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Abstract. In this paper, an evolutionary algorithm with spatially dis-
tributed surrogates (EASDS) for multiobjective optimization is presented.
The algorithm performs actual analysis for the initial population and
periodically every few generations. An external archive of the unique
solutions evaluated using the actual analysis is maintained to train the
surrogate models. The data points in the archive are split into multiple
partitions using k-Means clustering. A Radial Basis Function (RBF) net-
work surrogate model is built for each partition using a fraction of the
points in that partition. The rest of the points in the partition are used
as a validation data to decide the prediction accuracy of the surrogate
model. Prediction of a new candidate solution is done by the surrogate
model with the least prediction error in the neighborhood of that point.
Five multiobjective test problems are presented in this study and a com-
parison with Nondominated Sorting Genetic Algorithm II (NSGA-II) is
included to highlight the benefits offered by our approach. EASDS al-
gorithm consistently reported better nondominated solutions for all the
test cases for the same number of actual evaluations as compared to a
single global surrogate model and NSGA-II.

1 Introduction

Evolutionary algorithms (EAs) are particularly attractive for multiobjective
problems as they result in a set of nondominated solutions in a single run. Fur-
thermore, EAs do not rely on functional and slope continuity and thus can be
readily applied to optimization problems with mixed variables. However, EAs
are essentially population based methods and require evaluation of numerous
solutions before converging to the desired set of solutions. Such an approach
turns out to be computationally prohibitive for realistic Multidisciplinary De-
sign Optimization (MDO) problems and there is a growing interest in the use of
surrogates to reduce the number of actual function evaluations.

A comprehensive review on the use of fitness approximation in the context
of evolutionary computation has been reported by Jin [1]. The choice of sur-
rogate models reported in literature range from neural network based models
like multilayer perceptrons, radial basis function networks, quadratic response
surfaces, Kriging and cokriging models. A vast majority of surrogate assisted
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optimization methods rely on the use of a single global surrogate model. The
surrogate model is either created once and used subsequently throughout the
course of search (one shot approach) or created periodically. Algorithms based
on the one shot training of the approximation model(s) [2,3] are likely to face
the problems when the initial set of solutions generated differ substantially from
the final set as in the case of the test function SCH1 [4]. Periodic retraining
is necessary as the search proceeds to localized areas. In order to capture local
behavior, hierarchical surrogate models have been proposed by Zhou et al [5]
and the use of artificial neural network models in the local search strategy have
been used by Gasper-Cunha and Vieira [6].

To improve the prediction accuracy with limited samples, multiple surrogates
can be used in place of the single surrogate model. Common use of multiple
surrogates is in the form of surrogate ensembles where a collection of surrogate
models with varying parameters usually trained simultaneously by techniques
such as bagging [7], and boosting [8] are used. A survey of neural network en-
semble has been reported by Zhao et al [9]. Jin and Sendhoff [10] reported the
use of clustering and neural network ensembles to reduce the fitness evaluations.
They use k-Means clustering to identify the candidate solutions which need to
be evaluated using the actual analysis. Hamza and Saitou [11] have used poly-
nomial regression surrogate ensembles with weighted average response and the
most conservative response in the co-evolutionary genetic algorithm for vehicle
crash-worthiness design.

Another approach based on multiple surrogates is to use different types of
surrogate models simultaneously. Goel et al [3] and Zerpa et al [12] have used
a weighted average model resulting from three surrogate types (polynomial re-
sponse surface model, kriging, and radial basis function). The two approaches
differ in the determination of the weights for averaging. Zhou et al [13] reported
the use of multiple approximation models in the context of memetic algorithm
to perform the local search. They even propose using a surrogate ensemble as
one of the approximation models.

In the context of multiobjective optimization, Nain and Deb [14] proposed a
multifidelity model (coarse to fine grain) for surrogate assisted multiobjective op-
timization where a multilayer perceptron was periodically retrained and used in
alternation with actual computations to solve a B-spline curve fitting problem. A
similar approach of alternating between actual analysis (K) and surrogate mod-
els (S) have been reported by Ray and Smith [15]. The study used a RBF model
that was trained using the candidate solutions of the population after every K
generations. Nain and Deb [16] reported the performance of successive surrogate
models on two test functions viz. ZDT4 and TNK. Pareto Efficient Global Op-
timization (ParEGO) algorithm [17] relies on a kriging based surrogate and the
sampling points are generated via design of experiments. However, the method
requires knowledge about the limits of the objective function space and can-
not guarantee a uniform distribution of the solutions along the nondominated
front. Emmerich et al [18] use confidence interval predicted by the kriging model
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to screen candidates for actual evaluation, reducing the computational cost. A
recent paper by Chafekar et al [19] reports the use of multiple GAs, each of
which uses a reduced model of the objective function with a regular information
exchange among GAs to obtain a well distributed nondominated set of solutions.

In this paper an evolutionary algorithm with spatially distributed surrogates
(EASDS) is presented. This approach uses multiple surrogates that are spatially
distributed in the design space. An archive of the solutions evaluated using the
actual analysis is maintained and used to train the surrogate models. The solu-
tions in the archive are split in multiple partitions using k-Means clustering. Us-
ing a fraction of the solutions in each partition a Radial Basis Function network
surrogate model is trained. The unused points in each of the partition are used to
assess the prediction accuracy of the surrogate model. The performance of the
EASDS is compared with Nondominated Sorting Genetic Algorithm (NSGA-
II) [20] using an equal number of actual function evaluations. The effect of the
number of partitions is also studied and the performance is compared with a
single global surrogate model.

2 An Evolutionary Algorithm with Spatially Distributed
Surrogates

The pseudo code of the proposed Evolutionary Algorithm with Spatially Dis-
tributed Surrogates (EASDS) is outlined in Algorithm 1.

Algorithm 1. Evolutionary Algorithm with Spatially Distributed Surrogates
Require: NG > 1 {Number of Generations}
Require: M > 0 {Population size}
Require: K > 1 {Number of partitions}
Require: ITRAIN > 0 {Periodic Surrogate Training Interval}
1: A = ∅ {Archive of the Solutions}
2: P1 = Initialize()
3: Evaluate(P1)
4: A = AddToArchive(A, P1)
5: S = BuildSurrogates(A, K)
6: for i = 2 to NG do
7: if modulo(i, ITRAIN ) == 0 then
8: Evaluate(Pi−1) {Evaluate parent population using the Actual Analysis}
9: A = AddToArchive(A, Pi−1)

10: S = BuildSurrogates(A, K)
11: end if
12: Ci−1 = Evolve(Pi−1, S)
13: EvaluateSurrogate(Ci−1, S)
14: Pi = Reduce(Pi−1 + Ci−1)
15: end for
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The basic evolutionary algorithm is on the same lines as that of NSGA-II by
Deb et al [20]. The algorithm starts with a random initial population and eval-
uates the population using actual evaluations. Spatially Distributed Surrogate
models (using Radial Basis Function network) are created for all the objectives
and the constraints. An external archive of actual evaluations is maintained in
EASDS and used to periodically train the surrogate models for all the objectives
and the constraints. The components of EASDS are described below.

2.1 Initialization

All the solutions in the population are initialized randomly by selecting each
variable value from the specified range for that variable.

2.2 Archive of the Actual Evaluations

All the unique candidate solutions that are evaluated using the actual analysis
are maintained in an external archive. Every ITRAIN generations, the parent
population is evaluated using the actual analysis functions and then added to
the archive. New solution is added to the archive only if the normalized distance
(using the Euclidean norm) between the new solution and each of the solutions
in the archive is more than user defined distance criterion. This condition avoids
the numerical difficulties of building the surrogates if the solutions are too close.

2.3 Evolutionary Strategy

The evolutionary strategy of EASDS is the same as that of NSGA-II. Binary
tournament is used for the selection the parents undergoing crossover. The sim-
ulated binary crossover (SBX) operator [21] and a polynomial mutation opera-
tor [22] are used to create an offspring population from the parent population.

2.4 Building Spatially Distributed Surrogate Models

Outlined in Algorithm 2 are the steps involved in building the RBF surrogate
models for the objectives and the constraints. A collection of RBF surrogate
models is created to approximate the objectives and the constraints. The archive
is split into K partitions (A1, . . . , AK) using k-Means clustering algorithm where
the design variables x1, . . . , xn are used as the clustering attributes.

The solutions in each of the partitions are used to build the RBF surrogate
models for the objectives and the constraints. Only a fraction (0 < α < 1) of
the solutions are used to train the surrogate model and the rest are used as the
validation data set. EASDS uses 80% of the solutions in each partition as the
training data and the remaining 20% are used to validate the surrogate models.

If there are very few solutions in a partition (insufficient to build the RBF
surrogate model), no surrogate models are built using that partition. If the pre-
diction error on the validation data set in the partition is more than the user
defined threshold, the surrogate model on that partition is deemed invalid.
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Algorithm 2. Building Spatially Distributed Surrogate Models
Require: A {Archive of actual evaluations}
Require: K {Number of partitions}
Require: m ≥ 2 {Number of objectives}
Require: p ≥ 0 {Number of constraints}
1: A1, . . . , AK = KMeans(A, K)
2: for i = 1 to K do
3: for j = 1 to m do
4: Si,fj = RBF Train(Ai, fj)
5: end for
6: for j = 1 to p do
7: Si,gj = RBF Train(Ai, gj)
8: end for
9: end for

k-Means Clustering Algorithm. A k-Means clustering algorithm [23] is used
to split given data points into k clusters or partitions. The main idea of k-Means
clustering is to define k centroids, one for each cluster, and then assign each data
point to one of the k clusters so as to minimize a measure of dispersion within
the clusters. A very common measure is the sum of squared Euclidean distances
from the centroid of each cluster.

Radial Basis Function Network Surrogate. Radial Basis function networks
belong to the class of Artificial Neural Networks (ANNs) and are a popular choice
for approximating nonlinear functions. A radial basis function (RBF) φ has its
output symmetric around an associated centre μ.

φ(x) = φ(‖x − μ‖)

where the argument of φ is a vector norm. A common RBF is the Gaussian
function with the Euclidean norm.

φ(r) = e−r2/σ2

where σ is the scale or width parameter. A set of RBFs can serve as a basis for
representing a wide class of functions that are expressible as linear combinations
of the chosen RBFs as shown in Eq. 1.

y(x) =
k∑

i=1

wi φ(‖x − μi‖) (1)

Here, k is typically smaller than the number of data points. The coefficients wi

are the unknown parameters that are to be “learned.” The training is usually
achieved via the least squares solution:

w = A+ y (2)

where A+ is the pseudo-inverse and y is the target output vector.
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2.5 Evaluation Using Spatially Distributed Surrogate Models

For accurate prediction of the objectives and the constraints for a new candi-
date solution, a surrogate model with the least prediction error is chosen from
spatially distributed surrogate models. If the new candidate solution is far (us-
ing the Euclidean distance measure) from all the solutions in the archive, it is
evaluated using the actual analysis.

From the archive of solutions, S solutions closest (using the Euclidean norm)
to a new candidate are selected. The values of the objectives and the constraints
of these S points are predicted using each of the surrogate models in the col-
lection. For each of the surrogate models, prediction error (RMSE) is computed
using the actual and the predicted values of the objectives and the constraints.
Surrogate model with the least prediction error is then used to predict the value
at the new candidate solution.

2.6 Reduction

The reduction procedure retains the best individuals from the parent and the
offspring population (elitism). Combined solutions from the parent population
and the offspring population are ranked using the non-dominated sorting and the
crowding distance criterion [24]. M elite solutions (better fitness) are retained for
the next generation from a set of 2M solutions (parent and offspring population).
If there are less than M feasible solutions, then infeasible solutions with smaller
values of maximum constraint violation are retained.

3 Numerical Examples

3.1 Test Problems

The first two constrained test problems are SRN and OSY [25]. The ZDT test
problems [25] are two objective unconstrained problems framed by Zitzler et al
and they are of the form as shown in Eq. 3.

Minimize f1(x),
f2(x) = g(x) h(f1(x), g(x)).

(3)

The description of all the test problems is given in Table 1.

3.2 Experimental Setup

A population size of 100 is used for all the test problems and the algorithm is
run for 101 generations. All the test problems are evaluated using EASDS and
NSGA-II. For EASDS, the surrogate models were retrained every 5 generations
(ITRAIN = 5). The probability of crossover is set to 0.9 and the probability
of mutation is set to 0.1. The Distribution index for crossover is 10 and the
distribution index for mutation is 20. A new solution is added to the archive
if the normalized distance between the new solution and closest solution in the
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Table 1. Test Problems

Problem Dim Objectives & Constraints Bounds

SRN 2
f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2

f2(x) = 9x1 − (x2 − 1)2

x2
1 + x2

2 ≤ 225, x1 − 3x2 + 10 ≤ 0
x ∈ [−20, 20]2

OSY 6

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2]
f2(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

x1 + x2 − 2 ≥ 0, 6 − x1 − x2 ≥ 0,

2 − x2 + x1 ≥ 0, 4 − (x3 − 3)2 − x4 ≥ 0,

2 − x1 + 3x2 ≥ 0, (x5 − 3)2 + x6 − 4 ≥ 0

x1, x2, x6 ∈ [0, 10]
x3, x5 ∈ [1, 5]

x4 ∈ [0, 6]

ZDT1 10
f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 −
�

f1/g

x ∈ [0, 1]10

ZDT2 10
f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 − (f1/g)2
x ∈ [0, 1]10

ZDT3 10
f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 −
�

f1/g − (f1/g) sin(10πf1)
x ∈ [0, 1]10

archive is more than 0.01. If the prediction error (RMSE) of a surrogate over
validation data is less than 20%, then it is considered valid.

To compare the effects of the number of the surrogate models (corresponding
to the number of partitions of the archive), each of the problems was run with
3, 5 and 8 partitions. All the test problems are also run with single surrogate
model.

The same random seed and hence the same initial population is used for both,
EASDS and NSGA-II. Since the number of actual function evaluations in EASDS
are much less than 10100 (100×101), NSGA-II is run for fewer generations (with
similar number of function evaluations) for performance comparison.

4 Results

Shown in Table 2 are the function evaluations used by EASDS for different
number of partitions (K). Traditional evolutionary algorithms with population
size of 100 evolved over 101 generations will result in 10, 100 function evalua-
tions. In EASDS, the population is evaluated using the actual evaluations every
ITRAIN = 5 generations, hence the minimum number of actual evaluations is
2100.

As seen from Table 2, the number of function evaluations for problem OSY
decreases as the number of partitions is increased. This shows that the prediction
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Table 2. Function Evaluations used by EASDS

Function Evaluations
Problem K = 3 K = 5 K = 8

OSY 7139 4111 3620
SRN 2100 2100 2100
ZDT1 2100 2600 2600
ZDT2 2100 2600 2600
ZDT3 2100 2600 2600

accuracy of the surrogate models with K = 3 partitions is poor as compared to
the surrogate models with K = 8 partitions. If all the surrogates models are
invalid (prediction accuracy over the validation data set is more than the user
defined threshold), actual evaluations are used.

The non-dominated solutions for problem OSY obtained by EASDS using 3,
5, and 8 partitions are shows in Fig. 1. It is observed that the non-dominated
solutions of the EASDS with 8 partitions follow the Pareto front much more
accurately than the EASDS with 3 and 5 partitions.

For test problem SRN, the number of function evaluations used are 2100, the
minimum possible. This indicates that EASDS with 3, 5, or 8 partitions is able
to correctly capture the behavior of the function SRN. As seen in Fig. 2, the
non-dominated solutions of EASDS with 3, 5, and 8 partitions are overlapping.
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Fig. 2. Effect of number of partitions on
problem SRN

Test problems ZDT1, ZDT2, and ZDT3 show a different trend in function
evaluations as compared to OSY. The number of function evaluations used by
EASDS increase for 5 and 8 partitions as compared to 3 partitions. This can be
explained by the fact that the surrogate models in the initial few generations
are not very accurate and the actual evaluations are used to evaluate the entire
population. In the earlier generations, there are fewer solutions in the archive
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and those solutions are distributed spatially and split in to multiple partitions to
build the surrogate models. Thus each partition might have insufficient number of
points to capture the correct behavior of the function and the prediction accuracy
is low. As the number of solutions accumulate in the archive, the accuracies of
the surrogate models also increase.

Shown in Fig. 3 are the non-dominated solutions for problem ZDT1 obtained
by EASDS using 3, 5, and 8 partitions and they are overlapping. It shows that
the function ZDT1 is approximated accurately using the surrogate models with
3, 5, and 8 partitions. For the test function ZDT2, the non-dominated solutions
are shown in Fig. 4. The surrogate models with 8 partitions are able to achieve
better spread of the non-dominated solutions on the Pareto front indicating
that surrogate models with 8 partitions have better prediction accuracy than
surrogate models with 3 and 5 partitions.
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Fig. 3. Effect of number of partitions on
problem ZDT1
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Shown in Fig. 5 are the non-dominated solutions for problem ZDT3 obtained
by EASDS using 3, 5, and 8 partitions. It is seen that none of the surrogate
models are able to completely capture the disjoint Pareto front. Surrogate models
with 8 partitions seem to have a better spread than the ones with 5 partitions
which are better than the ones with 3 partitions.

Shown in Fig. 6 are the non-dominated solutions for problem OSY obtained
by EASDS using 8 partitions (EASDS), single global surrogate model (SGS)
and NSGA-II with the same number of function evaluations. The performance
of EASDS is better at capturing the Pareto front.

The non-dominated solutions obtained for the problem SRN by EASDS, SGS,
and NSGA-II are shown in Fig. 7. Even a single global surrogate is able to capture
the behavior of the function adequately and the non-dominated solutions overlap.

The benefit of the spatially distributed surrogate models can be seen from the
results of ZDT1, ZDT2, and ZDT3 which are 10-D functions. It can be seen from
Figs. 8, 9, and 10 that EASDS captures the Pareto front better than NSGA-II
and single global surrogate model (SGS).
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5 Summary and Conclusions

In this paper an evolutionary algorithm with spatially distributed surrogates
(EASDS) for multiobjective optimization is presented. This approach is an al-
ternative to recent surrogate ensemble proposals, where either multiple types of
global surrogates are used or multiple number of same type of surrogates are
used for better approximation. EASDS is compared with the non-dominated
sorting algorithm (NSGA-II) and single global surrogate model on a set of test
functions. Different number of partitions (3, 5, and 8) are used to build the
surrogate models and corresponding performance is compared.

It is seen from Figs. 1 - 5 that the surrogate models with more partitions
perform better. With more partitions the function behavior is captured better
by splitting the design space in multiple regions and approximating each region
locally. But as the number of partitions is increased, more number of evalua-
tions are required to populate each partition sufficiently (to be able to correctly
capture the behavior of the function locally in the partition). With the compu-
tational budget of 1200 evaluations EASDS is able to capture the behavior of
10-D optimization problem with up to 8 partitions. For a smaller computational
budget or higher dimensional problem, one may need to use more conservative
number of partitions.

Compared to the single global surrogate model and NSGA-II, EASDS per-
forms much better indicating the benefits of the local surrogates built over
smaller regions. Effectiveness of EASDS at capturing the Pareto front and the
spread of solutions along the Pareto front is clearly seen from Figs. 6, 8, and 9.
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