
Chapter 9
Theory of Magnetically Powered Jets

H.C. Spruit

Abstract The magnetic theory for the production of jets by accreting objects is
reviewed with emphasis on outstanding problem areas. An effort is made to show
the connections behind the occasionally diverging nomenclature in the literature,
to contrast the different points of view about basic mechanisms and to highlight
concepts for interpreting the results of numerical simulations. The role of dissipa-
tion of magnetic energy in accelerating the flow is discussed and its importance
for explaining high Lorentz factors. The collimation of jets to the observed narrow
angles is discussed, including a critical discussion of the role of “hoop stress.” The
transition between disk and outflow is one of the least understood parts of the mag-
netic theory; its role in setting the mass flux in the wind, in possible modulations of
the mass flux, and the uncertainties in treating it realistically are discussed. Current
views on most of these problems are still strongly influenced by the restriction to two
dimensions (axisymmetry) in previous analytical and numerical work; 3-D effects
likely to be important are suggested. An interesting problem area is the nature and
origin of the strong, preferably highly ordered magnetic fields known to work best
for jet production. The observational evidence for such fields and their behavior in
numerical simulations is discussed. I argue that the presence or absence of such
fields may well be the “second parameter” governing not only the presence of jets
but also the X-ray spectra and timing behavior of X-ray binaries.

9.1 The Standard Magnetic Acceleration Model

The magnetic model has become the de facto standard for explaining (relativistic)
jets, that is, collimated outflows. In part this has been a process of elimination of
alternatives, in part it is due to analytic and numerical work which has provided
a sound theoretical basis for some essential aspects of the mechanism. It should
be remembered that a key observational test of the model is still largely missing.
Evidence for magnetic fields of the configuration and strength required by the model
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is indirect at best. Magnetic fields are detected indirectly through synchrotron radi-
ation (such as the radio emission of extragalactic jets), and in some cases directly
through the Zeeman effect in spectral lines (OH or H2O masers) in young stellar
objects and protoplanetary nebulae (e.g., [35, 3, 79]). Most of these detections,
however, do not refer to the inner regions of the flow where much of the magnetic
action is expected to take place. On the theoretical side, the acceleration process
itself is the best studied aspect. Problems such as the precise conditions leading to
the launching of a flow from a magnetic object or the collimation of the flow to a
jet-like state are still under debate.

In the magnetic model, outflows are produced by magnetic fields of a (rapidly)
rotating object. These objects include rapidly rotating magnetically active stars,
young pulsars, or accretion disks such as those in young stellar objects, X-ray
binaries, cataclysmic variables and active galactic nuclei (AGN). In these cases,
the magnetic fields are “anchored” in the material of the rotating object. A related
kind of process is the Blandford–Znajek mechanism [10], in which a rotating black
hole with an externally imposed magnetic field is the energy source of a flow. In the
following I limit the discussion to the illustrative case of flows from accretion disks,
for which much observational data are available. For more on the Blandford–Znajek
mechanism, see [39].

9.1.1 Flow Regions

In the standard magnetocentrifugal acceleration model for jets produced by an
accretion disk [9, 11] there are three distinct regions. The first is the accretion disk;
here the kinetic energy of rotation (perhaps also the gas pressure) dominates over
the magnetic energy density. As a result, the field lines corotate with the disk in this
region: they are “anchored” in the disk.

Fig. 9.1 Regions in a magnetically accelerated flow from an accretion disk (central object is
assumed at the left of the sketch). In the atmosphere of the disk up to the Alfvén surface the
magnetic field dominates over gas pressure and kinetic energy of the flow. This is the region of
centrifugal acceleration
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The second is a region extending above and below the disk. Assuming the disk
to be cool, the atmosphere of the disk has a low density and gas pressure. In this
region, the magnetic pressure dominates over gas pressure, so that the field must be
approximately force free [(∇ × B) × B = 0], like the magnetic field in much of
the solar atmosphere. It forces the flow of gas into corotation with the disk, with
only the velocity component along the field unrestricted by magnetic forces. The
flow experiences a centrifugal force accelerating it along the field lines, much as if
it were carried in a set of rotating rigid tubes anchored in the disk.

This acceleration depends on the inclination of the field lines: there is a net
upward force along the field lines only if they are inclined outward at a sufficient
angle. Field lines more parallel to the axis do not accelerate a flow. The conditions
for collimation and acceleration thus conflict somewhat with each other. Explanation
of the very high degree of collimation observed in some jets thus requires additional
arguments in the magnetic acceleration model (see Sect. 9.6).

Finally, as the flow accelerates and the field strength decreases with distance
from the disk, the approximation of rigid corotation of the gas with the field lines
stops being valid. This happens roughly at the Alfvén radius: the point where the
flow speed equals the Alfvén speed (for exceptions see Sect. 9.3.5). At this point,
the flow has reached a significant fraction of its terminal value. The field lines start
lagging behind, with the consequence that they get “wound up” into a spiral. Beyond
the Alfvén radius, the rotation rate of the flow gradually vanishes by the tendency to
conserve angular momentum, as the flow continues to expand away from the axis.
If nothing else were happening, the field in this region would thus be almost purely
azimuthal, with one loop of azimuthal field being added to the flow for each orbit
of the anchoring point, see Fig. 9.2. In fact, this state is not likely to survive for
much of a distance beyond rA, because of other (3-D) things actually happening
(see Sect. 9.5).

Fig. 9.2 Beyond the Alfvén distance the field lines lag behind the rotation of their foot-points and
are coiled into a spiral (very schematic: the Alfvén surface actually has a more complicated shape)
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9.1.2 Launching, Acceleration, Collimation

The three regions in Fig. 9.1 play different roles in the formation of the jet. At the
surface of the disk, a transition takes place from the high-β interior to the magnet-
ically dominated atmosphere of the disk. This is also the region which determines
the amount of mass flowing into the jet: it is the launching region (Sect. 9.7). At
some height in the atmosphere the flow reaches the sound speed (more accurately,
the slow magnetosonic cusp speed vc given by v2

c = c2
s v

2
A/(c2

s + v2
A), cf. [32]). If

the gas density at this point is ρ0, the mass flow rate is ṁ ≈ csρ0, just as in standard
stellar wind theory (cf. [51, 68]).

When the temperature in this region is high, for example, due to the presence of
a hot corona, the atmosphere extends higher above the disk surface and it is easier to
get a mass flow started. If the disk atmosphere is cool (temperature much less than
the virial temperature), the gas density declines rapidly with height and the mass
flow rate becomes a sensitive function of physical conditions near the disk surface.
Since these cannot yet be calculated in sufficient detail for realistic disks, the mass
flow rate is usually treated as an external parameter of the problem. This is discussed
further in Sect. 9.7.

After launching, the flow is first accelerated by the centrifugal effect, up to a
distance of the order of the Alfvén radius. The flow velocity increases approximately
linearly with distance from the rotation axis (Fig. 9.3).

For acceleration by the centrifugal mechanism to be effective, the field lines have
to be inclined outward: the centrifugal effect does not work on field lines parallel to
the rotation axis. In the magnetic acceleration model, the high degree of collimation1

observed in some of the most spectacular jets must be due to an additional process

Fig. 9.3 Properties of a magnetocentrifugally accelerated flow. Rotation rate, flow speed, and
azimuthal field angle as functions of distance from the rotation axis (cold Weber–Davis model).
The Alfvén distance in this example is at 100 times the foot-point distance r0

1 Collimation is meant here in the same sense as in optics: the angle measuring the degree to which
the flow lines in the jet are parallel to each other. This is different from the width of the jet (a length
scale).
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beyond the Alfvén surface (Sect. 9.6). It is conceivable that this does not happen
in all cases: less collimated flows may also exist. They would be harder to detect,
but have already been invoked for observations such as the “equatorial outflows” in
SS 433 [67] and inferred from the rapidly varying optical emission in the accreting
black holes GX 339-4 and KV UMa [37].

The transfer of energy powering the outflow is thus from gravitational energy
to kinetic energy of rotation and from there to kinetic energy of outflow via the
magnetic field. Note that in the centrifugal picture the magnetic field plays an ener-
getically passive role: it serves as a conduit for energy of rotation, but does not itself
act as a source of energy. The function of the magnetic field in the acceleration
process can also be viewed in a number of different ways, however; this is discussed
further below.

9.2 Length Scales

The energy release powering a relativistic outflow happens near the black hole, say
107 cm in the case of a microquasar. The narrow jets of microquasars seen at radio-
wavelengths appear on scales of the order 1017 cm. In other words, on scales some
ten orders of magnitude larger. It is quite possible that some of the jet properties are
determined on length scales intermediate between these extremes, at least in some
cases. In [70], for example, we have argued that collimation of the flow may actually
take place on scales large compared with the Alfvén radius, at least in very narrow
jets. In Sect. 9.5, it is shown that such intermediate length scales can also be crucial
for acceleration to high Lorentz factors, besides the region around the Alfvén radius
that plays the main role in the axisymmetric centrifugal acceleration process.

Much of the current thinking about the processes of launching, acceleration, and
collimation of the jet is based on previous analytical models (Fig. 9.4). Numerical
simulations of magnetic jets are now becoming increasingly realistic and useful.
They are, however, quite restricted in the range of length scales and timescales they
can cover. This leads to a bias in the interpretation of such simulations: the tendency
is to assume that all steps relevant to the final jet properties happen within the com-

Fig. 9.4 Length scales in a microquasar jet. Processes determining the mass flow Ṁ in the jet take
place in the “launching region” close to the black hole (∼107 cm), but the processes determining
the final Lorentz factor (Γ ) and opening angle (θ) may take place on much larger scales
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putational box (cf. Sect. 9.7.1). This bias is likely to persist as long as simulations
covering realistic ranges in length and timescale are impossible.

9.3 Magnetic Jets

9.3.1 Power Sources, Composition of the Jet

Jets powered by the rotation of a black hole (Blandford–Znajek mechanism) are
often assumed to consist of electron–positron pair plasmas, while outflows from
rotating disks are regarded as consisting of a normal ion–electron plasma. These
associations are not exclusive, however. Since isolated black holes cannot hold a
magnetic field, a field threading the hole requires the presence of an accretion disk
holding it in place. Hence it is quite likely that (part of) the jet accelerated by the
hole is actually fed with mass from the disk, rather than a pair plasma generated in
situ. The simulations by [22, 47] are examples of this.

The opposite may also happen. A strong field threading a thin (cool) disk will
not be easily loaded with mass from the disk unless the field lines are suffi-
ciently inclined outward, away from the vertical [11]. In addition, the mass loading
decreases with increasing field strength, for a given field line geometry [56]. If too
little mass is loaded onto the field lines, the MHD approximation may not hold.
The field lines rotating in a (near) vacuum may then produce a pair plasma above
the disk, like the relativistic pair plasma outflows from pulsars. This case has not
received much attention so far, perhaps because it would be as difficult to calculate
as pulsar winds.

In the literature, the phrase ‘Poynting flux’ is sometimes associated specifically
with relativistic and/or pair-dominated flows. It applies quite generally, however,
equally to relativistic and nonrelativistic flows and independent of their composi-
tion. See also Sect. 9.3.2.

9.3.2 “Centrifugal” vs. “Magnetic” vs. “Poynting Flux”

The physical description of the flow-acceleration process has been a source of con-
fusion. There are alternatives to the centrifugal picture sketched above: descriptions
in terms of magnetic forces or in terms of “Poynting flux conversion.” The differ-
ent descriptions are largely equivalent, however; which one to take is a matter of
personal taste, or the particular aspect of the problem to be highlighted. A term like
“Poynting jet” for example, does not refer to a separate mechanism, but rather to a
particular point of view of the process.

In a frame of reference corotating with the anchoring point of a field line, the
flow is everywhere parallel to the magnetic field (e.g., [51]). The component of the
Lorentz force parallel to the flow vanishes in this frame. There is no magnetic force
accelerating the flow: the role of the Lorentz force is taken over by the centrifu-
gal force. This is sometimes viewed as a contradiction for a magnetic model of
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acceleration: Can one still call the acceleration magnetic if there is no work done by
magnetic forces?

If the same process is evaluated in an inertial frame, the centrifugal force is
absent. Instead, one finds that in this frame the flow is accelerated by a force
associated with the azimuthal component of the magnetic field: F = −∇B2

φ/8π −
e� B2

φ/(4π� ), where � is the distance from the axis.2

The two descriptions, magnetic and centrifugal, are thus mathematically equiva-
lent: they are related by a simple frame transformation. The centrifugal picture is an
elegant way to visualize the acceleration as long as the magnetic field lines corotate
with their anchoring point. Where they do not corotate, the field gets wound up into
a predominantly azimuthal field, the centrifugal picture loses its meaning, and the
acceleration is described most simply in terms of the forces exerted by the azimuthal
field component Bφ .

Finally, the same process can also be viewed as the conversion of a Poynting flux
of electromagnetic energy into kinetic energy. To see this, recall that in magneto-
hydrodynamics the electric field E is given by E = v × B/c, so that the Poynting
flux

S = c

4π
E × B (9.1)

can be written as

S = v⊥ B2/(4π ), (9.2)

where v⊥ is the component of the flow velocity perpendicular to the magnetic field.
This shows that it is not necessary to think of Poynting flux as EM waves in vacuum.
It applies equally well in MHD and not only to waves but also to stationary magnetic
flows.

Expression (9.2) can be interpreted as a flux of magnetic energy, advected with
the fluid, in a direction perpendicular to the field lines.3 Borrowing a useful analogy
from hydrodynamic flows, the Poynting flux in MHD plays the role of a “magnetic
enthalpy flux.” The centrifugal acceleration process is equivalent to the gradual (and
incomplete) conversion of Poynting flux into a flux of kinetic energy, much like the
conversion of enthalpy into kinetic energy in an expanding hydrodynamic flow. Near
the base of the flow (for example, the surface of the accretion disk which supplies
the mass flux into the wind), the enthalpy flows almost entirely in the form of a
Poynting flux S. S declines gradually with distance and the kinetic energy increases

2 The poloidal field component Bp is absent from the accelerating force. Explanations invoking
acceleration of the flow by Bp are erroneous since the poloidal velocity is parallel to Bp in a steady
flow.
3 The actual flux of magnetic energy would of course be v⊥ B2/8π . The “missing” B2/8π repre-
sents the “PdV work” done by the source of the flow against the magnetic pressure at the base of
the flow. See also Sect. 9.5.
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correspondingly, most of the energy transfer taking place around the Alfvén radius
(in the axisymmetric case, see, however, Sect. 9.5).

9.3.3 Poynting Flux Conversion Efficiency: Axisymmetric

Since the flow is magnetic everywhere, at least some of the energy is carried in the
form of a magnetic energy flux. The work done by the central engine is not converted
completely into kinetic energy, and one may wonder what determines the efficiency
of conversion of Poynting flux.

It turns out that the answer depends critically on the symmetry conditions
imposed on the flow. When 3-D, nonaxisymmetric processes are allowed, conver-
sion can be more efficient than in axisymmetric flows. This is discussed further in
Sect. 9.5. Since much of the current views are still based on axisymmetric models,
however, consider these first.

If S0 is the Poynting flux at the base of the flow (∼the power output of the jet)
and FK the kinetic energy flux, we can define this efficiency f as

f = FK∞/S0 = FK∞/(FK∞ + S∞), (9.3)

where ∞ denotes the asymptotic values at large distance. A simple model for which
this can be calculated is the cold Weber–Davis model (for introductions see [51,
68]; for a concise and elegant mathematical treatment see [62]). In this model the
poloidal field lines are straight and radial, so that the poloidal field strength varies
as 1/r2 (a “split monopole”). In this approximation the azimuthal field and the flow
can be calculated exactly, but the force balance in the latitudinal (θ ) direction is
neglected. In the “cold” version of the model, the gas pressure is also neglected. In
the nonrelativistic limit, the conversion efficiency in this model is of order unity,
so a significant fraction of the power delivered by the central engine remains in the
flow as magnetic energy.

In the relativistic case, i.e., when the flow reaches large Lorentz factors (Γ ),
a smaller fraction of the Poynting flux is converted to kinetic energy than in the
nonrelativistic case. This can be illustrated with the relativistic extension of the
Weber–Davis model, given already by Michel’s model [52, 29]. This model gives an
exact solution for a relativistic, magnetically accelerated flow, in the approximation
of a purely radial geometry for the poloidal field.

If (r, θ, φ) are spherical coordinates centered on the source of the flow, the sim-
plest case to visualize is a flow near the equatorial plane, θ = π/2. The split
monopole assumption for the poloidal field components implies vθ = Bθ = 0.
As in the nonrelativistic case, the field at large distances is nearly exactly azimuthal.
The radial component of the Lorentz force is then

Fr = −∂r B2
φ/(8π ) − B2

φ/(4πr ). (9.4)

From the induction equation one finds that
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Bφrvr = cst, (9.5)

i.e., the “flow of azimuthal field lines” is constant. Asymptotically for Γ → ∞,
v ≈ c, so Bφ ∼ 1/r . The two terms in the Lorentz force then cancel. Equation (9.4)
holds at all latitudes in this split monopole configuration.

The consequence of this cancellation is that a flow in a purely radial poloidal
field stops being accelerated as soon as it develops a significant Lorentz factor.
From then on acceleration and conversion of Poynting flux slow down. Moderately
efficient conversion of Poynting flux to kinetic energy is possible, but only up to
modest Lorentz factors. High Lorentz factors are also possible, but at the price of
converting only a small fraction of the energy flux. This is seen in the expression for
the terminal Lorentz factor Γ∞ in Michel’s model:

Γ∞ ≈ m1/3, (9.6)

where m is Michel’s magnetization parameter,

m = B2
0/(4πρ0c2), (9.7)

and B0 and ρ0 are the magnetic field strength and mass density, respectively, at the
base of the flow (where it is still nonrelativistic). If conversion of Poynting flux into
kinetic energy were complete, it would produce a flow with Lorentz factor Γc,

Γc = m. (9.8)

The actual efficiency of conversion is thus

f ≡ Γ∞/Γc ≈ m−2/3 ≈ 1/Γ 2
∞. (9.9)

This is a small number if large Lorentz factors are to be achieved. One gets either
good conversion of Poynting flux into kinetic energy or large terminal speeds but
not both.

9.3.3.1 Conversion in Diverging Flows

The conclusion from the previous section holds under the “split monopole” assump-
tion that (apart from its azimuthal component) the flow expands exactly radially. If
this is not the case, the cancellation is not exact and continued acceleration possible.
To achieve this, the magnetic pressure gradient term in (9.4) has to be larger, relative
to the second term, than it is in the split monopole geometry. This is the case when
the azimuthal field decreases more rapidly with distance, in some region of the flow
(cf. [58, 6]). This is perhaps the opposite of what intuition would tell, but similar to
the acceleration of supersonic flows in expanding nozzles.

To make this a bit more precise, consider the magnetic forces in a steady axisym-
metric flow. The flow can be considered separately along each poloidal field line. Let
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z be the distance along the axis of the jet, and R(z) the cylindrical radial coordinate
of a field line. Let d(z) be the distance, in a meridional plane, between two neigh-
boring poloidal field lines. Consider distances far enough from the Alfvén radius
that the rotation rate of the flow has become negligible. The field has then become
purely azimuthal. If the flow is steady, it follows from the induction equation that

vBφd = cst, (9.10)

i.e., the “flow rate of azimuthal field loops” is constant along a flow line. To inves-
tigate under which conditions the flow is accelerated, consider the component Fs

of the Lorentz force along the flow line. It is the sum of a curvature force and a
magnetic pressure gradient. Instead of calling the equation of motion into action,
it is sufficient to evaluate the forces under the assumption that the flow speed is
constant. Acceleration is then indicated if there is a net outward force under this
assumption.

If θ is the angle atan(d R/dz) of the field line with the axis, the component of
the curvature force along the flow line is − sin θ B2

φ/(4π R) and the magnetic pres-
sure gradient along the flow is − cos θdB2

φ/dz/8π . Summing up while using (9.10)
yields

Fs = B2
φ

4π

d

ds
ln(d/R), (9.11)

where d/ds = cos θd/dz is the derivative along the flow line. For a purely radial
flow, d ∼ R, and the force vanishes as expected. The result is more general, how-
ever: it applies to any “homologous” flow, with d/R independent of z. That is, it
holds if the distance d between poloidal field lines varies in the same way as the
distance R of the field line from the axis.

For net acceleration it is thus not sufficient that the overall expansion of the
flow is more rapid than radial. Expansion must also be non-self-similar: acceler-
ation takes place only on field lines that diverge from their neighbors faster than
the overall expansion of the flow. This is unlike the case of the “nozzle effect” in
supersonic hydrodynamical flows.

The result can also be derived by considering the Poynting flux S itself. In ideal
MHD it is given by Eq. (9.2): S = v⊥ B2/4π where v⊥ is the velocity component
perpendicular to the flow. Again assuming that the field is already purely azimuthal,
S is parallel to the flow as well, S = vB2

φ/4π . The total Poynting flux flowing
between two poloidal surfaces at distance R(z) from the axis and separated by a
distance d as before is then

Sp = S 2π Rd. (9.12)

Poynting flux is converted into kinetic energy if this quantity decreases with distance
along the flow. Again using (9.10) to eliminate Bφ
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Sp = k2

2v

R

d
, (9.13)

where k = vBφd, the flow rate of the azimuthal field. It follows that for Poynting
flux conversion it is necessary for d to increase with distance z faster than R, in
agreement with the derivation above.

The conclusion is that at distances where the field has already become azimuthal,
efficient Poynting flux conversion is not possible by the simplest expanding-nozzle
effect. The expansion must be non-homologous, and acceleration takes place only
in parts of the flow where the separation between neighboring flow lines increases
faster than average. See [55, 75] for further discussion.

The assumption of a purely azimuthal field does not hold closer to the source
and up to several times the Alfvén distance, and the above reasoning does not apply
there. The region around the fast mode critical point of the flow appears to be con-
ducive to Poynting fux conversion even in homologously expanding flows (d ∼ R).
A detailed study has been given by [20], for the general relativistic case and includ-
ing the contributions from thermal pressure. Reasonable conversion efficiencies, of
order 50%, are achieved if the opening angle of the flow increases by a factor of a
few in the region around the fast mode point (see also the numerical simulation by
[4]).

The limitations of this process of acceleration by divergence of the opening angle
become more severe when actual physical conditions leading to divergence are con-
sidered. A limiting factor is causality. In a flow of Lorentz factor Γ , parts of the fluid
moving at angles differing by more than θmax = 1/Γ are causally disconnected:
there is no physical mechanism that can exchange information between them. Hence
there are no physically realizable processes that can cause them to either converge
to or diverge from each other. Jets accelerated by flow divergence therefore must
satisfy

θΓ < 1, (9.14)

where θ is the asymptotic opening angle of the jet. Jets in gamma-ray bursts, with
inferred opening angles of a few degrees and minimum Lorentz factors of ≈100,
can thus not be accelerated by homologous expansion.

Condition (9.14) is less constraining in the case of AGN jets, with inferred
Lorentz factors in the range 3–30. Since efficient Poynting flux conversion by this
process requires an expansion in opening angle by a factor of several; however, the
initial opening angle of an AGN jet would have to be several times smaller than the
observed angles. It is not clear if this is compatible with observations. In Sect. 9.5
an efficient conversion process is presented that does not require divergence of the
flow (in fact it works best in a converging flow geometry) and is applicable to both
AGN and GRB.
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9.3.3.2 Conversion Efficiency: Possible Artifacts

Because of the near cancellation of terms in the magnetic acceleration, some cau-
tion is needed when interpreting results of magnetically driven flow calculations,
whether they are analytic or numerical. In analytic models, simplifying assumptions
can tip the balance in favor of one of the two terms, leading to a spurious acceleration
or deceleration.

In numerical work, the unavoidable presence of numerical diffusion of field lines
(e.g., lower order discretization schemes) can cause artificial acceleration. If such
diffusion is effective, i.e., the numerical resolution low, the toroidal field can poten-
tially decay by annihilation across the axis. This would result in a decrease of the
magnetic pressure with distance along the axis, increasing the pressure gradient term
in (9.4), also resulting in acceleration. The signature of such an artifact would be that
the acceleration found decreases as numerical resolution is improved.

Acceleration by a decrease in magnetic energy along the flow is itself a real
effect, however, if a mechanism for dissipating magnetic energy within the jet is
present. I return to this in Sect. 9.5.

9.3.4 “Magnetic Towers”

Another picture of magnetic jets produced by a rotating, axisymmetric source is
that of a “magnetic tower,” sometimes presented as an intrinsically separate mech-
anism with its own desirable properties. It is a simplified picture of the magnetic
acceleration process, in which the magnetic field is depicted as a cylindrical column
of wound-up magnetic field. One loop of toroidal field is added to the column for
each rotation of the foot-points (cf. Fig. 9.2). The tower is assumed to be in pressure
balance with an external confining medium. The attraction of this model is that it
is easily visualizable. In addition, some of the numerical simulations look much
like this picture. This is the case in particular for simulations done in a cylindrical
numerical grid.

The description of a magnetic jet as a “magnetic tower” does not address the
acceleration of the flow, nor does it address how a jet is collimated. It is a kine-
matic model describing the shape of the field lines once a flow has been assumed.
To explain acceleration of the flow, the dynamics of the centrifugal and dissipative
acceleration mechanisms described above and below have to be included.

9.3.5 Flows with High Mass Flux

At low mass flux in the wind, the Alfvén surface is at a large distance from the
disk,4 and it moves inward with increasing mass flux. One may wonder what hap-

4 Except in relativistic disks: in this case the Alfvén surface approaches the light surface (“cylin-
der”) corresponding to the rotation rates of the foot-points on the disk.
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pens when so much mass is loaded onto the field lines that the field is too weak to
enforce corotation. When conditions in the wind-launching zone (Sect. 9.7) produce
such a high mass flux, the “centrifugal” acceleration picture does not apply any
more. Cases like this are likely to be encountered in numerical simulations, since
the opposite case of low mass flux is much harder to handle numerically. Low mass
fluxes cause problems associated with the high Alfvén speeds in the accelerating
region and the larger computational domain needed, so the characteristic behavior
of a centrifugal wind, with Alfvén surface far from the source, is not the first one
expects to encounter in simulations.

The high mass flux case can be illustrated with an analytical model: the “cold
Weber–Davis” model mentioned above. Consider for this a flow with the poloidal
component of the B-field purely radial (Bθ = 0) near the equatorial plane of a
rotating source (i.e., the plane of the disk). Define the mass-loading parameter μ as

μ = ρ0
4πv0Ωr0

B2
0

= v0Ωr0

v2
A0

, (9.15)

where Ω is the rotation rate of the field line with foot-point at distance r0 from the
axis, v0 and vA0 the flow velocity and Alfvén speed at r0, respectively. The solution
of the model then yields for the Alfvén distance rA

rA = r0

[
3

2
(1 + μ−2/3)

]1/2

. (9.16)

Various other properties of the flow can be derived (see the summary in Sect. 9.7 of
Spruit 1996). An example is the asymptotic flow speed:

v∞
Ωr0

= μ−1/3. (9.17)

Figure 9.5 shows how the field lines are wound up for a low mass flux and a
high mass flux case. These scalings have been derived only for the rather restrictive
assumptions of the cold Weber–Davis model. It turns out, however, that they actu-
ally hold more generally, at least qualitatively; they have been reproduced in 2-D
numerical simulations [2].

Equation (9.17) shows that at high mass flux, the outflow speed goes down, as
expected, and for μ > 1 actually drops below the orbital velocity at the foot-point.
At such low velocities, the travel time of the flow, say to the Alfvén radius, becomes
longer than the crossing time tA of an Alfvén wave, tA = r/vA. There is then enough
time for Alfvénic instabilities to develop, such as buoyant (Parker) instability and/or
kink modes before the flow reaches substantial speed, interfering with the acceler-
ation process. Since these are nonaxisymmetric, such effects do not show up in the
typical 2-D calculations done so far. It is quite possible that the high mass flux
case will turn out to be highly time dependent and poorly represented by the above
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Fig. 9.5 Shape of the magnetic field lines of the cold Weber–Davis wind model, for two values of
the mass-loading parameter μ. At low mass loading, the Alfvén radius rA (dashed) is far from the
source surface (solid circle), the angle of the field lines at rA is of order unity. At high mass flux,
the field lines are already wound up into a tight spiral before the flow reaches rA. The flow is slow
in this case, and it is likely to be subject to various nonaxisymmetric instabilities

scalings derived for steady flow. Three-dimensional simulations of high mass flow
cases would therefore be interesting, but likely to be challenging.

High mass flux conditions may well occur in astrophysical objects, but they prob-
ably will not produce the familiar highly collimated high-speed jets. They might be
involved in slower ‘equatorial’ outflows inferred in some objects.

9.4 Ordered Magnetic Fields

9.4.1 Impossibility of Generation by Local Processes

An ordered magnetic field such as sketched in Fig. 9.1 is usually assumed in work
on magnetocentrifugal acceleration: a field of uniform polarity threading the (inner
regions of a) disk. This is sometimes chosen as a representative idealization of more
complicated configurations such as might result from magnetic fields generated in
the disk. The ordered configuration has the advantage of simplicity: all field lines
anchored in the disk extend to infinity, and the flow can be a smooth function of
distance from the axis. If the field is not of uniform polarity, some field lines form
closed loops connecting parts of the disk surface instead of extending to infinity, and
the outflow will be patchy (cf. Fig. 9.5 in [11]).

A field of uniform polarity, however, is subject to an important constraint: it
cannot be created in situ by local processes in the disk. It can only exist as a con-
sequence of either the initial conditions or of magnetic flux entering or leaving the
disk through its outer (radial) boundary. To see this formally, consider a circle at
r = R, z = 0 (in cylindrical coordinates r, φ, z centered on the disk), where R could
be the outer radius of the disk, or the radial outer boundary of the computational
domain. Let S be a surface with this circle as its boundary, with normal vector n, and
let Φ = ∫

dS B · n the magnetic flux through this surface. On account of div B = 0,
Φ is independent of the choice of S, as long as the boundary at r = R is fixed, and
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we can take S to be in the midplane z = 0 of the disk. With the induction equation,
we have

∂tΦ =
∫

drdφ r [∇ × (u × B)]z . (9.18)

With ur (0, φ, z) = Br (0, φ, z) = 0 by symmetry of the coordinate system, this
yields

∂tΦ = −
∫

dφ R[uz Br − ur Bz], (9.19)

where the integrand is evaluated at r = R. The square bracket can be written as
u⊥ Bp, where Bp is the poloidal field (Br , Bz) and u⊥ the velocity component per-
pendicular to it. The RHS of (9.19) can thus be identified as the net advection of
poloidal field lines across the outer boundary.

If this flow of field lines across the outer boundary vanishes, the net magnetic
flux Φ through the disk is constant. If it vanishes at t = 0, it remains zero: it cannot
be created by local processes in the disk, including large-scale dynamos (even if
these were to exist in accretion disks).

The magnetic flux through a disk is therefore a global quantity rather than a local
function of conditions near the center. It depends, if not on initial conditions, on
the way in which magnetic flux is transported through the disk as a whole. Since it
is not just a function of local conditions in the disk, it acts as a second parameter
in addition to the main global parameter, the accretion rate. This has an interesting
observational connection: not all disks produce jets, and the ones that do, do not do
it all the time. The possibility suggests itself that this variation is related to variations
in the magnetic flux parameter of the disk [72].

9.4.2 Field Strengths

A particular attraction of ordered fields is that they can be significantly stronger than
the fields produced by magnetorotational (MRI) turbulence. The energy density in
MRI fields is limited to some (smallish) fraction of the gas pressure at the midplane
of the disk. The exact fraction achievable still appears to depend on details such
as the numerical resolution, with optimistic values of order 0.1 commonly quoted,
while values as low as 0.001 are being reported from some of the highest resolution
simulations [27].

The strength of ordered fields can be significantly higher, limited in principle
only by equipartitition of magnetic energy with orbital kinetic energy, or equiv-
alently by the balance of magnetic forces with gravity. In practice, interchange
instabilities already set in when the fractional support against gravity reaches a few
percent, as shown by the numerical simulations of [74]. For a thin disk, however,
this can still be substantially larger than equipartition with gas pressure, since the
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orbital kinetic energy density is a factor (r/H )2 larger than the gas pressure at the
midplane. Magnetic fields of this strength actually suppress magnetorotational insta-
bility. Instead, their strength is limited by new instabilities-driven magnetic energy
rather than the shear in the orbital motion (see discussion and results in [74]).

Strong fields are also indicated by the observations of rapidly varying optical
emission in some accreting black holes, in particular GX 339-4 and KV UMa.
As argued in [25], the only realistic interpretation of this radiation is thermal syn-
chrotron emission from a compact region near the black hole. The inferred optical
depth requires very strong magnetic fields [37], probably larger than can be provided
by MRI turbulence.

9.4.3 Ordered Magnetic Fields in Numerical Simulations

Equation (9.19) says that the net magnetic flux Φ through the disk does not change
unless there is a net advection of field lines into or out of the disk boundary. This
implies that the velocity field inside the disk cannot create a net poloidal flux, no
matter how complex or carefully construed the velocities.

A bundle of ordered magnetic flux threading a black hole, such as seen in simula-
tions (e.g., [22, 47, 31]), can only have appeared “in situ” by violation of div B = 0.
Since this is unlikely with the codes used, the flux bundles seen must have developed
from flux that was already present at the start of the simulation.

The way this happens has been pointed out in [36] and [73]; it can be illustrated
with the simulations of [47]. The initial state used there is a torus of mass, with
an initially axisymmetric field consisting of closed poloidal loops. The net poloidal
flux through the midplane of the calculation thus vanishes: downward flux in the
inner half of the torus is compensated by upward flux in the outer part (Fig. 9.6).
The differential rotation in the torus generates MRI turbulence, causing the torus to
spread quasi-viscously. The inner parts spread toward the hole while the outer parts
spread outward. The magnetic loops share this spreading: the downward flux in the
inner part spreads onto the hole, the upward flux spreads outward.

This explains the formation of a flux bundle centered on the hole in the simula-
tions, but also makes clear that the result is a function of the initial conditions. The
process as simulated in this way, starting with a torus close to the hole, is not really
representative for conditions in an extended long-lived accretion disk. If a poloidal
loop as in the initial conditions of present simulations were present in an actual

Fig. 9.6 Formation of a central flux bundle by a spreading torus containing loops of poloidal field
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accretion flow, the downward part of the flux would accrete onto the hole as well,
canceling the flux threading the hole.

The dependence on initial conditions is demonstrated more explicitly by some
of the results in [46] and [22]. These results show that different initial conditions (a
toroidal instead of a poloidal field) result in very similar magnetic turbulence in the
disk, but without an ordered Poynting flux jet. See also the recent discussion in [5].

This disagrees with earlier suggestions [22, 40] that such jets would be a natural
generic result of MRI-generated magnetic fields, or even the claim [49] that a net
magnetic flux through the disk would appear from MRI turbulence.

Existing simulations thus show that a flux bundle at the center of a disk can
form from appropriate initial conditions, but leave open the question which physics
would lead to such conditions. As I argue below, this need not be seen only as an
inconvenience. The same question may well be related to the puzzling phenomenol-
ogy of X-ray states in X-ray binaries. At the same time, the simulation results are
important since they appear to demonstrate that there is a flaw in the analytical
models previously used for the accretion of net magnetic flux through a disk. This
is discussed further in the next section.

9.4.4 Accretion of Ordered Magnetic Fields?

If magnetic fields of net polarity cannot be created internally in a disk, but a net
polarity at the center of the disk is still considered desirable, there are two possibil-
ities:

– The field is accreted from the outside (a companion, or the interstellar medium),
– It forms by systematic separation of polarities somewhere in the disk.

The first of these has been a subject of several studies, the conclusions of which
are discouraging. The model used is that of a diffusing disk, where angular momen-
tum transport is mediated by a viscosity ν, and the magnetic field diffuses with
diffusivity η. If both result from some quasi-isotropic turbulence, they are expected
to be of similar magnitude. Numerical simulations addressing this question [30]
show that the ratio ν/η (the magnetic Prandtl number) is close to unity.

Vertical field lines are accreted through the disk at a rate ∼ν/r , while diffusing
outward at a rate ∼η/r . In a steady state the balance between the two would yield
a strong increase of field strength toward the center of the disk. The assumption
of a vertical field being accreted is very unrealistic, however, since accreted field
lines cannot stay vertical. In the vacuum above the disk the field lines bend away
from the regions of strong field, so that the field lines make a sharp bend on passing
through the disk. As shown first by [77], the result is that magnetic flux is accreted
very inefficiently. Because of the sharp bend, the length scale relevant for magnetic
diffusion is the disk thickness H , rather than r , and diffusion correspondingly faster.
The result is that accretion in a disk with ν ≈ η cannot bend field lines by more than
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an angle ∼H/r [42], and the increase of field strength toward the disk center is
negligible.

This result would seem to exclude the accretion of magnetic flux to the center
of a disk by amounts significant enough to create a strong ordered field around the
central mass. The observational indications for the existence of such fields are nev-
ertheless rather compelling. An attempt to circumvent the diffusion argument above
was made by [72]. We appealed there to the fact that in addition to the external field
to be accreted, the disk also has its own, magnetorotationally generated small-scale
magnetic field. This field is likely to be highly inhomogeneous, with patches of
strong field separated by regions of low strength, as seen in recent numerical sim-
ulations [45, 27, 30]. An external field accreted by the disk then does not cross the
disk uniformly, but through the patches of strong field. Such patches can effectively
lose angular momentum through a wind, thereby beating the diffusion argument and
causing the external field to be accreted.

The ability of an accretion flow to maintain a bundle of strong field at its center,
first proposed by [8], is suggested by the simulations of [36], [47], and others, at
least for the geometrically thick flows that are accessible with numerical simula-
tions.

9.4.5 Spontaneous Separation

The alternative possibility of a spontaneous separation of magnetic polarities from a
mixture (as generated by MRI turbulence, for example) is also possible in principle,
if a process of “coordinated small-scale action” exists. Assume that some form of
magnetic turbulence in the disk contains small-scale (Δr ∼ H ) loops of poloidal
field (in addition to a toroidal field component). If there is a reason why the loops are
of the same sign throughout the disk, as sketched in Fig. 9.7, reconnection between
them can create an ordered radial field. Allowing this field to escape through the
upper and lower surfaces of the disk leaves two bundles of field lines of opposite
sign crossing the disk, near its inner and outer boundaries. Though this still has
not produced a net flux through the disk, it has separated polarities enough that the
canceling flux in the outer disk need not influence the flux bundle in the inner disk
much. The scenario is unrealistic, however.

9.4.6 Dynamos

The assumption of coordinated action on which the scenario Fig. 9.7 is based is
unrealistic. For the loops to know the orientation needed for the process to work, at
a minimum the information communicating this knowledge, the Alfvén speed, has
to travel through the disk sufficiently fast. The lifetime of poloidal loops like those in
Fig. 9.7 is of the order of the local orbital period, however. An Alfvén wave travels
only of the order of a disk thickness in this time. By the time the loop’s orientation
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Fig. 9.7 Separation of magnetic polarities by coordinated small-scale action. If small-scale loops
created in a disk have the same orientation (arrows), reconnection (dashed lines and middle panel)
with subsequent escape from the disk would leave a net flux bundle in the inner disk

has been communicated to any larger distance, it has been replaced randomly by
another loop. Larger scales thus will be acausal, governed by the statistics of random
superposition. Simulations of magnetic turbulence in disks confirm this [30]. This
calls into question the literature on large-scale fields produced with “disk dynamo”
equations, which have the assumption of large-scale field generation already built
into them. The well-established practice of using such mean field equations does not
replace justification of their applicability.

9.4.7 The “Second Parameter” in Accreting X-Ray Sources

Previous analytic theory, as well as the recent numerical simulations, shows the
advantage of an ordered magnetic field near the central object for creating powerful
outflows; though less effective forms of outflow associated with random magnetoro-
tationally generated magnetic fields appear possible as well [36, 46].

Ordered fields also make the puzzling behavior of X-ray binaries easier to under-
stand. The phenomenology of X-ray binaries (black hole and neutron star systems)
includes changes in the X-ray spectrum and the time variability of the X-ray emis-
sion (see contributions elsewhere in this volume). For many years the prevailing
view in the interpretation of X-ray binaries has been that this phenomenology is
governed by a single parameter: the accretion rate (not counting the system param-
eters of the binary itself).
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This view was supported by the fact that X-ray binaries with neutron star pri-
maries showed a systematic behavior, with their spectral and timing properties
ordered approximately along a single track in color–color or color–intensity dia-
grams. It did not agree with the observations of X-ray transients (mostly black
hole systems) including the “canonical” black hole transient GU Mus. These do
not conform to the movement back and forth along a single track in color–intensity
diagrams expected from a single-parameter system, showing instead motion around
wide and/or irregular “loops”.

In spite of this, the phenomenology of these transients has traditionally been
interpreted as a single sequence of states with declining accretion rate, the apparent
anomalies blamed on, for example, the transient nature of the sources. The X-ray
spectrum and the properties of the time variability in these sources show strong
similarities in states of very different brightness (e.g., the “very high” and “interme-
diate” states [61, 7, 33]). This provides a compelling clue that the phenomenology
is not simply a function of the instantaneous accretion rate alone. Anomalies in
the neutron star binaries (“parallel tracks,” e.g., [78]), though smaller in magnitude,
point in the same direction.

Instead of just the instantaneous accretion rate, one could imagine that the state
of the system depends also on the history of the accretion rate. This would be the
case if there is a physical property of the disk causing hysteresis, such that the state
is different during increasing and decreasing accretion rates, for example. Such a
mechanism might be an evaporation process depleting the inner regions of the disk,
such that the size of the depleted zone depends on the history of the accretion rate
(see review by [34]).

A more radical idea is that a true “second parameter” is involved in the state of
the accretion flow and its X-ray and timing properties. Apart from binary parameters
such as the masses and orbital separation, the mass transfer rate from the companion
is the only parameter determining a (steady) hydrodynamic accretion disk. In the
influential standard theory of disks based on local viscosity prescriptions, the phys-
ical state at a given point of the disk is only a function of the local mass flux. This
makes the theory much more deterministic than the properties of X-ray transients
seem to indicate.

A useful second parameter would therefore preferably be a global quantity: a
property of the disk as a whole, independent of the accretion rate, which varies
between disks or with time in a given disk. It is hard to come up with plausible
candidates. As argued in [72] a promising one, however, is the net flux Φ of field
lines crossing the disk. As shown above, this is a truly global parameter: its value is
determined only by inheritance from the initial conditions and the boundary condi-
tions at its outer edge; it cannot be changed by local processes in the disk. One could
imagine, for example, that a large amount of flux would interfere with the accretion
process in the inner parts of the disk [8], so flux could get concentrated there. This
could be related to the nature of the poorly understood hard X-ray state, and the
indications for ‘truncation’ of the inner disk (cf. [19, 21] and references therein).

Another useful property of the global magnetic flux as a second parameter is
the observed relation between X-ray states and the occurrence of jets from X-ray
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binaries. If the hard X-ray state is indeed one with a high magnetic flux in the inner
disk, its connection with jets would be natural since current theory strongly suggests
them to be magnetically driven phenomena.

9.5 Flow Acceleration by Magnetic Dissipation

In three dimensions, the energy carried in the form of the wound-up magnetic field
can decay by internal dissipation, something which is excluded in axisymmetry.
This turns out to be a very efficient way of accelerating the flow to high Lorentz
factors [23, 28]. The fact that this has not been recognized much may be due to the
at first sight anti-intuitive nature of the effect and the emphasis on axisymmetric
models in previous work. It may well be the actual mechanism of “Poynting flux
conversion” in jets, replacing the mechanisms seen in 2-D [55].

An initially axisymmetric flow of nearly azimuthal magnetic field is bound to be
highly unstable to kinking modes. This is to be expected specially when it is highly
collimated: in a frame comoving with such a flow, the field is close to a static, almost
azimuthal configuration. The details of such configurations are well known since the
early days of controlled fusion research. Purely azimuthal fields like this are found to
be unconditionally unstable. Instability reduces the energy B2

φ of the magnetic field,
and small length scales developing under the instability can lead to reconnection,
further reducing the magnetic energy. The growth time of the instability is of the
order of the Alfvén travel time around a loop of azimuthal field. Instability is thus
more destructive in highly collimated jets than in wider outflows. Dissipation of
magnetic field energy into radiation by such instability has been proposed by [44]
as a mechanism to power the prompt emission of gamma-ray bursts.

Another way of dissipating magnetic energy is to generate the flow from a
nonaxisymmetric rotating magnetic field. A classic example is the pulsar wind gen-
erated by a rotating neutron star with a magnetic field inclined with respect to the
rotation axis. If the asymmetry is strong enough, the azimuthal field in the outflow
will change sign on a length scale L ∼ πv/Ω (a “striped wind” [38, 12]), where Ω

is the rotation rate of the source and v is the speed of the outflow. For a relativistic
outflow, L is of the order of the light cylinder radius of the rotator. This is generally
quite small compared with the distances traveled by the flow. Dissipation of mag-
netic energy by reconnection of field lines can be very efficient on such short length
scales.

The effect of dissipation of magnetic energy on the flow is dramatic. In the
absence of dissipation the balance between pressure gradient and curvature force
tends to impede the acceleration and the conversion of Poynting flux. In axisym-
metry, the balance between these forces can shift in favor of acceleration by the
magnetic pressure gradient if (parts of) the flow expand more rapidly than in a radial
(“conical”) flow (see Sect. 9.3.3). In 3-D, diffusion caused by instabilities reduces
this effect by making the flow more uniform across its cross section. But at the same
time, the decay of magnetic energy by instabilities reduces the magnetic pressure
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along the path of the flow, causing the balance to shift in favor of the pressure
gradient (see Eq. (9.4)), again resulting in acceleration of the flow. See Sect. 9.3.3
and [55]. This effect is efficient in particular in GRB outflows, where observations
indicate the largest Lorentz factors [23, 28].

It may seem strange that one can convert Poynting flux into kinetic energy
by “throwing away magnetic energy.” The magnetic energy carried by the flow
accounts for only half of the Poynting flux, however. The Poynting flux in MHD
is v⊥ B2/4π , where v⊥ is the velocity component perpendicular to B. This is twice
the rate of advection of magnetic energy B2/8π . The other half is accounted for by
the work done by the central engine on the magnetic pressure of the outflow.

This is entirely analogous to the case of a steady hydrodynamic flow, where the
energy balance is expressed by the Bernoulli function. The relevant thermal energy
in that case is the enthalpy, the sum of the internal energy (equivalent to B2/8π in
our case), and the pressure (also equivalent to B2/8π ). If internal energy is taken
away along the flow (for example, by radiation), a pressure gradient develops which
accelerates the flow. The energy for this acceleration is accounted for by the PdV
work done at the source of the flow. For a more extended discussion of this point
see [71].

This mechanism does not require an increasing opening angle of the flow lines.
If the dissipation is due to magnetic instabilities, it works best at high degrees of
collimation. If it is due to reconnection in an intrinsically nonaxisymmetric flow it
works independent of the degree of collimation [23]. It may well be one of the main
factors determining the asymptotic flow speed in many jets [24, 28]. However, the
mechanism becomes effective mostly at distances significantly beyond the Alfvén
radius of the flow. Simulations which focus on the region around the black hole
do not usually cover these distances very well (cf. the discussion on length scales
in Sect. 9.2). Recent 3-D simulations covering a large range in distance show that
dissipation by kink instabilities can effectively become complete after 10–30 Alfvén
radii [54, 55].

9.5.1 Observational Evidence

The development of the magnetic acceleration model has raised the question how
observations can tell if jets are actually magnetically powered. On the parsec-and-
larger scales in AGN jets, there does not appear to be strong evidence for magnetic
fields being a major component of the energy content of the flow [66] (for a recent
observation see [50]). Rather than interpreting this as a failure of magnetic models,
it can be understood as evidence for the effectiveness of dissipation of magnetic
energy in the flow. Parsec scales in AGN are large compared with the expected
Alfvén radius in magnetic models, and there is ample opportunity for dissipation by
internal instabilities of the helical highly coiled magnetic fields found in axisym-
metric models. The 3-D instabilities allow the flow to shed the magnetic field that
powered it, so that it ends as a ballistic, essentially nonmagnetic flow (cf. Sect. 13.9
in [68]).
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The consequences of this interpretation are significant. First, it implies that there
is no point in interpreting magnetic field observations on these large scales in terms
of the simple winding-up process happening near the Alfvén distance (Fig. 9.2).
Instabilities will have destroyed the original organized helical fields long before the
flow reaches these scales. This questions a popular interpretation of observations
of radio polarization in AGN jets. Second, flow acceleration is an automatic conse-
quence of internal dissipation of magnetic energy. The effectiveness of such dissi-
pation as indicated by the observations implied that it can be a significant, perhaps
even the dominant factor determining the observed jet speeds [28].

9.6 Jet Collimation

In this section, the reader is reminded of the problems with the idea of collimating
a jet by magnetic “hoop stress.” The notion that a coiled magnetic field, as in the
outflow from a magnetic rotator, will confine itself by hoop stresses is incorrect.
Accommodation to this intuition has led to confused discussions in the observational
and numerical literature (even where technically correct, e.g., [48]). Collimation of
jets as observed must be due to some external agent; suggestions are discussed at
the end of this section.

To see this, recall that a magnetic field is globally expansive, corresponding to
the fact that it represents a positive energy density. That is, a magnetic field can only
exist if there is an external agent to take up the stress it exerts. In the laboratory,
this agent is a current-carrying coil or the solid-state forces in a bar magnet. The
stress exerted by the magnetic field on the coils generating them is what limits the
strengths of the magnets in fusion devices or particle accelerators.

A well-known theorem, particularly useful in the astrophysical context, is the
“vanishing force-free field theorem.” A magnetic field on its own, i.e., without other
forces in the equation of motion, must be force free, (∇ × B) × B = 0. The theorem
says that if a field is force free everywhere and finite (i.e., vanishing sufficiently fast
at infinity), it vanishes identically (for proofs see, e.g., [60, 51, 41]).

In the case of magnetic jets, this means that they can exist only by virtue of a
surface that takes up the stress in the magnetic field. In most numerical simulations
this is the external medium surrounding the flow. Its presence is assumed as part
of the physical model (as in the “magnetic towers”) or simply to ease numerical
problems with low gas densities. Consider the boundary between the magnetic field
(“jet”) and the field-free region around it in such a calculation. Pressure balance at
this boundary is expressed by

B2
p + B2

φ = Pe, (9.20)

where Bp = (Br , Bz) is the poloidal field and Bφ the azimuthal component, Pe the
external pressure, while the internal pressure has been neglected without loss of
generality. For a given poloidal field configuration (i.e., shape and magnetic flux
of the jet), addition of an azimuthal field component increases the pressure at the
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boundary. Everything else being equal, this will cause the jet to expand, in spite of
curvature forces acting in the interior of the jet.

Confusion about the role of curvature force is old and reappears regularly in the
astrophysical literature. For a discussion with detailed examples see [57] (Chap. 8,
esp. pp. 205–234). The azimuthal component can cause constriction to the axis, but
only in a part of the volume around the axis itself in particular. This part cannot
live on its own. It is surrounded by a continuation of the field out to a boundary
where the stress of the entire configuration can be taken up. These facts are easily
recognizable in existing numerical simulations (cf. [76]).

9.6.1 Collimation of Large-Scale Relativistic Jets

Since magnetic jets do not collimate themselves, an external agent has to be
involved. A constraint can be derived from the observed opening angle θ∞. Once
the flow speed has a Lorentz factor Γ > 1/θ∞, the different directions in the flow
are out of causal contact, and the opening angle does not change any more (at least
not until the jet slows down again, for example, by interaction with its environment
as in the case of a GRB). Turning this around, collimation must have taken place at
a distance where the Lorentz factor was still less than 1/θ∞.

Once on its way with a narrow opening angle, a relativistic jet needs no exter-
nal forces to keep it collimated. Relativistic kinematics guarantees that it can just
continue ballistically, with unconstrained sideways expansion. This can be seen in a
number of different ways. One of them is the causality argument above, alternatively
with a Lorentz transformation. In a frame comoving with the jet the sideways expan-
sion is limited by the maximum sound speed of a relativistic plasma, cs,m = c/

√
3.

Since it is transversal to the flow, the apparent expansion rate in a lab frame (a frame
comoving with the central engine, say) is reduced by a factor Γ : the time dilatation
effect. In the comoving frame, the same effect appears as Lorentz contraction: the
jet expands as quickly as it can, but distances to points a long its path are reduced
by a factor Γ (for example, the distance to the lobes: the place where jet is stopped
by the interstellar medium). In AGN jets, with Lorentz factors of order ∼20, the jet
cannot expand to an angle of more than about a degree. This holds if the flow was
initially collimated: it still requires that a sufficiently effective collimating agent is
present in the region where the jet is accelerated. Comparisons of Lorentz factors
and opening angles of AGN jets might provide possible clues on this agent.

9.6.2 External Collimating Agents

The agent responsible for collimation somehow must be connected with the accre-
tion disk (especially in microquasars where there is essentially nothing else around).
One suggestion [13] is that the observed jet is confined by a slower outflow from
the accretion disk. In AGN, the “broad line region” outflow might serve this role.
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Something similar may be the case in protostellar outflows ([64] and references
therein). In microquasars, such flows are not observed.

Another possibility [70] is that the collimation is due to an ordered magnetic
field kept in place by the disk: the field that launches the jet from the center may
may be part of a larger field configuration that extends, with declining strength, to
larger distances in disk. If the strength of this field scales with the gas pressure in the
disk, one finds that the field lines above the disk naturally have a nearly perfectly
collimating shape (see analytical examples given by [63, 15]). The presence and
absence of well-defined jets at certain X-ray states would then be related to the
details of how ordered magnetic fields are accreted through the disk (cf. Sect. 9.4.4).

Near the compact object, the accretion can be in the form of an ion-supported
flow (with ion temperatures near virial) which is geometrically thick (H/r ≈ 1).
Jets launched in the central “funnel” of such a disk are confined by the surrounding
thick accretion flow. As shown by current numerical simulations, this can lead to a
fair degree of collimation, though collimation to angles of a few degrees and less as
observed in some sources will probably require an additional mechanism.

9.6.3 Occurrence of Instabilities, Relation to Collimation

In a cylindrical (i.e., perfectly collimated) jet, the wound-up, azimuthal component
of the field will always be unstable, whether by external or internal kink instabilities.
In a rapidly expanding jet, on the other hand, the Alfvén speed drops rapidly with
distance, and an Alfvénic instability may get “frozen out” before it can develop a
significant amplitude. For which types of collimated jet should we expect instability
to be most effective in destroying the azimuthal magnetic field?

An estimate can be made by comparing the instability timescale with the expan-
sion timescale of the jet radius. If the jet expands faster than the Alfvén speed based
on Bφ , there is no time for an Alfvénic instability to communicate its information
across the jet, and instability will be suppressed.

To see how this works out [54], let the distance along the jet be z, the jet radius
R(z) a function of z. As a reference point take the Alfvén distance, the distance
where the flow speed v first exceeds the Alfvén speed vAp based on the poloidal
field strength (cf. Sect. 9.1). Call this point z0, and denote quantities evaluated at
this point with an index 0. We then have the approximate equalities:

Bp0 ≈ Bφ0, v0 ≈ vA0, (9.21)

while the flow speed reaches some modest multiple k of its value at z0:

v = kv0. (9.22)

In the following, it is assumed that the jet has reached this constant asymptotic
speed v. The shape of the jet R(z) depends on external factors such as an external
collimating agent. Assume for the dependence on distance
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R = εz0(
z

z0
)α. (9.23)

i.e., ε is the opening angle of the jet at the Alfvén distance. The mass flux ṁ is
constant (steady flow is assumed), so

ṁ = ρR2v = ρ0 R2
0v = ρ0ε

2z2
0v, (9.24)

At z0 the azimuthal field component is of the same order as the poloidal component
Bp. In the absence of dissipation by instability, the azimuthal field strength thus
varies with jet radius as

Bφ ≈ Bp0

(
R

R0

)−1

= Bp0

(
z

z0

)−α

. (9.25)

The (azimuthal) Alfvén frequency is

ωA(z) = vAφ/R, (9.26)

where vAφ = Bφ/(4πρ)1/2. The instability rate η is some fraction of this:

η = γωA(z). (9.27)

With the expressions for R and ρ this is

η = γ
vA0

εz0
(

z

z0
)−α. (9.28)

The expansion rate ωe of the jet is:

ωe = d ln R

dt
= v

d ln R

dz
= α

v

z
. (9.29)

The ratio is

η

ωe
= γ

kεα
(

z

z0
)1−α. (9.30)

For an increasingly collimated jet (α < 1) the instability rate will become larger
than the expansion rate at some distance, and kink instability will become impor-
tant. Decollimating jets (α > 1) do not become very unstable since the instability
soon “freezes out” due to the decreasing Alfvén speed. For the in-between case of a
constant opening angle, a conical jet α = 1, the ratio stays constant and it depends
on the combination of factors of order unity γ /(kε) whether instability is to be
expected. A numerical study of these effects is given in [54].

In unstable cases it may take some distance before the effects of instability
become noticeable, depending on the level of perturbations present at the source
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of the flow. Then again, as noted above (cf. Sect. 9.2), in most observed jets the
range of length scales is quite large. Even a slowly growing instability can have
dramatic effects that do not become evident in, for example, numerical simulations
covering a limited range in length scale.

When instability is present, it reduces the azimuthal field strength (since this is
what drives the instability) until the growth rate of the instability has settled to a
value around the expansion rate ωe.

Since the decay of magnetic internal energy has an accelerating effect on the
flow, a relation between acceleration and collimation is to be expected. Jets which
go through an effective (re)collimation stage should achieve a better “Poynting flux
conversion” efficiency by dissipation of magnetic energy. This is the opposite of the
(axisymmetric) process of acceleration by decollimation discussed in Sect. 9.3.3,
which yields the best conversion in strongly, in particular nonuniformly, diverging
flows.

9.7 The Launching Region

As launching region we define the transition between the high-β disk interior and
the flow region above the disk. It contains the base of the flow, defined here as the
point (called the sonic point) where the flow speed reaches the slow magnetosonic
cusp speed. The mass flux in the jet is determined by the conditions at this point;
these are visualized most easily in the centrifugal picture of acceleration. If Ω is the
rotation rate of the foot-point of the field line, r the distance from the axis, and Φ

the gravitational potential, the accelerating force can be derived from an effective
potential Φe = Φ − 1

2Ω2r2. As in other hydrodynamic problems, the sonic point
lies close to the peak of the potential barrier, the maximum of Φe. Its height and
location depend on Ω and the strength and inclination of the field. As in the case of
hydrodynamic stellar wind theory, the mass flux is then approximately the product
of gas density and sound speed at the top of the potential barrier.

9.7.1 Models for the Disk-Flow Transition

If the Alfvén surface is not very close to the disk surface, the magnetic field in the
disk atmosphere is approximately force free since the gas pressure declines rapidly
with height. As with any force-free or potential field, the shape of the field lines in
this region is a global problem. The field at any point above the disk is determined by
the balance of forces inside the field: field lines sense the pressure of their neighbors.
At points where the field strength at the underlying disk surface is high, the field
lines above it spread away from each other, like the field lines at the pole of a bar
magnet.

The inclination of the field lines at the base of the flow is thus determined in
a global way by the distribution of field lines at the disk surface, i.e., the vertical
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component Bz(r ) (assuming axisymmetry for this argument). Most of the physics
inside a thin disk can be treated by a local approximation, that is, only a region
with a radial extent similar to the disk thickness needs to be considered. The field
inclination at the base of the flow, however, a key factor in the launching problem,
cannot be computed in this way.

Several more mathematically inclined studies have nevertheless attempted to find
“self-consistent” field configurations in a local approximation, by extrapolating field
configurations along individual field lines from inside the disk into the flow region
([80], [26] and references therein, [65, 14]). By ignoring magnetic forces in the
low-β region, these results do not yield the correct field configuration above the disk
except in singular cases. The high-β disk interior and the low-β disk atmosphere are
regions of different physics and so are the factors determining the field line shape in
these regions.

The transition from the disk to the flow regime can still be studied in a local
approximation provided one gives up the ambition of at the same time determining
the field configuration above the disk. Since the field inclination is determined also
by conditions at distances that are not part of the local region studied, the inclination
at some height above the disk then has to be kept as an external parameter in such
a local study.

This has been done in the detailed study by [56]. Their results show how the
mass flux depends on the strength of the field and its asymptotic inclination. If the
magnetic stress fr = Bz Br/4π is kept fixed, the mass flow increases with increas-
ing inclination of the field lines with respect to the vertical as expected. The flow
rate decreases with increasing field strength, however. This is due to the fact that
the curvature of magnetic field lines shaped as in Fig. 9.1 exerts the outward force
fr (against gravity) on the disk. The rotation rate is therefore a bit lower than the
Keplerian value. This is equivalent to an increase of the potential barrier in Φe for
mass leaving the disk along field lines.

This complicates the conditions for launching a flow from the disk, compared
with the simple estimate based on the field line inclination alone. Ignoring the slight
deviation from Kepler rotation, a cool disk would launch a flow only if the incli-
nation of the field lines with respect to the vertical is greater than 60◦ [11]. This
condition is significantly modified by the sub-Keplerian rotation of the field lines,
especially for the high magnetic field strengths that may be the most relevant for the
generation of jets.

9.7.2 Limitations in Numerical Simulation

For a convincing numerical treatment of the launching and initial acceleration of
the flow, the calculations would have to cover both the high-β disk interior and
the low-β atmosphere. This implies a large range in characteristic velocities to be
covered, with the region of large Alfvén speeds limiting the time step. To circumvent
this timescale problem, modifications of the MHD equations have been explored in
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which the speed of magnetic waves is artificially reduced, cf. [53]. The problem is
alleviated somewhat in relativistic calculations of flows near a black hole, where the
various characteristic velocities of the problem converge on the speed of light.

Another way to reduce the timescale problem is by choosing conditions corre-
sponding to a high mass flux, thus increasing the density and decreasing the Alfvén
speeds in the wind. The Alfvén surface then decreases in size. This has the added
benefit that the conceptually different regions in the flow (cf. Fig. 9.1) fit more com-
fortably inside an affordable computational volume.

It has to be realized, however, that this choice also limits the results to a specific
corner of parameter space that may or may not be the relevant one for observed jets.
It limits the jet speeds reached since the asymptotic flow speed decreases with mass
loading. It strongly limits the generality of quantitative conclusions (in particular,
about the mass flux in the jet, cf. [17]). It also tends to bias interpretations of jet
physics to ones that are most meaningful in the high-mass flux corner of parameter
space (cf. discussion in Sect. 9.3.5).

9.7.3 Ion-Supported Flows

At low disk temperature, the conditions for outflow are sensitive to the field strength
and inclination near the disk surface, raising the question why the right conditions
would be satisfied in any given jet-producing object. This sensitivity is much less
in an ion-supported flow [59], where the (ion-)temperature of the flow is near the
virial temperature and the flow is only weakly bound in the gravitational potential
of the accreting object. This may, in part, be the reason why powerful jets tend to be
associated with the hard states in X-ray binaries for which the ion-supported flow
(also called ADAF [18]) is a promising model.

9.7.4 Instability of the Disk-Wind Connection, Knots

The same sensitivity of the mass flux to configuration and strength of the field can
cause the connection between disk and outflow to become unstable. Since the wind
carries angular momentum with it, an increase in mass loss in the wind causes an
increase in the inward drift speed of the disk at the foot-points of the flow. This
drift carries the vertical component of the magnetic field with it. Since the field
configuration in the wind zone is determined by the distribution of foot-points on
the disk, this feeds back on the wind properties. Linear stability analysis by [16]
showed that this feedback leads to inward propagating unstable disturbances, with
associated variations in mass flux in the wind. This had been assumed before in
a model by [1]. These authors found that this kind of feedback causes the disk to
become dramatically time dependent in a manner suggestive of the FU Ori outbursts
in protostellar disks.
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Strong ordered magnetic fields in disks have their own forms of instability, inde-
pendent of the coupling to a wind [43, 69], driven instead by the energy in the field
itself. The nonlinear evolution of such instabilities was studied numerically by [74]
(see also Sect. 9.4 above). Their effect appeared to be similar to an enhancement of
the rate of diffusion of the magnetic field through the disk.

Since both these kinds of instability cause changes in the vertical component of
the field, which is the same on both sides of the disk, they produce symmetric vari-
ations in mass flow in jet and counterjet. They are thus good candidates for the time
dependence often observed in the form of symmetric knot patterns in protostellar
jets.
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