., Nishimura, N.: Characterizing the complexity of subgraph isomorphism
for graphs of bounded path-width. In: Puech, C., Reischuk, R. (eds.) STACS 1996.
LNCS, vol. 1046, Springer, Heidelberg (1996)

27. Babai, L.: Automorphism groups, isomorphism reconstruction. In: Graham, R.,
Grötschel, M., Asz, L.L. (eds.) Handbook of Combinatorics, Elsevier Science, Am-
sterdam (1995)

28. Spielman, D.A.: Faster isomorphism testing of strongly regular graphs. In: STOC
1996: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, ACM Press, New York (1996)

29. Biedl, T.: Graph-Theoretic Algorithms. University of Waterloo (2004),
http://www.student.cs.uwaterloo.ca/~cs762/Notes/lecture9.ps

http://www.student.cs.uwaterloo.ca/~cs762/Notes/lecture9.ps

Efficient ID-Based Digital Signatures

with Message Recovery

Raylin Tso1, Chunxiang Gu2, Takeshi Okamoto1,†, and Eiji Okamoto1,‡

1 Department of Risk Engineering
Graduate School of Systems and Information Engineering

University of Tsukuba, Japan
{raylin, †ken, ‡okamoto}@risk.tsukuba.ac.jp

2 Network Engineering Department, Information Engineering University
Zhengzhou P.R. China

gcxiang5209@yahoo.com.cn

Abstract. A digital signature with message recovery is a signature that
the message itself is not required to be transmitted together with the sig-
nature. Comparing with other (non-short) digital signatures, it has the
advantage of small data size of communication. This kind of signature
schemes have been widely investigated a decade ago, but, no ID-based
message recovery signature is proposed until 2005 by Zhang et al. Since,
up to the present, no method can be used to shorten ID-based signa-
tures directly, ID-based message recovery signatures are regarded as a
useful method to shorten ID-based signatures, in contrast to proposing
a short signature scheme. In this paper, two new ID-based signature
schemes with message recovery are proposed. The first one can deal with
messages of fixed length and the second one can deal with messages of
arbitrary length. Similar to Zhang et al.’s schemes, our schemes shows
the idea of shortening ID-based signatures. However, our schemes are
more efficient than Zhang et al.’s schemes. In addition, after comparing
with Boneh et al.’s short signature (which is not ID-based), we find that
although the communication cost is still a little larger than that of a
short signature, the computational cost of our scheme is less than that
of Boneh et al.’s short signature in the verification phase and our schemes
surpass a short signature scheme in the concept of ID-based property.
Under the hardness of k-BDHI problem, our schemes are proven secure
in the random oracle model.

Keywords: ID-based signature, k-BDHI problem, message recovery,
pairing, short signature.

1 Introduction

A digital signature scheme with message recovery [1,9] is a signature scheme that
the original message of the signature is not required to be transmitted together
with the signature. The message is embed in a signature and can be recovered

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 47–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 R. Tso et al.

according to the verification/message-recovery process. It is different from an
authenticated encryption scheme [12,13] or a signcryption scheme [2,22] in the
sense that, in message recovery schemes, the embed messages can be recovered by
anyone without any secret information. The purpose of this kind of signatures is
to minimize the total length of the original message and the appended signature.
Signature schemes with message recovery are useful for an organization where
bandwidth is one of the main concerns. For example, on wireless devices such as
PDAs, cell phones, RFID chips and sensors, battery life is the main limitation.
Communicating even one bit of data uses significantly more power than executing
one 32-bit instruction [3]. Reducing the number of bits to communicate saves
power and is important to increase battery life.

It is also useful for the applications in which small messages should be signed.
For example, small messages including time, date and identifiers are signed in
certified email services and time stamping services. For instance of signing a
postcard, it is also desirable to minimize the total length of the original message
and the appended signature.

Related Works: It is obvious that an RSA signature [18] can be used with
message recovery since it is unique in the sense that the signature and encryption
functions are inverse to each other. But, for small size messages, it yields much
larger signatures. For example, to sign a 100-bit message, the signature will be
the size of 1024-bit. In 1993, Nyberg and Ruepple [15] proposed the first digital
signature with message recovery based on the discrete logarithm problem (DL
problem). Schemes based on the DL problem produce relatively small signatures
when they are implemented over a finite group over elliptic curve. For example,
a 320-bit signature is enough for a 100-bit message. Accordingly, DL problem
based signature schemes with message recovery (as well as their variants) are
appropriate for signing small messages and have been extensively investigated
in the literatures (e.g., [1,14,15,16,20]).

The concept of identity-based (ID-based) cryptosystem was firstly introduced
by Shamir [19] in 1984 which can simplify key management procedures of tra-
ditional certificate-based cryptography. Following this pioneering work, many
ID-based cryptosystems have been proposed [4,6,8,10,21]. But, no ID-based sig-
nature scheme with message recovery was proposed until the scheme proposed
by Zhang et al. [21] in 2005.

In [21], Zhang et al. proposed two schemes: an ID-based message recovery
signature scheme for messages of fixed length, and an ID-based partial message
recovery signature scheme for messages of arbitrary length. Their schemes not
only showed message recovery signatures in an ID-based scenario but also solved
the drawbacks of previous proposed schemes. That is, previous proposed signa-
ture schemes with message recovery can only deal with messages of fixed length
and it is unclear how to extend them when the message exceeds some given size.
In addition, since no method can be found to shorten ID-based signatures up
to the present, Zhang et al. ’s idea gives a new direction to shorten ID-based
signatures in contrast to proposing a short signature scheme [7].

Efficient ID-Based Digital Signatures with Message Recovery 49

Our Contribution: Following Zhang et al. ’s idea, this paper is supported
by the motivation, namely how to shorten ID-based signatures efficiently, in
construct to proposing a short signature scheme. The main contribution of this
paper is to propose two ID-based signature schemes with message recovery which
are more efficient than Zhang et al. ’s schemes. Similar to their schemes, our
second scheme is a variation of our first scheme in order to deal with messages
of arbitrary length. In addition, comparing with Zhang et al. ’s schemes, our
schemes improve the computation cost by one scalar multiplication in the signing
phase and almost one pairing computation in the verify/message-recovery phase.
Our idea is inspired from Barreto et al.’s ID-based signature scheme [4] in the
benefits that our schemes inherit the efficiency (ie., computation cost) of their
scheme on one side and also reduce the communication cost comparing with
[4] on the other side. Based on the hardness assumption of the Bilinear Diffie-
Hellman Inverse (BDHI) problem [23], we will prove the security of the proposed
scheme in the random oracle model.

The rest of this paper is organized as follows. in Section 2, we recall some
preliminary works which will be used throughout this paper. In Section 3 and
Section 4, we present our new scheme, its variation and the efficiency comparisons
with other schemes. In Section 5, we give a concrete proof of our scheme in the
random oracle model. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Bilinear Pairings and the Related Computational Assumption

Let (G1, +) and (G2, ·) be two cyclic groups of the same prime order q. ê :
G1 × G1 → G2 be a map which satisfies the following properties:

1. Bilinear: ∀P, Q ∈ G1, ∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ,
2. Non-degenerate: If P is a generator of G1, then ê(P, P) is a generator of G2,
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Such an bilinear map is called an admissible bilinear pairing [6]. The Weil pair-
ings and the Tate pairings of elliptic curves can be used to construct efficient
admissible bilinear pairings.

We review a complexity problem related to bilinear pairings: the Bilinear Diffie-
Hellman Inverse (BDHI) problem [23]. Let P be a generator of G1, and a ∈ Z∗q .

• k-BDHI problem: given (P, aP, a2P, ...akP) ∈ (G∗1)
k+1, output ê(P, P)a−1

.
An algorithm A solves k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP) = ê(P, P)a−1
] ≥ ε,

where the probability is over the random choice of generator P ∈ G∗1, the
random choice of a ∈ Z∗q and random coins consumed by A.

Definition 1. We say the hardness assumption of k-BDHI problem is (t, ε)-
secure if there is no such algorithm A with at least ε advantage in solving the
above problem within time t.

50 R. Tso et al.

2.2 Scheme Model

An ID-based message recovery signature scheme is defined by four algorithms:

• Setup: A deterministic algorithm which takes as input a security parameter
λ, outputs the Key generation Center KGC’s private key, SKGC , and public
key, Ppub, together with the system parameters, para.

• Extract: A probabilistic algorithm which takes as input an identity, IDi, of
a user, outputs the user’s private key, SIDi

.
• Sign: A probabilistic algorithm which takes as input a signer’s private key

SID and a message m, outputs a signature σ.
• Verify: A deterministic algorithm which takes as input the sender’s identity,

ID, and the signature, σ, outputs 1 if σ is a valid signature. In this case, the
original message can be recovered successfully. Otherwise, outputs 0.

2.3 Security Definition

For digital signatures, the widely accepted notion of security was defined by
Goldwasser et al. in [11] as existential forgery against adaptive chosen-message
attack (EF-ACMA). It’s ID-based variation is defined via the following game.
This game is executed between a challenger C and an adaptively chosen message
adversary A.

• The challenger C runs the setup algorithm to generate the system’s param-
eters and sends them to the adversary A.

• The adversary A performs a series of queries to the following oracles:
• Key extraction oracle EX : For each key extraction query on an iden-

tity ID, returns a private key corresponding to the identity.
• Signing oracle OS: For each signing query on a message and a signer’s

identity ID, produces a signature on the message using the private key
corresponding to the identity.

• A outputs a triple (ID∗, M∗, σ∗) made of an identity ID∗.

We say A wins the game if the private key corresponding to the identity ID∗

was never extracted, and a message-signature pair (M∗, σ∗) such that (M∗, ID∗)
was not submitted to the signing oracle.

Definition 2. An ID-based digital signature scheme is said to be secure against
EF-ACMA and identity attacks if no probabilistic polynomial time (PPT) ad-
versary has a non-negligible advantage in the above game.

2.4 Notations

The following notations will be used throughout this paper:

• a||b: a concatenation of two strings a and b,.
• ⊕: X-OR computation in the binary system.

Efficient ID-Based Digital Signatures with Message Recovery 51

• [x]10 : the decimal notation of x ∈ {0, 1}∗.
• [y]2 : the binary notation of y ∈ Z.
• l2 |β| : the first l2 bits of β from the left side.
• |β|l1 : the first l1 bits of β from the right side.
• G1, G2: two cyclic groups of the same order q, |q| = l1 + l2.
• ê : G1 × G1 → G2: the admissible bilinear pairing.
• μ: the value of ê(P, P).
• H : {0, 1}∗ → Zq

∗: a cryptographic one-way hash function.
• H1 : {0, 1}∗ → {0, 1}l1+l2 : a cryptographic one-way hash function.
• F1 : {0, 1}l1 → {0, 1}l2: a cryptographic one-way hash function.
• F2 : {0, 1}l2 → {0, 1}l1: a cryptographic one-way hash function.

3 Proposed Schemes

In this section, we present our first ID-based message recovery signature scheme
with the restriction that it can deal with only messages of some fixed length (ie.,
m ∈ {0, 1}l1 for some fixed integer l1).

• Setup: On input a security parameter λ ∈ N , the algorithm outputs a
random number s ∈ Z∗q as KGC’s private key and sets Ppub = sP as KGC’s
public key. The system parameters made public are

para = {G1, G2, ê, q, P, Ppub, μ, H, H1, F1, F2, l1, l2}.

• Extract: On input a user’s identity IDi ∈ {0, 1}∗, KGC computes the user’s
private key SIDi

= (H(IDi) + s)−1P . The user’s ID-based public key PIDi

is (H(IDi) + s)P . From the view of a verifier, this can be computed as
H(IDi)P + Ppub.

• Sign: To sign a message m ∈ {0, 1}l1, a signer A with private key SIDA
does

the following steps:
(1) pick a random number r1 ∈ Zq

∗, compute μr1 and α = H1(IDA, μr1) ∈
{0, 1}l1+l2 , where IDA is a binary string representing the signer’s identity,

(2) compute β = F1(m)||(F2(F1(m)) ⊕ m) and r2 = [α ⊕ β]10,
(3) compute U = (r1 + r2)SIDA

.
The signature σ on m is (r2, U).

• Verify: Given the signature σ and IDA, a verifier does the following steps:

(1) compute α̃ = H1(IDA, ê(U, PIDA
)μ−r2),

(2) compute β̃ = [r2]2 ⊕ α̃,
(3) recover the message m̃ = |β̃|l1 ⊕ F2(l2 |β̃|),
(4) output 1 and accept σ as a valid signature of the message m̃(= m) if

and only if l2 |β̃| = F1(m̃).

Correctness: The correctness of this scheme can be proved as follows:

52 R. Tso et al.

ê(U, PIDA
)μ−r2

= ê((r1 + r2)SIDA
, PIDA

)ê(P, P)−r2

= ê(SIDA
, PIDA

)(r1+r2)ê(P, P)−r2

= ê((H(IDA) + s)−1P, (H(IDA) + s)P)r1+r2

ê(P, P)−r2

= ê(P, P)r1+r2 ê(P, P)−r2

= ê(P, P)r1 = μr1 .

If σ is a valid signature, then H1(IDA, μr1) = α and

F1(m)||(F2(F1(m)) ⊕ m) = β = [r2]2 ⊕ α.

Hence, we obtain

|β|l1 ⊕ F2(l2 |β|)
= (F2(F1(m)) ⊕ m) ⊕ F2(F1(m))
= m.

Finally, the integrity of m is justified if l2 |β| = F1(m). �

3.1 Variation (A Partial Message Recovery Scheme for Long
Messages)

In this section, we simply modify the previous scheme so that the modified
scheme can be used for messages of arbitrarily length (i.e., m ∈ {0, 1}∗).

• Setup: The same as the previous scheme.
• Extract: The same as the previous scheme.
• Sign: To sign a message m ∈ {0, 1}∗, A does the following steps:

(1) divide m into m2||m1 with |m1| = l1,
(2) pick a random number r1 ∈ Zq

∗, compute μr1 and α = H1(IDA, m2, μ
r1),

(3) compute β = F1(m1)||(F2(F1(m1)) ⊕ m1) and r2 = [α ⊕ β]10,
(4) compute U = (r1 + r2)SIDA

.
The signature σ on m is (r2, U) and the partial message m2 is sent together
with σ.

• Verify: Given the signature σ, the partial message m2 and IDA:
(1) compute α̃ = H1(IDA, m2, ê(U, PIDA

)μ−r2),
(2) compute β̃ = [r2]2 ⊕ α̃,
(3) recover m̃1 = |β̃|l1 ⊕ F2(l2 |β̃|),
(4) output 1 and accept σ if and only if l2 |β̃| = F1(m̃1), otherwise, output 0

and abort the next step,
(5) recover m = m2||m̃1.

Correctness: The correctness of the scheme is straightforward according to that
of the previous scheme.

Efficient ID-Based Digital Signatures with Message Recovery 53

Table 1. Performance Evaluation

ID-based Total Length Sign Verify

Scheme 1∗ Y |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC

Scheme 2† Y |m| − l1 + |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC
BLMQ[4] Y |m| + |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC
BLS[7] No |m| + |G1| 1EC + 1H 2ê + 1EC + 1H

ZSM[21] 1∗ Y |q| + |G1| 1Exp. + 2EC 2ê + 1Exp + 1H.

ZSM[21] 2† Y |m| − k2 + |q| + |G1| 1Exp. + 2EC 2ê + 1Exp. + 1H
∗ Available for messages of fixed length only.
† k2 = l1 = 91.

4 Performance Comparison

Denote our scheme and the modified scheme by Scheme 1 and Scheme 2, respec-
tively. In this section, we compare our schemes with [7], [4] and [21] in total length
of “|signature|+|message|” and the computation cost required by a signer and a
verifier, respectively. The scheme in [7] is a short signature scheme with efficient
communication and computation cost. The scheme in [4] is an efficient ID-based
signature scheme which our schemes are based on, and the schemes in [21] are
the first ID-based message recovery signature schemes proposed by Zhang et al.

In Table 1, we denote by ê a computation of the pairing, EC an ordinary
scalar multiplication in G1, and Exp. an exponential operation in G2. In addi-
tion, the hash functions used by our schemes and the scheme of BLMQ[4] are
generic and efficient so the computation cost can be neglected. On the contrary,
Boneh et al. [7] and Zhang et al. [21] ’s schemes depend on a special hash func-
tion called ”MaptoPoint”, which is still probabilistic and usually not efficient
enough to be neglected. The computation of a ”MaptoPoint” hash is denoted by
H in Table 1.

To compare at approximately the same security as a standard 1024-bit RSA
signature, q should be a 170-bit prime and G1 be a group where each element
of G1 is 171-bit if we use any of the families of curves described in [7]. In ad-
dition, l1 = k2 = 91 according to [21] in order to obtain a 2−80 probability
of the verification condition holding for an attempted forgery generated by an
adversary.

The total length of the signature produced by our scheme I is |r2 + U | =
|q| + |G1|. This signature can be used to sign and recover a message m with
|m| = l1 = 91 bits. The total length required in our scheme II is |m2 + r2 +U | =
|m| − l1 + |q| + |G1|. Scheme II can be used to sign a message m of arbitrary
length. The communication cost (ie., the total length) required in our schemes
and ZSM[21] are the same. But, our schemes improves the computational cost
by 1EC in the signing phase and almost 1ê in the verify/recovery phase.

To compare with Boneh et al. ’s short signature scheme [7] which has the
least data size of a signature, we see from these results that the total length in
our schemes is about |q| − l1 = 79-bit larger then that of [7]. But, our schemes

54 R. Tso et al.

happens to be faster than [7] at verification and exceed [7] in the aspect of
ID-based propoerty.

To compare with the scheme in [4], we have the same computation cost but
different communication cost. Actually, our schemes are faster than all known
pairing-based IBS methods according to [4] since our schemes inherit the ef-
ficiency of [4] but surpass [4] in the aspect of total length (i.e., |message| +
|signature|).

5 Security Proof

Since the two schemes are essentially the same and can be proved in a similar
way, we give a concrete security proof of the basic scheme in this section only.
We will show that the proposed scheme is secure against EF-ACMA and identity
attacks in the random oracle model, assuming the hardness of k-BDHI problem
(see Definition 1).

We assume through this paper that the k-BDHI problem is intractable, which
means that there is no polynomial time algorithm to solve k-BDHI problem with
non-negligible probability.

Theorem 1. In the random oracle model, let A0 be a polynomial-time adver-
sary whose input only consists of public data, and can succeed in existential
forgery on our scheme (IDMR) with un-negligible probability. We denote re-
spectively by n0,n1 and ns the number of queries that A0 can ask to the random
oracle H(.), H1(.) and the singing oracle Sign(.). Then we show how to con-
struct another adversary A1 who can solve the (n0 + 1)-BDHI problem with
un-negligible probability.

Proof: Without any loss of generality, we may assume that for any ID, A0

queries H(.) with ID before ID is used as (part of) an input of any query to
Extract(.) and Sign(.).

A1 is given input parameters of pairing (q, G1, G2, ê) and a random instance
(P, aP, a2P, ..., an0P, an0+1P) of the (n0 +1)-BDHI problem, where P is random
in G∗1 and a is a random number in Z∗q . A1 simulates the challenger and interacts
with A0 as follows:

1. A1 randomly chooses different h0, h1, ...hn0−1 ∈ Z∗q , and computes f(x) =∏n0−1
i=1 (x + hi) =

∑n0−1
i=0 cix

i.
2. A1 computes Q =

∑n0−1
i=0 cia

iP = f(a)P , aQ =
∑n0−1

i=0 cia
i+1P , and Q′ =∑n0−1

i=1 cia
i−1P . In the (unlikely) situation where Q = 1G1 , there exists an

hi = −a, hence, A1 can solve the (n0 +1)-BDHI problem directly and abort.
3. A1 computes fi(x) = f(x)/(x+hi) =

∑n0−2
j=0 djx

j . Obviously, (a+hi)−1Q =
(a + hi)−1f(a)P = fi(a)P =

∑n0−2
j=0 dja

jP for 1 ≤ i ≤ n0.
4. A1 randomly chooses an index t with 1 ≤ t ≤ n0, sets v = 0.
5. A1 sets the system parameters para = (G1, G2, q, ê, Q, Ppub, μ, H, H1, F1, F2,

l1, l2), where Ppub = aQ−h0Q and μ = ê(Q, Q). H , H1,F1 and F2 are random
oracles controlled by A1.

Efficient ID-Based Digital Signatures with Message Recovery 55

6. A1 runs A0 by giving A0 the system parameters para. During the execution,
A1 emulates A0’s oracles as follows:

• H(.): A1 maintains a H-List, initially empty. For a query ID, if ID
already appears on the H-List in a tuple (ID, l, D), A1 responds with
l. Otherwise, sets v ← v + 1 and IDv ← ID. Then, if v = t, A1 sets
lv ← h0, Dv ← ⊥; otherwise, A1 selects a random ϑ with n0 ≥ ϑ > 0
which has not been chosen and sets lv ← hϑ + h0, Dv ← (a + hϑ)−1Q.
In both case, adds the tuple (IDv, lv, Dv) to H-List and responds with
lv.

• H1(.): If A0 makes a query (ID, μr) to random oracle H1(.), A1 checks
if H1(ID, μr) is defined. If not, it picks a random α ∈ {0, 1}l1+l2 , and
sets H1(ID, μr) ← α. A1 returns α to A0 and records (ID, μr, α) to the
H1-List.

• F1(.) and F2(.) queries: A0 can also query the random oracle F1(.) and
F2(.) at any time. A1 simulates the oracles F1(.) and F2(.) in a same
similar to that of the H1(.) oracle, keeping an F1-List and F2-List of
tuples, respectively.

• Extract(.): For input IDi, A1 searches in H-List for (IDi, li, Di). If
Di = ⊥ then A1 aborts. Otherwise, A1 responds with Di.

• Sign(.): For input IDi and message m, If i
= t, A1 uses Di as the private
key to sign on m. Otherwise, A1 simulates IDt’s signature as following:

• Pick randomly U ∈ G1, r2 ∈ Z with |r2| ≤ |q|.
• Compute δ = μ−r2 · ê(U, aQ), in the unlikely situation where δ = 1,

we discard the results and restart the simulation.
• Compute α = r2⊕F1(m)||(F2(F1(m))⊕m). Record F1(m) and F2(m)

to the corresponding list if necessary (ie., if m has not been queried
to F1(.) and F2(.)).

• Check the H1-List and restart the simulation if α = H1(x) already
exists for some x while x
= (IDi, δ). Otherwise, set α = H1(IDi, δ)
and record (α, IDi, δ) to the H1-List.

• returns (r2, U).
7. A1 keeps interacting with A0 until A0 halts or aborts. If A0 outputs a forgery

(IDi, m, r2, U), and i = t, A1 can get a forgery corresponding to identity
IDt (whose secret key is a−1Q). Using the “General” Forking Lemma [5],
by replays of Step 6 with the same random tape but different choices of
H1(.), A1 can get another valid forgery (ID∗i , r∗2 , U∗) such that r∗2
= r2

while IDi = ID∗i and μ−r2 · ê(U, aQ) = μ−r∗
2 · ê(U∗, aQ). This part will be

discussed later.
8. A1 can computes a−1Q as follows:

a−1Q = (r2 − r∗2)−1(U − U∗).

9. A1 computes ê(Q, a−1Q) = ê(Q, Q)a−1
. Then, A1 computes and outputs

ê(P, P)a−1
= ê(Q, Q)a−1

/ê(Q′, Q + c0P))c−2
0

as the solution to the given instance of (n1 + 1)-BDHI problem.

56 R. Tso et al.

This completes the description of A1.
The proof in step 7 uses the forking technique which involves running the

attacker A0 for solving our scheme twice, answering its l∗-th H1(.) query dif-
ferently in the two runs to obtain two distinct solutions (r2, U) and (r∗2 , U∗)
such that μ−r2 · ê(U, aQ) = μ−r∗

2 · ê(U∗, aQ), from which the solution a−1Q =
(r2 − r∗2)−1(U − U∗) can be found.

Since our scheme is not a generic signature scheme, the original Forking
Lemma defined in [17] can not be applied in this proof. Another solution is
to use the General Forking Lemma recently proposed by M. Bellare and G.
Neven in [5]. For completeness, we give the details of the forking technique used
in this proof in the appendix. �

6 Conclusion

This paper presents two efficient ID-based signature schemes with message re-
covery. Our schemes are more efficient than the previous schemes proposed by
Zhang et al. The scheme we proposed in this paper can be regarded as an im-
provement of Barreto el al. ’s signature scheme [4] since our scheme not only
inherits the efficiency of their scheme but also reduce the total length of a mes-
sage and the corresponding signature comparing to [4]. We showed in this paper
a new idea to efficiently shorten ID-based signatures in contrast to proposing a
short signature scheme directly.

References

1. Abe, M., Okamoto, T.: A signature scheme with message recovery as secure as
discrete logarithm. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT
1999. LNCS, vol. 1716, pp. 378–389. Springer, Heidelberg (1999)

2. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by
public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

3. Barr, K., Asanovic, K.: Energy aware lossless data compression. In: MobiSys 2003.
Proceedings of the ACM Conference on Mobile Systems, Applications, and Services
(2003)

4. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Atkinson, C., Bunse, C., Gross, H.-G., Peper, C. (eds.) ASIACRYPT 2005. LNCS,
vol. 3778, pp. 515–532. Springer, Heidelberg (2005)

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedins of the 13th ACM Confetence on Computer and
Communication Security, pp. 390–398 (2006)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–533. Springer, Heidelberg
(2001)

Efficient ID-Based Digital Signatures with Message Recovery 57

8. Boyen, X.: Multipurpose identity-based signcryption: a Swiss army knife for
identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 382–398. Springer, Heidelberg (2003)

9. Chen, K.: Signature with message recovery. Electronics Leters 34(20), 1934 (1998)
10. Chen, L., Lee, J.M.: Improved identity-based signcryption. In: Vaudenay, S. (ed.)

PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)
11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

12. Horster, P., Michels, M., Petersen, H.: Authenticated encyprtion scheme with low
communication costs. Electronics Letters 30(15), 1212–1213 (1994)

13. Lee, W.-B., Chang, C.-C.: Publicly verifiable authenticated encryption. Electronics
Letters 31(19), 1656–1657 (1995)

14. Miyaji, A.: A message recovery signature scheme equivalent to DSA over elliptic
curves. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 1–14. Springer, Heidelberg (1996)

15. Nyberg, K., Tuepple, R.A.: A new signature scheme based on the DSA giving
message recovery. In: Proceedings of the 1st ACM conference on communication
and computer security, pp. 58–61 (1993)

16. Nyberg, K., Ruepple, R.A.: Message recovery for signature schemes based on the
discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 182–193. Springer, Heidelberg (1995)

17. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21, 120–126 (1978)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

20. Yeun, C.Y.: Digital signature with message recovery and authenticated encryp-
tion (signcryption)- a comparison. In: Walker, M. (ed.) Cryptography and Coding.
LNCS, vol. 1746, pp. 307–312. Springer, Heidelberg (1999)

21. Zhang, F., Susilo, W., Mu, Y.: Identity-based partial message recovery signatures
(or How to shorten ID-based signatures). In: Patrick, A.S., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 45–56. Springer, Heidelberg (2005)

22. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption <<
cost (signature) + cost (encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

23. Boneh, D., Boyen, X.: Efficient Selective ID Secure Identity Based Encryption
without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

Appendix

The Forking Technique

Let Θ, Ω be the random tapes given to the simulator A1 and the adversary A0,
respectively, such that A0 outputs a forged signature. Notice that the success
probability of A0 is taken over the space defined by Θ, Ω and the random oracles.

58 R. Tso et al.

At the first run, the simulator A1 acts exactly the same as that described at the
beginning of this proof. At the end of this run, A0 outputs a successful forgery
(IDi, m, r2, U).

Note: In our scheme, the method of computing α is equivalent to querying
(IDi, μ

−r2 · ê(U, aQ)) to H1(.) Due to the ideal randomness of H1(.), with prob-
ability at least 1 − 2−(l1+l2), there exists a H1(.) query on input (IDi, μ

−r2 ·
ê(U, aQ)) if (r2, U) is a successful forgery. Assume this query occurs at the l∗-th
H1(.) query.

At the second run, with the same random tapes Θ, Ω given to the simulator
A1 and the adversary A0, this run is almost the same as the first run except the
simulation of the H1(.) oracle. This time, for any j-th H1(.) query with j < l∗,
A1 responds to A0 with the same value as that at the first run. However, for any
j-th H1(.) query with j ≥ i∗, A1 picks a random number αj ∈ {0, 1}l1+l2 and
responds with αj . Finally, at the end of the second run, B outputs its forgery
(ID∗i , r

∗
2 , U∗) on a message m∗.

Remember that A0 can query at most n1 times to the H1(.) query. For l ∈
{1, · · · , n1}, we call a run of A0 l-successful if A0 succeeds and l∗ = l. Note
that if both runs of A0 are l-successful for some l with regard to the H1(.) query,
then, since the view of A0 in both runs is the same up to the l-th H1(.) response,
IDi, δ (here δ equals to μr1 and is in the input of the l-th H1(.) query in the
first run) must be equal to ID∗i , δ

∗. This implies that r1 = r∗1 in both runs.
In addition, due to the ideal randomness of F1(.) and F2(.), when IDi = ID∗i ,
r1 = r∗1 and α1 = H1(IDi, δ)
= H ′1(ID

∗
i , δ
∗) = α∗, the probability of r2 = r∗2 is

negligible (which is equal to 1/2l1+l2). r2
= r∗2 implies U
= U∗ since r1 = r∗1 .
Consequently, from this forking technique, the (n0+1)-BDHI problem can be
solved.

It remains to estimate the probability of the event S∗ that both runs of A0

are l-successful with regard to the H1(.) query for some l ∈ {1, · · · , n1}. To do
this, we split S∗ into n1 distinct subevents S∗i according the value of l and bound
each one. For each l, let Γl denote the outcome space for the random variable
Xl = (Θ, Ω, α1, · · · , αl−1) consisting of the view of A0 up to the l-th query to
H1(.), and let Υi denote the outcome space for the independent random variable
Yi = (αl, · · · , αn1) consisting of the view of A0 after the l-th query to H1. We
need the following lemma.

Lemma 1. (The Splitting Lemma): [17] Let S ⊂Γ×Υ such that Pr[(X, Y) ∈
S] ≥ ε. For any λ < ε, define

ϕ =
{

(X, Y) ∈ Γ × Υ | Pr
Y ′∈Υ

[(X, Y ′) ∈ S] ≥ ε − λ

}
,

then the following statements hold:

(i) Pr[ϕ] ≥ λ.
(ii) ∀(X, Y) ∈ ϕ, PrY ′∈Υ [(X, Y ′) ∈ S] ≥ ε − λ.

Efficient ID-Based Digital Signatures with Message Recovery 59

Define Sl be the event that a run of A0 is l-successful. Then, Sl is a subset of Γl×
Υl with probability pl

Δ= Pr[(Xl, Yl) ∈ Sl]. Applying the Splitting Lemma and set
λ ← pl/2, we know that there exists a subevent ϕl of Sl such that Pr[(Xl, Yl) ∈
ϕl] ≥ pl/2 (according to (i)), and for each (X, Y) ∈ ϕl, the probability that
(X, Y ′) ∈ Sl over a random choice of Y ′ in ϕl is also at least pl/2 (according to
(ii)). Therefore, the probability that the outcome (X, Y) of the first run of A0

in our algorithm is in ϕl is at least pl/2, and, for each of those outcomes, the
probability over the random choice of Y ′ = (α′l, · · · , α′n1

) that the second run
outcome (X, Y ′) is in Sl is at least pl −pl/2 = pl/2. Since α′l is uniformly chosen
in {0, 1}l1+l2 , with probability 1/2l1+l2 it will collide with αl. Consequently,
we have that (X, Y) ∈ ϕl, (X, Y ′) ∈ Sl and αl
= α′l with probability at least
pl/2 · (pl/2−1/2l1+l2) which implies that both runs are l-successful and αl
= α′l.
That is, the event S∗l occurs.

Since pl is the probability that a run of A0 is l-successful, define AdvIDMR
A0

be the probability of event that A0 can break the unforgeability of our scheme.
We have

AdvIDMA
A0

= Σn1
l=1pl and

Pr[S∗] = Σn1
l=1Pr[S∗l] = Σn1

l=1pl/2 · (pl/2 − 1/2l1+l2) = Σn1
l=1(p

2
l /4 − pl/2l1+l2+1)

≥ 1/(4n1) · (Σn1
l=1pl)2 − Σn1

l=1pl/2l1+l2+1

= 1/(4n1) · (AdvIDMR
A0

)2 − AdvIDMR
A0

/2l1+l1+1.

P r[S∗] is the success probability on A1 to solve (n0 +1)-BDHI problem when
i = t in step 7. The inequality above comes from the Cauchy-Schwartz inequality.
Since t is random chosen from {1, · · · , n0}, A1 solves (n0 + 1)-BDHI problem
with probability Pr[S∗]/n0. This ends the proof. �

Achieving Mobility and Anonymity in IP-Based

Networks

Rungrat Wiangsripanawan1, Willy Susilo1, and Rei Safavi-Naini2

1 Centre for Computer and Information Security Research (CCISR)
School of Computer Science and Software Engineering

University of Wollongong, Australia
rw26@uow.edu.au, wsusilo@uow.edu.au

2 University of Calgory, Canada
rei@cpsc.ucalgary.ca

Abstract. Mobility and anonymity are two essential properties desir-
able in IP-based networks. In this paper, we aim to address the issue on
how to achieve mobility and anonymity concurrently. At a glance, these
two properties seem to be contradictory. This is partly due to the fact
that there exists no single definition that clearly defines these notions.
We approach this problem by firstly define these properties formally and
address the problem of achieving these properties at the same time. Then,
we proceed with a concrete construction based on an existing IP-based
network, which is Tor. Without losing generality, our method can be ap-
plied to any other existing network, such as Morphmix or Tarzan. We
highlight the difficulty of achieving mobility and anonymity concurrently
although it seems trivial to merge these two properties altogether. Fi-
nally, we evaluate our proposed construction based on the definition that
we have developed. Our work can be seen as the first attempt towards
formalizing the notions of mobility, anonymity and location privacy.

Keywords: mobility, anonymity, location privacy, IP networks, Tor,
Mobile IP.

1 Introduction

Consider a situation where a businessman is on his holiday. Firstly, he does not
want his location to be traced by his company when he is accessing the Internet.
Considering the nature of the businessman, he wants to have mobility. That
means during his movement, he wants to have a continuous connection to the
Internet. This requirement implies that if he is downloading streaming contents
on a train, for example, the process should continue even if the train has enforced
network movements. Furthermore, he wants his anonymity to be ensured during
his trip. For instance, from time to time, the businessman would like to check
the status of the stock market, etc. and he wants his identity to be protected.
In this scenario, we have seen that mobility and anonymity is often desirable
at the same time. Additionally, location privacy is an additional feature that
people would like to have since the support from the Internet has made this

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 60–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Achieving Mobility and Anonymity in IP-Based Networks 61

possible. Unfortunately, as we shall show in the next section, these requirements
are contradictory to each other as adding mobility to an anonymous network
system means that location privacy is lost.

Our Contributions. In this paper, we aim to address how to achieve mobility
and anonymity in IP based networks concurrently. Additionally, we would like
to provide the notion of location privacy to the users in this setting. To date,
the existing works do not define precisely what they meant by anonymity and
location privacy. Therefore, we firstly define these notions formally. Then, we
proceed with a concrete system that will provide mobility and anonymity at the
same time. We start our design by using the existing systems (i.e. combining
Mobile IP with Tor), but unfortunately we will show that a trivial merge be-
tween the existing systems will not result in a desirable system. We note that
essentially Mobile IP provides mobility and Tor provides anonymity, but a com-
bination between these two will not be sufficient to achieve what is required in
our scenario. We also propose our new design that can achieve the desirable sys-
tem as stated in the motivating scenario. Finally, we also show that our design
satisfies all the formal definitions that we put forth in the beginning.

1.1 Related Works

To date, there are many works in the literature that have been proposed to
provide anonymity. This includes the works on low latency networks (e.g. Tor
[20], Morphmix [15] and Tarzan [9]) to name a few. Furthermore, several works
have also been proposed to provide mobility [22,17,11,14]. As mobility always
leaks the location of the host, some works have been proposed to address this
issue by adding location privacy to the existing mobility systems [8,4].

Flying Freedom [7] seems to be the only system to date that provides mobility,
anonymity and location privacy at the same time. Nevertheless, this network is
built on top of the architecture of the Freedom Network [10], that is no longer
available[1,2] and the network itself has ceased.

Therefore, the seek for a system that provides mobility, location privacy and
anonymity at the same time remains an interesting research question. A combi-
nation of the two different systems, where each system provides either mobility
or anonymity, seems to be the candidate to provide the solution to this problem.
Unfortunately, an inherent problem that will occur is the location privacy prob-
lem. Enhancing the system with the existing location privacy mechanisms also
results in a lengthy communication path, which will lead to a very ineffective
system. We will elaborate this issue in a later section. We note that we are not
interested in building a new system from scratch. Instead, we will use available
architectures as our building blocks.

2 Towards Formalizing Mobility and Anonymity Notions

In this section, we aim to clarify the notions of mobility and anonymity by firstly
presenting their definition in a high level, and proceed with a formal definition
to capture these notions.

62 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

2.1 Mobility

Roughly speaking, mobility is the ability of moving from one location to another.
In the context of IP-based networks, we are interested to equip applications
with the ability to move from one network to another. This definition is closely
related, but different, to the concept of roaming. In the roaming situation, a
mobile host obtains the Internet access via other networks. In the contrary, IP
mobility allows the mobile host to move from one IP network to another IP
network whilst enjoying to receive the upper layers’ services as if the mobile
host is a fixed host. In other words, the movement is transparent to the upper
layers. That implies that the user will not be aware that the network’s point of
attachment has changed. More specifically, the TCP sessions should not be reset
and the mobile host should always be addressed by its home network’s address.

To achieve mobility in IP-based networks, essentially there are two mecha-
nisms. The first one is to establish a special route through out the communi-
cation path between the mobile host and its correspondent node (recipient).
Nevertheless, this approach is not scalable since the special route is always re-
quired throughout the entire communication path whenever the host changes its
location. The second approach is to assign specific nodes that are responsible to
maintain the mobile host’s location. Tunneling mechanism is employed to for-
ward packets destined to the mobile host that is away, which are “channeled”
via these specific nodes.

Essentially, there are two categories in the mobility management schemes [21],
namely one that handles micromobility, such as GSM networks, and the other
that handles macromobility. Micromobility protocol focuses on mobility of the
mobile host within a small region (usually within the same subnet). Macromo-
bility protocol is more focussed on a broader term, that is the mobility across
the regions. The examples of the latter approach include Mobile IPv4 [17] and
Mobile IPv6 [11].

Mobility vs. Location Privacy
We observe that adding mobility to the IP-based networks will have an impact
of losing the location privacy. The term location privacy refers to the case where
one would like to conceal his location from anyone else. The need of mobility
will enforce the need of the node attachment to monitor the location of the
mobile host during its movement or the need of the specific route. The node
attachment is the node that will ensure the connectivity of the mobile host to the
IP networks, or in other words, it will provide the necessary upper layers’ services
to the mobile host. Therefore, the location of the mobile host is always exposed
to the node attachment. Also, if messages exchanged on the communication path
between the mobile host and its correspondent node are not carefully protected,
an observer (one who can “listen” to the communication by observing the packets
travelling through the wire) can obtain the location information either from the
content of the messages or the messages’ headers. Moreover, a system that allows
the mobile host to update its location with its recipients directly for the sake of
performance exposes the mobile host’s location further.

Achieving Mobility and Anonymity in IP-Based Networks 63

In the following, we will firstly define the entities involved in the system.
After observing what happens in the real environment, we are ready to define
the system formally.

Entities. There are three entities involved in the IP-based mobility system: the
mobile host, its communication partner and the node attachment. The mobile
host entity is represented by its initial IP address that is provided from its
home network eg. from the home network’s DHCP server. We should stress that
the location of the mobile host is not an entity rather than the mobile host’s
attribute, which is an IP address provided by each network it visits. The role of
being the sender or the receiver in the communication path depends entirely on
the message direction in the path. To illustrate, we refer the mobile host to be
the sender and its partner is the receiver when a message is sent from the mobile
host to its partner.

Mobile Host Movement to a Different Network. When the mobile host moves to
a different network, it will firstly obtain a new location in the new network e.g.
from the DHCP server of the new network. Then, it will establish a communi-
cation channel from this new location to its partner. This can be done either
by creating a channel directly to the partner or a channel through the node of
attachment. The aim of the adversary is to learn the mobile host’s location. We
consider the adversaries to be all the other untrusted entities in the path. They
can simply be an observer that can only wiretap the connection or the nodes
that help forwarding packets in the path, such as the node attachment. There-
fore, we divide an adversary in the IP-based location privacy into three types:
an observer, a mobile host’s communication partner, and a node or nodes on
the communication path. We note that from the adversaries’ point of view, the
node attachment is not directly related to the ongoing communication between
the sender and the receiver during a communication session. Therefore, in the
following communication model, we consider the simplest view of the channel by
employing a single sender and receiver available in the system.

Model of the Communication Channel. In the following, we assume that the
communication will employ a traditional point-to-point model. That is, there
is a single host that sends its package via a public untrusted network, and the
recipient is sitting at the other end of the network, which refer to the mobile
host and its communication partner in the above scenario. As explained above,
in the following definition, we shall omit the node attachment as an entity in the
environment.

We consider there exists an observer (or an “adversary”) who can observe the
communication in the network. We assume that the mobile node has obtained
its new location from the provided system such as by DHCP [6]. For a more
elaborate treatment of this model, we refer the reader to [23], where we carefully
analyzed the case that involves the node attachment itself. Note that in this
definition we consider the direction when the mobile host is a receiver.

Intuitively, the notion of location privacy is defined as follows. Given a tran-
script of a message sent by a sender to a receiver in two possible locations of

64 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

the receiver, the task of the adversary is to correctly guess where the location of
the receiver is. Formally, we will define location privacy using the following in-
teraction between an adversary A and a challenger C. The adversary is given an
access to the PacketReqLP oracle, that is, given a message m, a receiver’s location
L and a pair of sender-receiver, the oracle is to output the correct transcript of
the communication, Ω, that represents a message m sent by the sender to the
receiver in the location L. The oracle PacketReqLP represents the capability of
the observer (or the adversary) to request a message from a sender of his choice
to be sent to a receiver that located in L. Note that in this model the adversary
can passively listen to the communication in the channel. The formal definition
is as follows.

Location Privacy Interaction: Let C be the challenger and A be the adversary
who would like to break the location privacy.

1. Initialization. Let k ∈ N be the security parameter. C is invoked with all the
condition and information known in the communication channel. The infor-
mation is provided to C by A. In particular, the pair of sender S and receiver
R is provided to C together with some possible locations {L1, L2, · · · , L�} ∈ L
which represent R’s position (note that L is R’s attribute).

2. Attacking Phase
(a) A can make the PacketReqLP queries as defined as follows.

– PacketReqLP. A can provide a message mi and select a location
Li and query the PacketReqLP oracle to obtain a transcript
Ω(mi, S, R, Li) to denote a message mi sent by S to R, which is
currently located at Li.

These queries can be invoked for at most qPRL times.
(b) A outputs two distinct locations (L0, L1) and a target message m∗ ∈ M

where M is a set of messages that have been queried before. In return,
C outputs a transcript Ω(m∗, S, R, Li) where i is obtained from a coin
toss.

(c) A can execute PacketReqLP queries for any message mj �= m∗ for any
location in L.

3. Output Phase. A outputs his guess i, where Li is the location of the receiver
who produces Ω(m∗, S, R, Li).

The success probability of the adversary in attacking location privacy is de-
fined by SuccPRL

A = 1
2 + ε.

Definition 1. A system is said to provide location privacy if there is no poly-
nomial time algorithm A that has a non-negligible probability in the Location
Privacy Interaction defined above.

2.2 Anonymity

In the Internet, anonymity can be classified into two types: data anonymity and
connection anonymity [5]. The term data anonymity refers to the identification

Achieving Mobility and Anonymity in IP-Based Networks 65

of information that can be extracted from the data exchanged in a particular
application. The term connection anonymity refers to the identities of sender
and receiver during data transfer.

The ultimate goal of anonymous communication systems is to ensure that an
adversary gains no information about the communication that is happening in
the communication channel [12]. However, this system is unrealistic in a public
network as in the Internet. It is therefore considered adequate if the system
satisfies some properties of the anonymous communication system, that include
the inability of the adversary to identify the sender or the receiver. We will
describe this possibility formally in the following paragraph.

Assuming the same communication channel model as in location privacy is
used, the main intention of the sender is to ensure that her identity is not re-
vealed to the observer (privacy of the sender). Additionally, the main intention
of the receiver is also to ensure that his identity will not be disclosed (privacy
of the receiver). From the observer’s point of view, his task is considered to be
“successful”, if he can observe the communication channel and figure out who
the sender and/or the receiver is (adversarial goal). If the observer cannot be suc-
cessful in this particular task, then we say that the network ensures anonymity
in the system.

Based on this setting, we further divide the notion of anonymity into three
different properties: i) sender anonymity, ii) receiver anonymity, and iii) unlink-
ability. A system that satisfies these three properties is said to be an anonymous
system [19].

Oracles. Let the oracle PacketReqSA, the oracle PacketReqRA and the oracle
PacketReqUL represent the capability of the adversary to request a message sent
by a particular sender of his choice to a receiver in the sender anonymity, re-
ceiver anonymity and unlinkability games, respectively. This is to represent the
ability of the adversary to wiretap the communication channel and to select the
messages learnt from the channel.

Sender Anonymity. This property ensures that the observer (or the adversary)
cannot identify who the sender is, given a stream of packages traveling through
the communication channel. Intuitively, the task of the adversary is to guess
who the sender is, given a transcript that could be produced by two different
senders. Formally, this property is defined using the following interaction between
an adversary A and a challenger C. The adversary is given an access to the
PacketReqSA oracle that behaves as follows: given a message m, a particular
sender and a receiver, the oracle will return a correct transcript Ω that represents
a transcript of a message m that is sent by the sender to the receiver.

Sender Anonymity Interaction: Let C be the challenger and A be the ad-
versary who would like to break the sender anonymity.

1. Initialization. Let k ∈ N be the security parameter. C is invoked with
all the condition and information known in the communication channel.
The information is provided to C by A. In particular, the set of senders
{S1, S2, · · · , S�} ∈ S is provided to C together with a receiver R.

66 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

2. Attacking Phase
(a) A can make the PacketReqSA queries as defined as follows.

– PacketReqSA. A can provide a message mi and select a sender Sj ∈ S
and query PacketReqSA oracle to obtain a transcript Ω(mi, Sj , R)
that represents a message mi sent by Sj to R.

These queries can be invoked for at most qPRS times.
(b) A outputs (S0, S1) and a target message m∗ ∈ M where M is a set of

messages that have been queried before. In return, C outputs a transcript
Ω(m∗, Si, R) where i is obtained from a coin toss.

(c) A can execute PacketReqSA queries for any message mj �= m∗ for any
sender in S.

3. Output Phase. A outputs his guess i, where Si is the sender who produces
Ω(m∗, Si, R).

The success probability of the adversary in attacking the sender anonymity is
defined by SuccPRS

A = 1
2 + ε.

Definition 2. A system is said to provide sender anonymity if there is no poly-
nomial time algorithm A that has a non-negligible probability in the Interaction
Sender Anonymity defined above.

Receiver Anonymity. This property ensures that the observer (or the adversary)
cannot identify who the receiver is, given a stream of packages traveling through
the communication channel. Intuitively, the task of the adversary is to correctly
guess whom the sender has sent her message to, given two possible receivers.
Formally, this property is defined using the following interaction between an
adversary A and a challenger C. The adversary is given an access to the oracle
PacketReqRA that accepts a message m, a particular receiver and a sender, to
output the correct transcript Ω that represents a transcript of a message m that
is sent by the sender to the receiver. The formal definition follows.

Receiver Anonymity Interaction: Let C be the challenger and A be the
adversary who would like to break the receiver anonymity.

1. Initialization. Let k ∈ N be the security parameter. C is invoked with
all the condition and information known in the communication channel.
The information is provided to C by A. In particular, the set of receivers
{R1, R2, · · · , R�} ∈ R is provided to A together with a sender S.

2. Attacking Phase
(a) A can make the PacketReqRA queries as defined as follows.

– PacketReqRA. A can provide a message mi and select a receiver
Rj ∈ R and query the PacketReqRA oracle to obtain a transcript
Ω(mi, S, Rj) that represents a message mi sent by S to Rj .

These queries can be invoked for at most qPRR times.
(b) A outputs (R0, R1) and a target message m∗ �∈ M where M is a set of

messages that have been queried before. In return, C outputs a transcript
Ω(m∗, S, Rj) where i is obtained from a coin toss.

Achieving Mobility and Anonymity in IP-Based Networks 67

(c) A can execute PacketReqRA queries for any message mj �= m∗ for any
receiver in R.

3. Output Phase. A outputs his guess i, where Ri is the receiver whom receives
Ω(m∗, S, Ri), sent by S in this transcript.

The success probability of the adversary in attacking the receiver anonymity is
defined by SuccPRR

A = 1
2 + ε.

Definition 3. A system is said to provide receiver anonymity if there is no poly-
nomial time algorithm A that has a non-negligible probability in the Interaction
Receiver Anonymity defined above.

Unlinkability. This property ensures that the observer (or the adversary) cannot
link two different transcripts whether they are coming from the same sender or
not. Intuitively, the task of the adversary is to guess whether two transcripts are
related to each other (i.e. they come from the same sender, or the same receiver).
Formally, this property is defined using the following interaction between an
adversary A and a challenger C. We note that in our definition, we assume
that there exists a single receiver R. However, without losing generality, our
definition can be trivially modified to include multiple receivers, but this setting
has been captured by our model. The adversary is given an access to the oracle
PacketReqUL that accepts a message m, a sender and a receiver, to output a
transcript Ω representing a transcript of a message m that is sent by the sender
to the receiver.

Unlinkability Interaction: Let C be the challenger and A be the adversary
who would like to break the unlinkability.

1. Initialization. Let k ∈ N be the security parameter. C is invoked with
all the condition and information known in the communication channel.
The information is provided to C by A. In particular, the set of senders
{S1, S2, · · · , S�} ∈ S is provided to A together with a receiver R.

2. Attacking Phase
(a) A can make the PacketReqUL queries as defined as follows.

– PacketReqUL. A can provide a message mi and select a sender Sj ∈ S
and query the PacketReqUL oracle to obtain a transcript Ω(mi, Sj , R)
that represents a message mi sent by Sj to R.

These queries can be invoked for at most qPRS times.
(b) C outputs Sj , a transcript Ω1(m∗1, Sj , R), Ω2(m∗2, Sk, R), and two target

messages m∗1, m
∗
2 �∈ M, m∗1 �= m∗2 where M is a set of messages that have

been queried before and i is obtained from a coin toss. In this output,
j = k if the output of the coin toss is 1, and j �= k otherwise.

(c) A can execute PacketReqUL queries for any message mj �= {m∗1, m∗2} for
any sender in S.

3. Output Phase. A outputs his guess 0/1 to indicate whether Ω1 and Ω2 have
been produced by the same sender Sj or not.

68 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

The success probability of the adversary in attacking the unlinkability is defined
by SuccULS

A = 1
2 + ε.

Definition 4. A system is said to provide unlinkability if there is no polyno-
mial time algorithm A that has a non-negligible probability in the Unlinkability
Interaction defined above.

Definition 5. A communication channel is said to be anonymous if it satisfies
sender anonymity, receiver anonymity and unlinkability.

Definition 6. A communication channel is said to provide mobility and
anonymity if it provides mobility to its mobile hosts, is anonymous and ensures
location privacy.

3 Review on Existing Infrastructure That Provides
Mobility and Anonymity

3.1 Mobile IP

Mobile IP protocol was designed to provide mobility to the IP-based networks.
There are two versions of Mobile IP, namely Mobile IP version 4 (MIPv4) and
Mobile IP version 6 (MIPv6). MIPv4 has been designed to work on top of the
IPv4 network, and MIPv6 is designed for the IPv6 network. Nonetheless, the
fundamental concept is essentially the same.

Mobility in Mobile IP protocol is provided via the use of two IP addresses,
namely a home address (HoA) and a care-of address. A home address is an IP
address of a mobile node when the mobile node resides in its original network.
The home address is used for identification purpose. A care-of address is an
IP address used by the mobile node when it is away at the visiting network.
This IP address is used for identifying the location of the mobile node. The
communication between these two addresses is assisted by two other entities,
namely a home agent and a foreign agent1. When the mobile node is away from
its home network, firstly it obtains its care-of address from one of the following
possibilities: 1) the visiting network’s foreign agent (in the MIPv4 setting); 2) the
stateless configuration [11] in MIPV6; or 3) the DHCP mechanism in both MIPv4
and MIPv6 settings. Then, the mobile node registers the newly-obtained care-of
address to its home agent. When there are packets destined to the mobile node’s
home address, then the home agent will forward these packets to the mobile
node’s care-of address. To avoid an ingress filtering problem at the foreign agents,
the Mobile IP protocol employs a reverse tunneling mechanism [16] that allows
the mobile node to send packets to its corresponding node via its home agent.
When route optimization is deployed, the mobile node is allowed to update its
care-of address directly to its correspondent node. It is clear that Mobile IP
does not provide location privacy protection against the observer when there is
no encryption in the tunneling packets. In addition, the location is also revealed
1 We note that there exists no foreign agent in MIPv6.

Achieving Mobility and Anonymity in IP-Based Networks 69

to the corresponding node in case of route optimization. Moreover, the home
agent also needs to monitor the location of the Mobile IP user.

3.2 Tor - A Low Latency Network

Tor [20] is the second-generation of Onion Routing [18]. Tor is a distributed
system that provides anonymous connections to low-latency applications, such
as web browsing, secure shell and instant messaging. Similar to Onion Routing,
the architecture of Tor is based on the Chaum [3] mix network model, but Tor
relay node does not perform any mixing operations (i.e. batching, reordering or
delaying packets). Tor is an anonymous system. Intuitively, sender anonymity,
receiver anonymity and unlinkability provided by Tor are guaranteed due to
the use of Tor servers (will be defined later in this section) that will act as the
anonymizers in the network.

Entities in A Tor Network. There are three main entities in a Tor connection,
which are 1) a Tor client, 2) a Tor-enabled application server2, and 3) a group of
Tor servers. When a user (or a sender, respectively) would like to establish a Tor
connection to access any Tor-enabled application servers, the user is required
to install a Tor client software. Then, the user’s host has become one of the
Tor clients in the network. The Tor client is responsible for fetching directories
(of all Tor servers), establishing circuits3 and handling connections from the
user’s application. The user would like to access the services provided by one
of the application servers. This particular application server is known to be
the recipient of the Tor connection. In order to allow the Tor client to reach the
application server, there are several relay nodes that will be involved to establish
the connection. These relay nodes are known as the Tor servers. The first node
(i.e. a Tor server) in this connection is also known as the entry node, whilst the
last node is known as the exit node. Currently, according to the Tor specification,
the size of each circuit is set to involve 3 Tor servers.

How Tor Works. Firstly, a Tor client selects a number of Tor servers as mem-
bers of the Tor circuit. Circuits in Tor are established preemptively. When an
anonymous connection is required, the Tor client can simply select one of the
already-established circuits. In contrast to the Onion routing that restricts one
circuit per one TCP stream, Tor allows many TCP streams to share a single
circuit. When the Tor client would like to send some data (e.g. when a user
uses his browser to connect to a website), the streams of packets are divided
into fixed-size cells and these cells are sent to the selected circuit. During the
transmission, these packets are wrapped in a layer-by-layer fashion using session
keys derived from pre-negotiated common keys. The intended purpose of this
mechanism is to allow a Tor server, which will unwrap the packets, only to know
merely its predecessor and successor nodes. There is no mixing process involved.

2 A Tor-enabled application server is an application server that can function within a
Tor network.

3 Tor system calls a path as a circuit.

70 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

The incoming cells to any Tor nodes are simply placed into queues, processed
and sent out in the first come first served fashion.

Circuit Establishment in Tor. Tor establishes and extends its circuit hop by hop
until it reaches the length of the circuit. Normal Tor circuit’s length is 3 hops,
which comprises the entry node, the second Tor server nodes and the exit node.
Suppose Alice wants to use Tor to anonymize her communication, then the
description of how a circuit is established can be outlined as follows. Firstly,
Alice’s Tor client picks three nodes as its Tor entry node, its second node and its
exit node, respectively. Without losing generality, let us assume that Alice picks
TorA, T orB and TorExit for a circuit path Alice → TorA → TorB → TorExit.
To establish an onion encryption within the circuit, the Tor client and each of
the Tor servers in the circuit must be equipped with a shared key. Tor uses Diffie-
Hellman key exchange to accomplish this purpose. In every hop-connection, there
is a circuit id used to represent a connection between any two consecutive nodes
and this circuit id is known only between these two consecutive nodes. Due to
page limitation, we refer the readers to [23] for more details on Tor circuits,
commands and diagram.

4 Anonymous Communication with Mobility in IP-Based
Networks

For clarity, we reiterate the ultimate goal in our scenario. Consider the situation
where Bob, who is the CEO of the company ABC, is having his holiday break
and he would like to make an anonymous communication for example down-
loading a streaming content, such as movies or video clips. In addition to being
anonymous, Bob would like to have a continuous session during his trip on a
train. Furthermore, he does not want his location to be revealed. We would like
to provide a solution to this problem to satisfy Bob’s requirements.

In summary, there are essentially three main properties required in this sce-
nario, namely mobility, anonymity and location privacy.

Bob would like to receive a continuous session during his trip on a train. This
requires mobility to be provided in an IP network. By allowing mobility, Bob
will be given a continuous connection to the Internet application regardless his
location. Bob’s mobile node has to change from one network connection to an-
other, but this movement (or also known as a hands-off) needs to be transparent
to Bob.

Bob would also like to access the Internet applications anonymously. Bob does
not want anyone to find out which services he has used. In short, Bob would like
to achieve sender anonymity, recipient anonymity and unlinkability. Firstly, Bob
does not want anyone to know that he is the sender of the message requesting
the Internet service (sender anonymity). Secondly, he also does not want anyone
to know to whom he is sending the message to (or which website Bob is currently
browsing - and hence, recipient anonymity). Finally, he does not want anyone to
be able to identify whom he is communicating to.

Achieving Mobility and Anonymity in IP-Based Networks 71

As described earlier, mobility implies exposing the location privacy. This
means that Bob’s location will need to be acquired by the system to allow the
continuous session. Nonetheless, this will defeat Bob’s requirement as he is hav-
ing his holiday. Therefore, the final property that Bob would like to achieve
is location privacy. As mentioned earlier, these three requirements seem to be
contradictory.

In this section, we will describe how to achieve anonymity and mobility con-
currently using the existing networks. We incorporate the existing IP-based net-
works that can provide us with anonymity or mobility, and we adjust the system
so that it can satisfy our needs. We choose Mobile IP as our base system that
will provide mobility. Furthermore, we also choose Tor as our building block for
our anonymous system because of its rapid usage growth and availability.

Intuitively, by combining Mobile IP and Tor, we could achieve all the prop-
erties that we would like to obtain. Unfortunately, as we shall show in the next
section, a trivial combination of these two systems will not provide us with a
complete and good solution In particular, the new system will suffer from the
location privacy feature. Then, we also present our enhancement to Tor to pro-
vide a better system. The new system represents a “better” network in terms
of latency. Finally, we add the location privacy system to our hybrid system to
fully satisfy our requirements.

4.1 Architecture MA1. Achieving Mobility and Anonymity Via
Trivial Combination of Mobile IP and Tor

Without losing generality, we discuss our design and implementation using Mo-
bile IP and Tor as our building blocks. Mobile IP is chosen to represent an IP
network that is equipped with mobility, whilst Tor is chosen due to its low la-
tency anonymity feature. Mobile IP works in network layer (layer 3) while Tor
works in transport layer (layer 4).

Basic Setting. The scenario that we would like to consider is as follows. A user
participates in a Mobile IP network. The user also installs a Tor client software

Fig. 1. An Illustration when a Mobile IP node would like to have a Tor connection

72 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

in his mobile node, and hence, the user is a Tor client in the Tor network. This
scenario is illustrated in Figure 1.

To illustrate our idea, we start by providing a mechanism of how the system
works when the mobile node is in its home network.

Phase 1. The mobile node resides in its network. In this phase, we start the
scenario with the situation where the mobile node resides in its home network and
the mobile node would like to make an anonymous communication to the remote
destination (for example http://www.cnn.com). This situation is analogous to
a static IP network that incorporates a Tor network. Suppose that a mobile
node user, Alice, would like to browse the network anonymously. She starts
her Internet browser by pointing its URL to http://www.cnn.com, and her
Tor client will firstly selects a circuit to be used to route this particular Tor
application. Without losing generality, suppose the Tor client picks a circuit c1
that consists of TorA, TorB and TorC as an entry node, the middle node and the
exit node, respectively. The communication path between Alice and the HTTP
server appears as Alice → TorA → TorB → TorC → http : //www.cnn.com.
Alice’s IP address is used by TorA as her identity. In this case, it is her home
network’s address.

Phase 2. The mobile node is away. When Alice moves to a different network (i.e.
a foreign network) outside her home network, then her mobile node is away. In
a typical Mobile IP scenario, the mobile node is required to report its new point
of attachment, namely its care-of address, to its home agent via the registration
process. This activity is assisted by the foreign agent in the foreign network in
Mobile IPv4. After this process is completed, all the IP connections destined
to this mobile node will be redirected to its home agent and the home agent is
responsible to forward the packets to the mobile node’s current location. This
movement is transparent to Tor, since Tor works in the transport layer (layer
4). Hence, the communication path is MN → FA → HA → TorA → TorB →
TorC → http : //www.cnn.com. When route optimization is deployed, the mobile
node is also required to update its location directly to its correspondent node
(CN), which is TorA in this case. Hence, the communication path is MN →
FA → TorA → TorB → TorC → http : //www.cnn.com.

The Drawbacks of Architecture MA1. Firstly, we note that Mobile IP networks do
not provide location privacy [13]. The home agent always knows the mobile node
whereabout, a correspondent node has this knowledge when route optimization
is deployed, and an observer can obtain this knowledge from the content of un-
protected messages. Therefore, the architecture MA1 intrinsically inherits this
problem. In a typical Mobile IP system, a proposed solution is to use forward
and reverse tunneling to the home agent and then applies the ESP encryption
in the inner IP packets [13]. However, this could only protect the mobile node’s
location from an observer. It does not prevent the home agent this knowledge.
An idea that comes to mind is to add location privacy to the underlying Mobile
IP, using techniques like adding a set of location proxies [8]. Nevertheless, this
results in an extremely long communication path between the mobile node and

Achieving Mobility and Anonymity in IP-Based Networks 73

its recipient, in particular when the length of the proxy nodes are quite long. To
justify this argument, let us refer to the communication path. Let LPi denote
a location proxy node i. The whole communication path consists of the follow-
ing entities: MN → FA → LP1 → ... → LPn → HA → TorA → TorB →
TorC → http : //www.cnn.com Furthermore, in this communication path, the
benefit given by the low latency network, such as Tor, will be overridden by the
lengthy and unnecessary communication path resulted by the location-privacy-
enabled mobile IP networks.

Providing location privacy when deploying route optimization remains as an
open question in Mobile IP protocol [13]. It seems odd to use the set of location
proxy’s technique, i.e. MN → FA → LP1 → ... → LPn → http : //www.cnn.com
to achieve this goal. Particularly, when route optimization is proposed to increase
the system performance by allowing a direct connection between the mobile
node and the correspondent node instead of tunneling through the home agent.
However, the combined system benefits the Mobile IP route optimization some
degrees of location privacy. That is, the mobile node’s location is transparent to
the Tor application’s recipient (the CNN server in the above example). Never-
theless, a new problem arises. The mobile node’s location is always exposed to
the Tor entry node. Unlike the home agent that can be trusted to some extent,
Tor nodes are not designed be trusted. Using two sets of proxies and combining
them together at the Tor entry node instead of the home agent, as in a typical
Mobile IP scenario, also results in the same problem, even though the path is
one hop shorter.

In summary, by trivially combining a location-privacy-enabled mobility sys-
tem and anonymity system seems to be insufficient to achieve mobility and
anonymity concurrently. In a typical Mobile IP system scenario, when a high
level of location privacy is required, this combination appears as two mix net-
works that are “glued” together. The first mix network aims at providing location
privacy and mobility, whilst the second mix network deals with anonymity. These
networks are combined by the point of attachment entity, such as the home agent.
In a route optimization system scenario, the combined system seems to provide
more location privacy as the mobile node’s location is transparent to the Tor
application’s correspondent node. It instead shifts the problem to the Tor entry
node and the seemingly available solution also results in a long communication
path.

4.2 Architecture MA2. Adding Mobility to Tor

Essentially, Tor does not support mobility. When there is a change of the client’s
point of attachment during a Tor connection, all connections in circuits from
the Tor client to its application’s recipient will be required to be reset. Our
architecture MA1 attempted to solve this problem by combining Mobile IP with
Tor at the mobile node to add Tor’s ability to provide mobility. Unfortunately,
as we have shown earlier, the location privacy problem, which is an inherent
problem in Mobile IP networks, will occur in the resulting architecture. Adding
the location privacy to the underlying mobile IP networks will result in a different

74 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

Fig. 2. Illustration of Mobile Node’s Movement with a Single Entry Node

problem. Therefore, in this section, we are interested in taking a totally different
approach, i.e. by adding the mobility capabilities to Tor instead of relying on
another type of network, like Mobile IP. We will limit ourselves to the scenario
where we are interested in and then describe the technique that we used to design
and implement the mobility for Tor networks.

Limited Scenario: Client-only Mobility. We are interested to add mobility to the
client in the Tor networks. As inspired by our scenario mentioned earlier, the
recipient (for example http://www.cnn.com) can stay the same during the du-
ration of the movement, but we allow the client to move from one network to
another. The mobile node will always initiate the communication. Furthermore,
without losing generality, we assume that the recipient, a low-latency application
server, is always a fixed host.

Design Strategy 1. Maintaining TCP connection of the Exit Node. A Tor client
does not have a direct connection to its recipient. The Tor client requires a series
of nodes between itself and the application server, namely the Tor servers. We
further note that Tor generates its circuit hop-by-hop. To illustrate this idea, let
us consider the following Tor circuit that consists of four Tor connections:

– The first hop is between the Tor client and the Tor entry node
– The second hop is between the entry node and the middle node.
– The third hop is between the middle node and the exit node.
– The fourth hop is between the exit node and the recipient.

Each connection has its own underlying TCP connection. From the recipient’s
point of view, its “sender” is the exit node. Therefore, if a TCP connection
between the exit node and the recipient can be maintained during the mobile
node (i.e. the Tor client) movement, then we can preserve the sender-recipient
indirect connection. That is, the change of the mobile node’s point of attachment
is transparent to its applications server. Therefore, our main aim is to maintain
this particular TCP connection in the circuit during the mobile node movement.

Achieving Mobility and Anonymity in IP-Based Networks 75

Design Strategy 2. Modification to The First-Hop Tor Connection. By investigat-
ing the Tor circuit, we can observe that the mobile node’s movement has a
direct implication to the first hop of the established circuit. We note that this
first hop is the TCP connection between the mobile node and the entry node.
The movement of the mobile node will result in the change of the mobile node’s
IP address. This change will imply the failure of the first-hop TCP connection.
Furthermore, since this TCP connection implies the whole Tor connection, the
failure of the first hop will eventually stop the whole Tor circuit.

In order to ensure that the Tor circuit is still established, the Tor servers must
provide a mechanism to allow the first-hop Tor connection to stay alive even
though its underlying TCP connection is turned down and changed to the new
point of attachment. For simplicity, we apply the known technique used in the
TCP/IP network to allow the mobile node to acquire its new IP address during
its movement, for example, DHCP [6], and to change the point of attachment
by using the hands-off mechanism such as the one used in Mobile IP [17]. We
do not aim to improve this technique as this is out of the scope of this paper.
We illustrate our idea in Figure 2. We note that in this design, in contrast to
the previous design, we modified the Tor server and client to handle mobility
without relying on mobility entities of other existing mechanisms (eg. Mobile
IP’s home agent).

The Detail of The Design. Now, we discuss the situation when the mobile node
moves to a new network from the above scenario. Once the mobile node obtains a
new IP address from the new network, it sends an additional Tor-command cell,
namely the Resume command cell, to the Tor entry node to request the Tor entry
node to update its IP address with the newly acquired IP address. The cell must
be encrypted with the common key between the Tor entry node and the mobile
node. Tor servers need to be modified to allow a waiting period before closing
its connection while its communicating partner is unavailable. This allows the
whole circuit to stay alive when the mobile node moves.

To guarantee the authenticity of the Tor entry node, we employ a keyed hash
function with a random number. The Tor entry node stores the up-to-date IP
address of the mobile node as its sender address. We note that the initial IP
address of the mobile node can be the home address of the mobile node when
the system is just initialized. We also note that each Tor server must allow a
longer waiting time period when the host or network unavailability is detected.

The Resume command cell consists of the command Resume, the circuit id,
an encrypted value of the new IP address, the old IP address, a random number
and the hash value of the old IP address and the random value. Due to page
limitation, we refer the readers to [23] for more details.

Existing Drawbacks: Location Privacy. As in other mobility systems, our system
also exposes the mobile node’s location to the Tor entry node. Therefore, the
problem of location privacy seems to be inherent whenever mobility is added to
the network. The solution like the set of proxies is not appropriate as previously
described in MA1.One could propose that the Tor entry node must be a trusted
node. However, this is very unlikely to happen. Tor network itself does not require

76 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

the Tor entry node to be a trusted node. Also, if the circuit ID has not changed
and the IP-packets between the mobile node at different locations and the Tor
entry node are not encrypted, then the observer can trace the movement of the
mobile node from the unchanged circuit ID and hence can obtain its location.
Therefore, a further extension is required to satisfy the requirement of location
privacy.

4.3 Architecture MA3. Enhancing Mobility-Equipped Tor with
Location Privacy

The main problem with the architecture MA2 is the exposure of the mobile node’s
location to the Tor entry node, so that the movement of the mobile node will be
traceable. In this section, we present a further enhancement to this design, by
forcing the mobile node (i.e. the Tor client) to change its circuit every time it
moves to a new network. By this enforcement, it will ensure that the Tor entry
node will always be different. The restriction is that all other circuits must have
the same exit node in order to ensure that the TCP connection between the
exit node and the server can continue functioning. Fortunately, the circuits are
established a priori. This mechanism will allow the mobile node to establish the
circuits prior to its movement and hence, the swapping between one circuit to
another will not cost too much delay. An additional data must be inserted into
the cell’s component to allow the exit node to concatenate the connection to
the server between the old and the new circuit. The detail of this design and
implementation is as follows.

Fig. 3. Illustration of Mobile Node’s Movement to achieve Location Privacy

Initialization. Prior to the network activity (and network movement), the mobile
node (i.e. the Tor client) must establish several circuits that use the same exit
node and store them in its circuit pool. These circuits are inactive when they
are not in use.

Achieving Mobility and Anonymity in IP-Based Networks 77

Mobile Node Movements. When the mobile node moves to a new network, it will
firstly acquire a new IP address. Then, it selects a new circuit from the available
circuit pool. As the circuit has been established a priori with the mobile node’s
initial IP address, it also needs to be updated with the new IP address that has
just been acquired. Then, we employ the same mechanism as used in Architecture
MA2. That is, the mobile node sends a Resume command to the Tor entry node.
However, this time it is the Tor entry node of the new circuit.

Then, the mobile node sends a relay cell to the exit node through the new
circuit’s connection aiming at switching the circuit. The relay cell consists of the
following components: a command to notify the exit node to switch the circuit
(ResumeCon) and a connection identifier that the mobile node uses to notify the
exit node of the same destination (CID). Once the exit node receives the relay
cell, it decrypts the packet (aka onion layer). Then, it executes the command by
searching its database for the circuit that is currently used with the connection
to the server using CID, i.e. the old circuit. Finally, it deactivates the old circuit
(by removing CID from the old circuit’s record) and activates the new circuit
with the connection to the application server. Note that we name the relay cell’s
circuit as the new circuit. Due to page limitation, we refer the readers to [23] for
more details and diagrams.

Analysis. It is clear that the Tor entry node cannot trace the location of the
mobile node. This is due to the fact that the circuit ID and the Tor entry node
are always changed when the mobile node moves to a new network. Hence, there
is no need to encrypt the circuit ID between the mobile node and the Tor entry
node to provide location privacy against the observer. Moreover, even though
the exit node can obtain a list of its previous nodes of all circuits belonging to
the connection from the mobile node to the application server, it does not have
enough information to trace the movement of the mobile node, since there is
more than a hop that connects the exit node to the mobile node. We note that
by allowing the number of hops in a circuit to vary, we can achieve a better and
efficient location privacy protection as it is harder for the adversary to predict
even the size of the circuit.

The assumption put in place in Tor networks includes the following. On one
extreme, we note that the collusion of all nodes is not permitted, or else the
anonymity properties, i.e. sender anonymity, receiver anonymity and unlinka-
bility cannot be provided. On the other extreme, we also note that Tor does
not require that all Tor nodes must be trusted either. We note that these two
assumptions are indeed valid in practice.

Theorem 1. Our design MA3 provides mobility, anonymity and location pri-
vacy according to our definition in Section 2.

Justification. The mobility of our design MA3 is provided by the inherent Tor
networks. For the anonymity, we should consider the three properties, namely
sender anonymity, receiver anonymity and unlinkability. In the following, we
briefly show that the security of our design can be reduced to the security of
Tor.

78 R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini

Sender Anonymity. Consider the following game between A and C. Assume that
A is an attacker that can break the sender anonymity interaction in our design.
In this setting, we set C as an observer to a Tor network in the real world.
Firstly, C provides all the required Tor parameters to A and a set of senders
{S1, S2, · · · , Sn} ∈ S. The attacking phase can be done by A by querying C
for any particular sender Sj ∈ S for a particular message mj ∈ M. To answer
this query, C can invoke the real world that contains the Tor networks and
obtain the real transcript from the Tor networks. The transcript will be provided
to A and hence, the simulation runs completely. The view of the simulated
environment is identical to the real world, and hence, the simulation is perfect.
Finally, A outputs two senders S0, S1 of his choice and a target message m∗

that has not been queried before and C provides a transcript Ωi for a coin toss
i ∈ {0, 1}. Then, A can output the choice of i that C selected. Note that this
output means that A has successfully break the underlying sender anonymity of
the Tor network in the real world, and hence we obtain contradiction.

Receiver Anonymity and Unlinkability. Receiver anonymity and unlinkability can
be done in similar fashion as above. The underlying idea is to show if there exists
an adversary A who can break the interaction, then this adversary will also break
the underlying Tor networks. Therefore, the contradiction is obtained.

Location Privacy. When we consider the mobile node as the receiver of the
communication, location privacy interaction is similar to the receiver anonymity,
except the location of the receivers can vary. The attacker will not be able to
break the location privacy interaction since the circuit for each different location
will also be different. If the attacker can break the location privacy interaction in
our design, it means that the attacker is capable to observe the whole structure of
the Tor networks, and hence, the adversary is in fact a global adversary. The fact
that a global adversary does not exist means that our design is secure against
location privacy.

5 Conclusion and Further Works

In this paper, we presented a mechanism to achieve mobility and anonymity
in IP-based networks concurrently. We started the paper by firstly defining the
required properties, that include mobility, anonymity and location privacy. We
noted that adding mobility to an IP-based network will imply losing location
privacy. We presented a concrete design and implementation based on the exist-
ing IP-based network to achieve both mobility and anonymity at the same time.
We note that our work in this paper can be considered as the first step towards
formalizing mobility, anonymity and location privacy. In our future work, we
will consider the location attribute in our design and therefore we can achieve
a more robust model. Therefore, our future work will be able to capture a more
powerful adversary and a broader scenario.

Achieving Mobility and Anonymity in IP-Based Networks 79

References

1. Freedom Network, http://www.freedom.net/
2. Onion Router History, http://www.onion-router.net/history.html
3. Chaum, D.: Untraceable Electronic Mail, Return Address, and Digital

Pseudonyms. Comm. of ACM 24(2), 84–88 (1981)
4. Choi, S., Kim, K., Kim, B.: Practical Solution for Location Privacy in Mobile

IPv6. In: Chae, K.-J., Yung, M. (eds.) Information Security Applications. LNCS,
vol. 2908, pp. 69–83. Springer, Heidelberg (2004)

5. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, Springer, Hei-
delberg (2003)

6. Droms, R.: Dynamic Host Configuration Protocol, RFC 2131 (1997)
7. Escudero-Pascual, A., Hdenfalk, M., Heselius, P.: Flying Freedom: Location Pri-

vacy in Mobile Internetworking. In: INET2001, CD-proceedings. (2001)
8. Fasbender, A., Kesdogan, D., Kubitz, O.: Analysis of Security and Privacy in Mo-

bile IP. In: 4th International Conference on Telecommunication Systems Modeling
and Analysis (1996)

9. Freedman, M.J., Morris, R.: Tarzan: A Peer-to-Peer Anonymizing Network Layer.
In: CCS 2002, USA (2002)

10. Goldberg, I.: A Pseudonymous Communications Infrastructure for the Internet.
PhD thesis, UC Berkeley (2000)

11. Johnson, D., Perkins, C., Arkko, J.: IP Mobility Support for IPv6, RFC 3775 (2004)
12. Jones, A.: Anonymous Communication on the Internet (September 2004),

http://www10.cs.rose-hulman.edu/Papers/Jones.pdf
13. Koodi, R.: IP Address Location Privacy and Mobile IPv6: Problem Statement RFC

4882 (May 2007)
14. Koponen, T., Gurtov, A., Nikander, P.: Application Mobility with HIP. In: Proc.

ICT 2005 (2005)
15. Marc Rennhard, B.P.: Practical Anonymity for the Masses with Morphmix. In:

Juels, A. (ed.) FC 2004. LNCS, vol. 3110, Springer, Heidelberg (2004)
16. Montenegro, G.: Reverse Tunneling for Mobile IP, RFC 2344 (May 1998)
17. Perkins, C.: IP Mobility Support for IPv4, RFC 3344 (2002)
18. Reed, M., Syverson, P., Goldschlag, D.: Anonymous Connections and Onion Rout-

ing. IEEE Journal on Selected Areas in Communications 16(4), 482–494 (1998)
19. Reiter, M., Rubin, A.: Crowds: Anonymity for Web Transactions. ACM Trans. Inf.

Syst. Secur. 1(1), 66–92 (1998)
20. Roger Dingledine, P.S., Mathewson, N.: Tor: The Second-Generation Onion

Router. In: Proc. of the 13th USENIX Security Symposium (2004)
21. Salkintzis, A.K. (ed.): Mobile Internet: enabling technologies and services. CRC

Press, Boca Raton (2004)
22. Valko, A.G.: Cellular IP: a new approach to Internet host mobility. SIGCOMM

Comput. Commun. Rev. 29(1), 50–65 (1999)
23. Wiangsripanawan, R., Susilo, W., Safavi-Naini, R.: Achieving Mobility and

Anonymity in IP Based Networks (full version). Available upon request from the
first author

http://www.freedom.net/
http://www.onion-router.net/history.html
http://www10.cs.rose-hulman.edu/Papers/Jones.pdf

Perfectly Secure Message Transmission in

Directed Networks Tolerating Threshold and
Non Threshold Adversary�

Arpita Patra1, Bhavani Shankar2, Ashish Choudhary1,��, K. Srinathan2,
and C. Pandu Rangan1,���

1 Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in, rangan@iitm.ernet.in
2 Center for Security, Theory and Algorithmic Research

International Institute of Information Technology
Hyderabad India 500032

shankar@research.iiit.ac.in, srinathan@iiit.ac.in

Abstract. In this paper we study Perfectly Secure Message Transmis-
sion (PSMT) between a sender S and a receiver R, connected in a
directed synchronous network through multiple parallel edges (called
wires), each of which are directed from S to R or vice-versa. The unreli-
ability of the network is modeled by a Byzantine adversary with infinite
computing power. We investigate the problem with two different adver-
sarial settings: (i) threshold and (ii) non-threshold. In [1], the authors
have characterized PSMT against a t-active threshold adversary in di-
rected networks1. However, their PSMT protocol was exponential both
in terms of number of phases2 and communication complexity. In addi-
tion, they also presented a polynomial phase PSMT protocol with n′ =
max(3t−u+1, 2t+1) wires from S to R. In this paper, we significantly im-
prove the exponential phase protocol and present an elegant and efficient
three phase PSMT protocol with polynomial communication complexity
(and computational complexity) with n = max(3t − 2u + 1, 2t + 1) wires
from S to R. Also with n′ = max(3t − u + 1, 2t + 1) wires from S to
R, we are able to further improve the communication complexity of our
three phase PSMT protocol. Our second contribution in this paper is

� A brief version of this paper appeared in [7] which permits full expanded version
to appear elsewhere.

�� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

��� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

1 The authors have proved the necessity and sufficiency of at least max(3t − 2u +
1, 2t+1) wires from S to R for any PSMT protocol, where u is the number of wires
from R to S and t is the total number of wires corrupted by a threshold adversary.

2 A phase is a send from S to R or R to S.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 80–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Perfectly Secure Message Transmission 81

the first ever characterization for any two phase PSMT protocol.Finally,
we also characterize PSMT protocol in directed networks tolerating non-
threshold adversary. In [3], the authors have given the characterization
for PSMT against non-threshold adversary. However, in their character-
ization, they have only considered the paths from S to R, excluding the
feedback paths (i.e paths from R to S) and hence their characterization
holds good only for single phase protocols. We characterize multiphase
PSMT considering feedback paths.

Keywords: Reliable and Secure Communication, Information Theoretic
Security, Communication Efficiency, Directed Networks.

1 Introduction

In the problem of perfectly reliable message transmission (PRMT), a sender S
is connected to R in an unreliable network by some vertex disjoint paths called
wires; S wishes to send a message m chosen from a finite field F reliably to R,
in a guaranteed manner, in spite of the presence of several kinds of faults in the
network. The problem of perfectly secure message transmission (PSMT) has an
additional constraint that the adversary should get no information about m. The
faults in the network is modeled by an adversary who controls the wires in the
network in a variety of ways and the adversary has unbounded computing power.
Security against such an adversary is called information theoretic security.

There are various network settings, fault models and computational mod-
els in which PRMT and PSMT problem has been studied extensively in the
past [4,1,10,8,5]. The quality of any PRMT and PSMT protocol is measured by
the following parameters: the number of wires n between S and R, the number
of phases r required to send m, the total number of field elements b that are
communicated during the execution of the protocol, (also known as communica-
tion complexity) and the amount of computation done by S and R.

PRMT and PSMT problem found its origin from unconditionally secure mul-
tiparty computation. If S and R are connected directly via a private and authen-
ticated link which is generally assumed in generic secure multiparty protocols,
reliable and secure communication is trivially guaranteed. However, in reality, it
is not economical to directly connect every two players in the network. Therefore
such a complete network can only be virtually realized by simulating the missing
links using PRMT and PSMT protocols as primitives.

In this paper, we use digraph to capture the underlying communication net-
work. We stress that in practice not every communication channel admits bi-
directional communication (for instance, a base-station may communicate to
even a far-off hand-held device but the other way round is not possible) and
hence the digraph model is practically well-motivated.

1.1 Previous Work

PRMT and PSMT in directed networks tolerating threshold adversary was first
studied by Desmedt et.al. in [1] (An earlier version of this paper appeared in [2]),

82 A. Patra et al.

where it is shown that for the existence of any PSMT protocol, there should be
at least n = max{3t − 2u + 1, 2t + 1} wires from S to R (which is termed
as the top band), where u denotes the number of wires from R to S (which
is termed as bottom band) and t denotes the total number of wires that can
be under the control of adversary. Also the wires in the top band and bottom
band should be disjoint. However to prove the sufficiency, the authors in [1] have
provided a PSMT protocol which securely sends a single field element in n!

(n−u)!

phases which is exponential. Further they have shown that if there exists n′ =
max{3t − u + 1, 2t + 1} wires from S to R, then one can securely send a single
field element in polynomial number of phases (polynomial in n).

PSMT in directed networks tolerating non-threshold adversary was studied
by Desmedt et.al. in [3]. However, their characterization does not consider the
paths from R to S. Specifically they have characterized PSMT for single phase
in directed networks in the absence of feed-back paths from R to S.

1.2 Our Contribution and Outline of the Paper

In this paper, we significantly improve the existing results for PSMT in directed
networks, both for threshold and non threshold adversary.

1. We present a three phase PSMT protocol securely sending a message with
polynomial communication complexity with n = max(3t − 2u + 1, 2t + 1) wires
from S to R. Our protocol performs polynomial time computation. This is a
significant improvement over the exponential phase PSMT protocol proposed
in [1].
2. We also show how communication complexity of our PSMT can be further
reduced down when n′ = max{3t − u + 1, 2t + 1} wires are available from S to
R. Also the communication complexity of our improved protocol is significantly
smaller than that of polynomial phase PSMT protocol working under the same
constraints and presented in [1].
3. We prove the necessary and sufficient condition for the existence of any two
phase PSMT protocol between S and R in a directed network tolerating a thresh-
old adversary. To our knowledge, this is the first ever characterization of two
phase PSMT protocol in such networks.
4. We characterize PSMT in directed networks tolerating non-threshold adver-
sary considering feed-back paths from R to S. Our characterization shows that in
many practical scenarios PSMT is possible but the existing characterization [3]
has restricted applicability.

Since, in this paper, we deal with both threshold and non-threshold adversary, for
easy understanding, we divide the paper into two halves. The first half deals with
threshold adversary while the second half deals with non-threshold adversary. In
the next section, we describe the network model used for dealing with threshold
adversary. We also briefly describe Reed-Solomon codes and their properties. In
section 3 we design a three phase polynomial time (and polynomial communica-
tion complexity) PSMT protocol even with n = max{3t − 2u + 1, 2t + 1} wires
from S to R. In section 4 we show that if there are n′ = max{3t − u + 1, 2t + 1}

Perfectly Secure Message Transmission 83

wires from S to R, then the communication complexity of our three phase PSMT
protocol is reduced further. In section 5, we characterize two phase PSMT pro-
tocols in the presence of a threshold adversary. The characterization for PSMT
tolerating non-threshold adversary is provided in section 6. The papers ends with
a brief conclusion and directions for further research.

2 Network Model for Threshold Adversary

The network model used for dealing with threshold adversary is same as used
in [1]. S and R are part of a directed synchronous network, modeled as a directed
graph. There exists n vertex disjoint paths called wires, directed from S to R
(which is termed as top band) and u vertex disjoint paths from R to S (which is
termed as bottom band). The wires in the top band and bottom band are disjoint
from each other. An active adversary having unbounded computing power can
corrupt any t of these u + n wires. Any value which is transmitted over all the
wires is said to be “broadcast”. Any value which is broadcast over at least 2t+1
wires may always be correctly obtained at the receiving end by taking a majority
value among the values received. For designing protocols against a threshold
adversary, we use Reed-Solomon codes. We now briefly recall the definition of
Reed-Solomon codes and their properties from [6].

Definition 1. Let F be a finite field and α1, α2, . . . αn be a collection of distinct
elements of F. Given k ≤ n ≤ |F|, and a block B = [m0 m1 . . . mk−1] the encod-
ing function for the Reed-Solomon code RS(n, k) is defined as [pB(α1) pB(α2) . . .

pB(αn)] where pB(x) is the polynomial
∑k−1

i=0 mix
i.

The error correcting and detecting capability of Reed-Solomon codes is given by
the following theorem:

Theorem 1 ([6]). Reed-Solomon codes can correct up to c Byzantine errors
and simultaneously detect d more Byzantine errors if the difference between the
number of points received (which is same as the length of the codeword) and the
degree of the polynomial used for encoding is greater than 2c + d.

3 A Three Phase PSMT Protocol

Here we design a three phase polynomial time PSMT protocol called Protocol I
where n = max{3t−2u+1, 2t+1}. We first explain Protocol I for 0 < u < � t

2�.
For 0 < u < � t

2�, n = 3t − 2u + 1. The wires in the top band are denoted by
fi, 1 ≤ i ≤ n while the wires in the bottom band are denoted by bj , 1 ≤ j ≤ u.
Let m denote the secret message which S wants to send to R.

We first briefly explain the principle behind Protocol I. In Protocol I, S
hides m in the constant term of a bivariate polynomial Q(x, y) of degree t in
both x and y. In order to receive m correctly, R should be able to recover Q(x, y)
correctly. For this, S provides R with enough information through the top band
to recover Q(x, y). At the same time, S makes sure that adversary is not able to

84 A. Patra et al.

recover Q(x, y) using this information. R may not directly use the information
received during the first phase because some portion of the information may be
corrupted. Using the information sent by S during the first phase, R tries to
locate the identity of as many faulty wires as he can. Towards this, he construct
a conflict graph which is explained in the protocol. The conflict graph has certain
nice properties which are explained in the proof of correctness of the protocol. R
then sends this conflict graph to S through the bottom band. Now there are two
possible cases. If S receives this conflict graph correctly through at least one wire,
then at the end of third phase, R will be able to identify “some specific” faulty
wires in the top band, over which it has received wrong information during the
first phase. The information received over the remaining wires in the top band,
will be correct, from which R will be able to recover Q(x, y). On the other
hand, if S does not receives conflict graph correctly even through one wire in the
bottom band, then R will come to know about this at the end of third phase,
In this case, R will come to know an upper bound on the number of faults
that occurred during the first phase. Once R knows this bound, he will be able
to recover Q(x, y) by applying error correcting algorithm to the information
received during the first phase. Thus in both cases, R will be able to recover
Q(x, y) at the end of third phase. We now prove the correctness of the protocol.

Theorem 2. In Protocol I, any adversary A who controls at most t wires
(including top and bottom band) does not get any information about m.

Proof: Without loss of generality, suppose A controls f1, f2, . . . ft (the first t
wires in the top band). So A knows Q(x, 1), Q(x, 2), . . . , Q(x, t) and using these
A can form t(t + 1) independent equations in the coefficients of Q(x, y). A will
also know t values on each of the polynomials Q(x, t+1), Q(x, t+2), . . . , Q(x, n),
each of which are of degree t and hence A will fall short of one value for each of
these polynomials to interpolate them. Moreover out of these t+1 Q(x, i)’s, only
one is linearly independent from Q(x, 1), Q(x, 2), . . . , Q(x, t) which are already
known to A. So through the t points on the polynomials Q(x, t + 1), Q(x, t +
2), . . . , Q(x, n), A can form only t additional independent equations in the co-
efficients of Q(x, y). Hence the total number of independent equations in the
coefficients of Q(x, y) that A can form is t(t + 1) + t = t2 + 2t and this is one
less than the actual number of coefficients in Q(x, y). Hence, the constant term
of Q(x, y) (i.e., m) is information theoretically secure.

On the other hand if A controls at least one wire in the bottom band, then
during Phase II A will also know the information corresponding to the conflict
graph. However, this information will not give A any extra information about
Q(x, y) because if the four tuple (i, j, Q′(j, i), v′ij) corresponds to an edge in the
conflict graph, then it indicates that A has corrupted either fi or fj or both
(no two honest wires can conflict each other). If fj is corrupted then A already
knows the actual value of Q(j, i) which it has changed to v′ij . If fi is corrupted,
then A already knows Q(x, i) and hence its value at x = j; i.e., vij . Thus A does
not get any extra information to interpolate Q(x, y) and retrieve m. ��

Perfectly Secure Message Transmission 85

Theorem 3. In Protocol I, if during Phase II, S correctly receives the origi-
nal conflict graph through at least one wire in the bottom band, then at the end of
Phase III, R will always be able to identify all the wires fi over it has received
faulty Q(x, i) during Phase I.

Proof: Suppose that over some wire fi, 1 ≤ i ≤ n, the polynomial Q(x, i) had
been changed to some other polynomial Q′(x, i) during Phase I. Since Q(x, i)
and Q′(x, i) are both of degree t in x, they can be same in at most t values of
x. Moreover the adversary who can control at most t wires in the top band can
change the value of Q(x, i) sent over those t wires to corresponding values of
Q′(x, i). So R can get incorrect Q′(x, i) over fi and correspondingly 2t matching
values over 2t wires. However, since n ≥ 2t + 1 and the value of original polyno-
mial Q(x, i) is sent at n different points, there will be at least one wire say fj ,
which will not be under the control of adversary and will deliver the actual value
of Q(x, i) at x = j to R. This value will not lie on Q′(x, i) and hence fi and fj

will conflict each other and hence in the conflict graph, there will be an arc from
fi to fj. If S receives the conflict graph correctly through at least one wire in the
bottom band, then after S performs the local verification, S will identify that the
polynomial Q(x, i) had been changed over fi and reliably sends this information
to R by broadcasting it over all the n wires. ��

Theorem 4. In Protocol I, R will always be able to correctly recover the mes-
sage m after Phase III.

Proof: During Phase I, S sends a Reed-Solomon codeword of length n for each
of the polynomials Q(x, i), 1 ≤ i ≤ n. From Theorem 1, by putting d = 0, the
maximum number of errors c that R can correct in the received codeword by
using Reed-Solomon decoding is given by (3t − 2u + 1) − (t) − 1 ≥ 2c implying
c ≤ (t − u). Hence, if R some how comes to know that the number of Byzantine
errors that took place during Phase I is at most t − u, then R will be able to
recover each of the n Q(x, i)’s by applying Reed-Solomon decoding algorithm.

Suppose that more than t − u Byzantine errors took place during Phase I.
This implies that in the bottom band at most u − 1 errors can occur. Hence S
will receive the conflict graph correctly through at least one wire. Hence from
Theorem 3, at the end of Phase III, R will come to know the identity of all
faulty Q(x, i)’s received during Phase I. R will neglect all these faulty Q(x, i)’s
and considers only the remaining Q(x, i)’s. R will thus have at least t+1 correct
Q(x, i)’s using which it will interpolate Q(x, y) and recovers m.

On the other hand suppose that at most t − u Byzantine errors took place
during Phase I. So the adversary might control the entire bottom band. Hence,
during Phase II, when R sends the list X corresponding to the conflict graph
to S through the bottom band, the adversary might change the list X to some
arbitrary list X ′ and forward it to S. In the worst case, the adversary might
forward u different conflict graphs to S. During Phase III, S will find the fault
list corresponding to each of the received conflict graphs and broadcasts conflict
graph - fault list pairs to R through all the n ≥ 2t + 1 wires. However, when R
receives these conflict graph - fault list pairs, it will not find the list X which it

86 A. Patra et al.

Protocol I: n = max{3t − 2u + 1, 2t + 1}
Phase I: S to R

• S selects a bivariate polynomial Q(x, y) =
∑t

i=0

∑t
j=0 rijx

iyj , where rij ’s are randomly
chosen from F which are independent of m (F is sufficiently large) such that r00 = Q(0, 0)
is the secret message m.

• S evaluates Q(x, y) at y = 1, 2, . . . , n (1, 2, . . . , n are public parameters). Each Q(x, i)
is a polynomial in x of degree t. S sends over wire fi, 1 ≤ i ≤ n the polynomial Q(x, i)
and the value of the polynomials Q(x, j), 1 ≤ j ≤ n at x = i, denoted by vji. Note that
the n tuple [vj1vj2 . . . vjn], 1 ≤ j ≤ n corresponds to the Reed-Solomon codeword of the
polynomial Q(x, j), 1 ≤ j ≤ n.

Phase II: R to S

• R receives over wire fi, 1 ≤ i ≤ n, the polynomial Q′(x, i) and the values v′
ji, 1 ≤ j ≤ n.

The received codeword [v′
j1v

′
j2 . . . v′

jn] can differ from the actual codeword [vj1vj2 . . . vjn]
in at most t locations.

• R creates a directed graph H = (W, E), called conflict graph such that
W = {f1, f2, . . . , fn} and (fi, fj) ∈ E if Q′(j, i) �= v′

ij , 1 ≤ i, j ≤ n. Thus there
exists an arc from vertex fi to vertex fj in H if the value of the received polynomial
Q′(x, i) at x = j does not match the corresponding received value v′

ij . This implies that
either fi or fj or both are corrupted. Corresponding to each edge (fi, fj) ∈ H , R adds a
four tuple (i, j, Q′(j, i), v′

ij) to a list X. R finally sends the list X to S through all the
wires in the bottom band.

Phase III from S to R

S receives u lists through the bottom band, among which l are distinct, where 1 ≤ l ≤ u.
Let these lists be denoted by L1, L2, . . . , Ll. For each such list distinct list Lk, 1 ≤ k ≤ l,
S does the following:

• S creates a fault list denoted by Lkfault
which is initialized to ∅. For each four tuple

(i′′, j′′, Q′′(j′′, i′′), v′′
i′′j′′) present in the list Lk, S locally checks Q′′(j′′, i′′) ?

= Q(j′′, i′′)

and vi′′j′′
?
= v′′

i′′j′′ . Depending upon the outcome of the test, S concludes that during
Phase I, either R had received incorrect Q(x, i′′) through wire fi′′ or incorrect value of
the polynomial Q(x, i′′) at x = j′′ through wire fj′′ (or both) and hence accordingly add
fi′′ or fj′′ (or both) to Lkfault

.

After performing the above steps for each distinct list Lk, 1 ≤ k ≤ l, S broadcasts to R
the pairs (Lk, Lkfault

) over all n wires.

Message Recovery by R

Since n ≥ 2t + 1, by taking majority, R will correctly receive the pairs (Lk, Lkfault
). R

then checks for the original conflict list X which it had sent during Phase II.

• If the list X is present in the received pairs (Lk, Lkfault
), then R does the following:

Let the received pair corresponding to the sent list X be (Lz, Lzfault). From the list
Lzfault , R will come to know the identity of all incorrect Q(x, i)’s that R had received
during Phase I (see Theorem 3), neglects them, interpolates Q(x, y) using the remaining
Q(x, i)’s and recovers m = Q(0, 0).

• If the list X is not present in the received pairs (Lk, Lkfault
), then R concludes that

entire bottom band is corrupted and hence at most t − u Byzantine errors occurred during
Phase I. R then applies the Reed-Solomon decoding algorithm to each of the n tuples
[v′

i1v
′
i2 . . . v′

in], 1 ≤ i ≤ n which R had received during Phase I to recover all Q(x, i)′s,
1 ≤ i ≤ n (see Theorem 4). Finally, he interpolates Q(x, y) using t+1 Q(x, i) and recovers
m = Q(0, 0).

Perfectly Secure Message Transmission 87

had sent to S during Phase II. R will thus conclude that S had not received
the actual conflict graph correctly because the entire bottom band is under the
control of the adversary. Hence R also concludes that at most t − u Byzantine
errors had occurred during Phase I. Now as explained earlier, R can correct
t − u Byzantine errors by applying Reed-Solomon decoding algorithm to each
of the codewords [v′i1v

′
i2 . . . v′in], 1 ≤ i ≤ n, assuming the number of errors to be

t−u and recovers each of the polynomial Q(x, i), 1 ≤ i ≤ n correctly. Finally, by
taking any t+1 Q(x, i)′s, R interpolates Q(x, y) and recovers m. �

Theorem 5. The communication complexity of Protocol I is O(n3u).

Proof: During Phase I, S sends over wire fi, 1 ≤ i ≤ n the polynomial Q(x, i)
which is of degree t and the value of the polynomials Q(x, j), 1 ≤ j ≤ n at
x = i. So the total number of field elements send during Phase I is n(t+1)+n2

which is O(n2) (for n ≥ 2t + 1, t = O(n)). In Phase II, R sends the list of four
tuples corresponding to the conflict graph to S through all the u wires. Since
conflict graph in the worst case contains O(n2) edges, the total communication
complexity of Phase II is O(n2u). However, as explained in Theorem 4, S may
receive u different conflict graphs during Phase III. In Phase III, corresponding
to each received conflict graph, S broadcasts a conflict graph - fault list pair.
Since there can be at most t faulty wires, each fault list will contain O(t) field
elements. Hence in the worst case, S needs to broadcast u conflict graph - fault
list pairs which involves communicating O(n∗u∗ (n2+ t)) field elements which is
O(n3u). Hence total communication complexity of the protocol is O(n3u). ��

Note 1. In Protocol I, we have assumed that 0 < u < 	 t
2
. If 	 t

2
 < u < t + 1
then 3t− 2u+1 < 2t+1 and hence n = 2t+1. Even then Protocol I will work
correctly because for n = 2t+1, the error correcting capability of R using Reed-
Solomon decoding will be t

2 . So if during Phase II, S receives incorrect conflict
graph through the bottom band, then R will conclude after Phase III that at
most t − u (which is at most t

2) errors had occurred during Phase I, which it
can correct by applying Reed-Solomon decoding algorithm. If u > t + 1, then
in Protocol I, S will always receive the actual conflict graph from R through
at least one wire and hence from Theorem 3, after Phase III, R will be able
to identify the faulty Q(x, i) received during Phase I. R can now recover m by
neglecting such faulty polynomials.

4 Three Phase Protocol with Reduced Message
Complexity

In [1], the authors have shown that if there exists n′ = max{3t − u + 1, 2t + 1}
wires in the top band, then there exists a PSMT protocol which terminates in
polynomial number of phases and hence has polynomial communication com-
plexity. However, their communication complexity is much more than O(n′3).
Here we show that if there are n′ = max{3t − u + 1, 2t + 1} wires from S to R,
then the communication complexity of Protocol I can be reduced to O(n′3).

88 A. Patra et al.

Protocol II - 3 Phase Protocol with reduced communication complexity

• Phase I and Phase II is same as in Protocol I except that here
n′ = max{3t − u + 1, 2t + 1}.

Phase III: S to R

In Protocol I, S could receive u different list of four tuples corresponding
to u different conflict graphs from R during Phase II. However, here S will
only consider the list of four tuples that it receives from R over more than u

2 wires.

• If S does not receives a unique list of four tuples corresponding to a unique
conflict graph over more than u

2 wires, then S broadcasts “ERROR” signal to
R through all the wires fi, 1 ≤ i ≤ n′ and terminates the protocol. On the
other hand, if S receives some list Lk of four tuples corresponding to some
conflict graph over more than u

2 wires, then similar to the previous protocol, S
constructs the fault list Lkfault

corresponding to the list Lk and broadcasts the
pair (Lk, Lkfault

) to R over all the n′ wires.

Message Recovery by R

• If R receives “ERROR” signal from S then R concludes that the original list of
four tuples X has not reached correctly to S through more than u

2 wires because
at least u

2 + 1 Byzantine errors had taken place during Phase II in the bottom
band implying that at most t− u

2 −1 Byzantine errors had occurred during Phase
I in the top band. R then does the following: R concatenates each of the received
codewords [v′

i1v
′
i2 . . . v′

in′], 1 ≤ i ≤ n′ and applies Reed-Solomon decoding to each
of these codewords assuming the number of errors in each of the codeword to be
t − u

2 and correctly recovers each of the polynomials Q(x, i), 1 ≤ i ≤ n′ correctly
(see Theorem 6). R then considers any t + 1 recovered Q(x, i)’s, interpolates the
polynomial Q(x, y) and recovers m from Q(0, 0).

• If R receives a pair (Lk, Lkfault
) from S, then R checks whether Lk is same

as X which is the original list corresponding to the conflict graph sent by R
during Phase II. If Lk = X, then R concludes that S had received the actual
conflict graph correctly. Then similar to the previous protocol, R will be able to
interpolate Q(x, y) correctly and hence recover m.
On the other hand, if Lk �= X, then R concludes that S had not received the
original list X through more than u

2 wires because at least u
2 +1 Byzantine errors

had occurred during Phase II. R also concludes that at most t− u
2 −1 Byzantine

errors had occurred during Phase I. R then do the same steps which it does if
it receives “ERROR” signal from S as explained above and recovers m correctly.

We call the new protocol as Protocol II. Without loss of generality we assume
that 0 < u ≤ t, hence n′ = 3t − u + 1. Phase I and Phase II is same as in
Protocol I. Also during Phase III, only a single conflict graph - fault list pair
is broadcast which does not give any extra information about the message to

Perfectly Secure Message Transmission 89

the adversary. Hence security of Protocol II follows from Theorem 2. We now
argue for the correctness of the new protocol.

Theorem 6. In Protocol II, R will always be able to recover the message
correctly in three phases.

Proof: From Theorem 1, by putting d = 0, the error correcting capability by
R in received codewords is now bounded by (3t − u + 1) − (t) − 1 ≥ 2c which
gives c ≤ (t − u

2) which is more than in Protocol I. In Protocol II, if R
receives “ERROR” signal from S during Phase III, then R concludes that
S has not received the original conflict graph over more than u

2 wires during
Phase II because at least u

2 + 1 Byzantine errors occurred in the bottom band.
This implies that at most t − u

2 Byzantine errors occurred during Phase I. So
R applies Reed-Solomon decoding algorithm to each of the received codeword
assuming the number of errors to be at most t− u

2 and correctly recovers all the
polynomials Q(x, i), 1 ≤ i ≤ n′. R then considers any t +1 Q(x, i)′s, interpolate
the polynomial Q(x, y) and recovers the message m.

If R receives the pair (Lk, Lkfault
) from S during Phase III, then R checks

whether Lk = X , where X is the original list corresponding to the original
conflict graph sent by R during Phase II. If Lk = X , then it implies that S
had received the original conflict graph correctly over more than u

2 wires. Now
from Theorem 3, R will identify all the corrupted Q(x, i)’s wires received during
Phase I. Neglecting them, R interpolates Q(x, y) and recovers m.

On the other hand, if Lk �= X , then again R concludes that S had not
received the original conflict graph correctly because at least u

2 + 1 Byzantine
errors occurred in the bottom band during Phase II. R also concludes that at
most t − u

2 Byzantine errors occurred during Phase I. Now R can apply the
Reed-Solomon decoding algorithm to each codeword received during Phase I
assuming the number of errors to be at most t − u

2 , recovers all the polynomials
Q(x, i) correctly, interpolates Q(x, y) and finally recovers m. ��

Theorem 7. The communication complexity of Protocol II is O(n′3).

Proof: The communication complexity of Phase I and Phase II is same as
in Protocol I. During Phase III, S broadcasts only a single conflict graph -
fault list pair through n′ wires which involves a communication complexity of
O(n′ ∗ (n′2 + t)) which is O(n′3). Thus the total communication complexity of
the protocol is O(n′2) + O(n′2u) + O(n′3) which is O(n′3) because 0 < u ≤ t
and hence u = O(t) = O(n′) because n′ ≥ 2t + 1. Thus the total communication
complexity of the protocol is O(n′3). ��

Note 2. In Protocol II, we have assumed that 0 < u ≤ t. If t+1 ≤ u ≤ 2t, then
also the protocol will work. If u ≥ 2t +1, then the protocol will work by slightly
modifying it. In this case n = 2t + 1 and u ≥ 2t + 1. So R will always be able
to send the conflict graph reliably to S because the conflict graph will be now
sent over at least 2t + 1 wires, out of which at most t can be corrupted. Once,
S receives the conflict graph correctly, it will identify all the wires over which

90 A. Patra et al.

the polynomial Q(x, i) is changed during Phase I, sends this information to R,
using which R will recover the message correctly. It can be seen easily that the
communication complexity of the protocol in this case will be O(n′3).

5 Two Phase PSMT Tolerating Threshold Adversary

One of the significant attribute contributing to the quality of a PSMT protocol
is the number of phases taken by the protocol. For PSMT in undirected graphs,
2t + 1 wires (bi-directional) between S and R is necessary and sufficient for
the existence of any r-phase (r ≥ 2) PSMT protocol [4]. Thus, the connectivity
requirement is same for any r-phase (r ≥ 2) PSMT protocol in undirected graph.
However, this is not true in the case of directed networks. The characterization
for two phase PSMT in directed networks is given by the following theorem.

Theorem 8. Let G = (V, E) be a directed graph and S, R ∈ V . Then there
exists a two phase PSMT protocol against a t-active Byzantine adversary between
S and R iff there exist n ≥ 2t+1 vertex disjoint paths from S to R and u ≥ 2t+1
vertex disjoint paths from R to S.

Proof: Necessity: In any two phase PSMT protocol, the first phase is from R to
S and the second phase is from S to R. Moreover, the actual message is sent by
S to R only in the second phase. Also, to send the message, S will always make
use of the information that R had sent it during Phase I because if S does not
make use of this information, then the two phase PSMT protocol reduces to a
single phase PSMT protocol between S and R against a t-active adversary for
which there should exist at least 3t + 1 wires from S and R [4]. Thus in any two
phase PSMT protocol, S always makes use of the information sent to it by R
during Phase I. Since the information send by R during Phase I is used by S
to send the message, this information should reach reliably to S. Otherwise S
will make use of incorrect information to send the message and hence R will not
be able to receive the message reliably. However, from [4], for the existence of
any PRMT (perfectly Reliable Message Transmission) protocol between S and
R or R and S against a t-active adversary, there should exist at least 2t + 1
wires between them. So in order that the information send by R reaches re-
liably to S, there should exist 2t + 1 wires in the bottom band. As mentioned
above, the secret message is send during Phase II by S. So the message should
reach reliably to R. Again from [4], the necessary condition for this is that there
should exist n ≥ 2t+1 wires in the top band. This proves the necessity condition.

Sufficiency: Suppose there exists 2t + 1 wires f1, f2, . . . , f2t+1 from S to R and
2t + 1 wires b1, b2, . . . , b2t+1 from R to S. From [8], it is well known that there
exists a two phase PSMT protocol between S and R, in an undirected graph,
when both of them are connected by 2t + 1 vertex disjoint paths facilitating
bi-directional communication. Let the protocol be denoted by Pundirected. Here
we have 2t+1 vertex disjoint paths facilitating communication from S to R and
2t + 1 vertex disjoint paths facilitating communication from R to S which may

Perfectly Secure Message Transmission 91

or may not be vertex disjoint. However, irrespective of whether they are vertex
disjoint or not, we can design a two phase PSMT protocol Pdirected between S
and R from Pundirected. The protocol is as follows: In the first phase, R sends
to S through the wires b1, b2, . . . , b2t+1, what ever R would had sent if it had
executed the protocol Pundirected in an undirected graph to send the message m.
In the second phase, S will send to R through the wires f1, f2, . . . , f2t+1, what
ever it would had sent to R, if it had executed the protocol Pundirected to send
m after receiving what ever it had received from R during the first phase of
Pdirected. The reliability and security of the protocol Pdirected follows from the
reliability and security of the protocol Pundirected [8]. ��
Significance of Theorem 8: Consider a network having five wires in the top
band and two wires in the bottom band, which are disjoint from the top band. If
we set t = 2, then there exists a three phase PSMT protocol between S and R
(Protocol I) tolerating two adversaries. However, from Theorem 8, there does
not exist any two phase PSMT protocol tolerating two adversaries. In fact, in
this case, there does not exist any two phase PSMT protocol tolerating even a
single adversary. Thus unlike undirected graphs, the connectivity requirement
for two phase and three phase PSMT protocol in directed networks varies.

6 PSMT Tolerating Non-threshold Adversary

Non-Threshold adversary in the context of PSMT was first studied in [5]. Mod-
eling the adversary by a threshold helps in easy characterization of PSMT. It
also helps in analyzing protocols and proving lower bound on the communica-
tion complexity [10]. However, as mentioned in [5], modeling the (dis)trust in
the network as a threshold adversary is not always appropriate since:

1. In the case of secure communication, not all scenarios of mutual (dis)trust
can be captured by a threshold adversary.

2. The threshold model may lead to a gross overestimation of the connectivity
requirement of the underlying network.

For instance, consider the network N and the Byzantine adversary A as given in
Figure 1. As evident from Figure 1, there are five wires in the top band and two
wires in the bottom band. Hence from [1], any protocol that tolerates a threshold
adversary can tolerate only upto any two node failures. Therefore, there does
not exist any threshold scheme for secure message transmission tolerating three
node failures because to do so, we require six wires in the top band (by taking
u = 2, t = 3 and n = max{3t − 2u + 1, 2t + 1}) [1]. Thus the specified adversary
is not tolerable. However, from our characterization for non-threshold adversary
given in Theorem 10, the given adversary is indeed tolerable. Thus we see that the
threshold protocol requires more stringent connectivity requirements. Therefore,
we need a general way to characterize an adversary rather than just allow the
adversary to corrupt some t players. Fortunately, such a characterization has
been done in [5] using the notion of an adversary structure. We now briefly
recall few definitions from [5] to deal with non-threshold adversary.

92 A. Patra et al.

In a non-threshold model, adversary is defined by an adversary structure
where an adversary structure represents the collection of all possible subsets of
nodes (excluding S and R) that are potentially corruptible. During the execution
of the protocol the adversary can choose any set from this collection to corrupt
through the execution of the protocol. More precisely, if P is the set of nodes
then we define the adversary structure by A, where A ⊆ 2P . The adversary
structure is monotone in the sense that if B1 ∈ A, then ∀B2 such that B2 ⊆ B1,
B2 ∈ A. We note that A can be uniquely represented by listing the elements in
its maximal basis. For any monotone adversary structure A, its maximal basis A
is defined as A = {B|B ∈ A, � ∃X ∈ A, X �= B, X ⊇ B}. Note that a threshold
adversary is an adversary structure such that the size of each set in the maximal
basis is bounded by a threshold value t.

The Byzantine adversary A corrupts any one

of the subsets {1, 2, 3} or {3, 4, 7} or {2, 5, 6}
S R

1

2

3

4

5

6

7

Fig. 1. Network N and the Adversary A

Definition 2. Given the adversary structure A, the network is said to be A(k)-
connected if for any k sets Xi1 , Xi2 , . . . , Xik−1 and Xik

from A, the deletion
of the nodes in

⋃k
�=1 Xi�

from the network does not disconnect the network.
With respect to two nodes Pi and Pj, the network is said to be A(k)(Pi, Pj)-
subconnected if for any k sets Xi1 , Xi2 , . . . , Xik−1 and Xik

from A, the deletion
of the nodes in

⋃k
�=1 Xi�

from the network does not render Pj unreachable from
Pi; i.e., even after deleting the nodes from the k sets, there exists at least one
directed path from Pi to Pj .

6.1 Existing Results for Non-threshold Adversary

Non-threshold adversary in the context of directed graphs was first introduced
in [3] where the authors have given the following characterization:

Theorem 9 ([3]). Let G = (V, E) be a directed graph. Let S,R ∈ V and A be
an adversary structure on V − {S,R}. If there are no directed paths from R to
S, then PSMT is possible between S and R iff G is A(3)(S,R)-subconnected.

It is easy to see that the above theorem is true only when there are no wires in
the bottom band. Thus the above theorem characterize only single phase PSMT

Perfectly Secure Message Transmission 93

in directed networks. However, in many practical scenarios, there may exist wires
in the bottom band and at the same time, the network may not satisfy the con-
dition given in Theorem 9. Hence no single phase PSMT would be possible, but
multiphase PSMT could be possible. For example the network in Figure 1 is not
A(3)(S,R)-subconnected and hence from Theorem 9, no single phase PSMT is
possible. However, from our characterization of non-threshold adversary, given
in Theorem 10, there exists a three phase PSMT in the network of Figure 1.
Thus while our characterization shows the existence of protocol, the existing
characterization [3] offers no such insight.

6.2 Characterization of PSMT Considering Feedback Paths

We now give the necessary and sufficiency conditions for PSMT in directed
networks (considering feed-back paths) tolerating a non-threshold adversary. We
first give the necessary lemma’s before giving the characterization.

Lemma 1 ([5,3]). Perfect Reliable Message Transmission (PRMT) from S to
R in a network (directed or undirected) tolerating an adversary structure A is
possible iff the network is A(2)(S,R)-subconnected.

Lemma 2. Let G = (V, E) be a directed graph. Let S, R ∈ V and A be an
adversary structure on V − {S,R}. Then PSMT between S and R is possible if
and only if every monotone subset B ⊆ A, such that maximal basis of B is of
size three, is tolerable.

Proof: The only if condition is obvious because if the entire adversary structure
A is tolerable, then every subset B of A with a maximal basis of size three is
tolerable. We now prove the if condition. The proof is by induction. Suppose
every monotone subset B of A, such that |B| = 3 is tolerable where B denotes
the maximal basis of B. Then, to show that every monotone subset |B| = 4 is also
tolerable, we argue as follows: for any subset B ⊆ A with |B| = 4, there exist four
subsets each of size three such that any element in B belongs to exactly three
of them. Specifically, we may choose to divide B = {B1, B2, B3, B4} into A1 =
{B1, B2, B3}, A2 = {B1, B2, B4}, A3 = {B1, B3, B4}, A4 = {B2, B3, B4}. Now each
of the set Ai, 1 ≤ i ≤ 4 is of size three and hence from induction hypothesis there
exists four PSMT protocols tolerating each of the Ai’s individually. Therefore,
if we run these four PSMT protocols in parallel then at most one of them will
fail. Thus, if the shares of a 1-out-of-4 Shamir secret sharing scheme (which
is nothing but four points on a straight line) are transmitted using these four
sub-protocols, at least three points will be received correctly by R and hence
R may recover the straight line and the secret (the y-axis intercept) easily [9].
The adversary will have the knowledge of only one point and the perfect secrecy
follows from the correctness of Shamir’s secret sharing scheme [9].

Applying the above procedure again, we find that any subset B of A, such
that |B| = 5, is tolerable — because any set of size five can be divided into four
subsets of size four each such that every element occurs in at least three of the
subsets. In general, any μ > 4 sized set can be divided into four subsets, each of

94 A. Patra et al.

size
⌈

3μ
4

⌉
, such that every element occurs in at least three of them. The proof

now follows from induction. �

Thus, the problem of characterizing the (im)possibility of PSMT tolerating non-
threshold adversary A has been reduced to characterizing the (im)possibility of
PSMT tolerating non-threshold adversary B ⊂ A, such that maximal basis of B
is of size three3. We make further inroads with our next theorem.

Theorem 10. Given a network consisting of several vertex disjoint directed
paths between S and R, which is influenced by an adversary characterized by
a Byzantine adversary structure A, perfectly secure message transmission from
S to R is possible if and only if PRMT (perfectly reliable message transmission)
from S to R is possible and for every subset B ⊆ A where B̄ = {B1, B2, B3},
either of the following conditions holds:

1. There exists a directed path from S to R that does not involve nodes from
(B1 ∪ B2 ∪ B3).

2. There exists α, β ∈ {1, 2, 3}, α �= β such that two (not necessarily distinct)
directed paths qα and qβ exist from R to S such that qα avoid nodes from
Bα and qβ avoid nodes from Bβ.

Proof: We first give the sufficiency proof and later the necessity proofs.

Sufficiency: Suppose that PRMT is possible between S and R. Now there are
two possible cases. The case where a honest path free from B1, B2 and B3 exists
is easy to prove. The honest path can be used to generate and share a common
secret between S and R and then one only needs to PRMT the blinded message
to achieve PSMT. Suppose that second case is true, that is, there exist strong
paths, say qα and qβ , from R to S such that they do not contain nodes from
Bα and Bβ respectively. Note that the existence of PRMT implies that corre-
sponding to any two sets Bi and Bj in the adversary structure A, there exists
a path p that does not contain nodes from Bi ∪ Bj (see Lemma 1). However, p
can contain nodes from some other set Bk ∈ A. Thus, there for each i ∈ {1, 2, 3}
there exists paths pi from S to R such that pi avoid nodes from Bk ∪ Bj where
{k, j} = {1, 2, 3} − {i}. However, pi can involve nodes from Bi. We now design
a three phase PSMT protocol called Secure Protocol, which securely sends
a single field element m against B̄ = {B1, B2, B3}. Secure Protocol is similar
in spirit to the three phase PSMT protocol Protocol I designed for tolerating
threshold adversary. The proof of correctness and security is given after proving
the the necessity condition.

Necessity: We consider the following three cases:

1. If there does not exist any path from R to S, then the existence of a directed
path from S to R free from B1 ∪ B2 ∪ B3 is necessary from Theorem 9.

3 Note that the proof only shows the necessity and sufficiency of the condition. It
does not explicitly shows a concrete protocol. The protocol is inductive and is
inefficient. However, our goal is to just show the sufficiency of the condition.

Perfectly Secure Message Transmission 95

Secure Protocol - A Three phase PSMT Protocol Tolerating B̄ = {B1, B2, B3}

Phase I: S to R:

• S chooses uniformly at random a bivariate polynomial Q(x, y) =
∑1

i=0

∑1
j=0 rijx

iyj

such that Q(0, 0) = m. The polynomial Q(x, y) is symmetric; i.e, Q(i, j) = Q(j, i). Next,
along path pi, 1 ≤ i ≤ 3, S sends the polynomial Q(x, i).

Phase II: R to S:

R receives the polynomial Q′
i(x) = Q′(x, i) along path pi, 1 ≤ i ≤ 3. Out of the three

Q′
i(x)’s, at most one can be corrupted. R then tries to reconstruct Q(x, y). Since Q(x, y)

is symmetric, using Q′
i(x)’s, R checks Q′

i(j)
?
= Q′

j(i), 1 ≤ i, j ≤ 3; i.e., Q′(j, i) ?
= Q′(i, j).

• If the above test is successful for each 1 ≤ i, j ≤ 3, then R concludes that each
Q′

i(x), 1 ≤ i ≤ 3 lie on Q(x, y). R then reconstructs Q(x, y), recovers m (see Lemma 3)
and terminates the protocol.

• If the test fails for two pairs say (i, j) and (i, k) then R concludes that pi is corrupted.
Thus if R finds that Q′(i, j) �= Q′(j, i) and Q′(i, k) �= Q′(k, i), then R concludes
that pi and hence Q′

i(x) is corrupted (see Lemma 4). Thus the remaining two Q′
j(x)’s

lie on Q(x, y), using which R reconstructs Q(x, y), recovers m and terminates the protocol.

• If the test fails for only one pair say (i, j) such that Q′
i(j) �= Q′

j(i), then R concludes
that either pi or pj is corrupted and the third path {1, 2, 3}\{i, j} is honest. Next along
both the paths qα and qβ, R sends the four tuple {i, j, Q′

i(j), Q
′
j(i)}.

Phase III: S to R:

If S does not receives anything along qα and qβ , then S does nothing and terminates the
protocol. Otherwise let S receives the four tuples (i′′, j′′, Q′′

i′′(j′′), Q′′
j′′(i′′)) along qα and

(i′′′, j′′′, Q′′′
i′′′(j′′′), Q′′′

j′′′(i′′′)) along qβ. The two four tuples may or may not be same. Also
both the four tuples can be different from the original four tuple sent by R.

• Corresponding to the four tuple (i′′, j′′, Q′′
i′′(j′′), Q′′

j′′(i′′)), S checks Q′′
i′′(j′′) ?

= Qi′′(j′′)

and Q′′
j′′(i′′)

?
= Qj′′(i′′). Depending upon the outcome of the test, S concludes that

either R has received faulty Q′′
i′′(x) through pi′′ or faulty Q′′

j′′(x) through pj′′ during
Phase I. Accordingly, S appends an error message “Path γ is faulty” to the four tuple
(i′′, j′′, Q′′

i′′(j′′), Q′′
j′′(i′′)) where γ is either pi′′ or pj′′ .

• S performs similar test for the other four tuple (i′′′, j′′′, Q′′′
i′′′(j′′′), Q′′′

j′′′ (i′′′)) and appends
an error message to the four tuple.

• S finally reliably sends the two four tuples, along with the appended error messages to
R by executing a PRMT protocol (PRMT is possible from S to R). While sending the
two tuples, S also mentions which tuple is received along qα and qβ respectively.

Message Recovery by R:

If during Phase II, R has already recovered the message, then R does nothing. Otherwise
R recovers m as follows. R reliably receives two four tuples along with the appended
error messages. R also identifies which tuple is received by S along qα and qβ respectively.
R then checks whether the original four tuple {i, j, Q′

i(j), Q
′
j(i)} sent by himself during

Phase II is same as any of the two received tuples.

• If the four tuple {i, j, Q′
i(j), Q

′
j(i)} is same as (i′′, j′′, Q′′

i′′(j′′), Q′′
j′′(i′′)), then R

concludes that S has correctly received the four tuple through qα. R will also receive a
message of the form “path γ is faulty” appended with this four tuple where γ is either
pi′′ or pj′′ . Hence R concludes that he has received faulty polynomial through path
γ during Phase I. Let {a, b} = {1, 2, 3}\{γ}. Now R recovers the polynomial Q(x, y)
using the polynomials Qa(x) and Qb(x) which are guaranteed to be correct. Finally, R
outputs m = Q(0, 0) and halts (see Lemma 5). Similarly, if {i, j, Q′

i(j), Q
′
j(i)} is same

as (i′′′, j′′′, Q′′′
i′′′(j′′′), Q′′′

j′′′(i′′′)), then R concludes that S has correctly received the four
tuple through qβ recover m in the same way.

• If the four tuple {i, j, Q′
i(j), Q

′
j(i)} does not matches with any of the two received tuples,

then R concludes that both qα as well as qβ delivered wrong messages to S during Phase
II. R then concludes that the path pγ where γ = ({1, 2, 3}\{α})∩({1, 2, 3}\{β}) is corrupt
in the top band. Let {a, b} = {1, 2, 3} \ {γ}. Now, R recovers the polynomial Q(x, y) using
the polynomials Qα(x) and Qβ(x) which are guaranteed to be correct. Finally, R outputs
m = Q(0, 0) and halts (see Lemma 5).

96 A. Patra et al.

2. Suppose that there does not exist any directed path from S to R free from
B1 ∪ B2 ∪ B3 and each feed back path from R to S passes through nodes
from all the sets B1, B2 and B3. It is easy to see that in this case, the entire
bottom band is useless because it can be completely corrupted by any of the
Bi’s and neither S nor R will know the identity of the set due to which the
bottom band is corrupted. So effectively, this case reduces to a single phase
PSMT where there does not exist any directed path from S to R free from
B1 ∪ B2 ∪ B3, which from Theorem 9 is not possible.

3. Suppose that there does not exist any directed path from S to R free from
B1 ∪ B2 ∪ B3 and each feed back path from R to S passes through two of
the Byzantine sets, say B2 and B3 (without loss of generality). In this case,
we show that there exists an adversary strategy such that the views of R
are identical for two different messages. We assume a stronger case where
R knows that B1 is corrupted or not and still maintain the impossibility of
PSMT. The proof is by contradiction. Suppose there exists a PSMT protocol
Π not withstanding the fact that there does not exist a path from S to R
free from B1 ∪ B2 ∪ B3 and each feed back path from R to S passes through
B2 and B3. Hence the paths from S to R can be divided into three sets
Λ1, Λ2 and Λ3, such that Λi, 1 ≤ i ≤ 3 contains nodes from the set Bi.
Let m1 �= m2 ∈ F be two different messages. Now consider four different
executions E1,E2,E3 and E4 of protocol Π , where in E1, m1 is transmitted
and B1 is corrupt, in E2, m1 is transmitted and B2 is corrupt, in E3, m1

is transmitted and B3 is corrupt and in E4, m2 is transmitted and B3 is
corrupt. Note that in any of these four executions, the information sent
over the paths Λ1 is independent of the secret message. Thus, irrespective
of whether Π transmits m1 or m2, the distribution of the messages sent
along Λ1 will be same. If not, then it implies that information sent over the
paths in Λ1 depends upon m1 or m2 and so the adversary may get some
information regarding the message by passively controlling the paths in Λ1,
which violates the PSMT property (adversary does not get any information
about the secret message). We now devise an adversary strategy such that R
cannot distinguish between E2 and E4 while S cannot distinguish between
E1,E2 and E3, there by maintaining the impossibility of PSMT. Suppose
S while transmitting m1, S sends α1, β1 and γ1 through the paths Λ1, Λ2

and Λ3 respectively. Similarly, suppose while transmitting m2, S sends α2, β2

and γ2 through the paths Λ1, Λ2 and Λ3 respectively. The behavior of the
adversary during the four executions is defined as follows:
(a) The behavior of set B1 in the execution E1 is to remain passive.
(b) In E2, the Byzantine set B2 sends to R β2 instead of β1 along the paths

in the set Λ2 and sends S exactly the same messages that are sent to S
by the honest B2 in the execution E1.

(c) In E4, the Byzantine set B3 sends to R γ1 instead of γ2 along the paths
in the set Λ3 and sends S exactly the same messages that are sent to S
by the honest B3 in the execution E1.

Thus irrespective of the number of phases of Π , in E2 and E4, the view of R
will be α1 β2 γ1 and α2 β2 γ1 respectively, while the view of S will be same as

Perfectly Secure Message Transmission 97

in E1. Since, the distribution of messages in α1 and α2 is same (the messages
received along the paths in Λ1 does not contain any information about the se-
cret message, otherwise adversary can passively listen these paths and will get
the secret message), the distribution of messages in α1 β2 γ1 and α2 β2 γ1 will
be identical. Hence R cannot distinguish whether the set B2 is corrupt and the
message transmitted by S is m1 or the set B3 is corrupt and the message trans-
mitted by S is m2. The state of S is invariant at indistinguishably among E1,E2

and E3. This is a contradiction because Π is assumed to be a PSMT protocol. �

Significance of Theorem 10: Consider the network and the adversary struc-
ture shown in Figure 1. From Theorem 9, there does not exist any PSMT protocol
(single phase) in the network tolerating the given adversary structure. However,
according to Theorem 10, there exists a three phase PSMT protocol (Secure
Protocol) tolerating the given adversary structure. Thus there exists several
practical scenarios where Theorem 10 shows the existence of PSMT protocol
while the existing results offer no such insight. We now prove the correctness
and security of Secure Protocol.

Lemma 3. In Secure Protocol, if during Phase II, R does not find any pair
(i, j), 1 ≤ i, j ≤ 3, i �= j, such that Q′i(j) �= Q′j(i), then R will be able to correctly
interpolate Q(x, y) and recover m during Phase II.

Proof: If during Phase II, R does not find any pair (i, j), 1 ≤ i, j ≤ 3, i �= j, such
that Q′i(j) �= Q′j(i) then it implies that no corruption occurred during Phase I.
Hence each Q′i(x), 1 ≤ i ≤ 3 received during Phase II is same as corresponding
Qi(x), 1 ≤ i ≤ 3. Since Q(x, y) is a bivariate polynomial of degree one in both x
and y, any two correct Qi(x) = Q(x, i)’s suffice to interpolate Q(x, y). Hence R
can easily reconstruct Q(x, y) using any two Qi(x)’s and recovers m. ��
Lemma 4. In Secure Protocol, if during Phase II, R finds two distinct
pairs (i, j) and (i, k) such that Q′i(j) �= Q′j(i) and Q′i(k) �= Q′k(i), then path pi

is corrupted. Moreover, R will be able to recover m during Phase II itself.

Proof: The proof follows from few important facts. Out of the three polynomials
Q′1(x), Q′2(x) and Q′3(x) received along paths p1, p2 and p3 respectively, at most
one can be corrupted because each path pi contains nodes only from Bi. Since
Q(x, y) is bivariate, Q′a(x)’s which are received correctly will agree with each
other. Thus if paths pa and pb are honest, then Q′a(x) = Qa(x) and Q′b(x) =
Qb(x) and Q′a(b) = Q′b(a). Thus two correctly received polynomials will never
contradict each other. So if R finds a pair (i, j) such that Q′i(j) �= Q′j(i), then R is
sure that either pi or pj is faulty. Now Q′1(x), Q′2(x) and Q′3(x) are polynomials
in x of degree one. So if R finds two distinct pairs (i, j) and (i, k) such that
Q′i(j) �= Q′j(i) and Q′i(k) �= Q′k(i), then it definitely implies that path pi is
faulty because out of the three paths exactly one can be corrupted. Once R
knows that pi is corrupted, R can neglect Q′i(x) received over pi and interpolate
Q(x, y) using the remaining two Q′a(x)’s which are correct and recover m. ��
Lemma 5. In Secure Protocol, if during Phase II, R finds only pair (i, j)
such that Q′i(j) �= Q′j(i) then R will be able to recover m after Phase III.

98 A. Patra et al.

Proof: From previous lemma, if R finds a pair (i, j) such that Q′i(j) �= Q′j(i), then
either path pi or pj is corrupted. If R finds only one such conflicting pair then it
implies that the remaining path pc where c = {1, 2, 3}\{i, j} is correct and hence
the corresponding Q′c(x) is received correctly. R will now try to find whether pi

or pj is corrupted. Towards this, R sends the four tuple (i, j, Q′i(j), Q
′
j(i)) to S

along path qα and qβ . Now there are two possible cases:

1. At least one of the paths qα or qβ correctly delivers the four tuple
(i, j, Q′i(j), Q

′
j(i)) to S: Without loss of generality, suppose the path qα correctly

delivers (i, j, Q′i(j), Q
′
j(i)) to S. Thus, the four tuple (i′′, j′′, Q′i′′(j′′), Q′j′′ (i′′))

received by S during Phase III along qα is same as the original four tuple
(i, j, Q′i(j), Q

′
j(i)). During Phase III, S will locally verify Q′′i′′(j′′)

?= Qi′′(j′′)

and Q′′j′′(i′′)
?= Qj′′(i′′). If the first test fails then S concludes that R has re-

ceived incorrect Qi′′(x) through path pi′′ during Phase I. On the other hand if
second test fails then S concludes that R has received incorrect Qj′′(x) through
path pj′′ during Phase I. Accordingly, S appends an error message “path γ is
faulty” to the four tuple (i′′, j′′, Q′i′′(j′′), Q′j′′ (i′′)) and reliably sends the four tu-
ple along with the appended error message to R by executing a PRMT protocol.
S also indicates that the four tuple along with the appended error message is
sent in response to the four tuple received along qα. R will correctly receive this
response and will find that the original four tuple (i, j, Q′i(j), Q

′
j(i)) sent during

Phase II matches the four tuple in the response sent by S. R thus conclude that
S correctly received the original four tuple along qα. R will also receive an error
message “path γ is faulty” along with the response and hence conclude that the
polynomial received along path γ during Phase I is corrupted. Thus the remain-
ing two polynomials received along paths pa and pb where {a, b} = {1, 2, 3}\{γ}
during Phase I are correct. Thus the polynomials Q′a(x) and Q′b(x) will lie on
Q(x, y). So using them R interpolates Q(x, y) and recovers m correctly.

2. None of the paths qα or qβ correctly delivers the four tuple (i, j, Q′i(j),
Q′j(i)) to S: In this case, neither of the four tuples (i′′, j′′, Q′i′′(j′′), Q′j′′ (i′′)) and
(i′′′, j′′′, Q′i′′′(j′′′), Q′j′′′(i′′′)) received along qα and qβ respectively matches the
original four tuple (i, j, Q′i(j), Q

′
j(i)). So after receiving the response sent by S

during Phase III, R will find that the original four tuple (i, j, Q′i(j), Q
′
j(i))

is not present in any of the two responses. R thus conclude that S has not
received the original four tuple during Phase II because both qα and qβ are
corrupted by the adversary. Now qα does not contain nodes from Bα while
qβ is free from the nodes in Bβ. Thus the only way that both these paths
get corrupted is that the adversary Bγ is activated during the protocol where
γ = ({1, 2, 3} \ {α}) ∩ ({1, 2, 3} \ {β}). This implies that during Phase I, pγ

is corrupted and hence Q′γ(x) received along this path is corrupted. Thus the
remaining two polynomials received along pa and pb where {a, b} = {1, 2, 3}\{γ}
during Phase I are correct. Thus the polynomials Q′a(x) and Q′b(x) will lie on
Q(x, y). So using them R interpolates Q(x, y) and recovers m correctly.

Thus R will recover m correctly at the end of Phase III. ��

Perfectly Secure Message Transmission 99

Theorem 11. In Secure Protocol, R will always recover m correctly.

Proof: The proof follows from Lemma 3, Lemma 4 and Lemma 5. ��

Theorem 12. In Secure Protocol, any adversary corrupting nodes from one
of the sets B1, B2 or B3 does not get any information about m.

Proof: Without loss of generality suppose adversary corrupts nodes from the set
B1. Since path p1 contains nodes from the set B1, the adversary will know Q1(x).
However, to interpolate Q(x, y), the adversary requires two Qi(x)’s. Hence ad-
versary will fall short of one Qi(x) to interpolate Q(x, y). The adversary can
himself evaluate Q1(1) = Q(1, 1) and Q1(2) = Q(2, 1), using which the adver-
sary can form two independent equations in the coefficients of Q(x, y). However,
the number of coefficients in Q(x, y) is three because Q(x, y) is a symmetric
bivariate polynomial. Thus the message m which is the constant term of Q(x, y)
is information theoretically secure. Note that it may be possible that the paths
qα and qβ from R to S contains nodes from B1. So if during Phase II, R sends
a four tuple (i, j, Q′i(j), Q

′
j(i)) to S through qα and qβ, the adversary will know

this information. However, it is easy to see that this does not give any extra
information to the adversary to interpolate Q(x, y) and recover m. ��
Relation between Non-Threshold and Threshold Adversary: As menti-
oned earlier, a threshold adversary with threshold t is a special kind of non-
threshold adversary structure where the size of each adversary set in the
maximal basis is t. In [1], it is shown that PSMT tolerating a t-active Byzantine
adversary is possible iff there exists n = max{3t− 2u+ 1, 2t+ 1} vertex disjoint
paths (wires) in the top band, where u is the number of wires in the bottom band.
We now briefly explain how we get this bound Theorem 10 by substituting the
size of each adversary set as t. The first obvious condition in Theorem 10 is
that PRMT should be possible from S to R, for which the network should be
A(2)-(S, R)-connected (see Lemma 1). By substituting the size of each adversary
set as t, this condition implies that the network should be at least 2t + 1-(S,
R)-connected. We now claim that if there exists u paths in the bottom band and
if the size of each Bi, 1 ≤ i ≤ 3 is t, then in order that conditions of Theorem 10
are satisfied, there should exist at least 3t − 2u + 1 wires in the top band. Sup-
pose on the contrary that even with 3t−2u wires in the top band, the conditions
of Theorem 10 are satisfied. We then define a distribution of nodes for each
Bi, 1 ≤ i ≤ 3 which leads to a contradiction. The distribution is as follows:

1. B1 contains t nodes, where t−u nodes lie on t−u vertex disjoint paths in top
band and u nodes lie on u vertex disjoint paths in the bottom band. Thus each
path in bottom band contains nodes from B1.
2. B2 contains t nodes, where t − u nodes lie on t − u vertex disjoint paths in
top band (which are also disjoint from the t−u paths containing nodes from B1)
and u nodes lie on u vertex disjoint paths in the bottom band. Thus each path
in bottom band contains nodes from B2.
3. B3 contains t nodes, all of which lie on t vertex disjoint paths in the top band
(which are disjoint from the paths containing nodes from B1 and B2).

100 A. Patra et al.

It is clear from the distribution of nodes that each of the 3t − 2u vertex disjoint
paths in the top band contains nodes from B1, B2 or B3 and each of the u vertex
disjoint paths in the bottom band contains nodes from B1 as well as B2. Now it
is easy to verify that none of the two conditions mentioned in Theorem 10 is
satisfied, contradicting the assumption that with 3t−2u vertex disjoint paths in
the top band, the conditions in Theorem 10 are satisfied. It is easy to verify that
if there are 3t − 2u + 1 vertex disjoint paths in the top band, then irrespective
of the distribution of nodes in B1, B2 and B3, the conditions in Theorem 10 will
be satisfied. Thus Theorem 10 strictly generalizes threshold adversary.

7 Conclusion and Open Problems

In this paper we have proposed a three phase polynomial time PSMT protocol
in directed network whose total communication complexity is also polynomial.
This is a significant improvement over the exponential phase PSMT protocol
proposed in [1]. We further show how the communication complexity of our three
phase PSMT protocol is significantly reduced under the same network settings in
which a polynomial phase PSMT protocol is proposed in [1]. We characterize two
phase PSMT protocols in the directed graphs, which bridges the gap between
single phase and three phase PSMT protocols in directed graphs. We have also
characterized PSMT in directed networks tolerating non-threshold adversary.
Our characterization is a true characterization in the sense that it considers all
possible paths from S to R and vice-versa. Our characterization shows that in
many practical scenarios protocols exist while the existing characterization offers
no such insight. It is an open problem to give an efficient protocol tolerating a
non-threshold adversary given that the protocol exists. It should be noted that
abstracting the network as a directed graph where S and R are assumed be to
be connected by directed chains, directed either from S to R or vice-versa, has
been proved as a weak network model in [11]. However, the wired abstraction
in directed graphs will work when the underlying network is densely connected.
Hence the protocols proposed in [1] as well in this paper can be applied to such
networks. It is an interesting problem, to completely characterize PRMT and
PSMT protocols in arbitrary directed graphs.

References

1. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. Cryptol-
ogy ePrint Archive, Report 2002/128 (2002), http://eprint.iacr.org

2. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Hei-
delberg (2002)

3. Desmedt, Y., Wang, Y., Burmester, M.: A complete characterization of tolerable
adversary structures for secure point-to-point transmissions without feedback. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer,
Heidelberg (2005)

http://eprint.iacr.org

Perfectly Secure Message Transmission 101

4. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17–47 (1993)

5. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly
secure communication over arbitrary networks. In: Proc. of 21st PODC, pp. 193–
202. ACM Press, New York (2002)

6. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-
Holland Publishing Company (1978)

7. Patra, A., Choudhary, A., Pandu Rangan, C.: Brief announcement: Constant phase
efficient protocols for secure message transmission in directed networks. In: Proc
of ACM PODC, pp. 322–323 (2007)

8. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in syn-
chronous networks. Information and Computation 126(1), 53–61 (1996)

9. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

10. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure mes-
sage transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
545–561. Springer, Heidelberg (2004)

11. Srinathan, K., Pandu Rangan, C.: Possibility and complexity of probabilistic reli-
able communication in directed networks. In: Proc. of 25th PODC, pp. 265–274.
ACM Press, New York (2006)

Forward-Secure Key Evolution in Wireless Sensor
Networks

Marek Klonowski1, Mirosław Kutyłowski1, Michał Ren2, and Katarzyna Rybarczyk2

1 Wrocław University of Technology�

2 Adam Mickiewicz University, Poznań, Poland��

Abstract. We consider a key distribution scheme for securing node-to-node
communication in sensor networks. While most schemes in use are based on
random predistribution, we consider a system of dynamic pairwise keys based on
design due to Ren, Tanmoy and Zhou. We design and analyze a variation of this
scheme, in which capturing a node does not lead to security threats for the past
communication.

Instead of bit-flipping, we use a cryptographic one-way function. While this
immediately guarantees forward-security, it is not clear whether the pseudoran-
dom transformation of the keys does not lead to subtle security risks due to a spe-
cific distribution of reachable keys, such as existence of small attractor subspaces.
(This problem does not occur for the design of Ren, Tanmoy and Zhou.) We show,
in a rigorous, mathematical way, that this is not the case: after a small number of
steps probability distribution of keys leaves no room for potential attacks.

Keywords: communication in sensor networks, key management, key distribu-
tion, forward security, directed random graphs.

1 Introduction

Applications of sensor networks are sometimes constrained by security requirements.
In order to be attractive from economic point of view, nodes of a sensor network need to
be very cheap. This results in lack of tamperproofness (and tamper-resistance), limited
computing power and memory space, inability to perform public-key cryptography ef-
ficiently, and limited communication bandwidth (due to battery capacity). This creates
challenges for communication security: no public-key cryptography can be used, only
symmetric algorithms are admissible, communication volume of the security protocols
should be kept as small as possible. However, one of the crucial security threats in sen-
sor networks is that communication can be recorded and the secret keys can be retrieved
from a captured device. This may lead to disclosure of all data sent so far with the keys
contained in this device. On the other hand, lack of connection to the device captured is
nothing uncommon – it can be due to battery exhaustion or any physical failure. Also,

� Partially supported by the EU within the 6th Framework Programme under contract 001907
(DELIS).

�� Partially supported by Ministry of Science and Higher Education, grant N N206 2701 33,
2007–2010.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 102–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Forward-Secure Key Evolution in Wireless Sensor Networks 103

it might be hard to find a device that is not responding to radio signals, so it is difficult
to check if a device has been captured.

Recently, a simple scheme of dynamically evolving keys [1] has been proposed. It
supports pairwise symmetric keys for each pair of communicating nodes, which change
the key at every transmission. Namely, the sender chooses a key bit at random, flips it,
and encodes current data transmission with the obtained key. The receiver makes trial
decryptions and, based on the results, recovers which bit has been changed.

The idea of this solution is remarkably simple; it is both efficient and easy to imple-
ment. Obviously, in this way it only takes a small number of steps to change a key into
any other key. This solves a lot of problems – for instance if some encrypted transmis-
sion has been recorded and cryptanalysis reveals the key used for encryption, it cannot
be used to eavesdrop later transmissions. Simply, in the meantime the sensors trans-
formed their keys completely. An attack in this case requires uninterrupted monitoring
communication activities of a sensor. Replay and replication attacks become very lim-
ited. A nice feature especially for the sensor networks is that there is no communication
overhead due to evolution of keys – this is important, since energy consumption for
communication is of order of magnitudes higher than for any internal computations by
the processor. For further discussion see the original proposal [1].

Problem Description. The major weakness of the scheme [1] is that if the current key
is compromised, and the adversary has recorded the traffic beforehand, it is possible to
reverse key transitions step by step.Ourgoal is to design an efficient framework that shares
all advantages of the scheme from [1], but is resistant to the mentioned security threat.

Previous work. Since the most energy-intensive operation for a sensor node is wireless
communication, protocols dedicated to the sensor networks should be optimized with
respect to communication volume. Sending a bit is a typically orders of magnitude
more expensive than encryption or decryption. On specialized hardware, energy cost
of 9nJ per bit is achievable for AES encryption [2], but sending a bit requires around
21 μJ, which is a difference of three orders of magnitude. It is to be expected that
the relative difference will increase as processor technology matures; in fact, modern
optimized hardware achieves energy costs of AES encryption on order of 60pJ per bit
[3]. For these reasons any key management protocol should avoid large communication
overhead, and most solutions designed for wired networks (such as the SSL protocol)
are useless in the context of sensor networks. The second limitation of this type is
memory size and communication speed. A typical sensor network node has no more
than 4KB of memory, and is capable of communicating at speeds of about 38.4 Kbps
to a distance of around 30m. The nodes are also usually equipped with coprocessors to
handle AES encryption and decryption efficiently. Asymmetric methods, on the other
hand, require millions of multiplications per asymmetric operation, as well as large
amounts of memory and currently are not considered suitable for sensor networks.

Most of the recent work on the problem of key distribution and management in sensor
networks has been focused on random predistribution schemes (see e.g. [4,5,6]). Let us
recall their general framework:

1. Key predistribution phase is conducted offline. It consists of generating a large pool
of keys and loading a small number of different randomly-drawn keys into each
sensor device. An identifier should be assigned to each key.

104 M. Klonowski et al.

2. Shared key discovery phase takes place in the target environment, after the sensor
nodes are deployed. Every node discovers its neighbors, and tries to establish a
common key with each neighbor. The simplest method of achieving this goal is
that each node broadcasts in plaintext the list of identifiers of all keys it possesses.
This phase establishes network topology, as two nodes are “linked” only if they
share at least one pre-installed key.

3. Path-key establishment phase allows pairs of nodes that are in communication range
to establish a common key, even if they did not share any after the previous phase.

Adversary model for sensor networks has some peculiarities. Due to reliance on radio
communication it is quite easy to record the traffic, or at least a part of it. The second
point is that it is hardly possible to prevent an adversary from compromising some of
the sensor nodes and extracting their keys. Moreover, due to failures occurring in usual
field conditions, lack of response from a node might be regarded as a normal failure.
Checking a node on-site is seldom possible. This is a serious problem for predistribution
schemes. In case of compromising a node all its keys should not be used anymore.
However, in practice, is it hard to distinguish between node compromise and battery
exhaustion or any other failure. Large pools of keys help a little: only a fraction of
traffic becomes insecure in this way.

On the other hand, some assumptions about the capabilities of the adversary can be
relaxed in the context of sensor nodes. For example, it can be assumed that an adversary
is not omnipresent and can not eavesdrop on all communication links all the time. This
allows for construction of counterintuitively secure protocols, such as the key infection
protocol, which is based on broadcasting the keys in the clear [7]. We can assume
that in real-world scenarios within a few seconds immediately after deployment of the
network, the adversary is unable to eavesdrop on all communications, but only a certain
fraction of them.

The solution presented in [1] works with keys that are derived dynamically from
the initial pairwise keys (which might be established in the clear or be derived from
predistributed keys). The principal advantage is that evolution of the pairwise keys does
not require any communication overhead. It is performed at a very modest energy cost,
provided that encryption and decryption could be done efficiently. It also forces the
adversary to keep monitoring communication all the time after compromising a key;
otherwise the adversary loses control of the key as it diverges.

2 KEP – Key Evolution Protocol

Initialization. As in [1], the system initializes the nodes so that each pair of neighbor
nodes establishes a key for this pair. Any method can be used: preloading with a com-
mon key, key infection, or a random predistribution scheme. At the end of this phase,
every node knows its neighbors and shares a separate pairwise key with each neighbor.

Communication with Key Divergence. Consider nodes A and B sharing a pairwise
key, say kAB . We describe the steps executed by A. It waits until either it sends a
message to B, or it receives one addressed to itself from B.

Forward-Secure Key Evolution in Wireless Sensor Networks 105

Case 1: A initializes key transition while sending a message to B
The following steps are executed:

1. A encrypts the message to be sent with a key k′, called proposed key, that is derived
from kAB as follows:

k′ := F (kAB , i) (1)

where F is a cryptographic one-way function and i ≤ l is chosen uniformly at
random. The parameter l is a small constant, l ≥ 2, controlling convergence rate.
In the second version of the protocol

k′ := F (kAB, i, t) (2)

for t denoting the so called current index of kAB . Initially, this index is set to 1,
and then increased after each transformation of kAB .

2. If A has to send more messages, but has not yet received a message from B (neither
valid nor invalid), it sends every next message encrypted to proposed key k′.

3. Finally, A receives a message from B. If it is encrypted to proposed key k′ and
the message counter indicates the message is fresh, the message is accepted, A
substitutes

kAB := k′ ,

and increments the current index of kAB by one. If the message was encrypted to
a different key than k′, the message is rejected, node A abandons proposed key k′

remembering that it tried to change kAB to k′ but failed. This situation occurs if
B has not received any message with the proposed key k′ and has proposed a key
itself.

4. If the counter in the received message is older than the one stored by A, this indi-
cates a replay attack — the adversary is trying to make A change the key using an
old message (for instance a message sent by A itself). As before, A should reject
the message and abandon proposed key k′ remembering that it tried to change the
key to k′ but failed. Note that in this situation it might be the case that B has ac-
cepted k′, but A is unaware of it. Recording k′ will enable to accept k′ in this case
(see the procedure below).

Case 2: A receives a message from B while not waiting for a reply as in Case 1

1. If A receives a message from B encrypted with a certain key k′′, then it tries to
decrypt it by brute force. Namely,

– A checks if k′′ = kAB ,
– if not, A tries keys of the form F (kAB, i) for all i ≤ l (or F (kAB, i, t) in the

variant of the protocol, where t is the current index of kAB),
– if none of those keys work, and if A has previously tried to change the key to k′

but failed, A tries keys of the form F (k′, i) (or F (k′, i, t) in the variant of the
protocol). This option is necessary for the case in which B has accepted a new
key k′ proposed by A, while A received some invalid message and, according
to the protocol, reverted to kAB .

106 M. Klonowski et al.

If a valid decryption key is found and the message is fresh, then A waits until
an opportune time to send its reply encrypted to k′′. If k′′ �= kAB , then the cur-
rent index is incremented by one and kAB is set to k′′. If the message can not be
decrypted or is not fresh, it is discarded.

2. If A receives further messages encrypted to k′′, it processes them normally.
3. When A wants to send a message to B, it encrypts it with key k′′.

Protocol Properties. For space limitations we skip here the analysis of protocol cor-
rectness (which is essentially the same as for [1]). As in case of the scheme from [1], our
protocol has several advantages: there is no communication overhead due to evolution
of keys, rate of key evolution is automatically controlled by traffic volume, capturing
a node does not compromise other nodes’ keys, the scheme scales to any number of
nodes, it can be used with any predistribution scheme. Extra energy consumption also
remains negligible as in [1], as the only substantial difference is the addition of the
one-way function, which can be based on AES [8], and performed using the same co-
processor that handles AES encryption/decryption. Another important point is that if
the adversary somehow breaks a pairwise key from some moment, but transmissions
between these nodes are not constantly monitored, then after a while the broken key
becomes worthless.

The most important point is that KEP offers an important advantage over the one
described in [1] in the event of node compromise. Even if an adversary has been eaves-
dropping on communications of the node, and recording them, the key extracted after
compromising the node cannot be used to decrypt any of the recorded messages, as it is
impossible to reverse the function F .

Main Problem. In case of the protocol from [1] it is obvious that starting from an
arbitrary key one can reach any key in the keyspace in a quite short time. Moreover,
probability distribution describing the chances to reach each key converges quickly to
the uniform distribution over the keyspace.

It is unclear whether these uniformity and reachability properties hold for our KEP
protocol: function F is pseudorandom but fixed. For this reason, key divergence process
can have certain peculiarities. Consider a directed graph G = (K, E), where the set of
vertices K is the keyspace, and an arc kk′ is in E if it is possible to make transition
from key k to k′ using rule (1). Even if F is pseudorandom it is not clear whether G is
strongly connected (due to some reasons analogous to the birthday paradox). If digraph
G is not strongly connected, then it may happen that there is a small subgraph G′ of G
such that after entering G′ it it is impossible to leave G′ (so G′ would be like a black
hole). For such subgraphs G′ time-memory tradeoff attack [9] becomes very effective
and endangers all keys contained in G′. In particular, in this case it would be possible to
reverse key evolution without reversing F . Similarly, it would be easier to find the cur-
rent pairwise key after breaking an old key even if the intermediate transmissions have
not been recorded. We show in a rigorous, mathematical way that this is not the case –
under certain assumptions G is strongly connected and has a small diameter with high
probability (depending on the choice of F). This result would be much easier to obtain
for rule (2). However, we concentrate on a mathematically hard case of rule (1) which is
more elegant and easier to implement. For undirected random graphs connectivity and

Forward-Secure Key Evolution in Wireless Sensor Networks 107

the diameter length were already widely studied, see for example B. Bollobás [10,11]
F. Chung and L. Lu [12]. Unfortunately those results can not be translated directly to
the case of the directed graph model. Let us also remark that from combinatorial point
of view connectivity for directed and undirected graphs are quite different issues.

Due to attacks like exhaustive search another property of key evolution is necessary.
Namely, we have to show that there no “attractors”, that is, the keys that are relatively
often “visited” during key divergence process. If probability of visiting certain attrac-
tors is sufficiently large, an adversary can perform exhaustive search confined to the set
of attractors. In such a way time complexity can be reduced considerably, while success
probability might be still acceptable. We show that for rule (2) there are no attractors.
Moreover, we show that probability distribution of a pairwise key is very close to uni-
form distribution after a small number of steps. By “similarity” we mean here a very
strong measure of distance between probability distributions (much stronger than usu-
ally considered in papers on anonymous communication). Such a result for rule (1) is
related to mixing time for directed graphs. However, known results concern undirected
expander graphs [13]. Recent results were achieved for random graphs as well, but only
undirected ones, or special forms of directed deterministic graphs [14,15,16]. These re-
sults are not applicable to our case. Moreover, our results are not asymptotic and apply
in the case of relatively small graphs (on order of 232–264 nodes).

Due to size limitation, we had to skip some details in the proof that we think can be
reconstructed by a reader.

3 Key Reachability – Random Digraph Model

Preliminaries. In this section we consider directed graph G = (K, E), where the set
of vertices K is the keyspace, and an arc kk′ is in E if it is possible to make transition
from key k to k′ in one step of KEP according to rule (1). Let K = {0, 1}n and N = 2n

denote the size of K .
We assume that the one-way function F changes a key into one of l keys, picked

independently, uniformly at random. As there is a possibility of a collision, the actual
number of possible keys in every step and for any initial key is a random variable X
strongly concentrated around l. So, more generally, we consider the model of the ran-
dom digraph G(X) = (K, E) introduced in [17] (see also [18]) which is constructed in
the following way:

– each vertex v chooses its out-degree lv according to the distribution of Xv = X
independently of all other vertices,

– then, also independently of all other vertices, it chooses the set of lv out–neighbors
uniformly from all lv-element subsets of K .

In this section, for a graph G(X) defined by X such that E(X) ≥ ln N and X is
concentrated around the expected value we shall formalize and find the lower bound on
the probability that:

– G(X) is strongly connected. This means, in the context of KEP protocol, that every
key can eventually be transformed into every other key and there are no isolated
groups of keys.

108 M. Klonowski et al.

– The diameter of G(X) is concentrated around ln N
ln l . So, any two keys can be trans-

formed quickly into one another.

Let d(u, v) = k mean that the shortest directed path from u to v has length k. Let us
denote:

Γ+
k (v) := {w ∈ K : d(v, w) = k} , Γ−k (v) := {w ∈ K : d(w, v) = k} ,

N+
k (v) :=

k⋃
i=0

Γ+
i (v) , N−k (v) :=

k⋃
i=0

Γ−i (v) ,

diamG := max{d(u, v) : u, v are connected by a path}.

Since the the proofs include many estimations, and are rather technical, we will
present sketches saving the exact calculations for the appendix. For clarity of calcu-
lations, we also make an assumption that l

2 ≤ X ≤ 2l, which need not always be true
in KEP. See Corollary 1 for remarks on a more general model.

Lemma 1. Let X be a random variable such that E(X) = l and Pr(l
2 ≤ X ≤ 2l) = 1.

In a graph G(X) let A and B be disjoint subsets of K . If PAB is the probability that
v has an out–neighbor in A conditioned by the event that v has no out–neighbor in B,
then for N − |A| − |B| ≥ l

2

l|A|
N−|B| −

l2|A|2
(N−|B|)2 ≤ PAB ≤ l|A|

N−|B| +
l2|A|

(N−|B|)(N−|B|−2l) . (3)

Furthermore, if Y is a random variable counting those vertices in K \ (A ∪ B), which
have out-neighbors in A, under the assumption that they do not have out–neighbors in
B, then Y is binomially distributed with parameters N − |A| − |B| and PAB .

Proof. See appendix.

Theorem 1. Let X be a random variable such that E(X) = l. If Pr(
⌈

l
2

⌉
≤ X ≤ 2l) =

1, N ≥ 232 and ln N ≤ l ≤
√

N/90 − 1, then with probability at least 1 − p(N)

�ln N/ ln 2l	 ≤ diam G(X) ≤
ln N/(2 ln�l/2)� +
ln N/(2 ln
l/4�)� + 4 ,

where: p(N) = 1.6(ln N)7

N1.5 + 1+0.0016(ln N)15

N1.99 + 1
N0.59 + 1

N0.16l−1 + 1
N0.5

In the proof we will frequently use simple probabilistic fact that if events H1 and H2

occur with probability at least 1 − r1 and 1 − r2 respectively and event H3 conditioned
on H1 occurs with probability at least 1 − r3, then

Pr(H1 ∩ H2) = Pr(H1) + Pr(H2) − Pr(H1 ∪ H2) ≥ 1 − r1 − r2 and
Pr(H1 ∩ H3) = Pr(H3|H1) Pr(H1) ≥ (1 − r1)(1 − r3) ≥ 1 − r1 − r3.

Proof (Sketch). To indicate the upper bound we will prove that with probability at least
1 − p(N) if there exists a path between two vertices, then the shortest one has length at

most
⌈

lnN
2 ln� l

2 �

⌉
+

⌈
ln N

2 ln� l
4 �

⌉
+ 4 . Namely, for vertices v1 and v2 we will estimate the

number of vertices in Γ+
k1

(v1) and in Γ−k2
(v2). Then we will prove that with probability

Forward-Secure Key Evolution in Wireless Sensor Networks 109

close to one either these sets intersect, or there is an edge pointing from Γ+
k1

(v) to

Γ−k2
(w) for k1 + k2 + 1 at most

⌈
lnN

2 ln� l
2 �

⌉
+

⌈
lnN

2 ln� l
4 �

⌉
+ 4 . To prove the lower bound

on diamG(X) we will estimate the size of N+
k (v). In fact we will show that for any

vertex v there are some vertices at distance larger than
⌊

ln N
ln 2l

⌋
from v.

First, for a given vertex v ∈ K , we will be considering sets of out–neighbors. Let
us consider the process of labeling vertices, starting in vertex v. After this process, the
set of vertices with label i will be the set Γ+

i (v). First, we will label vertex v with label
0. Then we will proceed one by one from i = 0. For given i if {w1, w2, . . . , wt} are
vertices with label i, then w1 first labels all its out-neighbors, which were not labeled
before, with label i + 1. Then w2 labels its out-neighbors in the same way, and so on.
We will keep going as long as the set of vertices with label i + 1 is smaller than

√
N .

Let W = W (v) be a set of vertices labeled during the process and Av(w) be the
event that during the process vertex w ∈ W labels at least
 l

4� vertices. If event Av =⋂
w∈W Av(w) occurs, then each vertex with label i labels at least
 l

4� vertices. Thus,
|Γ+

i+1(v)| ≥
 l
4�|Γ+

i (v)| and |Γ+
i (v)| ≥
 l

4�i for all i. Therefore, if Av occurs, then

the process will stop in at most k′ = 1
2

ln N
ln� l

4 �
steps (since
 l

4�k′ ≥
√

N) thus there exists

an index k1(v) = k1 ≤ k′ such that |Γ+
k1

(v)| ≥
√

N .

Then, using estimations on Pr(Av(w)) (where Av(w) is the complement of event
Av(w)), we can prove (see Appendix) that for N ≥ 232

Pr
(
∀v∈K∃0≤k1(v)≤k′ |Γ+

k1(v)(v)| ≥
√

N
)

≥ Pr
(⋂

v∈K Av
)

≥

≥ 1 − Pr
(⋃

v∈K

⋃
w∈W (v) Av(w)

)
≥

≥ 1 −
∑

v∈K

∑
w∈W (v) Pr

(
Av(w)

)
≥ 1 − p1(N),

(4)

where p1(N) = 1.6 · (ln N)7/N1.5.
Now we will estimate the sizes of sets of in–neighbors. Consider a vertex v ∈ V

such that v has at least two in–neighbors u1 �= v and u2 �= v or v has in–neighbor
u1 �= v which has in–neighbor u2 �= v, u1. We will call such vertex v a “good” vertex.
For a “good” vertex v, using Lemma 1 and the pigeonhole principle, we can prove (see

Appendix) that with probability at least 1 − q1(N) (where q1(N) = 1+0.0016(ln N)15

N2.99)
there exists i0, 1 ≤ i0 ≤ 3, such that

|Γ−i0 (v)| ≥ 6. (5)

From now on, we assume that v is “good”. Let k′′ =
⌈

1
2

ln N
ln�l/2�

⌉
+ 3.

For all 0 < j ≤ k′′ let:
– Bj(v) = Bj be the event that |Γ−j (v)| ≥ 3

√
N .

For all i0 < j ≤ k′′ let:

– Cj(v) = Cj be the event that 3
⌊

l
2

⌋j−i0 ≤ |Γ−j (v)| < 3
√

N ,

– Dj(v) = Dj be the event that |Γ−j (v)| ≤ 3
⌊

l
2

⌋j−i0 .

110 M. Klonowski et al.

Also denote by:
– Ci0 (v) the event that 6 ≤ |Γ−j (v)| < 3

√
N ,

– Di0(v) the event that |Γ−j (v)| < 6.
Notice that by (5) we get:

Pr(Di0) ≤ q1(N). (6)

We will find a lower bound on the probability of the event
⋃k′′

i=0 Bi. Notice that if Ω is
the whole probability space, than for all i0 ≤ i ≤ k′′, we have Bi ∪Ci ∪Di = Ω. Thus

Ω = Bi0∪(Ci0 ∩ Ω) ∪ Di0 =
= Bi0∪(Ci0 ∩ Bi0+1) ∪ Di0 ∪ (Ci0 ∩ Di0+1) ∪ (Ci0 ∩ Ci0+1) = . . . =

= Bi0∪
⋃k′′−1

i=i0

(
Bi+1 ∩

(⋂i
j=i0

Cj

))
∪ Di0∪

∪
⋃k′′−1

i=i0

(
Di+1 ∩

(⋂i
j=i0

Cj

))
∪

(⋂k′′

j=i0
Cj

)
.

Also, by definition,
⋂k′′

j=i0
Cj = ∅ since 3

√
N ≤ 3

⌊
l
2

⌋k′′−i0 . Thus

⋃k′′

i=i0
Bi ⊇ Bi0 ∪

⋃k′′−1
i=i0

(
Bi+1 ∩

(⋂k′′

j=i0
Cj

))
∪

(⋂k′′

j=i0
Cj

)
.

Using Lemma 1 and Chernoff inequality we can prove that

Pr(Di0+1 ∩ Ci0) ≤
(

1
N

)1.59

and Pr
(
Di+1 ∩

⋂i
j=i0

Cj

)
≤

(
1
N

)0.33·(l
2)i−i0

(7)

for i0 + 1 ≤ i ≤ k′′ − 1. Thus from (6) and (7)

Pr
(⋃k′′

i=0 Bi(v)
)

≥ 1 − Pr(Di0) −
∑k′′−1

i=i0
Pr

(
Di+1 ∩

⋂i
j=i0

Cj

)
≥

≥ 1 − q1(N) −
(

1
N

)1.59 −
∑k′′−2

i=i0+1

(
1
N

)0.33(l
2)

i−i0

≥ 1 − q2(N),
(8)

where q2(N) = (1 + 0.0016(lnN)15)/N2.99 + 1/N1.59 + 1/(N0.16l − 1).
Assume that

⋃k′′

i=i0
Bi holds. Then there exists such k ≤ k′′ that |Γ−k (v)| ≥ 3

√
N . Let

k2 = k2(v) be the smallest such index k. Using Lemma 1 and Chernoff inequality we
can prove that

Pr(|Γ−k2(v)(v)| ≥ 10
√

N) ≤ 1/N1.5. (9)

Thus from (8) and (9)

Pr
(
∀v∈K,v is “good”∃1≤k2≤k′′3

√
N ≤ |Γ−k2(v)(v)| ≤ 10

√
N

)
≥

≥ 1 −
∑

v∈K

(
1 − Pr

(
∃1≤k2≤k′′3

√
N ≤ |Γ−k2(v)(v)| ≤ 10

√
N

))
≥ 1 − p2(N),

(10)

where p2 = N
(
q2 + 1/N1.5

)
.

From now on we will assume that v1 and v2 are the vertices such that

∃1≤k1≤k′,1≤k2≤k′′ |Γ+
k1(v)(v)| ≥

√
N and 3

√
N ≤ |Γ+

k1(v)(v)| ≤ 10
√

N (11)

Forward-Secure Key Evolution in Wireless Sensor Networks 111

holds. We will find a lower bound on the probability that these vertices are connected by
a directed path of length at most k1 +k2 +1. If Γ+

k1
(v1)∩Γ−k2

(v2) �= ∅, then there exists
such a path. Otherwise, using Lemma 1, we may prove that the probability that there is
an edge pointing from Γ+

k1
(v1) to Γ−k2

(v2) is at least 1 − 1/N
8
3 . Since there are at most

N2 pairs of vertices, thus with probability at least 1 − p3(N) (where p3(N) = 1/N
2
3)

all pairs, for which (11) is fulfilled, are connected by a path of length at most k′+k′′+1.
Concluding, since for any two vertices v1 and v2, such that v2 is “good”, (11) is

fulfilled with probability at least 1 − p1(N) − p2(N), and so any pair of such vertices
is connected by a directed path of length at most k′ + k′′ + 1 with probability at least
1−p1(N)−p2(N)−p3(N). Therefore, with probability at least 1−p1(N)−p2(N)−
p3(N)

diam G(X) ≤
ln N/(2 ln�l/2)� +
ln N/(2 ln
l/4�)� + 4 .

Furthermore, if k′′′ =
⌊

ln N
ln(2l)

⌋
− 1, then |N+

k′′′ (v)| ≤
∑k′′′

i=0(2l)i = (2l)k′′′+1−1
2l−1 ≤

N−1
2l−1 < N . Thus, there exists a vertex w ∈ K \ N+

k (v). So diam G(X) ≥ k + 1 =⌊
ln N
ln(2l)

⌋
. Substituting p(N) = p1(N) + p2(N) + p3(N) finishes the proof. ��

Theorem 2. Let X be a random variable such that E(X) = l ≥ ln N and Pr(l
2 ≤

X ≤ 2l) = 1. If N ≥ 232 and ln N ≤ l ≤
√

N/90 − 1 then the graph G(X)
is strongly connected with probability at least 1 − p′(N, l), where p′(N, l) = l

N ·
N−l

(N−2l) exp
(

2l(2l+1)
N

)
+N exp

(
−l · N−l−1

N

)
+ 1.6(ln N)7

N1.5 + 1+0.0016(ln N)15

N1.99 + 1
N0.59 +

1
N0.16l−1

+ 1
N0.5

Proof (Sketch). Now, we shall estimate the probability that for any two vertices v, w ∈
K , there exists a directed (w, v)-path. We will find the lower bound on probability that
any vertex in K is “good”. Let v ∈ K . Substitute in Lemma 1 for A = {v} and B = ∅,
then v does not have any in–neighbor in K \ {v} with probability:

(1 − PAB)N−1 ≤ exp(−PAB(N − 1)) ≤ p′1(N, l), (12)

where p′1(N, l) = exp
(
−l · N−l−1

N

)
. Moreover, using Lemma 1, we can estimate the

probability that v has in–neighbor u but there is no vertex which would be in–neighbor
of v or u by

∑
u∈K\{v}(1 − P{v,u},∅)N−2 · P{v},∅ ≤ p′2(N, l), (13)

where p′2(N, l) = l
N2 · N−l

(N−2l) exp
(

2l(2l+1)
N

)
. Thus

Pr(∃v∈Kv is not “good”) ≤
∑

v∈K Pr(v is not “good”) ≤ N(p′1(l, N) + p′2(l, N)).

From the proof of Theorem 1, we know that in the graph G(X) any two vertices
v1, v2 ∈ K , such that v2 is “good”, are connected by a directed path from v1 to v2 with
probability at least 1 − p(N). Moreover, with probability at least 1 − N(p′1(l, N) +
p′2(l, N)) each vertex in G(X) is “good”. Thus with probability at least 1 − p(N) −
N(p′1(l, N) − p′2(l, N)) graph G(X) is connected.

112 M. Klonowski et al.

Corollary 1
(a) For N = 232 and l = 32 ≥ ln N with probability larger than 0.98, graph G(X) is
connected and 5 ≤ diam(G(X)) ≤ 14.
(b) For N = 264 and l = 64 ≥ ln N with probability larger than 1 − 3

109 , graph G(X)
is connected and 9 ≤ diam(G(X)) ≤ 19.
(c) If Pr(l

2 ≤ X ≤ 2l) = 1−p, then in graph G(X) with probability at least 1−Np for
all vertices v ∈ K we have l

2 ≤ Xv ≤ 2l. Thus with probability at least 1 − p′(l, N) −
Np graph G(X) is connected and has diameter as stated in Theorem 1.

4 Equalizing Probability Distribution

Now we consider KEP with rule (2). We are interested in the state of a key for a pair
of nodes after t random transitions executed for a given initial state. Here, we model
one-way function F (−, −, τ) as random functions chosen independently for each τ .
The state of the key is a random variable with values that are keys reachable from the
initial key in t steps. The corresponding probability distribution can be described as a
vector P t = (P t

1 , P t
2 . . . P t

N), assuming that for all non-reachable keys we have 0 in
this vector. Clearly, this vector depends on function F . The main issue is that certain
keys can be reached in multiple ways and, consequently, the corresponding coordinates
P t

i might be significantly higher.
While in the previous section we have been interested in how many steps are neces-

sary so that we can potentially reach every key, now our goal is to put an upper bound
for deviation of the coordinate P t

i from 1/N (corresponding to the uniform distribution
on the keyspace) that holds for almost all transition functions.

In order to model the behavior of the key transition mechanism we analyze a stochas-
tic process B expressed in terms of balls and bins. Let us consider N distinct bins and
a single ball put in the first bin at the beginning of the process, i.e. for t = 0. At each
step of the protocol each bin is linked to exactly l ≥ 2 distinct bins chosen uniformly
at random out of the set of all N bins. We demand that the connections chosen for bin
i at round t are stochastically independent of the connections chosen for bin j at round
t, for i �= j, and that the connections in round t are independent of the connections in
the previous rounds.

N bins correspond to all possible keys. The location of a ball indicates the current
state of the considered key, l connections from the current bin to other bins correspond
to possible key transitions. In order to simplify the considerations we assume that the
number of keys that can be reached in one transition is exactly l, despite a small collision
probability of a one-way function.

If the ball is in a particular bin at step t, it can be moved with equal probability to
each of l bins at step t + 1 linked to the bin holding the ball. Assume that for a given
number of rounds, we fix the transitions. At time t = 0, we place the ball in the first
bin. Then, for t = 1, it can be placed in each of l bins connected to the first bin with
probability 1/l. For t = 2, the potential number of reachable bins is within the interval
[l, l2]. Note that if a bin can be reached in multiple ways, then generally probability of
placing the ball in it is higher. After a number of steps the situation becomes highly
complex; the probabilities depend very much on the connections.

Forward-Secure Key Evolution in Wireless Sensor Networks 113

The Result. Assuming the randomness of the transitions, P t
i becomes a random vari-

able. (Recall that for a given realization of connections P t
i is simply the probability that

in step t of process B the ball is in bin i.)

Theorem 3. For step t of process B described above, with parameters N > l ≥ 2, for
ε > 0, and δ = 1

l − 1
N we have:

Pr
(
maxi

∣∣P t
i − 1

N

∣∣ ≥ ε
)

≤
(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

Proof of Theorem 3. In the proof we consider the deviation of random vector P t from
the uniform distribution in terms of the random variable DN (P t):

DN (P t) =
∑N

i=1

(
P t

i − 1
N

)2
.

The proof is based on observations regarding the rate of decrease of the expectation of
DN (P t) and finding a t such that this distance is close to zero. Since random variables
P t+1

i have the same distribution for each i, we get:

E
(
DN (P t+1)|P t

)
= E

((
P t+1

1 − 1
N

)2
+ . . . +

(
P t+1

N − 1
N

)2 |P t
)

=

= N · E
((

P t+1
1 − 1

N

)2 |P t
)

.

Let φ(i, j, t) be a random variable describing the connection in round t, defined as
follows: φ(i, j, t) = 1 if bin i is linked to bin j at step t. Otherwise φ(i, j, t) = 0.

Obviously, E (φ(i, j, t)) = l
N . Moreover, according to our assumptions the random

variables φ(i0, j0, t0) and φ(i1, j1, t1) are independent if i0 �= i1 or t0 �= t1. By the
above definition,

E
((

P t+1
1 − 1

N

)2 |P t
)

= E
((∑

i
1
l · P t

i · φ(i, 1, t) − 1
N

)2 |P t
)

.

Since φ(i, 1, t) and φ(j, 1, t) are independent of P t, we get

E
(
DN (P t+1)|P t

)
= N · E

((∑
i

1
l P

t
i · φ(i, 1, t) − 1

N

)2 | P t
)

=

= N · E
((∑

i
1
l · P t

i · φ(i, 1, t) −
∑

i
1
l · P t

i · l
N

)2 |P t
)

=

= N · E
((∑

i
1
l · P t

i ·
(
φ(i, 1, t) − l

N

))2 |P t
)

=

= N
∑

i
1
l2 · (P t

i)2 · E
((

φ(i, 1, t) − l
N

)2
)

+

+ N
∑

i
=j
1
l2 · P t

i · P t
j · E

((
φ(i, 1, t) − l

N

)
·
(
φ(j, 1, t) − l

N

))
.

Let us note that φ(i, 1, t) and φ(j, 1, t) are independent for i �= j.
Since E(φ(j, 1, t)) = l/N , the second sum is equal to 0. Moreover, Var(φ(i, 1, t)) =

l/N · (1 − l/N), so

E
(
DN (P t+1)|P t

)
= N

∑
i

1
l2 · (P t

i)2 l
N ·

(
1 − l

N

)
=

(
1
l − 1

N

)∑
i(P

t
i)2

=
(

1
l − 1

N

)
·
(∑

i

(
(P t

i)2 − 2·P t
i

N + 1
N2

)
+ 2 ·

∑
i

P t
i

N −
∑

i
1

N2

)
=

=
(

1
l − 1

N

) (∑
i

(
P t

i − 1
N

)2 + 1
N

)
=

(
1
l − 1

N

)
·
(
DN (P t) + 1

N

)
.

114 M. Klonowski et al.

Hence, we have shown

E
(
DN (P t+1)|P t

)
=

(
1
l − 1

N

)
·
(
DN (P t) + 1

N

)
.

Taking expectation of both sides of the above equality gives us:

E
(
DN (P t+1)

)
=

(
1
l − 1

N

)
· E (DN (P t)) +

(
1
l − 1

N

)
· 1

N .

Let δ = 1
l − 1

N . It is easy to check that E
(
DN (P 1)

)
= δ. Therefore, solving the

recursive relation we get:

E
(
DN (P t)

)
= E(DN (P 1)) · δt−1 +

δ

N
·
(
1 + δ + . . . + δt−2

)
= δt +

δ(1 − δt−1)
N(1 − δ)

.

Since DN (P t) is nonnegative, we can apply Markov inequality:

Pr
(
DN (P t) ≥ ε2

)
≤ E(DN (P t))/ε2

and get:

Pr
(
DN (P t) ≥ ε2

)
≤

(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

Therefore,

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
≤ Pr

(∑
i

(
P t

i − 1
N

)2 ≥ ε2
)

= Pr
(
DN (P t) ≥ ε2

)
≤

(
δt + δ(1−δt−1)

N(1−δ)

)
ε−2 .

This concludes the proof of Theorem 3. ��

From previous considerations we immediately obtain the following corollaries:

Corollary 2. For l = 2m1 and N = 2m2

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

((
2m2−m1−1

2m2

)t

+ 2m2−m1−1
22m2−22m2−m1+2m2

)
· ε−2 .

Corollary 3

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

((
N−2
2N

)t
+ N−2

N(N+2)

)
ε−2 .

for l = 2. In particular, for l = 2 and t = log N

Pr
(
maxi |P t

i − 1
N | ≥ ε

)
<

(
2
N

)
ε−2 .

Acknowledgements. Katarzyna Rybarczyk and Michał Ren would like to thank their
advisor – professor Jerzy Jaworski – for fruitful discussions, his invaluable advice and
support.

Forward-Secure Key Evolution in Wireless Sensor Networks 115

References

1. Ren, M., Tanmoy, K.D., Zhou, J.: Diverging keys in wireless sensor networks. In: Katsikas,
S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp.
3–540. Springer, Heidelberg (2006)

2. Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor
network security. Technical Report 00-010, NAI Labs, Cryptographic Technologies Group
Trusted Information Systems, NAI Labs, The Security Research Division Network Asso-
ciates, Inc. 3060 Washington Road (Rt. 97) Glenwood, MD 21738-9745 (2000)

3. Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont, P., Verbauwhede, I.: Aes-
based cryptographic and biometric security coprocessor ic in 0.18-um cmos resistant to side-
channel power analysis attacks. In: 2005 Symposia on VLSI Technology and Circuits, pp.
216–219 (2005)

4. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks.
In: CCS 2002: Proceedings of the 9th ACM conference on Computer and communications
security, pp. 41–47. ACM Press, New York (2002)

5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In:
SP 2003: Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington,
DC, USA, pp. 197–213. IEEE Computer Society, Los Alamitos (2003)

6. Chan, H., Perrig, A.: Pike: Peer intermediaries for key establishment in sensor networks. In:
Infocom 2005. The 24th Conference of the IEEE Communications Society (2005)

7. Anderson, R., Chan, H., Perrig, A.: Key infection: Smart trust for smart dust. In: ICNP 2004.
Proceedings of IEEE International Conference on Network Protocols (2004)

8. Daemen, J., Rijmen, V.: Rijndael specification. NIST AES Algorithm (Rijndael) Information
webpage (2001)

9. Hellman, M.E.: A cryptanalytic time-memory tradeoff. IEEE Trans. Inform. Theory 26, 401–
406 (1980)

10. Bollobás, B.: The diameter of random graphs. IEEE Trans. Inform. Theory 36, 285–288
(1990)

11. Bollobás, B.: Random Graphs. Academic Press, London (1985)
12. Chung, F., Lu, L.: The diameter of sparse random graphs. Adv. in Appl. Math. 26(4), 257–

279 (2001)
13. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs-chapter 9: A

second look at general markov chains
14. Nachmias, A., Peres, Y.: Critical random graphs: diameter and mixing time (2007)
15. Benjamini, I., Kozma, G., Wormald, N.: The mixing time of the giant component of a random

graph (2006)
16. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in markov chains. Found.

Trends Theor. Comput. Sci. 1(3), 237–354 (2006)
17. Jaworski, J., Smit, I.: On a random digraph. Annals of Discrete Mathathematics 33, 111–127

(1987)
18. Jaworski, J., Palka, Z.: Remarks on a general model of a random digraph. Ars Combinato-

ria 65, 135–144 (2002)
19. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2001)

Appendix

Proof of Lemma 1

Lemma 2. Let A and B be disjoint subsets of K , and let P s
AB be the probability

that in a graph G(X) a given vertex v with degree s has an out-neighbor in A,

116 M. Klonowski et al.

conditioned by the event that it does not have any out-neighbor in B. Then for N −
|A| − |B| ≥ s:

s|A|
N−|B| −

s2|A|2
2(N−|B|)2 ≤ P s

AB ≤ s|A|
N−|B| +

s2|A|
2(N−|B|)(N−|B|−s) . (14)

Proof. Assume that vertex v with degree s does not have any out-neighbor in B. Then

the probability that it does not have any out-neighbor in A is equal to
(N−|A|−|B|

s)
(N−|B|

s) .

Substituting k = N − |B| and |A| = d we have:

(N−|A|−|B|
s)

(N−|B|
s) = (k−d

s)
(k

s)
=

∏s−1
i=0

(
1 − d

k−i

)
.

Furthermore,

∏s−1
i=0

(
1 − d

k−i

)
≤

(
1 − d

k

)s ≤ 1 − sd
k +

(
s
2

)
d2

k2 ≤ 1 − sd
k + s2d2

2k2 =

= 1 − s|A|
N−|B| +

s2|A|2
2(N−|B|)2

and

∏s−1
i=0

(
1 − d

k−i

)
≥ 1 −

∑s−1
i=0

d
k−i = 1 −

∑s−1
i=0

(
d

k−i − d
k

)
− sd

k =

= 1 − sd
k −

∑s−1
i=0

di
k(k−i) ≥ 1 − sd

k − d
k(k−s)

(
s
2

)
≥ 1 − sd

k − s2d
2k(k−s) =

= 1 − s|A|
N−|B| −

s2|A|
2(N−|B|)(N−|B|−s)

which implies (14).

Proof (of Lemma 1). Using Lemma 2, since X < 2l with probability 1,

PAB =
2l∑

s=0

P s
AB · Pr(X = s) ≤

≤
∑2l

s=0
|A|s

N−|B| Pr(X = s) +
∑2l

s=0
|A|

2(N−|B|) · s2

(N−|B|−s) · Pr(X = s) ≤

≤ l|A|
N−|B| + 2l · |A|

2(N−|B|)·(N−|B|−2l)

∑
s Pr(X = s) =

≤ l|A|
N−|B| +

l2|A|
(N−|B|)(N−|B|−2l)

PAB =
∑2l

s=0 P s
AB · Pr(X = s) ≥

≥
∑2l

s=0
|A|s

N−|B| Pr(X = s) −
∑2l

s=0
|A|s2

2(N−|B|)2 · Pr(X = s) ≥

≥ l|A|
N−|B| − 2l · |A|

2(N−|B|)2
∑2l

s=0 s Pr(X = s) ≥ l|A|
N−|B| −

l2|A|
(N−|B|)2

Moreover each vertex in K\(A∪B) chooses its out–neighbors independently, therefore
Y has a binomial distribution with parameters N − |A| − |B| and PAB .

Forward-Secure Key Evolution in Wireless Sensor Networks 117

Upper Bound on Pr(Av(w))

Assume that w has degree s ≥
⌈

l
2

⌉
in G(X). Notice that for N ≥ 232 the procedure

mentioned in the proof will not label more than N+ = k′
√

N ≤ ln N
√

N
2 ln� l

4 �
≤ ln N

√
N

4

vertices. Moreover, probability that w during procedure labels less than
⌈

l
4

⌉
vertices is

smaller than probability that w has at most
⌈

l
4

⌉
−1 out–neighbors in the set of unlabeled

vertices.

Pr(Av(w)) =
∑
 l

4�−1

j=0
(N−N+

j)(N+

s−j)
(N

s) ≤
∑
 l

4�−1

j=0

(
s

s−j

) (
N+

N

)s−j

≤

≤
∑
 l

4�−1

j=0

(
se

s−j

)s−j (
N+

N

)s−j

≤
∑
 l

4�−1

j=0

(
l
2

l
2−j

)s−j (
e·N+

N

)s−j

≤

≤
∑
 l

4�−1

j=0

(
l
2

l
2− l

4

)s−j (
e·ln N
4
√

N

)s−j

≤
∑
 l

4�−1

j=0

(
2e·ln N
4
√

N

)s−j

≤

≤
(

e·ln N
2
√

N

)s−
 l
4�+1 ∑
 l

4�−1

j=0

(
e·ln N
2
√

N

)
 l
4�−1−j

≤ q3(N),

where g3(N) =
(

e·ln N
2
√

N

)6
2
√

N
2
√

N−e ln N
.

Thus for N ≥ 232

∑
v∈K

∑
w∈W (v) Pr(Av(w)) ≤ N ln N

√
N

4 q3(N) ≤ 1.6·(lnN)7

N1.5 .

Proof of (5)

Let v be a good vertex. Let Z be a random variable counting number of vertices in
K \ {v, u1, u2} having an out–neighbor in {v, u1, u2}. Thus

∑3
i=1 |Γ−i (v)| − 2 ≥ |Z|.

According to Lemma 1, for A := {v, u1, u2} and B = ∅, Z has binomial distribution

Bin (N − 3, PAB). For those A,B since l+1
N ≤

√
N

90N + 1
N < 1

3·220 we have PAB ≤
3l
N

(
1 + l

N−2l

)
< 3l

N

(
1 + 3l

N

)
< 3(220+1)

240 and (N − 3)PAB ≥ (N − 3)
(

3l
N − 9l2

N

)
≥

3l
(
1 − 3(l+1)

N

)
> 3 lnN 220−1

220 .

Furthermore

Pr(Z ≤ 15) =
∑15

i=0

(
N−3

i

)
(PAB)i(1 − PAB)N−3−i ≤

≤ (1 − PAB)N−3 +
∑15

i=1

(
(N−3)PABe

i

)i

exp (−(N − 3 − i)PAB) ≤

≤
(

1 + exp(15 · PAB)
∑15

i=1

(
(N−3)PAB

i
e

)i
)

exp(−(N − 3)PAB) <

<

(
1 + 15 · exp

(
15 · 3(220+1)

240

)(
3 ln N 220−1

220
e

15

)15
)

exp
(
−3 lnN 220−1

220

)
<

<
(
1 + 15 · exp

(
15 · 3(220+1)

240

)
· (0.54 · ln N)15

) (
1
N

)2.99
<

< 1+0.0016(ln N)15

N2.99 = q1(N),

118 M. Klonowski et al.

since the function f(x) = xi exp(−x) is decreasing for x > i and the function f(x) =
ax

xx is increasing for x < a
e .

Therefore, for a ”good” vertex v,
∑3

i=1 |Γ−i (v)| − 2 ≥ |Z| ≥ 16 with probability at
least 1 − q1(N) , and thus by pigeonhole principle with probability at least 1 − q1(N)
there exists i0, 1 ≤ i0 ≤ 3, such that

|Γ−i0 (v)| ≥ 6, (15)

which proves (5).

Proof of (7)

For any i0 < i ≤ k′′ =
⌈

ln N
2 ln� l

2 �

⌉
+ 3 and v – a ”good” vertex we will find a lower

bound on the size of Γ−i (v). Notice that a set Γ−i+1(v) consists of all vertices from
K \ (Γ−i (v) ∪ N−i−1(v)) having an out–neighbor in Γ−i (v), thus by Lemma 1, if we
assume that |Γ−i (v)| = Γ and |N−i−1(v)| = Ni we have:

|Γ−i+1(v)| ∼ Bin (N − Ni − Γ, PΓNi) , (16)

and
Γ l

N − Ni
− Γ 2l2

(N − Ni)2
≤ PΓNi .

Furthermore if we condition that event
⋂i

j=i0
Cj occurs, then: 3

(
l
2

)i−i0 ≤ |Γ−i (v)| <

3
√

N and |N−i−1(v)| ≤ 3k′′
√

N . Moreover since l ≤
√

N
90 − 1 for Γ ≤ 3

√
N and

Ni ≤ (1
2 ln N + 3)

√
N

EΓ−i+1 = (N − Ni − Γ)PΓNi ≥

≥ Γ l − Γ 2l2

(N−Ni)
− Γ 2l

(N−Ni)
+ Γ 3l2

(N−Ni)2
≥ Γ l

(
1 − Γ (l+1)

(N−Ni)

)
≥ aΓ l

Where a = 28999
30000 .

By Fi(Γ) we denote event that
⋂i

j=i0
Cj and Γ−i (v) = Γ . Then by Chernoff in-

equality (see for example [19] theorem 2.1), for i ≥ i0

Pr(|Γ−i+1| ≤ bΓ−i l|Fi(Γ)) =

= Pr
(
|Γ−i+1| ≤ b

aE(|Γ−i+1||Fi(Γ))|Fi(Γ)
)

≤
≤ Pr

(
|Γ−i+1| ≤ E(|Γ−i+1||Fi(Γ)) −

(
1 − b

a

)
E(|Γ−i+1||Fi(Γ))|Fi(Γ)

)
≤

≤ exp
(

− (1− b
a)2(E(|Γ −

i+1||Fi(Γ)))2

2E(|Γ −
i+1||Fi(Γ))|

)
≤ exp

(
− (1− b

a)2

2 aΓ l
)

(17)

Thus substituting i = i0, a = 28999
30000 and b = 0.25 for 6 ≤ Γ ≤ 3

√
N :

Pr(|Γ−i0+1| ≤ 0.25|Γ−i0 |l||Γ−i0 | = Γ) ≤ exp
(
− (1−0.25 30000

28999)2

2
28999
30000Γ l

)
≤

(
1
N

)1.59
.

Forward-Secure Key Evolution in Wireless Sensor Networks 119

Therefore since 0.25 · 6 · l ≥ 3
⌊

l
2

⌋
thus:

Pr(Di0+1|Ci0) ≤
∑3
√

N
Γ=6 Pr(Γ−i+1 ≤ 0.3Γ−i0 l|Γ−i0 = Γ) ≤

(
1
N

)1.59

and
Pr(Di0+1 ∩ Ci0) = Pr(Di0+1|Ci0) Pr(Ci0) ≤

(
1
N

)1.59
,

which is the first part of (7).

Furthermore for i > i0 substituting a = 28999
30000 and b = 1

2 for 3
⌊

l
2

⌋i−i0 ≤ Γ ≤
3
√

N :

Pr(|Γ−i+1| ≤ 1
2 |Γ−i |l|Fi(Γ)) ≤ exp

(
− (1− 1

2
30000
28999)2

2
28999
30000Γ l

)
≤

(
1
N

)0.33(l
2)

i−i0

.

Therefore since 1
2 · 3

⌊
l
2

⌋i−i0 · l ≥ 3
⌊

l
2

⌋i+1−i0 and
⋂i

j=i0
Cj =

⋃3
√

N

Γ=3(l
2)

i−i0 Fi(Γ)

thus

Pr
(
Di+1

∣∣∣∣
⋂i

j=i0
Cj

)
≤

∑ 3
√

N

Γ=3(l
2)

i−i0
Pr(|Γ −

i+1|≤ 1
2 |Γ −

i |l|Fi(Γ)) Pr(Fi(Γ))

Pr(⋂i
j=i0

Cj) ≤
(

1
N

)0.33� l
2	i−i0

and

Pr
(
Di+1 ∩

⋂i
j=i0

Cj

)
≤

(
1
N

)0.33� l
2	i−i0

,

which is the second part of (7).

Proof of (9) – An Upper Bound on Γ −
k2

(v)

Assume that there exists k2 ≤ k′′ - the smallest index such that Γ−k2
(v) is larger then

3
√

N . Thus 1 ≤ |Γ−k2−1(v)| ≤ 3
√

N and |Nk2−1| ≤ 3k′′
√

N . Since (16) holds thus
from Lemma 1 we have

PΓNi ≤ Γl
N−Ni

+ Γl2

(N−Ni)(N−Ni−2l)

and

E|Γ−i+1| = (N − Ni − Γ)PΓNi ≤ (N − Ni)PΓNi ≤

≤ Γ l
(
1 + l

N−Ni−2l

)
≤ Γ l

(
1 + 3l

N−Ni

)
.

Then by Chernoff bound for 1 ≤ Γ ≤ 3
√

N and |Nk2−1| ≤ 3k′′
√

N :

Pr(|Γ−k2
| ≥ 10

√
N ||Γ−k2−1| = Γ) ≤

≤ Pr
(
|Γ−k2

| ≥ 3Γ l
(
1 + 3l

N−|Nk2−1|
)

||Γ−k2−1| = Γ
)

≤

≤ Pr
(
|Γ−k2

| ≥ E(|Γ−k2
||Γ) + 2Γ l

(
1 + 3l

N−|Nk2−1|
)

||Γ−k2−1| = Γ
)

≤

≤ exp

⎛
⎝−

4Γ 2l2
(

1+ 3l
N−|Nk2−1|

)2

2

(
E(|Γ −

k2
||Γ)+ 1

3 Γl

(
1+ 3l

N−|Nk2−1|

))

⎞
⎠ ≤

≤ exp
(
− 3

2Γ l
(
1 + 3l

N−|Nk2−1|
))

≤ 1

N
3
2

120 M. Klonowski et al.

Thus conditioned on the fact that 1 ≤ Γ ≤ 3
√

N and |Nk2−1| ≤ 3k′′
√

N holds

Pr(|Γk2 | ≥ 10
√

N)≤
∑3
√

N
Γ=1 Pr(|Γ−k2

|≥ 10
√

N ||Γ−k2−1|= Γ) Pr(|Γ−k2−1|=Γ)≤ N
3
2 ,

which implies (9)

Existence of Paths

From Lemma 1 substituting A = Γ−k2
(v2), and B = ∅ we know that the probability that

vertex u ∈ Γ−k2
(v2) does not have any out-neighbor in Γ−k2

(v2) is equal to 1−PAB. Thus

for Γ+
k1

(v1) and Γ−k2
(v2) such that |Γ+

k1
(v1)| ≥

√
N and 3

√
N ≤ |Γ−k2

(v2)| ≤ 10
√

N ,

since l ≤
√

N
90 , the probability that there are no edges pointing from Γ+

k1
(v) to Γ−k2

(w)
is:

(1 − PAB)|Γ
+
k1
| ≤

(
1 − |Γ −

k2
|l

N +
|Γ −

k2
|2l2

N2

)|Γ+
k1
|
≤

≤ exp
((

− |Γ
−
k2
|l

N +
|Γ −

k2
|2l2

N2

)
|Γ+

k1
|
)

≤

≤ exp
(

−|Γ−k2
| · |Γ+

k1
|l

(
1 − |Γ −

k2
|l

N

))
≤

(
1
N

)3

(
1−

|Γ −
k2

|l
N

)

≤ 1

N
8
3
.

Proof of (12) and (13)

For A = {v} and B = ∅ from Lemma 1

(1 − PAB)N−1 ≤ exp(−PAB(N − 1)) ≤
≤ exp

(
−(N − 1) · l

N (1 − l
N)

)
=

= exp
(
−

(
l
(
1 − l

N

)
− l

N

(
1 − 1

N

)))
=

= exp
(
−l

(
1 − l

N − 1
N + l

N2

))
≤ exp

(
−l

(
1 − l+1

N

))
.

Using Lemma 1 twice we have

∑
v1∈K\{v}(1 − P{v,v1},∅)

N−2 · P{v},∅ ≤

≤ (N − 1) ·
(
1 − 2l

N + 4l2

N2

)N−2

·
(

l
N + l2

N(N−2l)

)
≤

≤ (N − 1) · exp
(
−2l + 2l

N + 4l2

N − 8l2

N2

)
·
(

l
N + l2

N(N−2l)

)
≤

≤ (N − 1) · 1
N2 · exp

(
2l
N + 4l2

N

)
·
(

l
N + l2

N(N−2l)

)
≤

≤ exp
(

2l
N (1 + 2l)

)
· l

N2

(
1 + l

(N−2l)

)
.

A Secure Location Service for Ad Hoc Position-Based
Routing Using Self-signed Locations�

Jihwan Lim1, Sangjin Kim2, and Heekuck Oh1

1 Hanyang University, Department of Computer Science and Engineering,
Republic of Korea

jhlim@cse.hanyang.ac.kr, hkoh@hanyang.ac.kr
2 Korea University of Technology and Education,

School of Information and Media Engineering, Republic of Korea
sangjin@kut.ac.kr

Abstract. Location service, which provides current geographic positions of
nodes, is one of the key elements of position-based routing schemes for ad hoc
networks. In this paper, we define security threats of location service and pro-
pose a new secure location service protocol that uses self-signed locations. In
our proposed protocol, nodes register their public keys in other nodes during the
initialization phase and these registered keys are used to verify the locations of
other nodes and to generate their self-signed locations. In this paper, we show that
our protocol is robust against traditional attacks and new attacks that may occur
in position-based routings. We also analyze the efficiency of our protocol using
various simulations.

Keywords: ad hoc network, position-based routing, secure location service.

1 Introduction

An ad hoc network is a network that does not use any existing infrastructure and is
formed autonomously by mobile nodes. Participating nodes communicate with other
nodes that are outside their transmission range by using multi-hop routing. In other
words, a node plays the role of a router as well as a host. These nodes can also move
freely causing the network topology to change dynamically. These characteristics make
designing a scalable and robust routing protocols a real challenge.

Earlier researches on routing for ad hoc networks are based on table-driven or
on-demand methods [1]. Recently, position-based routing methods are attracting many
researches since these types of methods use geographical coordinates of nodes to effec-
tively route messages [2,3]. In position-based routing, participating nodes can recognize
their own geographic locations using equipments such as GPS (Global Positioning Sys-
tem). However, to route messages using the destination node’s location, one must obtain

� This research was supported by the MIC (Ministry of Information and Communication), Ko-
rea, under the HNRC (Home Network Research Center) - ITRC (Information Technology Re-
search Center) support program supervised by the IITA (Institute of Information Technology
Assessment). This work was also supported by the Korea Science and Engineering Founda-
tion(KOSEF) grant funded by the Korea government(MOST) (No. R01-2006-000-10957-0).

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 J. Lim, S. Kim, and H. Oh

such information. Therefore, in position-based routings, there must be a way for nodes
to obtain locations of other nodes.

Location service of position-based routing provides such mechanism. Location ser-
vice may also refer to locating a data item, but in this paper, this service refers to lo-
cating the position of the destination node. Generally, a node queries another node to
retrieve such information. A node who maintains locations of other nodes are referred
to as a location server. We can use a single centralized server that maintains locations
of all the participating nodes. However, since true ad hoc networks do not have any
central administration, distributed approach is more suitable. In such approach, each
participating nodes normally manage locations of some other nodes.

The location service is composed of three components: location update, location
request, and location response. Location servers must maintain the latest location of
nodes it manages. In other words, location service is sensitive to nodes’ mobility. To
accomplish this task, a node reports its new location to the server as it moves around
the network. This process is referred to as a location update. This update can occur pe-
riodically or when a node moves a certain distance from the previous reported location.
A node requests the location of the destination node if it does not have that information
in its cache. The location server responds by sending the latest location information it
maintains to the requesting node.

Most of the current researches on position-based routings for ad hoc network do not
deal with new security threats caused by location service. For example, messages can
be routed to wrong location if the location information obtained from a server is false.
In this paper, we propose a new secure location service for position-based routing that
uses self-signed locations. However, we do not deal with location privacy of nodes. The
reason is that making location information private conflicts with the inherent nature
of position-based routing. In other words, the location servers must know the location
information of other nodes and these servers cannot be regarded as trusted entities in ad
hoc networks.

The remainder of this paper is organized as follows. In section 2, we briefly introduce
related work. Our proposed scheme will be present in section 3. In section 4, we analyze
the security and the efficiency of our scheme using various simulations. Finally, we
conclude this paper in section 5.

2 Related Work

2.1 Location Services for Position-Based Routing

At one extreme, we can think of a scheme where each node maintains the locations of
all the nodes in the system [4]. In such schemes, it is inevitable that a node must flood its
location to other nodes periodically. Therefore, efficiency of a location update and stor-
age burden on each node may be too heavy. To reduce the cost of a location update, most
of the schemes send an update message to only a subset of nodes. At another extreme, a
single location server can be assigned to each node [2]. These approaches, compared to
flooding-based, are sometimes referred to as rendezvous-based protocol, since location
servers serve as rendezvous point for updates and lookups. Rendezvous-based approach
can be further divided into hash-based or quorum-based [2,3]. In this paper, we divide

A Secure Location Service for Ad Hoc Position-Based Routing 123

rendezvous-based approach into static-based and dynamic-based depending on whether
the rendezvous point is fixed or not.

Location services that use a HR (Home Region) [5,6] are typical examples of static-
based approach. In these approaches, a universal hash function maps each node’s iden-
tifier to a HR and nodes residing in that region serve as location servers of that node.
When a node in a region receives an update request, it shares this information with other
nodes in the region through local flooding. A node that wants to acquire the location
information of a node sends a query to the HR of that node.

XYLS (column-row quorum-based Location Service) protocol [7,8] is a typical ex-
ample of dynamic-based approach. In this protocol, a node reports its position to the
nodes currently residing in the north-south direction of its current position. A node re-
quests other nodes’ location by sending a request message in the east-west direction.
Therefore, there is always an intersection between an update message and a request
message which guarantees that lookups will always be satisfied by some node.

2.2 Security of Ad Hoc Routing

Since participating nodes act as routers in ad hoc network, there are many security
threats such as black hole, replay, worm hole, blackmail, and routing table poison-
ing [9]. However, current proposals to defend these attacks use unrealistic assumptions.
For example, some assume that each pair of nodes shares a common secret with each
other when nodes can freely join and leave the network [10,11]. Others assume that all
nodes have a certificate issued by a common CA (Certification Authority) when it is
difficult to predetermine which kind of nodes will participate in the network [12,13].
Therefore, we suggest a protocol that uses only self-signed certificates. In our scheme,
nodes pre-register their public keys in other nodes and use an assumption that vast ma-
jority of nodes are honest.

2.3 Security of the Location Service

Positioning-based routing brings about new threats that do not exist in ad hoc networks
based on other routing methods. The most obvious attacks on location service are as
follows.

– False location update attack: An attacker may try to update the location of another
node causing the server to maintain false location.

– False location response attack: An attacker may try to alter the response from a
server causing a node to receive wrong location of another node.

In order to defend against these attacks, authentication of the sender and authentica-
tion of update and response messages must be provided. However, since nodes in ad hoc
network cannot be regarded as trusted entities, authenticating the sender of a message is
not sufficient to provide a secure location service. To this end, we use self-signed loca-
tions. More precisely, nodes sign their current location using their own private key and
these signatures are maintained in location servers. Location servers also use these sig-
natures to respond to location requests. Therefore, nodes receiving a location response
do not have to trust the location servers.

124 J. Lim, S. Kim, and H. Oh

Our idea requires some sort of PKI (Public Key Infrastructure). However, as stated
earlier, using existing PKI is not a feasible solution due to the fact that there is no prior
knowledge of the participants involved. Furthermore, true ad hoc networks may not
have any access points. In other words, participating nodes may not have any certifi-
cates or even if nodes possess certificates it may not be possible to verify other parties’
certificates while participating in the ad hoc network.

3 Proposed Protocol

3.1 Overview

Our proposal is not affected by the location service mechanism used by the network.
In other words, our scheme can also operate in ad hoc networks that use static-based
location service. However, in this paper, we will explain our protocol using the XYLS
scheme proposed by Stojmenovic and Pena [7]. This scheme is based on the fact that a
vertical and a horizontal line in a square always intersect with each other. In this scheme,
as shown in Fig 1, a node updates by broadcasting its new position to the north and
south of the current location and requests locations of other nodes by broadcasting the
message to the east and west. As a result, there is always an intersecting point between
location update and request messages. This enables nodes to receive the latest location
information of other nodes. As with most of position-based routing protocols, a node
updates when it moves a certain distance from the previous position or periodically.
However, in our scheme, a node must send an update message in both cases. This is
required since location servers remove old information from its table as time elapses.

To provide a secure location service, a node generates a public key pair and registers
its public key in other nodes when it joins the network. If the majority of the nodes are
honest, then this process will be sufficient to provide a safe public key environment. A
node updates its position by sending its location digitally signed and a node receives
this digitally signed location when requesting other node’s location. If a node cannot
obtain other node’s private key, it will be infeasible for nodes to alter or generate a valid
update or response message. The security of this mechanism will be discussed in more
detail in section 4.1.

Fig. 1. Overview of Our Proposed Location Service

A Secure Location Service for Ad Hoc Position-Based Routing 125

3.2 Assumption and Notation

We assume the followings about the ad hoc network environment and the nodes partic-
ipating in our protocol.

– Nodes are assumed to be located uniformly in the given network. We also assume
that they move at arbitrary speed and direction.

– All nodes are equipped with the same transmission radius and calculation capacity.
That is, links between nodes are symmetric.

– Participating nodes can obtain their own geographical location through GPS and
can accurately synchronize time through GPS.

– Participating nodes know in advance the protocols and algorithms used in the net-
work to communicate with each other.

– Participating nodes know the unique ID of the respective node that they want to
communicate with.

– Participating nodes can generate a public key pair by themselves and can generate
and verify digital signatures.

Throughout this paper, we will use the notations given in Table 1.

Table 1. Notation

A the identifier of node A.
APK, APR the public and private key of node A.
SigA(M) A’s signature on message M using APR.
CertA the self-signed certificate of A’s public key.
TAI the timestamp representing the time APR was first generated.
TAC the timestamp representing the current time generated by A.
PosA A’s geographical location (coordinate) obtained from GPS.
LocA the self-signed geographical location of node A.

LocA = SigA(A||PosA||TAI ||TAC)

3.3 Registration and Initialization

We use self-signed locations to provide a secure location service. To use our idea, we
require a public key system that can be used in true ad hoc networks. As stated earlier,
using an existing PKI in ad hoc network may not be plausible. Therefore, we propose
the following public announcement method instead of traditional PKI. However, if there
is a more suitable way to provide a PKI for ad hoc network exists, such mechanism can
be used instead.

A node who wants to join the network follows the following steps to announce and
register its public key in other nodes.

– Step 1. A node A generates a public key pair (APK , APR). It then creates a simple
self-signed certificate of APK as follows:

CertA = SigA(A||APK ||TAI).

126 J. Lim, S. Kim, and H. Oh

– Step 2. The node A creates and vertically broadcast the following public key reg-
istration message (PK init):

PK init = [Type, Seq, witdth, CertA, LocA],

where Type refers to the type of the message such as such as ‘public key registra-
tion’, ‘location update’, and ‘location request’, Seq indicates a sequence number
used to prevent loops and duplicate messages, and width is a system parameter de-
noting the transmission width in hop distances. As one can see, this message also
includes the initial location update.

In ad hoc network, a broadcasted message is received by all the nodes within one
hop distance of the sender and one of the receiver will forward the message to the next
hop. The width of a message is sometimes referred to as the thickness of reporting. For
example, if the width is 1, a node located one hop east and a node located one hop west
also forward the message vertically.

We do not flood the PK init message to reduce the cost of registration and storage
requirement. Instead, a node broadcasts its PK init message vertically. When a mes-
sage is broadcasted vertically, there are several ways to process the message. We use the
following method 1 for normal location updates and method 2 for PK init messages.

– Method 1. A node receiving the message unconditionally stores the certificate. If
there are total n nodes and they are uniformly distributed, about 2r/l × n nodes
will store the certificate, where r is the transmission range of a node and l is the
width of the terrain of the network assuming that the terrain is a square.

– Method 2. A node receiving the message determines the geographic location of
the original source of the message and stores the certificate if the location is within
certain boundary. If the boundary is divided into s disjoint columns, then n/s nodes
will store the certificate.

When a node receives a message, depending on the policy used, the node may be re-
sponsible for determining the validity of the message. Obviously, due to the efficiency
consideration, all nodes receiving a message do not have to verify it. Most of the mes-
sages in our protocol include a digital signature such as self-signed locations. To verify
these signatures, nodes use self-signed certificates maintained in their storages. If a
message is invalid, the node broadcasts an error alarm message in the reverse direction.
However, nodes may not be able to verify a message because it does not have the re-
quired certificate. Since nodes moves around the network, the large number of nodes
that receives this message will have the required certificate. However, when a node re-
ceives an error alarm message or when it is the target node it must always verify the
received message. In this case, if a node does not have the necessary certificate, it re-
quests the certificate from other nodes. If node B needs node A’s certificate, the node
B broadcasts the the following message horizontally:

PK request = [Type, Seq, A, LocB].

If a node has the requested certificate, it sends the following message to B:

PK response = [Type, Seq, CertA].

A Secure Location Service for Ad Hoc Position-Based Routing 127

3.4 Location Update

When a node moves a certain distance from the previous location or if a certain time
has elapsed from the last update, the node broadcasts the following message vertically:

Loc update = [Type, Seq, width, LocA].

Unlike PK init messages, method 2 is always used. In other words, all nodes receiving
this message will update the given location. If the width value is large, more nodes
will preserve the location information which results in more nodes that can respond to
location request messages. On the other hand, the cost of location update increases as
the width value increases.

A node receiving an update message stores the message in its location table. An entry
in a location table is maintained as follows:

[A, CertA, LocA, ΓA],

where ΓA denotes reliability of node A. When a node’s reliability level falls below
a certain level, the node is excluded from the network. The reliability threshold and
adjustment of a node’s reliability will be determined by the policy established prior to
network deployment. All nodes receiving the location update message do not have to
verify the validity of the message. We can use policies such as the followings.

– Policy 1. A message is verified every h hops.
– Policy 2. Every node randomly determines by itself whether it will verify the mes-

sage or not.
– Policy 3. A node verifies a message only if it has the required certificate.

3.5 Location Request and Response

A node B broadcasts the following message horizontally to request the location of
node A:

Loc request = [Type, Seq, A, LocB].

When a node receives this message, it first looks for node A’s location information
in its table. If the node has the requested information, it unicasts a location response
message. A location response message from C in response to node B’s query about
node A’s location is formed as follows:

Loc response = [Type, Seq, LocB, LocA, LocC].

3.6 Error Alarm

When a node A receives a message, depending on the policy, it verifies the signature
included in the message. If the message is invalid, it broadcasts the following message
in the reverse direction:

Err alarm = [msg, SigA(msg)],

where msg = (Type, Seq, err type). Nodes receiving this message must verify the
validness of this message and perform necessary actions such as removing the previous
location update and changing the reliability of a node.

128 J. Lim, S. Kim, and H. Oh

4 Analysis

4.1 Security Analysis

Analysis of Public Key Registration. Our scheme uses a public key system that uses
only self-signed certificates to provide secure location service. Obviously, in a normal
environment, this kind of public key system cannot provide a safe environment, since
it is difficult to prevent false registrations. However, as stated earlier, using an existing
PKI in an ad hoc environment may not be a plausible solution. Therefore, it is inevitable
that systems such as ours must be used in such environment. In our scheme, nodes
register their self-signed certificates when they join the network. Since nodes cannot
determine whether the received certificate is valid or not, they accept the registration
unconditionally. In this case, we have to consider the outcome of the following attacks.
In this discussion, we assume that the current request is a legitimate one.

– Attack 1. Someone else has already register a public key using the same ID as the
current one.

– Attack 2. Someone else may later try to register a public key using the same ID as
the current one.

– Attack 3. Someone may simultaneously send a registration message using the same
ID as the current one in a different location.

– Attack 4. Someone swaps the public key in the current message with another one
and forwards the altered message.

We assume that it is difficult for nodes to know in advance the IDs of participants that
will join the network. If this assumption holds, then attack of type 1 and type 3 cannot
occur. In our scheme, nodes reject duplicate registrations using the timestamp included
in the certificate. As a result, nodes that have already accepted a registration for that ID
in the past will reject this attack. However, there may be nodes that are receiving such
registration for the first time. In this case, these nodes will accept this fraud registra-
tion. However, due to our grouping policy, there will be nodes in the current column
who have accepted the legitimate registration in the past. These nodes will send an er-
ror alarm message which will cause nodes to reject the fraud registration. Our scheme
also assume that each node monitors neighboring nodes’ behavior by using techniques
suggest in [14]. Therefore, attack of type 4 can also be detected with high probability.

Security against Attack Threat. If the PKI used in our protocol is secure, our new
location service is robust against various attacks.

– False location update attack/False response attack: In our protocol, we use self-
signed locations. Therefore, without acquiring the private key of a certain node,
one cannot generate a false but valid self-signed location. As a result, these kinds
of attacks cannot succeed.

– Replay: In our protocol, old replayed messages will be discarded using the times-
tamp included in that message.

A Secure Location Service for Ad Hoc Position-Based Routing 129

– Blackmail attack: This kind of attack is related to false error alarm messages. In
our protocol, nodes receiving an error alarm message will verify both the current
message and the previous message that is reported to be invalid. Therefore, assum-
ing that the PKI used in our protocol is secure, nodes can detect a false error alarm
message.

– Blackhole/Wormhole attack: These kinds of attacks are not applicable to position-
based routing protocols.

4.2 Efficiency Analysis

In our scheme, additional measures are used to provide a secure location service. Com-
pared to the basic XYLS scheme, our scheme requires the following additional costs:

– public key registration cost,
– signature generation cost needed when constructing a self-signed location,
– signature verification cost, and
– public key query costs for signature verification.

The costs for signature creation and verification can be regarded as basic costs for
secure communication when using a public key system. In other words, these costs
are inevitable. Therefore, in this paper, we analyze the number of additional messages
exchanged instead of analyzing the number of public key operations performed by a
node. Compared to the basic XYLS scheme, additional messages used in our scheme are
related to public key queries and error alarm messages. However, public key registration
messages should not be regarded as additional messages. This is because nodes also
report their locations during this registration. That is, public key registration is a special
case of location update message. However, there is an obvious increase in the size of
messages we use. If we assume majority of nodes are honest, the frequency of error
alarm messages will be low. Therefore, in this analysis, we will focus on public key
queries only.

In our scheme, a node maintains only a subset of self-signed certificates of other
nodes. Therefore, when a message arrives, nodes may not be able to verify the validity
of the received message. A node can always use a public key query to obtain the required
certificate to verify the message. If a node maintains x% of entire nodes’ certificate, then
this node will request on the average (1 − x)% of messages it must verify. However,
if nodes cache previous obtain certificates and they tend to only communicate with a
subset of nodes, then this percentage will be lower than (1 − x)%. Moreover, even if a
public key query is required, this query will only require a single hop once the nodes
are uniformly distributed from their initial locations. Therefore, the cost of public key
queries will not effect the network performance.

We will show that this argument holds using a hypothetical ad hoc network of 200
nodes. The terrain of this network is assumed to be a square of 1km2 and the communi-
cation radius of a node is assumed to be 200m. If a PK init message is sent vertically
using the width = 0 and method 1 is used, about 80(= 200nodes×400m/1km) nodes
will store the certificate. This is because approximately nodes residing in a column of
400m will receive this message. Let’s assume the policy 3 given in section 3.4 is used
and a certain amount of time has elapsed since the network was initially formed. This

130 J. Lim, S. Kim, and H. Oh

means that nodes that maintain the same certificate are uniformly distributed throughout
the network. In this case, the number of neighbors of a node is as follows:

The number of neighbor nodes = d × r2 × π = (200/km2) × (0.2km)2 × π ≈ 25,

where d is the node density of the network. Since 40% of nodes maintains the same
certificate, the same percentage of neighbors, which is about 10(25 × 0.4), will have
the required certificate. Even if a node started at the edge of the terrain, about 40 nodes
will have that node’s certificate. In this case, 20% of the neighbors, which is about 5,
will have the required certificate. If we assume that 50% of the nodes are honest, some
node will always detect and report invalid messages. If method 2 is used and 6 segments
are used, about 33(= 200/6) nodes will store the certificate. In this case, 17% of the
neighbors, which is about 4, will have the required certificate.

Fig. 2. The Number of Neighbor Nodes of Participating Nodes at Time t = 100

We ran a simulation to verify our above analysis. In this simulation, we assumed
the same environment as used in above analysis. Moreover, we assumed that all 200
nodes participate from the start and we set the average movement speed of each node at
2.5m/sec and the maximum movement speed at 5m/sec. We ran the simulation for 180
seconds. We used method 2 with 6 segments which resulted in six distinct group and
the size of each group was A = 35, B = 30, C = 45, D = 29, E = 30, and F = 31.
Fig 2, shows the number of neighbor nodes of each nodes at time t = 100sec. The
number of neighbors of a node ranged from 4 to 34 and the average was 22. We also
observed the number of neighbors of a certain node numbered 0 which is given in Fig 3.
We also observed the changes in neighbors of that node. This is also illustrated in Fig 3.
As can be seen in the figure, during the simulation, except for group C at time 100sec
to 120sec, there always exists a member from each group as the neighbor of node 0. If
we think of the hops a message travels, it is reasonable to argue that there will always
be an honest node that receives the message who has the required certificate.

A Secure Location Service for Ad Hoc Position-Based Routing 131

Fig. 3. Change of the Average Number of Neighbor Nodes and Change of Their Composition

5 Conclusion

In this paper, we proposed a new secure location service for ad hoc position-based
routing. In our scheme, a node updates its location by sending its location digitally
signed which we call a self-signed location. The use of this mechanism allows nodes
to authenticate locations of others without relying on any trust on location servers. Our
mechanism can be used in any position-based routing. However, the security of our
mechanism depends on the PKI used in ad hoc network. Although, we have introduce
an idea of using a public key announcement method, the security of our protocol can
be enhanced further if a more efficient and secure way of deploying a PKI in ad hoc
network can be devised.

References

1. Royer, E.M., Toh, C.: A Review of Current Routing Protocols for Ad hoc Mobile Wireless
Networks. IEEE Personal Communications 2(6), 46–55 (1999)

2. Das, S.M., Pucha, H., Hu, Y.C.: Performance Comparison of Scalable Location Services for
Geographic Ad hoc Routing. In: Proc. of the IEEE INFOCOM 2005, vol. 2, pp. 1228–1239.
IEEE, Los Alamitos (2005)

3. Friedman, R., Kliot, G.: Location Services in Wireless Ad hoc and Hybrid Networks: A
Survey. Tech. Rep. CS-2006-10. Haifa Univ. (2006)

4. Camp, T., Boleng, J., Wilcox, L.: Location Information Services in Mobile Ad hoc Networks.
In: Proc. of the IEEE Int. Conf. on Communications, vol. 5, pp. 3318–3324. IEEE, Los
Alamitos (2005)

5. Woo, S.C., Singh, S.: Scalable Routing in Ad hoc Networks. Wireless Networks 7(5), 513–
529 (2001)

6. Cheng, C.T., Lemberg, H.L., Philip, S.J., van den Berg, E., Zhang, T.: SLALoM: A Scalable
Location Management Scheme for Large Mobile Ad-hoc Networks. In: Proc. of the IEEE
Wireless Communications and Networking Conf., vol. 2, pp. 574–578. IEEE, Los Alamitos
(2002)

132 J. Lim, S. Kim, and H. Oh

7. Stojmenović, I., Peña, P.: A Scalable Quorum based Location Update Scheme for Routing in
Ad hoc Wireless Networks. Tech. Rep. TR-99-09. Ottawa Univ. (1999)

8. Melamed, R., Keidar, I., Barel, Y.: Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing
Protocol. In: Proc. of the 24th IEEE Symp. on Reliable Distributed Systems, pp. 39–49.
IEEE, Los Alamitos (2005)

9. Argyroudis, P.G., Mahony, D.O.: Secure Routing for Mobile Ad hoc Networks. In: IEEE
Communications Surveys & Tutorials, vol. 73, pp. 2–27. IEEE, Los Alamitos (2005)

10. Hu, Y.C., Johnson, D.B., Perrig, A.: SEAD: Secure Efficient Distance Vector Routing for
Mobile Wireless Ad hoc Networks. In: Proc. of the IEEE Workshop on Mobile Computing
Systems and Applications, pp. 3–13. IEEE, Los Alamitos (2002)

11. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On-Demand Routing Protocol for
Ad hoc Networks. In: Proc. of the 8th ACM Int. Conf. on MobiCom, pp. 12–23. ACM, New
York (2002)

12. Zapata, M.G.: Secure Ad hoc On-demand Distance Vector routing. In: ACM Mobile Com-
puting and Communications Review, vol. 6(3), pp. 106–107. ACM, New York (2002)

13. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A Secure Routing
Protocol for Ad hoc Networks. In: Proc. of the 10th IEEE Int. Conf. on Network Protocols,
pp. 78–87. IEEE, Los Alamitos (2002)

14. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad Hoc
Networks. In: Proc. of the 6th ACM Int. Conf. on Mobile Computing and Networking, pp.
255–265. ACM, New York (2000)

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 133–145, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Intelligent Network-Warning Model
with Strong Survivability

Bing Yang, Huaping Hu, Xiangwen Duan, and Shiyao Jin

School of Computer Science, National University of Defense Technology,
Changsha Hunan, 410073, P.R. China

ybnudt@gmail.com

Abstract. Over the past decades more and more network security devices, such as
IDS, Firewall and scanner, are distributed in the network. So superfluous alerts
are generated, and do not have unified format. How to organize and utilize those
alerts to enhance network security becomes a hot topic of research. Network-
warning system, which can correlate alerts and predict future attacks, appears as
one promising solution for the problem. In this paper, an intelligent strong-
survivability network-warning model is introduced, which consists of a lot of in-
telligent agents. And a prototype is implemented based on the model. We propose
a self-adaptive data-processing algorithm for classifying and reducing alerts
automatically, and design a strong-survivability structure. The intelligence of self-
adaptive algorithm depends on machine learning. In the prototype we adopt three
methods (C5.0, Neural Net and CART) to construct the self-adaptive algorithm,
and choose the best method fitting the algorithm, which is CART. The prototype
can not only reduce and classify the original alert data from different network se-
curity devices, but also correlate alerts and generate intrusion scenario graphs. The
equality of all agents makes the model strong-survivable. Furthermore, the model
can predict potential attacks based on scenario graphs and track the attack
sources1.

Keywords: Strong Survivability, Intelligence, Network-Warning, Equality.

1 Introduction

Over the past decades more and more network security devices, such as IDS, Firewall
and scanner, are distributed in the network. So superfluous alerts are generated, and
do not have unified format. How to organize and utilize those alerts to enhance net-
work security becomes a hot topic of research. Network-warning system, which can
correlate alerts and predict future attacks, appears as one promising solution for the
problem. It can not only deal with superfluous alerts, but also can derive alert infor-
mation missed and predict potential attacks. With the network-warning system, net-
work security managers may prevent attacks as soon as possible.

1 This work was Supported by the National Natural Science Foundation of China under Grant

No. 60573136.

134 B. Yang et al.

Recently, some network-warning models [1, 2, 3, 4] have been presented, but the
structure of these models is relatively simple. These models’ shortages are:

1. Weak anti-destroy capability (weak survivability). The hierarchical structure of
most traditional models has a control center in each level. Once the center is de-
stroyed, the domain which is controlled by the center will be uncontrollable, so the
alert data and attack can not be collected any more, the most important is that the
performance of the model will fall off greatly.

2. Little intelligence. The bottom components of traditional models are not intelli-
gent. They can only do some simple things, like unifying alerts format, uploading
alerts and receiving commands from top components. They can not reduce or fuse
superfluous alerts, so the burdens of the top components will be increased and a
great deal network bandwidth is occupied. If the network scale becomes large or
the network traffic becomes huge, the performance of the traditional models will
fall off greatly.

With above mentioned in mind, we propose a new network-warning model, which
named an Intelligent Network-Warning Model with Strong-Survivability, namely
INWMSS. The model can process alerts and predict potential attacks. The characteris-
tics of the INWMSS include intelligence and strong survivability (which means that
the system based on INWMSS is highly survivable when environment changes or
some parts of the system go wrong).

This paper is organized as following. The second section describes the architecture
of INWMSS and the procedure of data-processing. The third section discusses how to
implement the main functions and algorithms in the model. In the fourth section, we
test the prototype base on INWMSS, and discuss the test result. Finally, we conclude
the paper with the future work.

2 The Architecture and Data-Processing Procedure of INWMSS

2.1 The Architecture of INWMSS

The total functions of INWMSS include:

1. To predict potential attacks based on scenario graphs and alert data.
2. To generate attack Scenario graphs and track attack sources.

Figure 1 presents the architecture of INWMSS. The INWMSS includes several
domains, and it is composed of three layers, such as detecting layer, agent layer and
domain agent layer. The detecting layer, which is showed in domain 1 in figure 1, is
responsible for alert data collection and provides alert data to other layers to process.
For the case of space, we only focus on the processing of alert data, so we mainly
focus on the agent layer and the domain agent layer and just give a brief introduction
to detecting layer.

The detecting layer is composed of various security devices, like IDS, Firewall,
scanner, and so on. They acquire and provide alert data to the intelligent agents peri-
odically. There are a lot of devices in each domain. These devices communicate with
at least one agent in the same domain.

 An Intelligent Network-Warning Model with Strong Survivability 135

Fig. 1. Architecture of INWMSS

The agent layer includes several intelligent agents, which are distributed into sev-
eral domains. All agents in the same domain can communicate with each other in the
same domain and monitor each other, so as to know other agents’ status, like whether
an agent is alive or dead. All agents in the same domain are equal, which make the
model more survivable. Once an agent is wrong, all other agents can substitute its
work. Especially when the domain agent is wrong, a new domain agent will be chosen
from other normal agents automatically. So the domain still can communicate with
other domain smoothly.

The domain agent layer includes the agents picked up from all domains, one agent
for each domain. Those agents picked up are the domain agent. The domain agents
communicate with each other, and can exchange scenario graphs between each other.
Thus, all domain agents can share alert data, so as to derive alerts missed and increase
the accuracy of predicting.

The model has a total warning center which is the top layer of the hierarchy. The
warning center is only an interface between security managers and the model, its task
includes three aspects. First, it synthesizes scenario graphs provided by domain agents
and network topology, and provides it to network security managers to help them
make decision as quickly as they could; second, the center can receive predicting
information from domain agents to help managers to take measures to prevent possi-
ble attacks; third, an important task of the center is to track attack sources, so as to cut
off attacks as soon as possible. It can distribute some orders to the domain agents to
track or prevent the attack sources based on the synthesized scenario graphs.

“Topology Discovery” can operate with INWMSS and provide network topology
to INWMSS, so the network managers can get a clear view of the network state.

Figure 2 illustrates the structure of an intelligent agent. An intelligent agent mainly
includes three modules, namely inside-domain communication module, outside-
domain communication module and alert data processing module. The inside-domain
module is responsible for communicating with other agents in the same domain. The
outside-domain module is used to communicate with other agents in different do-
mains, but only when the agent becomes a domain agent, the outside-domain module

136 B. Yang et al.

Fig. 2. Structure of an Intelligent Agent

will be triggered. The data processing module is the core of an agent, which can intel-
ligently reduce and correlate the alert data, generate attack scenario graphs, or predict
possible attacks. Heart-beat monitoring Process can monitor the health of the domain
agent. If the domain agent is wrong, the process will trigger the choice about a new
domain agent. This can make INWMSS strongly survivable.

A normal agent can only generate attack scenarios and save them, but when a nor-
mal agent in a domain becomes a domain agent, it can not only generate attack sce-
narios and save scenarios into scenario base, but also predict potential attacks. In the
following section we will illustrate the implementation of each module in a intelligent
agent.

2.2 The Data-Processing Procedure of INWMSS

Because of the comparability of data-processing procedure in each domain, we only
illustrate the procedure in a domain. Detailed procedure is:

1) Security devices monitor the network and the hosts. as soon as discovering Intru-
sion action, they will provide alerts to intelligent agents.

2) After intelligent agents receive alerts from security devices, they first transform
alerts into unified format, and save them into memory cache for alert dada.

3) Agent may utilize self-adaptive data-processing algorithm to reduce and delete
false alerts, repeated alerts and unrelated information which are hold in memory

 An Intelligent Network-Warning Model with Strong Survivability 137

cache. The aim is to make a single attack corresponding to a real alert. Next alert
correlation module deals with unified-format alerts.

4) Non domain agents (normal agents) send the results of correlation to a domain
agent, the domain agent synthesizes all results from the agents in the same domain
and generates intrusion scenario graphs. Finally, the domain agent returns scenario
graphs to each normal agent in the same domain and save them to scenario base.

5) There are several concurrent processes in this step. First, a domain agent contrasts
correlation results synthesized with scenario graphs in scenario base to estimate
whether attacks are occurring or not. If attacks occurring, the domain agent may
predict the next action of the attacker and uploads the results to the total warning
center; second, the domain agent receives commands and data from the total warn-
ing center, include intrusion scenario graphs and information about confirmation
of attack source, then executes corresponding operations which is to distribute
messages to other agents in the same domain to prevent attacks and distribute sce-
nario graphs to other agents. If the total warning center is wrong, the domain agent
exchanges intrusion scenario graphs with other domain agents in the same layer
and save them.

6) Once the total warning center receives the predicting results and intrusion scenario
graphs from domain agents, by analyzing and estimating, it makes final warning
reports. At the same time, it tracks attack sources and sends the result to lower-
layer domain agents.

3 The Analysis and Implementation of Main Functions and
Algorithms

Based on INWMSS, we implement a prototype. This section analyzes and implements
the main functions and algorithms in the prototype.

3.1 Implementation of Strong Survivability for Prototype

Because of the equality among all agents in the same domain, the structure of
INWNSS becomes reliable and highly survivable.

In the prototype, each agent in the same domain has the same functions and states.
The domain agent is picked up by random from all agents in the same domain. The
domain agent is denoted as symbol “D”, other normal agents are all denoted as sym-
bol “N”. Each agent runs a heart-beat monitoring program, which can monitor the
domain agent in the same domain. If the domain agent goes wrong, the normal agents
in the same domain immediately pick up another agent as the new domain agent by
random. The new domain agent will substitute the wrong domain agent to execute
corresponding operation.

Figure 3 describes the mechanism of the heart-beat monitoring program. By receiv-
ing and sending UDP messages between the domain agent and other normal agents,
we can monitor whether the domain agent is good or not. If the normal agents can not
receive messages from the domain agent within deadtime, the domain agent is consid-
ered dead, and the action of picking up a new domain agent will be triggered.

138 B. Yang et al.

Fig. 3. Heart-beat Monitoring Program

3.2 Implementation of Intelligent Data-Processing Function

The key component of network-warning model is the intelligent agent. And the key of
the intelligent agent is the two modules on processing alert data, which are alert pre-
processing module and alert correlation module. It is said that a quality input data
should in theory help in producing good results [5]. Thus, data preprocessing is an
important aspect for the practicability of the model. Therefore, we first consider how
to adequately get alert data and preprocess data from network security devices. The
data preprocessed are input of alert correlation module.

1. Alert preprocessing (self-adaptive data-processing algorithm)
Alert preprocessing consists of two steps. The first step is to unify the format of alert
data. We use IDMEF XML [6] which is fit for IDS (Intrusion Detection System) as a
unified format of output data, because most of alert data come from IDS, and some
are from Firewalls or scanners in the experiment. The emphasis of alert preprocessing
lies in the second step. It is to reduce and classify false alerts, repeated alerts and
some unrelated information [7, 8, 9, 10, 11], so as to provide the alert correlation
module with clear and high-quality alert data. We propose a self-adaptive data-
processing algorithm on data processing which is fit for INWMSS. The alert data with
IDMEF XML format are input of the algorithm.

Fig. 4. Structure of the Self-adaptive Data-preprocessing Algorithm

default configuration
Listening port 555

Agent Agent

 An Intelligent Network-Warning Model with Strong Survivability 139

Fig. 5. The transition of three different states of self-adaptive algorithm

The structure of the self-adaptive algorithm is described in figure 4. It consists of
five parts, including alert-filtering module, alert-verification module, machine-
learning module (or classifier) and alert data-base. Alert-filtering module filters those
alerts which are denoted as false alerts and uploads suspicious alerts; alert-verification
module verifies the authenticity of input alerts and marks those alerts in memory
cache; machine-learning module learns from denoted alerts in alert data-base and
constructs a classification model. The classification model automatically distinguishes
all alerts in memory cache and denoting them as suspicious alerts or false alerts; alert
data-base saves those denoted alerts.

Figure 5 describes three different states of the algorithm, including learning state,
validating state and working state. In learning state, classification model is being
built, alert-verification module and machine-learning module start up; in working
state, classification model begins to work, but alert-verification module and machine-
learning module stop working; in verifying state, classification model is working, and
alert-verification module starts up. Next we illustrate the implementation of the ma-
chine-learning module of the self-adaptive algorithm.

We adopt three methods to implement the machine-learning module. One is a su-
pervised-Learning multi-layer perceptron model which belongs to Neural Network
[12], the other is a learning method based on rule induction which is called C5.0 [13,
14], and the last one is Classification and Regression Tree (namely CART) [15]. The
CART classification does not require expert knowledge, automatically selects useful
spectral and ancillary data from data supplied by the analyst, and can be used with
continuous and categorical ancillary data.

We use two training data to test above-mentioned two methods. The training data
are DARPA1999 Datasets [16] and DARPA2000 DataSets [17]. The 1, 2 week data of
DARPA1999 Datasets are used to training, and the 4, 5 week data are used to testing.
And DARPA2000 DataSets are used to test the performance of the two methods when
environment is changed appreciably. All test datasets are entered into the database
management system by Snort. Snort is one of the most famous network intrusion
detection programs.

140 B. Yang et al.

In experiment, the attributes of the training datasets are equal to original attributes
of the Snort alert, such as ip_src (attack source), ip_dst (attack destination),
layer4_sport (source host port), ip_proto (protocol type), sig_name (attack name), and
so on. And the attack classification symbol, such as is_attack, is added to the test data,
is_attack=0 means the alert is a false alert and is_attack=1 means the alert is a real
alert. The training outputs is_attack and takes other attributes as input. The result of
the experiment is described in table 1, table 2 and table 3. Table 1 describes the accu-
racy of classification on test datasets. For example, 87.9% of all alerts (including false
and real alerts) are detected correctly based on C5.0 method. Table2 describes the
detailed results on false alerts and real alerts separately. We show it by (method,
DARPA). (0, 0) means that the actually false alerts is checked; (1, 0) means that the

Table 1. Accuracy of Classification on test datasets

 DARPA1999 Week4,5(%) DARPA2000(%)

C5.0 87.9 52.3

Neural Net 98.35 56.06

CART 96.23 54.65

Table 2. Classification on test datasets

DARPA1999 Week4,5 DARPA2000

0 1 0 1

0 20042 2748 1066 124

C5.0
1 15 29 900 56

0 22460 330 1188 2 Neural

 Net 1 29 15 941 15

0 21926 864 1136 54 CART

1 38 6 920 36

 An Intelligent Network-Warning Model with Strong Survivability 141

Table 3. Average Training Time and Detection Time

 TrainingTime

(hh:mm:ss)

DARPA1999

Week4,5(cpu Time)

DARPA2000

(cpu Time)

C5.0 0:00:40 1.56 0.17

Neural Net 1:06:46 1.40 0.15

CART 0:00:24 0.76 0.11

actually real alerts are regarded as false alerts; (0, 1)means that the actually false
alerts are regarded as suspicious alerts; (1, 1) means that the actually real alerts is
checked. Table3 describes training time and detection time based on three methods,
and detection time is shown by cpu time.

According to the experiment result, we can draw some conclusions.

1) The accuracy of classification of the two methods is high, but Neural Net is a little
better than CART, and C5.0 is third.

2) The time of model construction is different. Neural Net takes more time than C5.0
and CART, but the latter two is almost equal.

3) The time spent on verification is both in sec. level. But CART takes shortest than
the other two. So we think that CART is more real-time than C5.0.

In short, because we think that the real-timeness is the most important for a practica-
ble system, we mainly concern the real-timeness of a method besides accuracy. Al-
though Neural net seems to perform a little better in both hit and miss rate than
CART, CART can provides better support for the real-time requirement of INWMSS
than other two methods and CART and C5.0 both can generate more readable and
comprehensible rules. So we think that CART is more adaptive to INWMSS and we
choose CART to construct the classification model.

2. Alert data correlation and attack prediction
Based on the output of self-adaptive data-processing algorithm, we refer to the tradi-
tional alert correlation algorithm which is on the basis of prerequisites and conse-
quences of attacks [18]. We make a little improvement on the traditional algorithm.
We add probability matching method based on alert attributes to the tradional alert
correlation algorithm, and make it more suitable for those attacks which have the
same source/destination addresses and ports. In other words, the improved algorithm
not only correlates alert data, but also gets matching index based on probability
matching. Finally the algorithm can generate intrusion scenario graphs.

Based on intrusion scenario graphs, the INWMSS can predict and analyze the po-
tential attacks, so as to do active defense. The function of prediction is one of the
main functions of INWMSS. Figure 6 describes two examples of scenario graph,
which is extracted from the experiment.

142 B. Yang et al.

Fig. 6. Two Examples of Scenario Graph Extracted from the Experiment

4 Total Test Environment and Results for Prototype

Because of the limitation of conditions, total test of prototype and part of functions
test only can be executed in a relatively simple network environment. The test net-
work is described in figure 7. It consists of three routers, three Local Area Networks
(include two Ethernets and one loop network), a lot of network security devices (such
as IDS, Firewall, scanner) and several intelligent Agents. Three Local Area Networks
respectively represent three domains, each domain has one domain agent and several
normal agents.

Domain Agent

Domain Agent

Domain Agent

Agent

Agent

Agent
IDS

IDS

IDSRouter

Router

Router

Fig. 7. Structure of Test Network

Figure 8 describes a relatively simple interface of the total warning center in the
prototype. Now its function is simple and we will develop it further. The interface is
designed for the network security managers to detect the situations of network pro-
tected, analyze the situations about Intrusion, and adjust the dangerous level about the
network, so as managers can take actions to prevent attacks, predict attacks, and
distribute commands to track attacks.

The emphasis of total test is the applicability of the prototype. We mainly test
strong survivability of the prototype, alert data processing and generation of scenario
graphs.

 An Intelligent Network-Warning Model with Strong Survivability 143

Fig. 8. The Interface of the Total Warning Center of the Pprototype

1. Test of strong survivability
Based on the result of previous experiment, we set the “deadtime” as 20s [19].Test of
strong survivability consists of two steps.

 After a domain agent is destroyed artificially, we test whether the destroyed
domain agent can be substituted successfully by a new normal agent in the same
domain or not. This verifies whether the heart-beat monitoring program works or
not. If the new picked-up domain agent’s symbol becomes “D”, the heart-beat
program works. In addition, we test the communication between the new picked-
up domain agent and other two domain agents. If the new domain agent updates
its scenario graph base, we believe the new domain agent works.

 When we resume the destroyed domain agent, it becomes a normal agent. We
test the resumed agent whether communicating with other agents in the same
domain by detecting its symbol and its scenario graph base. If the symbol be-
comes “N” and its graph base is updated, the prototype is considered good.

2. Test of alert data processing and generation of scenario graphs
The test of data-processing and generation of scenario graphs is based on above-
mentioned DARPA2000 datasets and real attack sequences similar to figure 6. We
test whether intrusion scenario graphs can take on to the network security managers.
If we can get scenario graphs like figure 6, the test is successful.

Through the tests, we can see that the Destroyed domain agent became a normal
agent, its symbol is “N’, and it can update its scenario graph base; the new picked-up
domain agent change its symbol as “D”, and it can communicate with other two
domain agents and total warning center. The network security managers can get

144 B. Yang et al.

intrusion scenario graphs similar to figure 6. All situations show that the heart-beat
monitoring program is right and the prototype is good.

Finally, the result of test shows that the intelligent Network-Warning Model with
Strong-Survivability not only has a good theoretical basis, but also has good practica-
bility. The model can reduce and fuse alerts, generate good intrusion scenarios, and
has better warning capability based on intrusion scenario. The model can provide
network security managers with simple and comprehensible scenario graphs, which
can greatly decrease managers’ burden. Of course, because of the relatively simple
test environment, the prototype is not interfered greatly. So how to optimize the
model and its algorithms to fit complicated network environment will be challenging.

5 Conclusion

We propose an intelligent network-warning model with strong-survivability. The
model not only fits large-scale network, but also emphasize strong survivability and
intelligence, which make the model to process alerts intelligently, predict the potential
attack and increase the system survivability.

Although the model presented in this paper aimed at large-scale network, to be
used in practical large-scale network, there is a lot of work to be done:

1) Because the alert correlation algorithm based on prerequisites and consequences
of attacks depends on known attack types, and it can not discover the new un-
known attack types, we need develop an intelligent algorithm, which can learn
from the known attacks and scenario graphs to discover new attack types.

2) To develop an algorithm on tracking attack sources. The algorithm will make the
model to actively track and prevent attacks.

3) In order to increase practicality, we need further improve the real-timeness for the
model.

4) Because of the limitation of the heart-beat monitoring program in distance, we
need enhance the strong-survivability mechanism for the practical large-scale
networks.

5) To develop a multifunctional and more practicable interface of total warning cen-
ter for managers.

References

1. Hu, H., Zhang, Y.: The Study of Large Scale Networks Intrusion Detection and Warning
System. Journal of National University of Defence Technology 25(1), 21–25 (2003)

2. Sun, J., Zeng, H.: Network Security Testing and Alarming. Computer Engineering 27(7),
109–111 (2001)

3. Li, Z., Li, W.: Research on Early-warning and Quarantine System of Large-scale Network
Intrusion. Application Research of computers 21(12), 100–104 (2004)

4. Zhang, X., Qin, Z., Liu, J.: Research on the Network Security Architecture for Distributed
Early Warning. Computer Applications 24(5), 36–39 (2004)

5. Bakar, N.A., Belaton, B.: Towards Implementing Intrusion Alert Quality Framework. In:
DFMA 2005, pp. 198–205 (2005)

 An Intelligent Network-Warning Model with Strong Survivability 145

6. Curry, D., Debar, H.: Intrusion Detection Message Exchange Format Data Model and Ex-
tensible Markup Language (XML) Document Type Definition. draft-itetf-idwg-idmef-
xml-03.txt (February 2001)

7. Julisch, K.: Clustering Intrusion Detection Alarms to Support Root Cause Analysis. ACM
Transactions on Information and System Security 6(4) (2003)

8. Wang, J., Lee, I.: Measuring False-Positive by Automated Real-Time correlated Hacking
Behavior Analysis. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp.
512–535. Springer, Heidelberg (2001)

9. Law, K.H., Kwok, L.F.: IDS False Alarm Filtering Using KNN Classifier. In: Lim, C.H.,
Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 114–121. Springer, Heidelberg (2005)

10. Tadeusz, P.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224,
pp. 102–124. Springer, Heidelberg (2004)

11. Shin, M.S., Kim, E.H.: False Alarm Classification Model for Network-Based Intrusion
Detection System. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS,
vol. 3177, pp. 259–265. Springer, Heidelberg (2004)

12. Su, L., Hou, C., Dai, Z.: Alarm Correlation based on Neural Net. Journal of Beijing Insti-
tute of Technology(Natural Science Edition) 22(3), 297–299 (2002)

13. Ji, W., Zhou, A., Zhang, L.: Application of C5.0 Algorithm in Passing Ball Training of
RoboCup. Journal of Software 13(2), 245–249 (2002)

14. Zhang, J., Han, G., Zhang, W.: Application of C5.0 Algorithm in Passing Ball Training of
RoboCup. Compuer Simulation 23(4), 131–134 (2006)

15. Lewis, R.J.: An Introduction to Classification and Regression Tree (CART) Analysis. The
2000 Annual Meeting of the Society for Academic Emergency Medicine in San Francisco,
California (2000)

16. DARPA 2000 intrusion detection evaluation datasets. Lincoln Lab MIT (2000),
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html

17. DARPA Intrusion Detection Evaluation datasets, MIT Lincoln Laboratory,
http://www.ll.mit.edu/IST/ideval/2000/1999_data_index.html

18. Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for analyzing intrusion
alerts. ACM Trans. Inf. Syst. Secur 7(2), 274–318 (2004)

19. Yang, B., Hu, H.: Research on fine-Grained equal dynamic migration technique based
WAN. Compuer Engineer and Science 26(2), 4–7 (2004)

Running on Karma –

P2P Reputation and Currency Systems

Sherman S.M. Chow

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

Abstract. Peer-to-peer (P2P) systems allow users to share resources
with little centralized control. Malicious users can abuse the system by
contributing polluted resources. Moreover, selfish users may just connect
for their own benefits without donating any resources. The concepts of
reputation and currency give possible approaches to address these prob-
lems. However, to implement these ideas is non-trivial, due to the non-
existence of a single trusted party. Existing works circumvent this by
placing trust assumption on certain nodes of an overlay network. This
work presents a new reputation system and a new currency system. Our
designs are simple thanks to the full use of the trust assumption.

Keywords: Decentralized systems, peer-to-peer, reputation, currency,
micropayments, free riding, Byzantine agreement.

1 Introduction

In a peer-to-peer (P2P) network, every user is playing the roles of server and
client simultaneously, i.e. there is a minimum central control. The last decade
demonstrated many successful applications of the P2P computing model. The
most popular one may be P2P file sharing, such as BitTorrent [5], Gnutella [12],
etc. Thanks to the network’s flat structure, P2P systems scale very well with the
number of nodes. However, the lack of centralized control makes P2P systems
suffer from many security problems.

Since every user can play the role of the “server” and share their resources
(e.g. music files) to others, malicious users can abuse the system by contributing
polluted resources. On the other hand, P2P systems suffer from the “free rider”
problem, which means users only connect to the network for the resources they
want, but not contribute any resources. A traffic study has shown that 70% of
Gnutella network’s users (at the time of the study) are not donating any file at
all [1].

You will not ask for a file from someone who is notorious in polluting the
network. This is where a reputation system comes to play. Generally speaking, a
reputation system establishes trust among members of a community where each
member does not have prior knowledge of each other, by integrating feedback
from the peers to conjecture the trustworthiness of other peers.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 146–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Running on Karma – P2P Reputation and Currency Systems 147

To fight against free riders, a natural solution is to offer users some “tokens”
for their contributions, which enables them to retrieve their wanted resources at a
later stage. Old approaches realize this concept in the software level. For example,
KaZaA uses a measure of participation level [17], defined by upload/download
ratio and the integrity rating, to prioritize among peers during periods of high
demand. The participation level is stored locally. As one may expect, cracking
tools are available. What we need is some kind of currency or barter that is
transferable for exchanging resources, i.e. an electronic currency system over
P2P networks.

1.1 Our Contribution

Putting a reputation system or an electronic currency system over P2P net-
works is non-trivial, due to the non-existence of a trusted party. Existing works
circumvent this by placing a trust assumption on certain nodes of an overlay
network. However, these solutions are rather inefficient, in terms of bandwidth
or computational requirements.

Since we place trust on some nodes in the network anyway, why don’t we
fully utilize this trust assumption to avoid unnecessary operations? This work
tries to make full use of these trusted nodes, to propose two simple and efficient
systems.

1. Simple P2P Reputation System from Byzantine Agreement (SPRBA): Cur-
rent approaches either require cryptographic schemes that cannot be realized
in a P2P network (e.g. [9]), or require contacting with every online node to
get responses about one’s behavior history (e.g. [6]). The latter approach is
expensive in terms of storage capacity and bandwidth. Moreover, it is dif-
ficult to enforce security in a large-scale dynamic system. In the face of a
sybil attack that returns many negative comments, the security of the sys-
tem depends on whether most of the responding nodes are trustworthy. On
the other hand, SPRBA just places trust on a smaller set of nodes that are
determined by a cryptographic hash function.

2. Simplified Karma (Karma+): Off-line Karma [8] is a completely decentral-
ized currency system for dynamic P2P networks. Extensive use of digital
signatures is used to certify the transfer of electronic coins (e-coins), which
means that the size of a e-coin will eventually get huge1. To resolve this issue,
it is assumed that a set of nodes in the overlay network chosen by a crypto-
graphic hash function will reduce the coin size by re-issuing signatures. Since
the new signatures certify the current ownership of the coin, these re-issuing
nodes are assumed trustworthy. If such an assumption is made, why don’t
we just assume these nodes to take the role of a “bank”? This gives the
underlying idea of our proposed Karma+.

1 Even an aggregate signature scheme [3] is used; the messages being signed must be
stored, which makes the coin bulky.

148 S.S.M. Chow

2 System Model

2.1 Reputation System

Our system only cares about the retrieval, casting and maintenance of the votes.
Issues like how the reputation is modeled (e.g. [10]) and assessed (e.g. [11]), and
whether a bad vote is cast even the resource is good, are beyond the scope of
this work.

Our general mechanism is as follows. Before initiating the download, re-
questors can assess the reliability of the sources by polling peers (vote main-
tainers, or VM). After the transfer, the requestors now take the role of voters,
returning their opinions to the peers for later retrieval by others. We also discuss
how these votes are maintained in face of offline VMs.

Apart from the obvious constraint of no centralized control, our system should
satisfy the following properties.

1. Scalability. Transaction cost should be independent of the size of the network.
For example, our system would not flood the whole network.

2. Load balance. The overhead incurred by our system should be evenly dis-
tributed over the nodes, on average.

3. Robustness. Our system should be robust against denial-of-service attack.
For example, the adversary cannot manipulate the protocol messages to turn
the internal state distributively held by different nodes into an inconsistent
state.

2.2 Currency System

There are only three components in our currency system: minting, spending and
double-spending detection. Users first mint their own e-coins. In spending, the
ownership of a coin is transferred. When a coin is spent, the receiver should check
whether the coin has been double-spent. It is possible to come up with a proof
when some user double-spends his coin. In additional to the above properties for
a P2P reputation system, the objectives of our e-coin system are:

1. Efficient verification. It is efficient to verify the validity of the coin (e.g.
whether it has been double-spent). This also implies the e-coin size should
be small.

2. Oblivious transaction history. The transaction history related to the coin
should not be included in the coin.

Other issues, like coin stripping and the fair exchange of coins and resources,
are outside our scope. We note that double-spending prevention is generally not
possible for an offline currency system, without tamper-proof hardware.

2.3 Overlay Network

This work assumes the existence of an underlying overlay network that provides
primitives for both user look-up and message routing. In such a network, every

Running on Karma – P2P Reputation and Currency Systems 149

node is assigned a uniform random identifier u ∈ U from an identifier space,
and one can always efficiently and reliably compute the neighbor set ℵ(u), which
consists of all currently online nodes close to an identifier u. The exact definition
of “close” depends on the actual overlay network one is using, but it is one of the
essential and well-defined components of overlay network. Readers are suggested
to refer routing overlays like CAN [13], Chord [15], Pastry [14] and Tapestry
[16], as reviewed in [4].

We assume an ideal situation for the updating of routing information, where
the overlay network instantaneously detects any change in the network topol-
ogy. This depends on how well the underlying overlay network emulates this
ideal functionality by a discrete approximation from constantly fingering to see
whether a joined node has left. We also assume joining and leaving are atomic
operations.

Finally, we assume that the overlay network has a blacklist mechanism. When-
ever a fraud is detected, a user can somehow submit a proof of it to the overlay
network and a blacklist will then be safely distributed.

In the rest of the paper, we use a cryptographic hash function h : {0, 1}∗ → U
to map an arbitrary bit-string to an element in the identifier space U of the
overlay network. We use the notation of ℵ∗(y) = ℵ(h(y)) to denote the “neighbor
set” corresponding to the bit-string y.

2.4 Certificate Authority

In Karma+, we assume every user has his/her own public key and private key
pair (PK, SK) along with a certificate certifying the binding between the public
key and a node identifier. A certificate authority (CA) is only needed when a new
user joins the system, and no other communication with the CA is needed. We
require the CA to perform any task that substantiates the assumption required
in the unforgeability of the underlying signature scheme, e.g. the knowledge of
secret key assumption. No CA is required in SPRBA.

2.5 Threat Model

Our basic threat model assumes the network has a total of n users, and at most
t of which are under the adversary’s control.

For an overlay network, one can actually make a distinction between adding
a user to the network and compromising an existing user. Let c (0 ≤ c ≤ t) be
an integer denoting the number of users corrupted by the adversary after they
join the overlay network. An adversary who can compromise whoever he wishes
means c = t, while c = 0 means all he can do is injecting random users. We also
assume the adversary cannot make excessively many nodes to join the system.
In practice, this can be done by requiring a node to compute a time-intensive
operation (e.g. [7]) for each joining. Looking ahead, this is also the way an e-coin
is minted in Karma+.

150 S.S.M. Chow

3 Related Work

3.1 A Reputocracy System

A “reputocracy” system is presented in [9], which is a reputation system based
on electronic voting from homomorphic encryption and storage enforcement pro-
tocols. The votes are for the resource requesters to make comments which affect
the reputation of a resource contributor. The enforcement protocol is for show-
ing a file of a certain complexity has been transmitted. We discuss this work to
exemplify that some required cryptographic schemes cannot be easily deployed
in a P2P setting.

Reputation is maintained by the votes that one receives. These votes are stored
by the nodes responsible for tallying, which are called the tallying center. The
tallying center of a node is determined by some globally-known hash function,
i.e. different nodes will have different tallying centers, instead of a single global
one. After a file transfer is done, the tallying center uses the storage enforcement
protocol to get the cost of the communication $ > 0. Then, the requester will
cast an encrypted vote that is either +$ or −$, depending on whether he/she is
satisfied with the file obtained. A zero-knowledge proof of the vote is either +$
or −$ is prepared. The tallying center has no idea whether a vote is good.

Problems: Note that only a single node is assigned as the vote maintainer,
thus attack is relatively easy. Besides, it is not specified that who is responsible
for the decryption of the tally. A natural choice is the tallying center, but it
is meaningless to have the zero-knowledge proof in this case since he/she can
decrypt anyway. Moreover, to the best of our knowledge, e-voting systems require
the use of a bulletin board, even for those that are “self-tallying”. Such a bulletin
board is essentially a public-broadcast channel with memory, which is costly, if
not unavailable, in a P2P network.

3.2 P2PRep

P2PRep [6] is a reputation system enabled by a peer review process. Each node
keeps track of and shares with others the information about the reputation of
their peers. Reputation sharing is based on a distributed polling protocol. After
locating a list of servants who owns the wanted resources, the requester polls
his/her peers about the reputation of servants in this list. Peers wishing to re-
spond send back a reply, then the requestor selects a subset of them and contacts
them directly. Their replies are integrated to make a decision. Additional mecha-
nism can be added to poll for servant credibility, representing the trustworthiness
of a servant in providing correct votes.

Problems: The requesters just ask around about one’s reputation, and these
broadcast messages occupy the network bandwidth significantly. Moreover, one’s
reputation depends on whether the peers in the previous transaction remain
online. In the face of the free rider problem, this reliance is not desirable.

Regarding security, no mechanism is controlling who can respond. It is entirely
possible that a whole bunch of malicious nodes respond with negative comments.

Running on Karma – P2P Reputation and Currency Systems 151

The suggested solution in [6] is to have “suspects identification”, by computing
cluster of voters whose characteristics suggest that they may have been created
by a single malicious user. However, it depends on how good the clustering
algorithm distinguishes between “consistent votes for bad behavior from many
users” and “forged votes from a single malicious user”. Even such an algorithm
exists, it is implemented in the software level. Nothing prevents the adversary
from re-engineering the algorithm and tailor-making bad votes accordingly.

3.3 Off-Line Karma

Off-line Karma [8] is a decentralized electronic currency system. A coin is minted
by finding a collision of a hash function (of “small” output domain size) [2] with
hash input including the owner of the coin, a serial number and the current
time. At the very beginning, a user finds collisions and prepares a list of coins.
Specifically, the user needs to find a y such that H(U ||sn||ts) = H ′(y), where
H(·) and H ′(·) are two different hash functions, U is his node identifier, sn is a
serial number and ts is a time stamp.

Transfer of a coin (i.e. spending) is done by a chain of signing. Suppose y
is a coin corresponding to node A (i.e. H ′(y) = H(A||sn′||ts′) for some serial
number sn′ and time stamp ts′), A gives it to another node B by signing on
(y, A → B, zA) where zA is a random nonce. B spends this coin with UC by
signing on (y, B → C, zB). Everyone can verify that C is the current owner of
the coin since it is originally owned by A, A has certified the transfer A → B
and B has certified B → C.

As a result of a series of spending, the coin size will get huge eventually. To
slim it, re-minting is done. Re-minting party is the neighbor set of the coin ℵ(y)
(i.e. treating the coin as a user) of the overlay network. All of them sign on y
and the current time to certify the current ownership.

The timestamp associated with a coin also serves as an expiry time. Re-
minting must be done before expiration. Double-spending is detected in re-
minting. The nodes in the set ℵ∗(y) will check whether there exists two different
signatures signed by the same party. A random nonce is introduced to avoid the
uncertainty about who is the traitor when a user spends the same coin twice
with the same user.

Problems: Before re-minting, the coin size is large. One needs to do a series
of signature verifications to verify the current ownership of a coin. Yet, these
computations do not help double-spending detection at all. A shorter time frame
can make the re-minting happen more often, but keep in mind that one needs
to contact every node in ℵ∗(y) for re-minting. On one hand, the coin may expire
before every such node can be reached. On the other hand, it gives a higher
computational burden (to verify all signatures associated with the coin and issue
a new one) to these nodes.

Double-spending can only be detected at the stage of re-minting, but not when
the coin is spent. To make the double-spending detection “happens earlier”, the
suggested solution in [8] is to ask each user to spend a coin that is the nearest (in
the context of neighbor set) to the one whom he wants to initiate a transaction.

152 S.S.M. Chow

However, a malicious user who wants to double-spend a coin can do anything
deviated from the protocol. Only having good users following such a suggestion
is clearly not sufficient to make double-spending detection any earlier.

Finally, the transaction history is included in every coin, which violates the
requirement of oblivious transaction history and is undesirable.

4 SPRBA – Simple P2P Reputation System from
Byzantine Agreement

The main components of our proposed SPRBA are as follows.

4.1 Retrieval

Suppose A is the requestor and B is a candidate who owns some resources A
wants. A performs the following:

1. A computes ℵ∗(B) to get the VM groups maintaining B’s reputation,
2. A sends an enquiry to each node in ℵ∗(B) for B’s reputation.
3. A makes a decision according to the information received (e.g. taking the

majority).

Suppose a node C is being asked for B’s reputation, C first performs a (one-
time) verification to confirm his/her membership in the set ℵ∗(B). If C has no
record about B, he/she just returns so. From this point, C knows the list of VMs
for B, which will be used in the maintenance phase.

4.2 Casting

After the file transfer, A now wants to cast a vote about B. The voting infor-
mation will include his/her identity A, the current time ts and other auxiliary
information (e.g. the name of the file being transferred). What A needs to do is
just broadcasting his/her vote to ℵ∗(B). The consistency functionality we want
from the broadcast is ensured by a Byzantine agreement protocol among the
nodes in ℵ∗(B).

4.3 Maintenance

VMs may go offline. When they go online next time, they should catch up
with other VMs. The first retrieval request gives the list of the “partners” in
maintaining the reputation of someone. Synchronization is done by identifying
which vote is missing in one’s own record but exists in a threshold portion of
the partners.

4.4 Analysis

Our system is scalable in the sense that no flooding of the whole network is
needed to retrieve one’s reputation. Due to the uniformity of the hash function’s

Running on Karma – P2P Reputation and Currency Systems 153

output, the incurred computational burden and the storage load are uniformly
distributed across the network. Thus load balance is achieved.

There is a subtle difference between a resource requestor retrieving the reputa-
tion and VMs retrieving the reputation. For the former case, it just affects the one-
time decision of whether a transaction should be carried. On the other hand, VMs
do it for updating their own record to truly reflect the reputation of those nodes
they are responsible for, which affects all the future reputation requests. Consider
a malicious voter who sends different votes to different VMs, VMs who were offline
before have no idea which vote is the “real” one during synchronization. Eventu-
ally, nothing useful can be inferred from the votes maintained distributively across
the VMs. This is why Byzantine agreement is needed for each vote.

Byzantine agreement is a rather costly procedure, so we should keep the size of
the VM group ℵ∗(B) as small as possible. However, this parameter also governs
the probability for the adversary to succeed in biasing the reputation.

Suppose r denotes the number of nodes output by ℵ∗(B), f denotes the per-
centage of malicious nodes in this set of r nodes (0 ≤ f ≤ 1). Under the basic
threat model that the adversary can only inject random nodes to the network;
if 50% majority is the rule to make a decision, the probability for an adversary
to succeed, i.e. having more than a half of nodes under his control, is given by
Cr

r/2(f(1 − f))r/2. Depending on the actual scenario, says the security level we
want, we should tune r accordingly.

5 Karma+ – Simple Offline Electronic Currency System

Utilizing SPRBA, we can actually realize a simple electronic currency system.
Instead of having the node-group chosen by the function ℵ∗(·) to manage the
reputation of a node, we require the node-group to certify the current ownership
of a coin. However, different from the reputation system that every node can
cast a vote, there is only one node that can “change” the current ownership
of a coin – the coin owner. We thus require cryptographic primitives providing
authentication and non-repudiation to make it possible, i.e. digital signature
schemes.

If signatures are used, Byzantine agreement is not necessary in our case since
the recipient of the coin will actively check whether he/she is the new owner of
the coin, and signatures signing on different messages can be used as a proof of
misbehavior.

With these ideas in mind, our system turns out to be a simplified version
of Off-line karma. We assume all nodes in the P2P network get the same set
of system parameters, e.g. the maximum number of coins one can mint, the
description of the hash function, and the signature scheme to be used, etc. The
main components of our proposed SPRBA are as follows.

5.1 Minting

Minting of a coin involves finding a hash function collision [2] similar as that in
Off-line Karma [8].

154 S.S.M. Chow

The user needs to find a p + q-long bit-string y ∈ {0, 1}(p+q) such that2

H(x) = H ′(y), for x = (U ||sn), where U is his node identifier of length p, sn
is a bit string denoting a coin’s serial number of length |sn| = q. This length
restriction, together with the logic governing how the nodes managing this coin
is determined, limits every user to mint up to 2q karma coins.

The node identifier and the serial number uniquely determine the coin. The
coin is defined as 〈x, y〉. For brevity, we call it “coin y”. In contrast to Off-line
Karma, a coin does not include the timestamp denoting the minting time.

5.2 Spending

We start by the case that a newly-minted coin is spent, followed by the case that
a coin is spent by the one who did not mint it.

Suppose node A is spending a coin 〈x, y〉 minted by him/her with another
node B. A sends y to each node in ℵ∗(y) and notifies them B is now the coin
owner of y by signing y together with a current timestamp ts.

The current owner of coin y is determined by the record held by the node-
group ℵ∗(y). We can view the node-group ℵ∗(y) is performing the bank function
of the coin y. They will keep track of the current coin ownership. We call these
nodes the “bank-nodes”.

Even though a bank-node obtains the collision pair from someone else and is
the authority to say who is the current owner of the coin. It is not true that a
bank-node of a coin cannot be the initial owner of a coin, (when he/she is lucky
enough to mint a coin y having the node-group ℵ∗(y) including him/herself).
The reason is that the minting node is specified in the x component of the coin.
No other node would mint a coin on other’s behalf. Even a malicious bank-node
claims the ownership of a coin after obtained a collision pair 〈x, y〉 from some
other node is not convincing since the node identifier in x does not match.

Each bank-node needs to check whether x is in the correct form (i.e. including
A’s identifier and a bit-string sn of length q), 〈x, y〉 really gives a collision, and
A gives a signature that signs on the coin, the recipient’s node identifier, and a
recent enough timestamp, i.e. (y||B||ts). If all the verifications go through, the
coin 〈x, y〉 is then sent to B. B is convinced he/she is the new owner if responses
from a threshold number of bank-nodes are obtained.

In the second case, the spender is not the original owner. Suppose B is the
spender and C is the “merchant” that B is dealing with. B signs on the coin
with the recipient C’s identifier and a new timestamp, and gives the coin to C.
C contacts each bank-node in ℵ∗(y) to see whether B is the current owner of the
coin. Specifically, this is done by taking the latest ownership status purported
by ℵ∗(y) as the current ownership status of the coin.

2 Instead of using two different hash functions, one can actually use a single hash
function by appending x with a bit 0 and y with a bit 1. Otherwise, an attack
exploiting the symmetry is possible so that a single coin can be interpreted in two
ways corresponding to different minting-node.

Running on Karma – P2P Reputation and Currency Systems 155

5.3 Maintaining the Current Ownership

In a dynamic P2P network, the bank-nodes of a coin may not be online at
the same time. Each of them should keep the signatures certifying the transfer
of ownership, until a threshold number of the bank-nodes got the same set of
signatures and update their own records. In this way, the storage requirement
on the bank-node is minimized. The latest ownership can be easily identified
since the signature is binding with a timestamp. It can be considered as a hybrid
approach that combines a pure-updating of the coin ownership and the signature
chain approach used in Off-line Karma.

5.4 Double-Spending Detection

Double spending means the current owner of a coin spends it at two different
users. To do so, the double-spender must have signed on two different messages
specifying different recipients, which give a cryptographic evidence of the mis-
behavior.

On the other hand, someone who wants to “spend” the coin once he/she
owned will not be treated as a double-spending. It will be treated as just an
invalid request instead since it is essentially the same thing as having a random
node claiming for the ownership of someone else’s coin. Depending on the level
of service one desires, the signature can also be submitted to the blacklist mech-
anism of the network to impose a certain kind of penalty on the one making the
invalid request.

On the other hand, a bank-node may be malicious in falsely-accusing someone
has double-spent. An accusation thus requires a signature by a bank-node on a
message stating the current owner as well. If any abnormality is observed, one
can simply forward the signature to all other bank-nodes for further investigation
of whether a bank-node is being malicious or just not-up-to-date.

5.5 Efficiency Analysis

Load balancing follows from the uniform distribution of the hash output. Scala-
bility can be seen from the simple design of our system. We require no flooding
of the network and no complex operations other than minting of the coin. The
complexity involved in minting a coin is actually a good thing to hinder the
extent of sybil attack.

No heavy cryptographic operations are involved other than signature genera-
tion and verification. The current state-of-art signatures offer a short signature
size that makes the protocol bandwidth-efficient. In contrast with Off-line Karma
[8], each node only needs to verify a single signature instead of a series of them.

The storage and complexity requirements of the bank-nodes are minimal. Each
node needs to sign every time the current owner of the coin is about to change,
but it can always be pre-computed. Besides, the message to be signed is short,
in contrast with the signature on the huge coin in Off-line Karma. It is true
that the bank-node needs to perform signature verification every time the coin
ownership is changed. The total number of signature verification is the same as

156 S.S.M. Chow

that in the re-minting phase in Off-line Karma. However, the computational cost
is amortized in our case.

5.6 Security Analysis

It is easy to see that as long as there exists one honest nodewithup-to-date informa-
tion among the bank-nodes, security is guaranteed. Here we assume the extended
threat model that t nodes are controlled by the adversary and c of them are cor-
rupted after they joined the overlaynetwork (i.e. after they became the bank-nodes
of a certain coin). Our analysis is similar to that of Off-line Karma [8].

Theorem 1. Let r be the size of the bank-node set ℵ∗(y) of a coin y. If r > γs+c
for some constant γ, the probability that ℵ∗(y) contains no honest nodes is less
than 2−s.

Proof. By assumption, the adversary can compromise c nodes in the set ℵ∗(y).
All we need to show the probability that the remaining r−c nodes happen to be
taken from the remaining t − c corrupted nodes to be included in the set ℵ∗(y).
Let X be the random variable of the number of honest nodes in the set ℵ∗(y),
we have

Pr[X = 0] =
Ct−c

r−c

Cn−c
r−c

=
(t − c)!/((r − c)!(t − r)!)
(n − c)!/((r − c)!(n − r)!)

< (
t − c

n − c
)(r−c)

Since we want to upper-bound the success probability of the adversary by
2−s, note that t−c

n−c < 1, we have

(
t − c

n − c
)(r−c) < 2−s

r − c ≥ log(t−c)/(n−c) 2−s

r ≥ −s(log(t−c)/(n−c) 2) + c

Setting γ = −(log(t−c)/(n−c) 2) completes the proof.

5.7 Improvements over Off-Line Karma

Apart from the efficiency gain like smaller coin size as revealed in the previous
analysis sections, Karma+ enjoys the following features over Off-line Karma.

No Coin Expiration. Timestamp is used in Off-line Karma for expiring the
coin, and it forces the re-minting and let the re-minting party to have a chance
to do double-spending detection. In Karma+, a coin would not expire so the
situation that a coin cannot be re-minted before its expiration is avoided. Besides,
Karma+ detects double-spending in every transaction, but not well after the coin
is double-spent as in Off-line Karma.

Running on Karma – P2P Reputation and Currency Systems 157

Limit on the Maximum Number of Minting. Off-line Karma aims to
limiting the number of coin one can mint by imposing a maximum length on the
serial numbers. It is claimed that (U, sn) uniquely determines a coin. However,
in addition to the owner identifier U and the serial number sn , time stamp ts is
another varying factor. Note that the bank-node group ℵ∗(U ||sn||ts) is unlikely
to contain a node that also appears in ℵ∗(U ||sn||ts′) for a timestamp ts′ 	= ts. It
is difficult to discover two coins in the world are actually sharing the same U and
sn. The number of coin one can mint is thus limited within a time period, and
depends on the granularity of the time periods. However, the time-complexity
of finding a collision already imposes an inherent limit on the number of coins
one can mint at a given time.

Since the expiration mechanism is not necessary in our system, we can remove
the inclusion of the timestamp in finding a collision pair, which means (U, sn)
really serves as a unique identifier of a coin. In this way, we pose a limit on the
maximum number of coins one can mint.

Higher Security in a Dynamic Network. Karma+ works better in the case
of dynamic network when compared with Off-line Karma [8]. The security of Off-
line Karma depends on the nodes that are responsible for re-minting at the re-
minting time, since the re-minting of the coin is done by asking all those nodes to
give signatures to certify the new ownership of the coin. One has no information
about the state of the network at that time, so an adversary may have unfairly
constructed a re-mint set with only nodes that are under his control, giving
signatures certifying himself, and claiming all other nodes were offline at that
time. Karma+ does not have this problem, since it is the verifier who computes
this set and contacts the nodes according to the protocol for his own good.

6 Conclusion

We have presented two completely decentralized systems to address the pollu-
tion problem and the free-rider problem in peer-to-peer resources sharing ap-
plications. One is a reputation system and the other is an electronic currency
system. Our systems outperform existing systems of similar functionalities un-
der similar trust assumptions. Our simple design and efficiency gain are obtained
from making full use of the trusted nodes.

Acknowledgements

Thanks to Lakshminarayanan Subramanian for his comments and support. Also
thanks to Joël Alwen, Saurabh Kumar and Ning Ma for the discussions.

References

1. Adar, E., Huberman, B.A.: Free Riding on Gnutella. First Monday 5(10) (October
2000), http://firstmonday.org/issues/issue5 10/adar

2. Back, A.: Hashcash - a Denial of Service Counter Measure,
http://www.hashcash.org/papers/hashcash.pdf

http://firstmonday.org/issues/issue5_10/adar
http://www.hashcash.org/papers/hashcash.pdf

158 S.S.M. Chow

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

4. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure Rout-
ing for Structured Peer-to-Peer Overlay Networks. SIGOPS Operating Systems
Review 36/SI, 299–314 (2002)

5. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Workshop on Economics
of Peer-to-peer Systems (2003)

6. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P., Violante,
F.: A Reputation-based Approach for Choosing Reliable Resources in Peer-to-Peer
Networks. Computer and Communications Security 2002 , 207–216 (2002)

7. Dwork, C., Goldberg, A., Naor, M.: On Memory-Bound Functions for Fighting
Spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003)

8. Garcia, F.D., Hoepman, J.-H.: Off-line Karma: A Decentralized Currency for Peer-
to-peer and Grid Applications. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 364–377. Springer, Heidelberg (2005)

9. Garcia-Martinez, A., Chuang, J.: A Cryptographic Reputation Scheme for Peer-
to-peer Networks, http://citeseer.ist.psu.edu/550626.html

10. Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Net-
works. In: NOSSDAV 2003. Network and Operating Systems Support for Digital
Audio and Video, pp. 144–152 (2003)

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust Algorithm for
Reputation Management in P2P Networks. In: World Wide Web Conference 2003,
pp. 640–651 (2003)

12. Kirk, P.: Gnutella, http://rfc-gnutella.sourceforge.net
13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-

Addressable Network. Computer Communication Review 31(4), 161–172
14. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In: SIGCOMM
2001, pp. 149–160

16. Zhao, B.Y., Huang, L., Rhea, S.C., Stribling, J., Joseph, A.D., Kubiatowicz,
J.D.: Tapestry: A Global-Scale Overlay for Rapid Service Deployment. IEEE J-
SAC 22(1), 41–53 (2004)

17. KaZaA.com. The Guide - The Glossary: Participation Level, Available at
http://www.kazaa.com/us/help/glossary/participation ratio.htm

http://citeseer.ist.psu.edu/550626.html
http://rfc-gnutella.sourceforge.net
http://www.kazaa.com/us/help/glossary/participation_ratio.htm

Generic Combination of Public Key Encryption

with Keyword Search and Public Key
Encryption

Rui Zhang and Hideki Imai

Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology, AIST

{r-zhang,h-imai}@aist.go.jp

Abstract. In this paper, we study the problem of secure integrating
public key encryption with keyword search (PEKS) with public key data
encryption (PKE). We argue the previous security model is not com-
plete regarding keyword privacy and the previous constructions are se-
cure only in the random oracle model. We solve these problems by first
defining a new security model, then give a generic construction which is
secure in the new security model without random oracles. Our construc-
tion is based on secure PEKS and tag-KEM/DEM schemes and achieves
modular design. We also point out some applications and extensions for
our construction. For example, instantiate our construction with proper
components, we have a concrete scheme without random oracles, whose
performance is even competitive to the previous schemes with random
oracles.

1 Introduction

Public key encryption with keyword search (PEKS) [7] is very useful to provide
the functionality of “searching on encrypted data” for public key cryptosystems.
For instance, it can be used to build a gateway to route an encrypted email
without knowing the content. We briefly review this mechanism here. Let (pk, sk)
be Alice’s public/secret key pair. Bob encrypts his message (email body) m
with a public key encryption (PKE) scheme under Alice’s public key pk and
let’s call the encrypted email σ. Bob also encrypts a keyword w using PEKS,
under Alice’s public key pk and let’s call the encrypted keyword τ . The resulting
ciphertext c = τ ||σ will be sent to Alice’s email server. Alice is able to specify
a few keywords, and upon receiving a trapdoor tw associated with a keyword
w from Alice, the server can check whether τ encrypts w. Then if the keyword
is “urgent”, the server sends c to Alice’s mobile phone, and if the keyword is
“lunch”, the server sends c to Alice’s desktop to be read later. The security of
PEKS is that the server should not know anything beyond the keyword. Readers
are recommended to refer [7] and the references thereafter for details.

The security requirements discussed in [7,1] have considered semantic security
of encryption of keywords against a powerful adversary that adaptively corrupts

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 159–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 R. Zhang and H. Imai

gateways. Since a PEKS scheme cannot be used alone but have to be paired
with a public key encryption (PKE) scheme, we have to consider the security
of the whole system rather than separate components. Hereafter we refer the
integrated scheme as PEKS/PKE. Unfortunately, secure PEKS and secure PKE
schemes may not remain secure when they are composed together, which was
pointed out by Baek, Safavi-Naini and Susilo [3]. Basically, they gave a coun-
terexample as follows: When an adversary observes a PEKS/PKE ciphertext
τ ||σ, it can produce another valid ciphertext τ ′||σ, where τ ′ is a valid tag under
different keyword. Querying τ ′||σ to a decryption oracle, the adversary obtains
the plaintext m.

We remark that the above attack is realistic in practice, since for most en-
crypted email systems, headers of an email remain even after routing, and the
decryption is done without integrity check on the header. On the other hand,
for keyword privacy, nothing was considered against chosen keyword/ciphertext
attack before this work.

Known Solutions and Their Limitations. As mentioned in [3], a trivial so-
lution may be simply appending an authentication tag generated from a message
authentication code (MAC), with a shared key between the sender and receiver.
While it works, the solution destroys the asymmetric nature of public key en-
cryption. Another possible solution is to attach a signature on the ciphertext.
However, this requires the sender has a pair of verification/signing keys, which
is not applicable for many practical scenarios.

Additionally, two solutions were given in [3], assuming that a MAC is provided
by the PKE component. One is based on the Boneh-Franklin identity based
encryption (IBE) [8] as a PEKS [7] with ElGamal [16] as a PKE. The other is a
generic construction based on a PEKS and a PKE with a MAC. The intuition
behind both constructions is borrowed from REACT [22], where a MAC is used
to protect the integrity of both parts of the ciphertext. However, to prove their
security, the authors of [3] have to assume the hash functions are random oracles
[6] and the underlying PKE is secure against plaintext checking attack (PCA),
which is inherent in all variants of REACT. These requirements may be too
stringent, and it is desirable to have other solutions, better without random
oracles.

1.1 Our Contributions

Formal Security Model of PEKS/PKE. Authors of [3] have given a security
model on data privacy of PEKS/PKE against adaptive chosen keyword attack
and chosen ciphertext attack, however, it is not clear which attack model is posed
on keyword privacy. Actually, no concrete discussions were given regarding this
point in [3].

Here we show an example with no keyword privacy at all when the attack
model of [3] is considered. To see this, one just appends the keyword as a part
of the ciphertext of data encryption scheme. It is easily verified that this doesn’t
violate the data privacy of the PEKS/PKE scheme, as long as the keyword is

Generic Combination of PEKS and Public Key Encryption 161

chosen independent from the encrypted message, but the scheme is not a secure
PEKS/PKE scheme since it leaks the information of the keyword. It seems that
keyword privacy has been assumed to remain even after compositions by [3].

We thus conclude the previous security model of PEKS/PKE is not complete
regarding keyword privacy, however, we emphasize that the two concrete con-
structions proposed in [3] are secure. In this paper, we formalize the requirement
of keyword privacy for secure PEKS/PKE schemes.

Generic Construction of PEKS/PKE. Principally, the design of PEKS/
PKE schemes without assuming random oracles is not new, e.g., one first put to-
gether PEKS and PKE components (each without random oracles), then applies
non-interactive zero-knowledge proof of “well-formness” for this integration, but
this is only theoretical and very inefficient. When speaking of practical schemes,
all known constructions have to assume random oracles. It is well-known that
a scheme with a security proof in the random oracle model implies no security
in the real world [11], therefore, it is desirable to build proofs without random
oracles. In this paper, we present such a generic construction.

Interesting Extensions. We also give some applications and extensions of
the generic construction. For example, instantiating the above construction with
concrete components, one obtains various PEKS/PKE schemes with many good
properties. For instance, combining a PEKS scheme from the Gentry IBE [18],
and the Kurosawa-Desmedt tag-KEM/DEM [20], we have a PEKS/PKE scheme
secure without random oracles. The scheme is quite efficient, which is even
comparable to previous constructions with random oracles. In fact, a secure
PEKS/PKE is achievable from a variety of assumptions, e.g., from the Waters
IBE [28] using asymmetric pairing [10], however, our scheme from the Gentry
IBE provides better efficiency.

1.2 Related Work

Public key encryption (PKE) is an important primitive in modern cryptography
which guarantees privacy of communications. The standard security notion for
PKE is indistinguishability against adaptively chosen ciphertext attack (IND-
CCA) [19,21,23,15,5]. While it is comparatively easy to build CCA-secure schemes
assuming random oracles [6], to have CCA-secure schemes such that security
reduction without random oracles is not easy. Only theoretical constructions of
CCA-secure PKE schemes [21,15,24] were known before Cramer and Shoup gave
the first practical solution [14]. Another recent approach was proposed by Boneh,
Canetti, Halevi and Katz [12,9] based on identity based encryption (IBE).

An IBE scheme is a public key encryption scheme where any string can be
the public key of a user, say, the identity of a user. It was advocated by Shamir
[25], whose original intuition was to simplify the management of public key cer-
tificates. It has been an open problem to construct full-fledged IBE schemes for
many years until [8], when Boneh and Franklin proposed the first IBE scheme
based on pairings. Cocks [13] independently proposed another IBE scheme based
on decisional quadratic residue problem. Public key encryption with keyword

162 R. Zhang and H. Imai

search (PEKS) was proposed in [7]. It was shown that to build a PEKS with ex-
ponential keyword space is at least as hard as build an identity based encryption
(IBE) [7].

Another security notion for public key encryption is key privacy [4], which
captures an adversary’s inability to know a receiver’s identity from a given
ciphertext. For identity based encryption, this was studied under the name
“anonymity” [1] (the precise definition postponed to Appendix A). Basically,
public key encryption schemes with key privacy provides the functionality of
PEKS, however, currently anonymous PKE schemes only provide polynomially
bounded keyword space [7,1], and one may need anonymous IBE schemes for a
keyword space of exponential size.

2 Preliminary

In this section, we give some notations and definitions.

Notations. If x is a string, let |x| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s ← S denotes the operation of picking
an element s of S uniformly at random. We write z ← A(x, y, . . .) to indicate
that A is an algorithm with inputs (x, y, . . .) and an output z. Denote x||y as
the string concatenation of x and y. If k ∈ N, a function f(k) is negligible if
∃ k0 ∈ N, ∀ k > k0, f(k) < 1/kc, where c > 0 is a constant.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE = (PKEkg,
PKEenc, PKEdec).

PKEkg: a randomized algorithm, taking a security parameter k as input, gener-
ates a public key pk and a corresponding secret key sk, denoted as (pk, sk) ←
PKEkg(1k).

PKEenc: a possibly randomized algorithm, taking a public key pk, and a plain-
text m taken from the message space as input, with internal coin flipping,
outputs a ciphertext c, denoted as c ← PKEenc(pk, m).

PKEdec: a deterministic algorithm, taking a secret key sk and a ciphertext c as
input, outputs the corresponding m, or “⊥” (indicating invalid ciphertext),
denoted as m ← PKEdec(sk, c).

We require a PKE scheme should satisfy the standard correctness requirement,
namely for all (pk, sk) ← PKEkg(1k) and all m, PKEdec(sk, PKEenc(pk, m)) = m.

Data Privacy. We say a public key encryption scheme is (ε, q, T)-IND-CCA
secure, if the advantage of any adversary A with at most q queries to a decryption
oracle DO, is at most ε within time T in the following experiment.

Advind-cca
PKE,A(k) = |Pr[(pk, sk) ← PKEkg(1k); (m0, m1, s) ← ADO(pk);

b ← {0, 1}; c∗ ← PKEenc(pk, mb); b′ ← ADO(c∗, s) : b′ = b] − 1/2|

Generic Combination of PEKS and Public Key Encryption 163

where DO returns the corresponding decryption result on a query on ciphertext
c, whereas A is forbidden to query c∗ to DO. We say a PKE scheme is IND-
CCA-secure, if for polynomially bounded q and T , ε is negligible.

2.2 Tag-KEM/DEM

Shoup introduced key encapsulation mechanism (KEM) and data encapsulation
mechanism (DEM) [27], to deal with efficient hybrid encryption. Tag-KEM/DEM
is a form of KEM which also takes as input a tag, which was introduced in [2].
A tag-KEM is a generalization of KEM/DEM, and together with a passively
secure DEM, it can be easily be extended to threshold settings.

Tag-KEM. Our definition of tag-KEM runs parallel with [2]. A tag-KEM con-
sists of four algorithms TK = (TKkg, TKkey, TKenc, TKdec).

TKkg: a randomized algorithm, taking a security parameter k as input, generates
a public key pk and a secret key sk, denoted as (pk, sk) ← TKEMgen(1k).

TKkey: a randomized algorithm, taking a public key pk as input, outputs a
random session key dk ∈ KD, where KD is a key space, and internal state
information η, denoted as (dk, η) ← TKEMkey(pk).

TKenc: a possible randomized algorithm, taking the internal state η and a tag λ
as input, encrypts dk (embedded in η) into ψ, denoted as ψ ← TKenc(η, λ).

TKdec: a deterministic algorithm, taking a secret key sk, a ciphertext ψ and a
tag λ as input, recovers dk from ψ and λ, denoted as dk ← TKdec(sk, ψ, λ).
We require TKdec(ψ, λ) = dk must hold for any sk, dk, ψ and λ, associated
by the above three algorithms. The algorithm outputs “⊥” when encounter-
ing an error.

Additionally, we require that given a public key pk, a tag λ, and an internal
state η for the encryption algorithm TKenc, the session key dk of a tag-KEM
should be uniquely decided. We call this property uniqueness of tag-KEM/DEM.

Security Notion. We define the security of tag-KEM as indistinguishability
against adaptive chosen ciphertext attack (IND-TK-CCA). We say a tag-KEM
scheme is (ε, q, T)-IND-TK-CCA secure, if the advantage of any adversary A with
at most q queries to a decryption oracle DO, is at most ε within time T in the
following experiment.

Advind-tk-cca
TK,A (k) = |Pr[(pk, sk) ← TKkg(1k); b ← {0, 1};

dk0 ← KD; (η, dk1) ← TKkey(pk); (λ∗, s) ← ADO(pk, dkb);

ψ∗ ← TKenc(η, λ∗); b′ ← ADO(ψ∗, s) : b′ = b] − 1/2|

where DO returns corresponding dk on input (ψ, λ), and A cannot query (ψ∗, λ∗)
to DO. We say a tag-KEM is IND-TK-CCA-secure, if for polynomially bounded
q and T , ε is negligible.

164 R. Zhang and H. Imai

DEM. A DEM consists of two deterministic algorithms, DEM = (DEMenc,
DEMdec), which is associated with a key space and a plaintext space defined by
a security parameter k.

DEMenc: taking a symmetric key dk ∈ KD, where KD is defined by k and a
plaintext m ∈ {0, 1}∗ as input, outputs a ciphertext χ, denoted as χ ←
DEMenc(dk, m).

DEMdec: taking a symmetric key dk ∈ KD and a ciphertext χ as input, outputs
a plaintext m, denoted as m ← DEMdec(dk, χ).

We require that for all m and all dk, DEMdec(dk, DEMenc(dk, m)) = m.

Semantic Security. We only require passive security for DEM. We say a DEM
scheme is (ε, T)-semantically secure, if the advantage of any adversary A, is at
most ε within time T in the following experiment.

Advss
DEM,A(k) = |Pr[b ← {0, 1}; dk ← KD; (m0, m1, s) ← A(1k);

χ ← DEMenc(mb); b′ ← A(χ, s) : b′ = b] − 1/2|

We say a DEM scheme is (ε, T)-semantically secure, if for polynomially bounded
T , ε is negligible.

2.3 PEKS

A public key encryption with keyword search (PEKS) scheme [7,1] consists of
four algorithms PEKS = (PEKSkg, PEKSenc, PEKStd, PEKStest).

PEKSkg: a randomized algorithm, taking a security parameter k as input, the
probabilistic key generation algorithm generates a public key pk and a secret
key sk, denoted as (pk, sk) ← PEKSkg(1k).

PEKSenc: a possibly randomized algorithm, taking a public key pk and a key-
word w as input, computes a ciphertext τ , denoted as τ ← PEKSenc(pk, w).

PEKStd: a possibly randomized algorithm, taking a secret key sk and a keyword
w as input, computes a trapdoor tw, denoted as tw ← PEKStd(sk, tw).

PEKStest: a deterministic algorithm, taking a trapdoor tw and a ciphertext τ
as input, tests whether c encrypts w and outputs a bit b, with 1 meaning
“yes” and 0 meaning “no”, denoted as b ← PEKStest(tw, τ).

Here we assume there is only one receiver (one public key) in the system, and it
is straightforward to extend the above definitions to multi-user settings.

Consistency. Several flavors of consistency were discussed in [1], and we only
define computational consistency here, since this notion suffices for most prac-
tical applications. A PEKS scheme is said to be computationally consistent, if
the advantage is negligible for all computationally bounded adversary A in the
following experiment.

Advpeks-consist
PEKS,A (k) = Pr[(pk, sk) ← PEKSkg(1k); (w, w′) ← A(pk);

tw′ ← PEKStd(sk, w′); τ∗ ← PEKSenc(pk, w) : PEKStest(tw′ , c∗) = 1]

Generic Combination of PEKS and Public Key Encryption 165

Keyword Privacy. We define indistinguishability of keywords against adaptive
chosen keywords attack (IK-CKA), as considered in [7,1]. We say a PEKS scheme
is (ε, q, T)-IK-CKA secure, if the advantage of any adversary A with at most q
queries to a trapdoor generation oracle T O, is at most ε within time T in the
following experiment.

Advik-cka/cca
PEKS,A (k) = |Pr[(pk, sk) ← PEKSkg(1k); (w0, w1, s) ← AT O(pk);

b ← {0, 1}; τ∗ ← PEKSenc(pk, wb); b′ ← AT O(τ∗, s) : b′ = b] − 1/2|

where T O is a trapdoor oracle, returns the corresponding trapdoor tw upon a
query on keyword w, whereas A cannot query w0 or w1 to T O. A PEKS scheme
is said to be IK-CKA-secure, if for polynomially bounded q and T , ε is negligible.

2.4 Bilinear Groups

We review some facts about bilinear groups for future use. Let G1 and GT be two
multiplicative cyclic groups of prime order p and g be a generator of G1. A bilin-
ear map e : G1 × G1 → GT satisfies the following properties: (i) Bilinearity: For
all x, y ∈ G1 and a, b ∈ Z, e(xa, yb) = e(x, y)ab. (ii) Non-degeneracy: e(g, g) �= 1.
(iii) Computability: There is an efficient algorithm to compute e(x, y) for any
x, y ∈ G1.

3 Our Model of PEKS/PKE

In this section, we give the syntax and security definitions for PEKS/PKE
schemes. The advantage of our model is that we have notational convenience
to define keyword privacy and data privacy.

3.1 PEKS/PKE

We focus on the integration of PEKS/PKE. A PEKS/PKE scheme consists of
five algorithms PEKS/PKE = (Kg, Enc, Dec, Td, Test).

Kg: a randomized algorithm, taking a security parameter k as input, generates
a public key pk and a secret key sk, denoted as (pk, sk) ← Kg(1k).

Enc: a possibly randomized algorithm, taking a public key pk, a keyword w
and a plaintext m as input, outputs a PEKS/PKE ciphertext c, denoted as
c ← Enc(pk, w, m).

Dec: a deterministic algorithm, taking a secret key sk and a PEKS/PKE cipher-
text c, outputs the decryption result m (or “⊥” if c is invalid). We denote
this as m ← Dec(sk, c).

Td: a possibly randomized algorithm, taking a secret key sk and a keyword w as
input, computes a trapdoor tw for keyword w, denoted as tw ← Td(sk, w).

Test: a deterministic algorithm, tests whether a given PEKS/PKE ciphertext
c encrypts keyword w, and outputs a bit b, with 1 meaning “yes” and 0
meaning “no”, denoted as b ← Test(tw, c).

166 R. Zhang and H. Imai

Our model simplifies the one in [3]. In the encryption algorithm Enc, we don’t
explicitly require a tag in the ciphertext, since otherwise the security definition
should additionally consider the tag. We remark the model is general enough
because the tag can be regarded as a part of the ciphertext.

Consistency. A PEKS/PKE scheme is said to be computationally consistent,
if the advantage is negligible for all computationally bounded adversary A in
the following experiment.

Advpeks/pke-consist
PEKS/PKE,A(k) = Pr[(pk, sk) ← Kg(1k); (w, w′, m) ← A(pk);

tw′ ← Td(sk, w′); c∗ ← Enc(pk, m, w) : Test(tw′ , c∗) = 1]

3.2 Security Notions

We consider two security requirements, keyword privacy, namely, indistinguisha-
bility of keywords against adaptive chosen keyword attack and chosen cipher-
text attack (IK-CKA/CCA), and data privacy, namely, indistinguishability of ci-
phertexts against adaptive chosen keyword attack and chosen ciphertext attack
(IND-CKA/CCA). Note that in a PEKS/PKE scheme, PEKS and PKE are both
regarded as components of the whole system.

Principally, the adversary is given two oracles, a trapdoor generation ora-
cle T O, that on a keyword w, generates the corresponding trapdoor tw and a
decryption oracle that on a ciphertext c, returns the corresponding plaintext m.

Keyword Privacy. We say a PEKS/PKE scheme is (ε, qt, qd, T)-IK-CKA/CCA
secure, if the advantage of any adversary A with at most qt queries to a trapdoor
generation oracle T O, at most qd queries to a decryption oracle DO, is at most
ε within time T in the following experiment.

Advik-cka/cca
PEKS/PKE,A(k) = |Pr[(pk, sk) ← Kg(1k); (w0, w1, m, s) ← AT O,DO(pk);

b ← {0, 1}; c∗ ← Enc(pk, m, wb); b′ ← AT O,DO(c∗, s) : b′ = b] − 1/2|

where T O is a trapdoor oracle, upon a query on keyword w returns the corre-
sponding trapdoor tw, and DO is a decryption oracle, upon a query on ciphertext
c returns the corresponding plaintext, whereas A cannot query w0 or w1 to T O.
We say a PEKS/PKE is IK-CKA/CCA-secure, if for polynomially bounded qt, qd

and T , ε is negligible.

Data Privacy. We say a PEKS/PKE scheme is (ε, qt, qd, T)-IK-CKA/CCA se-
cure, if the advantage of any adversary A with at most qt queries to a trapdoor
generation oracle T O, at most qd queries to a decryption oracle DO, is at most
ε within time T in the following experiment.

Advind-cka/cca
PEKS/PKE,A(k) = |Pr[(pk, sk) ← Kg(1k); (w, m0, m1, s) ← AT O,DO(pk);

b ← {0, 1}; c∗ ← Enc(pk, w, mb); b′ ← AT O,DO(c∗, s) : b′ = b] − 1/2|

Generic Combination of PEKS and Public Key Encryption 167

where T O is a trapdoor oracle, upon a query on keyword w returns the corre-
sponding trapdoor tw, and DO is a decryption oracle, upon a query on ciphertext
c returns the corresponding plaintext, whereas A cannot query c∗ to DO. We
say a PEKS/PKE is IK-CKA/CCA-secure, if for polynomially bounded qt, qd

and T , ε is negligible.

4 A Generic Construction of Secure PEKS/PKE

We need two ingredients for our generic construction, one is an IK-CKA secure
PEKS scheme, and the other is an IND-TK-CCA secure tag-KEM/DEM. The
main idea is to regard the ciphertext of PEKS as a proportion of the tag for
tag-KEM/DEM. The tag-KEM/DEM framework covers almost all the known
PEK schemes (see [2] for details), and can be built flexibly from a variety of
assumptions. Since a tag is a natural component for a tag-KEM/DEM scheme,
the structures of both parts persist. Another advantage of our methodology is
that a tag-KEM/DEM can be easily extended to threshold settings, since the
DEM only require passive security. We give our construction in Figure 1.

Kg(1k)

(pk1, sk1) ← PEKSkg(1k);
(pk2, sk2) ← TKkg(1k);
pk = (pk1, pk2);
sk = (sk1, sk2);
return (pk, sk);

Enc(pk, w, m)
pk = (pk1, pk2);
τ ← PEKSenc(pk1, w);
(dk, η) ← TKkey(pk2);
χ ← DEMenc(dk, m);
λ ← (τ ||χ);
ψ ← TKenc(η, λ);
c ← (τ, ψ, χ);
return c;

Dec(sk, c)
sk = (sk1, sk2);
c = (τ, ψ, χ);
dk ← TKdec(sk2, ψ, τ ||χ);
m ← DEMdec(dk, χ);
return m;

Td(sk, w)
sk = (sk1, sk2);
tw ← PEKStd(sk1, w);
return tw;

Test(tw, c)
c = (τ, ψ, χ);
b ← PEKStest(tw, τ);
return b;

For each algorithm of PEKS/PKE, we require it should ter-
minate and return “⊥” (denoting “abnormal termination”),
if any of its sub-algorithms terminates abnormally.

Fig. 1. Generic Construction of PEKS/PKE

It is easily verified that if both the PEKS and PKE used in the construction
are consistent, the resulting PEKS/PKE is consistent. We focus on the keyword
privacy and data privacy of the construction.

Theorem 1. The construction of PEKS/PKS shown in Figure 1 is IK-CKA/
CCA-secure and IND-CKA/CCA secure, provided that the underlying PEKS

168 R. Zhang and H. Imai

scheme is IK-CKA-secure, the tag-KEM scheme is IK-TK-CCA-secure and the
DEM scheme is semantically secure.

Intuitions. First, notice that a PEKS scheme aims at providing keywords pri-
vacy, while “naturally”, ciphertext χ of the tag-KEM/DEM will not leak infor-
mation of the keywords. By uniqueness property of tag-KEM, ψ is determined
once the public key pk2, the tag λ = (ψ||χ) and internal state η of the tag-KEM
are determined, and will be independent from a keyword w if τ doesn’t leak in-
formation on w. Moreover, because dk only depends on pk2 and internal random
coin-flipping of TKkey, and the algorithm DEMenc is deterministic, we have χ
is also independent from w. Finally, we conclude, if τ doesn’t leak information
on w, neither will ψ and χ. On the other hand, from our construction, τ does
not depend on m, thus leaks no information on m. Additionally, taking τ as a
part of the tag provides integrity guarantee also for τ , i.e., any adversary can-
not gain advantage in obtaining knowledge on a plaintext m by modifying this
part. Otherwise, the adversary breaks indistinguishability of session key for the
tag-KEM. We elaborate the above discussions in two lemmas.

Lemma 1. The construction shown in Figure 1 is (εK + εD, qt, qd, TK + TD)-
IND-CKA/CCA secure, provided that the tag-KEM scheme is (εK , qd, TK)-IK-TK-
CCA-secure and the DEM scheme is (εD, TD)-semantically secure.

Proof. First, notice that τ is independent from mb from the encryption algo-
rithm. Assume there is an IND-CKA/CCA adversary A, we can build an adver-
sary B against IND-TK-CKA/CCA of tag-KEM or semantic security of DEM. A
flips a fair coin, and runs in either of the following modes.

Mode 0 (Adversary against tag-KEM/DEM): A generates a pair of pub-
lic/secret keys for PEKS. Since A has the secret key, trapdoor queries are
handled perfectly. Decryption queries are forwarded to A’s own decryption
oracle and are also handled perfectly. For challenge, after receiving a pair of
plaintext (m0, m1) and a keyword w from B and dkb from its own challenger,
A chooses uniformly β ← {0, 1} and computes τ = PEKSenc(pk1, w), and
computes χ ← DEMenc(dkb, mβ), where b ← {0, 1}. A then sets λ = (τ, χ)
as the tag to its challenger. After receiving its challenge ψ, A gives B the
challenge c = (τ, ψ, χ). When B outputs a guess on β, A checks whether this
equals to β. A outputs 1 if yes and otherwise, 0. It is easily verified when dkb

is the real session key, then the challenge for B is valid and A will succeed
at least the probability as B. If dkb is a random session key, β is perfectly
hiding from B, and B’s probability in guessing b is exactly 1/2. Summarize
above discussions, we have the success probability of A is at least that of B.

Mode 1 (Adversary against DEM): For setup, A generates a pair of pub-
lic/secret keys for PEKS and tag-KEM. Trapdoor oracle queries and decryp-
tion oracle queries can perfectly simulated, since A has the secret keys. After
receiving a pair of plaintext (m0, m1) and a keyword w from B, A outputs
(m0, m1) to its challenger. After obtains a challenge χ∗ from its challenger,
A computes a ciphertext τ of PEKS and a ciphertext ψ with some random

Generic Combination of PEKS and Public Key Encryption 169

dk ∈ KD from a tag λ = (τ ||ψ). After B stops and outputs a guess, A
also outputs the same bit. Since neither τ or ψ contains information on b,
B can only gain advantage by inferring b from χ. One case to mention is
that if B is able to distinguish ψ is not a valid ciphertext, then the result
of B cannot be utilized and A should abort. However, in this case, we can
construct an attack against the tag-KEM. However, according to our as-
sumption, this happens at most εK . We then have in this case A’s success
probability breaking the DEM is at least that of B plus εK .

Summarizing the above two cases, we see the advantage of A is upper-bounded
by εK + εD and the queries and the running time of A are exactly the same as
the claim. 	

Lemma 2. The construction shown in Figure 1 is (εP , qt, qd, TP)-IK-CKA/CCA-
secure, provided that the PEKS scheme is (εP , qt, TP)-IK-CKA-secure.

Proof Sketch. The proof for the lemma is quite simple and we only give the
sketch. From the algorithms shown in Figure 1, only τ depends on a keyword w,
since the tag-KEM/DEM does not even take w as an input. a PEKS adversary A
generates the public/secret keys (pk2, pk2) for the tag-KEM/DEM scheme and
sets the public key as pk = (pk1, pk2), where pk1 is the public key of its target
PEKS scheme. Since A knows the the secret key of the tag-KEM scheme, all
decryption queries from a PEKS/PKE adversary B can be answered perfectly.
For B’s challenge query, A forwards (w0, w1) to its own trapdoor oracle and
extracts τ∗ from its challenge as the challenge for B, it is easy to verify that τ∗

is a valid challenge for B. Then A’s success probability is exactly the same as B.
This proves our claim. 	

Theorem 1 follows Lemma 1 and Lemma 2 naturally.

5 Applications and Extensions

In this section, we give some possible extensions of our generic construction.
In particular, we show a concrete PEKS/PKE scheme, whose security can be
proven without random oracles.

5.1 A Concrete Instantiation Without Random Oracles

We instantiate our generic construction with an anonymous IBE by Gentry [18],
and the Kurosawa-Desmedt tag-KEM/DEM [20]. The resulting PEKS/PKE is
secure without random oracles. The scheme is given in Figure 2.

The notion of anonymous IBE is reviewed in Appendix A. The consistency
condition is easy verified to be met since it is a straightforward instantiation of
BDOP construction of PEKS (based Gentry IBE) and a secure tag-KEM/DEM
scheme.

170 R. Zhang and H. Imai

Kg(1k)
g, h ← G1;
z ← e(g1, g2);
α ← Zp;
g1 ← gα;
pk1 ← (g, g1, h);
sk1 ← α;
z1, z2 ← G2;
x1, x2, y1, y2 ← Zp;
c ← zx1

1 zx2
2 ;

d ← zy1
1 zy2

2 ;
pk2 ← (c, d, G, F, H);
sk2 ← (x1, x2, y1, y2);
pk ← (pk1, pk2);
sk ← (sk1, sk2);
return (pk, sk);

Dec(sk, c)
c = (c1, c2), where c1 = (u1, u2, u3)

and c2 = (v1, v2, v3);

f ← v
x1+y1H(v1,v2)
1 v

x1+y1H(v1,v2)
2 ;

(K1, K2) ← F (K);
if v4 �= Mac(K1, v3||c1);

return “⊥”;
m ← v3 ⊕ G(K2);
return m;

Enc(pk,w, m)
s1, s2 ← Zp;
u1 ← gs1

1 g−s1w;
u2 ← e(g, g)s1 ;
u3 ← H(e(g,h)−s1);
c1 ← (u1, u2, u3);
v1 ← zs2

1 ;
v2 ← zs2

2 ;

K ← cs2ds2H(u1,u2);
(K1, K2) ← F (K);
v3 ← G(K2) ⊕ m;
v4 ← Mac(K2, v3||c1);
c ← (c1, c2);
return c;

Td(sk, w)
rw ← Zp;
dw ← hgrw ;
tw ← (rw, dw);
return tw;

Test(tw, c)
c = (c1, c2), where c1 = (u1, u2, u3)

and c2 = (v1, v2, v3);
if u3 = H(e(u1, dw)urw

2);
return 1;

otherwise
return 0;

‡ Let e : G1 × G1 → G2 be a bilinear group pair with prime order p. MAC =
(Mac, Vrfy) is a message authentication code. F is a key derivition function
(KDF) [27], G is a pseudorandom generator and H is a collision resistant hash
function. Without further descriptions, we simply assume the input domain
and output domain match.

Fig. 2. A Concrete Instantiation without Random Oracles

Theorem 2. The PEKS/PKE scheme shown in Figure 2 is IND-IK-CKA/CCA-
secure, provided that the Kurosawa-Desmedt tag-KEM/DEM is secure and the
Gentry IBE is anonymous.

The above proof is easily derived from Theorem 1 and known results [2,18].

Performance. Though our scheme relies on the DADHE assumption that seems
strong, however, the scheme is quite efficient in of key size and computation cost.
Note that the previous schemes have to adopt a large key size to compensate
security loss due to loose security reductions. Moreover, our scheme needs no
Map-to-Point computations [8], and it can be further optimized with a trick
mentioned in [17] and pre-computations. Consider all these and the fact that
our scheme is without random oracles, we conclude our scheme is efficient.

Generic Combination of PEKS and Public Key Encryption 171

PEKS/PKE without MACs. Our instantiation of tag-KEM/DEM is based
on Kurosawa-Desmedt, where a MAC is inevitable. One can use other tag-KEM
schemes, e.g., Cramer-Shoup tag-KEM [14,2], or OAEP+ [26,2], such that the
MAC is not explicitly needed.

5.2 Other Extensions

PEKS/PKE from General Assumptions. Our generic construction has im-
plicitly assumed an exponential keyword space, thus the constructions of PEKS
is restricted to anonymous IBE schemes. In fact, it is possible to base the PEKS
on general assumptions, e.g., existence of trapdoor one-way functions, with re-
laxation to a polynomial keywords space [7].

Randomness Reuse. We have required that the encryption algorithms of
PEKS and PKE choose independent randomness in our generic construction,
however, one can actually reuse the randomness without harming the security
of the scheme. The technique is standard, and the details are omitted here due
to space limitation.

PEKS/PKE with Threshold Decryption. Since a tag-KEM can be easily
extended to the threshold setting, it is natural to follow the strategy of [2] to
have non-interactive threshold decryption for PEKS/PKE.

Multi-Keyword and Multi-Receiver PEKS/PKE. PEKS/PKE with
multi-keywords and multi-receivers have been considered in [3]. We remark the
same problem of keyword privacy occurs when considering the ciphertext of PKE
leaks information on keyword. It is not hard to generate all our above discus-
sions to these settings. The techniques are quite standard, and again, we omit
the details here.

Acknowledgement

We thank the anonymous referees of CANS’07 for many helpful comments.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Pallier, P., Shi, H.: Searchable Encryptino Revisited: Consist-
necy Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for
Hybrid Encryption. Cryptology ePrint Archive (2005),
http://eprint.iacr.org/2005/027/

3. Baek, J., Safavi-Naini, R., Susilo, W.: On the Integration of Public Key Data
Encryption and Public Key Encryption with Keyword Search. In: Katsikas, S.K.,
Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176,
pp. 217–232. Springer, Heidelberg (2006)

http://eprint.iacr.org/2005/027/

172 R. Zhang and H. Imai

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

10. Boyen, X., Waters, B.: Anonymous Hierarchical Identity Based Encryption (with-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

11. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
In: STOC 1998, pp. 557–594. ACM, New York (1998), Full version available at
http://eprint.iacr.org/1998/011.pdf

12. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

13. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues.
In: Honary, B. (ed.) Cryptography and Coding. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

14. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. In: STOC 1991, pp.
542–552. ACM, New York (1991)

16. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEE Transactions on Information Theory 31(4), 469–472 (1985)

17. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and
Desmedt. Eprint Report 2004/194 (2004), Available at
http://eprint.iacr.org/2004/194

18. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

19. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

20. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

21. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

http://eprint.iacr.org/1998/011.pdf
http://eprint.iacr.org/2004/194

Generic Combination of PEKS and Public Key Encryption 173

22. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer, Heidelberg (2001)

23. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

24. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: FOCS 1999, pp. 543–553. IEEE Computer Society, Los
Alamitos (1999)

25. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

26. Shoup, V.: OAEP Reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 239–259. Springer, Heidelberg (2001)

27. Shoup, V.: ISO 18033-2: An Emerging Standard for Public-Key Encryption (com-
mittee draft) (June 2004), Available at http://shoup.net/iso/

28. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

A Identity Based Encryption

An identity based encryption (IBE) can be regarded as a special public key
encryption, where the receiver’s public key can be any string. Compared with
traditional public key encryption, an IBE scheme is equipped with an additional
extraction algorithm, with a master secret key and an identity as input, outputs
a secret key that is capable to decrypt ciphertext corresponding to this iden-
tity. An IBE scheme consists of four algorithms IBE = (IBEkg, IBEext, IBEenc,
IBEdec).

IBEkg: a randomized algorithm, taking a security parameter k as the input,
outputs a public parameter params and a master secret key msk, denoted
as (params, msk) ← TBEkg(1k).

IBEext: a possibly randomized algorithm, takes inputs of params, msk and an
identity id, outputs a secret key skid for id, denoted as skid ← IBEext
(params, msk, id), in brief skid ← IBEext(msk, id).

IBEext: a possibly randomized algorithm, taking params, an identity id and a
plaintext m taken from the message space as input, with internal coin flipping
r, outputs a ciphertext c, which is denoted as c ← IBEenc(params, id, m, r),
in brief c ← IBEenc(params, id, m).

IBEdec: a deterministic algorithm, taking a secret key skid, an identity id and a
ciphertext c as input, outputs a plaintext m, or a special symbol “⊥”, which
is denoted m ← IBEdec(skid, id, c).

We require for all (params, msk) ← IBEkg(1k), skid ← IBEext(msk, id) and all
m, we have IBEdec(skid, id, IBEenc(params, id, m)) = m.

http://shoup.net/iso/

174 R. Zhang and H. Imai

Anonymity. We consider anonymity of receiver against adaptively chosen-ID
and chosen plaintext attack (AONT-ID-CPA) [1]. We say an identity based en-
cryption is (ε, q, T)-IND-sID-CPA-secure if the advantage of any adversary A is
at most ε, with access q times to an extraction oracle EO within time T in the
following experiment.

Advaont-id-cpa
IBE,A (k) = Pr[(params, msk) ← IBEkg(1k);

(id0, id1, m, s) ← AEO(params); b ← {0, 1};

c∗ ← IBEenc(params, idb, m); b′ ← AEO(c∗, s) : b′ = b] − 1/2

where EO returns the corresponding secret key on a query on identity id, whereas
A is forbidden to query (id0, id1) at EO. We say an IBE is AONT-ID-CPA-Secure,
if for polynomially bounded q and T , ε is negligible.

Extended Private Information Retrieval and Its

Application in Biometrics Authentications�

Julien Bringer1, Hervé Chabanne1, David Pointcheval2, and Qiang Tang2

1 Sagem Sécurité
2 Departement d’Informatique, École Normale Supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France

Abstract. In this paper we generalize the concept of Private Infor-
mation Retrieval (PIR) by formalizing a new cryptographic primitive,
named Extended Private Information Retrieval (EPIR). Instead of en-
abling a user to retrieve a bit (or a block) from a database as in the
case of PIR, an EPIR protocol enables a user to evaluate a function f
which takes a string chosen by the user and a block from the database
as input. Like PIR, EPIR can also be considered as a special case of
the secure two-party computation problem (and more specifically the
oblivious function evaluation problem). We propose two EPIR protocols,
one for testing equality and the other for computing Hamming distance.
As an important application, we show how to construct strong privacy-
preserving biometric-based authentication schemes by employing these
EPIR protocols.

1 Introduction

This paper describes a new primitive, Extended Private Information Retrieval
(EPIR) which is a natural generalization of PIR, and two EPIR protocols, one
for testing equality and the other for computing Hamming distance. This work is
partially motivated by the growing privacy requirements in processing sensitive
information such as biometrics.

1.1 Related Work

With respect to the functionality, an EPIR is indeed a combination of a PIR [10]
and a general secure two-party computation protocol [26,49]. Next, we briefly
review the literature in both areas.

The concept of PIR was proposed by Chor et al. [10]. A PIR protocol enables
a user to retrieve a bit from a database which contains a bit string. Chor et al.
defined user privacy for PIR in the information-theoretical setting, which cap-
tures the concept that the database (with unlimited resources) learns nothing
about which bit the user has retrieved. They also proposed a number of multi-
database protocols that are secure in the information-theoretical setting. Chor
� This work is partially supported by french ANR RNRT project BACH.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 175–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 J. Bringer et al.

and Gilboa [9] proposed to construct multi-database PIR under computational
assumptions. Kushilevitz and Ostrovsky [32] presented a definition of user pri-
vacy in computational setting, where a PIR protocol achieves user privacy if,
for any query for i-th bit, the database learns nothing about the index i. They
showed that one can achieve single-database PIR under the Quadratic Residu-
osity assumption with communication complexity O(N c) for any c > 0, where
N is the database size throughout the paper. Cachin, Micali, and Stadler [7]
proposed a single-database PIR scheme with poly-logarithmic communication
complexity O((log N)8) based on the Φ-hiding assumption.

Chor et al. [10] also proposed the notion of Private Block Retrieval (PBR),
a natural extension to single-bit PIR, in which instead of retrieving only one
bit, the user retrieves a d-bit block. They proposed an efficient method for the
transformation from PIR to PBR. Lipmaa [34] proposed a PBR scheme with
communication complexity Θ(Ω((log N)3−o(1))(log N)2 + d log N). Gentry and
Ramzan [23] proposed a single-database PBR protocol based on the decision
subgroup problem, with communication complexity O(k + d) where k ≥ log N
is the security parameter.

Gertner et al. [24] introduced the notion of data privacy in the computational
setting, where a PIR protocol achieves database privacy if, for any query, the
user cannot tell whether it is an ideal-world execution or a real-world execution.
In an ideal-world execution the user interacts with a simulator which takes only
a single bit from the database as input, while in a real-world execution the user
interacts with the database. If a PIR protocol achieves both user privacy and
data privacy, then it is said to be SPIR (symmetrically-private information re-
trieval) which is also referred to as one-out-of-N oblivious transfer [13]. Mishra
and Sarkar [35] proposed a single-server SPIR protocol which can have commu-
nication complexity O(N ε) for any ε > 0. Their protocol is proven secure under
the XOR assumption defined by Mishra and Sarkar.

Gasarch [22] provides a very detailed summary of PIR/PBR protocols and
lower/upper bounds on communication complexity, and Ostrovsky and Skeith
III [37] also provides a summary. To facilitate our discussion, we use the notation
PIR to denote both PIR and PBR, and generalise the setting of PIR to be: a
database DB contains a list of N blocks R = (R1, R2, · · · , RN), and a user U
can run a PIR protocol to retrieve Ri from DB, for any 1 ≤ i ≤ N .

As a special case of secure two-party computation problem, the concept of
EPIR is relevant to the oblivious function evaluation [8,20,36]. Canetti et al.
[8] study the problem that a client privately evaluate a public function which
takes inputs from one or more servers. Note that the client does not have any
private input to the function. Naor and Pinkas [36] study the problem that a
receiver privately evaluates a function f(a) by interacting with a sender, where
f is a secret polynomial of the sender and a is a secret input of the receiver.
Freedman et al. [20] study the keyword search problem that a client privately
evaluates whether a keyword is contained in a database. EPIR can be con-
sidered to be a generalization of the these problems (in the single database
case). Next, we briefly review some works which are related to equality test and

EPIR and Its Application in Biometrics Authentications 177

hamming distance computation. In [11,19], the authors studied how to compare
two commonly shared strings and determine whether they are the same. Freed-
man, Nissim, and Pinkas [21] studied two-party set-interaction problems and
proposed a number of protocols. Du and Atallah [48,17] considered the secure
computation in an environment similar to that of EPIR, and proposed proto-
cols based on solutions to Yao’s millionaire problem. Goethals et al. [25] showed
the weakness in the private scalar product protocols [16,46] and proposed a
new protocol based on homomorphic encryption schemes. Kiltz, Leander, and
Malone-Lee [31] proposed some methods for a user to compute the mean (and
other statistics) over the data in a database. However, they did not propose any
specific security model for this type of computation, and their protocols either
require a semi-trusted third party or are very inefficient in round and com-
munication complexity. Note that Kiltz, Leander, and Malone-Lee [31] showed
that some approach in [17] leaks information in some applications. Boneh, Goh,
and Nissim [3] proposed an encryption scheme (referred to as the BGN encryp-
tion scheme) and used it for evaluating 2-DNF formulas. As an application,
they showed how to construct efficient PIR protocols based on their encryption
scheme.

1.2 Practical Motivation

Biometrics, such as fingerprint and iris, have been used to a high level of secu-
rity in order to cope with the increasing demand for reliable and highly-usable
information security systems, because they have many advantages over crypto-
graphic credentials. However, there are some obstacles for a wide adoption of
biometrics in practice. Among them, one is that biometric features are volatile
over the time so that it cannot be integrated into most of the legacy systems.
This means that approximate matching might be necessary for an identifica-
tion or authentication. The other is that biometrics are usually considered to
be sensitive, so that there is big privacy concern in using them. To address the
volatility of biometrics, error-correction concept is widely used in the literature
(e.g. [4,5,12,15,14,29,30,40]). Employing this concept, some public information
is firstly generated based on a reference biometric template, and later, a newly-
captured template could help to recover the reference template if their distance
(in a certain space) is not too large. In [33,42,43,44,47], the authors attempted
to enhance privacy protection in biometric authentication schemes, where the
privacy means that the compromise of the database will not enable the attacker
to recover the biometric template. Ratha, Connell, and Bolle [2,39] introduced
the concept of cancelable biometrics in an attempt to solve the revocation and
privacy issues related to biometric information. More recently, Ratha et al. [38]
intensively elaborated this concept in the case of fingerprint-based authentication
systems. In addition, Atallah et al. [1] proposed a method, in which biometric
templates are treated as bit strings and subsequently masked and permuted
during the authentication process. Schoenmakers and Tuyls [41] proposed to
use homomorphic encryption schemes for biometric authentication schemes by

178 J. Bringer et al.

employing multi-party computation techniques. Practical concerns, security is-
sues, and challenges about biometrics have been discussed in a number of papers
(e.g. [2,39,45]).

Despite these efforts, there are still some concerns which require further in-
vestigation. The most important one is that privacy may mean much more than
recovering the biometric template. For example, an application server may not
be trusted to store biometric information, and, even if an independent database
stores biometric information, the application server’s access to the biometric
information still needs to be restricted. In addition, it is desirable to simplify
the storage requirements for the human users and the (communication) client.
Bringer et al. [6] proposed a biometric-based authentication protocol which pro-
tects the sensitive relationship between a biometric feature and relevant pseudo-
random identity. Their protocol makes use of the Goldwasser-Micali encryption
scheme and is less efficient in communication than those described in Section 5.

1.3 Our Contributions

We generalize the concept of PIR by formalizing a new cryptographic primitive,
named Extended Private Information Retrieval (EPIR). Instead of enabling a
user to retrieve a block from a database as in the case of PIR, an EPIR protocol
enables a user to evaluate a function f which takes a string chosen by the user
and a block from the database as input1. If f is defined to be a function that
simply returns the block from the database then the EPIR protocol is indeed a
traditional PIR protocol. Analogous to the privacy properties of PIR, we define
two privacy properties for EPIR, including (1) user privacy which captures the
concept that, for any query, the database should know nothing about block in-
dex the user has queried and the user’s input to f, (2) database privacy captures
the concept that, from a single query, the user should obtain no more informa-
tion than the output of function f. Note that we focus on the single-database
computational setting in this paper.

We further propose two EPIR protocols: one for testing equality and the other
for computing Hamming distance. The first protocol is based on a PIR protocol
and the ElGamal encryption scheme (described in Appendix A)[18], and the
second protocol is based on a PIR protocol and the BGN encryption scheme
(described in Appendix B) [3]. In both EPIR protocols, in order to achieve
database privacy, the PIR protocols employed do not need to achieve database
privacy.

As an important application, we show a modular way to construct biometric-
based authentication schemes by employing an EPIR protocol. Due to the pri-
vacy properties of EPIR, these schemes achieve strong privacy properties against
a malicious server and a malicious database which will not collude. It is worth
noting that our proposal is not focused on a specific biometric, but rather on a
generalization of biometrics which can be represented as binary strings in the
Hamming space. Iris is such a type of biometric that can be easily encoded into
a binary string [28].
1 We assume that the index of the block from the database is also chosen by the user.

EPIR and Its Application in Biometrics Authentications 179

1.4 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2 we present the
security definitions for EPIR. In Section 3 we describe an EPIR protocol for
testing equality of two binary strings based on the ElGamal encryption scheme.
In Section 4 we describe an EPIR protocol for computing Hamming distance
of two binary strings based on the BGN encryption scheme. In Section 5 we
propose two biometric-based authentication schemes by employing these two
EPIR protocols. In Section 6 we conclude the paper.

2 Privacy Definitions for EPIR

Formally, a (single-database) EPIR protocol involves two principals: a database
DB which holds a set of N blocks R = (R1, R2, · · · , RN) where Rj ∈ {0, 1}�1

and �1 is an integer, a user U which retrieves the value of a function f(Ri, X)
where X ∈ {0, 1}k1 is chosen by the user, k1 is an integer, and the index i is
also chosen by the user. We assume that the description of f is public and N is
a public constant integer. Without loss of generality, we further assume that the
retrieval is through a retrieve(f, i, X) query.

2.1 Notation

We first describe some conventions for writing probabilistic algorithms and ex-
periments. The notation x

R← S means x is randomly chosen from the set S.
If A is a probabilistic algorithm, then A(Alg; Func) is the result of running
A, which can have any polynomial number of oracle queries to the function-
ality Func, interactively with Alg which answers the oracle query issued by A.
For clarity of description, if an algorithm A runs in a number of stages then
we write A = (A1, A2, · · ·). As a standard practice, the security of a pro-
tocol is evaluated by an experiment between an attacker and a challenger,
where the challenger simulates the protocol executions and answers the at-
tacker’s oracle queries. Without specification, algorithms are always assumed to
be polynomial-time.

Specifically, in our case, there is only one functionality, namely retrieve. If the
attacker is a malicious DB, the challenger samples the index i and X from the
distribution specified in the protocol and issues retrieve queries to the attacker.
If the attacker is a malicious U then it can freely chooses the index i and X (that
may derivate from the distribution specified in the protocol) and issues retrieve
queries to the challenger.

In addition, we have the following definitions for negligible and overwhelming
probabilities.

Definition 1. The function P (�) : Z → R is said to be negligible if, for every
polynomial f(�), there exists an integer Nf such that P (�) ≤ 1

f(�) for all � ≥ Nf .
If P (�) is negligible, then the probability 1 − P (�) is said to be overwhelming.

180 J. Bringer et al.

2.2 User Privacy

This property is an analog to the user privacy property in the case of PIR where
user privacy captures the concept that DB knows nothing about block index
that U has queried. However, in the case of EPIR, we wish user privacy to imply
more than that DB knows nothing about the block index U has queried. Consider
a toy example, in which an EPIR protocol is constructed as follows: U simply
sends X to the database which computes f(Rj , X) (1 ≤ j ≤ N), and U then
runs a PIR to retrieve f(Ri, X). It is clear that, if the PIR protocol achieves user
privacy then DB learns nothing about the index in the toy protocol. However,
if f(Rj , X) (1 ≤ j ≤ N) are equal then DB knows the result obtained by U .

Informally, the user privacy for EPIR captures the concept that, for any
retrieve(f, i, X) query, DB knows nothing about the queried block index i and
the user’s string X . Formally, an EPIR protocol achieves user privacy if any
attacker A = (A1, A2, A3, A4) has only a negligible advantage in the following
game, where the attacker’s advantage is | Pr[b′ = b] − 1

2 |.

Expuser-privacy
A

R = (R1, R2, · · · , RN) ← A1(1�)
1 ≤ i0, i1 ≤ N ; X0, X1 ∈ {0, 1}k1 ← A2(Challenger; retrieve)

b
R← {0, 1}

∅ ← A3(Challenger; retrieve(f, ib, Xb))
b′ ← A4(Challenger; retrieve)

In this game, the attacker A is a malicious DB. For the clarity, we rephrase the
game as follows.

1. The attacker A1 generates N blocks R = (R1, R2, · · · , RN).
2. The attacker A2 can request the challenger to start any (polynomial) number

of retrieve queries. At some point, A2 outputs (i0, i1, X0, X1) for a challenge.
3. The challenger randomly chooses b ∈ {0, 1} and issues a retrieve(f, ib, Xb)

query to the attacker A3.
4. The attacker A4 can continue requesting the challenger to start any (poly-

nomial) number of retrieve queries. At some point, A4 outputs a guess b′.

Note that the symbol ∅ means that the attacker A3 has no explicit output
(besides the state information).

2.3 Database Privacy

This property is an analog to the database privacy property in the case of SPIR
[24] and the formalization follows that for secure two-party computation [49,26].
Informally, database privacy captures the concept that, from a retrieve(f, i, X)
query, U obtains no more information than f(Ri′ , X ′) for some 1 ≤ i′ ≤ N and
X ′ ∈ {0, 1}k1. As in [24], we do not require that i′ = i and X ′ = X because
a malicious U may construct the query without following the specification. The

EPIR and Its Application in Biometrics Authentications 181

concept can also be rephrased as follows: U cannot tell whether it is an ideal-
world execution and a real-world execution. In an ideal-world execution U inter-
acts with a simulator which takes (i′, f(Ri′ , X ′)) as input, while in a real-world
execution U interacts with DB.

For the clarity of formalization, let simulator0 denote DB. Formally, an EPIR
protocol achieves database privacy, if there exists a simulator simulator1 such
that any attacker A = (A1, A2) has only a negligible advantage in the following
game, where the attacker’s advantage is | Pr[b′ = b]− 1

2 |. For every retrieve query,
simulator1 has an auxiliary input from a hypothetical oracle O, where the input
is (i′, f(Ri′ , X ′)) for some 1 ≤ i′ ≤ N and X ′ ∈ {0, 1}k1.

Expdatabase-privacy
A

b
R← {0, 1}

R = (R1, R2, · · · , RN) ← A1(1�)
b′ ← A2(simulatorb; retrieve)

In this game, the attacker A is a malicious U . For the clarity, we rephrase the
game as follows.

1. The challenger randomly chooses b ∈ {0, 1}. If b = 0 then simulator0 an-
swers the retrieve queries from the attacker; otherwise simulator1 answers
such queries.

2. The attacker A1 generates N blocks R = (R1, R2, · · · , RN).
3. The attacker A2 can start any (polynomial) number of retrieve queries. At

some point, A2 outputs a guess b′.

We emphasize that the hypothetical oracle O may have unlimited computing
resources. In an attack game, a malicious U may or may not generate a query by
following the protocol specification, nonetheless, in order to answer the attacker’s
query, simulator1 only needs to obtain f(Ri′ , X ′) for some 1 ≤ i′ ≤ N and
X ′ ∈ {0, 1}k1. As a result, if the attacker cannot distinguish the interactions with
simulator0 and simulator1, then, for each query, it obtains no more information
about R than i′ and f(Ri′ , X ′), which is what simulator1 needs to answer the
query.

2.4 Security of EPIR

Analogous to the case of other primitives, a (useful) EPIR protocol should be
sound, which means that if both U and DB follow the protocol specification then
retrieve(f, i, X) always returns the correct value of f(Ri, X) with an overwhelming
probability.

Definition 2. An EPIR protocol is said to be secure if any attacker has only
negligible advantage in the attack games for user privacy and database
privacy.

182 J. Bringer et al.

3 EPIR Protocol for Testing Equality

In this section we present an EPIR protocol which enables U to compare a string
with a block from DB. The function f(Ri, X) is defined to be 1 if Ri = X and
to be 0 otherwise. Suppose every block in DB has bit-length �1, X also has
bit-length �1, and N has bit-length �2.

The construction is based on the ElGamal scheme and a PIR protocol. It
is worth noting that, due to the randomization in step 3, the employed PIR
protocol does not need to be SPIR (achieving database privacy) in order to
guarantee the database privacy for the EPIR.

3.1 Description of the Protocol

The EPIR protocol is as follows.

1. U generates an ElGamal key pair (pk, sk), where pk = (p, q, g, y), y = gx,
and sk = x is randomly chosen from Zq. It is required that the bit-length of
q is at least �1 + �2 + 1. Let “||” be the string concatenation operator.

2. To retrieve the value f(Ri, X), for any 1 ≤ i ≤ N and X ∈ {0, 1}�1, U first
sends pk and an ElGamal ciphertext (gr, yrgi||X) to DB, where r is randomly
chosen from Zq.

3. After receiving pk and (gr, yrgi||X) from U , DB first checks that pk is a
valid ElGamal public key2 and (gr, yrgi||X) is a valid ElGamal ciphertext. If
the check succeeds, DB computes Cj for every 1 ≤ j ≤ N , where rj , r

′
j are

randomly chosen from Zq and

Cj = (gr′
j (gr)rj , yr′

j(yrgi||X(gj||Rj)−1)rj).

4. U runs a PIR protocol to retrieve Ci from DB. U then sets f(i, X) = 1 if
Dec(Ci, sk) = 1 and sets f(i, X) = 0 otherwise.

It is clear that, in our case, no encoding algorithm Ω is required to guaran-
tee the semantic security of the ElGamal scheme. As to the performance, the
communication complexity is dominated by that of the PIR protocol. The com-
putational complexity is dominated by the computation of Cj (1 ≤ j ≤ N),
say O(N) exponentiations for DB. Moreover, it is straightforward to verify the
following observation.

Observation 1. For every 1 ≤ j ≤ N , if gi||X(gj||Rj)−1 �= 1, the components of
Cj = (Cj1, Cj2) are uniformly and independently distributed over G; otherwise
Cj1 is uniformly distributed over G and Cj2 = (Cj1)x.

Due to the bit-length requirement on q, if �1 + �2 + 1 is very large then the
protocol may become impractical. Note that �2 will be bounded by a reasonably
small integer (say 50), because it is hard to imagine that we have a database
2 In practice, the validity of pk can be certified by a TTP, and the same pk can be

used by the user for all his queries.

EPIR and Its Application in Biometrics Authentications 183

with 250 records. As a result, in this situation, a simple solution is to work on the
records R′ = (R′1, R

′
2, · · · , R′N) instead of R, where R′j = H(Rj) (1 ≤ j ≤ N)

and H is a collision-resistant hash function with a reasonable output bit-length.
Inherently, U issues a retrieve(f, i, H(X)) query to retrieve the value of f(Ri, X).
It is clear that U gets the correct answer with an overwhelming probability.

Instead of employing the ElGamal encryption scheme, other homomorphic
encryption schemes may also be used here though we will need a different ran-
domization method in step 3.

3.2 Security Analysis

It is straightforward to verify that if the PIR protocol is sound then the EPIR
protocol for equality is also sound. The following lemmas show that the EPIR
protocol achieves user privacy and database privacy but their proofs will appear
in the full version of this paper.

Lemma 1 (user privacy). If the PIR protocol achieves user privacy, then
the EPIR protocol for testing equality achieves user privacy based on the DDH
assumption.

Lemma 2 (database privacy). The EPIR protocol for testing equality achieves
database privacy (unconditionally).

4 EPIR Protocol for Computing Hamming Distance

In this section we present an EPIR protocol which enables U to compute Ham-
ming distance between a string chosen by itself and a block from DB. Especially,
the protocol allows the user to assign a weight for every bit. For an �1-bit string
S, let S(k) denote the k-th bit of S. Let the weight vector be (w1, w2, · · · , w�1)
where wk (1 ≤ k ≤ �1) are integers. The function f is defined as follows.

f(Ri, X) =
�1∑

k=1

wk(R(k)
i ⊕ X(k))

The construction is based on the BGN encryption scheme [3], the GOS NIZK
protocol [27], and a PIR protocol. It is worth noting that, due to the randomiza-
tion in step 3, the employed PIR protocol does not need to be SPIR (achieving
database privacy) in order to guarantee the database privacy for the EPIR.

4.1 Description of the Protocol

Suppose every block in DB has bit-length �1. The EPIR protocol is as follows.

1. U generates a key pair (pk, sk) for the BGN encryption scheme, where pk =
(n, G, G1, ê, g, h), and sk = q1.

184 J. Bringer et al.

2. To retrieve the value of f(Ri, X), for any 1 ≤ i ≤ N and X ∈ {0, 1}�1, U
first sends BGN ciphertexts c and ck (1 ≤ k ≤ �1) to DB, where c = gihr,
ck = gX(k)

hsk (1 ≤ k ≤ �1), r and sk (1 ≤ k ≤ �1) are randomly chosen from
Zn. In addition, U also sends proofk (1 ≤ k ≤ �1) to DB, where, for every
1 ≤ k ≤ �1, proofk is the GOS NIZK parameter for proving X(k) ∈ {0, 1}.

3. After receiving c, ck (1 ≤ k ≤ �1), and proofk (1 ≤ k ≤ �1) from U , DB first
checks that pk is a valid BGN public key3 and c, ck (1 ≤ k ≤ �1) are valid
BGN ciphertexts. If the check succeeds, DB verifies proofk (1 ≤ k ≤ �1). If
the verification succeeds, DB computes Cj for every 1 ≤ j ≤ N as follows.
(a) For every 1 ≤ k ≤ �1, compute mj,k where

mj,k =
ê(ckgR

(k)
j , g)

ê(ck, gR
(k)
j)2

=
ê(gX(k)

hskgR
(k)
j , g)

ê(gX(k)hsk , gR
(k)
j)2

=
ê(gX(k)

gR
(k)
j , g)ê(hsk , g)

ê(gX(k) , gR
(k)
j)2ê(hsk , gR

(k)
j)2

= ê(g, g)X(k)+R
(k)
j −2X(k)R

(k)
j ê(h, g)sk(1−2R

(k)
j)

= ê(g, g)X(k)⊕R
(k)
j ê(h, g)sk(1−2R

(k)
j)

(b) Compute Cj , where rj , r
′
j are randomly chosen from Zn and

Cj = ê(cg−jhr′
j , g)rj

�1∏
k=1

(mj,k)wk

= ê(gi−jhr+r′
j , g)rj

�1∏
k=1

ê(g, g)wk(X(k)⊕R
(k)
j)ê(h, g)wksk(1−2R

(k)
j)

= ê(g, g)rj(i−j)+
∑ �1

k=1 wk(X(k)⊕R
(k)
j)ê(h, g)rj(r+r′

j)+
∑ �1

k=1 wksk(1−2R
(k)
j)

Otherwise, DB aborts the protocol execution.
4. U runs a PIR protocol to retrieve Ci from DB, and sets f(i, X) = d if

Cq1
i = ê(gq1 , g)d.

As to the performance, the communication complexity is dominated by that of
the PIR protocol and the transmission of ck, proofk (1 ≤ k ≤ �1). For U , the com-
putational complexity is dominated by generating ck, proofk (1 ≤ k ≤ �1): O(�1)
exponentiations. For DB, the computational complexity is dominated by check-
ing the GOS NIZK proofs and the computation of Cj (1 ≤ j ≤ N): O(N + �1)
3 In practice, the validity of pk can be certified by a TTP, and the same pk can be

used by the user for all his queries.

EPIR and Its Application in Biometrics Authentications 185

pairing computations and O(N) exponentiations. Moreover, it is straightforward
to verify the following observation.

Observation 2. For every 1 ≤ j ≤ N , given that i �= j, the components of
Cj = (Cj1, Cj2), where

Cj1 = ê(g, g)rj(i−j)+
∑ �1

k=1 wk(X(k)⊕R
(k)
j), Cj2 = ê(h, g)rj(r+r′

j)+
∑ �1

k=1 wksk(1−2R
(k)
j),

are uniformly and independently distributed over G1 and the subgroup of order
q1 of G1, respectively. If i = j, then Cj1 = ê(g, g)

∑ �1
k=1 wk(X(k)⊕R

(k)
j) and Cj2 is

uniformly distributed over the subgroup of order q1 of G1.

4.2 Security Analysis

It is straightforward to verify that if the PIR protocol is sound then the EPIR
protocol is also sound. First, we have the following lemma whose proof will
appear in the full version of this paper.

Lemma 3. Given any M ≥ 1, the attacker’s advantage in the following game
is negligible for the BGN encryption scheme.

ExpP-IND-CPA
A

(pk, sk) ← Gen(1�)
((m0,1, . . . , m0,M), (m1,1, . . . , m1,M)) ← A1(pk)

b ← {0, 1}
c ← (Enc(mb,1, pk), . . . , Enc(mb,M , pk))
b′ ← A2(c)

The following lemmas show that the EPIR protocol achieves user privacy and
database privacy but their proofs will appear in the full version of this paper.

Lemma 4 (user privacy). If the PIR protocol achieves user privacy, the EPIR
protocol for computing Hamming distance achieves user privacy based on the
subgroup decision assumption.

Lemma 5 (database privacy). The EPIR protocol for computing Hamming
distance achieves database privacy (unconditionally).

5 Authentication Schemes Using Biometrics

5.1 Preliminaries

In our security model, besides human users, we assume that a biometric-based
(remote) authentication system consists of the following types of components:

– Authentication client C, which is responsible for extracting human user’s
biometric template using some biometric sensor and communicating with
authentication server.

– Authentication server S, which is responsible for dealing with the human
user’s authentication requests by querying the database which stores user’s
biometric template.

186 J. Bringer et al.

– Centralized database DB, which stores the relevant biometric information
for authentication4.

Like most existing biometric-based systems (and many traditional cryptosys-
tems), a biometric-based authentication scheme consists of two phases: an en-
rollment phase and a verification phase.

1. In the enrollment phase, user Ui registers his biometric template bi at the
database DB and his identity information IDi at the authentication server
S.

2. In the verification phase, user Ui issues an authentication request to the
authentication server S through a client C. The authentication server S
retrieves Ui’s biometric information from the database DB and makes a
decision.

Human users and S trust C to be honest, and S trusts DB to provide the
correct biometric information. We further make the following assumptions on
the system components: The communication links between any two components
are authenticated and encrypted. In practice, the security links can be imple-
mented using a standard protocol such as SSL or TLS. In addition, the following
assumptions are indispensable for all biometrics-based systems.

1. Biometric Distribution assumption: Let H be the distance function in the
Hamming space. We assume that, there is a threshold value λ, the probability
that H(bi, bj) > λ is close to 15, where bi is Alice’s biometric template and bj

is Bob’s biometric template, while the probability that H(bi, b
′
i) ≤ λ is close

to 1, where bi and b′i are Alice’s biometric templates in two measurements.
2. Liveness assumption: We assume that, with a high probability, the biometric

template captured by the sensor is from a live human user. In other words,
it is difficult to produce a faked biometric template that can be accepted by
the sensor.

For a biometric-based authentication scheme, two types of security proper-
ties are mainly concerned. One is the resistance to impersonation attacks, in
which case we only consider outside adversaries by assuming that all the sys-
tem components are honest. The other is preserving privacy properties, in which
case we only consider malicious inside adversaries including a malicious S and
a malicious DB. But we assume that S and DB will not collude. In practice,
many methods (for example, issuing a smart-card to every user) can be used to
guarantee these properties against other kinds of adversaries, but we omit them
in this paper since our main aim is to demonstrate the application of the EPIR
protocols.
4 It is worth emphasizing that DB and S are two different principles and DB may

serve as a trusted storage for a number of authentication servers. This is different
from the conventional environment where we say a server has its own database for
storing the authentication secrets.

5 Note that this probability is related to the false accept and false reject rates of
biometrics, but we omit a detailed discussion in this paper.

EPIR and Its Application in Biometrics Authentications 187

5.2 The First Biometric-Based Authentication Scheme

This biometric-based authentication scheme is constructed based on the EPIR
protocol for equality as described in Section 3.1. In this scheme, due to the secure
sketch scheme, the user does not need to store any private information and the
client C does not need to store any user specific information. The enrollment
phase works as follows.

– C implements a (m, m′, λ)-secure sketch (SS, Rec) (an example is described
in Appendix C),where m′ is the system security parameter.

– S generates an ElGamal key pair (pk, sk).
– Ui generates his unique pseudorandom identifier IDi and registers it at the

server S, and registers (IDi, Ri) at the database DB, where bi is Ui’s refer-
ence biometric template and

Ri = Enc(gIDi||bi , pk)
= (Ri1, Ri2).

In addition, Ui publicly stores a sketch sketchi = SS(bi).

If Ui wants to authenticate himself to the server S through the authentication
client C, then the procedure is as follows.

1. C extracts Ui’s biometric template b∗i and computes the adjusted template
b′i = Rec(b∗i , sketchi). Then C sends IDi to S and sends X to DB, where
X = Enc(gIDi||b′

i , pk). Otherwise, C aborts the operation.
2. After receiving X , DB performs as in the EPIR protocol for testing equality

as described in Section 3.1, where DB computes Cj for every 1 ≤ j ≤ N ,
where rj , r

′
j are randomly chosen from Zq and

Cj = (gr′
j (gr(Ri1)−1)rj , yr′

j(yrgIDi||X(Ri2)−1)rj)

3. The server runs a PIR to retrieve Ci. If Dec(Ci, sk) = 1, S accepts the
request; otherwise rejects it.

It is easy to verify that impersonation attacks are prevented based on the
biometric distribution assumption, i.e. an adversary can not force C to output
Uj ’s template by letting C measure U ′is biometric if Ui and Uj are different
human users.

Every authentication is indeed an execution of the EPIR protocol for testing
equality between S and DB, though X is sent to DB by a trusted C. From the
user privacy property of the EPIR protocol, DB learns nothing about which
user is authenticating himself and what is the authentication result. In addition,
DB obtains nothing about the registered biometric templates because they are
encrypted by S’s public key. From the database privacy property of the EPIR
protocol, S learns nothing about a user’s biometric template. In fact, S only
obtains the information whether the authentication request is made by the le-
gitimate user or not.

188 J. Bringer et al.

5.3 The Second Biometric-Based Authentication Scheme

This biometric-based authentication scheme is constructed based on the EPIR
protocol for computing Hamming distance as described in Section 4.1. In this
scheme, the user does not need to store any private or public information and
the client C does not need to store any user specific information. The server S
is enabled to make its decision based on an exact matching between a user’s
biometric templates. The overall matching result can be more accurate by al-
locating a score (or a weight) for the matching result of every single bit. The
enrollment phase works as follows.

– S generates a BGN encryption key pair (pk, sk).
– Ui generates his pseudorandom identifier IDi and registers it at the server

S, and registers (IDi, α
(k)
i (1 ≤ k ≤ �1)) at the database DB, where bi is Ui’s

reference biometric template with bit-length �1, α
(k)
i = gb

(k)
i hβik (1 ≤ k ≤

�1), and βik (1 ≤ k ≤ �1) are randomly chosen from Zn.

If Ui wants to authenticate himself to the server S through the authentication
client C, then the procedure is as follows.

1. C extracts Ui’s biometric template b′i, and sends c and ck (1 ≤ k ≤ �1) to
DB, where c = gIDihr, ck = gb

′(k)
i hsk (1 ≤ k ≤ �1), r and sk (1 ≤ k ≤ �1)

are randomly chosen from Zn. Simultaneously, C sends IDi to S.
2. After receiving c and ck (1 ≤ k ≤ �1), DB performs in a similar way as in the

EPIR protocol for computing Hamming distance except that it computes Cj

for every 1 ≤ j ≤ N as follows.
(a) For every 1 ≤ k ≤ �1, compute mj,k where

mj,k =
ê(ckα

(k)
j , g)

ê(ck, α
(k)
j)2

=
ê(ckgb

(k)
j hβjk , g)

ê(ck, gb
(k)
j hβjk)2

=
ê(gb

′(k)
i hsk+βjkgb

(k)
j , g)

ê(gb
′(k)
i hsk , gb

(k)
j hβjk)2

=
ê(gb

′(k)
i gb

(k)
j , g)ê(hsk+βjk , g)

ê(gb
′(k)
i , gb

(k)
j)2ê(h, g)2(skb

(k)
j +b

′(k)
i βjk+skβjk logg h)

= ê(g, g)b
′(k)
i +b

(k)
j −2b

′(k)
i b

(k)
j ê(h, g)sk(1−2βjk logg h−2b

(k)
j)+βjk(1−2b

′(k)
i)

= ê(g, g)b
′(k)
i ⊕R

(k)
j ê(h, g)sk(1−2βjk logg h−2b

(k)
j)+βjk(1−2b

′(k)
i)

(b) Let xjk = sk(1 − 2βjk logg h − 2b
(k)
j) + βjk(1 − 2b

′(k)
i) (1 ≤ k ≤ �1),

compute Cj , where rj , r
′
j are randomly chosen from Zn and

EPIR and Its Application in Biometrics Authentications 189

Cj = ê(cg−IDj hr′
j , g)rj

�1∏
k=1

(mj,k)wk

= ê(gIDi−IDj hr+r′
j , g)rj

�1∏
k=1

ê(g, g)wk(b
′(k)
i ⊕b

(k)
j)ê(h, g)wkxjk

= ê(g, g)rj(IDi−IDj)+
∑ �1

k=1 wk(b
′(k)
i ⊕b

(k)
j)ê(h, g)rj(r+r′

j)+
∑ �1

k=1 wkxjk

3. S runs a PIR to retrieve Ci, and computes d satisfying Cq1
i = ê(gq1 , g)d. S

accepts the request if d is smaller than a threshold value; otherwise rejects it.

We first emphasize that the GOS NIZK proofs are omitted in this authenti-
cation scheme because c and ck (1 ≤ k ≤ �1) are sent by C which is trusted by
all parties.

It is easy to verify that impersonation attacks are prevented based on the
biometric distribution assumption. Every authentication is indeed an execution
of the EPIR protocol for computing Hamming distance between S and DB,
though we have made some small modifications. As a result, this scheme achieves
the same security properties as those of the previous scheme.

Compared with the previous scheme, this scheme is more convenient for hu-
man users and the the client C, where a human user does not need to store any
information and secure sketch is not needed to be implemented in C. Another
advantage of this protocol is that it works even when secure sketches are not
practical (i.e. when noise is high).

6 Conclusion

In this paper we formulated the concept of EPIR and proposed two protocols:
one for testing equality and the other for computing Hamming distance. The
randomizations in both protocols are performed to avoid using a SPIR protocol
in order to achieve the privacy for the database. In addition, the randomizations
also guarantee that the privacy for the database is unconditionally achieved
(without any computational assumption). It is a challenging task to design more
efficient EPIR protocols, especially to reduce the computational complexity. In
this paper, we also showed how to construct strong privacy-preserving biometric-
based authentication schemes by employing these EPIR protocols. Some further
work is required to evaluate the performance of these schemes in practice.

References

1. Atallah, M.J., Frikken, K.B., Goodrich, M.T., Tamassia, R.: Secure biometric au-
thentication for weak computational devices. Financial Cryptography, 357–371
(2005)

2. Bolle, R.M., Connell, J.H., Ratha, N.K.: Biometric perils and patches. Pattern
Recognition 35(12), 2727–2738 (2002)

190 J. Bringer et al.

3. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P.D. (eds.) CCS 2004: Proceedings of the 11th ACM conference on
Computer and communications security, pp. 82–91. ACM Press, New York (2004)

5. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

6. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the Goldwasser-Micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) Information Security and Privacy,
12th Australasian Conference, ACISP 2007 Proceedings. LNCS, vol. 4586, pp. 96–
106. Springer, Heidelberg (2007)

7. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

8. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selec-
tive private function evaluation with applications to private statistics. In: PODC
2001: Proceedings of the twentieth annual ACM symposium on Principles of dis-
tributed computing, pp. 293–304. ACM Press, New York (2001)

9. Chor, B., Gilboa, N.: Computationally private information retrieval (extended ab-
stract). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, pp. 304–313 (1997)

10. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

11. Crepeau, C., Salvail, L.: Oblivious verification of common string. CWI Quarterly,
special issue for Crypto Course 10th Anniversary 8(2), 97–109 (1995)

12. Crescenzo, G.D., Graveman, R., Ge, R., Arce, G.: Approximate message authenti-
cation and biometric entity authentication. In: Patrick, A.S., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 240–254. Springer, Heidelberg (2005)

13. Crescenzo, G.D., Malkin, T., Ostrovsky, R.: Single database private information re-
trieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 122–138. Springer, Heidelberg (2000)

14. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006)

15. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

16. Du, W., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: AC-
SAC 2001: Proceedings of the 17th Annual Computer Security Applications Con-
ference, pp. 102–110. IEEE Computer Society, Los Alamitos (2001)

17. Du, W., Atallah, M.J.: Secure multi-party computation problems and their appli-
cations: a review and open problems. In: NSPW 2001: Proceedings of the 2001
workshop on New security paradigms, pp. 13–22. ACM Press, New York (2001)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

19. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39(5), 77–85 (1996)

EPIR and Its Application in Biometrics Authentications 191

20. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

21. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

22. Gasarch, W.: A survey on private information retrieval,
http://www.cs.umd.edu/∼gasarch/pir/pir.html

23. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

24. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in pri-
vate information retrieval schemes. In: Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, pp. 151–160 (1998)

25. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

26. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

27. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

28. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Transactions on Computers 55(9), 1081–1088 (2006)

29. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptography 38(2), 237–
257 (2006)

30. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security, pp. 28–36 (1999)

31. Kiltz, E., Leander, G., Malone-Lee, J.: Secure computation of the mean and related
statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302. Springer,
Heidelberg (2005)

32. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: Single database,
computationally-private information retrieval. In: FOCS 1997. 38th Annual Sym-
posium on Foundations of Computer Science, pp. 364–373 (1997)

33. Linnartz, J.M.G., Tuyls, P.: New shielding functions to enhance privacy and pre-
vent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003.
LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)

34. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

35. Mishra, S.K., Sarkar, P.: Symmetrically private information retrieval. In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 225–236. Springer,
Heidelberg (2000)

36. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

37. Ostrovsky, R., Skeith III, W.E.: A survey of single database PIR: Techniques and
applications. Cryptology ePrint Archive: Report 2007/059 (2007)

http://www.cs.umd.edu/~gasarch/pir/pir.html

192 J. Bringer et al.

38. Ratha, N., Connell, J., Bolle, R.M., Chikkerur, S.: Cancelable biometrics: A case
study in fingerprints. In: ICPR 2006: Proceedings of the 18th International Confer-
ence on Pattern Recognition, pp. 370–373. IEEE Computer Society, Los Alamitos
(2006)

39. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Systems Journal 40(3), 614–634
(2001)

40. Safavi-Naini, R., Tonien, D.: Fuzzy universal hashing and approximate authenti-
cation. Cryptology ePrint Archive: Report 2005/256 (2005)

41. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted val-
ues. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537.
Springer, Heidelberg (2006)

42. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Jan Schrijen, G., Bazen, A.M.,
Veldhuis, R.N.J.: Practical biometric authentication with template protection. In:
Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–
446. Springer, Heidelberg (2005)

43. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric
authentication systems. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS,
vol. 3021, pp. 158–170. Springer, Heidelberg (2004)

44. Tuyls, P., Verbitskiy, E., Goseling, J., Denteneer, D.: Privacy protecting biometric
authentication systems: an overview. In: EUSIPCO 2004 (2004)

45. Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: Is-
sues and challenges. Proceedings of the IEEE 92(6), 948–960 (2004)

46. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: KDD 2002: Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pp. 639–644 (2002)

47. Verbitskiy, E., Tuyls, P., Denteneer, D., Linnartz, J.P.: Reliable biometric authen-
tication with privacy protection. In: SPIE Biometric Technology for Human Iden-
tification Conf. (2004)

48. Atallah, M.J., Du, W.: Protocols for secure remote database access with ap-
proximate matching. Technical report, CERIAS, Purdue University. CERIAS TR
(2000)-15 (2000)

49. Yao, A.: Protocols for secure computations. In: Proceedings of the twenty-third
annual IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

Appendix A: Introduction to the ElGamal Encryption
Scheme

The algorithms (Gen, Enc, Dec) of the ElGamal public key encryption scheme
[18] are defined as follows:

1. The key generation algorithm Gen takes a security parameter 1k as input
and generates two primes p, q satisfying q|p − 1. Let G be the subgroup of
order q in Z∗p, g be a generator of G. The private key x which is randomly
chosen from Zq, and the public key is y = gx. Let Ω be a bijective map from
Zq to G.

2. The encryption algorithm Enc takes a message m and the public key y as
input, and outputs the ciphertext c = (c1, c2) = (gr, yrΩ(m)) where r is
randomly chosen from Z

∗
q .

EPIR and Its Application in Biometrics Authentications 193

3. The decryption algorithm Dec takes a ciphertext c = (c1, c2) and the private
key x as input, and outputs the message m = Ω−1((c−x

1 c2).

It is well-known that the ElGamal scheme is semantically secure based on the
DDH assumption.

Appendix B: Introduction to the BGN Scheme

The algorithms (Gen, Enc, Dec) of the BGN encryption scheme [3] are defined as
follows:

1. The key generation algorithm Gen takes a security parameter 1k as input
and generates a tuple (n, q1, q2, G, G1, ê, g, u, h), where q1 and q2 are two
primes, n = q1q2, G and G1 are two cyclic groups of order n, g and u are
generators of G, and h = uq2 . The private key sk = q1, and the public key
is pk = (n, G, G1, ê, g, h).

2. The encryption algorithm Enc takes a message m ∈ Zq2 and the public key
pk as input, and outputs the ciphertext c = gmhr where r is randomly chosen
from Zn.

3. The decryption algorithm Dec takes a ciphertext c and the private key sk
as input, and outputs the message cq1 = (gq1)m. Then compute the discrete
log of cq1 base gq1 .

It is proved by Boneh, Goh, and Nissim that this scheme is semantically secure
given the subgroup decision problem is hard for (n, G, G1, ê).

Appendix C: Introduction to Secure Sketches

Roughly speaking, a secure sketch scheme (SS, Rec) allows recovery of a hidden
value from any value close to this hidden value. Informally, the algorithm SS
take a value x as input and outputs some public value y, and the algorithm Rec
takes a value x′ and y as input and outputs a value x′′. If x′ and x are close
enough, then x′′ = x.

We take the Code-Offset Construction given in [15] as an example. let C be
a [n, k, 2t + 1] error-correction code over a field F. With input x ∈ Fn, y is
computed as SS(x) = x − c, where c is a random codeword. With input (x′, y),
Rec computes x′′ in the following way: compute c′ = x′ − y, decode c′ to obtain
c′′, and set x′′ = c′′ + y.

Strongly Secure Certificateless Public Key

Encryption Without Pairing

Yinxia Sun1, Futai Zhang1, and Joonsang Baek2

1 School of Mathematics and Computer Science,
Nanjing Normal University, Nanjing 210097, P.R. China

2 Institute for Infocomm Research,
21 Heng Mui Keng Terrace, Singapore 119613, Singapore

Abstract. Certificateless Public Key Cryptography (CLPKC) enjoys the
advantage of ID-based public key cryptography without suffering from
the key escrow problem. In 2005, Baek et al. proposed the first certifi-
cateless encryption (CLPKE) scheme that does not depend on pairing.
Although it provides high efficiency, one drawback of their scheme is that
the security proof only holds for a weaker security model in which the
Type I adversary is not allowed to replace the public key associated with
the challenge identity. In this paper, we eliminate this limitation and
construct a strongly secure CLPKE scheme without pairing. We prove
that the proposed scheme is secure against adaptive chosen-ciphertext
attack in the random oracle model, provided that the Computational
Diffie-Hellman problem is intractable.

Keywords: public key encryption, certificateless public key encryption,
Computational Diffie-Hellman problem.

1 Introduction

Motivation. In traditional public key cryptography, the authenticity of public
keys is guaranteed in the form of certificate issued by a Certification Authority
(CA). Anyone who wants to send a confidential message to someone else by using
a public key encryption must first verify the corresponding certificate to check
the validity of the public key. The problems of certificate-based cryptography
have been well documented, especially the issues associated with the certificate
management, including storage, distribution, and the computation cost of cer-
tificate verification.

In 1984, Shamir proposed the notion of Identity-Based Cryptography [15] in
which an entity’s public key is derived directly from its identity, such as IP
address or an e-mail address, while the private key is generated by a trusted third
party called a private key generator (PKG). The first fully-functional and secure
identity-based public key encryption scheme was presented in [5]. The advantage
of Identity-Based Cryptography is the elimination of the need for certificates.
On the other hand, the full dependence on the Private Key Generator (PKG)
to generate private keys for entities inevitably introduces key escrow problem.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 194–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strongly Secure Certificateless Public Key Encryption Without Pairing 195

In 2003, Al-Riyami and Paterson brought forth a new paradigm called Cer-
tificateless Public Key Cryptography [1] which enjoys the advantage of identity-
based public key cryptography without suffering from the key escrow problem.
Since then, a variety of certificateless public key encryption (CLPKE) schemes
have been proposed [17,6,2,18,16,4,11,14,12]. In 2005, Baek et al. [3] proposed the
first CLPKE scheme that does not depending on the pairings. Compared to the
previous CLPKE schemes, an attractive feature of their scheme is the efficiency
gained from removing computationally-heavy pairing operations. However, the
security model for CLPKE, which Baek et al’ uses in [3] to analyze their scheme
is, as pointed out in [11], sightly weaker than Al-Riyami and Patersen’s [1] orig-
inal security model for CLPKE in a sense that the Type I adversary is not
allowed to request a partial private key associated with the challenge (target)
identity at any time during the attack. (In Al-Riyami and Patersen’s security
model for CLPKE, the Type I adversary can request a partial private key asso-
ciated with the target identity if the public key associated with it has not been
replaced.) In addition to this, we point out that Baek et al.’s security analysis
for their scheme fails to consider the case when the Type I adversary replaces
the public key associated with the challenge identity; and that when this public
key replacement occurs, it is impossible to present a reduction from the Com-
putational Diffie-Hellman (CDH) problem to the Type I security of Baek et al’s
CLPKE scheme as the CDH attack algorithm simulating the environment of the
Type I adversary does not know the private corresponding to the public key that
has been replaced, which is used to derive the Diffie-Hellman key at the end of
the simulation.

Our Contributions. It seems to us that it is not easy to fix the above problem
without modifying Baek et al’s scheme nor introducing somewhat non-standard
computational assumption related to the CDH assumption. In this paper we
take the former approach. Namely, we modify Baek et al.’s CLPKE scheme to
construct a new one, which is proven to be secure against the Type I and Type
II adversaries in a strong sense that the Type I adversary is able to replace the
public key associated with the challenge identity (before challenge phase) but
is unable to extract partial private key associated with the challenge identity
at any time during the attack, provided that the Computational Diffie-Hellman
problem is intractable and the underlying hash functions are the random oracles.

The rest of our paper is organized as follows. Section 2 gives definitions of
CLPKE and the security model. Our scheme is given in Section 3 followed by
the security proof in Section 4. Section 5 concludes the paper.

2 Definitions

First we recall the definition of certificateless public key encryption, given by
Baek et al. [3]. Note that their definition of CLPKE is slightly weaker than
the one given by Al-Riyami and Patersen [1] in a sense that the user must
authenticate himself/herself to the Key Generation Center (KGC) and obtain

196 Y. Sun, F. Zhang, and J. Baek

an appropriate partial public key to create a public key, while Al-Riyami and
Patersen’s original CLPKE does not require this. A formal definition follows.

Definition 1 (Certificateless Public Key Encryption Scheme). A cer-
tificateless public key encryption (CLPKE) scheme is defined by the following
seven algorithms:

– Setup: Providing some security parameter k as input, the KGC runs this
algorithm to create a master key mk and a list of public parameters params.

– PartialKeyExtract: Providing params, mk and a user’s identifier ID as input,
the KGC runs this algorithm to create a partial private key DID and a partial
public key PID.

– SetSecretValue: Providing params and ID as input, the user (the owner of
ID) runs this algorithm to create a secret value sID.

– SetPrivateKey: Providing params, DID and sID as input, the user runs this
algorithm to set a private key SKID.

– SetPublicKey: Providing params, PID and sID as input, the user runs this
algorithm to set a public key PKID.

– Encrypt: Providing params, PKID, ID and a message M as input, any entity
runs this algorithm to create a ciphertext C. Note that C can be a special
symbol ⊥, meaning “Reject”.

– Decrypt: Providing params, SKID and C, the user runs this algorithm to
decrypt C into M . Note that M can be a special symbol ⊥ (“Reject”).

We now review Baek et al.’s definition of the security of the CLPKE scheme.
As usual, their definition considers two types of adversaries, Type I and Type
II. The difference between them is that a Type I adversary AI does not have
access to the master key but may replace public keys of arbitrary identities with
values of its own choice, whereas a Type II adversary AII does have access to the
master key but may not replace public keys of entities. As pointed out in [11],
Baek et al.’s security definition for a Type I adversary is weaker than Al-Riyami
and Patersen’s [1] in a sense that AI does not extract partial private key for the
target identity in any phase. That is, the security models we use here are the
Strong Type I* and the Weak Type II models proposed by W.Dent [7].

Definition 2 (Security of CLPKE). Let AI and AII denote Type I and II
adversaries for the CLPKE scheme respectively. We consider two games Game
I and Game II where AI and AII interact with their Challenger. Note that the
Challenger keeps a history of query-answer while interacting with the adver-
saries.
Game I (for a Type I adversary)

– Setup: The Challenger runs Setup by taking a security parameter k as input
to generate a master key mk and a list of public parameters params. It gives
params to the adversary AI and keeps mk secret.

– Phase 1: Below, we describe AI ’s various queries and the Challenger’s re-
sponses to them:

Strongly Secure Certificateless Public Key Encryption Without Pairing 197

• Partial Key Extraction query ID: The Challenger runs PartialKeyEx-
tract to generate the partial private key DID and the partial public key
PID, and returns them to AI .

• Private Key Extraction ID: The challenger runs PartialKeyExtract
and SetSecretValue to generate (DID, PID) and sID respectively, and then
runs SetPrivateKey to generate the private key SKID. It returns SKID to
AI .

• Public Key request ID: The challenger runs PartialKeyExtract and
SetSecretValue to generate (DID, PID) and sID respectively, and then
runs SetPublicKey to generate the public key PKID. It returns PKID to
AI .

• Public Key Replacement: The adversary AI can repeatedly replace
the public key for any identity with any value of its choice. The current
value of an entity’s public key is used by the challenger in any compu-
tation or response to the adversary’s requests.

• Decryption query: The adversary supplies an identity ID and a ci-
phertext C. The challenger responds with the decryption of C under the
private key that is associated with the current public key.

– Challenge Phase: Once AI decides that Phase 1 is over, it outputs the
challenge identity ID∗ and two equal-length plaintext messages (M0, M1).
Note that ID∗ has not been queried to extract a partial private key nor a
private key at any time. The Challenger picks β ∈R {0, 1} and creates a
target ciphertext C∗ which is the encryption of Mβ under the current public
key PKID∗ . The Challenger returns C∗ to AI .

– Phase 2: AI makes more queries as in Phase 1. Note that ID∗ should not
be queried to extract a partial private key nor a private key at any time and
no decryption query should be made on C∗ for the combination of ID∗ and
PKID∗ that was used to encrypt Mβ.

– Guess: AI outputs its guess β′ ∈ {0, 1} for β.

Game II (for a Type II adversary)

– Setup: The Challenger runs Setup by taking a security parameter k as input
to generate a master key mk and a list of public parameters params. It gives
both mk and params to the adversary AII .

– Phase 1: As AII knows mk, it can run PartialKeyExtract to generate the par-
tial public/private key pair (D, P). Below, we describe AII ’s various queries
and the Challenger’s responses to them:

• Private Key Extraction ID: The challenger runs PartialKeyExtract
and SetSecretValue to generate (DID, PID) and sID respectively, and then
runs SetPrivateKey to generate the private key SKID. It returns SKID

to AII .
• Public Key request ID: The challenger runs PartialKeyExtract and

SetSecretValue to generate (DID, PID) and sID respectively, and then
runs SetPublicKey to generate the public key PKID. It returns PKID

to AII .

198 Y. Sun, F. Zhang, and J. Baek

• Decryption query: Adversaries can issue decryption queries for any
identity and any ciphertext.

– Challenge Phase: Once AII decides that Phase 1 is over, it outputs the
challenge identity ID∗ and two equal-length plaintext messages (M0, M1).
Note that ID∗ has not been queried to extract a private key at any time. The
Challenger picks β ∈R {0, 1} and creates a challenge ciphertext C∗ which is
the encryption of Mβ under the public key for ID∗. The Challenger returns
C∗ to AII .

– Phase 2: AII makes more queries as in Phase 1. Note that ID∗ should not
be queried to extract a private key and no decryption query should be made
on C∗ for ID∗.

– Guess: AII outputs its guess β′ ∈ {0, 1} for β.

We define Ai’s advantage in the above game i by Adv(Ai) = 2(Pr[β′ =
β] − 1

2), i ∈ {I, II}. A CLPKE scheme is said to be IND-CCA secure if no prob-
abilistic polynomial-time adversary has non-negligible advantage in the above
games.

A signature scheme consists of four algorithms: a parameter generation algorithm
ParamGen, a key generation algorithm KeyGen, a signature generation algorithm
Sign and a signature verification algorithm Ver.

Definition 3 (Security of Signature). A signature scheme S = 〈ParamGen,
KeyGen, Sign, Ver〉 is existentially unforgeable under an adaptive chosen message
attack (EUF-CMA secure) if it is infeasible for a forger F who only knows
the public key to produce a valid message-signature pair with non-negligible
advantage after obtaining polynomially many signatures on messages of its choice
from the signer.

We define F ’s advantage to be

Adv(F) = Pr

⎡
⎢⎢⎢⎢⎣

〈pk, sk〉 ← 〈ParamGen, KeyGen〉;
for i = 1, 2, ..., k;
mi ← F(pk, m1, σ1, ..., mi−1, σi−1), σi ← Sign(sk, mi);
〈m, σ〉 ← F(pk, m1, σ1, ..., mk, σk);
m /∈ {m1, ..., mk}, Ver(pk, m, σ) = accept.

⎤
⎥⎥⎥⎥⎦

Finally we review the definition of the Computational Diffie-Hellman (CDH)
problem as follows.

Definition 4 (Computational Diffie-Hellman (CDH)). Let p and q be
primes such that q|(p − 1). Suppose g is an element selected from Z∗p with order
q. Let B be an attacker. B tries to solve the following problem: Given (g, ga, gb)
for uniformly chosen a, b ∈ Z∗q at random, compute gab. We define B’s advantage
in solving the CDH problem by Adv(B) = Pr[B(g, ga, gb) = gab].

3 Our CLPKE Scheme

In this section, we describe our CLPKE scheme without pairing. The construc-
tion of our scheme is based on Baek et al’s scheme but we make an important

Strongly Secure Certificateless Public Key Encryption Without Pairing 199

modification on the algorithm SetPublicKey to prevent some components of the
public keys from being altered (by an attacker). Speaking informally, this is
achieved by incorporating the signing algorithm of the Schnorr signature scheme
into partial public key extraction and the verification algorithm to the CLPKE
encryption algorithm. – By the unforgeability of the Schnorr signature, attackers
are unable to replace the partial public key with the values of their choices.

A formal description of our CLPKE scheme is as follows.

– Setup: This algorithm takes as input a security parameter k to generate two
primes p, q such that q|(p − 1). It then performs the following:
1. Pick an element g from Z∗p with order q.
2. Select x ∈R Z

∗
q and compute y = gx.

3. Choose cryptographic hash functions H1 : {0, 1}∗ × Z∗p → Z∗q , H2 :
{0, 1}∗ × Z∗p × Z∗p → Z∗q , H3 : {0, 1}∗ → Z∗q , H4 : Z∗p × Z∗p → {0, 1}n+k0.
Here n, k0 are the bit-length of a plaintext and a random bit string,
respectively.

The system parameters params are 〈p, q, n, k0, g, y, H1, H2, H3, H4〉. The
master key mk is x. The plaintext space is M = {0, 1}n and the cipher-
text space is C = Z∗p × {0, 1}n+k0.

– PartialKeyExtract: Taking params, mk and an entity’s identifier ID as input,
this algorithm selects s0, s1 ∈R Z

∗
q , computes w0 = gs0 , w1 = gs1 ,d0 =

s0+xH1(ID, w0), d1 = s1+xH2(ID, w0, w1), and returns the partial private
key DID = d0 and the partial public key PID = (w0, w1, d1).

– SetSecretValue: Taking params and ID as input, this algorithm picks z ∈R Z∗q
and outputs the secret value sID = z.

– SetPrivateKey: Taking params, DID and sID as input, this algorithm returns
the private key SKID = (d0, z).

– SetPublicKey: Taking params, PID and sID as input, this algorithm computes
u = gz and returns the public key PKID = (u, w0, w1, d1).

– Encrypt: To encrypt a plaintext M ∈ {0, 1}n for an entity with identifier ID
and public key PKID = (u, w0, w1, d1), this algorithm performs the following
steps:
1. Check whether gd1 = w1y

H2(ID,w0,w1). If not, output ⊥ and abort en-
cryption.

2. Choose σ ∈R {0, 1}k0 and compute r = H3(M, σ, ID, u).
3. Compute and output the ciphertext C = (U, V): U = gr, V = (M‖σ) ⊕

H4(wr
0y

H1(ID,w0)r, ur).
– Decrypt: Suppose the ciphertext to be decrypted is C = (U, V). To decrypt

C using SKID = (d0, z), this algorithm conducts the following: Compute
M‖σ = V ⊕ H4(Ud0 , Uz), r = H3(M, σ, ID, u). If gr = U , return M . Other-
wise, output ⊥.

We remark that the reason why the intractability of the CDH problem could
not be reduced to the security of Baek et al.’s [3] CLPKE scheme is that the s0

value will be unknown to the CDH adversary when the public key is replaced.
As mentioned earlier, our scheme avoids this problem by introducing another
Schnorr signature to authenticate the w0(= gs0) value.

200 Y. Sun, F. Zhang, and J. Baek

4 Security Analysis

In this section, we analyze the security of our CLPKE scheme.

Theorem 1. Our CLPKE scheme is IND-CCA secure in the random oracle
model, assuming that the CDH problem is intractable.

The above theorem is obtained by combining Lemma 1 and Lemma 2.

Lemma 1. Suppose H1, H2, H3, H4 are random oracles and there exists a Type
I IND-CCA adversary AI against the CLPKE scheme with advantage ε when
running in time t, making qpk public key requests, qpar partial key queries, qpri

private key queries, qPR public key replacement queries, qD decryption queries
and qi random oracle queries to Hi (1 � i � 4). Then, for any 0 � ν � ε, there
exists

– either an algorithm B to solve the CDH problem with advantage

ε′ � 1
q4

(
ε(1 − ν)qP R

e(qpar + qpri + 1)
− q3

2k0
− qD

q

)

and running in time t′ = max{t + (q1 + q2 + q3 + q4)O(1) + (qpk + qPR +
qD)(4TEX + O(1)), cq2t/ε}, where TEX denotes the time for computing ex-
ponentiation in Z∗p, and c is some constant greater than 120686 assuming
that ε ≥ 10(qpar + 1)(qpar + q2)/q.

– or an attacker that breaks the EUF-CMA security of the Schnorr signature
with advantage ν within time t′.

Proof. To prove the lemma, we first assume that the Schnorr signature scheme
is EUF-CMA secure with advantage ν (0 � ν � ε) within time t′.

Let AI be a Type I IND-CCA adversary against the CLPKE scheme. We
show how to construct from AI an algorithm B to solve the CDH problem.

B is given a random instance 〈g, ga, gb〉 of the CDH problem. B sets y = ga

and simulates the Setup algorithm of the CLPKE scheme by supplying AI with
〈p, q, n, k0, g, y, H1, H2, H3, H4〉 as public parameters, where H1, H2, H3, H4 are
random oracles controlled by B.

AI may make queries to random oracles Hi(1 � i � 4) at any time during its
attack and B responds as follows:

H1 queries: B maintains a H1 list of tuples 〈(IDi, w0i), e0i〉. On receiving such
a query on (IDi, w0i), B does the following:

1. If there is a tuple 〈(IDi, w0i), e0i〉 on the H1 list, then B returns e0i as answer.
2. Otherwise, B chooses e0i ∈R Z∗q , adds 〈(IDi, w0i), e0i〉 to the H1 list and

returns e0i as answer.

H2 queries: B maintains a H2 list of tuples 〈(IDi, w0i, w1i), e1i〉. On receiving
such a query on (IDi, w0i, w1i), B first checks if there is a tuple 〈(IDi, w0i, w1i), e1i〉
on the H2 list. If there is, return e1i as answer. Otherwise, B picks e1i ∈R Z∗q , adds
〈(IDi, w0i, w1i), e1i〉 to the H2 list and returns e1i as answer.

Strongly Secure Certificateless Public Key Encryption Without Pairing 201

H3 queries: B maintains a H3 list of tuples 〈(Mi, σi, IDi, ui), ri〉. On receiv-
ing such a query on (Mi, σi, IDi, ui), B first checks if there is a tuple 〈(Mi, σi,
IDi, ui), ri〉 on the H3 list. If there is, return ri as answer. Otherwise, B picks
ri ∈R Z∗q and returns ri as answer.

H4 queries: B maintains a H4 list of tuples 〈(A, B), h〉. On receiving such a
query on (A, B), if there is a tuple 〈(A, B), h〉 on the H4 list, then B returns h
as answer. Otherwise, B picks h ∈R {0, 1}n+k0, adds 〈(A, B), h〉 to the H4 list
and returns h as answer.

Phase 1: AI launches Phase 1 of its attack by making a series of requests, each
of which is either a public key request, a partial key extraction, a private key
extraction, a public key replacement or a decryption query.

Public Key request: B maintains a public key list of tuples 〈IDi, (ui, w0i,
w1i, d1i), coin〉. On receiving such a query on IDi. B responds as follows:

1. If there is a tuple 〈IDi, (ui, w0i, w1i, d1i), coin〉 on the list, return (ui, w0i,
w1i, d1i) as answer.

2. Otherwise, pick coin ∈ {0, 1} with Pr[coin = 0] = δ (δ will be determined
later).

(a) If coin = 0, choose d0i, d1i, e0i, e1i, zi ∈R Z∗q , compute w0i = gd0iy−e0i ,

w1i = gd1iy−e1i , ui = gzi . (Check the H1 list and if there is a tuple of
the form 〈(IDi, w0i), e0〉, re-choose d0i, e0i ∈R Z

∗
q ; Check the H2 list and

if there is a tuple of the form 〈(IDi, w0i, w1i), e1〉, re-choose d1i, e1i ∈R

Z∗q .) Add 〈(IDi, w0i), e0i〉 to the H1 list, 〈(IDi, w0i, w1i), e1i〉 to the H2

list, 〈IDi, d0i, (w0i, w1i, d1i)〉 to the partial key list, 〈IDi, (d0i, zi)〉 to the
private key list and 〈IDi, (ui, w0i, w1i, d1i), coin〉 to the public key list.
Return (ui, w0i, w1i, d1i) as answer.

(b) Otherwise (coin = 1), choose s0i, d1i, e1i, zi ∈R Z∗q , compute w0i =
gs0i , w1i = gd1iy−e1i , ui = gzi. (Check the H2 list and if there is a
tuple of the form 〈(IDi, w0i, w1i), e1〉, re-choose d1i, e1i ∈R Z∗q .) Add
〈(IDi, w0i, w1i), e1i〉 to the H2 list and 〈IDi, (ui, w0i, w1i, d1i), s0i, coin〉
to the public key list. Return (ui, w0i, w1i, d1i) as answer.

Partial Key Extraction: B maintains a partial key list of tuples 〈IDi, d0i,
(w0i, w1i, d1i)〉. On receiving such a query on IDi, B responds as follows:

1. If there is a tuple 〈IDi, d0i, (w0i, w1i, d1i)〉 on the list, return d0i as the partial
private key and (w0i, w1i, d1i) as the partial public key.

2. Otherwise, run the simulation algorithm for public key request taking IDi

as input to get a tuple 〈IDi, (ui, w0i, w1i, d1i), coin〉. If coin = 0, search the
partial key list for a tuple 〈IDi, d0i, (w0i, w1i, d1i)〉 and return d0i as the
partial private key and (w0i, w1i, d1i) as the partial public key. Otherwise
(coin = 1), B aborts.

Private Key Extraction: B maintains a private key list of tuples 〈IDi, (d0i, zi)〉.
On receiving such a query on IDi. B responds as follows:

202 Y. Sun, F. Zhang, and J. Baek

1. If there is a tuple 〈IDi, (d0i, zi)〉 on the list, return (d0i, zi) as answer.
2. Otherwise, run the simulation algorithm for public key request taking IDi

as input to get a tuple 〈IDi, (ui, w0i, w1i, d1i), coin〉. If coin = 0, search the
private key list for a tuple 〈IDi, (d0i, zi)〉 and return (d0i, zi) as answer.
Otherwise (coin = 1), B aborts.

Public Key Replacement: AI may replace the public key (ui, w0i, w1i, d1i) for
any entity IDi with any value (u′i, w

′
0i, w

′
1i, d

′
1i) of its choice. If (w′0i, w

′
1i, d

′
1i) �=

(w0i, w1i, d1i) satisfying gd′
1i = w′1iy

−H2(IDi,w
′
0i,w

′
1i), B aborts. Otherwise, B

records the change.

Decryption queries: Suppose the request is to decrypt ciphertext C = (U, V)
for IDi. B searches the public key list for a tuple 〈IDi, (ui, w0i, w1i, d1i), coin〉.
Then B does the following:

1. If the public key has not been replaced and coin = 0
(a) Search the private key list for a tuple 〈IDi, (d0i, zi)〉.
(b) Compute M‖σ = V ⊕ H4(Ud0i , Uzi), r = H3(M, σ, IDi, ui). If gr = U ,

return M . Otherwise, output ⊥.
2. Otherwise, search the H3 list for a tuple 〈(Mi, σi, IDi, ui), ri〉 satisfying U =

gri , V = (Mi‖σi) ⊕ H4(wri

0iy
H1(IDi,w0i)ri , uri

i). Return the corresponding Mi

if such a tuple exists. Otherwise, output ⊥.

Challenge Phase: AI outputs ID∗ and two messages M0, M1 on which it
wishes to be challenged. Upon receiving ID∗, B searches the public key list for
the tuple 〈ID∗, (u∗, w∗0 , w∗1 , d∗1), coin〉 and then conducts the following:

1. If coin = 0, abort the game.
2. Otherwise, do the following:

(a) Pick σ∗ ∈R {0, 1}k0, β ∈R {0, 1} and V ∗ ∈R {0, 1}n+k0.
(b) Set U∗ = gb and e∗0 = H1(ID∗, w∗0).
(c) Define b = H3(Mβ, σ∗, ID∗, u∗) and H4(w∗0

bye∗
0b, u∗b) = V ∗ ⊕ (Mβ‖σ∗).

(d) Output C∗ = 〈U∗, V ∗〉 as the challenge ciphertext. Note that from the
construction above, V ∗ = (Mβ‖σ∗) ⊕ H4(w∗0

bye∗
0b, u∗b) = (Mβ‖σ∗) ⊕

H4(gbs∗
0gabe∗

0 , u∗b).

Phase 2: B continues to respond to AI ’s requests in the same way as it did in
Phase 1. Note that AI can not make a partial key extraction query or a private
key extraction query on ID∗. No decryption query should be made on C∗ for
the combination of ID∗ and (u∗, w∗0 , w∗1 , d∗1) that was used to encrypt Mβ.

Guess: Eventually, AI outputs its guess. B chooses a random pair 〈(A, B), h〉

from the H4 list and outputs
(

A

gbs∗
0

) 1
e∗
0 as the solution to the CDH problem.

Analysis. We first evaluate the simulations of the random oracles. From the con-
structions of H1 and H2, it is clear that the simulations of H1 and H2 are perfect.
And as long as AI does not query (Mβ , σ∗, ID∗, u∗) to H3 nor (w∗0

bye∗
0b, u∗b)

to H4, the simulations of H3 and H4 are perfect. Let AskH∗3 denote the event

Strongly Secure Certificateless Public Key Encryption Without Pairing 203

that (Mβ, σ∗, ID∗, u∗) has been queried to H3 and AskH∗4 be the event that
(w∗0

bye∗
0b, u∗b) has been queried to H4.

Since we view H3 and H4 as random oracles, the simulated challenge cipher-
text is identically distributed as the real one.

As to the simulation of decryption oracle, B will wrongly reject a valid ci-
phertext during the simulation with probability smaller than qD/q. Namely,
Pr[DecErr] � qD/q, where DecErr denotes the event that B rejects a valid cipher-
text during the simulation.

Let E = (AskH∗4 ∨ AskH∗3 ∨ DecErr)|¬Abort. It is clear that if E does not hap-
pen during the simulation, B will not gain any advantage greater than 1/2 to
guess β, due to the randomness of the output of H4. Namely, Pr[β′ = β|¬E] �
1/2. We obtain

Pr[β′ = β] = Pr[β′ = β|¬E]Pr[¬E] + Pr[β′ = β|E]Pr[E]

� 1
2
Pr[¬E] + Pr[E] =

1
2

+
1
2
Pr[E]

By definition of ε, we have

ε � 2(Pr[β′ = β] − 1
2
) � Pr[E]

� Pr[AskH∗4] + Pr[AskH∗3] + Pr[DecErr]
Pr[¬Abort]

The probability that B does not abort during the simulation is given by
δqpar+qpri(1 − δ)(1 − ν)qP R which is maximized at δ = 1 − 1

(qpar+qpri+1) . Hence

Pr[¬Abort] � (1−ν)qP R

e(qpar+qpri+1) , where e denotes the base of the natural logarithm.
Hence, It is not difficult for us to reach the following

Pr[AskH∗4] � εPr[¬Abort] − Pr[AskH∗3] − Pr[DecErr]

� ε(1 − ν)qP R

e(qpar + qpri + 1)
− q3

2k0
− qD

q

If AskH∗4 happens, then AI may be able to distinguish the simulation from
the real life (it can tell that the challenge ciphertext C∗ by the simulation is
invalid), but H4(w∗0

bye∗
0b, u∗b) has been recorded on the H4 list. Then B wins if

it chooses the correct element from the H4 list. Hence we obtain the advantage
for B to solve the CDH problem

ε′ � 1
q4

Pr[AskH∗4] � 1
q4

(
ε(1 − ν)qP R

e(qpar + qpri + 1)
− q3

2k0
− qD

q

)

The running time of the CDH attacker B is bounded by t′ = max{t+(q1+q2+
q3 + q4)O(1) + (qpk + qPR + qD)(4TEX + O(1)), cq2t/ε}, where TEX denotes the
time for computing exponentiation in Z∗p, and c is some constant greater than
120686 assuming that ε ≥ 10(qpar + 1)(qpar + q2)/q. (This estimate in obtained
from the result of [13].)

204 Y. Sun, F. Zhang, and J. Baek

The following Lemma 2 shows that our CLPKE scheme is secure against the
Type II adversary.

Lemma 2. Suppose H1, H2, H3, H4 are random oracles and there exists a Type
II IND-CCA adversary AII against the CLPKE scheme with advantage ε when
running in time t, making qpk public key requests, qpri private key extraction
queries, qD decryption queries and qi random oracle queries to Hi (1 � i � 4).
Then there exists an algorithm B to solve the CDH problem with advantage
ε′ � 1

q4

(
ε

qpri+1 − q3
2k0 − qD

q

)
running in time t′ < t+(q1+q2+q3+q4)O(1)+(qpk+

qD)(3TEX + O(1)), where TEX denotes the time for computing exponentiation
in Z∗p.

The proof is presented in Appendix A.

5 Concluding Remarks

In this paper we have presented a CLPKE scheme that does not depend on
the pairings but is provably secure in the security model where a Type I adver-
sary is allowed to replace the public key associated with the challenge identity
(before challenge phase). – Note that the security analysis of Baek et al’s [3]
CLPKE scheme without pairings does not consider this case. – The security of
our CLPKE scheme is relative to the standard CDH problem.

We, however, could not prove whether the proposed scheme is still secure
when the adversary extracts a partial private key associated with the challenge
identity. Proving (or disproving) this is an interesting open problem.

References

1. Al-Riyami, S.S., Paterson, K.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Al-Riyami, S.S., Paterson, K.: CBE from CL-PKE: A generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005)

3. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption with-
out pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005)

4. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic Constructions of
Identity-Based and Certificateless KEMs (2005), Available from
http://eprint.iacr.org/2005/058

5. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Cheng, Z., Comley, R.: Efficient Certificateless Public Key Encryption. Cryptology
ePrint Archive, Report 2005/012 (2005), http://eprint.iacr.org/2005/012

7. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models
(2006), Available from http://eprint.iacr.org/2006/211

http://eprint.iacr.org/2005/058
http://eprint.iacr.org/2005/012
http://eprint.iacr.org/2006/211

Strongly Secure Certificateless Public Key Encryption Without Pairing 205

8. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetirc and Symmetric En-
cryption Schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
537–554. Springer, Heidelberg (1999)

9. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-key Encryption
at Minimal Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

10. Galindo, D., Morillo, P., Rafols, C.: Breaking Yum and Lee Generic Constructions
of Certificateless and Certificate-Based Encryption Schemes. In: Atzeni, A.S., Lioy,
A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 81–91. Springer, Heidelberg (2006)

11. Libert, B., Quisquater, J.-J.: On Constructing Certificateless Cryptosystems from
Identity based Encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

12. Liu, J.K., Au, M.H., Susilo, W.: Self-Generated-Certificate Public Key Cryptogra-
phy and Certificateless Signature/Encryption Scheme in the Standard Model. In:
Proc. ACM Symposium on Information, Computer and Communications Security,
ACM Press, New York (2007)

13. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology 13(3), 361–396 (2000)

14. Huang, Q., Wong, D.S.: Generic Certificateless Encryption in the Standard Model
(2007), Available from http://eprint.iacr.org/2007/095

15. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

16. Shi, Y., Li, J.: Provable Efficient Certificateless Public Key Encryption (2005),
Available from http://eprint.iacr.org/2005/287/

17. Yum, D., Lee, P.: Generic Construction of Certificateless Encryption. In: Laganà,
A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3043, pp. 802–811. Springer, Heidelberg (2004)

18. Zhang, Z., Feng, D.: On the Security of a Certificateless Public-key Encryption
(2005), Available from http://eprint.iacr.org/2005/426

A Proof of Lemma 2

Proof. Let AII be a Type II IND-CCA adversary against the CLPKE scheme.
We show how to construct from AII an algorithm B to solve the CDH problem.

B is given a random instance 〈g, ga, gb〉 of the CDH problem. B chooses s ∈R

Z∗q , computes y = gs and simulates the Setup algorithm of the CLPKE scheme by
supplying AII with the public parameters 〈p, q, n, k0, g, y, H1, H2, H3, H4〉 and
the master key s, where H1, H2, H3, H4 are random oracles controlled by B.

AII may make queries to random oracles Hi(1 � i � 4) at any time during
its attack and B responds as follows:

H1 queries: B maintains a H1 list of tuples 〈(IDi, w0i), e0i〉. On receiving such
a query on (IDi, w0i), B does the following:

1. If there is a tuple 〈(IDi, w0i), e0i〉 on the H1 list , then B returns e0i as
answer.

2. Otherwise, B chooses e0i ∈R Z∗q , adds 〈(IDi, w0i), e0i〉 to the H1 list and
returns e0i as answer.

http://eprint.iacr.org/2007/095
http://eprint.iacr.org/2005/287/
http://eprint.iacr.org/2005/426

206 Y. Sun, F. Zhang, and J. Baek

H2 queries: B maintains a H2 list of tuples 〈(IDi, w0i, w1i), e1i〉. On receiving
such a query on 〈(IDi, w0i, w1i), B first checks if there is a tuple 〈(IDi, w0i,
w1i), e1i〉 on the H2 list. If there is, return e1i as answer. Otherwise, B picks
e1i ∈R Z∗q , adds 〈(IDi, w0i, w1i), e1i〉 to the H2 list and returns e1i as answer.

H3 queries: B maintains a H3 list of tuples 〈(Mi, σi, IDi, ui), ri〉. On receiving
such a query on (Mi, σi, IDi, ui), B first checks if there is a tuple 〈(Mi, σi, IDi,
ui), ri〉 on the H3 list. If there is, return ri as answer. Otherwise, B picks ri ∈R Z∗q
and returns ri as answer.

H4 queries: B maintains a H4 list of tuples 〈(A, B), h〉. On receiving such a
query on (A, B), if there is a tuple 〈(A, B), h〉 on the H4 list, then B returns h
as answer. Otherwise, B picks h ∈R {0, 1}n+k0, adds 〈(A, B), h〉 to the H4 list
and returns h as answer.

Phase 1: AII launches Phase 1 of its attack by making a series of requests,
each of which is either a public key request, a private key extraction query or a
decryption query.

Compute Partial Key: AII computes the partial private key d0i and the
partial public key (w0i, w1i, d1i) for IDi. B keeps 〈IDi, d0i, (w0i, w1i, d1i)〉 to the
partial key list.

Public Key request: B maintains a public key list of tuples 〈IDi, (ui, w0i,
w1i, d1i),zi, coin〉. On receiving such a query on IDi. B responds as follows:

1. If there is a tuple 〈IDi, (ui, w0i, w1i, d1i), zi, coin〉 on the public key list,
return (ui, w0i, w1i, d1i) as answer.

2. Otherwise, pick coin ∈ {0, 1} with Pr[coin = 0] = δ (δ will be determined
later).
(a) If coin = 0, choose zi ∈R Z∗q and compute ui = gzi. Search the partial

key list to get the partial public key (w0i, w1i, d1i), add 〈IDi, (ui, w0i,
w1i, d1i),zi, coin〉 to the public key list and return (ui, w0i, w1i, d1i) as
answer.

(b) Otherwise (coin = 1), B sets ui = ga, searches the partial key list to get
the partial public key (w0i, w1i, d1i), adds 〈IDi, (ui, w0i, w1i, d1i), ?, coin〉
to the public key list and returns (ui, w0i, w1i, d1i) as answer.

Private Key Extraction: B maintains a private key list of tuples 〈IDi, (d0i, zi)〉.
On receiving such a query on IDi. B responds as follows:

1. If there is a tuple 〈IDi, (d0i, zi)〉 on the private key list, return (d0i, zi) as
answer.

2. Otherwise, search the partial key list to get the partial private key d0i and
run the simulation algorithm for public key request taking IDi as input to
get a tuple 〈IDi, (ui, w0i, w1i, d1i), zi, coin〉. If coin = 0, return (d0i, zi) as
answer. Otherwise (coin = 1), B aborts.

Decryption queries: Suppose the request is to decrypt ciphertext C = (U, V)
for IDi. B first runs the simulation algorithm for public key request taking IDi as
input to get a tuple 〈IDi, (ui, w0i, w1i, d1i), zi, coin〉. Then B does the following:

Strongly Secure Certificateless Public Key Encryption Without Pairing 207

1. If coin = 0, search the private key list for a tuple 〈IDi, (d0i, zi)〉. Compute
M‖σ = V ⊕ H4(Ud0i , Uzi), r = H3(σ, M, IDi, ui). If gr = U , return M .
Otherwise, output ⊥.

2. Otherwise, search the H3 list for a tuple 〈(Mi, σi, IDi, ui), ri〉 satisfying U =
gri , V = (Mi‖σi) ⊕ H4(wri

0iy
H1(IDi,w0i)ri , uri

i). Return the corresponding Mi

if such a tuple exists. Otherwise, output ⊥.

Challenge Phase: AII outputs ID∗ and two messages M0, M1 on which it
wishes to be challenged. Then B runs the simulation algorithm for public key
request taking ID∗ as input to get a tuple 〈ID∗, (u∗, w∗0 , w∗1 , d∗1), zi, coin〉 and
then conducts the following:

1. If coin = 0, abort the game.
2. Otherwise, do the following:

(a) Pick σ∗ ∈R {0, 1}k0, β ∈R {0, 1} and V ∗ ∈R {0, 1}n+k0.
(b) Set U∗ = gb and e∗0 = H1(ID∗, w∗0).
(c) Define b = H3(Mβ, σ∗, ID∗, u∗) and H4(w∗0

bye∗
0b, u∗b) = V ∗ ⊕ (Mβ‖σ∗).

(d) Output C∗ = 〈U∗, V ∗〉 as the challenge ciphertext. Note that from the
construction above, V ∗ = (Mβ‖σ∗) ⊕ H4(w∗0

bye∗
0b, u∗b) = (Mβ‖σ∗) ⊕

H4(w∗0
bgbe∗

0 , gab).

Phase 2: B continues to respond to AII ’s requests in the same way as it did
in Phase 1. Note that AII can not make private key extraction queries on ID∗.
If any decryption query is equal to the challenge ciphertext C∗ for ID∗, then B
aborts.

Guess: Eventually, AII outputs its guess. Then B chooses a random pair
〈(A, B), h〉 from the H4 list and outputs B as the solution to the CDH problem.

Analysis. First we evaluate the simulations of the random oracles. From the con-
structions of H1 and H2, it is clear that the simulations of H1 and H2 are perfect.
And as long as AII does not query (Mβ , σ∗, ID∗, u∗) to H3 nor (w∗0

bye∗
0b, u∗b)

to H4, the simulations of H3 and H4 are perfect. Let AskH∗3 denote the event
that (Mβ, σ∗, ID∗, u∗) has been queried to H3 and AskH∗4 be the event that
(w∗0

bye∗
0b, u∗b) has been queried to H4.

Since we view H3 and H4 as random oracles, the simulated challenge cipher-
text is identically distributed as the real one.

As to the simulation of decryption oracle, B will wrongly reject a valid ci-
phertext during the simulation with probability smaller than qD/q. Namely,
Pr[DecErr] � qD/q, where DecErr denotes the event that B rejects a valid cipher-
text during the simulation.

Let E = (AskH∗4 ∨ AskH∗3 ∨ DecErr)|¬Abort. It is clear that if E does not hap-
pen during the simulation, B will not gain any advantage greater than 1/2 to
guess β, due to the randomness of the output of H4. Namely, Pr[β′ = β|¬E] �
1/2. We obtain

Pr[β′ = β] = Pr[β′ = β|¬E]Pr[¬E] + Pr[β′ = β|E]Pr[E]

� 1
2
Pr[¬E] + Pr[E] =

1
2

+
1
2
Pr[E]

208 Y. Sun, F. Zhang, and J. Baek

By definition of ε, we have

ε � 2(Pr[β′ = β] − 1
2
) � Pr[E]

� Pr[AskH∗4] + Pr[AskH∗3] + Pr[DecErr]
Pr[¬Abort]

The probability that B does not abort during the simulation is given by
δqpri(1 − δ) which is maximized at δ = 1 − 1

qpri+1 . Hence Pr[¬Abort] � 1
e(qpri+1) ,

where e denotes the base of the natural logarithm.
It is not difficult for us to reach the following

Pr[AskH∗4] � εPr[¬Abort] − Pr[AskH∗3] − Pr[DecErr]

� ε

e(qpri + 1)
− q3

2k0
− qD

q

If AskH∗4 happens, then AII may be able to distinguish the simulation from
the real life (it can tell that the challenge ciphertext C∗ by the simulation is
invalid), but H4(w∗0

bye∗
0b, u∗b) has been recorded on the H4 list. Then B wins if

it chooses the correct element from the H4 list. Hence we obtain the advantage
for B to solve the CDH problem

ε′ � 1
q4

Pr[AskH∗4] � 1
q4

(
ε

e(qpri + 1)
− q3

2k0
− qD

q

)

The running time of the CDH attacker is bounded by t′ < t + (q1 + q2 + q3 +
q4)O(1) + (qpk + qD)(3TEX +O(1)), where TEX denotes the time for computing
exponentiation in Z∗p.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 209–227, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Protocol Based
Packet Header Anomaly Detector for

Network and Host Intrusion Detection Systems

Solahuddin B. Shamsuddin and Michael E. Woodward

Department of Computing, School of Informatics
University of Bradford, United Kingdom

{S.B.Shamsuddin,M.E.Woodward}@bradford.ac.uk

Abstract. This paper describes an experimental protocol based packet header
anomaly detector for Network and Host Intrusion Detection System modelling
which analyses the behaviour of packet header field values based on its layer
2, 3 and 4 protocol fields of the ISO OSI Seven Layer Model for Networking.
Our model which we call as Protocol based Packet Header Anomaly Detector
(PbPHAD) Intrusion Detection System is designed to detect the anomalous
behaviour of network traffic packets based on three specific network and
transport layer protocols namely UDP, TCP and ICMP to identify the degree of
maliciousness from a set of detected anomalous packets identified from the sum
of statistically modelled individually rated anomalous field values.

Keywords: Anomaly, Data base, Network Intrusion Detection System.

1 Introduction

The advent of Intrusion Detection System (IDS) technologies have contributed a lot to
the Network Security domain which have been the much talked about issues after a
wave of the infamous ‘code red’ worm and its like i.e. ‘self propagating malicious
code’ flooding and choking the internet traffic which almost caused a nearly
catastrophic effect to the internet connected network infrastructures during this early
part of the decade. Two major technologies which are commonly used in the design
and development of the IDS are the signature based and anomaly based IDSs. We are
focusing our IDS model based on the anomalous behaviour of the packet headers
which behaves differently depending on the protocol used in the transmisson of a
particular packet at network and transport layers.

In this experiment, we used MIT Lincoln Lab 1999 off-line intrusion detection
evaluation data set [1] as the training and testing data as this data set has become one
of the de facto standards for test data set among the IDS researcher community. A lot
of well documented experiments have been published using this data set i.e. [2], [3],
[4], [5], [6], [7], [8] and [9]. By using a skilfully crafted publicly available data set
with a large quantity of rich background traffic, we would foresee that the result of
our experiment would be very appealing as it can be compared with the published
results by a number of researchers from renowned research institutions.

210 S.B. Shamsuddin and M.E. Woodward

The rest of the paper is organized as follows. In section 2, we discuss other related
works in intrusion detection system. In section 3, we describe PbPHAD model which
include its design concept, process flow and statistical modelling. In Section 4, we
discuss PbPHAD experimental results on 1999 DARPA evaluation data set. In
section 5, we compare PbPHAD experimental results with the 1999 DARPA IDS
evaluation best system results on poorly detected attacks. In section 6, we discuss the
conclusion of our experiment. We present our future work in section 7.

2 Related Work

The fundamental inspiration behind our experiment was drawn from a Technical
Report written by M.V. Mahoney and P.K. Chan that learns the normal range of
values for 33 fields of the Ethernet, IP, TCP, UDP and ICMP protocols using a
generic statistical model for all values in the packet headers for all protocols [10]. Our
experiment in essence is to expand this idea of using just the packet header field
values to learn the anomalous behaviour of the packets during transmission in any
TCP/IP network traffic. We extend the statistical analysis by modelling the detection
algorithm based on three specific network and transport layer protocols namely UDP,
TCP and ICMP. Future analysis will be done using the combination of knowledge
engineering methodologies which would eventually determine to some extent the
degree of maliciousness of the detected anomalous packets in a cluster which is
suspected to be intrusive through their assigned anomaly scores.

3 Protocol Based Packet Header Anomaly Detection (PbPHAD)
Model

Fig. 1. [11] shows of an isolated test bed network for the 1999 DARPA offline eva-
luation. Scripting techniques were used to generate live background traffic which is
similar to traffic that flows between the inside of one fictional Eyrie Air force base
created for the evaluation to the outside internet. Rich background traffic was
generated in the test bed which looks as if it were initiated by hundreds of users on

Fig. 1. Block Diagram of DARPA 1999 Test Bed

 Modeling Protocol Based Packet Header Anomaly Detector 211

thousands of hosts. Automated attacks were launched against the UNIX victim
machines and the router from outside hosts. Machines labelled ‘sniffer’ in Figure 1
run a program named tcpdump to capture all packets transmitted over the attached
network segment. 5 weeks of data which comprise of 3 weeks of training data and 2
weeks of testing data are made available for evaluation in tcpdump format.

The packet header field values are taken from layer 2, 3 and 4 protocols which are
the IP, Ethernet, TCP, UDP and ICMP which summed up to 33 fields as depicted in
the Field Name column in Table 1. We designed our PbPHAD anomaly statistical
model based on 3 specific protocols which are TCP, UDP and ICMP because of their
unique behaviour when communicating among hosts, client and servers depending on
the purpose and application used for a particular session. With this in mind, a more
accurate statistical model with finer granularity which represents the 3 chosen
protocols can be built for detecting the anomalous behaviour of the testing data.

For each protocol, if we index each field as i, i=1,2,…,n, the model is built based
on the ratio of the normal number of distinct field values in the training data, Ri,
against the total number of packets associated with each protocol, Ni. The ratio, pi =
Ri/Ni represents the probability of the network seeing normal field values in a packet.
Thus, the probability of anomalies will be 1- pi for each corresponding field. Each
packet header field containing values not found in the normal profile will be assigned
a score of 1 – pi and will be summed up to give the total value for that particular
packet.

 n
Score packet = ∑ (1 - pi), i = 1,2,…n

 i=1
(1)

As the value of Ri varies greatly, we use log ratio in our model. The value of
column TCP, UDP and ICMP in Table 1 is calculated based on:

Relative percentage ratio of 1-log(Ri/Ni)
to give the total probability of 1 for each protocol.

Table 1 shows PbPHAD statistical model. It is obvious from the PbPHAD model
that the bigger the number of anomalous fields (R), the smaller the anomaly score will
be. The anomaly score of 0.000 shows that particular field is not related to that
particular protocol. From table 1 we can see the distinct value of destination IP
(ipdest=1934) and source IP (ipsrc=1918) fields which depict the number of hosts
simulated in the DARPA 1999 Test Bed as shown in Fig. 1.

Fig. 2. shows the process flow of building the PbPHAD Network Intrusion Detec-
tion System model. The process flow can be divided into 3 stages as follows:

• Stage I. Data Preparation. In this stage, training and testing data are downloaded
from MIT Lincoln Lab web site. The raw data are in the form of compressed
tcpdump format. We wrote a C++ program to extract the data from the tcpdump
files and write the output to comma separated values (.csv) files. We took this
approach due to the volume of the raw data. By doing bulk copying into the Ingres
database, the process will be a lot faster as the size of the raw data alone occupy
almost 6GB of hard disk space. We used ethereal to read the data in tcpdump
format in order to verify the converted data in the .csv file format.

212 S.B. Shamsuddin and M.E. Woodward

Table 1. PbPHAD Statistical Model

ANOMALY SCORE
i Field Name R N TCP UDP ICMP
1 etherdesthi 9 12,814,738 0.045 0.057 0.060
2 etherdestlo 12 12,814,738 0.045 0.056 0.059
3 etherprotocol 4 12,814,738 0.048 0.060 0.063
4 ethersize 1456 12,814,738 0.031 0.040 0.041
5 ethersrchi 6 12,814,738 0.047 0.059 0.061
6 ethersrclo 9 12,814,738 0.045 0.057 0.060
7 icmpchecksum 2 7,169 0.000 0.000 0.038
8 icmpcode 3 7,169 0.000 0.000 0.037
9 icmptype 3 7,169 0.000 0.000 0.037

10 ipchecksum 1 12,715,589 0.052 0.065 0.068
11 ipdest 1934 12,715,589 0.031 0.039 0.040
12 ipfragid 12,489 12,715,589 0.025 0.032 0.034
13 ipfragptr 2 12,715,589 0.050 0.062 0.065
14 ipheaderlength 1 12,715,589 0.052 0.065 0.068
15 iplength 1463 12,715,589 0.031 0.040 0.041
16 ipprotocol 3 12,715,589 0.049 0.061 0.064
17 ipsrc 1918 12,715,589 0.031 0.039 0.040
18 iptos 4 12,715,589 0.048 0.060 0.063
19 ipttl 11 12,715,589 0.045 0.057 0.059
20 tcpack 6,015,527 10,617,293 0.008 0.000 0.000
21 tcpchecksum 2 10,617,293 0.049 0.000 0.000
22 tcpdestport 22,293 10,617,293 0.023 0.000 0.000
23 tcpflag 10 10,617,293 0.045 0.000 0.000
24 tcpheaderlength 3 10,617,293 0.048 0.000 0.000
25 tcpoption 3 10,617,293 0.048 0.000 0.000
26 tcpseq 7,357,319 10,617,293 0.007 0.000 0.000
27 tcpsrcport 22,293 10,617,293 0.023 0.000 0.000
28 tcpurgptr 2 10,617,293 0.049 0.000 0.000
29 tcpwindowsize 10,705 10,617,293 0.025 0.000 0.000
30 udpchecksum 2 2,091,127 0.000 0.056 0.000
31 udpdestport 8,050 2,091,127 0.000 0.027 0.000
32 udplength 129 2,091,127 0.000 0.042 0.000
33 udpsrcport 8,051 2,091,127 0.000 0.027 0.000

 n TOTAL 13,463,719 1.000 1.000 1.000

The attack identification file is available in the text format from the Lincoln Lab
web site. We verified each attack in the testing table in the database using SQL
query before converting it into .csv format file prior inserting it into the database. It
is very interesting to note that the number of packets which constitute an attack
instance differs greatly from only 1 packet for an attack (i.e. land, syslogd) to
179,983 packets for udpstorm. There are 201 attack instances embedded in the
MIT Lincoln Lab evaluation data set for both inside and outside testing data. Out
of 201 attack instances only 176 are found in the inside testing data used for this
experiment. Our performance evaluation will be based on the 176 attack instances
as we only use the inside testing data.

 Modeling Protocol Based Packet Header Anomaly Detector 213

Fig. 2. PbPHAD Process Flow

214 S.B. Shamsuddin and M.E. Woodward

Table 2. Distribution of all Attack Categories by Protocol

Category TCP UDP ICMP TOTAL
(a) (b) (c) (d) (e)

Probe 30 7 8 45
DOS 37 10 7 54
U2R 27 0 0 27
R2L 54 3 0 57
Data 4 2 0 6
Total 152 22 15 189

The distribution of all attacks in the inside testing data is as follows:
The total attacks shows 13 extra attacks (189 – 176) which is caused by

duplicated protocols in the attacks. i.e. one attack instance uses more than 1
protocol.

• Stage II. Building the Normal Profile. In this stage, we wrote a program to build
a normal profile table which was taken from week 3 of the training data. Distinct
values for each of the 33 fields in the TCP/IP packet were inserted into normal
profile table to be used in the experiment to detect anomalous packet header field
values.

• Stage III. Running the Experiment. In this stage, we simulate the network traffic
for the 2 weeks of the testing data and used our model to detect the anomalous
packets. Each one of the 33 fields in the packet (depending on the protocol) was
compared with its corresponding normal profile. If a field value was not found in
the normal profile, an anomaly score will be assigned to the packet as was
statistically modelled in Table 1. If the sum of all its anomalous field values
surpassed a certain preset threshold, it will be captured into a detected anomalous
table. Another program was run to compare the detected anomalous packets against
the attack database to classify each and every packet into either true positive or
false positive.

4 Experimental Results on the 1999 DARPA IDS Evaluation Data
Set

4.1 Network-Based PbPHAD

We tested our model on the 2 weeks of the inside testing data which comprises of
22,095,072 packets and managed to detect 121 attack instances as depicted in Table 3
below:

This is the result from all detected anomalous packets which had surpassed certain
preset thresholds (TCP=0.041, UDP=0.128, ICMP=0.034) of the anomaly score. The
detected anomalous packets represents about 10% of the total test data including all
false positives. It should be noted that no attack was detected on 30/03/1999 as the
test data for this particular date was missing from the test data set.

 Modeling Protocol Based Packet Header Anomaly Detector 215

Table 3. Detection Result

Date ICMP UDP TCP Sub-Total
29/03/1999 0 1 10 11
30/03/1999 0 0 0 0
31/03/1999 1 1 1 3
01/04/1999 2 0 9 11
02/04/1999 4 0 6 10
03/04/1999 1 0 1 2
04/04/1999 0 0 0 0
05/04/1999 6 0 9 15
06/04/1999 0 3 14 17
07/04/1999 0 1 14 15
08/04/1999 1 1 9 11
09/04/1999 0 4 17 21
10/04/1999 0 0 5 5

Total 15 11 95 121

The distribution of detected attack categories by protocol is tabulated in Table 4.
Only one attack instance is counted even though it was detected through more than 1
protocol. The success rate percentage in column (f) is in relation to total attacks in the
testing data as shown in column (e) of Table 2. Total success rate of 68.75% is
calculated based on 176 total attack instances found in the experimented inside testing
data.

Table 4. Distribution of Detected Attack Categories by Protocol

Category TCP UDP ICMP TOTAL
Success

Rate
(a) (b) (c) (d) (e) (f)

Probe 27 4 8 39 86.67%
DOS 23 7 7 37 68.52%
U2R 16 0 0 16 59.26%
R2L 28 0 0 28 49.12%
Data 1 0 0 1 16.67%

TOTAL 95 11 15 121 68.75%
Percentage 62.5% 50% 100% 68.75%

18 packet header fields have been observed to have contributed to the anomaly
score for the detected attacks. The distribution of the frequency of anomalous fields is
tabulated in Table 5.

The rest of the 15 packet header fields have been noted as non-contributors to the
anomaly scores of the detected anomalous packets. From Table 5, we can design our
next model by just taking into account the contributing packet header fields only so
that the processing time to detect anomalous packets can be reduced.

216 S.B. Shamsuddin and M.E. Woodward

Table 5. Distribution of Contribution of Anomalous Packet Header Fields to Detected Attacks

Ser Packet Header Field Frequency
1 tcpseq 83
2 ipsrc 60
3 ipfragid 53
4 tcpack 50
5 ipdest 34
6 tcpsrcport 16
7 tcpdestport 11
8 tcpwindowsize 8
9 udpsrcport 8

10 ipfragptr 7
11 udpdestport 6
12 udplen 6
13 iplength 5
14 tcpflag 4
15 tcpurgptr 3
16 tcpchecksum 2
17 etherdesthi 1
18 etherdestlo 1

Table 6, 7 and 8 shows top 5 anomaly scores for ICMP, UDP and TCP protocols
respectively. Anomalous field column shows fields that contributed to the score.

Duplicate attack names indicate the same attack on different destination hosts at
different time of the day which are to be counted as separate attack instances.

Table 6. Top 5 Anomaly Scores for ICMP Packets

Ser
Attack
Name Score Anomalous Field

1 ipsweep 0.132
ipfragid=20751;
ipdest=204.233.047.021

2 pod 0.109
ipfragptr=x2000;
ipsrc=202.077.162.213

3 pod 0.109
ipfragptr=x2000;
ipsrc=202.077.162.213

4 smurf 0.109
ipfragptr=x2000;
ipsrc=202.077.162.213

5 pod 0.109
ipfragptr=x2000;
ipsrc=010.011.022.033

From table 6, for ICMP packets, it shows that ICMP protocol fields themselves are
not exploited in the attack. For TCP and UDP packets, their corresponding protocol
fields contributed significantly to the anomaly score for the detected anomalous
packet.

 Modeling Protocol Based Packet Header Anomaly Detector 217

Table 7. Top 5 Anomaly Scores for UDP Packets

Ser Attack Name Score Anomalous Field

1 illegalsniffer 0.217

etherdesthi=x00104B;
etherdestlo=xA26739;
ipfragid=33248;
ipdest=172.016.112.097;
udpdestport=1024

2 portsweep 0.217

iplength=28;
ipfragid=38809;
ipsrc=153.010.008.174;
udpsrcport=60716;
udpdestport=513;
udplen=8

3 teardrop 0.160

ipfragptr=x2000;
ipsrc=207.230.054.203;
udpsrcport=17631;
udpdestport=23

4 teardrop 0.160

ipfragptr=x2000;
ipsrc=199.227.099.125;
udpsrcport=24891;
udpdestport=23

5 syslogd 0.154

iplength=32;
ipsrc=172.003.045.001;
udpsrcport=514;
udplen=12

Table 8. Top 5 Anomaly Scores for TCP Packets

Ser Attack Name Score

Anomalous Field

1 portsweep 0.236

iplength=28;
ipfragid=58448;
ipfragptr=x2000;
ipsrc=206.048.044.050;
tcpsrcport=50460;
tcpseq=3192052884;
tcpchecksum=x77F7

2 portsweep 0.175

ipsrc=192.168.001.001;
ipdest=172.016.118.010;
tcpdestport=63432;
tcpseq=3269601754;
tcpack=3303464411;
tcpwindowsize=4128

3 phf 0.174

ipfragid=46639;
ipsrc=206.048.044.050;
tcpseq=242486627;
tcpflag=x01;
tcpchecksum=x9397

218 S.B. Shamsuddin and M.E. Woodward

Table 8. (continued)

4

portsweep

0.173

ipfragid=47803;
ipdest=153.010.008.174;
tcpdestport=49998;
tcpseq=1320219032;
tcpack=36059013;
tcpwindowsize=9112

5

dosnuke

0.165

ipfragid=59399;tcpseq=47711425;
tcpack=47585391;
tcpflag=x39;
tcpurgptr=196

4.2 Host-Based PbPHAD

For Host-based PbPHAD, we built the normal profile for each host by taking the
packet header field values from layer 3 and 4 protocols only which are the IP, TCP,
UDP and ICMP without its layer 2 protocol, the ethernet. The total fields tested for
anomaly in this model is 27 as depicted in the field name column in Table 1 minus the
first 6 field names which belong to ethernet protocol. We built 2 different normal
profiles, one for incoming packets and the other for outgoing packets for each inside
host with the intention to acquire a more accurate statistical model with finer
granularity for each of the 3 chosen protocols; TCP, UDP and ICMP.

We tested Host-based PbPHAD on the 2 weeks of the inside testing data which
comprises of 22,095,072 packets. This is the same data set we used for testing the
Network-based PbPHAD. Host-based PbPHAD managed to detect more attacks
compared to its peer, the Network-based PbPHAD by 33 attacks (154 – 121) even
though it only used layer 3 and 4 protocol fields for anomaly detection. See Table 9.

Table 9. Detection Result for Host-based PbPHAD

Date ICMP UDP TCP Sub-Total
29/03/1999 0 0 12 12
30/03/1999 0 0 0 0
31/03/1999 1 1 13 15
01/04/1999 2 0 11 13
02/04/1999 4 0 9 13
03/04/1999 3 0 0 3
04/04/1999 0 0 0 0
05/04/1999 4 0 10 14
06/04/1999 0 3 19 22
07/04/1999 0 1 17 18
08/04/1999 1 1 11 13
09/04/1999 0 4 22 26
10/04/1999 0 0 5 5

Total 15 10 129 154

 Modeling Protocol Based Packet Header Anomaly Detector 219

This is quite a significant improvement as it shows an increment of 27.27%.

Table 10. Distribution of Detected Attack Categories by Protocol for Host-based PbPHAD

Category TCP UDP ICMP TOTAL
Success

Rate
(a) (b) (c) (d) (e) (f)

Probe 26 3 8 37 82.22%

DoS 28 7 7 42 77.78%

U2R 27 0 0 27 100.00%

R2L 45 0 0 45 78.95%

Data 3 0 0 3 50.00%

TOTAL 129 10 15 154 81.48%

Percentage 84.87% 45.45% 100% 81.48%

Table 10 shows that Host-based PbPHAD managed to detect all attacks in U2R
category as compared to its Network-based PbPHAD peer as depicted in Table 4. It
decreases slightly by 4.45% on Probe category and increase by 9.26% on DoS
category. For R2L category, it increases quite significantly by 29.83% and a bigger
increment can be observed for attack category of Data which is 33.33%.

Host-based PbPHAD shows a significant improvement in terms of detecting number
of anomalous fields as shown in Table 11. Host-based PbPHAD managed to detect 25
anomalous fields compared to only 18 by Network-based PbPHAD. Table 11 shows
that the Host-based model could detect anomalous fields with a finer granularity. 9
packet header fields (Serial No. 17-25) are new anomalous fields detected by Host-
based PbPHAD which are not detected by Network-based PbPHAD.

Table 11. Distribution of Contribution of Anomalous Packet Header Fields to Detected Attacks
for Host-based PbPHAD

Ser

Packet Header
Field

Frequency
for Network-

based
PbPHAD

Frequency
for Host-

based
PbPHAD

1 tcpseq 83 125
2 ipsrc 60 96
3 ipfragid 53 15
4 tcpack 50 55
5 ipdest 34 13
6 tcpsrcport 16 64
7 tcpdestport 11 49
8 tcpwindowsize 8 22
9 udpsrcport 8 6

10 ipfragptr 7 9
11 udpdestport 6 7
12 udplen 6 7

220 S.B. Shamsuddin and M.E. Woodward

Table 11. (continued)

13 iplength 5 38
14 tcpflag 4 5
15 tcpurgptr 3 0
16 tcpchecksum 2 0
17 ipheaderlen - 1
18 Iptos - 1
19 Ipttl - 1
20 ipprotocol - 3
21 ipchecksum - 1
22 tcpheaderlength - 3
23 udpchecksum - 2
24 icmptype - 6
25 icmpcode - 1

As described for the Network-based PbPHAD above, duplicate attack names
indicate the same attack on different destination hosts at different time of the day
which are to be counted as separate attack instances. Different anomalous field values
for the same anomaly score shows each host has its own outgoing and incoming
normal profile and the anomaly score for each host differs from other hosts as the
normal profile for each host is unique to that particular host only as each host interact
with different set of incoming and outgoing packets during training.

Table 12. Top 5 Anomaly Scores for ICMP Packets

Ser

Attack
Name Score

Anomalous Field

1 ipsweep 0.340

iplength=38;
ipfragid=104;
ipsrc=194.027.251.021;
icmptype=8

2 ipsweep 0.340

iplength=38;
ipfragid=2811;
ipsrc=194.007.248.153;
icmptype=8

3 ipsweep 0.339

iplength=38;
ipfragid=15514;
ipsrc=207.136.086.223;
icmptype=8

4 ipsweep 0.339 ipsrc=204.233.047.021;

5 portsweep 0.318

ipdest=208.240.124.083;
icmptype=3;
icmpcode=3

From table 12, for ICMP packets, in contrary to network-based PbPHAD, Host-
based PbPHAD managed to detect anomalous ICMP protocol fields. This shows that
the ICMP fields are indeed being exploited in some of the attacks. This is a new
interesting finding as the Network-based PbPHAD failed to detect any anomalous
ICMP fields being exploited in any of the attacks. For UDP and TCP packets as

 Modeling Protocol Based Packet Header Anomaly Detector 221

shown in Table 13 and Table 14, their corresponding protocol fields contributed
significantly to the anomaly score for the detected anomalous packets as similar as
shown by the Network-based PbPHAD in Table 7 and Table 8 respectively.

Table 13. Top 5 Anomaly Scores for UDP Packets

Ser

Attack
Name Score

Anomalous Field

1 teardrop 0.312

ipfragptr=x2000;
ipsrc=207.230.054.203;
udpsrcport=17631;
udpdestport=23;
udplen=36

2 teardrop 0.312

ipfragptr=x2000;
ipsrc=199.227.099.125;
udpsrcport=24891;
udpdestport=23;
udplen=36

3 satan 0.277 ipsrc=209.030.070.014

4 syslogd 0.272

iplength=32;
ipsrc=172.003.045.001;
udpsrcport=514;
udpdestport=514;
udplen=12

5 portsweep 0.272

iplength=28;
ipsrc=153.010.008.174;
udpsrcport=60716;
udpdestport=513;
udplen=8

Table 14. Top 5 Anomaly Scores for TCP Packets

Ser

Attack
Name Score

Anomalous Field

1

portsweep

0.594

iplength=28;
ipfragptr=x2000;
ipsrc=206.048.044.050;
tcpsrcport=49826;
tcpdestport=514;
tcpseq=2162256216;
tcpack=1767401816;
tcpheaderlen=x69

2

mscan

0.431

iplength=44;
ipfragid=30133;
ipdest=207.136.086.223;
ipprotocol=6;
tcpsrcport=25;
tcpdestport=13074;
tcpseq=1865002828;
tcpack=3222202810;
tcpheaderlen=x60

222 S.B. Shamsuddin and M.E. Woodward

Table 14. (continued)

3

ipsweep

0.401

tcpsrcport=1885;
tcpdestport=80;
tcpseq=3295102387

4

dosnuke

0.356

ipfragid=46087;
ipsrc=206.048.044.018;
tcpsrcport=1734;
tcpdestport=139;
tcpseq=43860484;
tcpflag=x02;
tcpwindowsize=8192

5 tcpreset 0.319

ipfragid=35357;
tcpdestport=26398;
tcpseq=487325652;
tcpack=3809752458

5 Comparison with the 1999 DARPA IDS Evaluation Best System
Result

We made a comparison between PbPHAD with the combined 1999 DARPA
evaluation best systems in each category of attack results on poorly detected attacks
as documented by Lippman et al [11]. This analysis was performed to determine how
well all 18 evaluated intrusion detection system models submitted by 8 research
groups taken together detect attacks regardless of false alarm rates. The best system
was first selected for each attack as the system which detects the most instances of
that attack which will serve as a rough estimation for upper bound on composite
system performance. Our results are in column (f) and (g) as shown in Table 15 below
for Network-based PbPHAD and Host-based PbPHAD respectively.

5.1 Network-Based PbPHAD

Our initial analysis shows that Network-based PbPHAD managed to detect 48 attacks
as compared to only 15 attacks detected by the composite best systems. This result
shows an increment of 39.76% on detection rate for the poorly detected attacks. Our
model managed to detect 9 out of 10 attacks which were not detected by all evaluated
systems as compared to only 4 attacks we did not detect which were detected by the
best systems.

Both Network-based PbPHAD and all DARPA evaluated systems failed to detect 1
attack which is snmpget. As for the type of attacks detected (58 total), Network-based
PbPHAD managed to detect 53 attack types as compared to 48 attack types for
composite systems. On this aspect, PbPHAD demonstrated an increment of 8.62% on
the detection rate.

5.2 Host-Based PbPHAD

Column (g) in Table 15 shows attacks detected by Host-based PbPHAD for attacks
which are classified as ‘poorly detected’ by the 1999 DARPA evaluation best

 Modeling Protocol Based Packet Header Anomaly Detector 223

Table 15. Comparison between the 1999 DARPA Evaluation Best Systems and PbPHAD on
Poorly Detected Attacks

Ser Name Cat.
Tot.
Inst.

Instance
Detected by

Best
System

Network-
Based

PbPHAD
Host-Based
PbPHAD

(a) (b) (c) (d) (e) (f) (g)
1 ipsweep Probe 7 0 7 7

2 lsdomain Probe 2 1 2 2

3 portsweep Probe 13 3 13 13

4 queso Probe 4 0 2 3

5 resetscan Probe 1 0 1 1

6 arppoison DoS 5 1 0 0

7 dosnuke DoS 4 2 4 4

8 selfping DoS 3 0 1 1

9 tcpreset DoS 3 1 2 2

10 warezclient DoS 3 0 3 3

11 ncftp R2L 5 0 4 5

12 netbus R2L 3 1 2 2

13 netcat R2L 4 2 0 4

14 snmpget * R2L 4 0 0 0

15 sshtrojan R2L 3 0 1 1

16 loadmodule U2R 3 1 0 2

17 ntfsdos * U2R 3 1 0 0

18 perl U2R 4 0 3 3

19 sechole U2R 3 1 1 2

20 sqlattack U2R 3 0 1 2

21 xterm U2R 3 1 1 3

 Total 83 15 48 61
Percentage Detected 18.07% 57.83% 73.49%

 Increment 39.76% 55.41%

systems. Host-based PbPHAD shows a significant improvement in terms of detection
of number of attacks and new attacks. Host-based PbPHAD managed to detect 2 new
attacks which were not detected by Network-based PbPHAD which are netcat and
loadmodule. 2 attack instances which have been marked by an asterisk (* snmpget
and ntfsdos) - are attacks which are only found in outside testing data, which
PbPHAD did not attempt to detect as we only used inside testing data in our
experiment.

For the 1999 DARPA category of ‘poorly detected’ attack, Host-based PbPHAD
fails to detect only one attack which is arppoison and managed to detect 7 attacks
which were totally missed by all systems participated in the second 1999 DARPA off-
line intrusion detection evaluation. Arppoison operates at layer 2, which is the data
link layer which Host-based PbPHAD excluded from its model.

224 S.B. Shamsuddin and M.E. Woodward

6 Conclusions

Our PbPHAD model has been demonstrated as a very promising model to be used for
an anomaly based IDS model by analyzing anomalous behaviour of the packet header
fields on three prominent protocols.

To summarize, Network-based PbPHAD has shown the following results worthy
of note:

• On the overall category of attack, Network-based PbPHAD has shown a good
percentage of detection rate which is 68.75%. Network-based PbPHAD
demonstrated a high percentage of detection rate for Probe and DOS which is
86.67% and 68.52% respectively.

• On the type of attacks by protocol, Network-based PbPHAD managed to detect
62.5% for TCP, a perfect 100% for ICMP and an average performance
achievement for UDP at 50%. It can be seen from Table 2 and Table 4 that
Network-based PbPHAD shows to be a perfect model to detect Probe and DOS
attacks exploiting ICMP protocols.

• In comparison with the combined 1999 DARPA best systems for the best attack
rate on poorly detected attacks, Network-based PbPHAD achieved 39.76%
increment on the detection rate.

• On the number of attack types detected, Network-based PbPHAD demonstrated an
increment of 8.62% on the detection rate as compared to all 1999 DARPA
evaluated systems.

• On the number of ‘poorly detected’ attack instances which were not detected by all
1999 DARPA evaluated systems, Network-based PbPHAD is better by 60%. All
DARPA evaluated combined systems failed to detect 10 attack instances as
compared to only 4 attack instances not detected by Network-based PbPHAD. This
clearly shows that Network-based PbPHAD could cover different attack space that
could not be covered by all 1999 DARPA evaluated IDS models.

Host-based PbPHAD has demonstrated quite a significant improvement compared
to its peer, the Network-based PbPHAD. Our Host-based PbPHAD anomaly based
IDS model has shown that it has succeeded in complementing the existing techniques
implemented by all 18 IDS models evaluated in the 1999 DARPA off-line intrusion
detection evaluation exercise. This experiment has shown that it has paved a way for
discovering new dimension of attack space. This shall bequeath a very promising
optimism for IDS researcher community in designing new IDS model based on
anomaly and host profiling.

By analyzing the detection results on both network and host based models, we can
see that Network-based PbPHAD is better in terms of detecting number of attacks for
Probe attack category compared to Host-based PbPHAD. This is not surprising as the
Network-based PbPHAD is capable of seeing bigger attack horizon compared to the
Host-based PbPHAD. Network-based PbPHAD model can see both horizontal and
vertical scannings whereas Host-based PbPHAD is not capable to detect horizontal
scanning as it only analyzes packets attacking its own IP only. These results show that
deploying both Network-based and Host-based IDS models in a particular network
installation could give a broader coverage of attack space in defending network
infrastructure from malicious attacks.

 Modeling Protocol Based Packet Header Anomaly Detector 225

7 Future Work

The percentage of false positive is still quite big for the detected anomalous packets
based on the statistical model alone. Thus, we will be working on expert production
rules to reduce the number of false positives. The format of the production rules is
similar to other rules found in artificial intelligence techniques in the form of
antecedent and consequent. Some example of the rules which will be inferred to the
detected anomalous packets will be in the form as shown below:

Rule 1
Antecedent
IF destination IP address is anomalous
AND destination port number is the well known server port number which is in

normal profile for that particular host
AND session is initiated by the inside host
Consequent
THEN Reduce the anomaly score by the destination IP anomaly value
i.e. normal internet connection for HTTP traffic using port 80.

Rule 2
Antecedent
IF source IP address is anomalous
AND destination port number is the well known server port number which is in

normal profile for that particular host
AND session is initiated by the outside host
Consequent
THEN Reduce the anomaly score by the source IP anomaly value
i.e. normal FTP traffic for downloading file using port 21 as normal service offered
by the inside host.

Fig. 3. shows a new detection process flow chart when expert production rules are
included as part of the detection process. The process can be segregated into 3 stages
as stage I, II & III as depicted in Fig. 3. In stage I, each packet will be examined for
its anomaly using the statistical model and will be assigned an anomaly score
accordingly. If the anomaly score is greater than the threshold for its protocol, it will
go to stage II. Before entering stage II, the packet will be segregated based on its
protocol. An ICMP packet will branch out to be inferred by an ICMP expert
production rule whereas UDP and TCP packet will branch out to another production
rule. In stage II, expert production rule will be inferred to the packet to examine its
anomaly and a new anomaly score will be calculated. If the score is still greater than
the threshold, the packet will have to go to stage III to be inferred with another layer
of expert production rule. After completion of stage III, the packet anomaly score will
be examined once again. If the score is still greater than the threshold it will be
recorded as anomalous.

Our aim is to reduce the number of false positives to a maximum of only 10 FPs
per day for our next performance evaluation benchmark.

226 S.B. Shamsuddin and M.E. Woodward

Fig. 3. PbPHAD Detection Process Flow Chart

References

1. MIT Lincoln Laboratory 1999 DARPA Intrusion Detection Data Sets (1999),
http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html

2. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intrusion Detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 201–222.
Springer, Heidelberg (2004)

3. Mahoney, M.V., Chan, P.K.: Learning Rules for Anomaly Detection of Hostile Network
Traffic. In: Proceeding of the 3rd IEEE International Conference on Data Mining (2003)

 Modeling Protocol Based Packet Header Anomaly Detector 227

4. Luo, S., Marin, G.A.: Modeling Networking Protocols to Test Intrusion Detection
Systems. In: LCN 2004. Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks (2004)

5. Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.N., Dokas, P., Kumar, V., Srivastava, J.:
Detection of Novel Network Attacks Using Data Mining. In: Proc. of SIAM Conf. Data
Mining (2003)

6. Bolzoni, D., Etalle, S., Hartel, P., Zambon, E.: POSEIDON: A 2-Tier Anomaly Based
Intrusion Detection System. In: IWIA 2006. Proceedings of the Fourth IEEE International
Workshop on Information Assurance, pp. 144–156 (2006)

7. Vliet, F.V.: Turnover Poseidon: Incremental Learning in Clustering Methods for Anomaly
based Intrusion Detection. In: Proceedings of Twente Student Conference on IT,
University of Twente (2006)

8. Barbara, D., Couto, J., Jajodia, S., Popyack, L., Wu, N.: ADAM: Detecting intrusions by
data mining. In: Proc. of the IEEE Workshop on Information Assurance and Security (June
2001)

9. Yin, C., Tian, S., Huang, H., He, J.: Applying Genetic Programming to Evolve Learned
Rules for Network Anomaly Detection. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 323–331. Springer, Heidelberg (2005)

10. Mahoney, M.V., Chan, P.K.: PHAD: Packet Header Anomaly Detection for Identifying
Hostile Network Traffic. Technical report, Florida Tech., technical report CS-2001-4
(April 2001)

11. Lippmann, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA Off-Line
Intrusion Detection Evaluation. MIT Lincoln Lab Technical Report (2000)

How to Secure Your Email Address Book and Beyond

Erhan J. Kartaltepe, T. Paul Parker, and Shouhuai Xu

Department of Computer Science, University of Texas at San Antonio
{ekartalt,tparker,shxu}@cs.utsa.edu

Abstract. Email viruses (or worms) have become a severe threat to the busi-
ness utility of email systems. In spite of existing countermeasures such as email
virus scanners, many people (including the authors) constantly receive suspicious
emails. Most, if not all, email viruses proliferate by exploiting the email address
books on the infected hosts, simply because the address books are not protected
by any means whatsoever. In this paper we explore a novel method to protect
email systems, based on appropriately encrypting the email addresses in the email
address books and email boxes (or folders). To our knowledge, this work is the
first to investigate robust methods for protecting email addresses. We have imple-
mented two prototype systems based on our method, one for a cell phone platform
and the other for a desktop platform. Simulation study shows that our method is
effective, even if only some users deployed our mechanisms.

Keywords: self-spreading malicious emails, self-replicating malicious emails,
email address book, encryption.

1 Introduction

Email has become an indispensable part of most people’s daily routines. However,
email was not originally designed as a utility in an adversarial environment, which
may explain why there have been so many incidents related to its abuse. A severe
threat imposed by email viruses (or worms) is that they can automatically replicate
and spread themselves to users in the email address books of the infected hosts. Some
concrete examples include the mass-mailingW32.Klez.gen@mm [15], SirCam [14],
and W32/Mydoom@MM – one flavor of the latter even launched a zero-day attack tar-
geting a Microsoft Internet Explorer IFRAME buffer overflow vulnerability [7]. These
attacks are possible because the email address books – a special kind of data with im-
portant security and business utility – are not protected by any means whatsoever.

In this paper we explore a novel method to protect email systems, based on appro-
priately encrypting the email addresses in the email address books and email boxes
(or folders). While instrumental, this turns out to be a non-trivial problem, as straight-
forward designs are either not secure at all or unlikely to be practically deployable.
For example, the arguably most straightforward method, namely that an email address
book is encrypted with a single key (whether that be a memorizable password or a non-
memorizable cryptographically-strong key), is insufficient for preventing harvesting of
email addresses from address books. This is because, even in the worst case scenario
(where “worst” is from the perspective of the attacker), the attacker can simply reside

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 228–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

How to Secure Your Email Address Book and Beyond 229

on the victim host and wait for the user to enter the key. This attack is certainly possi-
ble because the malicious email has already exploited some vulnerability in the victim
host system anyway. As a consequence, the email virus can still spread itself soon after
the victim user sends a single legitimate email, and the resulting delay in the spreading
of email virus might not be significant enough to be of any practical impact. (As we
will see in Section 6, the industrial attempts in encrypting email address books [11,18]
suffer from this weakness.)

The above observation suggests that each record of an email address book should be
encrypted with a different key. This can significantly slow down the proliferation of an
email virus, because in order to spread to all email addresses in a victim’s address book,
the virus will have to wait until the user has sent at least one email to each of them. This
waiting time varies, and mainly depends on the social behavior of the victim user; we
suspect it would be at days or weeks at least. Such a delay would significantly increase
the chance of the virus being removed because, for instance, the virus may be detected
and countermeasures may become available. While theoretically possible, this approach
might not be practically deployable due to the following reasons. First, the number
of email address book entries is often quite large (as many as several hundred in the
authors’ experience), meaning that each user would need to keep a significant number
of keys. Even if the keys are based on memorizable passwords, this is not practical
because the resulting solution would eventually degenerate to the aforementioned case
where a single password encrypts all entries (just as we often use the same password
for multiple accounts). Of course, this problem can be alleviated if one only wants
or needs to encrypt a small number of email addresses (rather than all of them); this
flexibility actually will be offered by our solution. Second, special hardware devices
do not necessarily help. On one hand, it is clear that devices such as cell phones and
handheld computers are equally subject to virus attacks. On the other hand, even if one
utilizes some trusted computing module [16], the virus can perfectly impersonate the
user to the module (because the virus has already compromised the user’s secrets for
authenticating to the module), unless some form of human test [1,3] is imposed by the
module. This extra assumption suggests that it would be ideal if we can achieve the
same functionality without involving any special hardware devices.

1.1 Our Contributions

In this paper we present a scheme, called “encrypted address book,” for facilitating the
encryption of some or all — dependent upon users’ needs — of the email addresses in
the address books. The scheme offers the following desired properties: (1) each need-
to-be-protected entry in an email address book is encrypted with a different key that is
derived from a unique passphrase; (2) the users are relieved of memorizing any of the
passphrases; (3) there is no need for any special purpose hardware. These are achieved
via a novel use of some hard AI problems. Specifically, to relieve a user of memorizing
any passphrase, we can embed one into an appropriate picture (e.g., a photo of the user
corresponding to an address book entry), which will prompt the user to enter the embed-
ded passphrase. Furthermore, this protection is extended to protect the corresponding
appearances of the protected email addresses in the email boxes (or folders). We stress
the design’s flexibility in allowing one to selectively encrypt the email addresses in

230 E.J. Kartaltepe, T.P. Parker, and S. Xu

one’s address book, which would ease the real-life deployment (because some users
may have very large address books).

Another feature of our scheme is its immunity to offline dictionary attack. Since the
cryptographic keys are based on low-entropy passphrases, it is crucial to be immune to
this attack; otherwise, many, if not all, of the encrypted addresses could be recovered
by an email virus. We achieve this desired feature via the following design. First, we
encrypt only the non-structural information in the email addresses. In other words, we
keep the structural information in email addresses such as the “@” and “.” in plaintext.
Second, even if structural information is not encrypted, an email virus could still try to
conduct a brute-force attack, because the decryption may not lead to legitimate email
addresses. Fortunately, the virus is not necessarily able to tell whether the decryption is
a true or “junk” email address, unless it tries to send email to that decrypted address.
As a result, either the legitimate outgoing mail server (in the case the virus utilizes the
victim user’s SMTP engine) or the network firewall (in the case the virus utilizes its
own SMTP engine) can detect such an explosion in outgoing email traffic or bounced
undeliverable emails.

We have implemented two prototype systems based on our scheme: one is for a cell
phone platform, and the other is for desktop platforms. Both prototype systems are
based on the integration of our scheme into the open source email client software called
Pooka [10]. The performance penalty incurred by our scheme is almost imperceptible
to email users. Our prototype system has been tested by a small group of volunteers. We
plan to conduct a wider and more thorough usability test, and will report the usability
feedback in the full version of the present paper.

In order to show the effectiveness of our scheme, we conducted a simulation study.
The result shows that the number of email addresses exposed to email viruses can be
significantly reduced, even if only a portion (e.g., 60%) of the users deployed our mech-
anism. Our mechanism would be particularly useful in dealing with zero-day email
attacks, whose cures are not available until after the attacks have been detected. Our
scheme is orthogonal to other email virus protection mechanisms (e.g., scanners), and
thus can be seamlessly integrated with them to provide more comprehensive protection.

Outline: The rest of the paper is organized as follows. In Section 2 we briefly review
the functionalities of email systems. In Section 3 we explore our scheme for encrypting
email addresses in the address books. In Section 4 we present the functionalities and the
implementation of our prototype system, including the encryption of email addresses
in the email boxes. In Section 5 we analyze the effectiveness of our mechanism. We
discuss related works in Section 6. We conclude the paper in Section 7.

2 Functionalities of Current Email Systems – A Brief Review

We now briefly review the relevant functionalities of current email systems, since our
system simply layers over an existing system. We denote by ces a current email system,
and by ces.AB = (A0, A1, A2) the current email address book schema, where the Ai’s
are attributes. Without loss of generality, we assume that A0 is the email address, A1

is the username, and A2 is the rest of the relevant attribute content. Note username
denotes the “friendly name” or nickname used in the address book for the holder of the

How to Secure Your Email Address Book and Beyond 231

email address, not the portion of the email address preceding the @ sign. Let ces.ab
be an instance of ces.AB, namely one’s address book; an entry in ces.ab is denoted
by (a0, a1, a2). Let ces.folders be the folders of a current email system. We classify, in
Table 1, the functionalities of ces into two categories: those of the address book services
and those of the email services.

Table 1. Relevant functionalities of current email systems

Functionalities of address book services Description
ces.addaddress(address, username) Add a new entry into its email address book.
ces.deleteaddress(ces.ab, address) Delete an entry of an email address book.
ces.modifyaddress(ces.ab, address) Modify the email address in the entries of an email

address book.
Functionalities of email services Description
ces.compose() Compose a message to be sent.
ces.insertaddress(address) Insert an email address address (from its email ad-

dress book) into an address bar when composing an
email.

ces.attach(file) Attach a file that is to be sent together with an email
message.

ces.send(email) Send an email to a recipient.
ces.receive() Receive emails.
ces.reply(email) Reply to the sender of an email.
ces.replyall(email) Reply to all the email addresses in the email header.
ces.forward(email) Forward an email to some users.
ces.search(parameter) Search email address book entries based on some pa-

rameter.
ces.createfolder(ces.folders, folder) Create an email folder.
ces.deletefolder(ces.folders, folder) Delete an email folder.
ces.sort(parameter) Sort the emails in an email folder based on some pa-

rameter.
ces.deliver(email) Internal program function that delivers an email to

some users.

3 Encrypted Address Book

In this section we present our mechanism for encrypting addresses in email address
books. (The encryptions of addresses appearing in the emails of the email boxes are
done at a higher layer; see Section 4.) We first discuss the needed building blocks, and
then show how they are put together to implement encrypted address books.

3.1 Building Blocks

Building block I: embedding passphrases into pictures. As mentioned before, we
require that each entry in an email address book is encrypted with a different key that
is derived from a unique passphrase. This ensures that compromise of one email ad-
dress (e.g., a user entering the passphrase for encrypting that specific email address on

232 E.J. Kartaltepe, T.P. Parker, and S. Xu

a compromised machine) does not entail the compromise of any other address in the
email address book. The key challenge is to relieve the users from having to memorize
any of the passphrases. For this purpose, we propose embedding a passphrase onto an
appropriate picture (e.g., a photo of the user corresponding to an address book entry),
which will prompt the user to enter the embedded passphrase. Fig. 1 shows an example

Fig. 1. Embedding passphrases onto pictures of the corresponding users

of encrypted email address book where, for instance, the passphrase used to encrypt
the email address of G. W. Bush is “hpay.” We abstract this building block as a func-
tion embed(passphrase, image) that returns an icon that is obtained by embedding
a string (e.g., a passphrase) onto a picture image. The concrete implementation of this
function is orthogonal to the present work, as long as it ensures that there are no feasi-
ble ways for a computer program to extract the embedded passphrases. Our experiments
are based on the output of CMU’s CAPTCHA project [1,3], which is a special kind of
Reverse Turing Test (RTT) for telling computer programs and human being users apart.

Note that since the decision of whether to encrypt an email address is left to the users,
one may encrypt only the addresses of the peers whose pictures are easy to obtain or
whose addresses are especially important to protect from address harvesting. When a
user chooses to encrypt an email address of a peer whose picture is not available (e.g.,
an email list), a picture may be automatically generated with some appropriate software
that takes as input a user-specified text (e.g., the name of the email list).

Building block II: needed encryption scheme and its security. In order to encrypt
addresses, we need some cryptographic encryption scheme. It is interesting, however,
that the needed security property of the encryption scheme is actually strictly weaker
than the often required ones. Specifically, let us denote by κ the security parameter (in

How to Secure Your Email Address Book and Beyond 233

this paper, the length of the key in bits). A function negl is negligible in κ if negl(κ) <
1/poly(κ) for all polynomial poly and all sufficiently large κ. Let h be an ideal hash
function [2], which may be instantiated as SHA256 [13] in practice. Our mechanism
utilizes a symmetric encryption scheme (keyGen, Enc, Dec), where keyGen is the key
generation algorithm that takes as input a security parameter κ and returns a key K ∈R

{0, 1}κ, Enc is the encryption algorithm that takes as input a key K and a plaintext
message m and returns a ciphertext c ← EncK(m), and Dec is the decryption algorithm
that takes as input a key K and a ciphertext c and returns a plaintext m ← DecK(c).

As in traditional symmetric key encryption schemes [6], we consider a probabilis-
tic polynomial-time adversary A. However, it is interesting to see that the well-known
notions of indistinguishability under chosen-plaintext and chosen-ciphertext attacks be-
come irrelevant in our application setting. This is because an adversary who can launch
such an attack would have already been able to “steal” the keys (e.g., by residing on the
victim host). Instead, the following security requirement, which we call simple-security
as it reflects that the key and plaintext should not be recovered from the ciphertexts,
would suffice for the purpose of our specific application. Formally, we say a symmetric
key encryption scheme is of simple-security if

Pr[K ←R keyGen(1κ); c ← EncK(m) : m ← A(c)] = negl(κ)

where the probability is taken over the coins of keyGen and the adversary algorithm A.
Note that the above requirement implies

Pr[K ←R keyGen(1κ); c ← Enck(m) : K ← A(c)] = negl(κ).

In our experiments, we use the RC4 stream cipher (with appropriate truncation [8]) to
encrypt email addresses. We assume that RC4 can be treated as a pseudorandom func-
tion [5]. This immediately means that the resulting encryption scheme has the desired
simple-security property.

Building block III: how to encrypt email addresses while eliminating the offline
dictionary attack. Having specified the encryption scheme, we now explore how the
encryption scheme should be employed. This issue is important because the keys are
derived from some low-entropy passphrases, meaning that special care must be taken
to deal with the offline dictionary attack. Suppose the keys might be drawn from a
relatively small passphrase dictionary D. Then, the above notion of simple-security
needs to be amended to the following:

∣∣∣∣Pr[K ←R keyGen(1κ); c ← EncK(m) : m ← A(c)] − n

|D|

∣∣∣∣ = negl(κ)

where n is the number of trials in sending emails to the (likely junk) addresses that are
decrypted from guessed passphrases. This leads to the following instructions on how to
encrypt email addresses.

First, we observe that a simple-minded encryption of email addresses is vulnera-
ble to offline dictionary attack. This is because the keys are derived from low-entropy
passphrases, and email addresses are well-structured (e.g., user@host.domain).
For example, if the decryption obtained from a guessed passphrase does not have the

234 E.J. Kartaltepe, T.P. Parker, and S. Xu

email address structure or the (top) domain name is invalid (note that there are only a
small number of domain names), then the attacker can conclude that guess is incorrect.
Therefore, we do not encrypt those structured portions of the email addresses; they in-
clude the special symbols ”@” and ”.”, and the top domain names. This also means that
any ”.” in the username portion of an email address is not encrypted (note this username
part is distinct from A1, which we normally refer to as the username in this paper and
is sometimes referred to as a nickname).

Second, we observe that if the decrypted address does not contain ASCII characters,
or contains ASCII characters not suitable for email addresses and hostnames, then the
attacker knows that its guess was wrong. Note also that the simple idea of encrypting
only the 7 least significant bits of each character byte does not work because it still
gives the attack enough information to launch the brute-force attack. To see this, no-
tice that even though the IETF RFC 2821 and 2822 clearly state that only 7-bit ASCII
characters are allowed in Internet email addresses, in practice only a subset of them are
actually usable, either because they are disallowed (control characters fall into this cat-
egory), or because of their confusing nature (the pipe and asterisk symbols fall into this
category due to their use in UNIX shells). Indeed, it seems that the only legitimate char-
acters (besides the reserved “@” and “.”) that can appear in an email address include
the following 64 characters: a-z, A-Z, 0-9, “ ”, and “-”. If we simply encrypt the least
significant 7 bits of each character, then the probability of the malicious program real-
izing its guess was incorrect is 1 − 1/(2m), where m is the length of the email address
(i.e., the number of characters other than “@” and “.”). This is unacceptably high (e.g.,
when m = 10 the probability is very close to 1). We also observe that simply encrypt-
ing the least significant 6 bits of each character is also unacceptable. This is so because
the allowed characters do not evenly correspond to 0000,0000 and 0011,1111. We
overcome this problem by defining a table that maps the above 64 usable ASCII char-
acters to the range between 0000,0000 and 0011,1111, and we only encrypt the
least significant 6 bits of each byte. Of course, an inversion transformation is conducted
when we execute the decryption algorithm.

Third, we observe that the first character in an email address is generally a letter, and
many email services enforce this restriction. If the first decrypted character isn’t a letter,
the attacker virus or worm may assume, likely correctly, that its guess was incorrect. We
can remove this liability by not encrypting the first character.

Now let us informally examine the security of the resulting scheme (a formal anal-
ysis is deferred to the full version of the present paper). We notice that all the above
instructions are made public and thus known to the adversary; this means that security
against offline dictionary attacks is merely based on standard cryptographic machinery.
The objective of the attacker (i.e., the malicious email in this paper’s context) is to re-
cover the email addresses. There are two approaches for the attacker to obtain them. The
first is to constantly monitor the client software until the victim user has sent emails to
all (or most) of the users in the address book. This waiting time varies, and mainly de-
pends on the social behavior of the victim user. Our solution has been successful if the
attacker is forced to adopt this approach. The second is to conduct a dictionary attack
against the passphrases. Fortunately, our careful design blocks any offline dictionary at-
tack. This is because, without actually trying to send an email to an address decrypted

How to Secure Your Email Address Book and Beyond 235

with a guessed passphrase, the attacker cannot tell whether its guess is correct or not.
As a result, the attacker’s capability is essentially downgraded to an online dictionary
attack, which can be easily detected and blocked either by a firewall or by a legitimate
SMTP engine.

3.2 Encrypted Address Book – Putting Pieces Together

Let EAB be the schema of encrypted address books. The key difference between ces.AB
(as reviewed in Section 2) and EAB is that attribute A0 in the former is substituted by
several attributes in the latter, whereas A1 and A2 are kept intact. An encrypted address
book is an instance of EAB, called eab. Our mechanism consists of the functionali-
ties that are formally specified in Figure 2 and intuitively presented below. The setup

eab.setup(ces.ab) {
eab ← ∅
For each (a0, a1, a2) ∈ ces.ab {

select a random r0

user picks a passphrase pa
user picks a picture image for a0

icon ← embed(pa, image)
c0 ← Ench(r0,pa)(a0)
c1 ← a1

c2 ← a2

eab ← eab ∪ {(icon, r0, c0, c1, c2)}
}

}

eab.addaddress(eab, address, username) {
select a random r0

user picks a passphrase pa
that is embedded onto an icon

user picks picture image for address
user enters info for address
icon ← embed(pa, image)
c0 ← Ench(r0,pa)(address))
c1 ← username
c2 ← info
eab ← eab ∪ {(icon, r0, c0, c1, c2)}

}

eab.modifyaddress(eab) {
user browses eab
users clicks icon such that

(icon, r0, c0, c1, c2) ∈ eab
user enters pa embedded onto an icon
user types in new address newaddress
c0 ← Ench(r0,pa)(address)
update (icon, r0, c0, c1, c2) ∈ eab

}

eab.getaddress(eab, icon) {
If ∃ r0, c0, c1, c2 such that

(icon, r0, c0, c1, c2) ∈ eab {
user enters pa
address ← Dech(r0,pa)(c0))
return address

}
Else return null

}
eab.deleteaddress(eab, icon) {

If ∃ r0, c0, c1, c2 such that
(icon, r0, c0, c1, c2) ∈ eab

eab ← eab − {(icon, r0, c0, c1, c2)
}

eab.geticon(eab, username) {
If ∃ (icon, r0, c0, username, c2) ∈ eab

return icon
Else return NULL

}

Fig. 2. Functionalities of encrypted address book subsystem

algorithm eab.setup(ces.ab) takes as input an existing email address book ces.ab =
{(ai,0, ai,1, ai,2)}1≤i≤�, and transforms it into an encrypted email address book eab =
{(iconi, ri,0, ci,0, ci,1, ci,2)}1≤i≤�, where iconi is the icon returned by embed(·, ·),
ri,0 is a random string of appropriate length (e.g., 160 bit), ci,0 = Ench(ri,0,pai)(ai,0),
ci,1 = ai,1, and ci,2 = ai,2. Notice that each record of eab is encrypted with a different

236 E.J. Kartaltepe, T.P. Parker, and S. Xu

key h(ri,0, pai); in other words, both ri,0 and pai are unique to this record. Note further
that only the email address itself (ai,0) is encrypted.

The algorithm eab.addaddress(eab, address, username) takes as input the cur-
rent encrypted address book eab, a new email address address and the corresponding
username username, and updates eab by adding a new record for the new user.

The algorithm eab.modifyaddress(eab) allows the owner to browse the encrypted
address book eab, and change the email address in an entry. Note that the browsing of
eab can be indexed by the icon’s or the ci,1’s (i.e., the usernames). In order to accomplish
this functionality, the owner needs to enter the passphrase pa corresponding to the record
whose email address is to be changed. Note that pa need not be memorized by the owner,
because it is embedded onto the icon that is presented to him.

The algorithm eab.getaddress(eab, icon) allows the owner to extract the email
address of the record corresponding to icon in the encrypted address book eab. For this
purpose, the owner also needs to enter the pa prompted by the icon.

The algorithm eab.deleteaddress(eab, icon) allows the owner to delete the record
corresponding to icon from the encrypted address book eab. Note that the owner is not
asked to enter the passphrase pa, because an attacker that already compromised the
victim host can delete the records in eab anyway.

The algorithm eab.geticon(eab, username) returns the icon, if any, correspond-
ing to the give username username in the encrypted address book eab. This algorithm
does not ask the user to enter the passphrase pa.

4 Prototype System with Integrated Encrypted Address Books

In this section we describe our prototype system based on the above mechanism that
encrypts the email addresses in the email address books. The email addresses appearing
in the email boxes (or folders) are encrypted as well (see initialize below).

4.1 Functionalities of Our Prototype System

Our prototype system provides the same set of functionalities as a current email system
does. Since our system is built upon the current email systems, it additionally provides
an initialize functionality. As shown in Figure 3, most functionalities of the prototype
system are provided by calling the counterpart functions that are offered by the cur-
rent email system (ces) or the encrypted address book (eab) mechanism. Specifically,
its insertaddress, attach, send, search, createfolder, deletefolder, sort and
deliver functionalities are the same as ces.insertaddress, ces.attach, ces.send,
ces.search, ces.createfolder, ces.deletefolder, ces.sort and ces.deliver, re-
spectively. Its addaddress and modifyaddress functionalities are the same as the
eab addaddress and modifyaddress, respectively. The other functionalities,
namely replyall as well its special case reply, receive, deleteaddress, compose,
and forward, are formally specified in Figure 4 and intuitively presented below.

Denote by eab an instance of EAB, and by projection(eab, column1, column2)
the projection of eab on the two attributes column1 and column2. Each email system
has a set of email folders folders, each of which consists of a set of emails. For each

How to Secure Your Email Address Book and Beyond 237

insertaddress
()

attach() send() search() createfolder() deletefolder() sort() deliver() addaddress()
modify

address()

eab.
addaddress()

eab.modify
address()

ces.insert
address()

ces.attach() ces.send() ces.search() ces.
createfolder()

ces.
deletefolder()

ces.sort() ces.deliver()

Fig. 3. Inheritance diagram for most prototype functions (others have pseudocode in Figure 4).
The function at the base of the arrow essentially calls the function at the arrow’s head.

initialize(ces.ab, ces.folders) {
eab.setup(ces.ab)
For each folder ∈ ces.folders {

For each email ∈ folder {
For each (email.address, email.user)

email.address← eab.geticon(eab,
email.user)

}
}
erase ces.ab
new.folders← ces.folders

}

replyall(eab, email) {
// reply is a special case of replyall
t← email
For each (t.address, t.user) {

If t.address is an icon
t.address← eab.getaddress(eab,

t.address)
}
ces.replyall(t)
erase t

}
receive(eab) {

EMAILS ← ces.receive()
table← projection(eab, icon, c1)
For each email ∈ EMAILS {

For each (email.address, email.user) {
If ∃ icon such that (icon, email.user) ∈ table

email.address← icon
Else {

user picks an icon for email.user
eab.addaddress(eab, email.address,

email.user)
email.address← eab.geticon(eab,

email.user)
}

ces.deliver(email)
}

}

deleteaddress(eab, new.folders, icon) {
allowed← TRUE

For each folder ∈ new.folders {
For each email ∈ folder {

If icon = email.address {
allowed← FALSE

exit
}

}
}
If allowed

eab.deleteaddress(eab, icon)
}

compose(eab) {
ces.compose()
If user clicks the “insert address” button {

user browses eab and clicks on an icon
address← eab.getaddress(eab, icon)
ces.insertaddress(address)

}
If user types in an email address address {

user types in recipient
If eab.geticon(eab, recipient) = NULL

eab.addaddress(eab, address, recipient)
}

}

forward(eab, email) {
If user clicks the “insert address” button {

user browses eab and clicks on an icon
address← eab.getaddress(eab, icon)
ces.insertaddress(address)

}
If user types in an email address address {

user types in recipient
If eab.geticon(eab, recipient) = NULL

eab.addaddress(eab, address,
recipient)

}
}

Fig. 4. Functionalities of our prototype system

238 E.J. Kartaltepe, T.P. Parker, and S. Xu

email email, there is a set of pairs (user, address), where user is the sender’s (or a
cc’ed user’s) name and address is the corresponding user’s email address. We may
denote such a pair by (email.user, email.address). Specifically,

* The algorithm replyall(eab, email) allows the user to reply to all the users ap-
pearing in the (header of an) email email. For this purpose, the user may need to
enter the corresponding passphrases. Note that reply(eab, email) is a special case
of replyall(eab, email).

* The algorithm receive(eab) allows the user to receive each incoming email email.
If there is a record in eab corresponding to the sender of email, the email address
is substituted with the corresponding icon. Otherwise, the user may be asked to
add a new record into eab. Note that whether the email corresponds to a record in
eab is determined by comparing email.username appearing in the email and the
plaintext username appearing in eab. (In the rare case that email.username =
NULL, the user may be asked to browse the icon’s in eab.)

* The algorithm deleteaddress(eab, new.folders, icon) allows the user to delete a
record from eab. However, special care is taken to ensure that there is no email
involving the user associated with the record. If this property is not guaranteed,
there would be some emails whose addresses cannot be recovered (even by the
legitimate user).

* The algorithm compose(eab) allows the user to compose an email. It allows the
user to insert an address in eab. Similarly, the algorithm forward(eab, email)
allows the user to forward the email email.

Finally, there are two ways for one to initialize our system. The first is a fresh
bootstrapping with an empty email address book and empty email boxes. The second
is to appropriately process an existing email address book and its associated email
boxes. Since the first scenario can be seen as a special case of the second, we will
focus on the second scenario. The algorithm initialize(ces.ab, ces.folders) first calls
eab.setup(ces.ab) to transform an existing address book ces.ab into an encrypted ad-
dress book eab, and then substitutes every email address in every email box with the
corresponding icon.

4.2 Implementation and Evaluation of Our Prototype System

We implemented two prototype systems — one for the PC platform, the other for use
on a cell phone (whose camera may naturally provide photos of the users appearing in
an email address book). The desktop version is called Enhanced Pooka — an enhance-
ment of the original Pooka email client [10]. This system was written in Java 1.4.2. The
cell phone version is called MiniPooka and acts as a full email system. The hardware
chosen was the Palm Treo 650 for multiple reasons. First, the widespread prevalence of
smartphones in the business world caused us to consider phones with their functional-
ity. Second, there is a wide variety of simulators that run the Palm OS operating system,
allowing strong testing in the design phase of the project. Third, the widespread usage
of the Palm OS naturally led to a wide variety of tools for designing a system quickly.
Further, the authors’ access to a Treo 650 allowed testing in real world simulations

How to Secure Your Email Address Book and Beyond 239

and experiments, valuable to determine the viability of MiniPooka. MiniPooka also has
the capability to capture images for use with the Enhanced Pooka system, as described
below.

Performance. Our solution is a user-end one, meaning that it does not incur any com-
munication delay, even with the email server. Furthermore, our prototype system
showed that the performance in terms of delay imposed on the relevant procedures (e.g.,
sending emails) is not noticeable by a human being, except of course that the users may
need to enter the passphrases that are embedded onto picture images.

Preliminary usability analysis. Our prototype system for the PC platform was pre-
liminarily tested by a small group of volunteers. Some were from computer science
professions while others used email regularly but were in other fields. These volunteers
were surveyed to determine if our prototype system was an effective replacement for
their current email system and by doing so, determine if our prototype system would
be a deployable one. A questionnaire using the Likert scale for providing a level of
measurement was applied. The questionnaire listed a series of statements and requested
the respondent to answer with “strongly disagree”, “strongly agree”, “neither agree nor
disagree”, “agree”, and “strongly agree”. For example, the question “easy as CES?”
asks whether our prototype system is as easy as their current email system to use, and
the question “can read RTT?” asks the easiness in dealing with the reverse Turing test
(i.e., CAPTCHA in our experiment). Their answers were then mapped to a score from
one to five and averaged across those respondents. These results are shown in Figure 5.

While the results of our preliminary usability tests were quite encouraging, we read
it with caution. When asked which part of the process would be most time-consuming
or difficult, an overwhelming number of responses suggested that that task would be
obtaining pictures for a contact. Fortunately, a user only once needs to obtain a picture
for a person whose email address appears in the user’s email address book; i.e., this
cost of “bootstrapping” the scheme is done once-and-for-all. Moreover, our systems
were designed for incremental deployment, meaning not only that partial deployment

S. D.

D.

N.

A.

S. A.

questions

re
sp

on
se

s understand problem?
easy as CES?
can read RTT?
adding entry easy?
selecting entry easy?
use if no virus exited?

Fig. 5. Questionnaire results

240 E.J. Kartaltepe, T.P. Parker, and S. Xu

could already be effective, but also that one can selectively protect the email addresses
the user cares most (i.e., only those email addresses in the email address book and email
boxes are encrypted using our method).

5 Effectiveness Analysis

In this section we analyze the effectiveness of our approach to protecting email ad-
dresses in the address books and email boxes.

5.1 Methodology and Metric

To examine effectiveness, we conduct a simulation study based on the real-life email
network of [4]. This data set is based on email traffic during the period of sixteen weeks
(or nearly 107 seconds). This dataset contained 41,991 anonymized senders and re-
cipients and 406,600 emails. This email network can be modeled as an “email graph”
G(V, E), where each email sender or recipient (i.e., an email address) is a vertex or
node v ∈ V and an edge e ∈ E connects v1 and v2 if v1 sent an email to or received an
email from v2. In particular, each node has an address book based on the email graph
G, and may or may not deploy our mechanism.

To accommodate the worst case scenario, we make the following assumptions. First,
we assume that the email virus is crafty in that it does not simply spread itself in
a straightforward fashion (otherwise, simple countermeasures such as virus throttling
[20] can easily detect and block it). Instead, it intends to be as stealthy as possible. To
this end, the email virus tries to mimic the behavior of the victim users. For simplicity,
this is captured by substituting every email sent by a compromised user with one that
is sent by the email virus. Second, we assume that at system initialization the email
address books at the nodes corresponding to the graph G are already formed (by “sys-
tem initialization” we mean that when our mechanism is deployed). Third, if a user is
compromised at system initialization, then the email address book is completely com-
promised at that time. Fourth, any email sent by a compromised user is malicious, and
the recipient immediately becomes compromised or infected. If the victim recipient has
not deployed our mechanism, then its email address book is completely exposed to the
virus; otherwise, its email address book is not necessarily compromised.

The metric of interest is the total number of nodes (i.e., email addresses) that are
exposed to an email virus, before and after deploying our method. We consider three
factors that may have an impact on this metric: (1) the percentage of nodes that are
compromised at system initialization, (2) the percentage of nodes that deploy our mech-
anism at system initialization, and (3) the time.

In what follows we explore the metric from two perspectives: the overall effective-
ness at the end of the simulation and the effectiveness with respect to time.

5.2 Overall Effectiveness at the End of Simulation

Figure 6 shows the percentage of email addresses that have been exposed to the at-
tacker at the end of the simulation. This metric depends on two factors: the percentage

How to Secure Your Email Address Book and Beyond 241

of compromised nodes (denoted by “initially compromised %” for short) at system ini-
tialization (i.e., 0%, 20%, 40%, 60%, 80%, and 100%), and the percentage of nodes
deploying our mechanism (denoted by “eab deployment %” for short) at system initial-
ization (i.e., 0%, 20%, 40%, 60%, 80%, and 100%). In any case where only some nodes
are compromised or deploy our mechanism, we assume that these nodes are randomly
selected from the population V.

20

40
60

80
100

0
20

40
60

80
100

0

20

40

60

80

100

eab deployment %initially compromised %

ex
po

se
d

em
ai

l a
dd

re
ss

es
 %

0

Fig. 6. Percentage of exposed email addresses at the end of the simulation

From Figure 6 we draw the following observations. First, if many nodes are com-
promised at initialization, then our solution’s success is limited. Specifically, if more
than 70% of the nodes are initially compromised, after all emails are sent the number
of exposed addresses still reaches 100%. This is inevitable because the address books
of the compromised nodes already cover a significant portion of the email address pop-
ulation. However, it is more likely that a small percentage (e.g., 1%) of nodes would
be initially compromised. In this case, our solution is quite effective even if only por-
tions of the nodes deploy our mechanism (see below for details). Second, for any fixed
percentage of initially compromised nodes, the number of exposed email addresses de-
creases as the percentage of eab deployment grows. Third, for any fixed percentage of
eab deployment, the number of exposed email addresses decreases as the percentage of
initially compromised nodes drops.

5.3 Effectiveness with Respect to Time

We explore the evolution of the number of exposed email addresses with respect to
time. Figure 7 shows the effect of the number of initially infected nodes on the average
number of exposed email addresses as the simulation proceeds. The average is taken
over 10 runs. Figure 7.(a) corresponds to the case that 1% of nodes are initially com-
promised and 25%, 50%, 75%, and 100% nodes deploy our mechanism, respectively.

242 E.J. Kartaltepe, T.P. Parker, and S. Xu

0 5 10
0

20

40

60

80

100

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

25% eab deployment
50% eab deployment
75% eab deployment
100% eab deployment

(a) 1% initial infection

0 5 10
0

20

40

60

80

100

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

25% eab deployment
50% eab deployment
75% eab deployment
100% eab deployment

(b) 2% initial infection

0 5 10
0

20

40

60

80

100

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

25% eab deployment
50% eab deployment
75% eab deployment
100% eab deployment

(c) 5% initial infection

Fig. 7. Exposed email addresses vs. initial infection

Figure 7.(b) corresponds to the case that 2% of nodes are initially compromised and
25%, 50%, 75%, and 100% nodes deploy our mechanism, respectively. Figure 7.(c)
corresponds to the case that 5% of nodes are initially compromised and 25%, 50%,
75%, and 100% nodes deploy our mechanism, respectively.

Figure 7 allows us to draw the following observations. First, the more nodes that
deploy our mechanism, the fewer email addresses will be exposed. The more initially
compromised nodes there are, the more significant the above tendency. For example,
we can see significant differences between the numbers of eventually exposed email
addresses in the case of 50% eab deployment and in the case of 75% eab deployment.
In the case of 1% initially compromised nodes, the difference is 3%; in the case of
2% initially compromised nodes, the difference is 6%; in the case of 5% initially com-
promised nodes, the difference is 9%. Second, the number of exposed email addresses
increases almost linearly with respect to time t. This perhaps means that, on average,
emails are sent to new email addresses as time proceeds.

How to Secure Your Email Address Book and Beyond 243

0
0

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

1% initially compromised
2% initially compromised
5% initially compromised

2 4 6 8 10

25

50

75

100

(a) 25% deployment

0
0

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

1% initially compromised
2% initially compromised
5% initially compromised

2 4 6 8 10

25

50

75

100

(b) 50% deployment

0
0

0

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

1% initially compromised
2% initially compromised
5% initially compromised

2 4 6 8 10

25

50

75

100

(c) 75% deployment

0
0

time steps × 106

ex
po

se
d

ad
dr

es
se

s %

1% initially compromised
2% initially compromised
5% initially compromised

2 4 6 8 10

25

50

75

100

(d) 100% deployment

Fig. 8. Exposed email addresses vs. new mechanism deployment

Figure 8 plots the same simulation results (i.e., the one shown in Figure 7) from a
different perspective. First, it clearly shows that, for any fixed percentage of eab de-
ployment, the number of exposed email addresses increases as the number of initially
compromised nodes grows. Second, the differences between the numbers of exposed
email addresses in the case of 2% initially compromised nodes and in the case of 5%
initially compromised nodes decreases as the percentage of eab deployment increases.
Third, our mechanism is effective even if only portions of the nodes deploy our mecha-
nisms. For example, suppose that 50% of the nodes deploy our mechanism. Then, about
40% of the nodes will not be exposed to the attacker at the end of the simulation in the
case of there being 1% initially compromised nodes, about 35% of the nodes will not be
exposed to the attacker at the end of the simulation in the case of there being 2% initially
compromised nodes, and about 22% of the nodes will not be exposed to the attacker at
the end of the simulation in the case of there being 5% initially compromised nodes.
This is of practical value because it is unlikely that all nodes (or users) will deploy our
mechanism (for whatever reason).

244 E.J. Kartaltepe, T.P. Parker, and S. Xu

6 Related Work

The existing work most closely related to the present paper is actually some imple-
mented commercial software. Courier is a full-featured email client that runs on the
Windows family of operating systems [11]. ViraLock is another for Microsoft Outlook
and Outlook Express [18]. However, both schemes encrypt the address book entries
using the same key, and thus are bound to be ineffective against address harvesting as
analyzed in the Introduction. In contrast, our methods encrypt each address book entry
with a different key, meaning that compromise of the whole address book is slowed
down by a factor proportional to the size of the address book.

It should be noted that our scheme does not necessarily obviate encryption of the
address book with a single key; this is complementary to our scheme for some pur-
poses. For example, users may wish to ensure privacy of nicknames (A1) and other
address book details, for which single-key encryption is ideally suited. Single-key en-
cryption should be performed prior to our scheme by encrypting the entire address book
file, which is much simpler than individually decrypting addresses after performing our
scheme, particularly as the latter would also necessitate any file encryption passphrase
to be retained in memory or re-entered each time. Moreover, this would be useful for
preventing attacks which are beyond the scope of this work, such as a worm transmit-
ting an eab to another computer, where a human user would identify the passphrases in
the images in order to decrypt the addresses. Note we believe such a scheme would be
far too expensive for most email worms to employ in practice.

Our solution can be seamlessly integrated with other solutions to countering email
viruses to provide a more comprehensive protection. For example, our solution is com-
plementary to virus throttling [20], which rate-limits the number of a user’s outgoing
emails to distinct recipients. As a follow-up to [20], Twining et al [17] proposed a tech-
nique called “using sending history to predict future mailing behavior.” However, both
[20] and [17] may not be able to block or slow down outgoing malicious emails that
can mimic the behavior of legitimate emails as well as their senders. This is certainly
possible because the attacker has compromised the victim machines.

Our idea of embedding a “twisted” passphrase onto a background picture is some-
what inspired by the CMU CAPTCHA project [3,1] (indeed, the Gimpy instances are
based on their implementation). However, it is worthwhile to note that our usage of chal-
lenging the users with some “twisted” characters has two utilities: (1) It can tell a com-
puter program from a human being. Even if this is similar to the utility of CAPTCHA,
there is a crucial difference in the system model. In their model, the verifier is a remote
server (i.e., computer program) that knows the correct answer. Whereas, in our model
there is no concept of verifier in the sense of checking the correctness of the answer
(i.e., there is no computer program that serves as a verifier). This is because the correct-
ness is checked by a human being based on the decryption result. (2) It can relieve the
users from the burden of memorizing the passphrases; this usage may be of independent
value.

There are also some loosely related works. [12] proposed a mechanism to prevent the
harvesting of addresses by an SSH worm. This differs from our approach because while
their solution involves protecting specific files in a manner reminiscent of password files
(which use random salts and hash functions to hide the identities of known hosts), our

How to Secure Your Email Address Book and Beyond 245

system encrypts each valid address within any number of files and folders. Finally, we
should mention that Wong et al. [19] analyzed network traffic traces collected from
a college campus and presented an in-depth study on the effects of two mass-mailing
worms, SoBig and MyDoom, on outgoing traffic.

7 Conclusion

We systematically explored how to encrypt (user-selected) email addresses in the ad-
dress books and email boxes. Our solution is a user-end one, meaning that it affects only
the email client software and is completely transparent to the email server. An entry in
an address book is encrypted using a unique key, and hard AI problems are utilized to
relieve the users of memorizing passwords while defeating offline dictionary attacks.
Simulation shows that our solution is effective, even if only a portion of users deployed
it (i.e., it can be incrementally deployed). We implemented two prototype systems. The
result of our preliminary usability test is positive, and encourages us to conduct a more
thorough test. We also plan to enhance the functionalities of our prototype systems so
that one can change the pictures and/or passphrases of the users appearing in the address
book and email boxes.

References

1. von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using Hard AI Problems for
Security, Eurocrypt (2003)

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73
(1993)

3. http://www.captcha.net/
4. Ebel, H., Mielsch, L.-I., Bornholdt, S.: The Data of the Email Network, http://www.

theo-physik.uni-kiel.de/ ebel/email-net/email net.html
5. Goldreich, O., Goldwasser, S., Mical, S.: How to construct random functions. J. ACM 33(4),

792–807 (1986)
6. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private-key

encryption. ACM STOC, 245–254 (2000)
7. W32/Mydoom.ag@MM, http://vil.nai.com/vil/content/v 129630.htm
8. Mironov, I.: (Not So) Random Shuffles of RC4. In: The proceedings of Crypto 2002, pp.

304–319 (2002)
9. Palm OS Developer Suite,

http://www.palmos.com/dev/tools/dev suite.html
10. Petersen, A.: Pooka: A Java Email Client, http://suberic.net/pooka
11. http://www.rosecitysoftware.com/courier/
12. Schechter, S., Jung, J., Stockwekk, W., McLain, C.: Inoculating SSH Against Address Har-

vesting. In: The 13th Annual Network and Distributed System Security Symposium (2006)
13. SHA256, http://csrc.nist.gov/CryptoToolkit/tkhash.html
14. Win32/SirCam Worm,

http://www.pspl.com/virus info/worms/sircam.htm
15. W32.Klez.gen@mm, http://securityresponse.symantec.com/avcenter/

venc/data/w32.klez.gen@mm.html

http://www.captcha.net/
http://www.theo-physik.uni-kiel.de/~ebel/email-net/email_net.html
http://www.theo-physik.uni-kiel.de/~ebel/email-net/email_net.html
http://vil.nai.com/vil/content/v_129630.htm
http://www.palmos.com/dev/tools/dev_suite.html
http://suberic.net/pooka
http://www.rosecitysoftware.com/courier/
http://csrc.nist.gov/CryptoToolkit/tkhash.html
http://www.pspl.com/virus_info/worms/sircam.htm
http://securityresponse.symantec.com/avcenter/venc/data/w32.klez.gen@mm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.klez.gen@mm.html

246 E.J. Kartaltepe, T.P. Parker, and S. Xu

16. https://www.trustedcomputinggroup.org
17. Twining, D., Williamson, M., Mowbray, M., Rahmouni, M.: Email prioritization: Reducing

delays on legitimate mail caused by junk mail. In: Usenix Annual Technology Conference
(2004)

18. http://www.soft14.com/Utilities and Hardware/Antivirus/
ViraLock 5641 Review.html

19. Wong, C., Bielski, S., McCune, J., Wang, C.: A Study of Mass-Mailing Worms. In: Proceed-
ings of ACM Worm (2004)

20. Williamson, M.: Design, Implementation and Test of an Email Virus Throttle. In: Omondi,
A.R., Sedukhin, S. (eds.) ACSAC 2003. LNCS, vol. 2823, Springer, Heidelberg (2003)

https://www.trustedcomputinggroup.org
http://www.soft14.com/Utilities_and_Hardware/Antivirus/ViraLock_5641_Review.html
http://www.soft14.com/Utilities_and_Hardware/Antivirus/ViraLock_5641_Review.html

Toward Non-parallelizable Client Puzzles

Suratose Tritilanunt, Colin Boyd,
Ernest Foo, and Juan Manuel González Nieto

Information Security Institute
Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia
s.tritilanunt@student.qut.edu.au,

{c.boyd,e.foo,j.gonzaleznieto}@qut.edu.au

Abstract. Client puzzles have been proposed as a useful mechanism
for mitigating denial of service attacks on network protocols. Several dif-
ferent puzzles have been proposed in recent years. This paper reviews
the desirable properties of client puzzles, pointing out that there is cur-
rently no puzzle which satisfies all such properties. We investigate how
to provide the property of non-parallelizability in a practical puzzle. Af-
ter showing that obvious ideas based on hash chains have significant
problems, we propose a new puzzle based on the subset sum problem.
Despite some practical implementation issues, this is the first example
that satisfies all the desirable properties for a client puzzle.

Keywords: Denial of Service Attacks, Client Puzzles, Non-Parallelizable
Cryptographic Puzzles.

1 Introduction

Cryptographic puzzles, or client puzzles, have been proposed as a mechanism to
defeat resource exhaustion denial of service (DoS) attacks in network protocols,
particularly in key exchange protocols. Client puzzles counterbalance computa-
tional usage between client and server machines. By forcing the client to solve a
computational puzzle before attending to a request, the server ensures that the
client spends sufficient resources before committing its own. In particular, an ad-
versary who wishes to flood a server with connection requests will have to solve
a huge number of puzzles. The idea of using cryptographic puzzles in computer
networks was first introduced by Dwork and Naor [5] for combating junk emails.
Juels and Brainard [10] extended the concept of puzzles to thwart Denial-of-
Service (DoS) attacks in network protocols. Recently, Moskowitz developed the
host identity protocol (HIP) [16], which employs a client puzzle mechanism for
protecting the server against resource exhaustion attacks.

Although a variety of client puzzles have been proposed to solve DoS attacks,
limited analysis of these proposals has appeared in the literature. An exception is
the work of Price [17], who introduces a generic attack against hash-based client
puzzles. Another investigation of hash-based client puzzles has been carried out
by Feng et al. [7]. They examine client puzzles based on six parameters: unit

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 247–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

248 S. Tritilanunt et al.

work, range, mean granularity, maximum granularity, exact control and parallel
computation.

A client puzzle is non-parallelizable if the solution to the puzzle cannot be
computed in parallel. Non-parallelizable client puzzles can be used to defend
against distributed denial-of-service (DDoS) attacks, where a single adversary
can control a large group of compromised machines and launch attacks to the
targeted server from those machines. If the client puzzle is parallelizable, such
an adversary could distribute puzzles to other compromised machines to obtain
puzzle solutions faster than the time expected by the server. A client puzzle is
said to provide fine granularity if it allows servers to adjust the solution time
precisely. Both non-parallelizability and fine granularity are important proper-
ties of good puzzles. A survey of existing client puzzles reveals that only time
lock puzzles [19] are able to provide both non-parallelizability and fine-grained
control. However, these puzzles suffer from being computationally expensive in
puzzle construction and verification.

In this paper we propose a new puzzle construction based on the subset sum
problem. The primary strengths of this puzzle over others are the simple and
cheap construction and verification for the server, as well as non-parallelizability.
The main contributions of this work are:

– to provide a summary and analysis of client puzzles for DoS-resistance;
– to compare strengths and weaknesses of existing client puzzles;
– to propose a new construction, called Subset Sum Client Puzzles.

In the next section we will summarise existing proposals for client puzzles and
review their properties. Section 3 examines possible ways to use hash chains as
non-parallelizable puzzles and then Section 4 introduces and analyses our new
puzzle.

2 Survey and Analysis of Client Puzzles Approaches

Client puzzles functioning as proofs of work can be constructed from a number of
underlying problems. Although many puzzles have been proposed using different
techniques, all of them should satisfy seven important properties described by
Aura et al. [2]; for instance puzzles should be easy and cheap to construct and
verify for the server, but lead to a significant computational effort for adversaries
who attempt to flood a large number of bogus requests to the server.

Feng et al. [7] proposed some additional criteria for evaluating efficiency and
resolution of cryptographic puzzles. As defined by Feng et al. [7], the puzzle
efficiency represents speed of puzzle generation and verification on the server’s
machine compared to the puzzle solving on the client’s machine. Meanwhile,
the resolution or puzzle granularity represents the ability of the server to finely
control the amount of work done by calibrating the puzzle difficulty to the client.
The following list represents the properties that we examine in this paper.

Server’s Cost identifies the computational effort on the server’s machine. This
factor is divided into three subcategories consisting of pre-computation cost,
construction cost, and verification cost.

Toward Non-parallelizable Client Puzzles 249

Client’s Cost represents the amount of computational effort on the client’s
machine. We assume that the server and the client have similar resources re-
garding both CPU and memory units to process these puzzles. We note that
this may not be realistic in some applications; for example, some legitimate
clients may have restricted resources.

Non-parallelizability describes whether the client puzzles can be distributed
and solved in parallel computation. In some circumstances, non-parallelizable
puzzles can prevent coordinated adversaries from distributing puzzles to a
group of high performance machines to obtain solutions quicker than the
specified period assigned by the server. Consequently, the server becomes
overloaded by a huge amount of attack traffic and unable to process any
upcoming legitimate messages.

Granularity represents the ability of the server to finely adjust puzzle diffi-
culty to different levels. Indirectly, this parameter also affects the traffic flow
of arriving packets to the connection queue within a certain time. Three
different types of granularity; linear, polynomial, and exponential are com-
pared. Linear granularity is the best that we hope to deal with, while an
exponential one is the worst case.

We now conduct a short survey and comparison in term of strengths and
weaknesses of existing proposals for client puzzles.

Hash-based Reversal Puzzles: In 1999, Juels and Brainard [10] introduced
the construction of client puzzles using a hash function; clients need to calculate a
reverse one-way hash value of a puzzle generated by the server. In this technique,
the server is able to adjust the difficulty level of the client puzzle by increasing
or decreasing the number of hidden bits of the pre-image sent to clients in the
puzzle. The client performs a brute-force search to find missing bits of pre-image
whose output is given by hashing each pattern until matching the answer. To
verify the solution, the server needs to perform only a single hash operation.

An alternative construction was proposedby Aura et al. [2]. Different from Juels
and Brainard’s construction, the puzzle generation requires only a single hash in-
stead of two hash operations as in Juels and Brainard’s scheme. Given part of the
pre-image and the length (k) of zero bits at the beginning of the hashed output,
clients need to perform a brute-force search to find a matching solution.

In summary, the major strength of these two hash-based reversal schemes is the
simple and fast construction and verification. On the other hand, the weaknesses
are that they are parallelizable and their granularity is exponential which brings
a difficult task to the server to control and adjust the incoming rate of requests.

Hint-Based Hash Reversal Puzzles: As the granularity of hash-based re-
versal schemes is too coarse, Feng et al. [6] proposed the idea of hint-based
hash reversal puzzles to allow the granularity to be linear. The technique of this
mechanism is that the server provides extra information called hints attached
to the puzzle. Instead of checking every possible solution, the client searches for
a solution within a range of a given hint. Apart from this action, all remaining
processes are similar to the original work from Juels and Brainard [10]. Hence,

250 S. Tritilanunt et al.

the simple puzzle generation and verification as well as the linear granularity
for fine grained control are the strengths of this construction. However, it is
still susceptible to distribution and parallel processing attacks, as is the original
hash-based reversal scheme.

Repeated-Squaring or Time-Lock Puzzles: Time-lock puzzles were devel-
oped by Rivest et al. [19] in 1996. The major goal of this technique is to defeat
the high-end adversaries who attempt to solve puzzles more quickly by using par-
allel computers. Time-lock puzzles rely on the notion that a client has to spend
a pre-determined amount of computation time performing repeated squaring to
search for a solution. To achieve this goal, the server estimates the performance
of a client by the number of squaring operations a client can perform in a certain
period, and determines the amount of time it expects a client to spend solving
the puzzle.

To solve the puzzle, the client is required to compute a modular squaring
operation repeatedly. This computation must be calculated sequentially so it
cannot be distributed and solved in parallel. Since the period of solving the
puzzle is easily controlled and determined by the server at puzzle generation time,
we can conclude that the time-lock puzzles have a linear granularity. Another
strength of this scheme is its non-parallelizable characteristic because it requires
an inherently sequential operation to solve a puzzle. In the original paper, the
major purpose of this scheme is the long term protection of secret information,
for example, in the application of the on-line auction. However, the primary
concern of this scheme in DoS mitigation applications is the high-computation
in the construction and verification because the underlying technique requires
the server to perform a costly modular exponentiation.

DH-based Puzzles: Diffie-Hellman based puzzles were proposed by Waters
et al. [25] in 2004. The construction requires an expensive Diffie-Hellman op-
eration, while the verification could be simply done via table lookup, which is
considered a cheap operation, because the server has already generated puzzle
solutions at the construction and stores them in the memory. Therefore, the
expensive construction would be a drawback, while the cheap verification would
be the major positive characteristic.

Given the range of a solution as in hint-based schemes, the client searches
for a solution by testing each candidate value in the range until it finds a cor-
rect solution. Similar to other hint-based puzzles, this scheme then provides a
linear-grained control to the server. Considering the non-parallelizability, be-
cause clients require a specific range of attempts to find a correct solution, the
puzzle can be distributed and computed in parallel to obtain a correct solution.
As a result, this scheme does not support non-parallelizability.

Trapdoor RSA-based and DH-based Puzzles: Gao [8] developed two puz-
zle mechanisms based on trapdoor functions to overcome weaknesses over the
hash-based construction. By pre-computing some parameters and expensive
operations before starting the protocol, Gao’s implementation can reduce the
overhead of puzzle construction. However, this pre-computation workload is a
disadvantage to these types of puzzles.

Toward Non-parallelizable Client Puzzles 251

On the positive side, the protocol computes and stores the solutions at puzzle
generation time to save workload at verification. As a result, the server requires
only a single comparison in order to check validity of the solution from the client.
In the puzzle solving, the client is given a range of candidates to run a brute-force
search for a correct solution. Hence, the granularity of these two constructions
is linear-grained.

On the negative side, both trapdoor-function based schemes can be distributed
and solved in parallel by a group of adversaries as for other hint-based puz-
zles. Moreover, these schemes involve modular arithmetical operations which
are more expensive than hash functions. Although Gao [8] suggested to perform
pre-computations to avoid CPU burden at construction time, puzzle generation
still requires a number of modular exponentiations.

Table 1 compares seven cryptographic puzzle constructions based on the anal-
ysis criteria previously discussed. For purposes of comparison, we include our new
subset sum puzzles in the table. Details will be discussed in Section 4.1. The high-
lighted field (displayed as the bold and italic style) in individual columns rep-
resents the best candidate for each analysis criterion. In the server’s and client’s
cost entry, we use the number of operations as a measurement for comparison.
More precisely, the hash-based cryptographic puzzles require a number of hash
function computations displayed as hash in the table, while the arithmetic-based
puzzles require a number of modular exponentiations represented by mod exp and
modular multiplications represented by mod mul. Modular arithmetic consumes
much greater resources than hash functions. Hence, the preference for this entry
would be the technique which expends a small number of hash operations. We
can conclude that the puzzle construction based on hash-based reversal would
be the most effective technique.

The non-parallelizability characteristic plays an important role for defending
against coordinated adversaries who attempt to distribute puzzles to other users

Table 1. Comparison of existing Client Puzzles for DoS Resistance

Puzzle Type
Server’s Cost

Client’s Cost
Non

Granularity
Pre-Compute Construction Verification

Parallel

Hash-based Reversal - 1 hash 1 hash O(2k) hash No Exponential

Hint-Based Hash Reversal - 1 hash 1 hash O(k) hash No Linear

Repeated-Squaring - 2 mod mul 2 mod mul O(k) mod mul Yes Linear

DH-based - 1 mod exp 1 comparison O(k) mod exp No Linear

Trapdoor RSA
1 mod exp 3 mod mul

1 comparison O(k) mod exp No Linear
1 mod mul 2 additions

2 mod mul

Trapdoor DLP 1 mod exp 1 comparison O(k) mod exp No Linear
3 additions

Subset Sum n hash 1 hash 1 comparison L3 reduction Yes Polynomial

252 S. Tritilanunt et al.

or high-performance machines in order to obtain puzzle solutions quicker than the
specified time without wasting their own resources. Since non-parallelizability has
not been defined as a primary requirement in the original work [10,2], most exist-
ing techniques lack this characteristic. From the evaluation shown in Table 1 only
repeated-squaring puzzles can thwart this type of attack strategy. Unfortunately,
high computation of the puzzle construction causes this technique to be suscep-
tible to flooding attacks. As a result, this gap becomes the most interesting point
for our work to develop new schemes which achieve non-parallelizability, while the
puzzle construction and verification are also simple and cheap.

3 Hash Chain Puzzles

We have seen in the previous section that currently only time-lock puzzles can
provide the characteristic of non-parallelizability but they suffer from an expen-
sive set up operation for the server. One promising method to prevent adver-
saries from distributing and computing a puzzle in parallel would be a chaining
technique. Because the characteristic of chaining requires the previous value for
constructing the next consecutive items, it will defeat those coordinated adver-
saries who attempt to solve puzzles by parallel computing. Recently, there are
two constructions using the chaining technique based on hash functions proposed
by Ma [14] in 2005 and by Groza and Petrica [9] a year later. The aim of these
constructions is slightly different from what we have in mind, since they are in-
terested in partial solving of the chained puzzles. Nevertheless it is interesting to
examine whether they will be useful as stand-alone puzzles. Following are short
descriptions of these two puzzles and an analysis of their suitability.

Ma’s Hash Chain Reversal Puzzles: The concept of hash chain puzzles was
introduced by Ma [14] in 2005 as password puzzles for use in the IP layer. The
construction begins with a random number chosen as an initial value h0. Then
the server applies a one-way function to h0 repeatedly to generate a hash chain
h0, h1, . . . , hk where hi+1 = hash(hi) and k is the desired length of the chain.
According to Ma, this computation would lead to an advantage for the server by
storing the entire hash chain for future use. Because the server knows a corre-
sponding solution in advance, the server saves computation and time when verify-
ing the puzzle solution by reducing the cost of verification to a single table lookup.

For puzzle solving, given a puzzle challenge containing the last value of a hash
chain (hk) along with an index value k, a client is required to compute a hash
reversal starting from index k back to the beginning point h0 to obtain the entire
hash chain. A characteristic of hash chain operation is that an output from the
former state is required to be fed to the next state as an input, similar to a
recursion in programming. We conclude that this scheme is a non-parallelizable
technique, and the cost of the verification requires k hash operations similar to
the construction.

This is a simple and intuitive construction, but there are a number of practical
problems. First, it requires the server to store every value of the entire hash
chain in order to be able to verify the solution. Although this has an advantage

Toward Non-parallelizable Client Puzzles 253

in verification effort, this scheme is susceptible to memory exhaustion attacks.
Second, when used with a typical cryptographic hash function the scheme will be
too difficult to invert for even one hash value, let alone a chain of many values.
Therefore some mechanism must be chosen to make the individual steps in the
chain invertible with reasonable effort. Ma [14] suggested that a hash function
be used which has 16-bit outputs, but this does not seem to be an acceptable
requirement since such a function can be easily stored completely in a look-up
table which makes solving the puzzle as easy as constructing it. A more plausible
mechanism is used in the next construction that we consider.

Groza and Petrica’s Hash Chain Puzzles: This puzzle scheme [9] was
constructed from a hash chain of random numbers. Generally, the idea is similar
to the puzzle auction proposed by Wang and Reiter [24]; i.e. the more links of the
chain computed on a client’s machine, the more services from a server a client
obtains. At the beginning, the server generates the first element by choosing two
state-dependent random numbers, ρ and r, and concatenating them to obtain a
value σ. The first output, P0, is constructed by double hashing σ0. Hence, the
parameter σ0 serves as an input to the next state of the chain. The rest of the
puzzle will be created by XORing two new state-dependent values with hashed
output of σ from the previous state. Thus, the puzzle elements challenged to
the client would be a series of pairs [(P0, r0), (P1, r1), . . . , (Pn, rn)], where n ≥ 1
is the length of the hash chain. Meanwhile, the client is required to perform a
forward process of reconstructing the hash chain by searching for ρi values, with
σi = ρi ‖ ri.

Unfortunately, this scheme has a major drawback which risks resource exhaus-
tion attacks on the server because it requires three hash operations per state for
producing a series of hashes chained either in the construction or verification
phase. This action requires a similar amount of computational effort as the solv-
ing task on the client’s machine. This circumstance violates the fundamental re-
quirement; i.e. client puzzles should be easy to generate and verify by the server
but hard to solve by the client. Furthermore, the high-bandwidth consumption
required to transmit a puzzle challenge is another drawback of this scheme.

In summary, we have seen that the hash chain puzzle has a major strength in
non-parallelizability and linear-grained control because of its structure. Light-
weight verification by one comparison is another interesting potential property.
However, the proposals so far using this technique require high computation
in the construction, high-bandwidth connection for communication, and huge
storage to cache an entire chain for avoiding CPU burden at the verification.
Therefore, currently it seems impractical to use hash chains as client puzzles
and we look for an alternative.

4 Subset Sum Puzzles

Hash based puzzles are the most prevalent due to their simple construction and
cheap verification. As shown in Section 2, such puzzles are susceptible to coordi-
nated attacks because they do not provide the non-parallelizability property. In

254 S. Tritilanunt et al.

this section, we propose a technique called subset sum puzzles. The predominant
characteristic of this new approach is not only a simple construction and verifica-
tion as cheap as hash based puzzles, but also a non-parallelizable characteristic.

A subset sum (or knapsack) system associates a given set of items which
have specified weight, with a knapsack which can carry the number of items no
more than a certain weight. The solver is required to search for a maximum
value by picking as many items as the knapsack can carry in terms of weight.
To find whether a solution exists for a specified weight, this becomes a deci-
sion problem and the knapsack falls into the NP-completeness category which
means no polynomial algorithm can break the knapsack problem within poly-
nomial time as long as P �= NP. This is why the knapsack problem was long
considered a promising underlying technique for constructing a public-key based
cryptosystem.

A famous tool used to successfully break subset sum cryptosystems is the
lattice reduction. There are several lattice reduction algorithms but the best
method so far for breaking the subset sum problems is the LLL or L3 algorithm
(details are provided in Appendix A) developed by Lenstra et al. [13] in 1982. The
interesting characteristic of the LLL scheme is that it is a polynomial time and
non-parallelizable algorithm because it requires highly sequential computation
on an iterative function. We remark that practical application of our construction
requires clients to implement the LLL algorithm. While this is not a major
problem on PC platforms it may be undesirable, particularly on low-powered
platforms. Therefore we regard our construction as more a proof-of-concept that
non-parallelizable puzzles are feasible, rather than as an ideal solution.

4.1 A New Proposal – Subset Sum Puzzles

We first introduce the notation used in the puzzle challenge-response protocol.
I represents a client and R represents a server of the protocol. Communicating
messages used in the protocol execution will carry the subscript I or R repre-
senting whose these messages are; for instance, IDI represents the identity of the
client and NR represents a nonce generated by the server. A secret parameter
is denoted as s and puzzle difficulty by k. The desired weight of the subset sum
problem is W , while the set of candidate weights is w1, w2, . . . , wn. Finally, H(·)
represents a hash operation on arbitrary length input messages, and LSB(·, k)2
obtains the k least significant bits from the output of the hash function.

Puzzle Construction
To establish a secure connection to a server, I sends a request containing an iden-
tity (IDI) along with a random nonce (NI) to R. The server chooses a secret
parameter s randomly in order to make the output unique for each communi-
cation, and decides a puzzle difficulty k depending on the workload condition.
The value of k1 should be selected to be at least 25 (refer to Table 2 for a

1 For the definition of subset sum puzzles, the number of items n is used as the puzzle
difficulty k.

Toward Non-parallelizable Client Puzzles 255

I R

Precomputed parameters
set of random weight wn

wn = H (wn−1)

choose secret s ∈R Zn

. .

1) send request IDI ,NI−−−−−−−→ choose puzzle difficulty k
25 ≤ k ≤ 100

C = LSB(H (IDI ,NI , IDR,NR, s)), k)2

W =
∑k

i=1 Ci · wi

2) verify IDI ,NI IDI ,NI , puzzle = (w1 ,W , k)

generate wk = H (wk−1)
IDR,NR, puzzle←−−−−−−−

form a Basis Set B
run LLL Reduction → get C’

check W ?
=

∑k
i=1 C ′

i · wi

3) return C ′ IDI ,NI , IDR, check C ′ ?
= C

NR, puzzle,C ′
−−−−−−−→

Fig. 1. Subset Sum Puzzles

comparison of the experimental result) to guarantee that the coordinated adver-
saries approximately requires over a thousand compromised machines to brute-
force search or over a hundred compromised machines to run the branch & bound
algorithm on the subset sum puzzles at the equivalent proportion to the legit-
imate user performing LLL lattice reduction. As a practical choice we suggest
to take a value of k between 25 and 100 and then if weights are chosen to be
of length 200 bits we can ensure that the generated knapsack has density at
most 0.5. Practical experimental tests are shown in Section 4.2 which support
our proposal.

To construct a puzzle, R computes a hash operation (H(·)), and computes
(LSB((·), k)2) to obtain k bits from the output of hash function. In practice H
could be implemented by truncating the output of SHA-256. Finally, R forms a
puzzle by computing a desired weight (W) that it wants a client to solve from
a pre-computed set of random weight (wn). To save on protocol bandwidth, the
weights can be generated given the initial random weight w1 by iterative hashing.
Hence, a puzzle contains an initial value of weight of the first item (w1), a desired
weight (W), and puzzle difficulty (k). The construction of the subset sum puzzle
requires only one hash operation and addition. Figure 1 demonstrates the puzzle
challenge-response protocol.

256 S. Tritilanunt et al.

Puzzle Solving
To ensure that the client follows our requirement, we have to configure the puzzle
difficulty so that the efficient LLL method of solving is more efficient than brute-
force searching, even when the latter is divided amongst many parallel attacking
machines. As mentioned above in the description of puzzle construction, when
k is in the range between 25 to 100 we can expect that a puzzle would not be
solved faster by brute-force technique. Moreover, when k is around 50 or larger
the LLL method is more efficient than brute-force search even when the latter
is divided amongst 10000 parallel machines in approximation.

By using the LLL algorithm, users can simply treat the subset sum schemes
as a lattice problem. In 1985, Lagarias and Odlyzko [11] announced the first
successful attack on low density2 subset sum cryptosystems; i.e. a density below
0.6464 approximately. A few years later, Coster et al. [4] proposed the improved
version of the Lagarias and Odlyzko technique. They claimed that their method
was able to break almost all subset sum problems having density below 0.9408
in polynomial time. This result guarantees that our subset sum puzzle would be
solvable in polynomial time by using LLL algorithm.

Consider the client’s job when receiving a puzzle challenge from a server. It
begins to generate a series of random weights, (w1, w2, . . . , wk), by computing a
hash chain on an initial value w1. Then, the client constructs a basis reduction
set B as follows.

b1 = (1, 0, . . . , 0, w1); b2 = (0, 1, . . . , 0, w2)
...

bk = (0, 0, . . . , 1, wk); bk+1 = (0, 0, . . . , 0, −W)

Finally, the client runs a L3 lattice reduction [13] which is known from the
community to be the most effective method to find moderately short lattice
vectors in polynomial time. The algorithm guarantees to return a set of outputs
in which one is a solution of the puzzle. To the best of our knowledge, almost all
subset sum problems having density below 0.9408 can be effectively solved by the
improved LLL version of Coster et al. [4]. In addition, this improved version is
a highly sequential process because the underlying algorithm requires recursive
computation as explained in Appendix A, so the puzzle cannot be distributed
for parallel computation.

In terms of the puzzle granularity, there are two possible options for the server
to adjust the puzzle difficult; 1) adjusting the item size (n), or 2) adjusting the
density (which will cause a change in B because the density relates to the max-
imum weight of the items). Both modifications affect the running time by a
factor (nα · logβ B), where α and β are real numbers dependent on the version
of LLL basis reduction. Since the complexity of LLL basis reduction is a poly-
nomial function, we conclude that our subset sum puzzles provide a polynomial
granularity.
2 The density is defined as n

log(max an) , where n is a number of items and max an is
the maximum item value.

Toward Non-parallelizable Client Puzzles 257

Puzzle Verification
Puzzle verification is a simple and cheap task for a server which eliminates the
risk of puzzle solution flooding attacks. Generally, there are two options for the
verification process;

1. avoiding CPU usage: this case minimizes CPU usage at verification time.
By storing the value of C and W corresponding to the client’s identity
(IDI , NI), the verification requires only a table lookup for comparing the
claimed solution from a client to the stored solution.

2. avoiding memory usage: this option eliminates memory usage prior to ver-
ification. The server uses a stateless connection in which no information is
stored until the puzzle is solved. Once the server receives a solution, it is
required to re-generate C and W from the arriving message. In order to
protect against replay attacks, implementation of the timestamp should be
used in the computation of the parameter C. The re-constructing process
is a very cheap and fast computation that costs little more than a single
hash computation, which is the typical cost of verification for hash-reversal
puzzles.

We conclude that the upper bound of computational complexity in the former
case is O(1) for the table lookup, whereas the upper bound for computational
complexity in the latter case is O(k) additions which is similar to the construction
of the first state. The evaluation and comparison of the subset sum puzzles is
previously shown in Table 1.

4.2 Experimental Results

To demonstrate how LLL lattice reduction and the subset sum problems work in
practice on client machines, we set up an experiment to create a random set of
subset sum problems based on different criteria including density and a number
of chosen items. In terms of hardware, we simulated the LLL reduction algorithm
using a Sun Enterprise 420R computer operating with four UltraSPARC-II 450
MHz CPUs with 4096 MB of RAM running on Sun Solaris 9 (Sparc). We created
MATLAB source code for generating random subset sum problems which have
different densities between 0.3 and 0.8 for a range of instance sizes between 20 and
100. To solve these problems we wrote a subset sum solving function for testing
the LLL implementation provided in MAGMA. The version of MAGMA installed
on our testing machine was a full version patch number V2.13-11 released on
April 5, 2007 (details at http://magma.maths.usyd.edu.au). The LLL version
provided in MAGMA is based on the floating point arithmetic version (FP-LLL)
proposed by Schnorr and Euchner [21].

The following briefly provides the methods that we used to evaluate our new
scheme. Two different searching methods, a backtracking and a branch & bound
algorithm [15], are taken into account for comparing with the LLL lattice reduc-
tion method.

Backtracking or Brute Force Searching: This is the simplest method which
is also known as exhaustive search because it gathers all possible solutions

http://magma.maths.usyd.edu.au

258 S. Tritilanunt et al.

and then checks for one satisfying the solution. This guarantees that it will
always return an optimal solution. However, this technique consumes more
CPU power as well as running time.

Branch & Bound Technique: To reduce the time of the brute force search-
ing, pruning techniques can be used for avoiding some unnecessary nodes
during the searching process. By storing and traveling only to states whose
total weight does not exceed the limit, it can generate a specified solution
faster than brute force. The branch & bound technique is one of those prun-
ing methods. It specifies an upper bound on the output, so any descendant
tracks having value above or not below their ascendant node will be elimi-
nated from the possible solution. This can reduce running time and storage
space.

LLL Lattice Reduction: This advanced tool, explained in Appendix A, can
efficiently solve subset sum problems. This method can solve the subset
sum puzzle within polynomial time rather than exponential time as the two
previous techniques do. Recently, there have been many implementations for
accelerating the running time of LLL reduction. In our experiment, we use
two techniques: the first one, Int-LLL, is the original developed in 1982 by
Lenstra et al. [13] provided in Mathematica, while the second one, FP-LLL,
developed by Schnorr and Euchner [21], is a modified version using floating
point arithmetic and provided in MAGMA.

Table 2 shows the experimental result compared among the brute force search-
ing, branch & bound technique, and LLL Lattice Reduction examining puzzles
having small size between 5 and 30.

Table 2. Average Running Time of The Subset Sum Puzzle on the specified methods

Number Average Running Time (seconds)

of Items Backtracking Branch & Bound LLL

(n) Data 1 Data 2 Data 3 Data 1 Data 2 Data 3 Data 1 Data 2 Data 3

5 0.034 0.034 0.025 0.049 0.049 0.053 0 0 0

10 0.086 0.083 0.083 0.06 0.064 0.082 0 0 0

15 1.70 1.69 1.67 0.134 0.40 0.137 0 0 0

20 51.85 52.74 53.74 2.633 3.691 1.43 0 0 0.01

25 2320.70 2262.80 2428.60 315.743 456.97 602.81 0.01 0.01 0.01

30 – – – 1437.758 1865.001 1647.246 0.01 0.01 0.01

By evaluating the results from Table 2, we summarize that the reasonable range
of puzzle difficulty would be at least 25 for preventing coordinated adversarieswho
can control a number of compromised machines to obtain puzzle solutions at the
same capacity to the legitimate user performing LLL lattice reduction.

Toward Non-parallelizable Client Puzzles 259

Table 3. The Experimental Result of The Subset Sum Puzzle

Number Average Running Time (seconds)

of Random Set 1 Random Set 2 Random Set 3

Items Density Density Density

(n) 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

60 0.10 0.12 0.23 1.02 2.42 77.11 0.16 0.28 0.19 0.31 3.64 3.70 0.14 0.22 0.21 0.61 0.64 3.21

65 0.14 0.14 0.29 1.59 4.09 190.68 0.18 0.29 0.23 0.57 6.53 6.86 0.17 0.23 0.26 1.70 2.19 18.94

70 0.15 0.15 0.32 2.94 7.33 342.53 0.18 0.29 0.28 1.34 12.97 26.30 0.21 0.25 0.27 2.29 2.29 41.72

75 0.20 0.14 0.78 5.23 13.47 663.24 0.24 0.31 0.38 1.95 27.23 35.65 0.23 0.25 0.34 3.49 4.37 92.37

80 0.27 0.22 0.89 9.63 26.17 1745.97 0.25 0.33 0.52 2.75 58.70 87.12 0.26 0.29 0.45 5.66 8.82 226.76

85 0.37 0.25 1.24 17.38 49.22 4158.73 0.29 0.37 0.72 4.44 120.44 208.86 0.28 0.32 0.62 9.40 18.15 1315.29

90 0.50 0.29 1.63 31.44 96.39 9435.02 0.39 0.40 1.17 7.58 250.52 509.60 0.30 0.37 0.89 16.42 37.75 1344.35

95 0.59 0.34 2.34 55.68 173.30 21351.72 0.43 0.43 1.75 12.78 504.88 1158.45 0.36 0.43 1.28 28.14 79.36 3160.86

100 0.70 0.40 3.43 98.39 317.27 51124.86 0.46 0.47 2.87 21.45 1008.23 2737.79 0.41 0.50 2.03 46.63 168.72 7451.26

Before illustrating the second experimental result, we need to briefly explain
the reasoning behind our configuration. By investigating the primary result com-
paring between FP-LLL and Int-LLL, we have found that Int-LLL works well
for low density problems with data size below 100. Once the density grows, the
Int-LLL performance drops gradually and becomes ineffective when we run it on
high density examples. This behaviour was also observed by LaMacchia [12] as
well as by Schnorr and Euchner [21]. Due to this degradation of Int-LLL with
large instance and high density problems, we suggest to use FP-LLL in the puz-
zle solving to avoid the situation that legitimate users are unable to solve their
puzzles. The reason is that a floating point arithmetic returns the Gram-Schmidt
coefficient in the reduction process more precisely than integer arithmetic. As a
result, the FP-LLL reduction provides a more correct output.

Table 3 shows the result of puzzles having size between 60 and 100. We restrict
to this range because we are only interested in the values where the LLL performs
faster than brute force searching, otherwise the protocol would be vulnerable to
parallel attacks if the adversaries are able to run a brute force searching. The
table shows that there is a good range of puzzle times suitable for practical use.

5 Discussion and Open Problem

As our main objective has been to design non-parallelizable puzzles, subset sum
problems with the LLL lattice reduction bring us this characteristic and ful-
fill our requirement. However, simplicity and performance of the existing LLL
schemes are a concern for deploying them in general applications. As several ex-
periments have shown the failure of original LLL in dealing with large instances
and high density problems, recently several attempts have been made to scale
down the computation time of the size reduction process as well as increase the
accuracy for dealing with the large instances. One example was using dynamic
approximation and heuristic technique [3] to speed up the reduction process. To

260 S. Tritilanunt et al.

our knowledge, the fastest LLL reduction scheme for solving subset sum prob-
lems is the segmentation FP-LLL proposed by Schnorr [20] that minimizes the
running time to be O(n3 log n).

Parallelization of the LLL lattice reduction was discussed and proposed by
Villard [23]. The idea of that paper is to select non-overlapping parameters and
separate them into two independent phases in order to speed up the exchange
of parameters during the size reduction of the lattice basis. Thus, these outputs
might be able to be computed in parallel by using n ·m processors, and dividing
them into n columns of m processors. Villard claimed that the running time
complexity of this technique may be reduced to O(n5 log3 B) binary arithmetic
steps and O(n4 log2 B) binary communication steps by using O(n) processors.
This running time complexity could be improved by the factor of n by increasing
the number of processors to O(n2) units. However, the unclear practical efficiency
of the algorithm and the requirement for the larger size of parameters than in
the original LLL algorithm [13] mean that future investigation and development
are required.

Another disadvantage of the subset sum puzzle is the memory requirement.
By investigating instances when the item size n exceeds 100, we found that the
memory resource is exhausted in some trials. That is because the LLL reduction
constructs a n × n lattice matrix and allocates it into reserved memory. As a
result, the practical range of puzzle difficulty would be up to n = 100 for avoiding
memory exhaustion. In addition, the running time within this range would be
reasonable and acceptable for most users. When we compare this bound with
the hash-based reversal puzzles, the reasonable puzzle difficulty for hash-based
reversal schemes would have k between 0 and 40 which results in a smaller length
puzzle than our construction.

Since we are concerned with the problem of puzzle distribution and paralleliz-
ability, we focus on resolving the parallelizable characteristic rather than imple-
menting linear granularity. However, even though our new scheme has coarser
granularity than other hint-based schemes, it does offer polynomial granularity
which is better than exponential granularity found in hash-based reversal puz-
zles recently used in some client puzzle protocols. As a result, our new design
can be easier to control than many existing ones.

Comparing our construction with repeated squaring (Table 1) we find that,
although repeated squaring offers non-parallelism and linear-grained control to
the user, it suffers from high computation at construction time which means that
a server using these puzzles would be susceptible to flooding attacks. As a result,
an interesting open problem for the research community is to explore techniques
to find new puzzles providing both non-parallelization and linear granularity.

References

1. Adleman, L M.: On Breaking Generalized Knapsack Public Key Cryptosystems. In:
the 15th Annual ACM Symposium on Theory of Computing, pp. 402–412 (1983)

2. Aura, T., Nikander, P., Leiwo, J.: DoS-resistant authentication with client puzzles.
In: Security Protocols Workshop 2000, Cambridge, pp. 170–181 (April 2000)

Toward Non-parallelizable Client Puzzles 261

3. Backes, W., Wetzel, S.: Heuristics on Lattice Basis Reduction in Practice. Journal
of Experimental Algorithmics (JEA) 7, 1–21 (2002)

4. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C., Stern, J.: Im-
proved low-density subset sum algorithms. Computational Complexity 2(2), 111–
128 (1992)

5. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1992)

6. Feng, W., Kaiser, E., Feng, W., Luu, A.: The Design and Implementation of Net-
work Layer Puzzles. In: Proceedings of IEEE Infocom 2005 (March 13-17, 2005)

7. Feng, W., Luu, A., Feng, W.: Scalable, Fine-grained Control of Network Puzzles.
Technical report 03-015, OGI CSE (2003)

8. Gao, Y.: Efficient Trapdoor-Based Client Puzzle System against DoS Attacks. In:
Master of Computer Science by Research, School of Information Technology and
Computer Science, University of Wollongong, Wollongong, Australia (2005)

9. Groza, B., Petrica, D.: On Chained Cryptographic Puzzles. In: 3rd Romanian-
Hungarian Joint Symposium on Applied Computational Intelligence (SACI),
Timisoara, Romania, pp. 25–26 (May 2006)

10. Juels, A., Brainard, J.: Client Puzzles: A Cryptographic Defense Against Connec-
tion Depletion Attacks. In: NDSS 1999. The 1999 Network and Distributed System
Security Symposium, San Diego, California, USA, pp. 151–165. Internet Society
Press, Reston (1999)

11. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal
of the ACM (JACM) 32(1), 229–246 (1985)

12. LaMacchia, B.A.: Basis Reduction Algorithms and Subset Sum Problems. Mas-
ter Thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology (1991)

13. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring Polynomials with Rational
Coefficients. Mathematische Annalen 261(4), 515–534 (1982)

14. Ma, M.: Mitigating denial of service attacks with password puzzles. In: ITCC 2005.
International Conference on Information Technology: Coding and Computing, 2nd
edn., pp. 621–626 (2005)

15. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Inc., Chichester (1990)

16. Moskowitz, R.: The Host Identity Protocol (HIP). Internet Draft, Internet Engi-
neering Task Force (October 2007),
http://www.ietf.org/internet-drafts/draft-ietf-hip-base-09.txt

17. Price, G.: A General Attack Model on Hash-Based Client Puzzles. In: 9th IMA
International Conference on Cryptography and Coding, Cirencester, UK, pp. 16–
18. Springer, Heidelberg (2003)

18. Radziszowski, S., Kreher, D.: Solving subset sum problems with the L3 algorithm.
Journal of Combinatorial Mathematics and Combinatorial Computing 3, 49–63
(1988)

19. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Technical Report TR-684, Massachusetts Institute of Technology, Cam-
bridge, MA, USA (March 10, 1996)

20. Schnorr, C.P.: Fast LLL-type Lattice Reduction. Information and Computa-
tion 204(1), 1–25 (2006)

21. Schnorr, C.P., Euchner, M.: Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems. In: Budach, L. (ed.) FCT 1991. LNCS,
vol. 529, pp. 68–85. Springer, Heidelberg (1991)

http://www.ietf.org/internet-drafts/draft-ietf-hip-base-09.txt

262 S. Tritilanunt et al.

22. Smart, N.: Cryptography: An Introduction, 2nd edn. McGraw-Hill, New York
(2006)

23. Villard, G.: Parallel Lattice Basis Reduction. In: ISSAC 1992. The International
Symposium on Symbolic and Algebraic Computation, pp. 269–277. ACM Press,
New York (1992)

24. Wang, X., Reiter, M.K.: Defending Against Denial-of-Service Attacks with Puz-
zle Auctions (Extended Abstract). In: SP 2003. The 2003 IEEE Symposium on
Security and Privacy, Berkeley, CA, USA, pp. 78–92 (May 11-13, 2003)

25. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New Client Puzzle Outsourc-
ing Techniques for DoS Resistance. In: CCS 2004. The 11th ACM Conference on
Computer and Communications Security, pp. 246–256. ACM Press, Washington
DC (2004)

Appendix

A A Brief Overview of Lattice Reduction

LLL lattice basis reduction is a polynomial time algorithm developed by
Lenstra et al. [13] in 1982. The concept was originally used to solve the shortest
vector problem (SVP) and closet vector problem (CVP) of a lattice. Adleman [1]
seems to have been the first researcher to apply LLL lattice basis reduction as
a cryptanalysis tool to successfully break the subset sum problem. By using the
LLL, users simply treat the subset sum schemes as a lattice problem. Since its
original use, many researchers have improved not only the performance of the
algorithm, but also its accuracy when dealing with large instances of the lattice
dimension.

LLL lattice basis reduction algorithm has been widely used in breaking
subset sum cryptosystems because the algorithm is able to terminate in poly-
nomial time. Moreover, it is highly sequential because an underlying program
requires recursive computation. From this perspective, LLL is a promising tech-
nique to fulfill our requirement in terms of non-parallelizability and thwart coor-
dinated adversaries from distributing the client puzzle to calculate the solution
in a parallel manner. To explain the LLL lattice basis reduction, we refer to
materials provided in Smart’s book: Cryptography: An Introduction (2nd edi-
tion) [22].

Definition 1. Let {b1, b2, . . . , bn} be a set of vectors in Zn that are linearly inde-
pendent over R. Then the set of all integer linear combinations of {b1, b2, . . . , bn}
is called an integer lattice. In a formula:

B =

{
n∑

i=1

ai · bi | ai ∈ Z, 1 ≤ i ≤ n

}
(1)

Definition 2. The Gram-Schmidt algorithm transforms a given basis {b1, b2,
. . . , bn} into a basis {b∗1, b∗2, . . . , b∗m} which is pairwise orthogonal. The algorithm
uses equations

Toward Non-parallelizable Client Puzzles 263

μi,j =

〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉 for 1 ≤ j < i ≤ n (2)

where μi,j is called a Gram-Schmidt coefficient.

b∗i = bi −
i−1∑
j=1

μi,j b∗j (3)

Definition 3. A basis {b1, b2, . . . , bm} is called LLL reduced if the associated
Gram-Schmidt basis {b∗1, b

∗
2, . . . , b

∗
m} satisfies

|μi,j | ≤ 1
2

for 1 ≤ j < i ≤ m (4)

‖b∗i ‖
2 ≥

(
3
4

− μ2
i,i−1

) ∥∥b∗i−1

∥∥2
for 1 < i ≤ m (5)

Equation (4), so called size reduction, ensures that we obtain a basis in which the
vectors are short in length, while equation (5), the so called Nearly Orthogonal
Condition, guarantees that the obtained vectors are nearly orthogonal. The LLL
algorithm works as follows (also in Fig. 2);

1. We examine a fixed column k in which k starts at k = 2;
2. If equation (4) does not hold, we need to perform size reduction by modifying

the basis B;
3. If equation (5) does not hold for column k and k − 1 (it means the obtained

vectors are non-orthogonal), we have to swap those columns and decrease a
value of k by one (unless k is already equal to two). Otherwise, we increase
k by one;

4. Once k reaches to m, the algorithm stops.

Since attacks on the subset sum problem using LLL reduction were proposed,
there have been several experiments set up to compare the practical performance
with the theoretical limits. The first such experiment was published by Radzis-
zowski and Kreher [18] in 1988 to run a performance test of LLL on subset sum
problems that have an item size (n) between 26 and 98 with different densities.
The experimental result showed that when n grows up to 98, their implemen-
tation succeeded at density below 0.3 which is lower than the theoretical value
proposed by Lagarias and Odlyzko [11]. Later, LaMacchia [12] set up an empiri-
cal test on problem sizes between 26 and 106. The result showed that the original
LLL worked well for all problems with n ≤ 26 and density ≤ 0.6408, but the
accuracy degraded quickly when n grows above 50. By running on the improved
version, the performance was improved up to n = 106 with density 0.3. In the
meantime, Schnorr and Euchner [21] proposed a way to speed up the reduction
step by using floating point instead of integer arithmetic as in the original LLL,
plus adding the deep insertion technique to their scheme. In comparison with

264 S. Tritilanunt et al.

Fig. 2. LLL Lattice Reduction Process

LaMacchia [12], they claimed that their experimental result had higher success
rate at the same data range. In this paper, our experiment was set up and tested
using the implementation of the Schnorr and Euchner [21] version provided in
MAGMA (http://magma.maths.usyd.edu.au).

http://magma.maths.usyd.edu.au

Anonymity 2.0 – X.509 Extensions Supporting

Privacy-Friendly Authentication

Vicente Benjumea1, Seung G. Choi2, Javier Lopez1, and Moti Yung3

1 Computer Science Dept., University of Malaga, Spain
{benjumea,jlm}@lcc.uma.es

2 Computer Science Dept., Columbia University, USA
sgchoi@cs.columbia.edu

3 Google & Computer Science Dept., Columbia University, USA
moti@cs.columbia.edu

Abstract. We present a semantic extension to X.509 certificates that al-
lows incorporating new anonymity signature schemes into the X.509
framework. This fact entails advantages to both components. On the one
hand, anonymous signature schemes benefit from all the protocols and in-
frastructure that the X.509 framework provides. On the other hand, the
X.509 framework incorporates anonymity as a very interesting new
feature. This semantic extension is part of a system that provides user’s
controlled anonymous authorization under the X.509 framework. Addi-
tionally, the proposal directly fits the much active Identity 2.0 effort, where
anonymity is a major supplementary feature that increases the self-control
of one’s identity and privacy which is at the center of the activity.

Keywords: Anonymous authentication, X.509 certificates, group signa-
tures, ring signatures, traceable signatures.

1 Introduction

As the number of remote Internet transactions grows, the amount of personal
information that organizations collect also increases. In the near future, the
majority of transactions that a user can perform in her daily life will be done re-
motely via the Internet (e-government, e-bank, e-commerce, e-library, e-services,
etc.). This, together with the fact that information systems are able to collect,
store and cross reference big amounts of data, implies that the Internet will
become the largest surveillance system ever devised.

Anonymity can be seen as a cornerstone in individual privacy protection in
environments like the Internet. Recently, new signature schemes oriented towards
providing support for anonymity have been designed from a pure cryptographic
point of view. These signature schemes focus on anonymity from different point of
views with many interesting features. Group signatures [10,1,14], ring signatures
[30,14], traceable signatures [24,27,12], are among them. However, though they
exhibit very interesting features, they have not been transferred to practical open
systems yet, and no one has even studied in what available systems framework
they can be well supported.

F. Bao et al. (Eds.): CANS 2007, LNCS 4856, pp. 265–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

266 V. Benjumea et al.

X.509 public key and attribute certificates [23] conform a standard and secure
mean to convey users’ identity and authorization information respectively. They
are widely used means to convey user’s information in open systems. However,
they were designed to support identities and anonymity was not considered in
their design, let alone the available recent new anonymous signatures.

Motivated by the above two issues, this paper presents a semantic extension
to X.509 certificates aimed at incorporating the aforementioned new signature
schemes. Compatibility, simplicity yet high level of applicability to many various
existing anonymous schemes is at the core of the work.

This semantic extension entails that a standard framework can be applied to
new scenarios where anonymity is an issue, featuring the interoperability that
the standard provides. On the other hand, it allows adapting the framework to
new anonymity requirements with no need to alter the standard. In a sense, its
importance is in showing the robustness of the X.509 framework to basic seman-
tical changes in its operating environment and its ability to support credentials
in a much wider range than originally intended.

Moreover, we note that this semantic extension can also be applied in a similar
way to other frameworks, such as SPKI [15,16] and others.

The present work is part of a broader ongoing work and a system that attempts
to use these extended X.509 certificates to create a user centric system where
the user is able to access system resources while controlling how and which kind
of information is disclosed.

Anonymity is at the core of the system, and users are entitled to anonymously
prove that they have enough privileges as for being authorized to perform a given
transaction.

This process is ruled by authorization policies specified for each resource. The
system fits in the X.509 framework and mixes with existing systems, supporting
both identified and anonymous authorization.

In the current Identity 2.0 [21] effort the user is the center of the system,
and decides what information to disclose in order to be authorized to perform
a remote transaction. Under this approach, the user controls her identity and
how it is used, as opposed to Identity 1.0 where service providers hold personal
information in order to identify the users and make them accountable for their
actions.

Anonymity is perhaps the cornerstone in a user centric point of view, since
allows the user to access resources but avoids disclosing user’s sensitive infor-
mation. Therefore, if anonymity is joined with the user controlled disclosure of
information, we find that the system fits and is one step beyond the Identity 2.0
effort.

The paper is organized as follows. Section 2 presents some related work and
overviews the fundamentals which our work is built on. Then, Sect. 3 describes
the main idea behind the proposed extension. Section 4 shows how the above
mentioned signature schemes can be integrated into the proposed extension and
describes their main properties. Section 5 describes how the X.509 public key
certificate can be extended to incorporate this extension in a controlled way and

X.509 Extensions Supporting Privacy-Friendly Authentication 267

how the extension also applies to X.509 attribute certificates. Section 6 presents
some performance results for our implementation of traceable signatures (which
is part of the overall broad system design and demonstrates its feasibility). Sect. 7
concludes the paper. Finally, the appendices give the ASN.1 specification of the
certificate semantic extension.

2 Background

2.1 Related Work

Anonymity has been largely studied since D. Chaum introduced the problem
in [7,8], yielding many privacy aware interactive systems [9,11,25,5,6,34,29].
Some studies have been oriented towards providing support for anonymous au-
thentication in different contexts [32,33,28,3,4], and, as far as we know, only a
few of them [28,3,4] have been focussed to some extend on interoperating with
standard frameworks, however they are not perfectly integrated and require ded-
icated protocols to fulfill their aim. Moreover they only provide a fixed flavor for
anonymity. In the presented proposal, many different flavors of anonymity are
gently introduced into X.509 certificates, which are then transparently supported
by the underlying infrastructure, with no need of dedicated extra protocols. It
also provides a suitable way to incorporate new forthcoming signature schemes
for anonymity into the standard framework.

2.2 X.509 Certificates

X.509 public key certificates (PKC) [22,20] have been designed to bind a public
key to a subject, under the consideration that such a subject is the only one that
knows the associated private key (Fig. 1). In these certificates, the certification
authority, i.e. the entity that certifies the binding, is equally important. Any
entity using the public key certificate will trust the binding of the subject and
the public key if it trusts the entity that issued the certificate. The relationship
between the subject and the public key holds as long as the associated private
key is known only to the entity that the certificate subject field refers to.

AliceAlice

PKC
CA

Fig. 1. Relationship between user and public key certificate

X.509 public key certificates have been proved as a very useful tool for pro-
viding authentication in many different contexts, such as electronic mail, the
World Wide Web, user authentication and IPsec. Particularly, the TLS [13] (and

268 V. Benjumea et al.

SSL [19]) transport layer protocol uses X.509 public key certificates to provide
an authenticated secure communication channel to application layers.

X.509 attribute certificates (ATC) [23,17] bind a holder with a set of at-
tributes, and at the same time can be linked with a X.509 public key certificate
(Fig. 2). The attribute authority is the entity that certifies such bindings. The
attributes can be used for authorization purposes in many different ways, pro-
viding a flexible authorization approach. The holder of the attribute certificate
will be authenticated by means of the linked public key certificate to enjoy the
privileges associated with the specified attribute. Here again, the authorization
verifier needs to trust the certificates issuers in order to trust the bindings that
they state.

Version Number

Serial Number

Signature Algorithm

Issuer

Validity Period

Subject

Public−Key Algorithm

Public Key

Issuer Unique Identifier

CA Signature

Subject Unique Identifier

Extensions

Version Number

Serial Number

Signature Algorithm

Issuer

Validity Period

AA Signature

Attributes

Issuer Unique Identifier

Extensions

Holder [Issuer/Serial]

Attribute CertificatePublic Key Certificate

Fig. 2. Relationship between public key and attribute certificates

X.509 certificates are valid for a limited period of time that is specified in the
certificates. However, under certain circumstances, the binding can be revoked,
e.g. if the private key is compromised, or if the specified attribute no longer
relates with the holder. If a certificate is revoked, the fact is made public by
means of a certificate revocation list (CRL). Additionally, OCSP [26] provides
an interactive way to check if a given certificate has been revoked.

2.3 Digital Signatures

Signature Schemes for Identification. These signature schemes are those
ones that, when used in an adequate environment such as the X.509 framework,
provide an authentication method that directly and uniquely identifies the entity
that is being authenticated. They are unforgeable and provide authentication
and non-repudiation features. In these schemes, one public key corresponds to a
unique private key, and an adequate environment provides a correlation between
the public key and the identity . Such correlation is based on the fact that only
the one who knows the private key is the entity that performs the authentication.
Examples of these kind of signature schemes can be DSA [18], RSA [31], and
others.

X.509 Extensions Supporting Privacy-Friendly Authentication 269

Signature Schemes for Anonymity. We mean here those ones that allow
the breaking of the correlation between a public key and the identity of the
entity that owns an associated private key. With the work of D. Chaum and
E. van Heyst [10], a new kind of signature schemes have been developed, where
many different private keys correspond with one public key in a one to many
relationship, and even in some schemes different private keys correspond with
different public keys in a many to many relationship. These signature schemes
allow to focus the anonymity from different point of views with many interesting
features.

In group signatures [10,1], a group public key defines a group. A designated
group manager, who owns the group private key, is responsible for joining new
members. Whenever a new member is added, she gets her own private member-
ship key that allows to sign on behalf of the group. The signature issued can be
verified with the group public key and it is neither possible to distinguish which
member of the group issued the signature, nor even to link the signature with any
other one issued by any member. However, the group manager has the special ca-
pability to identify which member issued a given signature, providing in this way
with reversible anonymity in the sense that if a member abuses of her anonymity,
the group manager can open the signature and disclose the identity of its issuer.

In ring signatures [30,14], a ring is made up of the public keys of the entities
that compose the ring. These entities do not need to be aware of the existence
of the ring, since their public keys are freely available. Any entity in a ring is
able to produce a signature that can be verified with the ring public key, but
no one is able to distinguish which entity issued the signature, or even to link it
with any other signature produced by any entity in the ring. They offer similar
features as group signatures, but ring signatures can not be opened to disclose
the identity of its issuer. Thus, they provide irreversible anonymity.

Traceable signature schemes [24,27,12] are group signature schemes with ad-
ditional tracing capabilities, what makes them very suitable for real-world ap-
plications. In addition to group signature properties such as indistinguishability,
unlinkability, and the ability of the group manager to open a signature issued
by any member of the group, a user is able to claim that a given signature has
been issued by herself. Additionally, it is possible, with the help of the group
manager that provides a member trapdoor, to identify which signatures within
a set were issued by a given member with no other disclosure of information.
These additional capabilities make this scheme very suitable for real world ap-
plications, since the tracing capability is necessary in many real situations. Some
performance results are described in section 6.

3 Extending the Semantic of X.509 Certificates

Though not explicitly stated, X.509 public key certificates were originally de-
signed for public key algorithms where one public key corresponds with one
private key and where the public key is bound to the identity of that one who
knows the corresponding private key.

270 V. Benjumea et al.

With the advent of new signature schemes, such as group signatures, ring sig-
natures, traceable signatures and others, the aforementioned semantic becomes
too restrictive to allow the integration of these signature schemes with X.509
public key certificates, thus avoiding the X.509 framework to enjoy the numer-
ous advantages that the new schemes offer.

3.1 Semantic Extension

While keeping the same structure, we can extend the semantic of X.509 certifi-
cates to additionally allow the use, as public key algorithms, of aforementioned
signature schemes in those environments where their use could be appropriate.

Because in some of the new signature schemes, one public key can correspond
with several different private keys (each one owned by different entities), we can
define a X.509 public key certificate with extended semantic as a X.509 public
key certificate where the public key is not bound to a single entity but it is bound
to a concept. In the traditional semantic, the concept relates to a single entity,
such as a system or a person, that owns the unique private key corresponding
with the public key in the certificate (and the public key algorithm is a one-
to-one scheme). However, in the extended semantic, the concept can be a more
abstract definition where all entities that own a private key that can be verified
with the certificate public key share the concept stated in the certificate. Each
private key must be unforgeable, unique and not shared with other entities.
Note that the extended semantic is a superset of the traditional one. In other
words, an extended X.509 public key certificate binds a public key with a concept
and, therefore, binds the concept with every entity that owns a private key that
is publicly verifiable with the public key in the certificate (Fig. 3), which also
specifies the public key algorithm to be used for such verification.

This extended semantic entails the use of standard extension fields defined for
that purpose in the X.509 specification. Additionally, by means of these standard
extension fields it is possible to control and restrict the usage of X.509 public
key certificates in those scenarios where this is required (Sect. 5).

This broader semantic for public key certificates directly affects to X.509
attribute certificates. Since an attribute certificate binds a set of attributes with

DoctorsAlice

Bob Carol

David

PKC
CA

Fig. 3. X.509 public key certificate with extended semantic

X.509 Extensions Supporting Privacy-Friendly Authentication 271

a public key certificate, the represented concept in the public key certificate
and related entities are able to enjoy the privileges associated with the bound
attributes.

3.2 Entity Authentication – Identification and Anonymous
Authentication

Up to now, entity authentication was usually considered equivalent to identi-
fication. However, in the context of this extended semantic, identification is a
special kind of entity authentication where the concept in the public key certifi-
cate identifies a single entity. Entity authentication has now a broader semantic,
since now the entity being authenticated by means of a public key certificate
might not be directly related with his real identity, as in the case of these new
signature schemes. Therefore, we can define the concept of anonymous authen-
tication as a special kind of entity authentication where an anonymous entity
becomes authenticated as a valid subject of the concept stated in the certificate.
This authentication can be performed as usual by proving knowledge of a private
key verifiable with the public key in the certificate.

4 Integrating New Signature Schemes into Extended
X.509 Public Key Certificates

This section overviews how the new signature schemes can be added to the
X.509 public key certificates. Though we only overview group, ring and traceable
signature schemes, the semantic extension is not only restricted to those ones,
but it is also open to others, even future ones. A summary of the properties of
the aforementioned signature schemes is depicted in table. 1.

Table 1. Properties of some signature schemes

Anon One2Many Unlink Reversible Traceable MRevoc SRevoc Fair NRep MultiG DShar

Ring sign. • • • •
Group sign. • • • • •
Traceable sign. • • • • • • •

4.1 Ring Signatures

A ring can be made public and available by issuing a public key certificate with
the ring public key being linked to the concept that such a ring represents. As
rings do not need managers, a certification authority can create the ring public
key from the sequence of the public keys of the members.1 Of course it is up
to the certification authority to decide in advance which members compose the
ring. Members of the ring are able to be authenticated as holding such certificate

1 In [30] the ring public key is the sequence of the public keys of the members, however
in [14] the ring public key is created from the public keys of the members.

272 V. Benjumea et al.

and to enjoy the associated privileges. In this case, the ring signature does not
need to convey the public keys of the members of the ring, as specified in [30],
since such information is held in the ring public key certificate. In [30] the size
of both, the ring public key as well as the ring signature, are proportional to
the number of members that compose the ring, however in [14] the size of the
ring public key is proportional to the number of members, but the size of the
signature is constant.

When a member of a public ring is authenticated by using her private key, her
real identity becomes concealed. Thus, the member authentication is unlinkable
and anonymous among the set of members of the ring. This scheme provides
irreversible anonymity to the X.509 framework since no entity is able to corre-
late the authentication (a ring signature) with the real identity of the involved
user. The ring public key certificate may be revoked as any other certificate,
yielding in this way with the revocation of the whole ring and all its members.
The certification authority can add and remove members to/from a concept
represented by a ring by means of revoking the ring public key certificate and
re-issuing a new one with the public keys of the members that now compose the
concept represented by the ring. Note that users do not need to be aware of this
fact except for using a fresh certificate that has not been revoked. However, the
scheme seems more suitable for static rings with occasional modifications during
its lifetime.

4.2 Group Signatures and Traceable Signatures

As with ring signatures, a public key certificate can define a group by binding
the group public key to the concept that the group represents. The certification
authority must verify that the group manager is suitable to manage such a public
group and that the policy for joining new members to the group is suitable with
respect to the aim of the certificate. New members can be joined to the group at
any time, and as result they get their private membership keys. These members
can be authenticated as holders of the group public key certificate and are able
to enjoy its associated privileges. In these schemes, the size of both, the group
public key and signatures, are constant.

When a member of a public group is authenticated by means of her private
membership key, her real identity becomes concealed. Thus, the member authen-
tication is unlinkable and anonymous among the set of members of the group.
However, under certain circumstances, the group manager may consent to open a
given authentication (a signature) and to disclose the real identity of the user in-
volved. Additionally, as traceable signatures offer some extra features, the group
manager can disclose a trapdoor for a given member, and some designated enti-
ties are able to identify, from within a set of anonymous authentications, which
ones were performed by such member of the group. Moreover, a member of the
group is able to claim that a given anonymous authentication was performed by
herself.

The whole group can be revoked by revoking the public key certificate. Ad-
ditionally, in case of traceable signatures, by means of the member trapdoor, it

X.509 Extensions Supporting Privacy-Friendly Authentication 273

is possible to revoke individual members of a traceable group. There should be
a trusted entity that holds a record with the private trapdoors of revoked mem-
bers. Whenever a member is authenticated, in addition to check if the whole
group has been revoked, the signature issued for authentication is sent to this
trusted entity to be checked against the list of revoked member trapdoors.

These signature schemes provide reversible anonymity and reversible, traceable
and revocable anonymity to the X.509 framework respectively.

5 The X.509 Public Key Certificate Extension

System security, authentication and authorization protocols make use of X.509
public key and attribute certificates to convey authentication and authorization
information. Though the X.509 semantic extension explained in Sect. 3 uses
the standard fields to convey the main information (issuer, subject, public key
algorithm and public key), it also entails (for a proper usage), new semantic
information to be added to the extension fields of the X.509 public key certificate
(see appendix A for the specification in ASN.1).

The extensions field allows addition of new fields to the certificate without
modification to the definition. An extension field consists of an extension identi-
fier, a criticality flag, and an encoding of a data value of a type associated with
the identified extension. If an extension is marked as critical, then any processing
entity that does not recognize the extension will reject the certificate. On the
contrary, if an extension is marked as non–critical, then any processing entity
that does not recognize the extension will simply ignore it.

The X.509 standard has already defined some extension fields, though many
others may be added. Among the extension fields defined by the standard, we
highlight: key usage indicates the purpose of the key contained in the certificate;
certificate policies indicates the policy under which the certificate has been issued
and the purposes for which the certificate may be used; and authority information
access indicates how to access certificate information and services for the issuer
of the certificate.

Our proposed semantic extension entails the use of aforementioned extension
fields, and define a new extension field that states the features of certificates
with extended semantic.

The main important contribution to public key certificates is the support of
the new signature schemes as public key algorithms (new OIDs should identify
them). Then, new semantic information should be added to standard fields:

– A new extension field, certificateFeatures, should be added to X.509 public
key certificates, stating some features of the certificate. These features de-
pend on the public key algorithm properties and on the certificate issuing
method. This new extension field must be marked as critical if present. It is
a bit string defining flags for different properties. The following flags should
be considered, though new flags can be added as required by other signature
schemes.

274 V. Benjumea et al.

Extended: The certificate is defined with extended semantic. This flag
should be activated if any of the following flags is activated.

One2Many: The public key in the certificate corresponds to many different
private keys.

Anonymous: There is no a direct way to know the identity of the entity
being authenticated with the certificate.

Unlinkable: It is not possible to link different signatures as being performed
by the same entity.

Reversible: There is an indirect way to know the identity of the entity
being authenticated with the certificate.

Traceable: It is indirectly possible to identify, within a set, which signatures
were issued by a given entity.

MemberRevocable: It is possible to revoke a specific entity, even if the
public key algorithm is a one2many scheme.

AuthRevocable: If it is possible to revoke the entity that was involved
in a given authentication process, even if the public key algorithm is a
one2many scheme.

Fairness: There exists a trusted third party that guarantees that special
disclosure actions are performed when it is appropriate to do so.

MultiGroup: There exists a mechanism that guarantees that the same real
user actually belongs to several groups.

DeterSharing: There exists a mechanism that dissuades anonymous users
from sharing the certificate private key.

OneLevelAnon: The identity of the user can be disclosed in just one an-
onymity backtracking, i.e. if the policy requires an identified user to be
joined to the group.

Note that these properties are somehow inherited from the public key algo-
rithm, however they depend on the way they are managed by the environ-
ment. For example, if the public key algorithm is a group signature scheme
which provides reversibility, and the member joined the group either being
identified or by means of a reversible anonymous authentication, then the
certificate property should specify that the anonymity is reversible. However,
if it was allowed that the member joined the group by using a irreversible au-
thentication, then the certificate property should reflect that the anonymity
is irreversible.

– The subject field of the certificate should contain the concept description,
which in the case of group signatures or ring signatures specifies either the
ring or group identification, which is composed by either the ring or group
name and the identification (distinguished name) of the ring or group man-
ager. New OIDs for both ring name and group name have to be added as
attribute type to distinguished names.

– In the key usage extension field the digitalSignature flag should be asserted.
In this case, such flag state that entity authentication is allowed. If the
user joined the group by means of a non-repudiable authentication and the
certificate public key algorithm provides non-repudiation, then the nonRe-
pudiation flag should also be asserted because it is possible, under certain

X.509 Extensions Supporting Privacy-Friendly Authentication 275

circumstances, to identify the member that issued a given signature and that
the member can not deny such action.

– The certificate policies extension field indicates the policy under which the
certificate has been issued, its meaning, the conditions required to create
the ring, or to join the group, the conditions required to be threw out of
the group, and the conditions under which a member’s identity would be
disclosed, etc.

– Regarding public key certificate revocation, the same support as for nor-
mal public key certificates is required, that is, the CRL distribution points
extension can be used. Additionally, if OCSP is used as a mean to access re-
vocation information, then the authority information access extension should
be used.

– If it is possible to revoke individual members of a given group, this is done
by storing in a private database the group public key certificate together
with a list containing the member trapdoors for every member that has
been revoked from the group. By using an OCSP-like protocol, the client
queries if a given member has been revoked (providing the group and signa-
ture used for authentication). The identification of this member revocation
manager is specified in the authority information access extension field. A
new accessMethod OID should be defined for this case.

– If some fairness authorities guarantee that the disclosure of restricted
information is performed when it is appropriate to do so, then the iden-
tification of these entities are specified in the authority information ac-
cess extension field. A new accessMethod OID should be defined for this
case.

Note that this semantic extension provides new features to applications will-
ing to use them, however it is harmless to unaware applications since public key
certificates with unrecognized critical extensions are kindly rejected. Addition-
ally, if an application does not support the public key algorithm then it also
rejects the certificate.

5.1 Attribute Certificates

When issuing an attribute certificate to be bound to a public key certificate with
extended semantic, it means that any entity able to be authenticated with such
a public key certificate can enjoy the specified privilege. Therefore, the policy
to get an attribute certificate must be tightly linked with the policy required to
join the associated group or ring.

If unlinkability is a property exhibited by a public key certificate, then all
entities being authenticated with such a PKC must share the same certificate
and the same attribute certificates bound to it. That is, for a given attribute
and public key certificate, the same certificates are shared among all the entities.
The figure 4 shows how several entities, that can be authenticated with a public
key certificate, all share the same attribute certificates.

276 V. Benjumea et al.

Doctors

Hospital
staff

Doctor

Alice

Bob Carol

David

PKC
CA

ATC
AA

ATC
AA

Fig. 4. Extended X.509 public key and attribute certificates

6 Traceable Signatures Performance Results

This section briefly shows some statistical results for the traceable signature
scheme, but they can also be taken as a reference point for group signatures and
alike ones. However, there is still room for optimization, since the implementation
is based on [24], where some other proposals, such as [27,12] based on bilinear
pairings, claim better efficiency.

Table 2 shows performance statistics for the basic traceable signature primi-
tives. They are taken in an off-line environment where the host machine was an
Intel Pentium Centrino running at 2.00GHz the Debian GNU/Linux Operating
System and Sun’s J2SDK 1.4.2 as Java runtime. The performance results, in
milliseconds, show the arithmetic mean after several executions. A security pa-
rameter of 1024 bits was defined for Traceable Signatures and SHA-1 has been
used as secure hash function.

Note that group creation and group joining depend on the search of suitable
random primes, therefore their timings may vary. Group creation is an expensive
operation, but it is usually performed off-line, so its cost has minor influence in
system performance. The joining procedure may be speeded up by using pre-
computed values for suitable random primes at group manager side. The reveal
primitive just take a stored value and does not need any extra computation.

Table 2. Traceable Signature Primitives

millisec
Create-Group 23680.2
Join-to-Group 1764.2
Sign 460.6
Verify 548.1
Open 55.8
Reveal 0.0
Trace 23.4
Claim 35.4
VerifyClaim 39.3

X.509 Extensions Supporting Privacy-Friendly Authentication 277

7 Conclusions

A new semantic extension have been proposed for X.509 certificates which pro-
vides enhanced features to both X.509 public key and attribute certificates. It has
been explained how new signature schemes can be incorporated into the X.509
certificates with new extended semantic. In this way, the X.509 framework can
benefit their very interesting features. As result, new anonymity features can to
be added to the X.509 framework.

This semantic extension entails a new concept for entity authentication: iden-
tification and anonymous authentication. One very important advantage that
this extended semantic provides is the fact that both identification and anony-
mous authentication coexist under a common entity authentication and, where
allowed, the same protocols, data structures, etc. are valid for both. That is,
there is no need to separate both authentication modes, a simple policy may
discriminate between them if discrimination is required, or both can be accepted
under the common entity authentication. This simple fact simplifies very much
architecture and system design.

The presented work is part of a system that provides support for a user
centric authorization model, where identified as well as anonymous authorization
are supported. The system fits into the X.509 framework and into the Identity
2.0 initiative, being the user the core of the system. Additionally, anonymity
increases the strength of the user in this approach.

Finally, some performance results for a prototype of a traceable signature
scheme have been presented, which can be taken as a reference point for group
signatures and derived ones, and in some way show their feasibility.

7.1 Future Work

Though ring, group and traceable signatures provide very interesting properties
with respect to anonymity, there are some real world scenarios where they are
not completely suitable for supporting anonymity. These signature schemes seem
suitable to support anonymity in real world applications, since in these kind of
scenarios, it is usually covenient that the user is accountable for her actions,
and it is also very interesting the capability to trace anonymous transactions
performed by a given user under suspicion. However, some real world scenarios
motivate us for searching for new digital signatures.

(i) Though the group manager may be trusted with respect to joining new
members to the group, in some scenarios, the group manager is not usually
trusted with respect to safeguard the anonymity of the members, since in many
cases the group manager is an interested party. Therefore it is necessary to split
the duties of joining new members on the one hand, and disclosing sensitive
information such as open/reveal/trace on the other hand. This capability of
breaking anonymity should be as distributed as possible.

(ii) Additionally, it is common to prove that a user simultaneously belongs
to several groups in order to be authorized to carry out some transaction. Then
it is interesting to incorporate multi–group [2] features that enable the user to

278 V. Benjumea et al.

prove that the same real user does indeed simultaneously belongs to the required
groups. This feature guarantees the verification entity that the proof has not been
collected from different anonymous users.

(iii) Public key authentication systems are based on the fact that private keys
are only known by just one entity, however an anonymous scenario may increase
the temptation to share the private keys that allow to prove membership to
groups, a case that would subvert the basis on which the whole system security
relies. Therefore, it is also desirable to incorporate some mechanisms to dissuade
users from sharing her private keys.

A signature scheme that enjoys all the aforementioned features, as well as
those ones from group and traceable signatures would be very convenient for
supporting a wide range of anonymous transactions in real world open systems.

References

1. Ateniese, G., Camenish, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

2. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signa-
tures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer,
Heidelberg (1999)

3. Benjumea, V., Lopez, J., Montenegro, J.A., Troya, J.M.: A first approach to provide
anonymity in attribute certificates. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 402–415. Springer, Heidelberg (2004)

4. Benjumea, V., Lopez, J., Troya, J.M.: Anonymous attribute certificates based on
traceable signatures. Internet Research 16(2), 120–139 (2006)

5. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates Build-
ing in Privacy, The MIT Press, Cambridge (August 2000)

6. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

7. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.,
Sherman, A. (eds.) CRYPTO 1982: Advances in Cryptology, pp. 199–203. Plenum
Press, Santa Barbara, CA (August 1983)

8. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

9. Chaum, D., Evertse, J.H.: A secure and privacy-protecting protocol for transmit-
ting personal information between organizations. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 118–170. Springer, Heidelberg (1987)

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

11. Chen, L.: Access with pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryptog-
raphy: Policy and Algorithms. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg
(1996)

12. Choi, S.G., Park, K., Yung, M.: Short traceable signatures based on bilinear pair-
ings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.
(eds.) IWSEC 2006. LNCS, vol. 4266, pp. 88–103. Springer, Heidelberg (2006)

13. Dierks, T., Rescorla, E.: RFC-4346. The Transport Layer Security (TLS) Protocol.
The Internet Society (April 2006)

X.509 Extensions Supporting Privacy-Friendly Authentication 279

14. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

15. Ellison, C.: RFC-2692. SPKI requirements. IETF SPKI Working Group (Septem-
ber 1999)

16. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: RFC-
2693. SPKI certificate theory. IETF SPKI Working Group (September 1999)

17. Farrel, S., Housley, R.: RFC-3281. An Internet Attribute Certificate Profile for
Authorization. The Internet Society (April 2002)

18. FIPS 186. Digital Signature Standard. U.S. Department of Commerce/N.I.S.T.,
National Technical Information Service, Springfield, Virginia (1994)

19. Freier, A., Karlton, P., Kocher, P.: The SSL Protocol. Netscape (November 1996)
20. Housley, R., Polk, W., Ford, W., Solo, D.: RFC-3280. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The In-
ternet Society (April 2002)

21. Identity 2.0, http://www.identity20.com/
22. ITU-T Recommendation X.509. Information Technology - Open systems intercon-

nection - The Directory: Authentication Framework (June 1997)
23. ITU-T Recommendation X.509. Information Technology - Open systems intercon-

nection - The Directory: Public-key and attribute certificate frameworks (March
2000)

24. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

25. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, Springer, Heidelberg (2000)

26. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: RFC-2560. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. The
Internet Society (June 1999)

27. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

28. Persiano, P., Visconti, I.: A secure and private system for subscription-based remote
services. ACM Trans. on Information and System Security 6(4), 472–500 (2003)

29. Persiano, P., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

30. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

32. Schechter, S., Parnell, T., Hartemink, A.: Anonymous authentication of member-
ship in dynamic groups. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp.
184–195. Springer, Heidelberg (1999)

33. Stubblebine, S.G., Syverson, P.F., Goldschlag, D.M.: Unlinkable serial transactions:
Protocols and applications. ACM Trans. on Information and System Security 2(4),
354–389 (1999)

34. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001)

http://www.identity20.com/

280 V. Benjumea et al.

A ASN.1 Specification of Anonymity Extensions for
X.509v3 Certificates

This appendix describes the ASN.1 specification of the proposed extensions for
X.509v3 certificates. The following OIDs and structures should be incorporated
to the extensions of X.509v3 certificates. The new OIDs are members of the
anonymity extensions arc, id-ae2, that is under the standard private extensions
arc id-pe.

id-ae OBJECT IDENTIFIER ::= { id-pe 32 }

New OIDs should be defined for ring, group and traceable signature schemes.
The subject field in standard X509v3 certificates is a sequence of distinguished

names, which is a set of attribute type and value pairs. New OIDs are defined
to identify ring, group, traceable–group and fair–traceable–group names for at-
tribute types:

id-ae-at OBJECT IDENTIFIER ::= { id-ae 2 }

id-ae-at-ringName AttributeType ::= { id-ae-at 1 }
id-ae-at-groupName AttributeType ::= { id-ae-at 2 }
id-ae-at-tGroupName AttributeType ::= { id-ae-at 3 }

and the syntax for the respective values:

RingName ::= X520name
GroupName ::= X520name
TGroupName ::= X520name

The certificateFeatures extension MUST be marked critical, with the following
OID and value syntax:

id-ae-ef OBJECT IDENTIFIER ::= { id-ae 3 }

id-ae-ef-certificateFeatures OBJECT IDENTIFIER ::= { id-ae-ef 1 }

CertificateFeatures ::= BIT STRING {
extended (0),
one2Many (1),
anonymous (2),
unlinkable (3),
reversible (4),
traceable (5),
memberRevocable (6),
authRevocable (7),

2 Note that the number of this arc is a suggestion, and should be defined to avoid
conflicts.

X.509 Extensions Supporting Privacy-Friendly Authentication 281

fairness (8),
multiGroup (9),
deterSharing (10),
oneLevelAnon (11)

}

The authority information access extension in standard X509v3 certificates
is defined as a sequence of access description, which is composed of an access
method identifier and access location that specifies the URI for the correspond-
ing method. The new OIDs for the new member revocation access and fairness
authorities access methods are as follows:

id-ae-aia OBJECT IDENTIFIER ::= { id-ae 4 }

id-ae-aia-am OBJECT IDENTIFIER ::= { is-ae-aia 1 }

id-ae-aia-am-memberRevAccess OBJECT IDENTIFIER ::= { is-ae-aia-am 1 }
id-ae-aia-am-fairnessAuthority OBJECT IDENTIFIER ::= { is-ae-aia-am 2 }

Author Index

Baek, Joonsang 194
Benjumea, Vicente 265
Boyd, Colin 247
Bringer, Julien 175

Chabanne, Hervé 175
Chen, Zhide 1
Choi, Seung Geol 265
Choudhary, Ashish 80
Chow, Sherman S.M. 146

Duan, Xiangwen 133

Fehér, Gábor 34
Foo, Ernest 247

González Nieto, Juan Manuel 247
Gu, Chunxiang 47
Guo, Fuchun 1

Hu, Huaping 133
Huang, Xinyi 15

Imai, Hideki 159

Jin, Shiyao 133

Kartaltepe, Erhan J. 228
Kim, Sangjin 121
Klonowski, Marek 102
Kuty�lowski, Miros�law 102

Lim, Jihwan 121
Lopez, Javier 265

Marosits, Tamás 34
Mu, Yi 1, 15

Oh, Heekuck 121
Okamoto, Eiji 47
Okamoto, Takeshi 47

Parker, T. Paul 228
Patra, Arpita 80
Pointcheval, David 175

Rangan, C. Pandu 80
Recski, András 34
Ren, Micha�l 102
Rybarczyk, Katarzyna 102

Safavi-Naini, Rei 60
Shamsuddin, Solahuddin B. 209
Shankar, Bhavani 80
Srinathan, K. 80
Sun, Yinxia 194
Susilo, Willy 15, 60
Szőllősi, Loránd 34

Tang, Qiang 175
Tritilanunt, Suratose 247
Tso, Raylin 47

Wiangsripanawan, Rungrat 60
Woodward, Michael E. 209
Wu, Wei 15

Xu, Shouhuai 228

Yang, Bing 133
Yung, Moti 265

Zhang, Futai 194
Zhang, Rui 159

	Title Page
	Preface
	Organization
	Table of Contents
	Mutative Identity-Based Signatures or Dynamic Credentials Without Random Oracles
	Introduction
	Definition
	Security Model
	Bilinear Pairing
	Complexity Assumption

	Accumulator Overview
	Definition
	Accumulator from Bilinear Pairing

	The MIBS Scheme
	Construction
	Analysis
	Security

	Discussions
	Witness-Indistinguishability of Private Identities
	Using Multiple Private Identities for Verification

	Conclusion

	A Generic Construction for Universally-Convertible Undeniable Signatures
	Introduction
	Previous Works
	Our Contributions

	Preliminaries
	Outline of Classic Signatures
	Strong Unforgeability of Classic Signatures
	Collision-Resistant Hashing

	Definitions of Undeniable Signatures
	Outline of Universally-Convertible Undeniable Signatures
	Strong Unforgeability of \textbf{UC-Undeniable-Signature}
	Invisibility of \textbf{UC-Undeniable-Signature}
	Definitions of Selectively-Convertible Undeniable Signatures

	A Generic Construction of \textbf{UC-Undeniable-Signature}
	Security Analysis
	Strong Unforgeability of Our Generic Construction
	Invisibility of Our Generic Construction
	Applications

	Conclusion

	Fast Digital Signature Algorithm Based on Subgraph Isomorphism
	Introduction
	Digital Signature, One-Time Signature; Research Goals
	Legal Considerations

	A Graph-Based One-Time Signature Algorithm
	Extending IzoSign to a Digital Signature Scheme
	Cached Subkeys Protocol
	Conclusions

	Efficient ID-Based Digital Signatures with Message Recovery
	Introduction
	Preliminaries
	Bilinear Pairings and the Related Computational Assumption
	Scheme Model
	Security Definition
	Notations

	Proposed Schemes
	Variation (A Partial Message Recovery Scheme for Long Messages)

	Performance Comparison
	Security Proof
	Conclusion

	Achieving Mobility and Anonymity in IP-Based Networks
	Introduction
	Related Works

	Towards Formalizing Mobility and Anonymity Notions
	Mobility
	Anonymity

	Review on Existing Infrastructure That Provides Mobility and Anonymity
	Mobile IP
	Tor - A Low Latency Network

	Anonymous Communication with Mobility in IP-Based Networks
	Architecture $\sfMA1$. Achieving Mobility and Anonymity Via Trivial Combination of Mobile IP and Tor
	Architecture $\sfMA2$. Adding Mobility to Tor
	Architecture $\sfMA3$. Enhancing Mobility-Equipped Tor with Location Privacy

	Conclusion and Further Works

	Perfectly Secure Message Transmission in Directed Networks Tolerating Threshold and Non Threshold Adversary
	Introduction
	Previous Work
	Our Contribution and Outline of the Paper

	Network Model for Threshold Adversary
	A Three Phase PSMT Protocol
	Three Phase Protocol with Reduced Message Complexity
	Two Phase PSMT Tolerating Threshold Adversary
	PSMT Tolerating Non-threshold Adversary
	Existing Results for Non-threshold Adversary
	Characterization of PSMT Considering Feedback Paths

	Conclusion and Open Problems

	Forward-Secure Key Evolution in Wireless Sensor Networks
	Introduction
	KEP -- Key Evolution Protocol
	Key Reachability -- Random Digraph Model
	Equalizing Probability Distribution

	A Secure Location Service for Ad Hoc Position-Based Routing Using Self-signed Locations
	Introduction
	Related Work
	Location Services for Position-Based Routing
	Security of Ad Hoc Routing
	Security of the Location Service

	Proposed Protocol
	Overview
	Assumption and Notation
	Registration and Initialization
	Location Update
	Location Request and Response
	Error Alarm

	Analysis
	Security Analysis
	Efficiency Analysis

	Conclusion

	An Intelligent Network-Warning Model with Strong Survivability
	Introduction
	The Architecture and Data-Processing Procedure of INWMSS
	The Architecture of INWMSS
	The Data-Processing Procedure of INWMSS

	The Analysis and Implementation of Main Functions and Algorithms
	Implementation of Strong Survivability for Prototype
	Implementation of Intelligent Data-Processing Function

	Total Test Environment and Results for Prototype
	Conclusion
	References

	Running on Karma – P2P Reputation and Currency Systems
	Introduction
	Our Contribution

	System Model
	Reputation System
	Currency System
	Overlay Network
	Certificate Authority
	Threat Model

	Related Work
	A Reputocracy System
	P2PRep
	Off-Line Karma

	SPRBA -- Simple P2P Reputation System from Byzantine Agreement
	Retrieval
	Casting
	Maintenance
	Analysis

	Karma+ -- Simple Offline Electronic Currency System
	Minting
	Spending
	Maintaining the Current Ownership
	Double-Spending Detection
	Efficiency Analysis
	Security Analysis
	Improvements over Off-Line Karma

	Conclusion

	Generic Combination of Public Key Encryption with Keyword Search and Public Key Encryption
	Introduction
	Our Contributions
	Related Work

	Preliminary
	Public Key Encryption
	Tag-KEM/DEM
	PEKS
	Bilinear Groups

	Our Model of PEKS/PKE
	PEKS/PKE
	Security Notions

	A Generic Construction of Secure PEKS/PKE
	Applications and Extensions
	A Concrete Instantiation Without Random Oracles
	Other Extensions

	Identity Based Encryption

	Extended Private Information Retrieval and Its Application in Biometrics Authentications
	Introduction
	Related Work
	Practical Motivation
	Our Contributions
	Organization of the Paper

	Privacy Definitions for EPIR
	Notation
	User Privacy
	Database Privacy
	Security of EPIR

	EPIR Protocol for Testing Equality
	Description of the Protocol
	Security Analysis

	EPIR Protocol for Computing Hamming Distance
	Description of the Protocol
	Security Analysis

	Authentication Schemes Using Biometrics
	Preliminaries
	The First Biometric-Based Authentication Scheme
	The Second Biometric-Based Authentication Scheme

	Conclusion

	Strongly Secure Certificateless Public Key Encryption Without Pairing
	Introduction
	Definitions
	Our CLPKE Scheme
	Security Analysis
	Concluding Remarks
	Proof of Lemma 2

	Modeling Protocol Based Packet Header Anomaly Detector for Network and Host Intrusion Detection Systems
	Introduction
	Related Work
	Protocol Based Packet Header Anomaly Detection (PbPHAD) Model
	Experimental Results on the 1999 DARPA IDS Evaluation Data Set
	Network-Based PbPHAD
	Host-Based PbPHAD

	Comparison with the 1999 DARPA IDS Evaluation Best System Result
	Network-Based PbPHAD
	Host-Based PbPHAD

	Conclusions
	Future Work
	References

	How to Secure Your Email Address Book and Beyond
	Introduction
	Our Contributions

	Functionalities of Current Email Systems -- A Brief Review
	Encrypted Address Book
	Building Blocks
	Encrypted Address Book -- Putting Pieces Together

	Prototype System with Integrated Encrypted Address Books
	Functionalities of Our Prototype System
	Implementation and Evaluation of Our Prototype System

	Effectiveness Analysis
	Methodology and Metric
	Overall Effectiveness at the End of Simulation
	Effectiveness with Respect to Time

	Related Work
	Conclusion

	Toward Non-parallelizable Client Puzzles
	Introduction
	Survey and Analysis of Client Puzzles Approaches
	Hash Chain Puzzles
	Subset Sum Puzzles
	A New Proposal -- Subset Sum Puzzles
	Experimental Results

	Discussion and Open Problem
	A Brief Overview of Lattice Reduction

	Anonymity 2.0 – X.509 Extensions Supporting Privacy-Friendly Authentication
	Introduction
	Background
	Related Work
	X.509 Certificates
	Digital Signatures

	Extending the Semantic of X.509 Certificates
	Semantic Extension
	Entity Authentication -- Identification and Anonymous Authentication

	Integrating New Signature Schemes into Extended X.509 Public Key Certificates
	Ring Signatures
	Group Signatures and Traceable Signatures

	The X.509 Public Key Certificate Extension
	Attribute Certificates

	Traceable Signatures Performance Results
	Conclusions
	Future Work

	ASN.1 Specification of Anonymity Extensions for X.509v3 Certificates

	Author Index

