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Preface

The field of artificial life (Alife) is a rapidly emerging area that draws on ex-
pertise from computer science, biology, psychology, to name a few. In essence it
is the study of systems related to life, its processes and evolution. These sys-
tems commonly use computer model simulations. The past decade has seen an
increasing stream of scientific articles devoted to the exploration of Alife.

The Australian Conference on Artificial Life (ACAL) series is a testament
to the above. It is a biannual event that originated in 2001 as the “Inaugral
Workshop on Artificial Life” as part of the 14th Joint Conference on Artificial
Intelligence. ACAL 2007 received 70 quality submissions of which 34 were ac-
cepted for oral presentation in the conference. Each paper was peer reviewed
by two or three members of the Program Committee. Apart from Australian
researchers, the conference attracted participants from a number of countries
across Europe, America, Asia-Pacific and Africa.

ACAL 2007 was fortunate to have four distinguished speakers in Alife to
address the conference. They were David Abramson (Monash University), Ken-
neth A. De Jong (George Mason University), K.C. Tan (National University of
Singapore) and Rodney Walker (Queensland University of Technology).

The organizers wish to thank a number of people and institutions for their
support of this event and publication. Importantly we would like to acknowledge
the effort and contributions of the Program Committee members and advisory
board. Our sponsors were: The Australian Computer Society, the ARC Complex
Open Systems Research Network, Bond University, The University of New South
Wales (Australian Defence Force Academy), University of Canberra, Australian
National University and the Gold Coast City Council. Their financial and in-
kind support ensured the costs were minimized for attendees. Finally, the editors
must pay tribute to the team at Springer.

We hope to repeat the success of ACAL 2007 with ACAL 2009. The venue
of this event will be announced in 2008.

December 2007 Marcus Randall
Hussein A. Abbass

Janet Wiles
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Alternative Solution Representations for the Job

Shop Scheduling Problem in Ant Colony
Optimisation

James Montgomery

Complex Intelligent Systems Laboratory
Centre for Information Technology Research

Faculty of Information & Communication Technologies
Swinburne University of Technology

Melbourne, Australia
jmontgomery@ict.swin.edu.au

Abstract. Ant colony optimisation (ACO), a constructive metaheuris-
tic inspired by the foraging behaviour of ants, has frequently been applied
to shop scheduling problems such as the job shop, in which a collection of
operations (grouped into jobs) must be scheduled for processing on dif-
ferent machines. In typical ACO applications solutions are generated by
constructing a permutation of the operations, from which a determinis-
tic algorithm can generate the actual schedule. An alternative approach
is to assign each machine one of a number of alternative dispatching
rules to determine its individual processing order. This representation
creates a substantially smaller search space biased towards good so-
lutions. A previous study compared the two alternatives applied to a
complex real-world instance and found that the new approach produced
better solutions more quickly than the original. This paper considers its
application to a wider set of standard benchmark job shop instances.
More detailed analysis of the resultant search space reveals that, while
it focuses on a smaller region of good solutions, it also excludes the
optimal solution. Nevertheless, comparison of the performance of ACO
algorithms using the different solution representations shows that, using
this solution space, ACO can find better solutions than with the typical
representation. Hence, it may offer a promising alternative for quickly
generating good solutions to seed a local search procedure which can
take those solutions to optimality.

Keywords: Ant colony optimisation, job shop scheduling, solution rep-
resentation.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic, inspired by the
foraging behaviour of ant colonies, that produces a number of solutions over
successive iterations of solution construction. During each iteration, a number of
artificial ants build solutions by probabilistically selecting from problem-specific

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J. Montgomery

solution components, influenced by a parameterised model of solutions (called
a pheromone model in reference to ant trail pheromones). The parameters of
this model are updated at the end of each iteration using the solutions produced
so that, over time, the algorithm learns which solution components should be
combined to produce the best solutions. When adapting ACO to suit a problem
an algorithm designer must first decide how solutions are to be represented and
built (i.e., what base components are to be combined to form solutions) and then
what characteristics of the chosen representation are to be modelled.

Shop scheduling problems consist of a number of jobs, made up of a set of
operations, each of which must be scheduled for processing on one of a number
of machines. Precedence constraints are imposed on the operations of each job.
The majority of ACO algorithms for these problems represent solutions as per-
mutations of the operations to be scheduled (operations are the base components
of solutions), which determines the relative order of operations that require the
same machine (see, e.g., [1,2,3,4]). A deterministic algorithm can then produce
the best possible schedule given the precedence constraints established by the
permutation. This approach is more generally referred to as the list scheduler
algorithm [2].

An alternative approach is to assign different heuristics to each machine which
determine the relative processing order of operations, thereby searching the re-
duced space of schedules that can be produced by different combinations of the
heuristics. Building solutions in this manner may offer an advantage by concen-
trating the search on heuristically good solutions. A previous study compared
these two solution representations in ACO algorithms for a real-world job shop
scheduling problem (JSP) with staggered release and due dates modelled using
fuzzy sets [5]. Applied to that single real-world instance the alternative approach
performed extremely well, finding better solutions than the list scheduler ACO
in considerably less time. An open question was whether the same relative per-
formance would be observed on other, benchmark JSP instances.

This paper examines, in greater detail than in [5], the search space produced
by the alternative solution representation when applied to a number of com-
monly used benchmark JSP instances (Section 4). An empirical comparison is
subsequently made of ACO algorithms using the typical and alternative solution
construction approaches (Sections 5–6). Section 7 describes the implications of
the results for the future application of ACO to such problems. A formal descrip-
tion of the JSP and further details of the typical solution construction approach
are given first.

2 Job Shop Scheduling

The JSP examined in this study is of the n × m form, with a set of n jobs
J1, . . . , Jn and m machines M1, . . . , Mm. Each job consists of a predetermined
sequence of m operations, each of which requires one of the m machines. Only
one operation from a job may be processed at any given time, only one operation
may use a machine at any given time and operations may not be pre-empted.
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Table 1. JSP instances used in this study

Instance Best known n m

abz5 1234 10 10
abz6 943 10 10
abz7 656 20 15
abz8 669 20 15
abz9 679 20 15
ft10 930 10 10
ft20 1165 20 5
la21 1046 15 10
la24 935 15 10
la25 977 15 10
la27 1235 20 10
la29 1152 20 10
la38 1196 15 15
la40 1222 15 15
orb08 899 10 10
orb09 934 10 10

The objective is to schedule operations for processing on machines such that the
total time to complete all jobs, the makespan, is minimised. The makespan of a
solution s is denoted Cmax(s).

Table 1 describes the instances used in this study to compare the alternative
solution representations. They are commonly used benchmarks in the ACO and
wider operations research literature and are all available from the OR-Library [6].

3 Typical Solution Construction for the JSP

To generate a solution to the JSP it is sufficient to determine the relative process-
ing order of operations that require the same machine. A deterministic algorithm
can then produce the best possible schedule given those constraints. Indeed, it
is common in ACO applications for the JSP and other related scheduling prob-
lems to generate a permutation of the operations, which implicitly determines
this relative order (e.g., [1,2,3,4,7]). These algorithms are restricted to creating
permutations that respect the required processing order of operations within
each job, which can consequently be called feasible permutations.

Different approaches to constructing solutions produce different search spaces.
The space of feasible permutations of operations for a JSP is very large (a weak
upper bound is O(k!), where k = n · m is the number of operations) and is cer-
tainly much larger than the space of feasible schedules [8]. This space also has a
slight bias towards good solutions, which can be exploited by some pheromone
models and proves disastrous for others. Another notable feature of this search
space is that while all solutions can be reached, solutions (schedules) are repre-
sented by differing numbers of permutations. These issues are discussed in some
detail by Montgomery, Randall and Hendtlass [8,9].
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4 Search Space Created by Dispatching Rules

An alternative approach to building solutions is to assign different dispatching
rules (i.e., ordering heuristics) to each machine, which subsequently build the
actual schedule. The search space then becomes the space of all possible com-
binations of rules assigned to machines, which is O(|D|m) where D is the set
of rules and m the number of machines. Given a small number of dispatching
rules this search space will correspond to a subset of the space of all feasi-
ble schedules. Further, given that dispatching rules are chosen with the aim of
minimising the makespan or number of tardy jobs, this is probably the case
even for large sets of rules. However, if the dispatching rules individually per-
form well it is expected that this reduced space largely consists of good quality
schedules.

Clearly, such an approach is inappropriate for single machine scheduling prob-
lems or problems in which too few criteria are available to heuristically determine
the processing order of competing operations, as in either situation the search
space is reduced by too great an amount. It is, however, entirely appropriate for
problems with multiple machines and various criteria upon which to judge com-
peting operations. This study examines its application to a number of common
benchmark JSPs using four dispatching rules. The remainder of this section
examines whether, for these instances using these four rules, the approach is
appropriate.

The four rules used in this study are Earliest Starting Time (EST), Shortest
Processing Time (SPT), Longest Processing Time (LPT) and Longest Remain-
ing Processing Time (LRPT). SPT and LPT relate to an individual operation’s
processing time while LRPT refers to the remaining processing time of a candi-
date operation’s containing job. EST is perhaps the simplest heuristic, choosing
the operation that can start the soonest, with ties broken randomly. Note that
the three other rules are not followed blindly: the earliest available operation is
always chosen except when there are two or more such operations, in which case
the rule determines which is given preference.

For small instances and a set of four rules it is possible to completely enumer-
ate the set of assignment solutions.1 This was performed for the test instances
with up to 200 operations to discover the distribution of the cost of schedules
described. The distributions for the larger instances were estimated by sampling
4×106 randomly generated solutions. Note that as the EST rule breaks ties ran-
domly, there is some degree of error in the lower and upper bounds presented,
although it is likely the distributions described here are good approximations of
the true distributions. Fig. 1 presents box-plots of the distributions discovered,
expressed in terms of the relative percentage deviation (RPD) from the best
known cost, defined as

1 Although complete enumeration of the search space obviates the need for a meta-
heuristic, on any moderate-sized instance or as the number of rules grows it quickly
becomes impractical.
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RPD =
Cmax(s) − Cmax(s∗)

Cmax(s∗)
· 100 (1)

where s is a solution and s∗ is the best known solution.
The most striking feature of the distributions is that they do not include the

optimum. Additionally, tests with a smaller number of rules found that many
unique assignment solutions generate the same schedule, as was anticipated.2

Nevertheless, it is still possible that the assignment approach does focus on a
good region of the space of schedules, and thus may present a good starting
point for the subsequent application of a local search algorithm. As the worst
cost is not known for these instances it cannot be proved that these distributions
are biased towards good solutions. However, examination of the cost distribution
of schedules produced by randomly generated feasible permutations lends some
support to that conjecture. Fig. 2 presents box-plots for the cost distributions for
4×106 randomly generated feasible permutations. Notably, the minima of those
distributions are in most cases above the median of those for assignment solutions
while the body of those distributions typically lies above the maximum of that
for assignment solutions. Of course, sample distributions for the permutation
approach do not represent the full space of solutions that can be represented
by permutations and indeed an ACO algorithm constructing permutations can
improve on the minima of those randomly generated samples (see Section 6 for
such results).

Table 2 summarises the characteristics of the search spaces created by the
alternative construction approaches. With respect to search space size, the space
of assignments of rules to machines (for four rules) for the instances studied is
hundreds of orders of magnitude smaller than the upper bound on the space of
feasible permutations.

Clearly, the two alternative approaches offer a mixture of advantages and
disadvantages to any heuristic that uses them. The likelihood that, across a
wider range of instances, the dispatching rules approach excludes the optimal
certainly impacts on its utility. However, a previous comparative study of ACO
algorithms using both approaches applied to a large, complex JSP instance found
that the approach outperformed an ACO algorithm that constructs permutations
in terms of both solution quality and computation time [5].3

Nevertheless, in a practical application of the approach, a local search com-
ponent is required if the schedules described by dispatching rules are to be fully
optimised. Furthermore, the local search cannot operate on the assignments di-
rectly, as that space does not contain the optimum. The next section compares
ACO algorithms using both solution construction approaches. To avoid the con-
founding effects of an integrated local search procedure, local search has not
been included in the algorithms compared in this paper.

2 Determining the number of distinct solutions was impractical with four rules.
3 The number of construction steps per solution in ACO for the JSP is n · m when

constructing permutations but only m when assigning dispatching rules.
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Table 2. Comparison of permutation and dispatching rules search spaces. k is number
of operations, D is set of dispatching rules, m is number of machines. Typically |D| <
m < k. Notes: # this result is true for the rules and instances used in this study.

Solution approach
Search space feature permutation dispatching rules

Size � O(k!) O(|D|m)
Includes optimal solution yes no#

Solution representation bias yes yes
Biased towards good solutions yes, but not yes

practically so [8,9]

5 Comparison ACO Algorithm Details

Two ACO algorithms were developed based on the MAX − MIN Ant Sys-
tem (MMAS), which has been found to work well in practice [10]. The first
of these, denoted MMAS-P, constructs solutions as permutations of the oper-
ations, while the second, denoted MMAS-R, assigns dispatching rules to ma-
chines. The set of dispatching rules D consists of the four rules described in
Section 4. Although local search is considered an integral part of state-of-the-art
ACO applications [11,12], in order to observe the differences between the two
approaches, local search is not incorporated into either.

The two solution representations require different pheromone models. The
models chosen have been found to produce the best performance for their re-
spective solution representations [9]. For MMAS-P, a pheromone value, denoted
τ(oi, oj),4 exists for each directed pair of operations that use the same machine,
and represents the learned utility of operation oi preceding operation oj [13].
There may be several such precedence relations affected by the selection of a
single operation. During solution construction, the set of unscheduled opera-
tions that require the same machine as a candidate operation o is denoted by
Orel

o . Blum and Sampels [13] recommend taking the minimum of the relevant
pheromone values. This approach, like many ACO algorithms, benefits from the
incorporation of heuristic information in the construction decision, by conven-
tion denoted η. While any dispatching rule could conceivably be used for this
purpose, Blum and Sampels [2] have found that the EST rule works well on a
range of instances. Accordingly,

η(o) =
1

tes(o, sp)
(2)

where tes(o, sp) is the earliest time operation o could start given the current
partial solution sp. Combining this measure with the pheromone information, at

4 τ is historically used in ACO due to the pheromone model’s inspiration in ant trail
pheromones.
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each step of solution construction, the probability of selecting an operation o to
add to the partial permutation p is given by

P (o, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
minor∈Orel

o
τ(o, or)

)
· η(o)

∑
o′ �∈p

(
minor∈Orel

o′
τ(o′, or)

)
· η(o′)

if o �∈ p and |Orel
o | > 0

1 if o �∈ p and |Orel
o | = 0

0 otherwise.

(3)

Note that the second branch is required so that the last operation on each
machine is scheduled immediately, as there is no meaningful pheromone value
that can be used.

For MMAS-R, a pheromone value τ(Mk, d) is associated with each combi-
nation of machine and dispatching rule (Mk, d) ∈ M × D, where M is the set
of machines. At each step of solution construction, a machine is assigned a dis-
patching rule. Although the order in which assignments are made is significant
in problems where certain items may only be assigned a limited number of times
(e.g., in the generalised assignment problem [14]), here there is no limit to the
number of times a rule can be used, so the assignment order is immaterial [5].
The probability of assigning a dispatching rule d ∈ D to machine Mk is given by

P (Mk, d) =
τ(Mk, d)

∑
d′∈D\{d} τ(Mk, d′)

. (4)

Pheromone values are updated the same way in both algorithms, with each
value τ (corresponding to some value from either model) updated according to

τ ← (ρ − 1)τ + ρ · Δτ (5)

where ρ is the pheromone evaporation rate and Δτ is the amount of reinforce-
ment given to a particular pheromone value determined by

Δτ =

⎧
⎨

⎩

1
Cmax(s)

if τ is part of iteration best solution

0 otherwise
(6)

where Cmax(s) is the makespan of the solution s. Pheromone values are bounded
by [τmin, τmax], the values of which are controlled using the value of the current
best solution and size of the pheromone update in accordance with the rules
defined by Stützle and Hoos [10].

6 Computational Results

The performance of the algorithms was compared on the benchmark instances
described in Table 1. The algorithms were implemented in the C language and
executed under Linux on a 3.2GHz Xeon processor. Each run used 100 ants
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Table 3. Minimum, median, maximum and interquartile range (IQR) of solution cost
(in RPD) for MMAS-P and MMAS-R. The last column shows the estimated best
possible RPD in the space of dispatching rules used in this study. Bold values indicate
the smaller value for that measure and that instance between MMAS-P and MMAS-
R. M-W test indicates the direction of the difference between the distributions of RPD
scores if the difference is statistically significant for α ≤ 0.05.

MMAS-P M-W MMAS-R lower
Instance min med max IQR test min med max IQR bound

abz5 2.6 4.3 6.3 1.2 < 5.3 5.3 5.3 0.0 5.3
abz6 0.4 2.4 4.0 1.8 < 7.1 7.1 7.3 0.0 7.1
ft10 8.6 13.5 14.8 2.5 < 11.7 15.6 15.6 0.4 11.7
ft20 12.8 17.5 24.8 8.3 > 5.9 7.1 8.2 0.6 5.8
orb08 9.7 19.6 21.9 6.5 14.9 18.0 18.4 0.3 14.9
orb09 1.5 6.3 9.3 3.6 < 6.1 9.2 12.0 3.5 6.1
la21 7.0 9.2 11.6 2.3 7.8 9.3 10.7 1.6 7.6
la24 7.6 10.0 12.7 2.8 9.5 9.5 9.5 0.0 9.5
la25 8.2 12.3 13.8 4.5 12.5 13.1 13.3 0.4 11.2
la27 11.3 14.0 18.0 3.4 > 8.3 10.1 10.9 1.5 8.3
la29 15.5 16.8 20.0 1.0 > 15.6 16.1 16.2 0.4 15.1
la38 12.7 14.7 17.1 2.3 < 16.6 18.4 19.7 2.6 15.7
la40 6.5 8.1 10.1 1.7 < 7.4 9.0 10.4 2.0 7.4
abz7 12.2 14.1 19.1 2.7 > 10.1 10.9 11.7 0.9 9.9
abz8 14.1 16.2 19.1 3.4 > 12.1 12.6 15.2 1.4 12.1
abz9 18.3 20.3 27.5 2.0 > 13.8 15.5 16.9 1.9 13.8

and executed 500 iterations of solution construction. The MMAS pheromone
decay control parameter ρ = 0.1. These settings were found to produce the best
performance in both algorithms. Each algorithm and instance combination was
executed across 10 random seeds.

6.1 Makespan

Table 3 describes, for each instance, the distributions of best solution cost (ex-
pressed in RPD) for MMAS-P and MMAS-R found across multiple runs of
each algorithm. The instances appear in non-decreasing order of number of oper-
ations. Bold values indicate the smaller result within that instance and measure
(min, median, max or interquartile range (IQR)) between the alternative al-
gorithms. Although smaller values for IQR are not necessarily an indicator of
better performance, they do indicate more consistent performance. To give an
indication of the performance of MMAS-R in exploring the space of assign-
ments of dispatching rules, the last column gives the estimated lower bound on
solution cost for each instance. Mann-Whitney tests were used to compare the
distributions within each instance. Where those tests indicated a statistically
significant result (at or below the 5% level), the central column indicates the
direction of the difference (i.e., < means MMAS-P outperformed MMAS-R
while > indicates the opposite).
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Table 4. Median CPU time in seconds used to complete 500 iterations and until best
solution found, and iteration when best solution found, for MMAS-P and MMAS-R

Mean CPU time (s) Iteration when
Instance total best solution best found

MMAS-P MMAS-R MMAS-P MMAS-R MMAS-P MMAS-R

abz5 23.7 3.1 2.7 0.1 58 11
abz6 23.7 2.9 2.5 0.7 52 124
ft10 23.5 2.9 5.3 0.1 113 17
ft20 46.4 3.7 17.5 1.7 189 238
orb08 22.9 2.9 4.6 0.6 100 102
orb09 23.6 3.1 4.7 2.0 100 324
la21 63.6 5.3 28.6 0.6 225 53
la24 63.3 5.2 19.6 0.3 155 31
la25 63.6 5.0 19.0 0.3 150 25
la27 130.6 8.1 58.9 1.9 226 114
la29 130.8 7.7 54.0 0.5 206 30
la38 118.3 8.4 32.2 0.6 136 35
la40 117.9 8.8 40.0 0.9 170 49
abz7 247.2 12.8 71.1 1.5 144 59
abz8 247.6 12.9 71.1 2.0 144 78
abz9 246.5 12.8 118.1 1.2 240 49

Based on these results, neither algorithm is clearly better than the other
across all instances studied. The apparently aberrant statistical result for the
la29 instance is because, even though MMAS-P found a better solution on
one of its runs, MMAS-R produced solutions of similar cost more consistently.
Considering just those instances where statistically significant differences were
found there is an apparent trend showing better performance from MMAS-R on
larger instances, although this may be an effect of the actual instances used. In
several cases MMAS-R was able to locate assignment solutions at the estimated
(for large instances) lower bound for the space it searches. Notably, it appears
that, in the absence of a local search procedure, the traditional construction
approach is unable to find the optimal solution even though it exists in the
space of solutions it searches. Thus both algorithms require local search in order
to find optimal solutions.

6.2 CPU Time

Table 4 summarises the median computation time required to complete 500
iterations and until the best solution was found, as well as the iteration in which
the best solution was found. As predicted, MMAS-R is significantly faster than
MMAS-P due to the difference in the number of required construction steps
each iteration—as the number of operations grows the ratio between MMAS-
P’s and MMAS-R’s runtimes approaches the number of jobs n. MMAS-R also
frequently locates its best solution after fewer iterations than MMAS-P. The
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faster execution of MMAS-R commends it as a good alternative for integration
with a potentially computationally intensive local search, and would also allow
for a greater number of separate runs of the algorithm to be performed than
MMAS-P given the same amount of time.

7 Conclusions

Typical ACO algorithms for shop scheduling problems such as the JSP build
solutions as permutations of the operations to be scheduled, from which ac-
tual schedules are generated deterministically. An alternative approach when
the problem has multiple machines and various criteria upon which to judge the
urgency of competing operations is to assign different dispatching rules to each
machine. The chosen dispatching rules are then responsible for determining the
relative processing order of operations on each machine.

This paper examined the solution space produced by the space of dispatching
rule assignments on a number of commonly studied benchmark JSP instances.
Crucially, when using the four dispatching rules examined in this paper, that
space does not contain the optimal solution. Given that dispatching rules are
themselves simple heuristics, it is plausible that even with a vastly expanded
range of rules the optimal solution may still be out of reach. Consequently, any
real-world application employing this solution representation not only requires a
local search component, but that local search must work directly on the schedules
described by the dispatching rules and not the pattern of assignments.

Despite this severe drawback to the alternative solution representation, it
does appear to concentrate the search on promising areas of the solution space
and, in a constructive algorithm such as ACO, leads to a dramatic reduction
in required computation. A comparison of ACO algorithms employing both the
traditional solution representation and the alternative show a mixture of results,
with neither algorithm clearly outperforming the other across the test instances.
However, a slight trend for better performance from the new approach on the
larger instances, coupled with its reduced computation times, suggest that it is a
good candidate for seeding a local search procedure. As there is an unavoidable
interaction between ACO and the local search procedure it uses (as the locally
optimised solutions are used to update pheromone information), future work
could examine the relative performance of the two approaches when local search
is incorporated.
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Abstract. An inherent assumption in many search techniques is that informa-
tion from existing solution(s) can help guide the search process to find better 
solutions. For example, memetic algorithms can use information from existing 
local optima to effectively explore a globally convex search space, and genetic 
algorithms assemble new solution candidates from existing solution compo-
nents. At the extreme, the quality of a random solution may even be used to 
identify promising areas of the search space to explore. The best of several ran-
dom solutions can be viewed as a “smart” start point for a greedy search tech-
nique, and the benefits of “smart” start points are demonstrated on several 
benchmark and real-world optimization problems. Although limitations exist, 
“smart” start points are most likely to be useful on continuous domain problems 
that have expensive solution evaluations. 

Keywords: Heuristic Search, Fitness Landscapes, Coarse Search-Greedy Search. 

1   Introduction 

The easiest way to improve the performance of a greedy search technique is to run it 
several times and return the best solution. Effectively, this procedure leads to a ran-
dom search in the (sub)space of local optima. Memetic algorithms can perform “a 
special kind of … search over the subspace of local optima” [14] that can be particu-
larly effective in globally convex search spaces [2, 6, 13]. However, if the number of 
local optima that can be generated is extremely small, then the population required by 
a memetic algorithm may not be possible. 

The cost of finding local optima can be extremely high in certain real-world prob-
lems where solutions are evaluated by using a complex simulation (e.g. designing 
phased array ultrasonic transducers [4]). In these search spaces, it may be beneficial to 
use a coarse search technique to find and select the start points that will be used to 
seed a greedy search technique. Since the greedy search technique will optimize the 



14 S. Chen, K. Miura, and S. Razzaqi 

 

best preliminary solutions found by the coarse search process, there is an implicit as-
sumption in coarse search-greedy search that the quality of the local optima are di-
rectly related to the quality of the initial (partially optimized) solutions. 

The coarsest coarse search technique is random search. The use of random search 
as the coarse search technique also takes the relationship between start points and end 
points to an extreme – is there a relationship between the fitness of a random start 
point and the quality of its (nearby) local optima? On certain problems like the  
Travelling Salesman Problem (TSP), there is no such relationship. However, this rela-
tionship has been found (and exploited) on several benchmark and real-world optimi-
zation problems with continuous domains. 

Start points found by random search are called “smart” start points (because they 
are better than random). When a relationship exists between the quality of a random 
start point and the quality of its local optimum, “smart” start points can be used to im-
prove the performance of a greedy search technique. Conversely, “smart” start points 
provide no benefit to the performance of a greedy search technique on a problem like 
the TSP where there is no relationship between the quality of a random start tour and 
a (random) two-opt solution.  

The benefits of “smart” start points clearly depend on many characteristics of the 
search space and the greedy search technique. For example, a problem on which the 
search technique can always find the globally optimal solution will not need “smart” 
start points. Conversely, a search technique that finds the nearest local optimum in a 
highly multi-modal search space will definitely benefit from having a better starting 
point. If many starting points can be explored, population-based search strategies like 
memetic algorithms are likely to be quite effective. However, if the number of starting 
points that can be explored is limited, then coarse search-greedy search may be more 
effective, and it is thus useful to understand the role of “smart” start points. 

To prepare the context for “smart” start points, a brief review of related search 
techniques is presented in section 2. Section 3 focuses on the Travelling Salesman 
Problem where the use of “smart” start points provides no advantage over random 
tours. Sections 4 and 5 present results for benchmark optimization problems in the 
continuous domain, and section 6 demonstrates that these results can be meaningfully 
exploited on a real-world problem. A discussion of these results follows in section 7 
before the conclusions in section 8. 

2   Background 

There have been many attempts to improve the performance of greedy search tech-
niques by combining them with other (coarser) search techniques that “intelligently” 
select the start point(s) to be optimized. For example, simulated annealing can be 
viewed as performing a coarse search at higher temperatures for the start point that 
will eventually be optimized at lower temperatures [3]. Similarly, WoSP [8] can use a 
“higher energy” particle swarm (PSO) [10] (that does not converge fully) to find the 
start points for a separate greedy search technique.  

The subspace of local optima can also be searched by using memetic algorithms. In 
a globally convex search space where the best locally optimal solutions share many 
similarities [2], a good start solution can be characterized as a solution that has many 
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features in common with existing local optima. Start solutions with these characteris-
tics can be created by using crossover operators (e.g. [6,14]).  

The fundamental requirement for all of the above search techniques is time – time 
for an adequate cooling schedule, time for the particle swarm to (partially) converge, 
or time to generate a large population of local optima. Greedy heuristics frequently 
result from the need for time-compressed decisions. Fast computing has created an 
abundance of computational time (to employ more thorough search techniques) for 
many optimization problems. However, fast computing has also created the opportu-
nity to optimize new problems that previously could not even be modelled. 

In optimization problems where the computational cost of modelling and/or simu-
lating a single solution is exceptionally high, there is still the need for highly efficient 
search techniques. If the number of local optima that can be generated is too small to 
create a viable population, then memetic algorithms will not be feasible. If the time 
constraints are satisfied by using rapid cooling schedules or coarser PSOs, then a rela-
tionship between the quality of a (somewhat) random solution and the quality of its 
corresponding local optimum will still be required. Therefore, there is value in know-
ing at the extreme if there is a relationship between the quality of a random solution 
and the quality of its (nearby) local optima.  

3   TSP Data 

In the Travelling Salesman Problem (TSP), the goal is to minimize the cost of visiting 
every city exactly once before returning home. Each solution of a TSP is a Hamilto-
nian cycle, so every (random) solution can be turned into the optimal solution through 
a finite series of two-opt swaps. It is proposed that it may be possible for any typical 
random solution (which has an average of one edge in common with the optimal solu-
tion) to be transformed into the optimal solution through a series of two-opt swaps 
that decreases the length of the tour after each swap. It could then be similarly possi-
ble to transform the same random solution into any other two-opt optimum through a 
(different) series of two-opt swaps that also decreases the length with each swap. 

If each (typical) random solution can become any local optimum, then there should 
be no relationship between the quality (where higher quality means a shorter length) 
of a random TSP solution and a (random) two-opt solution that is generated from it. 
In the following experiment, 120 random solutions are generated for each of the 15 
Euclidean TSP instances from TSPLIB that has between 1000 and 2000 cities. 
Random two-opt swaps are then applied, and any swap that increases the length is  
rejected and any swap that reduces the length is accepted. The quality of the final 
two-opt solutions is then compared for the 30 best and 30 worst random start tours. 

For each set of 120 random solutions, the quality of the 30 best and 30 worst ran-
dom solutions is shown in Table 1. Due to the clear separation between each set of 
best and worst solutions, the applied t-test easily shows that the best start solutions are 
indeed significantly better. However, there is no significant difference (to the one in 
twenty level) between the quality of two-opt solutions that are subsequently generated 
from the best and the worst random start solutions (see Table 2). In fact, the two-opt 
solutions generated from the worst initial tours are slightly better on 8 of the 15 TSP 
instances. 
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Table 1. Average (avg.) percent above known optimum and standard deviation (std. dev.) for 
the 30 best and 30 worst of 120 random TSP solutions. The two-tailed, homescedastic t-test 
(used for all experiments) confirms the clear separation of the two data sets. 

Best Worst Instance 
avg. std. dev. avg. std. dev. 

t-test 

pr1002 2078% 22% 2178% 26% 0.0% 
u1060 2434% 16% 2544% 24% 0.0% 
vm1084 3402% 24% 3518% 21% 0.0% 
pcb1173 2039% 12% 2127% 14% 0.0% 
d1291 2898% 18% 3017% 23% 0.0% 
rl1304 3500% 28% 3627% 21% 0.0% 
rl1323 3444% 17% 3548% 25% 0.0% 
nrw1379 2004% 12% 2091% 13% 0.0% 
fl1400 7710% 94% 8052% 65% 0.0% 
u1432 2055% 13% 2128% 10% 0.0% 
fl1577 5211% 38% 5408% 41% 0.0% 
d1655 2962% 23% 3057% 16% 0.0% 
vm1748 4244% 27% 4380% 29% 0.0% 
u1817 3122% 16% 3216% 13% 0.0% 
rl1889 4463% 26% 4575% 20% 0.0% 

Table 2. Data (similar to Table 1) for the two-opt solutions generated from the 30 best and 30 
worst random start solutions. Values in bold represent an (insignificant) inverse relationship. 

Best Worst Instance 
avg. std. dev. avg. std. dev. 

t-test 

pr1002 13.1% 1.1% 12.7% 1.0% 20.2% 
u1060 12.7% 1.1% 12.8% 1.4% 71.7% 
vm1084 12.4% 1.6% 13.0% 1.4% 12.7% 
pcb1173 14.1% 1.0% 14.3% 1.2% 66.3% 
d1291 16.9% 2.0% 16.8% 1.9% 76.0% 
rl1304 15.0% 1.9% 15.2% 2.1% 82.2% 
rl1323 14.5% 1.6% 14.2% 1.9% 59.2% 
nrw1379 12.5% 0.9% 12.3% 0.8% 39.4% 
fl1400 8.7% 1.7% 8.9% 2.1% 67.2% 
u1432 14.1% 0.8% 14.1% 1.0% 94.2% 
fl1577 14.4% 2.5% 13.4% 2.4% 13.0% 
d1655 15.6% 1.3% 15.3% 1.4% 36.8% 
vm1748 13.1% 1.0% 12.6% 1.3% 7.8% 
u1817 17.9% 1.2% 18.1% 1.1% 45.1% 
rl1889 14.9% 1.4% 14.8% 1.4% 78.3% 

 
On the TSP, there is no relationship between the quality of a random start tour and 

the quality of a random two-opt solution that is generated from it. Therefore, there is 
no expectation that “smart’ start points will help two-opt find better final solutions 
than random start tours. This expectation is confirmed by the following experiment in 
which 50 random tours are generated, the four best are optimized by two-opt, and the 
best solution found from these “smart” start points is compared against the best of 
four random two-opt solutions (e.g. the 1st, 31st, 61st, and 91st random two-opt solu-
tions generated for the previous experiments). In Table 3, it can be seen that there is 
no significant difference between using random tours and “smart” start points, and 
that the “smart” start points even lead to slightly worse final solutions on 11 of the 15 
TSP instances. 
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Table 3. Data (similar to Table 1) for the best of four random two-opt solutions and the 
solutions found with “smart” start points. Values in bold help confirm that “smart” start points 
provide no benefit on the TSP. 

“Smart” Start Points Four Random Tours Instance 
avg. std. dev. avg. std. dev. 

t-test 

pr1002 11.6% 0.8% 11.5% 1.0% 48.5% 
u1060 11.6% 0.8% 11.5% 0.9% 42.6% 
vm1084 11.4% 0.8% 10.9% 1.1% 6.9% 
pcb1173 13.0% 0.6% 13.0% 0.7% 82.0% 
d1291 15.2% 1.4% 15.0% 1.4% 49.7% 
rl1304 12.7% 1.6% 12.9% 1.6% 60.9% 
rl1323 12.3% 1.3% 12.4% 1.1% 69.2% 
nrw1379 11.7% 0.5% 11.6% 0.5% 77.6% 
fl1400 6.2% 1.0% 6.6% 0.8% 6.0% 
u1432 13.3% 0.5% 13.4% 0.5% 66.7% 
fl1577 10.8% 1.9% 10.5% 1.6% 44.5% 
d1655 14.5% 0.9% 14.1% 0.8% 5.7% 
vm1748 11.7% 0.8% 11.6% 0.9% 61.7% 
u1817 16.9% 0.9% 16.6% 1.2% 26.3% 
rl1889 13.1% 1.0% 13.0% 0.9% 60.9% 

4   Introductory Data 

The relationship between the quality of starting points and their associated local op-
tima is expected to be higher for optimization problems with continuous domains. In 
particular, it is possible to map any (non-maximal) start point to a single local opti-
mum in a one-dimensional problem (see Figure 1). In higher dimensions, it may be 
possible to reach multiple optima with a contour-following greedy algorithm, but it is 
unlikely that the entire search space will be reachable from any (typical) random start 
point. Thus, a random start point “maps” to a set of possible local optima, and the 
quality of the random start point can be meaningfully related to the quality of the local 
optima that a greedy search technique can reach from it. 
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The sample function (1) is shown in Figure 1. From a given start point, contour fol-
lowing (or calculation) will lead to the nearest local optimum. Similar to the TSP data, 
the results shown in Table 4 compare the 30 best and 30 worst of 120 random points. 
The strong correlation between the quality of the start and end points is easily exploited 
by the “smart” start points to improve upon the performance of random start points. 

5    Benchmark Data 

The sample function in Figure 1 represents a trivial and highly idealized (globally 
convex) search space with smooth local optima wells of similar size. Since the outer 
local minima are worse solutions than the local maxima solutions that can lead to the 
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Fig. 1. Profile of sample function 

Table 4. Average (avg.) and standard deviation (std. dev.) for the 30 best and 30 worst of 120 
random points and their subsequent local optima on the sample function. A better starting point 
is a clear advantage for a highly local optimization technique, and this leads to a strong 
advantage for “smart” start points. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

1.01 0.75 8.39 1.00 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test Local 

Optima 
0.17 0.87 7.42 1.20 0.0% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

-0.79 0.48 0.55 1.46 0.0% 

 
global minimum, there is an obvious relationship between the quality of a random 
start point and the quality of its corresponding local optimum. The following experi-
ments on less-trivial benchmark problems attempt to determine if and when the above 
relationship exists for more realistic situations. 

The three benchmark problems used in this study are Ackley, Rastrigin, and 
Schwefel. The Ackley and Rastrigin problems have similar search spaces to the sam-
ple function in one-dimension. However, these problems become much more interest-
ing in p = 30 dimensions and when a standard optimization method like fmincon is 
used. The fmincon function is a greedy, gradient-based search technique that is 
available in the MATLAB® Optimization Toolbox.  
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Fig. 2. Profile of Ackley function in one dimension 

A profile of the Ackley function (2) in one dimension is shown in Figure 2. This 
function easily traps gradient-based search techniques, so there is little change be-
tween the function values for the start and end points. Since the end points are close to 
the start points, and since the search space has consistent undulations on top of a con-
vex base function, there is an inherent relationship between the quality of the start 
points and the quality of the end points.  

Using 120 random start points, the function values for the 30 best and 30 worst of 
these points is shown in Table 5. Due to the steepness of the search space, all of these 
start points appear to be in the broad plateau. There is a small range in magnitude 
among the quality of the start points, and the difference between the quality of the 
start points and the end points is also small. However, this difference is quite signifi-
cant (as shown by the calculated t-tests), so there is still a clear benefit to using 
“smart” start points with fmincon on the Ackley function. 
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Table 5. Data (similar to Table 4) for the Ackley function. Consistency in the performance of 
the local optimization technique leads to a significant benefit to using “smart” start points. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

20.8 0.17 21.3 0.08 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test fmincon 

Solutions 
19.16 0.24 19.52 0.09 0.0% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

18.83 0.21 19.15 0.23 0.0% 
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Fig. 3. Profile of the Rastrigin function in one dimension 

A profile of the Rastrigin function (3) in one dimension is shown in Figure 3, and it 
should be noted that this profile is quite similar to that of the sample function shown 
in Figure 1. However, compared to a contour-following algorithm that moves to the 
nearest local minimum, the next test point used by fmincon may actually be in a dif-
ferent “valley” of the search space. Thus, fmincon should perform better than con-
tour following on the Rastrigin function (i.e. be less dependent on the start point), and 
there should be less of a relationship between the quality of start and end points. 

The results of the experiments for fmincon on the Rastrigin function are given in 
Table 6. Although there is a significant difference between the quality of end points 
for the best and worst start points, there is also a high variation in the consistency of 
fmincon. On problems with a high variation, random restart of the greedy search 
technique should be very effective – a set of random solutions will likely contain so-
lutions that are both much better and much worse than the average. This effectiveness 
in random restart (and/or the high variation in the performance of the greedy search 
technique) causes the benefits of “smart” start points to become insignificant on the 
Rastrigin function. 

[ ]97.511,03.512

)sin(9829.418)(
1

−∈

+= ∑
=

x

xxxf
p

i
ii  (4) 

Table 6. Data (similar to Table 4) for the Rastrigin function. The high variation in the quality 
of end points allows random start points to be nearly as effective as the “smart” start points. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

475.3 26.4 629.1 27.9 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test fmincon 

Solutions 
161.7 47.7 228.2 48.9 0.0% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

149.5 32.9 152.1 38.1 78.0% 
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Fig. 4. Profile of the Schwefel function in one dimension 

A profile of the Schwefel function (4) in one dimension is shown in Figure 4. This 
function is particularly challenging because the second best minimum (which traps 
many search techniques) is very far from the global minimum. It appears that fmin-
con is such a search technique that is easily trapped – it appears to produce many fi-
nal solutions that have values around the second best minimum (see Table 7). Subse-
quently, there is no (significant) relationship between the quality of start and end 
points, and there is no benefit to using “smart” start points on the Schwefel function. 

Table 7. Data (similar to Table 4) for the Schwefel function. A weak (and inverse) correlation 
between the quality of the start and end points leads to no possibility of a benefit to using 
“smart” start points. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

11363 446 13995 583 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test fmincon 

Solutions 
5502 627 5351 747 40.0% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

5138 694 4680 518 0.5% 

6   Real-World Data 

There are many ways to find start points to seed a greedy search technique (e.g. 
[8,14]). The reason to use random search to find “smart” start points is because these 
other search techniques can be prohibitively expensive on certain problems. For ex-
ample, there are problems on which the evaluation of a solution involves a complex 
and time-consuming simulation.  

The following data are from optimizing the design of phased array ultrasonic 
transducers. In this problem, each real-valued search point is converted into a design 
for an ultrasonic transducer through the simulation and evaluation of a physics-based 
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model [7,11]. The design produced through this simulation will consist of an integer 
number of elements, and it is desirable to minimize this number. From a given start 
point, it can take over 1 hour on a standard PC to find a locally optimal transducer de-
sign. This high computational cost leads to a practical limit on the number of start 
points that can be optimized. 

Two optimization techniques have been tested extensively on the ultrasonic trans-
ducer design problem – gradient descent in the form of fmincon from the 
MATLAB® Optimization Toolbox and a (1+λ)-evolution strategy. Previous experi-
ments have demonstrated that the evolution strategy performs better than fmincon, 
and that “smart” start points can improve the performance of this evolution strategy 
(see Table 8) [4]. However, the analysis of “smart” start points has not previously 
been extended to fmincon. 

Table 8. Data (similar to Table 4) for the ultrasonic transducer design problem. Although quite 
robust, the performance of the (1+λ)-evolution strategy still receives significant benefits from 
using “smart” start points. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

116.5 63.3 736.3 83.2 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test (1+λ)-ES 

Solutions 
31.7 3.1 34.1 5.7 4.2% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

30.1 3.2 31.3 2.9 2.2% 

 
An evolution strategy (ES) tends to perform better than gradient-based search 

techniques in highly multi-modal search spaces because it is less prone to getting 
trapped in (poor) local optima [1]. Subsequently, “smart” start points should provide 
much greater benefits to fmincon. Using the same 120 random start points, the re-
sults for fmincon on the 30 best and 30 worst of these points is shown in Table 9.  

Table 9. Data (similar to Table 4) for the ultrasonic transducer design problem. The inconsis- 
tent performance of fmincon leads to greater benefits for using “smart” start points. These 
benefits essentially compensate for the greater robustness of the evolution strategy. 

30 Best 30 Worst 
avg. std. dev. avg. std. dev. 

t-test Start 
Points 

116.5 63.3 736.3 83.2 0.0% 
From 30 Best From 30 Worst 

avg. std. dev. avg. std. dev. 
t-test fmincon 

Solutions 
42.2 16.2 90.0 78.1 0.2% 
“Smart” Start Points Four Random Points 
avg. std. dev. avg. std. dev. 

t-test 
 

30.2 2.5 33.0 4.4 0.4% 
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The results from the random start points demonstrate that the (1+λ)-ES is a much 
more robust search technique and that fmincon frequently gets trapped in poor local 
optima. Subsequently, the performance of fmincon is much more dependent upon 
the quality of its initial starting point than the performance of the (1+λ)-ES. This 
strong relationship between the quality of the start and end points leads to a similarly 
strong benefit to using “smart” start points, and the subsequent performance of 
fmincon is essentially the same as the (1+λ)-ES when “smart” start points are used. 
For this specific optimization problem, there is a similar advantage to finding good 
start points as there is to developing a more effective and robust search technique. 

7    Discussion 

The improvement of greedy search techniques can follow one of two primary strate-
gies – escape from local optima to find better ones (e.g. simulated annealing) or  
explore multiple optima independently (e.g. memetic algorithms). Results in the 
literature suggest that exploring multiple optima (e.g. [12]) is more popular and 
successful than attempting to escape from local optima (e.g. [9]).  

The use of multiple runs introduces a new design consideration – a selection strat-
egy for the start points is required. This strategy may be trivial (e.g. random search) or 
more complex (e.g. WoSP [8]). “Smart” start points are on the more simplistic end of 
the spectrum, so their practical benefits are likely limited to optimization problems 
with extremely expensive evaluations. 

As more function evaluations become available, the justification to use random 
search as the coarse search strategy will lessen. However, the search space feature re-
quired for “smart” start points to be effective (i.e. a strong correlation between the 
quality of the start and end points) is likely to be an important indicator in the effec-
tiveness of other coarse search-greedy search implementations. This search space fea-
ture has been successfully exploited in a PSO-ES coarse search-greedy search tech-
nique for the design of phased array ultrasonic transducers [5]. 

8   Conclusions 

A relationship between the quality of a random start point and its (nearby) local op-
tima can exist for some optimization problems. When this relationship exists, the use 
of “smart” start points (found by random search) can perform better than the random 
restart of a greedy search technique. This performance improvement can be useful on 
optimization problems with expensive solution evaluations. More importantly, this re-
lationship can be a useful indicator of success for other coarse search-greedy search 
implementations. 
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Abstract. Stochastic solvers are researched primarily with the goal of
providing ‘black box’ optimisation approaches for situations where the
optimisation problem is too complex to model and therefore impossible
to solve using a deterministic approach. Sometimes, however, problems
or their instances have characteristics which interact with the solver in
undocumented and unpredictable ways. This paper reviews some per-
tinent examples in the literature and provides an experiment which
demonstrates that ant colony optimisation has arcane mechanisms which
are partly responsible for results which are currently attributed to the
pheromone-based learning.

1 Introduction

Employing heuristic (i.e. stochastic) methods to find near-optimal solutions is
motivated when time is more important than the knowledge of the quality the
solver can provide [1], or when the problem space is too complex to analyse.
However, considerable research effort is being dedicated to the discovery of
good matches between solvers and problems, indicating that although stochastic
solvers cannot guarantee the quality of a result, there are still expectations for
them to produce results of acceptable quality reliably. Reliability presumes that
the information about the solver’s performance on a problem covers all problem
instances, which can only be achieved when there is sufficient information about
both the solver and the problem.

Different algorithmic approaches make use of different problem features. This
is the principal reason why researchers explore different algorithms to be able to
issue recommendations on which algorithm is best applied to which kind of prob-
lem. It is easy to see that the search space of an optimisation problem is shaped
by search mechanisms of the solver [12]. Fisher [5] demonstrates the influence of
the design on the form of the search landscape, which can also change drastically
through relatively trivial changes in the constraints or objective function.

It is often not immediately apparent how the solver interacts with the prob-
lem. Stochastic solvers are deliberately designed to employ intrinsic mechanisms
for handling the balance between exploration and exploitation, the two basic

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 25–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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elements that enable search space sampling in an ‘informed’ way. Often these
elements are employed at the same time in different proportions, as is usually the
case in the constructive steps of Ant Colony Optimisation (ACO). Less frequently
the proportions between these elements in a move are chosen deliberately, as in
some forms of GA elitism. These basic principles are well understood, but the
exact mechanisms responsible for good results are not always obvious. If good
results are obtained, researchers are often less interested in investigating why
this is the case and how the results have come about [10].

2 Algorithm Unpredictabilities Uncovered

Many, possibly most, publications exploring the abilities and properties of sto-
chastic algorithms contain experiments which result in some unexpected ele-
ments of algorithm behaviour. Solving example problems with a promising new
procedure, authors often find that these perform very well on some problem in-
stances while not providing the same quality on others. While authors usually
seem to be more eager to report good results, unexpected behaviour is at least
as informative, if the unexpected results are explored thoroughly. Some explicit
endeavours to uncover unexpected behaviour are reported below.

Undocumented traits are typically only observed in a limited number of in-
stances. For example, Particle Swarm Optimisation (PSO) was shown to have a
bias toward searching along the dimension axes. To the best of our knowledge,
Janson and Middendorf [7] were the first to make this observation. They did so
more than a decade after PSO was first conceived, showing that most continous
functions PSO was usually used to solve were aligned along the dimensional
axes. Rotating the same functions to move the optima away from the axes lead
to experiments where PSO could not produce the same level of quality.

As an approach to solving dynamic problems with a Genetic Algorithm (GA),
Cobb [2] proposed triggered hypermutation. The increased mutation rate is ap-
plied when a change of fitness is detected in the best individuals of the cur-
rent population. As has subsequently been pointed out, on some occasions, the
change of problem state does not affect any location represented in the current
population [6].

Another illustrative example from the area of ACO is given by Merkle [9].
He considers a permutation problem (which is not a cycle) with x components.
To incur the minimal cost, the first two components can be assigned to any
position, while all other components can only be assigned to a single position
in the sequence without incurring a higher cost. The simplified cost matrix (the
original matrix [9] has 50 elements) is shown in Fig. 1.

Solving the problem with ACO, Merkle observes that the optimal solution is
not found when the components are assigned to positions first-to-last. However,
the optimal solution is found easily when the solutions are built last-to-first. It is
easy to see why this is the case. As all positions incur the same cost for the first
two elements, no quality guidance is available if the uppermost two components
are the first to be assigned. Thus they are likely to occupy positions which are
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Fig. 1. Pheromone map for permutation problem described by Merkle [9], simplified

least-cost for subsequent components. As ant-based methods are constructive
algorithms, components are assigned one by one. If the majority of the problem
instances has only one least-cost position for each of the components, there may
be no awareness of this predicament.

3 Algorithm

For the experiments in this work, a very successful variation of ACO, Ant Colony
System (ACS) is used. It was first introduced by Dorigo and Gambardella [3],
a more detailed discussion has since been published by Dorigo and Stützle [4].
Because of its greedy solution construction process, it is particularly well suited
to Travelling Salesperson Problems (TSP) in Euclidean space. Like all ACO
algorithms, it maintains pheromone values associated with solution components.
In the case of the TSP, the solution components are the links or edges between
two nodes or cities.

The pheromone variables are initialised to a very small non-zero value which
traditionally has been defined as the inverse of the length of an upper bound
solution, such as a tour found by a nearest-neighbour heuristic. It has been
observed in many preliminary experiments, however, that the algorithm is not
sensitive to this value.

An ACS iteration is defined as a cycle in which a definable number of solutions
are built. At the end of the construction process, the links belonging to the
best-known tour (not necessarily found during the same iteration) have their
pheromone variables τ updated according to Eq. 1. The evaporation factor ρ =
0.1 balances the effects of recent experience with the additions brought about
by earlier good results.

τ(t + 1) = (1 − ρ) ∗ τ(t) + ρ ∗ Δ; Δ =
1

tour length
(1)
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This positive feedback from the current most successful solution is employed
in the search for better solutions. For the choice of next step, the pheromone
variable is balanced against a heuristic, which in the case of the Euclidean TSP
has traditionally been the inverse of the edge’s length η. The factor β (set to 2 in
our experiments as proposed in [3]) has been introduced as a weighting between
pheromone and heuristic value.

The maximum weighted product of pheromone and heuristic value is employed
most of the time, i. e. the variable q0 which expresses the balance between choos-
ing the best available next link and choosing the next link probabilistically has
often been found to have its best setting at 0.9. It is compared to a uniform
random number q at each step to determine the whether the greedy or the prob-
abilistic rule is to be applied to the choice of next link between the current
node i and a node j which is not yet included in the solution. Eq. 2 formalises
this transition rule. A 90% greedy choice has initially [3] been found to pro-
duce the best performance on Euclidean TSPs, an observation confirmed by our
studies.

max τij ∗ ηβ
ij if q < q0

pij =
τij ∗ ηβ

ij
∑

τij ∗ ηβ
ij

otherwise (2)

Whenever a link is chosen according to these rules and added to the current
solution, its pheromone value is reduced using the ρ factor. Consequently, toward
the end of a cycle, the best-known solution is followed to a decreasing extent. The
number of useful tours to be built during a cycle is therefore naturally limited
and can be calculated as demonstrated in [3], where as few as 10 tours per cycle
were adopted. In the current work, we allowed a wasteful 50 to be able to record
how early solution discoveries where likely to take place.

The flexible self-adjustment of the pheromone values is demonstrated in Fig. 2.
The two plots follow the pheromone development on two edges. One of the two
links has a lower heuristic value η. Over the first eight cycles, this link has its
pheromone value augmented to compensate for the lower heuristic value. After
the first pheromone update, the link’s product of pheromone and heuristic is
not high enough for the link to be chosen as often as to have its pheromone
level evaporated to the initial level. Therefore, the pheromone is adjusted to
a higher level over several cycles and retains that level during cycles 4 – 16
(measurements 8 – 32, as there are two measurements per cycle). At this stage
(cycle 17 or measurement 34), the link is excluded from the best-known solution,
to be included a second time in cycle 29 for a short period. While it is excluded,
no updates are carried out and the pheromone level quickly erodes to the initial
level.

In essence, the principle of the ACS paradigm, found to perform very suc-
cessfully on Euclidean TSPs of less than 100 nodes, is understood to consist of
two mechanisms balancing exploration and exploitation. The first mechanism is
represented by the 90% greedy choice of including the best next move according
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Fig. 2. Measuring the pheromone values of two links before and after the pheromone
updates during an ACS trial. It is clear that one of the two links was part of the
best-known solution throughout the trial.

to the maximum weighted product of heuristic and pheromone. The second is a
10% probabilistic exploration phase which makes small changes to the learned
optimum to search its neighbourhood for new optima. Our experiments are de-
signed to test whether this principle is actually solely responsible for the ACS
results.

4 Solving a TSP Using ACS

4.1 Some Characteristics of Euclidean TSPs

The fact that the best algorithms to solve the TSP are all iterative like the
very successful Lin-Kernighan approach [8] is a good indicator for the fact that
the optima in this problem are all located in close proximity. It is easy to see
why the greediest of the ACO implementations has been performing best on this
problem.

Analysing some geographical instances from the online TSP library [11] such
as berlin52 or kroA100, it becomes clear that the optimal solution to these follows
the nearest-neighbour paradigm for around 50% of the links. If for each node,
the links to all other nodes are listed by proximity, the first and second choices
(first- and second-closest nodes) would be the nearest-neighbour choices for each
node. Only occasionally does the ideal tour require the use of a low-ranking
choice, which is counter-intuitive according to the heuristic value. Finding these
counter-intuitive links is the crux of the optimisation task the algorithm has to
perform.



30 I. Moser

4.2 Experimental Studies

The experiments described in this work were prompted by the suspicion that,
as some of these counter-intuitive links are a long way down the preference list
of their adjacent nodes, it is highly unlikely that these can be found by the 10%
random-proportional choice alone. If a link is e.g. 13th on the list of choices for
next step, the probability for it to get chosen in connection with other links of
the best tour is very low. However, if most of the other options lead to nodes that
are already part of the current solution, the reduced number of choices augments
the probability of a counter-intuitive link being included.

An interesting problem instance to experiment on is kroA100 from the online
TSP library. It has one exceptionally long and therefore hard to find link needed
to form the shortest Hamiltonian cycle. The link between nodes 82 and 85 is
13th choice for node 82 and 22nd choice for node 85. Recording when and how
this edge is found is likely to offer some clues as to the characteristics of the
ACS algorithm. With the aim of making the problem easier and augmenting
the probability of the optimum being found, 60% of the nodes were removed to
leave the instance whose optimal solution is shown in Fig. 3. The numbers of
the nodes retained are visible in Fig. 5.

Fig. 3. Example problem used - 40 nodes from the kroA100 problem and the optimal
solution
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Fig. 4. Number of times (in 100 trials) the global optimum was found starting from
the same node every time. Only the ten worst-performing starting nodes and the ten
best-performing are shown. The intermediary 20 nodes have been omitted.

The reduction of choices as the solution building proceeds and fewer nodes
are available is suspected to contribute significantly to the discovery of long links
needed for the optimal tour. To verify this hypothesis, 40 different experiments
are set up with 100 trials each. In each of the experiment, all tours are built
starting from the same node. Observing whether there is a difference between
where the algorithm starts the construction and the discovery of the optimum
can be expected to offer clues as to whether a reduced choice has an influence.
Fig. 4 shows how many times in 100 trials the optimum was found when starting
from a given node. Only the ten best-performing and the ten worst-performing
nodes are shown, as the crucial information lies in the disparity between these
extremes.

The graph shows a clear correlation, with only three of the nodes leading to
the discovery each time, while the worst-performing starting node has a success
rate of only 29%. From the nodes which have a 100% success rate, two are linked
by the counter-intuitive link which has been seen as the major obstacle to the
discovery of the best tour. This seems illogical, but it is easily explained by
the fact that the counter-intuitive link is found last, as the algorithm initially
starts building the tour away from it. By the time the construction reaches the
problematic link from the other end, there are no other choices left.
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Fig. 5. In 1000 trials, how many times was each node part of the solution at the
moment the counter-intuitive component was discovered? Numbers on x-axis denote
the nodes, y-axis the number of trials.

In further trials where every node was used in turn as a starting node, the
presence of nodes in the solution at the time of the discovery of the counter-
intuitive link was recorded. When the trials use different starting nodes, the
optimum is found without fail in all of the 1000 trials. The number of times each
node was present in the half-finished solution at the time of the first inclusion
of the sought-after connection between 82 and 85 is shown in Fig. 5. The graph
reveals a striking pattern: Six of the forty nodes were present approximately one
fifth of the time while the other thirty-six were present four fifths of the time.
This suggests that there are few and very distinct part solutions which enable
the discovery of the counter-intuitive link. This supports our hypothesis, as it
suggests that the exclusion of a set of distinct nodes (the nodes which are likely
to compete for the next step) tends to lead to the discovery of a crucial element.

Fig. 5 also reveals that among the adjacent nodes of the sought-after link,
85 is present 868 times and 82 is included 132 times. As we are examining the
event of including the link connecting them, it is not surprising that the two
numbers sum to 1000. However, the fact that it is discovered vastly more often
from node 85 seems counter-intuitive, as the sought-after link ranks 22nd among
the choices of 85.

To find an answer to this question, the ‘approach’ to the critical situation
was examined more closely. All part solutions at the stage of discovery were
examined for the exact sequence prior to arriving at node 85. Following the nodes
backwards from 85, the same sequence of 11 nodes appears in the record in over
60% of the cases. Fig. 6 shows the sequence immediately prior to the approach
to node 85, from which the counter-intuitive link is subsequently discovered. The
path between the starting node (which is often, but not always, node 37 or 5)
up to node 25 can vary, but as Fig. 5 shows, the solution is likely to include all
but six nodes at this stage.
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Fig. 6. Path to node 85 immediately before the discovery of the counter-intuitive edge
in over 60% of the trials

Examining the final steps before the discovery more closely, it becomes clear
that no counter-intuitive move has to be made during these last 11 steps to node
85, i.e. none of these steps requires any pheromone. Fig. 6 reveals the ranking
for each of the links. Note that the ranking would be different if the choice was
made from the opposite node, i.e. the path was created starting from node 85.
If a move was first choice for the current node, there is no question as to why
it was chosen. Therefore, Table 1 lists the reasons for the inclusion of each link
which ranked lower than one for the node from which it was chosen. All of the
steps can be explained with the help of the heuristic value alone.

At the time of the inclusion, every one of them was the shortest available
link. No pheromone was needed; therefore the ACS learning mechanism was
not employed here. Whether any steps involving inferior ranks where included
earlier in the tour is a question that cannot be answered, as the solutions diverge
somewhat in the sequence prior to node 25.

However, using node 25 as a starting node, the optimal solution is discovered
in 70% of the trials (as shown in Fig. 4). As starting from node 25 is likely to lead
to the sequence in Fig. 6 without other nodes present in the tour, the situation is
not ideal for finding the counter-intuitive edge. The fact that even with node 25
as a starting node, the optimum is found in 70% of the trials indicates that the
well-understood mechanism of 90% exploitation and 10% exploration is indeed
partly responsible for the algorithm’s performance.

Looking at how early in the cycle the counter-intuitive component is discov-
ered, there is a significant difference in the average number of tours built until the
discovery. Depending on the starting node, the link between nodes 82 and 85 may
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Table 1. Reasons for links shown in Fig. 6 were included. Only links with a rank bigger
than one are included.

Link Rank of Link Reason for Inclusion

81 → 69 2nd choice 1st choice (link to 25) already included
44 → 2 3rd choice 1st and 2nd choice (link to 50 and 73) already included
2 → 54 2nd choice 1st choice (link to 44) already included
64 → 68 9th choice All higher ranks included (link to 81 is 8th choice)

be discovered on average as early as during the third or as late as during the sev-
enteenth tour construction. However, without examining the exact part solutions
that led to the discovery, it is not possible to deduce the reasons for the differences.

One might argue that the feature of a very long and counter-intuitive link
is typical only for this instance. However, if no counter-intuitive edges were
needed for the optimal solution, a nearest-neighbour heuristic would make a
better choice as a solver. It is therefore likely for similar situations to occur
in other problems, where there may be more, possibly higher-ranking inferior
choices which have to be included to create the optimal solution.

5 Conclusion

Stochastic algorithms are often explored experimentally in the literature for years
until some of their crucial intrinsic features are uncovered. These features may
manifest themselves when solving problems or instances whose characteristics
are not uncommon and cannot be dismissed as outliers.

In the current work, some experimental studies have revealed a simple pattern
in the behaviour of ACS, ten years after the algorithm was first introduced. A
subsequently published handbook of ACO [4] by authors whose experience of
the algorithm cannot be doubted yields only a few passing hints with regards
to the feature discussed in this work. It contains the repeated recommendation
of starting the solution construction from a different random node each time.
While we have found that the recommendation is justified, the effects it has been
found to have might deserve a more thorough discussion.

In the field of stochastic algorithms, authors often research the application
of a particular algorithms to a number of problems in the hope of offering a
general-purpose black box approach for intractable or combinatorially complex
problems. However, it seems that without a deeper understanding of the problem,
its instances and the mechanisms of the algorithms, there can be no guarantee
as to the quality of the result.
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Abstract. In this paper an Ant Colony Optimization (ACO) approach
is extended to the safety and time critical domain of air traffic manage-
ment. This approach is used to generate a set of safe weather avoidance
trajectories in a high fidelity air traffic simulation environment. Safety
constraints are managed through an enumeration-and-elimination pro-
cedure. In this procedure the search space is discretized with each cell
forming a state in graph. The arcs of the graph represent possible transi-
tion from one state to another. This state space is then manipulated
to eliminate those states which violate aircraft performance parame-
ters. To evolve different search behaviour, we used two different ap-
proaches (dominance and scalarization) for updating the learned knowl-
edge (pheromone) in the environment. Results shows that our approach
generates set of weather avoidance trajectories which are inherently safe.

1 Introduction

Ant Colony Optimization (ACO) is a population based optimization technique
based on social behaviour of real ant colonies. It is an iterative, probabilistic,
meta-heuristic for finding solutions to hard combinatorial optimization problems
and shows several desirable properties for application in the transportation do-
main [15]. ACO approaches are applied extensively to benchmark problems like
travelling salesman problem (TSP), the quadratic assignment problem (QAP),
and job shop scheduling problem [4]. ACO algorithms use simulated pheromone
as a collective form of self adaptation to produce increasingly better results.
ACO techniques are also extended for multi-objective optimization and exam-
ined notably in dynamic TSP and vehicle routing problems. Some of its variants
are applied on highly constrained problems in transport and telecommunication
domain [6]. One desirable area of extending ACO based approaches is safety crit-
ical domains such as Air Traffic Management [15]. However, it is not yet clear
how to design an effective ACO algorithm for such problems.

In recent years, there has been a quantum increase in weather related air traffic
delays. Weather disturbances are the leading cause of delays in air traffic and
account for approximately 70% of all delays in US National Airspace alone [11].
Previous approaches for weather avoidance systems are based on heuristic search
techniques such as A-Star [3], Depth First Search [9], etc. These approaches
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suffers from several drawbacks such as: the algorithm reports the first-found
trajectory, which is often sub-optimal, secondly the algorithm does not take into
consideration the aircraft performance envelop and other airspace constraints
and most importantly these approaches were not examined in a high fidelity air
traffic environment.

With the proposed flexibility given to the future pilots in trajectory plan-
ning [8], the previous approaches are deemed unsuitable. To incorporate safety
constraints we pre-process the search space based on aircraft performance en-
velop. This has two advantages, first it reduces the search space so that algo-
rithms can explore more and secondly this leads to a safety inherent design for
trajectory planning. We use goal directed search in ACO with multiple objec-
tives to generate a set of non-dominated solution trajectories, instead of a single
solution approach. We have used high fidelity air traffic simulation environment
for our experiments with realistic air traffic data and weather patterns obtained
from meteorological data.

For a variety of optimization problems, the quality of the solutions constructed
by ACO algorithms can be substantially improved through local search [6]. This
performance improvement depends upon how the local search interacts with
the design feature and parameter setting of the ACO [10]. We have blended the
exploration feature of population based search (ACO) with the quick convergence
feature of the informed heuristic search (A-Star) and use it as our goal directed
search approach.

To incorporate multi-objective optimization in ACO we have used an intu-
itive means of incorporating iterative weight update mechanisms (for different
objectives) in the A-Star algorithm and used the A-Star objective function as
the visibility parameter of the ACO algorithm. We used different weather pat-
terns and carried out performance assessment of solutions generated by the ACO
algorithm using median attainment surface [17]. We also evaluated several im-
plementation options for the ACO algorithm in terms of different pheromone
update mechanism with different combinations of exploration-exploitation and
heuristic desirability parameters.

The paper is organized as follows, in the next section we explain the weather
avoidance problem and state space pre-processing mechanism followed by the
design of the algorithm and a discussion of the two pheromone update strategies
employed. We then explain the experimental design and performance measures
used and we conclude with results and discussions.

2 Weather Avoidance in Air Traffic Management

2.1 Search Space

Finding weather avoidance trajectories can be seen as path planning in three di-
mensions, which is a well known NP-hard problem [5]. In air traffic management
this problem attains unique dimensions due to safety and airspace constraints
posed on it. Apart from the hard safety constraints in terms of aircraft per-
formance envelop, the objectives are to minimize severe weather cells impact,
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minimize changes in heading, minimize changes in altitude (climb & descent),
and minimize the distance travelled in a given route. The weather cells can
spread in an area extending up to 1000 square nautical mile. Finding feasible
solution in a such a large search space can be damning form safety and time
perspective. If number of states in search space can be reduced without compro-
mising the solution quality, we hypothesized this reduction of state space size
will result in faster convergence. In worst case the algorithm will emphasize on
learning transitions which are valid.

Classical approach of handling safety constraints uses penalty value. However,
if there are large number of parameter, there is no guarantee of feasibility of the
solutions. By pre-processing unfeasible transition in the search space, search is
guaranteed to produce feasible solutions We eliminate the state space recur-
sively starting from entry point in the 3-D grid (explained later) doing forward
recursion on different layers. At each layer we eliminate states which violate the
aircraft performance parameter, then we move to the following layer. Following
this approach we can guarantee that the resultant state space contains feasible
transitions only.

2.2 Weather Avoidance

The problem can then be stated as follows: Given an 3-D matrix (Airspace) of
dimensions i (latitude) × j (longitude) × k (altitude), an entry point x (start
manoeuvre point) and an exit point y (end manoeuvre point) find the set of
routes between x and y on given objectives. We have used ATOMS [2], a high

Fig. 1. Conceptual representation of weather avoidance algorithm design. Airspace is
discretized into 3-D grid, at a distance of 60nm (weather radar range) from the aircraft.
Optimized trajectories lead to reduction in fuel and time. TCP in the figure indicates
next trajectory change point, which is the reference point for computing the exit point
in the grid.
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fidelity purpose build Air Traffic Management Simulator to simulate bad weather
cells and air traffic. Weather cells were simulated by assigning a radar reflectivity,
(a measure of thunderstorm intensity) between 5 and 50 generated by a uniform
distribution random number generator, to the discretized cells of the airspace.
Each cluster of bad weather comprises of 6 to 12 thunderstorm cells of dimension
10nmi × 10nmi × 3000ft [12]. We generated several weather scenarios ranging
from 6 to 12 cells in different patterns on the intended trajectory of a flight in
a high fidelity air traffic simulator [2]. As shown in the figure 1, the algorithm
upon detection of weather cells within 60nm, (weather radar range) generates
a three dimension volume around them. This airspace volume is of dimension
100nmi X 100nmi X 3000 ft.

This search space is then discretized in a grid of 10 × 10 × 3 (300 nodes), it
gives enough volume (1000 sq nautical mile) to cover the entire weather pattern.
Each cell in the grid forms a state in the graph. The arcs of the graph represent
possible transition from one state to another. The state space is then processed
by removing those states which violate aircraft performance parameters such as
bank angle, turn angle, operating altitude, maximum rate of climb or descent
etc. This performance data is derived from the Eurocontrol’s 2 Base of Aircraft
Data (BADA) [1] based on the respective aircraft’s state information (speed,
altitude, heading etc.). The pseudo code for the same is presented in algorithm
1. In a grid of 3 X 10 X 10, we have 300 nodes with 4788 arcs which after
processing were reduced 163 nodes with 2591 arcs.

The resulting three dimensional grid is stored in a 3-D array data structure
as an enumerated state space where each element of the array represent a point
in the 3-D grid. Every array element stores the information about its position
(latitude, longitude and altitude) and all the immediate next links (which do
not violate aircraft performance envelop) from that point in the grid. Further
for each link the array element stores the heading change required, altitude
change required, distance between the two and the distance to exit point from
that link. The ACO perform search on this pre-processed state space.

3 Goal Directed Search : ACO with A-Star

To incorporated goal directed search in ACO we have used A-Star algorithm.
The details are as follows:

3.1 A Star

The A Star (A*) [13] algorithm is an informed heuristic search technique which
minimizes the estimated path cost to a goal state (destination). At node n, the
A* algorithm will choose the next state which minimizes the function f(n) =
g(n) + h(n), where g(n) gives the path cost from the current node to the next

2 Eurocontrol is the European organization for the safety of air navigation. It currently
numbers 31 member states. Eurocontrol has as its primary objective the development
of a seamless, pan-European air traffic management (ATM) system.
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Algorithm 1. The pseudo code for state space processing
Require: Aircraft Performance Database D :(Rate of Heading Change, Rate of Climb

& Descent, Altitude Ceiling, Max. Bank Angle, Max. Turn Angle, Max. Vertical
Speed)
Grid G with i × j × k dimensions
Exit node position in the grid(sink)

1: for Node in G do
2: Compute the turn angle, altitude change, rate of heading change require, rate

of altitude change required, vertical speed required from each node (xyz) to
the grid point (ijk) in G

3: if Transition from node xyz to grid point ijk violates D then
4: Eliminate the link
5: else
6: Retain the link
7: end if
8: end for
9: return Grid G with links within safety envelop

node j, and h(n) is the estimated cost from the next node to the destination node
(exit point). We define cost function g(n) as the sum of the normalized weather
intensity (WF ), normalized heading change (HF ), normalized altitude change
(AF ) and normalized distance (DF ) to the next node j. The heuristic function
h(n) is defined by the normalized estimated cost on the above objectives from
the next node j to the exit point in the search grid. We then form Υ (n) as the
weighted sum of the two objectives.

Υ (n) = (WF×ωu+HF×ωv+AF×ωw+DF×ωl)+(WFest×ωp+HFest×ωq+AFest×ωr+DFest×ωs)

where ωu, ωv, ωw, ωl, ωp, ωq, ωr, ωs are dynamically initialized polar weights on
the surface of a unit sphere [7] and WFest, HFest, AFestandDFest are the esti-
mated cost of weather cell impact, heading change, altitude change and distance
traveled respectively of reaching from the next node to exit node.

3.2 ACO

In ACO, the transition rule which is the probability for an ant k on node i to
choose node j while building its tour is given according to the following rule [6]

j =
{

arg maxu∈Jk
i
[τiu(t)] × [ηiu]β if q ≤ q0

J if q > q0
(1)

where J ∈ Jk
i is a node that is randomly selected according to the following

probability

pk
ij(t) =

[τij(t)] × [ηij ]β

Σl∈Jk
i
[τik(t)] × [ηik]β

(2)

where τij is the pheromone value between the two nodes i and j, β controls
the relative weight of ηij , and q is a random variable uniformly distributed over
[0, 1].
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Parameter q0 in equation 2 is a tunable parameter (0 � q0 � 1), where q � q0

corresponds to an exploitation of the heuristic information of given objectives
and the learned knowledge memorized in terms of pheromone trails, whereas
q > q0 favors more exploration of the search space. We tune this parameter in
the interval [0 1], to evolve different search behavior.

The visibility parameter ηij in equation 2 represents the heuristics desirability
of choosing node j when at node i, it can be used to direct the search behavior
of ants by tuning β in the interval [0 1].

We have incorporated the inverse (since it is a minimization problem) of the
A-Star evaluation function Υ (n) for the visibility parameter ηi,j .

ηi,j =
1.0

Υ (n)
(3)

To evolve different search behaviour we assigned weights iteratively for the A*
objective function where for each objective a dynamic weight is assigned. In every
iteration the weights are re-initialized using the hypercube rejection method [7]
where weights are spread on the surface of a unit sphere. This results in dif-
ferent weights (relative importance) assigned to the objectives in each iteration
resulting in diverse solution paths.

The heuristics information represented by the visibility parameter ηij is not
static as it is in the case of ACO algorithm, it changes due to the dynamic weight
initialization of A-Star objectives in every iteration. This parameter is also tuned
in the interval of 0 to 1. A value of 1 will result in a typical A-Star behaviour,
and a value of 0 is indicative of the use of pheromone information only.

3.3 Different Search Behaviour Resulting from Different Pheromone
Update Mechanism

We have investigated two different pheromone update strategies:
Pheromone update based on dominance : All valid solutions N from the current
set P and archive set A (which stores the non-dominated solution obtained so far)
are allowed to update the pheromone matrix. The pheromone update strategy
is based on the SPEA2 [16] mechanism, where each individual solution i in the
archive A and the current set P is assigned a strength value S(i), representing
the number of solutions it dominates:

S(i) =| j | jεPt + At ∧ i � j | (4)

where | · | denotes the cardinality of a set, + stands for multi set union and the
symbol � corresponds to the Pareto dominance relation extended to individuals
(i � j if the vector encoded by i dominates the vector encoded by j). Based on
the S value, the raw fitness R(i) of an individual i is calculated by summing the
strengths of its dominators in both archive and current population.

R(i) =
∑

jεPt+At,j�i

S(j) (5)
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R(i) = 0 corresponds to a non-dominated individual,while a high R(i) value
means that i is dominated by many individuals. We then update the pheromone
quantity as:

∀ N ∈ [P, A] : τxy(t) ← (1 − ρ) · τxy(t) + ρ · (1 − R(i)) (6)

where ρ is the pheromone decay parameter, and (x, y) represent the links in the
solution path.We call this approach ACO-D.
Pheromone update based on scalarization: All the valid solutions N in the current
population P are allowed to update the pheromone matrix based on the quality
of the solution as:

∀ N ∈ [P ] : τxy(t) ← (1 − ρ) · τxy(t) + ρ · (1 − ψ(n)) (7)

The quality of the solution is determined in terms of the scalarization ψ(n) of
n objectives. This mechanism is analogous to real world ants which deposits a
higher quantity of pheromone returning from a rich food source. We call this
approach ACO-S.

For the management of pheromone evaporation, pheromone trails and
pheromone limits we have followed Max-Min Ant System (MMAS) [14] method-
ology, which sets the initial pheromone to a maximum value and ensures that
pheromone information remains in a defined bound, preventing local optima and
early convergence of solutions.

4 Experiment Design and Performance Measures

ATOMS was employed to generate weather patterns based on meteorological
data. Flights based on recorded air traffic data and flight plan was simulated
between two airports in the middle-east region. The aircraft was B747-400 with
cruise altitude 27kft. The algorithm was examined on three different weather
patterns: distributed dense weather cells, distributed sparse weather cells and
clustered weather cells. The solution trajectories generated in terms of grid index
were converted into artificial waypoint with associated latitude, longitude and
altitude and fed into the flight management system of the aircraft, which is then
flown in auto-pilot mode to fly the desired trajectory.

To evolve different search behaviours and understand performance of ACO
algorithm with heuristic search under various parameter configurations, we have
examined the following combinations:

1. Use of different combinations of values of the exploration-exploitation para-
meter (q0) and heuristic desirability parameter(β).

2. Pheromone update mechanism based on Dominance v.s. pheromone update
mechanism based on Scalarization.

We performed preliminary experiments to determine both the size of the ant
colony, and the number of iteration required for convergence to a solution. We
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found that 30 ants with 300 iteration provides a good solution convergence. Based
on MMAS rules we set ρ = 0.9 for the pheromone evaporation. τmax was set to a
theoretically largest value [14]. Combinations of the following values of parameter
β={0.1, 0.3, 0.5, 0.7, 0.9} and parameter q0={0.1, 0.3, 0.5, 0.7, 0.9}were examined
to understand their effect on ACO with heuristic search performance.

To measure the performance of these aspects we have used the Median Attain-
ment Surface[17], which quantifies how much an algorithm A is better (strictly
dominates) than algorithm B. We also used ANOVAN analysis which performs
multi-way (n-way) analysis of variance (ANOVA) for testing the effects of mul-
tiple factors (grouping variables) on the mean of the given vector.

5 Experiments and Results

The ACO-S and ACO-D were tested on three different weather patterns (distrib-
uted dense weather cells, distributed sparse weather cells and clustered weather
cells), as shown in the figure 2. Each experiment was run 20 times for each
instance for 300 iterations. Figure 3 shows a 3D view of the set of solution
trajectories generated by the ACO algorithm for a particular weather pattern.
The solution set contains trajectories with different trade offs. For all the given
combinations of q0 (exploration-exploitation) and β (heuristic desirability) para-
meter, performance measures were computed, based on the outcome we plotted
color map which displays the solution quality over other configurations, where
darker shade indicates a good performance of the strategy parameter combina-
tion for the implied configuration in relation to all other combinations, and a
lighter shade shows bad performance.

Fig. 2. Air traffic simulator snap shot of the ACO generated avoidance trajectory in
the different weather scenarios. The three weather patterns with thunderstorm cells
with varying radar reflectivity can be seen. Flight is displayed along with its call sign,
altitude, speed and avoidance trajectory. OERK and OKBK shown in the figure are two
airports in the middle-east region. The area displayed is approx. 2500 nm × 1000nm.
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Fig. 3. A set of solution trajectories generated by ACO from grid entry point to grid
exit point. Some of the trajectories that passes through high intensity thunderstorm
cells (displayed as circles) are optimal on heading changes and distance traveled.

5.1 Median Attainment Surface

We computed the median attainment surface(MAS) for the non-dominated set
of solutions generated by the ACO with informed heuristics search for the two
approaches and for different parameter combinations. As shown in figure 4 and
judging from the average darkness, some interesting observations can be made
out of them. In dominance based pheromone update mechanism, we can see that
when q0 is low (q0=0.1 and q0=0.3) then high exploration (β=0.7) of search
space gives good results. When q0 is medium (q0=0.5) then high to very high
exploration(β ≥0.7) is results in good solutions. When q0 is high to very high
(q0 ≥0.7) then very high exploration (β=0.9) is undesirable. Best Solution were
obtained for parameter combination of q0=0.7 and β=0.5. In scalarization based
pheromone update mechanism, we can see that with increasing value of q0 we
get very good solutions and β has very marginal effect on the solution quality.
However, for all the good solutions we can see that parameter β has a value
of 0.5. In ACO-D over ACO-S, the color map indicates that high to very high
value of exploitation (q0 ≥0.7) in ACO-D gives good solution quality over ACO-
S and similarly in ACO-S over ACO-D, with high exploitation ACO-S gives
good solution quality over ACO-D. This indicates that very high exploitation
of learned knowledge in the search space coupled with medium to high use of
heuristic information can lead to good quality solutions for this kind of problems.

To get a more conclusive picture we then used ANOVAN analysis on MAS
data. Figure 5 shows the ANOVAN analysis of ACO-S and ACO-D with different
factors q0 and β; each sub–figure presents the means and 95% confidence interval
of the means of each data groups. Figure 5 top left and right shows ANOVAN for
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Fig. 4. MAS performance of ACO-S with in its own set (top-left), ACO-D with in its
own set (top-right), ACO-D (y-axis) compared with ACO-S (x-axis) (bottom-left) and
ACO-S (x-axis) compared with ACO-D (y-axis) (bottom-right). Darker shade indicates
a good performance of the strategy parameter combination for the implied configuration
in relation to all other combinations, and a lighter shade shows bad performance.

ACO-S, ACO-D for various parameter combination. It can be seen that the best
strategy in both the approaches is high exploitation of embedded information
in the environment. with increased exploitation we get good results, but if too
much exploitation of heuristic is done the solution quality decreases. In ACO-
S this however depends on medium favour for heuristic information available
about the system. Whereas in ACO-D this depends on high favour for heuris-
tic information available about the system. Thus in dominance based approach
heuristic information plays a greater role than in scalarization based approach.
In general we can say that very high exploitation of learned knowledge coupled
with medium to high exploitation of heuristic information available about the
system leads to good quality solution.
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Fig. 5. ANOVAN analysis (showing means and 95% confidence interval) grouped on
different set of q0 and β parameters for the two approaches.

6 Conclusion and Future Work

A safety inherent design coupled with goal directed search can provide a good
framework towards safety critical problems such as weather avoidance in air
traffic environment. Pre-processing the state space before search helps in reduc-
ing the search space and making the search manageable for a safety and time
critical domain. ACO with A-Star provided a good mechanism of incorporating
multiple objectives and combining the virtues of population based approach with
informed heuristics search. The algorithm generates a set of solution trajecto-
ries in different weather patterns successfully. The trajectories generated were
all flyable, such that they do not compromise the performance envelop of the
aircraft. The solution quality is strongly affected by exploitation of the embed-
ded information in the environment rather than the available heuristics. High
heuristic desirability leads to poor quality solution indicating early convergence
to sub-optimal solution due to more weight on the local information. Overall
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the best strategy was to exploit more what is learned about the search space and
use average local information. We will be further investigating this approach in
a dynamic weather environment with neighbouring air traffic.
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Abstract. Particles, gliders and domain walls have long been thought to
be the information transfer entities in cellular automata. In this paper we
present local transfer entropy, which quantifies the information transfer
on a local scale at each space-time point in cellular automata. Local
transfer entropy demonstrates quantitatively that particles, gliders and
domain walls are the dominant information transfer entities, thereby
supporting this important conjecture about the nature of information
transfer in cellular automata.

1 Introduction

Design and analysis of complex nonlinear behavior in artificial life systems has
recently begun to consider the concept of information transfer (e.g. via influ-
ence of agents over their environments [1], in co-ordination between individual
modules of modular robots [2], and inducing neural structure in robots [3]).
Nowhere is the consideration of information transfer more clear than in studies
of cellular automata (CAs), where the emergent structures known as particles,
gliders and domain walls have long been suggested to be the information trans-
fer entities therein [4,5]. Importantly, information transfer is also viewed as an
important component of complex behavior beyond the field of artificial life (e.g.
self-organization caused by dipole-dipole interactions in microtubules [6]).

Despite the abundance of complexity measures though (e.g. [7,8]), quantita-
tive studies of information transfer in complex systems are noticeably absent. We
derive a measure of local information transfer from the transfer entropy [9], an ex-
isting averaged information-theoretical measure. Local transfer entropy charac-
terizes the information transfer into each spatiotemporal point in a given system
rather than providing a global average over all points in an information channel.
Local transfer entropy facilitates close study of parameters of the average trans-
fer entropy, and is independently useful in highlighting or filtering “hot-spots”
in information channels. We apply local transfer entropy to Elementary Cellular
Automata (ECAs), a class of simple yet powerful discrete dynamical models. Lo-
cal transfer entropy profiles for ECAs highlight the particles, gliders and domain
walls as the dominant information transfer entities, importantly providing the
first quantitative evidence for this widely-accepted conjecture about the nature
of information transfer in CAs.
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2 Information Transfer in Cellular Automata

We begin by introducing cellular automata (CAs), a renown example of complex
systems, and discuss the importance of information transfer therein so as to
contextualize our motivation. CAs are discrete dynamical systems consisting of
an array of cells which each synchronously update their state as a function of
the states of a fixed number of spatially neighboring cells using a uniform rule.
While the behavior of each cell is simple, their (non-linear) interactions can lead
to quite intricate global behavior. As such, CAs have become a well-studied
example of complex behavior, and been used to model a wide variety of real
world phenomena [4]. Elementary CAs, or ECAs, are a simple variety of 1D CAs
using binary states, deterministic rules and one neighbor on either side (i.e. cell
range r = 1). An example evolution of an ECA may be seen in Fig. 1a. Wolfram
[10] provides a more detailed introduction to CAs, and defines the Wolfram rule
number convention used here for describing update rules.

An important outcome of Wolfram’s well-known attempt to classify the as-
ymptotic behavior of CA rules into four classes [10] was a focus on emergent
structure in CAs: particles, gliders and domains. A domain (formally defined
within computational mechanics [11]) is a set of background configurations in a
CA, any of which will update to another such configuration in the absence of a
disturbance. A domain may be a regular, with periodic repetition, or is otherwise
irregular. Particles are moving elements of coherent spatiotemporal structure;
gliders are periodically-repeating particles. Formally, particles are defined as a
boundary between two domains [11]; they can also be termed as domain walls,
though this is typically used with reference non-periodic particles.

The continuing focus on the dynamics of propagating and static structures
and their interactions (e.g. [8]) underlines the importance of information transfer
in CAs. Particles are often said to form the basis of information transmission,
and their interactions or collisions the basis of information modification (e.g.
[5]). In particular, we find these analogies in analyses of CAs performing in-
trinsic, universal or other specific computation [11,12], and discussions on the
nature of particles and their interactions [12,13]. However, no study has quan-
tified the information transfer on average within specific channels or at specific
spatiotemporal points in a CA, nor quantitatively demonstrated that particles
(and gliders and domain walls) are in fact information transfer agents, there-
fore leaving these suggestions as conjecture only. We expect that a measure of
local information transfer into each spatiotemporal point in CAs would reveal
particles as the dominant information transfer agents.

Such spatiotemporal profiling can be viewed as a filtering for regions of interest
in CAs, several methods of which exist: finite state transducers [11], frequency of
rule execution [8], local statistical complexity and local sensitivity [14], and local
information [15]. All of these successfully highlight particles, and so filtering is
not a new concept. However the use of information transfer profiling could pro-
vide the first thoroughly quantitative evidence that particles are the information
transfer elements in CAs. Additionally, it would provide several filtered views by
examining each spatiotemporal direction of information transfer in the CA, and
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should reveal interesting differences in the parts of the structures highlighted.
In the following sections, we present the information-theoretical foundations for
and subsequently derive our local measure of information transfer.

3 Information-Theoretical Foundations

The measure of information transfer used here, transfer entropy, is defined using
information-theoretical quantities. Importantly, information theory (e.g. see [16])
is known to be a useful framework for the design and analysis of complex self-
organized systems (see [17] and specific examples in [2,1,3]).

The fundamental quantity is the Shannon entropy, the uncertainty associated
with any measurement x of a random variable X (logarithms are in base 2,
giving units in bits):

H(X) = −
∑

x

p(x) log p(x). (1)

The joint entropy of two random variables X and Y is a generalization to
quantify the uncertainty of their joint distribution:

H(X, Y ) = −
∑

x,y

p(x, y) log p(x, y). (2)

The conditional entropy of X given Y is the average uncertainty that remains
about x when y is known

H(X |Y ) = −
∑

x,y

p(x, y) log p(x|y). (3)

The mutual information between X and Y measures the average reduction
in uncertainty about x that results from learning the value of y, or vice versa:

I(X ; Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (4)

I(X ; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (5)

The conditional mutual information between X and Y given Z is the mutual
information between X and Y when Z is known:

I(X ; Y |Z) = H(X |Z) − H(X |Y, Z). (6)

In the following section, we describe the use of information theory to define
transfer entropy as a directional, dynamic measure of information transfer, and
present local transfer entropy to quantify information transfer at each point in
space and time in a given system.
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4 Local Transfer Entropy

Mutual information has been a de facto candidate for measuring information
transfer in complex systems, e.g. [5]. Yet mutual information as an information
transfer contains no directionality; attempts to address this include using a time-
lag between the “source” and “destination” values (known as time-lagged mutual
information). However, this ignores the fundamental problem that it measures
statically shared information [9].

To address these inadequacies Schreiber introduced transfer entropy in [9], the
deviation from independence (in bits) of the state transition of an information
destination X from the (previous) state of an information source Y 1:

TY →X =
∑

zn

p(zn) log
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

. (7)

Here n is a time index, zn represents the state transition tuple (xn+1, x
(k)
n , yn),

and x
(k)
n represents the k past values of x from and including time n (with k = 1

being the default choice). Reference [18] points out that the transfer entropy can
be viewed as a conditional mutual information (6), that is the average informa-
tion in the source about the next state of the destination that was not already
contained in the destination’s past.

To derive a local transfer entropy measure, we note that p(zn) may be ex-
pressed as the ratio of the count of observations c(zn) of zn, to the total number
of observations N : p(zn) = c(zn)/N . (Note that perfect estimation of the prob-
ability distribution function p(zn) would require an infinite number of observa-
tions). We replace the count by its definition to get:

p(zn) =

⎛

⎝
c(zn)∑

m=1

1

⎞

⎠ /N. (8)

Substituting (8) into (7), we then bring the log term inside this inner sum, leaving
a double sum over each observation m for each possible tuple zn. We combine
these into a single sum over all N observations, and see that the transfer entropy
metric is a global average (or expectation value) of a local transfer entropy at
each observation:

TY →X =
1
N

N∑

n=1

log
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

, (9)

i.e. TY →X = 〈tY →X(n + 1)〉 . (10)

1 Schreiber’s presentation [9] considers the transfer from l previous states of the source
variable. Here, we use l = 1: only the one previous source value has a direct causal
influence on the destination in CAs, and we consider the information transfer in this
causal relationship only at the given time step.
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For systems such as CAs with homogeneous spatially-ordered agents, we instead
represent the local information transfer to cell Xi from Xi−j at time n + 1 as:

t(i, j, n + 1, k) = log
p(xi,n+1|x(k)

i,n , xi−j,n)

p(xi,n+1|x(k)
i,n)

. (11)

t(i, j, n, k) is defined for every spatiotemporal destination (i, n), for every infor-
mation channel or direction j where sensible values for CAs are within the cell
range, |j| ≤ r. For such systems, it is appropriate to estimate the probability
distributions used in (11) from all spatiotemporal observations (i.e. from the
whole CA).

It is important to note that the destination’s own historical values can in-
directly influence it via the source, which may be mistaken as an independent
flow from the source. Such self-influence is a non-traveling form of information
(like standing waves), eliminated from the measurement by conditioning on the
destination’s history x

(k)
i,n . However any self-influence transmitted prior to these

k values will not be eliminated; we generalize comments on the entropy rate in
[9] to suggest that the asymptote k → ∞ is most correct for agents displaying
non-Markovian dynamics. Local transfer entropy is then formally defined as:

t(i, j, n + 1) = lim
k→∞

log
p(xi,n+1|x(k)

i,n , xi−j,n)

p(xi,n+1|x(k)
i,n)

, (12)

though we acknowledge that its computation is not feasible in general, and retain
the notation t(i, j, n, k) for estimation with finite k.

While the averaged transfer entropy metric is constrained between 0 and log b
(where b is the number of possible states of the destination element), it is im-
portant to note that the local transfer entropy is not constrained so long as it
averages into this range. This means that is can be measured to be greater than
log b, indicating a very significant information transfer, and can also in fact be
measured to be negative. Local transfer entropy is negative where (given the
destination’s history) the source element is actually misleading about the next
state of the destination. It is possible for the source to be misleading in this
context where other information sources influence the destination.

We label the special case j = 0 as self-information transfer, where the source
element is the immediate past of the destination. By convention, we condition
this calculation on the k values before the previous source value so as not to
condition on the source. Self-information transfer is not a particularly meaningful
quantity in and of itself, however it helps to form a useful visually filtered image
with transfer entropy profiles for other values of j in the summed information
information transfer profile ts(i, n, k) =

∑r
j=−r t(i, j, n, k), where r is the range

of information contributors (i.e. the cell range r for CAs).
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5 Results and Discussion

The local transfer entropy t(i, j, n, k) was measured for all space-time points
in instances of several important ECA rules. We ran each instance from an
initial randomized state of 8 000 cells, the first 30 time steps eliminated to
allow the CA to settle, and a further 500 time steps captured for investigation.
Periodic boundary conditions were used and results were confirmed by at least
10 runs from different initial states. All figures presented here were generated
using modifications to [19].

The raw states for rule 110 (a classically complex rule) are displayed in Fig. 1a.
As base cases we measured t(i, j, n, k = 1) (i.e. for the default destination con-
ditioning length k = 1), and time-lagged local mutual information (constructed
in the same way as our local metric of transfer entropy) which is equivalent to
t(i, j, n, k = 0). Despite the known existence of particles and collisions [8,14] for
this rule these measures were unable to quantitatively distinguish such struc-
ture with any more clarity than the raw CA plot itself (results not shown). The
comparison case of local mutual information mirrors that performed with the
globally averaged measures in [9], but the local profiles allow a more detailed
comparison here than their averages do.

We continue to measure local transfer entropy t(i, j, n, k) with larger values
of k (the examples in [9] all used k = 1 in less coupled systems). For k ≥ 6
the particle regions contain distinguishably more information transfer than the
regular domains: this is shown for k = 6 in the information transfer profiles
for j = 1 (i.e. one cell to the right per unit time step) and j = −1 (i.e. one
cell to the left per unit time step) in Fig. 1c and e respectively. As expected,
higher values of local transfer entropy are attributed by each measure to the
gliders moving in the same macroscopic direction of motion as the direction
of information transfer being measured. In contrast, notice that negative local
transfer entropy is attributed to gliders with a macroscopic direction of motion
orthogonal to the direction of information transfer being measured (see Fig. 1d
and f); this is because sources of information from the orthogonal direction to
the glider, which are still part of the domain, are misleading about the next state
of the destination. Fig. 1b displays the summed profile ts(i, n, k = 6): this stark
contrast between the gliders and the domain gives a filtered plot very similar
to those produced for rule 110 by other filtering techniques (see [8,14]). Relying
on the average transfer entropy values as solitary numbers does not provide us
the same level of detail (e.g. for transfer one cell to the right per unit time
〈t(i, j = 1, n, k = 1)〉 = 0.21 bits and 〈t(i, j = 1, n, k = 6)〉 = 0.12 bits).

Importantly, note that since regular domains are temporally periodic [13], with
period say p, local transfer entropy measurements with k ≥ p in an infinite such
domain would not detect any additional information from the neighbors about
the next state of the destination cell than is contained in its p previous states.
That is to say, each cell’s individual dynamics would appear to be determinis-
tically Markovian. However the presence of gliders can render the probability
distributions of (11) to measure small but non-zero information transfer at cer-
tain points in the regular background domain (small enough to appear to be zero
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Fig. 1. ECA Rule 110: a. (top left) Raw CA (time is vertical); b. (top right) Summed
profile ts(i, n, k = 6) of local transfer entropies t(i, j, n, k = 6), positive values only
shown, grayscale (all with 16 colors) with max. 7.80 bits (black), min. 0.00 bits (white);
c. (middle left) t(i, j = 1, n, k = 20) (one cell to the right), positive values only, max.
4.95 bits (black), min. 0.00 bits (white); d. (middle right) t(i, j = 1, n, k = 20) ,
negative values only, max. 0.00 bits (white), min. -1.94 bits (black); e. (bottom left)
t(i, j = −1, n, k = 20) (one cell to the left), positive values only, max. 6.62 bits (black),
min. 0.00 bits (white); f. (bottom right) t(i, j = −1, n, k = 20), negative values only,
max. 0.00 bits (white), min. -2.05 bits (black).
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Fig. 2. ECA Rule 110: a. (top left) Raw CA; b. (top right) Summed profile ts(i, n, k =
16) of local transfer entropies t(i, j, n, k = 16), positive values only shown, grayscale
with max. 11.62 bits (black), min. 0.00 bits (white); c. (bottom left) t(i, j = 1, n, k = 16)
(one cell to the right), positive values only, max. 9.99 bits (black), min. 0.00 bits (white);
d. (bottom right) t(i, j = −1, n, k = 16) (one cell to the left), positive values only, max.
10.43 bits (black), min. 0.00 bits (white).

in Fig. 1). These small values in the domain are effectively an indication of the
absence of a glider, that is that the domain shall continue. These non-zero values
in the domain tend to be stronger in the wake of real gliders: because secondary
gliders often follow other gliders, there is a stronger indication of their absence.

While the results in Fig. 1b visually match previous filtering work, each indi-
vidual cell’s dynamics are in fact non-Markovian, so using k → ∞ would provide
a more correct estimation of the information transfer in this system. Achieving
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Fig. 3. ECA Rule 146: a. (top left) Raw CA; b. (top right) Summed profile ts(i, n, k =
16) of local transfer entropies t(i, j, n, k = 16), positive values only shown, grayscale
with max. 13.50 bits (black), min. 0.00 bits (white); c. (bottom left) t(i, j = 1, n, k = 16)
(one cell to the right), positive values only, max. 13.50 bits (black), min. 0.00 bits
(white); d. (bottom right) t(i, j = −1, n, k = 16) (one cell to the left), positive values
only, max. 10.66 bits (black), min. 0.00 bits (white).

the limit k → ∞ is computationally infeasible, but reasonable estimates of the
probability distributions can be made for finite values of k in finite CA runs:
we therefore increase the destination conditioning length under consideration to
k = 16. We plot t(i, j, n, k = 16) for rule 110 for j = 1 and -1, and the summed
profile ts(i, n, k = 16), in Fig. 2. Information transfer is highlighted almost ex-
clusively now in the direction of the macroscopic glider motion; this is even more
closely aligned with our expectations than was seen for k = 6. Much less of the
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gliders are highlighted than for k = 6 or other techniques, with larger values of
information transfer concentrated around the leading time-edges of the gliders:
this indicates that much of the dynamics following the leading glider edges ap-
pear to have comprised non-traveling information. The small, non-zero transfer
in the domain remains, but these results provide quantitative evidence that glid-
ers are the dominant information transfer elements here. This is an important
distinction to previous filtering work: while the filtered results may appear sim-
ilar, it is only local information transfer style filtering that provides quantitative
evidence that gliders are the dominant information transfer agents.

Similarly, note that stationary (i.e. vertical) gliders are not highlighted by
this local transfer entropy method, while they are highlighted by other filtering
methods (e.g. [8]). With reference to the figures included here, in Fig. 2b this
is noticeable in a somewhat similar fashion to the leading glider edges only be-
ing highlighted. Stationary gliders are not highlighted as significant information
transfer because the next states of their component cells are (almost) completely
predictable from their pasts, as is the case in the regular domain: there is no
independent transfer from the neighbors of those cells.

We also investigated rule 146, which contains domains walls against the back-
ground domain. Application of local transfer entropy to the sample run in Fig. 3a
highlights the domain walls as containing strong information transfer in each di-
rection of measurement (see Fig. 3c and Fig. 3d). A complete picture is given by
its summed ts(i, n, k = 16) profile in Fig. 3b: the domain walls clearly contain
much stronger information transfer than the domain. This highlighting of the
domain walls is similar to that produced by other filtering techniques (e.g. [14]),
but again quantitatively confirms the domain walls as the dominant information
transfer agents.

6 Conclusion

In characterizing the information transfer into each spatiotemporal point in a
complex system, the local transfer entropy presents insights that cannot be ob-
tained using the averaged measure alone. Local transfer entropy is a valid filter
for coherent structure in CAs, and quantitatively supported the long-held conjec-
ture that particles, gliders and domain walls are the information transfer agents
in CAs. It is novel in comparison to other filtering methods: it provides views of
information transfer in each generic channel or direction, and highlights subtly
different parts of emergent structure (i.e. those which facilitate the information
transfer, being the leading glider edges).

The localization of transfer entropy is also a useful tool for investigating para-
meters of the transfer entropy itself. Here, our results underlined the importance
of appropriate destination conditioning lengths, and we intend to use the local
metric to investigate other variants of the transfer entropy (e.g. conditioning not
only on the past history of the destination but on other information sources) in
future work. We intend to provide a more complete analysis of the local transfer
entropy metric, its variants, and their application to CAs in the near future.
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Separately, we are examining the manner in which the local measure of infor-
mation transfer introduced here combines with information storage and modifi-
cation to form three axes of complexity as individual elements of computation
[20].

In providing evidence that particles are the dominant information transfer
agents in CAs, this result also provides the reverse evidence that transfer en-
tropy is the appropriate measure for information transfer in complex systems.
That being said, a comparison should be made with a localization of “informa-
tion flow” [18] in future work. Local transfer entropy is ready to be applied to
more complex systems (e.g. microtubules [6]), for which it may prove similar
conjectures about information transfer.
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Abstract. Cell pattern formation has a crucial role in both artificial
and natural development. This paper presents an artificial development
model for cell pattern generation based on the cellular automata (CA)
paradigm. Cellular growth is controlled by a genome consisting of an
artificial regulatory network (ARN) and a series of structural genes. The
genome was evolved by a Genetic Algorithm (GA) in order to produce
2D cell patterns through the selective activation and inhibition of genes.
Morphogenetic gradients were used to provide cells with positional infor-
mation that constrained cellular replication. After a genome was evolved,
a single cell in the middle of the CA lattice was allowed to reproduce
until a cell pattern was formed. The model was applied to the problem
of growing a French flag pattern.

Keywords: Artificial Development, Cell Pattern, French Flag Problem,
Genetic Algorithm, Artificial Regulatory Network, Cellular Automata.

1 Introduction

In biological systems, development is a fascinating and very complex process
that involves following an extremely intricate program coded in the organism’s
genome. One of the crucial stages in the development of an organism is that
of pattern formation, where the fundamental body plans of the individual are
outlined. It is now evident that gene regulatory networks play a central role in
the development and metabolism of living organisms [1]. It has been discovered
in recent years that the diverse cell patterns created during the developmental
stages are mainly due to the selective activation and inhibition of very specific
regulatory genes.

Over the years, artificial models of cellular development have been proposed
with the objective of understanding how complex structures and patterns can
emerge from one or a small group of initial undifferentiated cells [2][3][4][5][6]. In
this paper we propose an artificial development model that generates 2D patterns
by means of the selective activation and inhibition of development genes under
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the constraints of morphogenetic gradients. Cellular growth is achieved through
the expression of structural genes, which are in turn controlled by an Artificial
Regulatory Network (ARN) evolved by a Genetic Algorithm (GA). The ARN
determines when cells are allowed to grow and which gene to use for reproduction,
while morphogenetic gradients constrain the position at which cells can replicate.
Both the ARN and the structural genes constitute the artificial cell’s genome. In
order to test the functionality of the development program found by the GA, we
applied the evolved genome to a cellular growth model that we have successfully
used in the past to develop simple 2D and 3D geometrical shapes [7].

The paper starts with a section describing the cellular growth model, followed
by a section presenting the morphogenetic gradients used. The artificial cell’s
genome is presented next, followed by a section describing the GA and how it
was applied to evolve the genome. Results are presented next, followed by a
section of conclusions.

2 Cellular Growth Model

Cellular automata (CA) were chosen as models of cellular growth, as they provide
a simple mathematical model that can be used to study self-organizing features
of complex systems [8]. CA are characterized by a regular lattice of N identical
cells, an interaction neighborhood template η, a finite set of cell states Σ, and a
space- and time-independent transition rule φ which is applied to every cell in
the lattice at each time step.

In the cellular growth model presented in this work, a 33 × 33 regular lattice
with non-periodic boundaries was used. The set of cell states was defined as
Σ = {0, 1}, where 0 can be interpreted as an empty cell and 1 as an occupied or
active cell. The interaction template η used was an outer Moore neighborhood.
The CA’s rule φ was defined as a lookup table that determined, for each local
neighborhood, the state (empty or occupied) of the objective cell at the next time
step. For a 2-state CA, these update states are termed the rule table’s “output
bits”. The lookup table input was defined by the binary state value of cells in
the local interaction neighborhood, where 0 meant an empty cell and 1 meant
an occupied cell [9]. A cell can become active only if there is already an active
cell in the interaction neighborhood. Starting with an active cell in the middle of
the lattice, the CA algorithm is applied allowing active cells to reproduce for 100
time steps according to the rule table. During an iteration of the CA algorithm,
the sequence of reproduction of active cells is randomly selected in order to avoid
artifacts caused by a deterministic order of cell reproduction. Finally, cell death
is not considered in the present model for the sake of simplicity.

3 Morphogenetic Gradients

Since Turing’s seminal article on the theoretical influence of diffusing chemical
substances on an organism’s pattern development [10], the role of these mole-
cules has been confirmed in a number of biological systems. These organizing
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substances have been termed morphogens due to their role in driving morpho-
genetic processes. In our proposed development model, morphogenetic gradients
were generated similar to those found in the eggs of the fruit fly Drosophila, where
orthogonal gradients offer a sort of Cartesian coordinate system [11]. These gra-
dients provide reproducing cells with positional information in order to facilitate
the spatial generation of patterns. The artificial morphogenetic gradients were
set up as suggested in [3], where morphogens diffuse from a source towards a
sink, with uniform morphogen degradation throughout the gradient.

Before cells were allowed to reproduce in the cellular growth model, morpho-
genetic gradients were generated by diffusing the morphogens from one of the
CA boundaries for 1000 time steps. Initial morphogen concentration level was
set at 255 arbitrary units, and the source was replenished to the same level at
the beginning of each cycle. The sink was set up at the opposite boundary of
the lattice, where the morphogen level was always set to zero. At the end of
each time step, morphogens were degraded at a rate of 0.005 througout the CA
lattice. We defined two orthogonal gradients in the CA lattice, one generated
from left to right and the other from top to bottom (Fig. 1).

0

50

10 0

150

20 0

250

30 0

-16 -12 -8 -4 0 4 8 12 16

Position

M
or

ph
og

en
 c

on
ce

nt
ra

tio
n

(a) (b) (c)

Left to Right

Top to Bottom

Fig. 1. Morphogenetic gradients (a) Left to Right; (b) Top to Bottom; (c) Morphogen
concentration graph

4 Genome

Genomes are the repository of genetic information in living organisms. They
are encoded as one or more chains of DNA, and they regularly interact with
other macromolecules, such as RNA and proteins. Artificial genomes are typically
coded as strings of discrete data types. The genome used in this model was
defined as a binary string starting with a series of ten regulatory genes, followed
by a number of structural genes (see Fig. 2).

4.1 Regulatory Genes

The series of regulatory genes at the beginning of the genome constitutes an Ar-
tificial Regulatory Network (ARN). ARNs are computer models whose objective
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is to mimic to some extent the gene regulatory networks found in nature. ARNs
have previously been used to study differential gene expression either as a com-
putational paradigm or to solve particular problems [12][13][14][15]. The gene
regulatory network implemented in this work is an extension of the ARN pre-
sented in [16], which in turn is based on the model proposed by Banzhaf [14].

In the present model, each regulatory gene consists of a series of eight in-
hibitor/enhancer sites, a series of five regulatory protein coding regions, and
two morphogen threshold activation sites that determine the allowed positions
for cell reproduction (Fig. 2). Inhibitor/enhancer sites are composed of a 12-bit
function defining region and a regulatory site. Regulatory sites can behave either
as an enhancer or an inhibitor, depending on the configuration of the function
defining bits associated with them. If there are more 1’s than 0’s in the defining
bits region, then the regulatory site functions as an enhancer, but if there are
more 0’s than 1’s, then the site behaves as an inhibitor. Finally, if there is an
equal number of 1’s and 0’s, then the regulatory site is turned off [17].

Regulatory protein coding regions “translate” a protein using the majority
rule, i.e. for each bit position in these regions, the number of 1’s and 0’s is
counted and the bit that is in majority is translated into the regulatory protein.
The regulatory sites and the individual protein coding regions all have the same
size of 32 bits. Thus the protein translated from the coding regions can be
compared on a bit by bit basis with the regulatory site of the inhibitor and
enhancer sites, and the degree of matching can be measured. As in [14], the
comparison was implemented by an XOR operation, which results in a “1” if the
corresponding bits are complementary. Each translated protein is compared with
the inhibitor and enhancer sites of all the regulatory genes in order to determine
the degree of interaction in the regulatory network. The influence of a protein
on an enhancer or inhibitor site is exponential with the number of matching
bits. The strength of excitation en or inhibition in for gene i with i = 1, ..., n is
defined as
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eni =
1
v

v∑

j=1

cje
β(u+

ij−u+
max) and (1)

ini =
1
w

w∑

j=1

cje
β(u−

ij−u−
max) , (2)

where n is the total number of regulatory genes, v and w are the total number of
active enhancer and inhibitor sites, respectively, cj is the concentration of protein
j, β is a constant that fine-tunes the strength of matching, u+

ij and u−
ij are the

number of matches between protein j and the enhancer and inhibitor sites of
gene i, respectively, and u+

max and u−
max are the maximum matches achievable

(32 bits) between a protein and an enhancer or inhibitor site, respectively [14].
Once the en and in values are obtained for all regulatory genes, the corre-

sponding change in concentration c for protein i in one time step is calculated
using

dci

dt
= δ (eni − ini) ci , (3)

where δ is a constant that regulates the degree of protein concentration change.
Protein concentrations are updated and if a new protein concentration results

in a negative value, the protein concentration is set to zero. Protein concen-
trations are then normalized so that total protein concentration is always the
unity. Parameters β and δ were set to 1.0 and 1.0×106, respectively, as previously
reported [16].

The morphogen threshold activation sites provide reproducing cells with po-
sitional information as to where they are allowed to grow in the CA lattice.
There is one site for each of the two orthogonal morphogenetic gradients de-
scribed in Section 3. These sites are 9 bits in length, where the first bit defines
the allowed direction (above or below the threshold) of cellular growth, and the
next 8 bits code for the morphogen threshold activation level, which ranges from
0 to 28 − 1 = 255. If the site’s high order bit is 0, then cells are allowed to
replicate below the morphogen threshold level coded in the lower order eight
bits; if the value is 1, then cells are allowed to reproduce above the threshold
level. Since in a regulatory gene there is one site for each of the two orthogonal
morphogenetic gradients, for each pair of morphogen threshold activation levels,
the pair of high order bits defines in which of the four relative quadrants cells
expressing the associated structural gene can reproduce. Quadrants can have
irregular edges because morphogenetic gradients are not perfectly generated due
to local morphogen accumulation close to the non-periodic boundaries of the CA
lattice.

4.2 Structural Genes

Structural genes code for the particular shape grown by the reproducing cells
and were obtained using the methodology presented in [9]. Briefly, the CA rule
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table’s output bits from the cellular growth model described in Section 2 were
evolved by a GA in order to produce predefined 2D shapes.

Structural genes are always associated to the corresponding regulatory genes,
that is, structural gene number 1 is associated to regulatory gene number 1
and its related translated protein, and so on. A structural gene was defined as
being active if and only if the regulatory protein translated by the associated
regulatory gene was above a certain concentration threshold. The value chosen
for the threshold was 0.5, since the sum of all protein concentrations is always
1.0, and there can only be a protein at a time with a concentration above 0.5.
As a result, only one structural gene can be expressed at a particular time step
in a cell. If a structural gene is active, then the CA lookup table coded in it is
used to control cell reproduction. Given that the outer Moore neighborhood used
in the cellular growth model consists of the eight cells surrounding the central
cell, structural genes are all 256 bits in length (28 = 256) [9]. The number of
structural genes used in the genome depended on the particular pattern grown,
as described in Section 6. Structural gene expression is visualized in the cellular
growth model as a distinct external color for the cell.

5 Genetic Algorithm

Genetic algorithms (GAs) are search and optimization methods based on ideas
borrowed from natural genetics and evolution [18]. A GA starts with a popula-
tion of chromosomes representing vectors in search space. Each chromosome is
evaluated according to a fitness function and the best individuals are selected.
A new generation of chromosomes is created by applying genetic operators on
selected individuals from the previous generation. The process is repeated until
the desired number of generations is reached or until the desired individual is
found.

The GA in this paper uses tournament selection with single-point crossover
and mutation as genetic operators. As in a previous report, we used the fol-
lowing parameter values [16]. The initial population consisted of 1000 binary
chromosomes chosen at random. Tournaments were run with sets of 3 individu-
als randomly selected from the population. Crossover and mutation rates were
0.60 and 0.15, respectively. Finally, the number of generations was set at 50, as
there was no significant improvement after this number of generations.

The fitness function used by the GA was defined as

Fitness =
1
k

k∑

i=1

insi − 1
2outsi

desi
, (4)

where k is the number of different colored shapes, each corresponding to an
expressed structural gene, insi is the number of active cells inside the desired
shape i with the correct color, outsi is the number of active cells outside the
desired shape i, but with the correct color, and desi is the total number of cells
inside the desired shape i. Thus, a fitness value of 1 represents a perfect match.
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6 Results

The GA described in Section 5 was used in all cases to evolve the genome for
the desired colored patterns, where each color represented a different structural
gene being expressed. After a genome was obtained, an initial active cell was
placed in the middle of the CA lattice and was allowed to reproduce controlled
by the gene activation sequence found by the GA and under the restrictions
imposed by the morphogenetic fields. In order to grow the desired pattern with
a predefined color and position for each cell, the regulatory genes in the ARN
had to evolve to be activated in a precise sequence and for a specific num-
ber of iterations inside the allowed space defined by the morphogenetic fields.
Not all GA experiments produced a genome capable of generating the desired
pattern.

The artificial development model was applied to what is known as the French
flag problem. The problem of generating a French flag pattern was first intro-
duced by Wolpert in the late 1960s when trying to formulate the problem of
cell pattern development and regulation in living organisms [19], and it has
been used since then by some authors to study the problem of artificial pat-
tern development [20]. In order to grow the French flag pattern, three different
structural genes were used. The first gene drove the creation of the central white
square, while the next two genes extended the central square to the left and
to the right, expressing the blue and the red color, respectively. The last two
structural genes do not code specifically for a square, instead they extend a ver-
tical line of cells to the left or to the right for as many time steps as they are
activated.

Figure 3 shows a 27 × 9 French flag grown from the expression of the three
structural genes mentioned above. The graph of the corresponding regulatory
protein concentration change over time is shown in 3(e). Starting with an initial
white cell (a), a white central square is formed from the expression of gene
number 1 (b), the left blue square is then grown (c), followed by the right red
square (d). The evolved morphogenetic fields are shown for each of the three
structural genes. Since the pattern obtained was exactly as desired, the fitness
value assigned to the corresponding genome was 1.

In order to increase the complexity of the pattern generated, four different
structural genes were used to grow a French flag with a flagpole pattern. The
first three structural genes are the same as those used to grow the simple French
flag pattern. A fourth gene was added to create the brown flagpole by growing a
single line of cells downward from the lower left corner of a rectangle. However,
when trying to evolve a genome to produce the French flag with a flagpole pat-
tern, it was found that the GA could not easily evolve an activation sequence
that produced the desired pattern. Using the same approach as in [16], in order
to increase the likelihood for the GA to find an appropriate genome, instead of
using one series of four structural genes, a tandem of two identical series of four
structural genes was used, for a total of eight structural genes. In that manner,
for creating the central white square, the genome could express either structural
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Fig. 3. Growth of a French flag pattern. (a) Initial cell; (b) Central white square with
morphogenetic field for gene 1 (square); (c) White central square and left blue square
with morphogenetic field for gene 2 (extend to left); (d) Finished flag pattern with
morphogenetic field for gene 3 (extend to right); (e) Graph of the protein concentration
change from the genome expressing the French flag pattern.
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Fig. 4. Growth of a French flag with a flagpole pattern. (a) Central white square with
morphogenetic field for gene 5 (square); (b) White central square and right red pattern
with morphogenetic field for gene 3 (extend to right); (c) White central square, right
red pattern and left blue square with morphogenetic field for gene 2 (extend to left);
(d) Finished flag with a flagpole pattern with morphogenetic field for gene 4 (flagpole);
(e) Graph of the protein concentration change from the genome expressing the French
flag with a flagpole pattern.

gene number 1 or gene number 5, for the left blue and right red squares it could
use genes 2 or 6, or genes 3 or 7, respectively, and finally for the flagpole it could
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make use of structural genes 4 or 8. Thus, the probability of finding an ARN that
could express a French flag with a flagpole pattern was significantly increased.

The 21 × 7 French flag with a flagpole pattern produced by the expression of
the configuration of structural genes mentioned above is shown in Fig. 4. The
graph for the corresponding regulatory protein concentration change is shown
in 4(e). After the white central square is formed (a), a right red pattern (b)
and the left blue square (c) are sequentially grown, followed by the creation of
the flagpole (d). The evolved morphogenetic fields are shown for each of the
four structural genes expressed. Note that the white central square is formed
from the activation of the first gene from the second series of structural genes,
while the other three genes are expressed from the first series of the tandem. It
should also be noted that the last column of cells is missing from the red right
square, since the morphogenetic field for the gene that extends the red cells to
the right precluded growth from that point on (Fig. 4(b)). On the other hand,
from the protein concentration graph in 4(e), it is clear that this morphogenetic
field prevented the growth of red cells all the way to the right boundary, as gene
3 was active for more time steps than those required to grow the appropriate
red square pattern. The fitness value assigned to this pattern was 0.96, which
corresponded to the most successful simulation we obtained when trying to grow
this particular pattern.

7 Conclusion

The results presented in this paper show that the model proposed can give
consistent results when evolving a genome that controls growth of predefined 2D
cell patterns starting with a single cell. In particular, it was found that using this
model it was relatively easy to generate a French flag pattern from the expression
of three structural genes, although some problems were encountered when trying
to obtain a slightly more complex pattern that involved the expression of four
genes.

In general, the model proved to be suitable for obtaining simple patterns in-
volving the activation of up to four genes, but more work is needed in order to
explore pattern formation of more complex forms, both in 2D and 3D. It is also
desirable to search for a development model that can reliably synchronize the
activation of more than four genes. Furthermore, in order to increase the useful-
ness of the model, interaction with the environment and other artificial entities
may be necessary. Until now our work has been devoted to achieving predefined
patterns in a kind of directed evolution. However, it would be desirable to let
cells evolve into a functional pattern under environmental constraints without
any preconceived notion of the final pattern. The long-term goal of our work
is to study the emergent properties of the artificial development process. It is
conceivable that highly complex structures could one day be built through the
interaction of myriads of simpler entities controlled by a development program.
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Abstract. Evolutionary games are used to model and understand com-
plex real world situations in economics, defence, and industry. Tradi-
tionally, gaming models exhibit interactions among different players or
strategies. In the literature, the number of rounds - that a game between
different players contains - was treated as an experimental parameter.
In this paper, we show for the first time the effect of the number of
rounds on the strategic interactions in the Iterated Prisoner’s Dilemma.
We show that there is a cyclic behavior between the strategies and that
the number of rounds per game has a significant affect on the strategies’
payoffs, thus the evolutionary process.

1 Introduction

Real life situations exhibit complex behaviors that affect the decisions of all
parties involved. Simple games with rich dynamics have been used to understand
emergent behaviors in complex situations. The Prisoner’s Dilemma (PD) game,
despite its simplicity, has been used extensively in modeling several complex real-
world problems such as in international politics, economics and social systems
[3].

Many biological systems are organized around cooperative interactions [12,13],
although natural selection is assumed to favor selfish behavior. Games have
proved to be a powerful tool to model and analyze how cooperation can evolve
in a population of selfish players, using the iterated version of games [3], or
structured populations [13] and investigating some interesting phenomenon such
as indirect reciprocity [12]. In evolutionary game theory, players are not assumed
to be rational but successful strategies (that have high utility) spread in the
population by being inherited or imitated [12]. The rationality in this context is
reflected by the player’s utility function. Thus, the utility gained by the strategies
has a great affect on their spread or elimination from the population.

In many studies [1,2,5,8,9,7,11,15], the PD game was used in modeling and
investigating several key aspects (i.e. cooperation evolution, history effect, num-
ber of players and information sharing). In spite of the diverse aspects that were
investigated, all these studies have a common issue. The number of rounds per
game between players was fixed to some experimental value - that differs from
one study to another - neglecting its potentially significant effect on the payoffs
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gained by the strategies and thus, the evolutionary dynamics of their models. In
this paper, we empirically explore the relationships between strategies and show
that the number of rounds in any interaction has a great affect on the utility
gained by the players. These conclusions are not an artifact of the PD game but
apply generally to other evolutionary games.

The rest of the paper is organized as follows: in the following section, we
introduce the Iterated Prisoner’s Dilemma. Sections III and IV illustrate our
experimental setup and results, respectively. Conclusions and future work then
follow.

2 Iterated Prisoner’s Dilemma

The PD game is a non-zero sum and non-cooperative game. The basic form
of the PD game is a two-player game where there are two available choices
to each player: to cooperate or to defect. The payoff matrix of the PD game
(figure 1) must satisfy two conditions related to the players’ preferences [8,15]:
T > R > P > S and 2 × R > (S + T ).

The PD game models the conflict between self interest (being selfish) and
the group interest; hence the dilemma. An individual rationality alone leads to a
poor outcome because of the existence of a Pareto optimal solution if both actors
cooperate. Iterated Prisoner’s Dilemma (IPD) is a series of repeated rounds of the
PD game. This feature makes the PD game more capable of modeling complex
situations where future interaction between the actors is influenced by their
history during playing the game [1,2,3]. For a sufficiently large weight (discount
factor) for future interactions, cooperation can emerge spontaneously. This is
a very interesting characteristic to observe how cooperation may evolve among
a group of potentially selfish players [15]. In many real world situations, the
evolution of cooperation is considered the best solution for the long run because
it represents the maximum benefit for the group or society. As such, numerous
studies have been conducted of the dynamics of the IPD game in order to discover
under what conditions cooperation evolves.

Fig. 1. The payoff matrix of the 2-player PD Game
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Understanding the properties of successful strategies in IPD is vital to our
understanding of the dynamics of the game. Axelrod [1,3] attempted to discover
the properties of successful strategies in 2-players PD game through the forma-
tion of a computer tournament of 14 strategies that were submitted by different
researchers. The tournament was held in a round robin form (each strategy plays
with each other strategy including itself and the RANDOM strategy). Axelrod
discovered that properties like “to be nice” (not to be the first to defect), “to be
forgiving” (have propensity to cooperate after other’s defection, avoiding defec-
tion echo that will lead to unending mutual punishment) and “to be provocative”
(not to be exploited) existed in the top ranked strategies. The winner TIT FOR
TAT (TFT) strategy (start by cooperation and then do whatever the other
player does) depends on reciprocity. Axelrod held a second tournament [2] after
announcing the results and analysis of the first one, 62 strategies participated
and the winner was again TFT. The results of the second tournament were very
surprising because all participants knew the results of the first tournament but
no one could get a better performing strategy than TFT.

A more sophisticated way was needed to investigate the conditions of coopera-
tion. Axelrod [1,5] proposed the idea of using genetic algorithms to evolve more
complex strategies. These strategies co-evolve in a population of competitive
strategies. Lindgren [11] started with very simple strategies and used Genetic
Algorithms (GA) to evolve them to more complex ones. Axelrod [4,5] used GA
for evolving strategies where the strategy representation contains a history por-
tion which is used in remembering the players’ actions for the previous l history
steps. If there were 3 players and two history steps, then the history portion will
consist of 6 bits (2 bits for each player indicating his own previous actions and
4 bits indicating the other players’ actions). The rest of the strategy represen-
tation will be a lookup table of size 2nl where n is the number of players. Each
possible combination of a history has a corresponding action.

Yao and Darwen [15] proposed another representation that is more space-
effective than Axelrod’s representation in n player games. In their representa-
tion, the history portion in the strategy representation will hold the player’s
own history and the number of players who cooperated in each of the considered
historical steps. This representation overcomes the drawbacks of Axelrod’s rep-
resentation like keeping unnecessary information about each player’s action and
the chromosome length that is significantly affected by the number of players
[15]. The rest of the strategy chromosome is also a lookup table. Different ways
for evaluating the fitness of the evolved strategies were suggested. Axelrod [4,5]
used 8 representative strategies from his second tournament, similarly in [10],
six fixed strategies (ALLC, ALLD, TFT, TFTT, PAVLOV and RANDOM) were
used in evaluating the fitness, where these six strategies provide a good mix of
cooperators, defectors and strategies utilizing memory. Darwen and Yao [7,8,15]
used co-evolution for evaluating the fitness, where each strategy in the population
plays against every other strategy in the population, causing the environment
to continuously evolve. Darwen and Yao [7] used a GA to investigate the time
needed for the population to converge (in terms that the population bias will
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be greater than 85%) and the effect of seeding the initial population with well
known strategies such as TFT. Also in [15] the effect of the number of players
and the number of history steps taken into account on the evolution of cooper-
ation were discussed. Yao [14] studied evolutionary stable strategies (Collective
Stability [3]), where strategies are called stable if they can’t be invaded by other
strategies.

Vital features were neglected in the PD abstraction formulation like the possi-
bility of communication between players and uncertainty about the other players’
previous actions [3]. Introducing new features to the PD game and considering
different scenarios for the game were very helpful to move the PD game closer to
modeling complex real world situations. Introducing different levels of coopera-
tion in the PD game and investigating their influence on the emergence of full
mutual cooperation was investigated in [8]. The introduction of multiple levels
of cooperation into IPD helps in studying the dynamics of real-world situations
that offer intermediate responses between full cooperation and full defection.
Chang and Yao [6] introduced noise to the IPD game, investigated the effect of
different (low and high) noise levels and how modeling mistakes in the players’
decisions influence the evolution of cooperation and the behavioral diversity in
the multiple levels of cooperation (how different the played choices are in the
game). Also studied was the effect of reputation on the dynamics of the game
[16] where information about players’ past actions are available for future oppo-
nents. Information sharing between IPD players was introduced in [9], where an
extra bit was added to the history portion, this bit holds the value of 0 if the
decisions to cooperate were greater than the decisions to defect in the previous
generation. The Addition of this extra bit doubles the chromosome length and
alters the dynamics of the game.

3 Experimental Design

Our aim in this paper is to investigate the effect of number of rounds in evolu-
tionary games (IPD as an example). We first investigated the number of rounds
in a non-evolutionary sense, then using conclusions drawn from our first ex-
periment, we conducted another set of experiments using evolutionary model.
Axelrod’s representation [4,5] is used (sufficient for 2-players IPD game) and the
simplest case where the players remember only one history step (remember his
own and opponent’s previous action) is considered. A lookup table in this case
is represented by a chromosome of six bits where the first two bits represent
the history portion in the chromosome and the other 4 bits for the strategy
itself as shown in figure 2, the history portion is used in determining the first
action for the strategy in any game. We carried out two types of experiments.
For the first experiment, we considered all the possible lookup representations
for one history step, a total of 64 lookup tables (26, where 6 is the total length).
Originally, we have 16 different strategies, and each of these 16 strategies has
four variants according to the different histories that can be associated with it
(’00’, ’01’, ’10’ and ’11’). For any strategy, the history portion is mapped from a
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Fig. 2. The lookup table representation

binary representation to a real one in order to determine the location of the first
action. For a strategy, history portions that will lead to the same initial actions
will not affect the strategy behavior, and are considered to be redundant. We
start encapsulating the lookup representation space by considering two history
portion variants for each strategy, one that will lead to a ‘C’ initial action and
another that will lead to a ‘D’ initial action. The special cases, always cooperate
‘0000’ and always defect ‘1111’ strategies were considered once because their
actions are fixed and independent from the history portion. After the encapsu-
lation, we have in total 30 unique lookup representations. We then established a
tournament between all the lookup representations and investigated the results
of the tournament after each round.

In the second experimental setup, We used GA to investigate the cooperation
level that evolves in a population of IPD players using conclusions from our first
experiment. A population of N = 100 strategies is initialized randomly. Each
player is evaluated by playing against each other player in the population; hence,
each player plays (N − 1) 2-players IPD game. Each game lasts for a certain
pre-defined number of rounds (varied to serve analytical purposes). After all
players finish playing against each other, each player is awarded a cumulative
payoff from the played (IPD) games. The fitness is calculated by dividing a
strategy’s cumulative payoff by the number of games it participated in multiplied
by the number of rounds in each IPD game to obtain the average payoff per
round for this strategy. Proportional (roulette wheel) selection is used where
the probability of selecting a strategy for mating is proportional to the ratio
between its payoff and the cumulative payoff of the whole population. We then
apply a one-point crossover and bit mutation for generating new offspring with
probabilities of 0.6 and 0.001 respectively. These parameters settings were used
by Yao and Darwen [15]. We used the following values for the IPD payoff matrix
for both experiments where R = 3, S = 0, P = 1 and T = 5.

4 Results and Discussions

Using our first experimental setup, we tried to investigate the interplay of the
interactions between different lookup tables (strategies with different initial
actions). Considering the unique lookup tables, we established a pair-wise
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tournament between all the lookup tables (each two play against each other
an IPD game). We monitored the results of the tournament across the rounds,
categorizing the result of a game into three types: Win, Draw and Loss. A win-
ner strategy is the one that scores higher cumulative payoff (across the rounds)
than its opponent, while a tie happens when both competing strategies score
the same cumulative payoff. We found that after what we call, a “warming-up”
period, each lookup table starts repeating its results against all the other lookup
tables. For example, as shown in table 1, TFT strategy ‘0101’ after the first two
rounds (the warming-up period) starts repeating its results in a cyclic behavior
of length 12 rounds. At rounds 3 and initial action ‘C’, it does not win any game,
has a draw with 18 lookup tables and loses to 11 lookup tables. This behavior
is repeated exactly the same at round 15, as shown in table 1, it does not win
any game, has a draw and loses to exactly the same strategies as in round 3.
Comparing the TFT strategy results from rounds 3 to 14 with its results from
15 to 26, we will find that the strategies’ behavior is exactly repeated.

The explanation for this cyclic behavior is straight forward. Given that any
two strategies are fixed and deterministic, they will reproduce the same sequence
of actions if the history possessed by them is repeated. Knowing that the possible
histories between any two strategies are finite, the same history will be repeated
in an opposed game after a certain number of rounds. The warming-up period
is to overcome the effect of the pre-assumed initial action, that is independent
from the opponent that the strategy will face. The pre-assumed initial action

Table 1. Games’ results for the TFT strategy with ‘C’ and ‘D’ initial actions

(0)‘0101’ (0)‘0101’
Rounds Win Draw Loss Win Draw Loss

1 0 14 15 15 14 0
2 0 14 15 15 14 0
3 0 18 11 11 18 0
4 0 18 11 11 18 0
5 0 14 15 15 14 0
6 0 19 10 10 19 0
7 0 15 14 14 15 0
8 0 17 12 12 17 0
9 0 18 11 11 18 0
10 0 16 13 13 16 0
11 0 14 15 15 14 0
12 0 21 8 8 21 0
13 0 15 14 14 15 0
14 0 15 14 14 15 0
15 0 18 11 11 18 0
16 0 18 11 11 18 0
17 0 14 15 15 14 0
18 0 19 10 10 19 0
19 0 15 14 14 15 0
20 0 17 12 12 17 0
21 0 18 11 11 18 0
22 0 16 13 13 16 0
23 0 14 15 15 14 0
24 0 21 8 8 21 0
25 0 15 14 14 15 0
26 0 15 14 14 15 0
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significantly affects the strategy performance against its opponents. For example,
the TFT strategy with ‘C’ initial action does not win any game and losses a
considerable number of games. The same strategy with ‘D’ initial action does
not lose any game and wins a considerable number of games. This behavior is
consistent with varying the number of rounds as is clear from table 1.

Not all the lookup tables share the same warming-up period or the same cycle
length. Table 2 shows the warming-up periods and the cycle lengths for all the
30 unique lookup tables. Some lookup tables (i.e. S1 - S7, S14, S15, S22, S23
and S30) have a cycle length of 1, others have a cycle length of 3 (i.e. S16, S17,
S28 and S29), 4 (i.e. S20, S21, S24 and S25), 6 (i.e. S26 and S27) and 12 (i.e.
S10 - S13, S18 and S19). Different initial actions do not affect the cycle length
of a strategy. But, different initial actions do affect the length of the warming-
up period, as shown in table 2. Until now, we were discussing the properties of
individual lookup tables. Considering the whole strategy space (all the 30 lookup
tables), what will be the warming-up period and the cycle length for the whole
system?. The warming-up period for the whole system will be the maximum
warming-up period possessed by all the strategies which is 6 rounds. Thus, after
a maximum of 6 rounds, all the strategies will enter their cycles. The cycle length
of the whole system is 12 rounds, which is the lowest (least) common multiple
(LCM) for all the strategies cycle lengths. Thus, after a warming-up period of
6 rounds, the results of games between strategies in the whole system will be
repeated every 12 rounds. In other words, assuming a population of strategies in
an evolutionary context, where each strategy plays against all other strategies
in the population an iterated IPD game that consists of a pre-defined number
of rounds. The results (in term of win, draw or loss) of all games played in the
population, if the game consists of 7 rounds or of 19 rounds or of 31 rounds
(any number of rounds that is more than 6 - warming-up period, and increased
continuously by 12 rounds - cycle length) will be the same.

But in an evolutionary context, the evolutionary process does not care much
about the results of games between strategies in term of win, draw and loss.
It cares only for the average payoff accumulated by a strategy from playing
against other strategies that exist in the population. A strategy’s average payoff
(fitness) is used to determine if it is a successful strategy that will be inher-
ited and imitated, compared to other strategies in the population. The question
now becomes: Do strategies accumulate the same payoff across different cycles,
knowing that the games’ results are fixed? For addressing such a question, using
our experimental first setup, we reported the average accumulated payoff by a
lookup table playing against all the other lookup tables - 15 complete cycles
for the whole system after the warming-up period - for 186 rounds per game.
These 15 complete cycles are sufficient that at least each strategy experienced
15 individual cycles. Figure 3 shows the average accumulated payoff by some
strategies across their different cycles. The dashed line represents a strategy’s
average payoff in its first cycle. For lookup tables such as S1 and S2, the average
payoff is fixed and does not change from one cycle to another, and this repre-
sents one type of lookup tables. But for the rest of the strategies in figure 3, this
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Table 2. The “warming-up” period and cycle length for each strategy

S Initial Action Strategy Warming-up Cycle Length
S1 # 0000 1 1
S2 0 0001 1 1
S3 1 0001 5 1
S4 0 0010 1 1
S5 1 0010 5 1
S6 0 0011 1 1
S7 1 0011 1 1
S8 0 0100 1 6
S9 1 0100 5 6
S10 0 0101 2 12
S11 1 0101 2 12
S12 0 0110 3 12
S13 1 0110 6 12
S14 0 0111 5 1
S15 1 0111 1 1
S16 0 1000 4 3
S17 1 1000 6 3
S18 0 1001 6 12
S19 1 1001 3 12
S20 0 1010 5 4
S21 1 1010 5 4
S22 0 1011 5 1
S23 1 1011 1 1
S24 0 1100 5 4
S25 1 1100 5 4
S26 0 1101 5 6
S27 1 1101 1 6
S28 0 1110 6 3
S29 1 1110 4 3
S30 # 1111 1 1

is not the case. The average payoff keeps changing from one cycle to the next
in an increasing (i.e. S8, S10 and S13) or decreasing (i.e. S3, S9, S11, S17 and
S19) pattern (except S20 and S21S). The initial action showed a great effect on
average payoff that a strategy accumulates across cycles, although it does not
affect the cycle length. For example, S2 and S3 are the same strategy ‘0001’ but
with different initial actions. It is clear from figure 3 that the average payoff of
S2 is fixed across cycles but the average payoff of S3 is changing in a decreasing
pattern. It is clear also that the average payoff that a strategy accumulates in
its first cycle (the dashed line) varies dramatically depending on the position
in the cycle. The differences between a strategy’s average payoff across cycles is
large in early cycles. But these differences start vanishing after a considerable
number of cycles, and also the average payoff becomes stable and approximately
a straight line, which indicates that the position in the cycle does not matter
any more.

After showing the effects of number of rounds in a non-evolutionary sense,
we will illustrate these effects in an evolutionary environment using our second
experimental setup. Figure 4 shows the cooperation level that evolves if we set
the number of rounds per game to be within the warming-up period (from 1 to
6 rounds per game). The cooperation level keeps increasing by the increase in
the number of rounds. But the cooperation level is very low, and approximately
the nash equilibrium of the PD game in very early rounds (1 and 2 rounds



80 A. Ghoneim, M. Barlow, and H.A. Abbass

Fig. 3. The average payoff accumulated by different strategies (i.e. S1-S3, S8-S11, S13,
S17 & S19 - S21) by playing against all other strategies, the dashed line indicates the
average payoff of the strategy’s first cycle.

per game) which means that cooperation does not evolve at all (as if we are
in the zero history case). Thus, setting the number of rounds per game to be
in the warming-up period will evolve a very low level of cooperation and the
model’s results will be misleading. We then investigated the cooperation levels
that evolve inside the cycles. We set the number of rounds to be in the first cycle
(from 7 to 18 rounds per game). Figure 5 shows the average payoff of 30 runs at
the last generation (generation 500), it is clear that the average payoff changes
dramatically depending on your positions in the cycle. The difference between the
maximum average payoff obtained (at 13 rounds per game) and the minimum one
(at 8 rounds per game) in the first cycle is 0.804, which is considered relatively
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Fig. 4. The average payoff in 30 runs for the warming-up period, from 1 to 6 rounds
per game

Fig. 5. The average payoff of the last generation in 30 runs for system cycles 1, 15, 17
& 20.

a high difference when compared to the payoff matrix cardinalities we are using.
Comparing the average payoffs obtained in both cycle 1 and cycle 15 (shown in
figure 5), it is clear that the variance of average payoffs in cycle 15 (from 175 to
186 rounds per game) is much smaller where the difference between the maximum
average payoff and the minimum is 0.257. This indicates that the dynamics of
the evolutionary model is almost stable after a considerable number of cycles.
We can observe in cycle 15 that the average payoff is even repeated in different
number of rounds (i.e. the same in 176, 182 and 185 rounds per game, and in 177
and 178 rounds per game, also in 175, 181 and 184 rounds per game), this is not
the case in cycle 1. Figure 5 shows also the average payoffs obtained in cycle 17
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and 20, where the difference between the maximum and the minimum average
payoffs obtained is continuously decreasing, 0.161 and 0.135, respectively. The
number of rounds issue is directly related to the computational effort of the
evolutionary model. For early system cycles, the dynamics of the game must be
investigated at each and every step of the cycle. After a considerable number of
cycles (i.e. 20 cycles), running the evolutionary model at any step of the cycle is
sufficient to obtain the true and accurate dynamics.

5 Conclusion and Future Work

The number of rounds per evolutionary game has been treated as an experi-
mental parameter in the literature. In this paper, we investigated the effect of
number of rounds per game. We showed that there is a cyclic behavior in the
strategic interactions, and that the average payoff gained by a strategy will be
affected dramatically as a function the number of the cycle and its position in-
side the cycle (for early cycles). Moving to evolutionary models, we showed that
a very low cooperation level evolves within the warming-up period. Setting the
number of rounds to be in the first system cycle will give a misleading indicator
for the cooperation level. In order to determine the true dynamics of evolution-
ary games, the number of rounds has to be determined carefully to reflect the
true payoff that a player accumulates, and this in turn will affect the evolution-
ary process and the evolutionary models’ conclusions. Taking this study a step
further, investigating these conclusions using other strategy representations will
be of great benefit.
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Abstract. This paper addresses the topic of how architectural visual
experience can be represented and utilised by a software system. The
long-term aim is to equip an artificial agent with the ability to make
sensible decisions about aesthetics and proportions. The focus of the
investigation is on the feature of line distributions extracted from digi-
tal images of house façades. It is demonstrated how the dimensionality
reduction method isomap can be applied to calculate non-linear “street-
manifolds” where each point on the manifold corresponds to a house
façade. Through interpolation between manifold points and the applica-
tion of an inverse Hough transform, basic structure plans for new house
façades are obtained. If the interpolated points are close to the manifold
it can be argued that the new plans reflect the character of the surround-
ing streetscape. The method is also demonstrated using basic examples
which can be represented by circles.

1 Introduction

Aesthetical perception is an important factor in understanding the interaction
of a living individual with its environment. The discipline of environmental aes-
thetics argues that the environment is fully integrated with the individual [1]
and that “aesthetic values pervade the entire range of human culture” [2] which
includes environmental and architectural design of gardens, landscapes, cities,
and virtual space.

The concept of streetmanifolds was introduced in previous papers [5,6] to
provide a holistic geometrical representation of the visual experience which can
be gained through evaluation of a large set of house façades. Navigation in the
streetmanifold would correspond to continuous morphing and interpolating be-
tween façade designs represented by the data set of images of house façades.
The concepts of holism, continuity, and clustering are associated with manifold
learning [26,29] but can also be found in Gestalt psychology [18,30] which has
close links to the concepts of visual neuroscience [7].

The hypothesis of the present study is that the visual experience gained by
an architect through visual perception of thousands of house façades during his
education and professional life may be captured in a structure which corresponds
to some form of streetmanifold.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 84–95, 2007.
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The house façades along a street contribute to the character of a streetscape
[9,27,28]. This is an important factor for architects who design a new house for
an empty spot between the other houses of a street such that the new house
harmoniously relates to the neighbourhood [12].

The present study’s streetmanifolds are based on the calculation of pairwise
distances between digital images of house façades. At the current stage of the
project the focus is on an important feature in the visual perception of houses
which is the distribution of lines determined by the edges of the main compo-
nents of a house façade. Typically most of the lines have horizontal or vertical
direction with a few approximately diagonally oriented lines along the roof or
gable. Figure 1 shows examples of house façades with virtual lines along edges
extracted using a Hough transform [14,24].

The approach to take line directions as the central feature for the calculation
of streetmanifolds is supported by research in visual neuroscience which found
that detection of edge directions is a key component of the human visual sys-
tem [15,19]. It also was found that the visual system has specialised areas for
representation of different entities such as buildings [11].

The main new contribution of the present article is to utilise the streetmani-
folds calculated from our dataset of house façades in [5] to generate basic plans
for new house façades. The new plans are distributions of lines which are obtained
through linear interpolation of points on the streetmanifold and application of
an inverse Hough transform.

Previous related work which addresses how artificial life methods can be ap-
plied in architecture include philosophical discussions [21] or software develop-
ment associated with the area of emergent design [13,20,22]. Reich [21] addressed
the topic of how aesthetic judgment can be incorporated in computational de-
sign. He claimed that aesthetic criteria are embedded in designers’ expertise and
their use is manifested in existing designs. Reich discussed how rationalistic and
romanticistic aesthetic criteria can synergistically be applied to design. A prac-
tical example was presented in a system for the design of cable-stayed brides.
Frazer [10] proposed a generative design tool for architects based on cellular au-
tomata. An artificial life based emergent design software system was developed
by Ross et al. [22] which allows architects to endow elements of an architectural
scenario with agency and dynamic spatial interaction. Hemberg et al. [13] devel-
oped computational generative design software for architects which can generate
three dimensional forms and surfaces. Their system used evolutionary algorithms
and L-systems grammars with the aim of being able to grow and evolve organic
forms.

The remaining sections of this paper address the topic of manifold learning
(section 2), some basic examples of learning circle manifolds (section 3), the
procedure required to extract a streetmanifold from a set of digital images of
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Fig. 1. Six clusters of houses (A-F) found in the streetmanifolds

house façades (section 4), and a description of how to generate plans for new
houses through interpolation of manifold points (section 5). In section 6 a brief
discussion and summary of the results is provided.

2 Manifold Learning

Manifolds are locally Euclidean spaces with some additional very general mathe-
matical properties [25]. In dimension one they appear as continuous deformations
of lines and circles and in dimension two they are surfaces derived from spheres,
tori, pretzel surfaces, or similar objects. The manifold concept generalises to
higher dimensions.
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Manifold learning describes algorithms for non-linear dimensionality reduc-
tion [4,23]. The aim of manifold learning algorithms is to detect the essential
underlying geometric structure of a high-dimensional data set, to extract it as
a low-dimensional manifold and to embed it faithfully into a low-dimensional
space.

In contrast to the relatively new manifold learning techniques, traditional
methods for dimensionality reduction such as principal component analysis
(PCA) [16] or multidimensional scaling (MDS) [8] were designed for reducing
the dimensionality of data when the underlying structure was linear.

Two manifold learning methods, isomap [26] and maximum variance unfolding
(MVU) [29], have been employed in the present project to calculate streetman-
ifolds [5]. Both methods can be applied by first calculating a distance matrix
based on a weighted k-nearest neighbour graph of the data points.

In isomap [26] these pairwise distances, which can be regarded as approxima-
tions to geodesic distances on the manifold, are fed into MDS. That is, isomap
can be regarded as a modification of MDS where instead of the Euclidean dis-
tances approximations to geodesic distances are used. MDS then maps the data
into a lower dimensional space while preserving the pairwise distances [8].

The aim of MVU [29,23] is to maximise the sum of pairwise distances of all
data points, i.e.

∑
ij

(
‖yi − yj‖2 · δNN(xi, xj)

)
, where δNN (xi, xj) is 1 if xi and

xj are nearest neighbours and 0 otherwise; the maximisation is subject to two
conditions which postulate that: (I) distances between nearest neighbour inputs
should be the same as between the associated outputs, i.e. ‖yi−yj‖2 = ‖xi−xj‖2

and (II) the outputs should be centered at the origin, i.e.
∑

i yi = 0.

Fig. 2. Circle extracted from images of a rotating shackle using 4-isomap
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3 Extracting Circle Manifolds

A simple example of how manifold learning works is shown in figure 2. A sequence
of digital images of a rotating shackle was taken, i.e. the underlying dynamics of
the data set was a rotation. The dimension of the space of digital images is the
number of pixels in each image, i.e. 192 × 292. Isomap with k = 4 was able to
extract a 1-dimensional circle embedded in R2 from the rotating shackle data.

In a second experiment, instead of taking pictures of a rotating object, we
rotated the camera at the center point of a circle. Figure 3 shows that the result
4-isomap extracted from an image sequence taken by an HD video camera while
rotated in the middle of Wheeler place in Newcastle is, as expected, again a
circle. The data consisted of about 200 overlapping frames sampled from the
video sequence.

Fig. 3. Circle extracted by 4-isomap from images taken by an HD video camera rotating
about 360o in the middle of Wheeler place in Newcastle. For the experiment about
200 overlapping frames were extracted from the video sequence. Twelve of them are
displayed above together with the corresponding points on the circle manifold.
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4 Calculating Streetmanifolds

The calculation of the streetmanifolds was based on a dataset of several hundred
digital images of house façades which were taken in Newcastle and selected by
a team of researchers from architecture. Some example images are shown in
figure 1.

A line can be regarded as a set of points x = (x1, x2) ∈ R2 and can be
determined by using the Hessian normal form { x ∈ R2 ; [cosϕ, sin ϕ]·x−b = 0 },
where ϕ ∈ [0, 360o[ controls the slope of the line’s normal vector and b ∈ R is its
perpendicular distance from the origin. Using the Hough transform [14,24] each
image was associated with an array of discrete parameters (ϕ, b) ∈ [0, 360o[×R—
the Hough array—where each point corresponds to a line in the image.

For the application of isomap and MVU the distance between each pair of
Hough arrays was calculated. The discrete set of point values in the Hough arrays
was smoothed by multiplying each point in the array with a Gaussian function.
Then for each pair of arrays A = (aij) i=1,...,m

j=1,...,n
and B = (bij) i=1,...,m

j=1,...,n
their Euclid-

ean distance was calculated using d2(A, B) = (
∑

i=1,...,m
j=1,...,n

(aij − bij)
2)1/2. As an

alternative a distance based on the Bhattacharyya distance measure [3,17] was
applied after normalisation of the arrays: dBhat(A, B) = 1−

∑
i=1,...,m
j=1,...,n

√
aij

√
bij .

Application of isomap or MVU allowed to embed the manifold of Hough arrays
into two or three-dimensional space (figures 4, 5, and 6).

Fig. 4. Streetmanifold calculated with isomap and a Bhattacharyya based distance.
Greylevel encodes the third dimension.



90 S.K. Chalup et al.

Fig. 5. Streetmanifold calculated with MVU and a Bhattacharyya based distance. The
manifold is very similar to the manifold in figure 4. The same clusters can be identified.

To evaluate the streetmanifold we selected six clusters of houses (A-F) in fig-
ures 4, 5, and 6. Four representative houses from each of the six clusters are
shown in figure 1. We found (cf. [5]) that houses of category A were narrow and
had a relatively high percentage of vertical lines. In contrast the houses of cate-
gory B were wide and had strong horizontal and vertical components. Category
C had houses of medium width with many horizontal lines. The D category was
very similar to the C category but the houses were wider in D. In the E category
houses were hidden behind trees and the distribution of horizontal and vertical
lines tended to be homogeneous. The associated cluster was located at a close
to central position. Cluster F contained houses with average characteristics.

5 Generating Design Templates for New House Façades
Through Interpolation of Streetmanifold Points

The geometry of the streetmanifold is determined by the distances between all
records of the dataset. Therefore the streetmanifold calculated from the image
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Fig. 6. Streetmanifold calculated with MVU and Euclidean distance appears to have
a different shape but shows similar clusters as the manifolds in figures 4 and 5.

dataset of the houses of a street or neighbourhood can be regarded as a repre-
sentation of the aesthetical character of the streetscape.

Points on or close to the streetmanifold represent Hough arrays of façades
which have similar features as those of the images which were used to generate
the manifold. Through application of an inverse Hough transform it is possible
to generate for each manifold point a line distribution as shown in the middle
column of figure 7. These patterns of lines may be used as plans for architects
to outline basic proportions of a house which should fit into the streetscape.

In the present study several pairs of house façades were selected and for each
pair a linear interpolation of the associated Hough arrays was calculated. Then
an inverse Hough transform was applied to the result of the interpolation. Before
interpolation the Hough arrays were smoothed by multiplying each peak with a
Gaussian function. The inverse Hough transform was calculated by selecting the
30 highest local maxima of the sum of the two smoothed Hough Arrays.

The middle column of figure 7 shows the resulting plans obtained by the
procedure of interpolation between Hough arrays of the pairs (A2, B2), (F4, B1),
(A1, A2), (A1, D2), and (A1, F1), respectively. The house façades were selected
from the data used to calculate the streetmanifolds and are also displayed in
figure 1. The format and size of the plans in the middle column of figure 7 was
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Interpolation of A1 and A2

Interpolation of A1 and F1

Interpolation of A1 and D2

Interpolation of A2 and B2

Interpolation of F4 and B1

Fig. 7. The middle column shows the inverse Hough transforms of interpolations be-
tween Hough arrays corresponding to five pairs of house façades. The outcome indicates
that interpolation between A1 and A2 or A1 and F1 led to sensible results in contrast
to interpolation between distant points such as A2 and B2.
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determined by taking the maximum of heights and the maximum of widths of
the two images of the house façades which were used in the interpolation process.

6 Discussion and Summary

The streetmanifolds in figures 5 and 6 show a comparable structure of clusters to
the streetmanifolds of figure 4 and our previous results [5]. The resulting clusters
suggest that the streetmanifolds have captured and smoothly organised a variety
of line-based features of the whole data set in one object.

Although streetmanifolds are non-linear we have employed linear interpola-
tions of smoothed Hough arrays to generate plans for new houses. That means
that for points close to each other such as A1 and A2 the interpolation result
is likely to be close to the manifold. But for points distant to each other such
as A2 and B2 the interpolation result may lie far outside the manifold and may
hence not be representative for the character of the streetscape.

In some cases we added the interpolation result to the initial data set of
Hough arrays and recalculated the streetmanifolds. For arrays resulting from
interpolation of nearby points the manifold did not change much. However, for
some arrays resulting from interpolation of distant points, the newly calculated
streetmanifolds changed significantly compared to the original.

These results seem to support the hypothesis that local interpolation (e.g.
between A1 and A2), or interpolation on the streetmanifold, may lead to plans
which are conform with the character of the streetscape.

Future research may investigate alternative options of interpolation on street-
manifolds and their use in software systems for generative design in virtual worlds
or application software for architects.
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Abstract. Misperception is a common cause of error for individuals and
organisations. Conventional wisdom suggests that its effects are detri-
mental to the misperceiver or its society as a whole. However, in some
circumstances misperception can provide a benefit either by diversify-
ing the behaviour of a population or by discouraging behaviour that has
a negative impact on the population. In such cases adaptive pressures
will drive the population to evolve a probability of misperception that
is optimal for that environment. We explore this hypothesis using an
evolutionary artificial life simulation.

Keywords: Artificial Life, Misperception, Evolutionary Simulation.

1 Introduction

Misperception can be said to occur when an entity gathers information from
its environment and uses that information to produce an internal model of the
world that may or may not accurately represent the surrounding physical envi-
ronment [1]. Misperception may be caused unintentionally by flaws within the
misperceiver or intentionally by other entities performing Information Warfare
attacks [2]. Any information sensor that is used to gather information from the
environment can be affected by misperception. Entities may misperceive any
element of their environment – such as the existence or non-existence of other
entities, their attributes or the relationships between entities in the environment.

Russell and Norvig [3] describe the basic cycle of a simple intelligent agent
as consisting of information collection, orientation relative to the environment,
decision-making and action execution. This cycle describes a feedback loop be-
tween the agent and its environment, as the agent’s actions will affect the state
of its environment, which can be observed in the future. Similar models of the
decision-making cycle are also discussed in psychology [4] and military science [5].

The first opportunity for misperception in an agent’s decision-making cycle oc-
curs while it gathers information from its environment. There are many possible
causes of a dysfunction here, including sensor limitations, natural deterioration
and external attack. In all of these cases the agent is unable to correctly perceive
the environment and unknowingly gathers incorrect information, which it uses
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to update the its internal representation of the world. The agent’s future actions
can be affected by the incorrect information.

The second opportunity for misperception in the agent’s decision-making
process occurs when the agent incorrectly processes the gathered information
and then updates its internal representation of the world with the incorrectly
processed information. This introduces inaccuracies into the agent’s representa-
tion of the world.

The various causes of misperception introduce some form of singular or re-
peated error into an agent’s representation of their environment. Typically, con-
siderations of misperception assume that it is due to an unintentional error of the
misperceiver and that it reoccurs with some frequency. Unintentional repeated
misperception can therefore be modelled as a random error that occurs with a
certain probability.

1.1 Artificial Life Simulations of Misperception

Misperception is an everyday occurrence in the real world, yet it is rarely found
in artificial life simulations. Presumably this is because of the common belief that
misperception is always detrimental. However, this is not true in some cases.

Doran [6] demonstrated two similar cases where agents may hold incorrect
beliefs without the individual agents or their society suffering a detrimental
effect. In both of these cases the agent’s misbeliefs discourage detrimental be-
haviour. Doran simulated an environment where agents could move around a
two-dimensional space, harvest resources and asexually reproduce. Agents were
able to misbelieve in both cases, with their misbeliefs spread by communication
or inherited from their parent.

The first simulated environment contained a fatal zone, which killed any
agents who entered immediately. Agents could only harvest a resource if they
believed that they were the nearest agent to that resource. The agents were able
to misbelieve the existence of pseudo-agents where none actually existed. Agents
are deterred from harvesting a resource whenever they believe a pseudo-agent is
closer to that resource. Most of the agents in this society developed the belief
that pseudo-agents existed in the fatal zone, which deterred them from entering
the fatal zone to harvest resources. The misbelieving population was fitter than
one without misbelief: individual agents benefited by avoiding the fatal zone,
while the agent’s society benefited by increasing in size.

A second experiment looked at the formation of cults. In this experiment (ab-
sent a fatal zone) the agents were able to form friendships, which allowed them to
exchange information about resource locations. Agents were also able to kill other
agents. However, agents were prevented from killing any agents with whom they
shared a common friend. The misbelief that could form in this society was the
belief that resources were actually agents, called “resource agents”. Agents could
also decide that resource agents were their friends. These rules allowed the agents
to construct long-lasting “cults”, where many agents shared a common misbelief
in a resource agent who was their friend. For a cult to outlast its individual mem-
ber agents its figurehead must be a resource agent, as resource agents only “die”
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when no agents believe in them. The misbelief in resource agents allowed cults to
survive as long as there were followers, and the restriction on killing fellow cult
members allowed the agents’ society to grow in size.

More directly relevant to our work, Akaishi and Arita [7,8] hypothesised that
misperception could prove to be adaptive in cases where it increases the diversity
of a population’s collective beliefs and thereby increases the diversity of the pop-
ulation’s collective behaviour. Increased behavioural diversity should help reduce
direct competition between agents for access to popular locations or resources.

This hypothesis was tested with a simulation of a two-dimensional grid world
populated by agents and resource nodes. As agents traversed their environment,
they would gather resources from stable resource nodes and maintain an inter-
nal map of where they believed resource nodes existed. The fitness of individual
agents was a function of the quantity of resources gathered, while the popula-
tion’s fitness was determined by the average resources gathered. Agents could
misperceive every time they viewed the environment, with the probability being
a constant for the entire population. Misperception only affected the perception
of resources, either their existence or their location. Misperception of existence
could cause the appearance of either a resource where none existed or an empty
location where there was a resource. Misperception of location occurred when an
agent correctly perceived the contents of a location but stored the information
in a random location in its world map.

The results of their simulation demonstrated that a population with a mis-
perception probability up to 10% collected more resources on average than a
population with no misperception. Optimal resource gathering occurred when
the misperception probability was 1%. The fact that a misperception probability
of up to 10% is better than no misperception is counter-intuitive. Their results
support their hypothesis that behavioural diversity caused by misperception is
beneficial. Consider an agent in a region that is densely populated with other
agents and so is constantly competing for access to resources. If this agent mis-
perceives, it may convince itself to head into a less populated, less competitive
area. In this example, misperception would have provided a benefit.

One of Akaishi and Arita’s [7] claims was that misperception would provide
an evolutionary benefit. However, their simulated system implemented no evolu-
tionary mechanisms. Although they found a “fitness” benefit for misperception,
fitness was defined strictly in terms of resource gathering. It is easy to believe that
this can translate into an evolutionary benefit, but they failed to demonstrate
it. Some of our work here was inspired by the idea of making such a demonstra-
tion. If there is evolutionary value to misperception, it should be possible for a
population of foraging agents to evolve to a stable state with a misperception
probability that is significantly above 0%.

2 Methodology

We now describe our simulation technique. As in Akaishi and Arita’s simula-
tion, our agents inhabit a two-dimensional square grid world containing resource
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nodes. The agents move about this world gathering resources from these nodes.
While exploring, the agents maintain an internal map of where they believe re-
sources are located. In this simulation all misperceptions are caused by sensor
failures, which result in either location or existence misperception with an equal
probability. Cells may only be occupied by one agent at a time.

Evolutionary simulation requires a population of agents that evolve over the
duration of the simulation. Existing agents reproduce to produce periodically,
while agents die from old age or starvation. A population cap is used to prevent
overcrowding.

Each turn agents must metabolise resources at the basic metabolic rate
(BMR), or else starve. Agents also require a predetermined quantity of resources
in order to reproduce, which equals one half of the parental investment in the
health of their offspring. Once an agent can afford to have offspring it can re-
produce with any other agent it encounters who also has sufficient resources; in
other words, reproduction is sexual but genderless.

Each agent has its own inherited misperception probability that determines
how likely it is to misperceive any object it observes. This misperception prob-
ability derives from one of its parents and may be altered by mutation.

During each turn of the simulation, every agent is activated (in a random
order) and proceeds through its action cycle, consisting of perception, decision-
making, movement and, possibly, mating and gathering. First, the agent per-
ceives its surroundings, with its misperception probability determining whether
or not it misperceives what is in each location. The agent then updates its re-
source map. Next, the agent decides which resource node is closest and adopts
this resource node as its intended destination. The agent then moves toward its
destination. If two agents who may reproduce meet, they will reproduce if there
is room in the simulation for a new agent. Once the agent has finished moving,
if its location contains a resource node it will gather any available resources.
Finally, the agent consumes the amount of resources determined by its basic
metabolic rate. If the agent has insufficient resources, then it dies of starvation
and is removed from the simulation.

The major simulation parameters are the maximum agent density, the re-
source density, the basic metabolic rate and the parental investment cost. These
parameters determine how much competition there will be for resources and how
many resources are needed both to stay alive and to reproduce.

As there are too many potential combinations of these parameters to inves-
tigate, we have paired some, investigating them in combination. In this way,
agent density and resource density were paired (Table 1) as they main determin-
ers of resource competition. Basic metabolic rate and offspring cost were also
paired together (Table 2), as jointly affecting the cost of living. Combining these
pairs produced 36 different parameter sets to explore. For these simulations we
used EnFuzion, a commercialised derivative of Nimrod [9], a software tool that
supports efficient parallel search through the parametric space on a computer
cluster.
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Table 1. Agent Density and Resource
Density pairings

Agent Resource
Density Density

30% 25%
30% 10%
30% 5%
25% 15%
20% 10%
15% 10%
15% 5%
10% 5%
5% 5%

Table 2. Basic Metabolic Rate and
Offspring Cost pairings

Basic Offspring
Metabolic Cost
Rate

0.2 25
0.15 100
0.1 50
0.05 500

2.1 Experiment 1

The first experiment was aimed at demonstrating that the previously claimed
benefit of misperception in a foraging environment exists, by showing that an
evolved misperception probability could be greater than zero. This simulation
was performed for each of the 36 parameter sets.

2.2 Experiment 2

Our second experiment tested Akaishi and Arita’s hypothesis that misperception
provides a benefit specifically by increasing the agents’ behavioural diversity. If
this claim is true, then any mechanism (misperception or otherwise) that in-
troduces relevant diversity into the behaviour of the agent population should
provide a noticeable benefit. To test this hypothesis, four different foraging be-
haviours were implemented in the simulation and compared against each other.
These foraging behaviours were: misperception-affected foraging (as in Exper-
iment 1), misaction-affected foraging, reflexive foraging and perfect-perception
foraging.

Misperception-affected foraging is the standard foraging method used in the
simulation. Behavioural diversity is introduced by the agents’ differing beliefs
about resource node locations.

Misaction-affected foraging is similar to misperception-affected foraging, ex-
cept that the random errors occur during the movement stage instead of the per-
ception stage. A misaction causes the agent to move in an unintended direction.

Reflexive foraging replaces the agent’s resource node discovery and path plan-
ning with random movement. Agents move randomly about the world until they
observe a resource node within their perception range. They then move to the
node’s location and gather its resources. Clearly, the randomness of agents’ move-
ment introduces substantial diversity to their behaviour.

Perfect-perception foraging agents are agents who utilise the same decision-
making methods as misperception- or misaction-affected foraging agents, but are
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unaffected by misperception or misaction. These agents will have very little be-
havioural diversity and make a baseline for comparison. If behavioural diversity
provides a benefit to the population, then perfect-perception foraging should
perform the worst of all the foraging methods.

3 Results

3.1 Experiment 1

If misperception has evolutionary value then the population of foraging agents
should evolve to a stable state with a misperception probability that is sig-
nificantly above zero. When agents reproduce, the new offspring may have its
misperception probability mutated by adding a small normally distributed delta
value with a mean of 0.0 and a controllable standard deviation (σ). Hence, 95%
of the mutated misperception probabilities will be within ±1.96σ of the origi-
nal misperception probability. Call this range of misperception probabilities the
mutation range. For all simulations the standard deviation was 0.02, so the mu-
tation range was 0.0392 (or 3.92%). If the difference between the two agents’
misperception probabilities is greater than the mutation range, then the two
agents are unlikely to be parent and child. We report a population’s average
misperception probability as significantly different from 0% if that probability
is greater than 3.92%. (Because of the very large number of agents sampled —
around 50 million per estimated probability — the sample variance in estimating
the average misperception probability was ignored.)

The average misperception probabilities for all the parameter sets are shown
in Figure 1. There are seven identified parameter sets (numbered 1-7) where the
average misperception probability is significantly different from zero, especially
for parameter sets 1 and 2. There are two further points (8 and 9) identified in
Figure 1, because they contain substantial subpopulations of misperceivers.

The majority of these numbered points occur when the agent density is 5%
(relatively low density) or when the offspring cost is 500 resources (at its highest).
In the latter case, the need for resources is highest, so the selection pressure in
favour of successful foragers is greatest. Following the interpretation of [7,8],
misperception benefit occurs in this simulation when clusters of agents gather
around resource nodes and form a “traffic jam”. Occasional misperception aids
by sending some agents away from the food source allowing their relatives the
opportunity to collect the resource, supporting a inclusive fitness (kin selection)
advantage for the misperception. So long as the misperception rate is low, the
misdirected agents may well also then locate a new, uncongested resource node.
In any case, were misperception to provide no benefit at all, we would see a
completely flat plot with the average misperception probabilities not significantly
different from 0%. The results show that there is an evolutionary benefit to
misperception in many of our simulations.

We also divided the agent population into three groups based on their mis-
perception probability and compared their total population size and fitness. One
group contains agents whose misperception probability is 0%, another contains
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Fig. 1. Average Misperception Probabilities

agents whose misperception probability not significantly different from 0%, while
the last contains agents whose misperception probability significantly different
from 0%. If misperception is beneficial, then the agents who are significantly
different from 0% should be more numerous and fitter. The percentage of the
total agent population of each distinct agent group is shown in Figure 2 for all
36 parameter sets. The numbered parameter sets have a substantial percentage
of the population that is significantly different from the 0% misperception prob-
ability; also, less than 10% of their populations has a misperception probability
of 0%.

To measure agent’s fitness we used its potential offspring, that is, how many
offspring it could afford to parent from its surplus resources. A measure of ac-
tual offspring is not suitable for our simulation, as agents are prevented from
reproducing whenever the environment is full. The potential number of offspring
is only calculated after the agent has died, as the calculation (1) requires the
agent’s total resources gathered and its age.

Potential Offspring =
Total Resources Gathered − (Age × BMR)

Offspring Cost
(1)

The average potential offspring of the 36 parameter sets is shown in Figure 3,
again divided into three groups based on their misperception probability. In the
majority of the parameter sets there is no difference in the average potential
offspring between agents with different misperception probabilities. From this
we can argue that misperception is not providing a noticeable benefit through
increased potential offspring. However, some parameter sets show subpopula-
tions with very substantially larger fitness corresponding to subpopulations with
higher misperception probabilities, especially sets 1, 3 and 9.
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3.2 Experiment 2

Any measure of the misperception probability is meaningless for populations
that use either reflexive foraging or perfect-perception foraging, as both foraging
methods lack misperception. The only value worth comparing is the average
potential offspring due to different foraging behaviours.

Misaction-affected foraging (Figure 4) has several parameter sets where the
agents whose misaction probability is significantly different from 0% have more
potential offspring than their competitors with lower misaction probabilities.
There are many more parameter sets where this occurs than compared to
misperception-affected foraging, which implies that misaction as implemented
in this simulation offers a greater benefit than misperception. This benefit is
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Fig. 4. Average potential offspring (misaction-affected foraging)
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Fig. 5. Average potential offspring (reflexive foraging)

expressed as more effective foraging, which allows an agent potentially to pro-
duce more offspring. While these benefits are more observable in the parameter
sets where offspring cost less, in all cases agents whose misaction probability is
significantly different from 0% have more potential offspring.

As the misperception probability is meaningless for reflexive foraging agents,
the total population was combined together to determine their average potential
offspring (Figure 5). The agent populations had more potential offspring than
any of the other foraging methods for many of the parameter sets. This may have
been due to a higher level of behavioural diversity arising from their random
foraging.

The average potential offspring measure for perfect-perception foraging is
calculated together, as all the agents have a misperception probability of 0%.
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Populations of agents with perfect-perception foraging behaviours (Figure 6)
only outperformed the reflexive foraging behaviour for a few parameter sets.
When compared against misperception-affected foraging and misaction-affected
foraging, the perfect-perception foraging behaviour had either slightly less or
slightly more potential offspring. When the four different foraging methods are
compared, perfect-perception foraging has the least potential offspring in the
majority of cases. Following Akaishi and Arita’s hypothesis, this would be due
to the lack of behavioural diversity in its agent populations. While conventional
wisdom suggests perfect-perception foraging will be fitter than the three alter-
natives, this does not always occur.
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4 Conclusion

Our results support and extend earlier work that showed a general benefit from
misperception. In particular, this benefit is demonstrated in an evolutionary en-
vironment, with misperception achieving evolutionary stability. As in prior work,
misperception is only beneficial when it is infrequent. Our results also directly
support prior speculation that the benefit works through introducing behav-
ioural diversity. Furthermore, in at least some circumstances, we have shown
that a more direct introduction of behavioural diversity can have greater benefit
than misperception itself.

Contemplated future work includes identifying other situations where misper-
ception could be adaptive, such as cases where individuals misperceive the value
of various attributes of objects they can perceive in their environment. Also, the
evolution of self-deception in social simulation is a likely extension of these ideas.
Finally, another potential area to explore is to focus on the link between mis-
perception and altruism and on kin selection as a driving force in the evolution
of misperception.
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Abstract. The origin and evolution of language have been the sub-
jects of numerous debates and hypotheses. Nevertheless, they remain
difficult to study in a scientific manner. In this paper, we focus on
the string-context mutual segmentation hypothesis proposed by Merker
and Okanoya, which is based on experimental findings related to an-
imal songs. As a first step in formally exploring this hypothesis, we
model the evolution of agent discourse using coupled recurrent networks
(RNNs). This model is a simplified representation of this hypothesis;
that is, agents are situated in a single context (e.g., behavioral, social,
or environmental) and they mutually learn their utterance strings from
the prediction dynamics of their RNNs. Our simulation demonstrates
the emergence of shared utterance patterns, which are culturally trans-
mitted from one generation to the next. Furthermore, the distribution of
the shared patterns changes over the course of this evolution. These find-
ings demonstrate an important aspect of language evolution: “language
shaped by society.”

1 Introduction

1.1 Approaches to Language Evolution

How did modern human language evolve into a complex system? While this
issue has attracted the attention of many scholars and has been the subjects
of numerous debates and hypotheses, the origin and evolution of language are
still unknown. Language is not a single faculty but a complex system comprising
many cognitive sub-faculties, some of which are shared by non-human animals.
As suggested by Hauser et al. [4], to understand the origin and evolution of
language, it is important to compare the prelinguistic ability of animals and
human language in terms of not only homologies but also differences . This is a
plausible approach to clarifying the origin and evolution of language.

Another plausible approach is computational modeling. The iterated learn-
ing model (ILM) proposed by Kirby shows that, even without natural selection,
cultural transmission from generation to generation can produce the syntactical
structure of language such as compositionality and recursion [5]. Many other
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Agent A

Context A

Agent B

Context B

String A:  bfafmdasgganfhdayaaxcpya...

String B:  myjkdayptuhaaxcphcolajtkei...

aaxcp

Fig. 1. Schematic illustration of mutual segmentation hypothesis: When agents with
segmentation ability collaborate, the common parts of the context they face and the
sound strings they utter can be mutually segmented. Small portions of the sound strings
can be linked to specific contexts.

computational models have been studied, each of which models a different as-
pect of language evolution, such as the evolution of a signal system [19], the
emergence of linguistic communication [8,18], the evolution of syntax [3,9], and
the origin of meaning [15]. Computational models provide good testbeds for the
systematic exploration of hypotheses on language evolution. They can also be
used to identify novel linguistic phenomena resulting from the interactions of
agents.

Both approaches are promising for clarifying the origin and evolution of lan-
guage in a scientific manner. Moreover, the interplay between them may be
beneficial [13].

1.2 String-Context Mutual Segmentation Hypothesis

Here, we briefly review the string-context mutual segmentation hypothesis, which
is a language evolution hypothesis proposed by Merker and Okanoya [6,10]. This
hypothesis was motivated by the biological evidences of animal songs. Figure 1
is a schematic illustration of this hypothesis. Let us consider a society without
language in which agents make utterances (like songs) that are specific to behav-
ioral, social, and/or environmental contexts. Further, let us suppose that each
agent has segmentation ability, which is the prelinguistic ability to find discrete
patterns in contexts and utterance strings. It should be noted that primitive
segmentation ability can be found in non-human animals, particularly in song-
birds. Juvenile songbirds learn sound patterns (called chunks) found in the tutor
birds’ songs by using statistical cues such as the transition probability of sound
elements [17].

When agents with segmentation ability collaborate, the existence of shared
substrings embedded in strings uttered in contexts that also have some fea-
tures in common, the possibility exists of extracting the substring as a marker
for the shared contextual aspect by mutual segmentation on the basis of statis-
tical learning. Small segmented parts of sound strings can be linked to ever more
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Fig. 2. Schematic illustration of simplified model: As evolution proceeds, the neural
network of each agent and the social network of agents coevolve, and shared utterance
patterns emerge

specific contexts, as shown in Fig.1. As a consequence, a meaningful word could
come into existence, and its iterated usage could popularize it among the agents.

The key concept of such a “holistic ” mechanism was proposed independently
by Kirby [5] and Wray [20], and can also be found in the work of Mithen [7]. In
the publications [6, 10], Merker and Okanoya show how this key concept allows
a path to be completed from unsemanticized song to language on the basis of
attested behavioral biology and neural mechanisms, emphasizing the importance
of vocal leaning as a driving force of language evolution. Experimental findings
for non-human animals provide a considerable amount of information on which
to model the string-context mutual segmentation hypothesis. In this paper, we
explore this hypothesis by using a simple artificial life model.

2 Model

We begin by modeling the evolution of agent discourse, which is a simplified
representation of the string-context mutual segmentation hypothesis with only
a single context. That is, agents are situated in the same context and mutually
learn utterance strings, as shown in Fig.2.

To model the segmentation ability, we use a simple recurrent network (RNN).
As many previous studies have shown, RNNs can learn the sequential structures
in a self-supervised manner [11, 2, 1]. Furthermore, language evolution has been
simulated by using the population of agents modeled by RNNs [8, 18]. These
studies revealed that the prediction dynamics of RNNs is essential to learning
the structure of temporal sequences like language.

While previous models focused on the accuracy of a sequential leaning task,
we focus on an emergent property – how shared utterance patterns emerge from
the prediction dynamics of agents with RNNs. In this section, we describe our
model architecture and simulation setup.
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Fig. 3. Discourse of coupled recurrent networks: The first ten input neurons of RNNs
receive utterance information, in which alphabetic letters are coded with ten basis
vectors. An additional input neuron is used for assigning an agent’s role: a speaker (1)
or a hearer (0).

2.1 Agents

Each agent is modeled as a simple recurrent network (RNN), used for both
speech and recognition during discourse. The RNN has a layered structure with
an additional input neuron, as shown in Fig.3. The input layer receives two
types of inputs. The first ten input neurons receive utterance information, in
which alphabetic letters (from “a” to “j”, in this model) are coded with ten
basis vectors; e.g., a→[000000001], b→[001000000], for example. The other input
neuron is used for assigning an agent’s role as a speaker (1) or a hearer (0). If
a hearer gets a letter “a”, his input vector is expressed as [00000000010] (see
Fig.3). This additional input is important for making different states in the
hidden layer, related to the agent’s role. The outputs of the RNN are translated
into an alphabetic letter by a winner-take-all process, in which the maximum
neural output becomes one and the others become zero.

The dynamics of the RNN is expressed as the following equations:

yj(t) = g(
∑

i

wijxi(t) +
∑

l

wljyl(t − 1) + bj) (1)

zk(t) = g(
∑

j

wjkyj(t) + bk) (2)

g(x) =
1

1 + e−x
(3)

where g is the sigmoid function, w is the neural connection weights, and y and
z are the neural outputs of the hidden and output layers, respectively. In this
paper, the size of the input layer is set to 11, the hidden and context layers to
22, and the output layer to 10.
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2.2 Discourse

Agent discourse is simulated by coupling two RNNs, as shown in Fig.3 [16]. Dur-
ing a discourse, two agents are randomly chosen from the population of agents;
one as a speaker and the other as a hearer. The speaker begins an utterance by
setting the initial inputs [00000000001](i.e., no utterance information with the
speaker’s identifier (1)) and continues the utterance by feeding back the outputs
to the input layer. When the speaker utters a string, the hearer receives it and
predicts the speaker’s next utterance. During the discourse, the hearer learns the
sequential structure of an utterance string in a self-supervised manner; in this
model, the RNN of a hearer is trained using the error back propagation (BP)
algorithm [12].

In the BP algorithm, the connection weights of the RNN are updated as the
following equation:

w(t + 1) = w(t) − η
∂E(w)

∂w

∣
∣
∣
w=w(t)

+ αΔw(t), (4)

where w(t) is the connection weight vector of the RNN at learning step t, and
E(t) is the error function. The constants η and α are the coefficients of learning
and inertia, respectively. In this paper, these values are set as η = 0.1 and
α = 0.8.

The discourse is evaluated in terms of its predictability (i.e., the number of
shared patterns) and the complexity of the strings that agents utter or predict.
A pattern is defined as a substring found in both an utterance and a predic-
tion string and that consist of more than two types of letters (i.e., a one-letter
repetition like “aaa” is not a pattern). For example, for the discourse

– a speaker (utterances): uuukcwrukplkbatuclaat...
– a hearer (predictions): xtxtoutrudixtxplkbq...,

there is one shared pattern: plk. After the discourse, we perform a simple pattern
matching procedure, in which the number of patterns shared between the speaker
and hearer is calculated.

The scores of the speaker (Ssp) and hearer (Shr) in a discourse are calculated
using the following equations:

Ssp =
∑

i

N ltr
i Nptn

i × Hsp (5)

Shr =
∑

i

N ltr
i Nptn

i × Hhr (6)

where N ltr
i denotes the number of letter types per shared pattern-i and Nptn

i

denotes the number of pattern-i. Furthermore, Hsp and Hhr denote the infor-
mation entropies of the speaker’s utterance string and the hearer’s prediction
one. Using these Hsp and Hhr, we can consider the endogenous trend in string
complexity in this model.
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Fig. 5. Average score across 3000 generations: Step-wise evolution is observed at about
generation 550

2.3 Evolution

To evolve the agents, a simple genetic algorithm (GA) with ranking selection
and point mutation is used after a certain number of discourses. Figure 4 shows
the evolutionary time course. In this model, the connection weights of an RNN
are encoded by an artificial chromosome, which crosses from one generation to
another.
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The agents leave offspring in accordance with their total scores across all
discourses. Only the top ten agents can leave offspring: each of them leaves one
copy offspring without mutations; furthermore, the best agent can leave 4 mutant
offspring, the second can leave 3, the third can leave 2, the fourth can leave 1.
The other agents are removed from the population.

A mutant offspring inherits a parent chromosome with point mutations, where
a small amount of noise is added (at most 20% per chromosome). As shown in
Fig.4, the ”Darwinian mechanism” is used in this model; that is, offspring inher-
its a parent’s innate chromosome, which encodes the initial connection weights
of the RNN, NOT the one that encodes the learned connection weights, which
is used in the “Lamarckian mechanism.” We use the Darwinian mechanism be-
cause it is more adaptive in a dynamical environment [14] and more natural even
in our abstracted evolution.

3 Simulation

At the initial state (generation zero) of the simulation, we make 20 agents, each
of which has an RNN with random connection weights. The only differences be-
tween the agents are the connection weights. The other simulation parameters
are set as mentioned in the previous sections. Every agent makes an utterance
or a prediction sting with the length Lstr = 30 per discourse, and the usable al-
phabetic letters are 10 (from “a” to “j”). In each generation, 1000 discourses are
carried out for two randomly selected agents. The Darwinian evolution (Fig.4)
proceeds for 3000 generations.

3.1 Evolution of Discourse

We observe a step-wise evolution, as shown in Fig.5. The score increases rapidly
at about generation 550; it then remains approximately the same score up to
generation 3000. These findings indicate that there is a transition through which
the agents become more communicative in their discourses, as we will see in the
next section. The evolution of the information entropies of the utterance strings
(Hhr) and prediction strings (Hsp) are shown in Fig.6. These entropies also
exhibits a step-wise evolution; both Hsp and Hhr suddenly increase at about
generation 550 and then decrease slightly over the subsequent generations.

Comparing the information entropies between utterances and predictions in
Fig.6, we see that the entropy of predictions (Hhr) always larger than that of
utterances (Hsp). This suggests that the prediction ability of agents preceded
their utterance ability. When agents play a hearer role, they predict and learn
utterance patterns by updating the connection weights of their RNNs. On the
other hand, when agents play a speaker role, they make utterances on the basis
of their RNNs, which have already been structured and do not change during
a discourse. Playing a hearer role is the only chance agents get to modify their
innate RNNs during their lifetime and thereby increasing their prediction ability.
This secondarily affects the utterance ability.
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Fig. 6. Information entropies of utterance and prediction strings: The information
entropy of prediction strings are larger than that of utterance strings

Generation 0

agent[17] aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
agent[16] _jjjjjaaaaaaaaaaaaaaaaaaaaaaaa

agent[16] bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
agent[13] _aaaaaaaabbbbbbbbbbbbbbbbbbbbb

agent[00] acacaaaccaacaccaccacaccaacaaaa
agent[16] _iiiiiiiiiiiiiiiaccccccccacaaa

Generation 500

agent[14] iaiaaaaaciciaaaaccaicaciaiaiaa
agent[03] _iiiiiiiiiiiiiiiiiiaiiaaiaiaia

agent[13] aaaacaaccccaaaaccaaacaccaacacc
agent[02] _iiaaicaicaiaacaaiaccaaciiciai

agent[02] cicaiiccaiaiiiacaiciaiccciiacc
agent[10] _chchchccfcfhcchhchhccchahaaac

Generation 3000

agent[04] chchhhaaaahcchchachhachahchach
agent[08] _cacccacahhccaacaaahhhaahhaach

agent[01] ahacachahacacaaccacchcccchhhha
agent[04] _haachcchccaachcacccccahahhahh

agent[15] cccccccccccccccccccccccccccccc
agent[04] _aahacchcahchhhachhchahchhhaac

agent[01] acaaccacaaahchcahhachhchchchhc
agent[11] _acaaacacaaaaaacaaaaaahchchchh

Generation 100

agent[14] aaaaccacaacaaaccacaccccaaccccc
agent[00] _acccccacaaaccacaacaaaccaaaacc

agent[00] cacacccaacacccaaccaaaacccccccc
agent[01] _ccccccccccccccccccccaaacccccc

agent[06] acaaacaacccaccaaccacacccaaaaca
agent[07] _cccaccccaaaacaacaacaacaacaaca

Generation 600

agent[12] hhichiiihiaccahaccchhciiiahhih
agent[18] _cchiaiaahhaiaiciaacichcaihhah

agent[10] iaaaccihchhciaiahcaicahahhaicc
agent[19] _accccahcacaccahhachhhchhccaac

agent[07] cacacahcaacahaacaachaiahahcaca
agent[14] _ccccccccccccccacaaacaaaaaaaaa

Fig. 7. Examples of agent discourses: At the initial stage, the utterance and prediction
strings are simple; after generation 550, they become more complex

Figure 7 shows examples of agent discourses in each generation. In generation
zero, the utterance and prediction strings are simple. Almost all the speakers
repeat a single letter like “aaa...” or “bbb...”; only a few utter multiple letters
like “acac...” It should be noted that agents with randomly connected RNNs are
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not random speakers (i.e., random letter generators) and that most of them have
poor utterance ability. In this generation, we can identify adaptive behaviors of
hearers, who easily change their predictions through learning. As a consequence,
the information entropy of hearers (Hhr) does not become zero. For example,
agent 16 can recall a pattern “ac” after a sequence of wrong predictions with
“i”. In this way, agents who make better predictions obtain higher scores and
leave more offspring in the early stages of evolution. We can also see in Fig.7
that agent 16 behaves differently depending on his role, which is an important
finding. When he is a speaker, he utters only “i”, while he recall a several letters
when he is a hearer. This shows that the additional input neuron we introduced
works as intended.

As the evolution proceeds, the strings of both utterances and predictions
evolve and become more complex, and several shared patterns emerge. In gener-
ation 100, the utterance strings consist of only two letters, “a” and “c”, which
have been in steadily use in the agent society. In generation 500, a novel letter
“h” that has never been observed before begins to be used, and then it becomes
used more and more. Interestingly, in generation 3000, we can find stereotyped
discourses in which agent 4, who is the best agent at the time, produces similar
strings despite his role. Even when an utterance string is a simple repetition
of “c”, agent 4 robustly predicts different patterns such as “ac” and “ah,” and
thus obtains the highest scores on the whole. This is in contrast to the adaptive
behaviors of initial agents in the early stages of evolution. This interesting phe-
nomenon may be related to the statistical property of shared utterance patterns
in the society of agents. As shown in the next section, this is because “ah” and
“ac ” are dominant in the frequency of shared patterns, so the BP learning for
the rare repetition of “c” has little effect.

3.2 Statistical Properties of Shared Patterns

Figure 8 shows the statistical properties of the shared utterance patterns in the
agent society; the number for each pattern and their rank are plotted on a log-log
scale, which is called a Zipf plot. In human language, the frequency of any word
is inversely proportional to its rank in the frequency table, and the slope is −1
in a log-log plot, which is called “Zipf’s law” [21]. It should be noted that the
shared patterns in this model are not strikingly parallels with actual words and
that they have many overlaps; for example, given a pattern set {abab,ababab},
“ac” is repeatedly counted and the resulting counts are ab(5), abab(2), and
ababab(1). Only statistical cues such as frequency are available to segment such
patterns – the model has no semantics to serve as cues for segmenting.

Different characteristics in the Zipf plots (Fig.8) are evident in the shared
utterance patterns. In generation zero, the most common pattern is “ac,” and
the top five shared patterns are combinations of “a” and “c.” The slope is close
to −1, but this is not a case of human language. In generation 100, we observe
the same top five patterns, except “ aaac.” In generation 600, a new letter, “h”,
appears in the top five patterns, resulting more diversity in the shared patterns.
This causes the information entropies to rapidly increase between generations
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Generation 3000 Random
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1.  ch (9354)
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Top five patterns

1.  ac (11724)
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5.  caa (5024)    

Top five patterns

1.  ac (107)

2.  ca (97)

3.  acc (69)

4.  aac (40)

5.  aaac (27)

     caa (27)    

Top five patterns

1.  ca (12335)

2.  ac (12229)

3.  caa (5715)

4.  aac (5607)

5.  cca (5024)  

Top five patterns

1.  ah (8705)

2.  ac (8692)

3.  ca (8474)

4.  ha (8423)

5.  ch (7988)

alpha = -1.68

(    = 0.962)

Top five patterns

1.  fi (1320)

2.  ga (1223)

3.  dh (1209)

4.  hc (1193)

5.  ji (1165)

alpha = -1.85

(    = 0.958)
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Fig. 8. Statistics for shared utterance patterns in agent society: The building block
pattern “ac” is culturally transmitted from generation to generation. Zipf slope varies
from −1.85 to −0.94. When the same pattern matching method is applied to random
dummy data, the slope is flat, unlike the other slopes.

500 and 600, as shown in Fig.6, resulting in the step-wise evolution of average
scores shown in Fig.5.

Furthermore, we can find pattern “ac” in the top five patterns not only in the
early stages of the evolution but also in the later stages. This suggests that this
pattern originates in the initial agent society because it is more popular than
the other patterns. It is thus culturally transmitted through agent discourse and
becomes frequently used in the shared patterns. Through the evolution, pattern
“ac” functioned as a building block for longer patterns.

Through the evolution, the Zipf slope varied from −1.85 to −0.94. As the
evolution proceeds, the Zipf plots exhibits terraced slopes, and each terrace
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corresponds to a certain group of patterns; for example, in the generation 3000,
the top five patterns have almost equal frequency, and they are building blocks
for larger patterns, such as “ahaccahach.” In addition, the slopes are different
from that for the random dummy data, as shown in Fig.8.

4 Discussion and Conclusion

We have demonstrated the evolution of agent discourse by using coupled recur-
rent networks (RNNs). This model is a simplified version of the string-context
mutual segmentation hypothesis, in which agents are situated in a single con-
text and mutually learn their utterance patterns suitable for the context. As a
result, we observe the emergence of shared utterance patterns, which are cultur-
ally transmitted from one generation to the next. Furthermore, the distribution
of shared patterns changes over the course of evolution. These findings demon-
strate an important aspect of language evolution; namely, “language shaped by
society.”

In the emergence of shared patterns, “the prediction chain reaction” (PCR)
of the agents with RNNs is an important driving force; that is, agents learn the
verbal behaviors of others that learn. The introduction of information entropy
into the scores (i.e., eqs.(5) and (6)) models an endogenous driving force for
the string complexity. To predict the utterance patterns precisely, then simple
ones are more effective for this task, but there exists a trend for the string
complexity in this model. Thus, two driving forces balance between predictability
and complexity, affecting the emergence of shared patterns.

Our model at present has only a single context, and the context affect nei-
ther the utterances nor prediction strings. utterance and prediction strings. As
mentioned in Section1.2, contexts may help differentiate the usage of utterance
patterns by agents, and the strings and contexts may interplay with one another.
We plan to introduce more contexts into this model and use it to explore the
string-context mutual segmentation hypothesis in greater depth.
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Abstract. The evolutionary behavior of three hierarchical relationships, HIFF-
C, HIFF-II and HIFF-M is studied in the context of two computational models, 
J and JGA. In J, entities are composed from other entities in the population. 
JGA is a panmictic genetic algorithm. Results from our experiments indicate 
that specificity in a relationship enhances convergence to a global optimum in 
both models. When there is little specificity in the relationship, external 
conditions such as join rate, crossover rate, agitation type or selection 
mechanism need to be set appropriately. Our results also suggest that 
cooperation is neither necessary nor sufficient for the evolution of higher level 
entities. We found that cooperation was evolutionary advantages in J only for 
relationships with little to no top-down inter-level conflict.  

Keywords: major evolutionary transition, hierarchical relationships, multi-level 
selection, inter-level conflict, specificity, genetic algorithms, population 
diversity. 

1   Introduction 

A major theme in evolutionary biology is the formation of higher level entities from 
lower level entities. This formation is also known as a major evolutionary transition 
(MET) [6]. A difficulty with the MET theory is, understanding why higher level 
entities can be stable and replicated as wholes in the face of selection forces at play 
amongst their self-interested lower level entities. Reeve and Keller speak of the need 
for attractive forces to exceed the repulsive and centrifugal forces for there to be 
stability within a collective [2, p.7]. They define these forces in terms of absolute 
inclusive fitness. Michod [7] stresses the necessity of cooperative interactions among 
lower level units to form emergent higher level groups, and conflict mediation in 
favor of the higher-level unit for groups to transition to new evolutionary individuals. 
Further, how the units of a group are reorganized and conflict mediated in a transition 
to individuality, can influence the individual’s evolvability in the future [7]. The 
problem of stability, that is keeping autonomous units together as cooperating wholes, 
is not limited to the biological realm but applicable also to the evolution of 
complexity from simplicity, in general.  

In reference [5], we explored this problem of stability from a logical (vs. physical-
chemical) point of view. In that study, we assumed that two necessary conditions for a 
MET, as suggested by existing theory, namely multi-level selection in favour of 
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higher level adaptation (cooperation) and protective barriers against disintegration 
such as membrane enveloped compartments are in place, and focused instead on how 
relationships between parts affect the formation and stability of composite entities. By 
relationship we mean how parts of a whole interact with each other within the whole. 
A composite entity is an entity formed from previously existing entities. The study in 
[5] was made with a model called J. In that study we found that composite entities 
formed under a relationship with high specificity (section 2.3) were more stable, and 
their stability were impervious to conditions created by different selection 
mechanisms and agitation type (section 3.1).  

In this paper, we use the same J model used in our previous experiments [5], but on 
a different relationship (HIFF-II). This relationship differs from those studied in [5] 
because it has high top-down inter-level conflict (TDILC) (section 2.2). TDILC 
makes the problem of bottom-up evolution via a MET approach more interesting 
because short-term mutualism can degenerate into long term behavior that is 
detrimental to the whole. Relationships between biological entities are dynamic and 
on a continuum [1]. We report in this paper that evolving higher level entities under 
the HIFF-II relationship with J is more challenging than the previous two 
relationships (HIFF-C and HIFF-M). Enforcing cooperation and using protective 
barriers actually made it more difficult to evolve HIFF-II entities in the J model. This 
result is not too surprising given that HIFF-II does not evolve easily under the two 
selection mechanisms available to J [3]. However, even when we adapted J to use 
SM3 (RMHC3 in [3]), a selection strategy that is known to be successful for HIFF-II, 
the success rate was less than 100% given the parameters of the experiment. SM3 
involves cooperation at all levels, not just between lower level entities for the interest 
of higher level entities as in SM2, but also between higher level entities for the 
interest of lower level entities. From our experience with J and HIFF-II, we conclude 
that it is more difficult for entities with high top-down inter-level conflict to evolve 
with the MET approach because (i) more negotiation of interests between parts at 
different levels is required, (ii) the evolution is more sensitive to external conditions, 
and (iii) the evolution takes a greater length of time.  

The difficulties we experienced with J and HIFF-II led us to design the JGA model 
which we introduce in this paper. JGA combines aspects of the J model into a genetic 
algorithm (GA).  Instead of incrementally evolving larger entities from smaller ones, 
entities in JGA start out at the target size but with randomly chosen parts. As in our 
experiments with the J model [5], we found HIFF-M entities least particular about the 
parameter settings of JGA. HIFF-C and HIFF-II entities were more particular. In 
addition, HIFF-C entities performed slightly worse than HIFF-II entities under JGA. 
JGA is a panmictic genetic algorithm and so is susceptible to loss of population 
diversity. A population losses its diversity when all individuals in the population carry 
the same value for one or more genes. From our JGA experiments, we hypothesize 
that the high level of specificity in the HIFF-M relationship helps to decelerate 
population diversity loss. By our definition in section 2.3, specificity is lowest in 
HIFF-C and highest in HIFF-M. We plan to test this hypothesis and study population 
diversity under the different relationships. As with any computer simulation study, it 
remains to be seen how dependent this conclusion is on the models and the parameter 
settings we used, and also the characteristics of the problem.  
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2   Background  

This section defines the three relationships used in our experiments and reviews 
previous work to compare and understand the behavior of these relationships. The 
concepts of top-down inter-level conflict and specificity are defined. 

2.1   The Relationships (HIFF-C, HIFF-II, HIFF-M) 

A relationship is a set of weighted links that defines how variables (genes) of an 
entity’s genotype interact with each other. We experiment with three hierarchical 
relationships: HIFF-C, HIFF-II and HIFF-M. These relationships are variants of the 
Hierarchical-If-And-Only-If (HIFF) problem [8]. The three relationships lend entities 
the same hierarchical structure. An entity’s size refers to the length of its genotype, a 
{0, 1}N string. Discussion in this paper assumes the binary alphabet {0, 1} is used. An 
entity of size N=2n where n ∈ Z+, is decomposed to log2 N levels. The levels of the 
hierarchy are labeled 1 … n from the bottom-up and there is a total ordering on the set 
of levels. At level λ, the N variables are partitioned into N/2λ non-overlapping 
modules of consecutively located genes. Every variable belongs to exactly one 
module of level λ. Each module at level λ has 2λ variables. The minimum module size 
is 2 and each module of size 2i where i ∈ Z+ and i > 1 consists of exactly two other 
distinct sub-modules. Figure 1 illustrates how a size 8 entity is decomposed into 
levels and modules. 

Level 3 (highest level) 

Level 2 

Level 1 (lowest level). 

There is one 
module of size 8 
at level 3, two 
modules of size 4 
at level 2 and four 
modules of size 2 
at level 1. 

 
 

 

 
  

Fig. 1. Hierarchical decomposition for an entity of size 8 

The maximum fitness contribution of a module at any level is 1. Therefore the 
optimal fitness value for level λ is N/2λ. The total fitness of an entity is the sum of all 
level fitness values in its hierarchy. Therefore the optimal total fitness is N-1. When 
necessary, we write the level fitness values of an entity in level descending order and 
call this structure the phenotype. The optimal phenotype is thus 〈 20, 21, …, 2n-2, 2n-1 〉. 

The weight of a link between genes i and j of an entity defines the contribution 
made by i and j to the entity’s fitness when i and j satisfy the constraint associated 
with the link. In this paper, all constraints are IFFs. Therefore optimal solutions are 
maximally similar. Since the values (alleles) we use are {0, 1}, there are two optimal 
genotypes for each relationship, the all ones genotype 1 and the all zeroes genotype 0. 
The structure (which variables interact) and the weights of the links for each of the 
relationships are defined next.  
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HIFF-C. This is the continuous version of the HIFF problem [8]. Every variable 
interacts with every other variable in an entity. Fitness of a HIFF-C module is given 
by (p × q) + (1 – p) × (1 – q) where p and q are the proportion of ones in the first and 
second halves of the module respectively. For example, the HIFF-C phenotype for 
entity with genotype 1000 1100 is 〈 0.5, 0.5, 3.0 〉 and the total HIFF-C fitness for this 
entity is 4.0. The level 3 fitness is 0.5 because p =1/4, q = 2/4, and (0.25 × 0.5) + (1 – 
0.25) × (1 – 0.5) = 0.5. At level 2, the two modules are 1000 and 1100. Fitness of the 
1000 module is (0.5 x 0) + (0.5 x 1) = 0.5. Fitness of the 1100 module is (1.0 x 0) + (0 
x  1) = 0. Thus, fitness at level 2 is (0.5 + 0) = 0.5. 

HIFF-II. [3] Every variable interacts with n other distinct variables in an entity. n is 
the number of levels in the hierarchy for the entity. Fitness of a HIFF-II module at 
level λ is calculated by doing a pair-wise comparison of genes in the first half of a 
module with genes in the second half of a module (Figure 2):  

(i) gene i is compared with gene 2λ-1 + i of a module for i = 0, …, 2λ-1 -1,  
(ii) the number of matches is divided by half the module size, 2λ-1.   

0 1 2 3

Interactions at λ = 2 
 
 

Interactions at λ = 1 
 

Fig. 2. Interaction diagram for HIFF-II, N = 4 

For example, the HIFF-II phenotype for entity with genotype 1000 1100 is 〈 0.75, 
0.5, 3.0 〉 and the total HIFF-II fitness for this entity is 4.25. At level 3, the 
interactions are between the following four pairs: (0-1, 4-1), (1-0, 5-1), (2-0, 6-0), (3-
0, 7-0). An interaction pair (i-a, j-b) means the gene at position i has value a, and it 
interacts with the gene at position j which has value b. For an IFF problem (i-a, j-b) = 
1 if a = b, and 0 otherwise. So the interaction pairs at level 3 return the values 1, 0, 1 
and 1 respectively. This means there are 3 matches at level 3. Since a module at level 
3 has 8 variables, by rule (ii) above, the fitness value of level 3 is 3/4 = 0.75. 

HIFF-M. [4] For all modules m at every levels λ, if the first (0) and the middle (2λ-1) 
variables of m have the same value (Figure 3), 1 fitness point is awarded to m. For 
example, the HIFF-M phenotype for entity with genotype 1000 1100 is 〈 1, 0, 3 〉 and 
the total HIFF-M fitness for this entity is 4. At level 2, the interaction pairs are (0-1, 
2-0) and (4-1, 6-0). Since there are no matches, level 2 fitness is 0. 

 

0 1 2 3

Interactions at λ = 2 
 
 

Interactions at λ = 1 
 

Fig. 3. Interaction diagram for HIFF-M, N = 4 
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A general principle for all three relationships is intra-module interactions outweigh 
inter-module interactions. This accounts for the more rapid optimization of lower 
level modules under normal conditions; that is when total fitness is used by selection 
(section 2.2). Further, all three relationships are non-linear; the fitness contribution of 
a pair of interacting variables may be higher than the sum of their individual fitness 
contributions.  

2.2   Top-Down Inter-Level Conflict (TDILC) 

The combination of (i) lower level modules adapting quicker than higher level 
modules, (ii) the existence of two optimal solutions for every module, and (iii) the 
requirement that all modules adapt to the same optimal solution if a globally optimal 
solution is to be found, creates conflict between levels. What is evolutionary 
advantages to lower level modules need not be beneficial to the whole entity in the 
long run. This bottom-up conflict presents itself when the selection mechanism 
compares entities by their total fitness values because by default, lower level modules 
make a larger fitness contribution than higher level modules in all three relationships. 
We refer to this selection mechanism as SM1. With SM1, a variant entity replaces its 
parent entity if its total fitness is equal to or greater than the total fitness of its parent 
entity. Otherwise, the variant is discarded. 

Another selection mechanism that we will use in our experiments is a multi-level 
selection scheme that prioritizes the optimization of higher levels. This selection 
mechanism is called SM2 (also known as RMHC2 in [4]) and it works by comparing 
entities using their phenotype values in level descending order. SM2 replaces a parent 
entity with its variant entity if the variant is fitter than its parent at level λ and is as fit 
as its parent at all levels above λ. A variant also replaces its parent entity if it is as fit 
as its parent at all levels.  Otherwise, the variant is discarded.  

Because SM2 favours higher level modules, inter-level conflict arises when 
adaptations that are good for higher levels prevent optimization of lower level 
modules. Such top-down inter-level conflict (TDILC) exists for the HIFF-II and 
HIFF-M relationships. HIFF-C does not have TDILC under SM2 because the optimal 
set of genotypes at the highest level consists of global optima only (Table 1). Thus 
optimization of higher level modules also optimizes lower level modules.   

Table 1. Optimal genotypes (local optima) by level, N = 4 

Level HIFF-C HIFF-II HIFF-M 
2 { 0000,  1111 } { 0000,  0101,  1010,  1111 } { 0*0*,  1*1* } 
1 { 0000,     0011,     1100,     1111 } 

TDILC None High Low 
* is a placeholder and may take either a ‘0’ or ‘1’ value. 

 
 
Top-down inter-level conflict is higher in HIFF-II than HIFF-M because HIFF-II 

defines more distinct constraints per level (N/2) than HIFF-M (N/2λ) at levels above 
level 1. Further, the set of constraints for any level in HIFF-II involves all variables. 
Therefore, fit higher level HIFF-II modules lock in more genes per level and leave 
fewer degrees of freedom for lower level modules than HIFF-M. 
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2.3   Specificity 

Specificity refers to how difficult it is for independent entities to become part of a 
composite entity. Specificity at level λ refers to the number of genotype 
configurations with 0 fitness value at level λ.  

For HIFF-C, there are only two situations when a module’s fitness is 0: (i) p = 0 
and q = 1 and (ii) p = 1 and q = 0. Since fitness of a level is the sum of the fitness of 
its modules, and there are N/2λ modules at level λ, specificity for HIFF-C at level λ is 
2N/2λ. Specificity at the highest level (λ = n) for HIFF-C is therefore 2. N=2n  
(section 2.1). 

HIFF-II has N/2 distinct constraints per level and these constraints involve all 
variables. Since there are 2 configurations per constraint that contributes 0 to fitness, 
specificity per level for HIFF-II is the same for all levels and is 2N/2. 

HIFF-M has N/2λ distinct constraints per level and each constraint is applied to the 
first and middle variables of each module at level λ. This leaves (2λ – 2)⋅N/2λ 
variables free to take on any value without affecting the fitness of level λ. Therefore 
specificity at level λ for HIFF-M is 2N/2λ ⋅ 2(2λ – 2) N / 2λ which simplifies to 2N (1 – 1/2λ). At 
the highest level, specificity for HIFF-M is 2N-1.  

The calculations in this section serve to show that for λ > 1, HIFF-C < HIFF-II < 
HIFF-M where ‘<’ means is less specific than.  

3   Models  

The objective of this paper is to study how the relationships described in section 2 
influence evolution in two computational models: J and JGA.  

The J model adopts the major evolutionary transition (MET) [6] approach to 
evolution; entities are recursively composed from smaller entities until they reach the 
target size. A difficulty with the MET approach as we mentioned in section 1 is 
keeping parts of a composite entity together. We explored this stability problem for 
HIFF-C and HIFF-M using J in [5]. In that study, runs were made under different 
selection mechanisms (SM1, SM2) and agitation types (R, NR). These two 
dimensions represent enforced cooperation and enforced cohesion respectively. With 
SM1 (section 2.2), all parts “act for their own self-interest”, there is no cooperation 
between parts. With SM2 (section 2.2), cooperation between parts is enforced in the 
sense that the interest of the whole takes precedence over the interests of the parts. NR 
(non-random) agitation type (section 3.1) enforces cohesion by limiting the number of 
parts a composite entity can disintegrate into. In this paper, we focus on the stability 
of HIFF-II entities evolving with the J model. Stability of HIFF-C and HIFF-M 
entities was discussed in [5]. 

This paper also introduces JGA. In JGA, entities start out at the target size and 
evolution is via crossover, mutation and selection. JGA adopts the approach common 
in genetic algorithms. The replacement strategy for the crossover operator in JGA is 
similar to the decision condition for the join and exchange operators in J, a new or 
child entity replaces its donor or parent entities in the population only if it is strictly 
fitter than both of its donor or parent entities. JGA uses the same mutation operator as 
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J with SM1. Part of the motivation for JGA was the difficulty we experienced trying 
to evolve HIFF-II entities with J (section 4.1).  

3.1   The J Model 

The specific J algorithm used in our experiments is outlined in this section. Evolution 
in J starts with a population of entities each having a size 2 random genotype. 
Evolution in J proceeds with either a join, exchange or mutation operation in each 
iteration, until either an optimal entity of the size desired is created or the maximum 
number of iterations is reached. The total amount of genetic material (512 × 2 bits) 
stays constant throughout a run. 

 
Algorithm for J 

create 512 entities each with a size 2 random genotype 
while number of iterations < 50,000 
 increment number of iterations by 1 
 if number of iterations is divisible by 50 
   if fittest entity is also globally optimal and of size 128, stop. 
  record statistics 
 if random real number in [0.0, 1.0] < 0.5  
  chose 2 random distinct entities, e1 and e2 
  if e1.size = e2.size and e1.size × 2 ≤ 128 and random integer in [1, 2] = 1 
   join e2 to e1 
  else 
   exchange parts of e1 and e2 
 else 
  select an entity, e0, using fitness-proportionate (roulette-wheel) selection 
  mutate e0 

0.5 is the join rate 

 

A join event enables two random distinct entities (e1, e2) of the same size to 
concatenate their genotypes to form a new entity (e3) and see whether there is 
additional benefit to exist as one instead of two entities. If e3 is strictly fitter than the 
sum fitness of e1 and e2, e3 is added to the population and e1 and e2 are removed 
from the population. A successful join reduces population size by 1.  

An exchange event enables parts (modules) of two random distinct entities (the 
donor entities), which may be of different sizes, to try out a different configuration. 
This new configuration succeeds if it provides a better context for the parts involved. 
If this is the case, the two donor entities disintegrate. 

The first step in an exchange between two donor entities (e1 and e2) is to split e1 
and e2 into their constituent parts. The granularity of parts from this split depends on 
the agitation type (AT), which is a parameter of J. If AT is random (R), then e1 and 
e2 may be split into parts of any size 2i where 1 ≤ i ≤ log2 of the smaller entity size. If 
AT is non-random (NR), then part size is either the smaller entity size or when entities 
are of equal size, half the size of a donor entity.  

These parts are then assembled into a new entity e3 of size equal to the larger of 
the donor entities. If a part in e3 is strictly fitter on average than a part in e1 and a part 
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in e2, then we add e3 and the remaining unused parts to the population, and remove 
e1 and e2 from the population. Otherwise, e1 and e2 are left intact in the population1. 

Fitness of a part in an entity e is the total fitness of e divided by the number of parts 
used to create e or the number of parts e is split into. Suppose e1 is 1111 1001, e2 is 
11, the relationship is HIFF-C and AT is NR. Then e1 is split into 4 equal sized parts, 
i.e. 11, 11, 10 and 01. Fitness of a part in e1 is 4/4 = 1. Fitness of a part in e2 is 1/1 = 
1. Let e3 = 1111 1101. This exchange succeeds because fitness of a part in e3 is 
5.25/4 = 1.3125, which is greater than 1. Simple average is used so that all parts in an 
entity have the same fitness value. This makes the decision whether to keep e3 or 
discard it straightforward.  

A mutate operation on e0 makes a clone entity e3 of e0 and then complements 1 to 
k genes randomly chosen with replacement from e3’s genotype where k is Pm × 
e3.size. e3 competes with e0 for a place in the population using either the SM1 or 
SM2 replacement strategy (section 2). Pm is the mutation rate. In the experiments 
(section 4), Pm is 0.03125 or 4/128.  

3.2   JGA 

The specific JGA algorithm used in our experiments is outlined in this section. The 
population size is constant (steady-state) throughout a run.  

Algorithm for JGA 
create 128 entities each with random genotype of length 128 
while number of iterations < 100,000 
 increment number of iterations by 1 
 if number of iterations is divisible by 50 
   if fittest entity is also globally optimal, stop. 
  record statistics 
 chose 2 random distinct entities, e1 and e2 
 if random real number in [0.0, 1.0] < 0.5 
  produce c1 and c2 by doing a 2-point crossover between e1 and e2 
  if c1 is strictly fitter than both e1 and e2, replace e1 with c1 
  if c2 if strictly fitter than both e1 and e2, replace e2 with c2  
 else 
  produce c1 by mutating e1 
  if c1 is as fit as or fitter than e1, replace e1 with c1 
  produce c2 by mutating e2 
  if c2 is as fit as or fitter than e2, replace e2 with c2 

0.5 is the 
crossover rate 

 

A crossover between a pair of entities e1 and e2 is made by randomly choosing two 
locations x and y in a genotype where x < y. The genotype of e1 (e2)’s child entity, c1 
(c2), inherits e1 (e2)’s genes at all locations except those between x and y which it 
inherits from e2 (e1). A child entity c1 produced by mutating an entity e1 inherits all 

                                                           
1 In [5], we mistakenly said that a successful exchange increases population size by at least 1. A 

successful exchange does not decrease population size. 
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of e1’s genes except at 1 to k random locations where the complement of e1’s genes 
are inherited instead. k is Pm × e1.size = 4 since Pm is 0.03125 or 4/128 and all entities 
in JGA are of the same size which in our experiments is 128. 

4   Experiments and Discussion of Results  

In the experiments with J, we gauge stability by monitoring the weighted average age 
(WAA) of a population throughout a run. A steady rise in WAA indicates stability. In 
JGA, the emphasis is on the success rate and speed of evolution. 

4.1   The J Model 

Table 2 summarizes the results of our experiments with J. Except for the HIFF-M 
relationship, introducing enforced cooperation (via SM2) and/or enforced cohesion 
(via non-random agitation type) either lengthens average time to optimum or reduces 
success rate.  

Table 2. Number of times a globally optimal entity (N=128) is found out of 30 random runs 
and the average number of iterations successful runs took 

 Selection Scheme 
 SM1 (compares total fitness) SM2 (does multi-level selection) Agitation 

Type HIFF Success Iterations Success Iterations 
C 5 14,960 (9,447) 30 22,480 (2,827) 
II 5 21,960 (9,941) 0 - Non-random  

(NR) 
M 30 10,820 (805) 30 10,700 (683) 
C 30 13,690 (2,100) 30 19,380 (5,939) 
II 30 15,040 (2,617) 0 - 

Random  
(R) 

M 30 11,530 (820) 30 11,490 (784) 
Standard deviation is reported in parentheses. 

 

In [5], we reported that entities evolving with J under the HIFF-M relationship 
were more stable than entities evolving with J under HIFF-C because the HIFF-M 
relationship is more specific. We explained in [5] how specificity (section 2.3) helps 
to improve stability of composite entities by making it more difficult for joins and 
exchanges to succeed, thus giving more time for entities to optimize themselves 
before becoming parts of composite entities. Successful joins and exchanges exert 
downward pressure on WAA while unsuccessful exchanges push WAA up. 
Therefore, the WAA graph for HIFF-M show steady rise because there is less 
downward than upward pressure on WAA for HIFF-M. Another effect of specificity 
is slower decline in population size for HIFF-M than HIFF-C, which in turn affects 
the granularity of exchanged parts when non-random agitation type is used.  

We also reported in [5] that lowering the join rate from 0.5 to 0.25 for HIFF-C 
(NR, SM2) shortened evolutionary time to optimum and improved stability. Here we 
provide further evidence to support this (Figure 4).  
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Left: Number of HIFF-C (NR, SM2) runs that took x iterations on average to complete 
successfully. A join rate of 0.25 brings average evolutionary time required for HIFF-C (NR, 
SM2) closer to the average (13,690) found with HIFF-C (R, SM1) runs. Right: Population size 
over iterations for (NR, SM2) with different join rates. HIFF-C (NR, SM2) benefits from a 
lower join rate which results in a slower decline in population size because population diversity 
in terms of entity size is maintained for a longer period of time. Diverse entity sizes means 
more configuration possibilities for exchanges with NR agitation type.  
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Left: Best fitness over iterations in 000’s for 5 HIFF-C (NR, SM2) random runs which 
completed in less than 20,000 iterations with J at join rate 0.25. The step pattern of these graphs 
shows evidence of optimal modules combining to form larger optimal modules. Recall that 
optimal fitness for a module of size 2n is 2n -1. Hence we see vertical jumps around fitness 
values 15, 31 and 63. Right: WAA over iterations in 000’s for runs plotted in the graph on the 
left. Steady rise in WAA indicates exchanges are on the whole not successful, thus composite 
entities are stable. The volatile nature of the WAA graph for HIFF-C (NR, SM2) when join rate 
is 0.5 can be seen in Fig. 3B of reference [5]. Space constraint prevents us from reproducing it 
here. 

Fig. 4. Lowering join rate improves stability and performance for HIFF-C entities evolving 
with J under (NR, SM2) conditions 

HIFF-II 
Stability of the successful HIFF-II runs reported in Table 2 is poorest compared with 
HIFF-C and especially HIFF-M runs. Here we try to improve the stability and success 
rate for HIFF-II entities evolving with the J model. Like HIFF-C, HIFF-II is less 
specific than HIFF-M. Since lowering the join rate improved stability for HIFF-C, we 
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try to do the same for HIFF-II. Through trial and error, we found that lowering the 
join rate to 0.125 and increasing the maximum number of iterations to 100,000, 
improved the success rate for HIFF-II (NR, SM1) to 25/30 (83%) and improved 
stability (Figure 5). However, the successful runs took much longer to complete, 
42,670 iterations on average with a standard deviation of 14,750. Only 20/30 (67%) 
HIFF-II (NR, SM1) J runs completed successfully when the join rate was 0.25. 

 

Fig. 5. WAA over evolutionary time for successful HIFF-II (NR, SM1) runs at different join 
rates. Note the different scales for the y-axis.  

We could not find any configuration of parameter values that was successful at 
least 50% of the time for the SM2 categories. We attribute this to (i) the high level of 
top-down inter-level conflict in HIFF-II entities under SM2 that prevents further 
adaptation of entities via mutation once their highest level is optimal, and (ii) to the 
genotype configurations that SM2 produces for HIFF-II which has a higher number of 
switches on average than those produced by SM1. A switch marks a change in value. 
For example, the genotype configuration 0111 0011 has 3 switches. The average 
switch count for a best genotype configuration at the end of 5 randomly sampled 
unsuccessful HIFF-II (NR, SM1) runs at join rate 0.5 was 2.6 while the same statistic 
was 52.6 and  60.2 for HIFF-II (NR, SM2) and  HIFF-II (R, SM2) runs at join rate 0.5 
respectively. It is less probable to produce a genotype with a low number of switches 
through an exchange of parts with a high than low number of switches. Further, 
subsequent mutation and replacement under SM2 could increase the number of 
switches for a genotype.  

Previously in [3], we found that HIFF-II entities can evolve to optimality under the 
SM3 (RMHC3 in [3]) selection (replacement) scheme. With SM3, a variant replaces 
its parent only if it is not less fit than its parent at any level. With join rate at 0.125, 
24/30 (80%) HIFF-II (NR, SM3) J runs completed successfully using 47,800 
iterations on average with standard deviation of 16,480. The WAA graphs for 5 
randomly sampled HIFF-II (NR, SM3) is similar to Fig. 5 (Right). However, even 
with a selection scheme that removes inter-level conflict (SM3) in the sense that no 
level adapts at the expense of another higher or lower level, evolution time to 
optimality is high compared with the average time found for HIFF-II (R, SM1) runs.  

Hence we conclude that introducing cooperation (SM2 or SM3) and/or barriers 
against disintegration (NR) seems to make the evolutionary problem more difficult for 
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HIFF-II entities. In contrast, the addition of SM2 and NR reduced evolutionary time 
for HIFF-M entities, while an appropriate join rate could reduce evolutionary time for 
HIFF-C (NR, SM2). But for HIFF-II, the (R, SM1) combination seems to work the 
best for bottom-up evolution under J. 

4.2   JGA 

Table 3 reports the results for our experiments with JGA. Figure 6 shows the 
percentage of genes (bits) where > 90% of the population carries the same value, over 
evolutionary time.  

  Table 3. JGA results N=128

 Crossover Rate = 0.5 
HIFF Success Iterations 

C 29/50 31,450 (15,190) 
II 32/50 34,420 (17,000) 
M 50/50 34,940 (9,946) 
   
 Crossover Rate = 0.25

HIFF Success Iterations 
C 40/50 40,060 (13,210) 
II 42/50 45,360 (17,160) 
M 50/50 54,320 (11,370) 

Standard deviation is reported in parentheses.  
 

Fig. 6. At crossover rate 0.25, HIFF-C 
and HIFF-II JGA runs lose diversity 
faster then HIFF-M
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Abstract. In this study, we describe an evolutionary mechanism – Dual Phase 
Evolution (DPE) – and argue that it plays a key role in the emergence of 
internal structure in complex adaptive systems (CAS). Our DPE theory 
proposes that CAS exhibit two well-defined phases – selection and variation – 
and that shifts from one phase to the other are triggered by external 
perturbations. We discuss empirical data which demonstrates that DPE 
processes play a prominent role in species evolution within landscapes and 
argue that processes governing a wide range of self-organising phenomena are 
similar in nature. In support, we present a simulation model of adaptive 
radiation in landscapes. In the model, organisms normally exist within a 
connected landscape in which selection maintains them in a stable state. 
Intermittent disturbances (such as fires, commentary impacts) flip the system 
into a disconnected phase, in which populations become fragmented, freeing up 
areas of empty space in which selection pressure lessens and genetic variation 
predominates. The simulation results show that the DPE mechanism may 
indeed facilitate the appearance of complex diversity in a landscape ecosystem. 

Keywords: Dual Phase Evolution, complex systems, speciation, adaptive radia- 
tion, simulation. 

1   Introduction 

An intriguing question motivated by new fields of research, such as artificial life and 
evolutionary computation, is whether biological evolution can provide insights about 
self-organisation in complex adaptive systems (CAS). Our recent studies show that 
deep similarities do exist between biological evolution and adaptive processes in other 
systems [2, 3]. Based on these similarities, we have proposed a theory of the existence 
of a family of adaptive processes, which we term Dual Phase Evolution (DPE) [4]. 

In this study, we further develop the theory of Dual Phase Evolution. We show 
how DPE operates in several systems and investigate its implications for patterns of 
species evolution. We begin by reviewing the theory of DPE and present some of the 
supporting evidence. We then provide a model of adaptive radiation (global 
speciation dynamics) in landscapes and use it to demonstrate how DPE can facilitate 
the appearance of perpetual novelty in ecosystems. 



132 G. Paperin et al. 

 

2   Dual Phase Evolution 

CAS exhibit a sustained diversity of their locally interacting components. In the 
absence of a global controller CAS exhibit far-from-equilibrium dynamics, and 
permanent novelty and adaptation [5, 6]. This is facilitated by the complex 
organisation of the locally interacting systems’ components and their interrelations. 

There is a large body of evidence that suggests that structure of CAS emerges 
through self-organisation [5], however, the specific mechanisms governing this 
process are not well understood. There is a large amount of evidence (see next 
section) that CAS generally tend to self-organise towards a stable, balanced state. A 
number of adaptive mechanisms present in CAS cause these systems to exhibit little 
large-scale variation over long periods of time. Such mechanisms may include lower 
order dynamics such as feedback loops and higher order dynamics such as evolution 
driven by selection (in a general sense) [7]. It has been demonstrated in analytical [8, 
9] and computational [7] models that lower-order local dynamics are capable of 
stabilising a system over a large range or external forcing, and that higher order local 
dynamics (evolutionary dynamics) can greatly increase the stabilising effect. 

The same adaptive forces that are responsible for global stability of CAS may work 
to inhibit novelty and change within such systems. In particular, selection acting on 
systems’ components at various hierarchical levels of organisation, as well as on the 
topology and types of their interactions, may drive a system as a whole to a local 
optimum state, thereby preventing innovation [5]. There are two mechanisms that 
have the potential to work against such long-term stasis. 

One such mechanism is co-evolution. Local adaptation of system components 
driven by selection may affect the selection criteria (the fitness landscape) for other 
components, which will also adapt as a result. The adaptation of the components 
affected in such a way may in turn cause changes in the fitness landscapes of other 
components, including the components which initiated the changes in the first place. 
The feedback loops which can arise in this way may function as sources of perpetual 
novelty because the selection acts on random variation and the results of such 
feedbacks may be different for each loop. However, it is not clear that co-evolution is 
capable of providing the degree of innovation observed in many natural CAS. For 
instance, analytical models [10] suggest that selection rather than variation (in this 
case genetic drift) drives speciation. As a result, co-evolutionary feedback loops are 
likely to quickly (on evolutionary timescales) lead to stable system states that reside at 
local optima of the global fitness landscape. Once such a state is reached, selection 
towards the optimum makes variations that could disturb the stability highly unlikely 
[10], and therefore rare. 

The second mechanism that may function as a source of continual novelty in CAS 
is external disturbance. It has been shown, that evolutionary innovations in various 
natural CAS often coincide with external perturbations (e.g. [11], see also next 
section), some of such examples are discussed in the following sections. External 
disturbances may affect a system in several ways and move it from the local fitness 
optimum thereby disturbing the stable configuration.  

Once away from a local optimum, the system enters a phase in which it is driven 
by variation and change. Any chance variation of some local component or 
substructure may provide a better adaptation to the local constraints and selection will 
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facilitate the proliferation of such change. As long as the disturbed system is far from 
a fitness optimum, selection will therefore amplify rather than inhibit some local 
random variations. Over time, components and their interactions on various system 
levels will be driven towards new local fitness optima and the inhibitory effects of 
selection on variation will increase again. Eventually, the whole system will develop 
towards a new stable balance-state. Different perturbations will continue to affect the 
system causing it to flip between balance phases dominated by stabilising selection 
and exploration phases dominated by directional selection. 

We propose a general mechanism governing many processes in CAS. This 
mechanism, Dual Phase Evolution (figure 1), can be summarised as follows: CAS 
develop towards a balanced state. In this state they are stabilised through various 
processes including selection, and exhibit little large-scale variations (on 
evolutionary timescales). The balance state is disturbed by external perturbations 
which unbalance systems and flip them into a phase in which they exhibit variation on 
all scales. Over time, stabilising processes drive systems into a new balance-state. 

While some parts of the system may be completely or partly reorganised during a 
variation phase following a particular disaster, others will remain stable. These stable 
parts may form new interactions and assume new roles within the changing system. 
Such stable sub-systems can act as functional components during a variation phase. 
We speculate that this may be the mechanism that facilitates the emergence of closed 
components in complex systems. When a sub-system consisting of several 
components remains stable during a variation phase, it may act as a functional 
component in the re-organised system. It is possible that this mechanism is 
responsible for the emergence of hierarchical levels of organisation found in CAS. 

Selection maintains stability at 
a local optimum 

Balance phase Variation phase
Evolutionary exploration 

Disturbance 

Unbalanced system 

Pressure towards stability 

- modifies components 
- modifies relationships 
- modifies external systems 

Stable system 

- e.g. selection 
 

Fig. 1. The mechanism of dual phase evolution. Systems flip between balance and variation 
phases. External disturbances unbalance stable systems, variation facilitates evolutionary 
exploration, internal pressures drive the system into a new stable state. 

2.1   Contrast Between DPE and SOC 

In contrast to DPE, the theory of Self-Organized Criticality (SOC) suggests [12, 13] 
that CAS self-organise to a critical state, in which the complexity of systems’ 
responses to external stimuli emerges through a propagation of the stimuli through 
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local component interactions with thresholds at each component. These propagations 
result in avalanches of different sizes. This theory of SOC suggests that CAS evolve 
to reside at the “edge-of-chaos” [14, 15], a transition state between the general stasis 
of equilibrium systems and the random behaviour of chaotic systems. 

As the response propagation avalanches in SOC systems follow a power law 
distribution, an observation of this distribution in data is often used as an indication 
that a system may self-organise to a critical state. A number of models [12] led to 
suggestions that various complex systems, some of which are adaptive, may exhibit 
SOC dynamics. For instance, it has been suggested [16] that the self-organisation of 
the biosphere to a critical state may be an explanation for punctuated equilibria [17], 
since the sizes of extinction events observed in the fossil record follow a power law 
distribution. However, the extent to which SOC presents the general form for 
organisation of CAS remains doubtful. In many cases there are several processes 
which may lead to power-law distributed data. For instance, [18] demonstrates a non-
critical extinction model without any species interactions that yields a power-law with 
an exponent closer [7] to the empirical punctuated equilibria data. It has been 
suggested at various occasions (e.g. [19, 20]) that the critical behaviour requires fine-
tuning of an order parameter. Furthermore, it remains unclear whether SOC occurs in 
non-conservative systems [19, 21]. It has been attempted to avoid some of the 
problems related to SOC by using a notion of nearly-critical behaviour which can be 
applied to a wider range of systems (e.g. [21]), however, the generality of SOC theory 
remains inconclusive. Here, we aim to pinpoint the key difference between DPE and 
SOC, as it is a widely considered theory of self-organisation in CAS. 

The SOC view is that CAS self-organise towards a critical region (see above). If 
we were to describe DPE using the SOC-vocabulary, we would say – CAS develop to 
a balance-state, where they are stabilised by internal forces (e.g. selection); external 
disturbances repeatedly push a system across the critical region, to a chaotic state (in 
the sense that systems responses to random stimuli and variations are unpredictable), 
from which the system returns to a new balance-state, accumulating order and 
complexity on the way.  

3   DPE in Biological Evolution 

Evolution occurs in fits and starts. This pattern of change is clear in the geologic 
record. The system of geologic classification reflects a history in which similar 
assemblages of fauna and flora predominated for long time periods of time, often tens 
of millions of years. These periods are punctuated by abrupt changes in species 
composition. Recent research has revealed that the changes between geologic eras are 
associated with mass extinction events. Recognising this pattern led Eldredge and 
Gould [17] to put forward the idea of punctuated equilibrium, in which the general 
pattern of evolution is constant composition punctuated by mass extinctions, followed 
by brief periods of rapid speciation. 

Alvarez et al. [22] found evidence that the Cretaceous-Tertiary boundary was 
associated with impact of a large comet. Research since then has produced evidence 
that asteroid impacts, volcanic activity and climate change are associated with many 
other geological boundaries as well. 
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Green et al. [2] proposed a mechanism to explain the above observations. For most 
of the time, pressure for space or niches within a landscape impose selective pressure. 
Established populations restrict the spread of invaders. Widespread populations are 
genetically “connected” and genetic variation is suppressed [2]. When a major 
disturbance occurs, the above patterns are reversed: vast areas of free space are 
opened up; suppressed species are free to expand into the new territory; selective 
pressure becomes negligible; and established populations become fragmented.  

There is abundant evidence that Dual Phase Evolution, and processes closely 
related to it, occur in many contexts. There are striking similarities between species 
evolution, on a scale of millions of years, and forest change, which occurs on a scale 
of thousands of years. Forest history, as recorded by preserved pollen, shows that 
during postglacial (the last 12,000 years), forest composition changed in fits and 
starts. This pattern is reflected by the systematics used by palaeontologists, who 
divide the postglacial history into pollen zones. The zones have more or less constant 
composition, with rapid changes from one zone to another. Studies of the process 
have shown that major forest fires triggered the rapid changes, with the species 
composition being determined by climate at the time [11]. 

In certain regions, fluctuations in landscape connectivity have been linked to the 
evolutionary radiation of whole groups of animals. In Great: In lakes of east Africa, 
for instance, the explosive speciation in cichlid fishes has been linked to changes in 
water level [23, 24]. During periods of high water level, environments are connected, 
but become fragmented when water levels are low. Similarly, Hewitt [25] argues that 
repeated glaciations throughout the Quaternary caused species ranges in North 
America and Europe to fragment, leaving surviving populations in isolated refugia. 
These isolated populations diverged genetically, but later reunited, creating a complex 
genetic patchwork in species such as the European hedgehog, Chorthippus 
grasshoppers and bears, and sometimes leading to speciation. Numerous similar 
parapatric species occur in the mountains of Sulawesi that are thought to have 
diverged during periods of habitat fragmentation [26]. Taxa include Chitaura 
grasshoppers, macaques, pond-skaters, cicadas, carpenter bees, butterflies, limacodid 
moths and tiger beetles. Likewise, Amazonian insects are thought to have diversified 
in response to fluctuating connectivity in forest canopy density [27]. 

Habitat fragmentation at fine temporal scales does not always lead to speciation: 
instead, the outcome may be formation of genetic suture zones, where populations 
that have diverged while separated meet and interbreed. Some authors suggest that 
fragmentation may even contribute to evolutionary stasis. For example, Bennet [28] 
argues that Milankovitch climate oscillations, which occur on the order of 10-100ky, 
cause continual changes in the direction of selection, preventing species from 
adapting locally and therefore speciating. Similarly, Coope [29] notes the prevalence 
of stasis among temperate Quaternary insect species despite the appearance of 
incipient ecological species in modern fragmented fauna. Clearly, there is still much 
to be discovered about the impact of habitat fragmentation on evolution. 

4   Simulation Model of DPE 

In order to further investigate the effect of the DPE-process on evolutionary 
ecosystems, we created a computational simulation model. The model investigates the 
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adaptive radiation exhibited by a population of individuals in a landscape. Adaptive 
radiation is usually described as the evolution of ecological and phenotypic diversity 
within a rapidly multiplying lineage leading to utilisation of new ecological niches 
[30]. Our aim is to investigate the potential consequences of the DPE mechanism on 
adaptive radiation in landscape ecosystems.  

The model consists of a population of haploid individuals situated on a two-
dimensional landscape. The model is based on a well-known model of adaptive 
radiation [30] that did not incorporate DPE. The landscape consists of a 100×100 grid 
of cells. Each cell has a maximum carrying capacity of up to 4 individuals. (The 
numbers given here are parameter values for a base scenario. Other scenarios and the 
sensitivity analysis systematically varied these parameters). 

The environment allows 60 possible niches, where each niche is represented by a 
string of 20 bits; a bit represents the requirement, that a particular trait must be 
present (1) or absent (0) in an individual in order to be well adapted to that niche. The 
niches are not location specific. Individuals’ genotypes are also represented by bit-
strings of length 20; the bits represent the presence (1) or absence (0) of the above 
traits (note, here genotype equals phenotype; elsewhere [31] we show analytically that 
this approach is computationally equivalent to the genotype-phenotype setup used in 
[30] when the number of traits in our model equals to the number of traits × the 
number of loci per trait in Gavrilets’ model). The individuals evolve to adapt to one of 
the niches. At each time-step an individual is assumed to occupy the niche which best 
matches the individual’s traits.  

The fitness of an individual is determined in proportion to the hamming distance 
between the individual’s genotype and its niche and is scaled by the niche condition. 
The niche condition is a number between 0 and 1 that describes how appropriate a 
particular niche is within the current environment (i.e. in a desert environment, the 
niche “hot & dry sand” may have condition = 1 and individuals well adapted to that 
niche will have a high fitness; individuals which are well adapted to the niche “cold 
and wet soil” will have a low fitness as such niche will have a much lower condition 
in this climate). 30 out of the 60 model niches are called “normal”, they have a 
condition = 1. The other 30 niches describe the environmental conditions short after a 
disaster. In the base setup, in which there are no disturbances, the condition of these 
disaster-niches is set to 0.2. 

The life-cycle of the model organisms is reproduction – selection – dispersal, the 
generations are non-overlapping. Individuals mate within their occupied cell only. 
Each individual in a cell is selected once as “mother”. A “father” is then randomly 
selected from the remaining individuals of the cell (regardless of their niche). If there 
is only one individual in a cell, it will engage in hermaphroditism. The number of 
offspring each couple produces is Poisson-distributed with λ = 5. Reproduction is 
through free recombination; each offspring is subject to a mutation rate of 0.00001 
per gene, which corresponds to background mutation rate in nature [32]. Once all 
individuals have mated, the old population is replaced by the offspring. It is then 
determined which individuals of the new population will survive to the age of 
reproduction, by reducing the number of individuals in each cell to its carrying 
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capacity (4). The probability of survival is given directly by an organism’s fitness. 
Finally, the surviving individuals may disperse across the landscape. With probability 
of 0.1, each individual will migrate to one of the neighbouring cells. After all 
individuals have migrated, the current generation will engage in reproduction and 
complete the live-cycle. 

The model is initialised with a small population of clones of 2 randomly chosen 
individuals and thereafter simulated for 40,000 generations. 

4.1   Basis Scenario 

Initially we ran the model without any disturbances. The results are generally in line 
with what was observed in [30]. At the beginning of the simulation there is a burst of 
adaptive radiation which leads to a large number of niches being utilised. After a 
while (typically 5 to 10 thousand generations), the number of utilised niches begins to 
decline slowly. Most niche-proportions (proportion of the population occupying a 
certain niche out of the total model population) fall below 0.1 and then either engage 
in uncorrelated fluctuations or decline to 0. The proportions of 1 to 3 niches typically 
remain above the threshold of 0.1. Out of these “dominating” niches, one typically 
grows in proportion slowly, while the others decline accordingly. Sometimes, two 
rather than one niches gain a stable proportion while the others decline (figure 2). 

In addition, we observed some patterns that were not initially expected from the 
model, but are known to occur in nature. These patterns include the dominance of 
lower-fitness populations over closed spatial patches [33] and the occurrence of stable 
hybrid zones [34] maintained by a balance between dispersal and selection against 
hybrids. These observation provide an indication that our model correctly captures the 
relevant landscape dynamics [35].  

4.2   Disturbances 

We modified the basis scenario such that at each generation a disaster occurred with 
probability 5×10-5. During each disaster, all individuals in most landscape cells were 
wiped out. The cells were selected by setting a random point in the landscape as 
disaster centre and wiping out all cells within a certain radius around the centre; the 
radius was normally distributed around 30 cells (sensitivity analysis, not shown, 
shows that if the average radius exceeds a certain threshold, the model behaviour is 
not sensitive to the impact radius). Then a new impact centre was randomly selected. 
This process was repeated until 95% of cells were wiped out. Whatever the nature of 
a disaster (bush fire, volcanic eruption, disease, etc) it will not only wipe out the 
population in affected areas, but also alter the local environment. To model this, the 
conditions of normal niches in areas affected by the disaster were reduced to 0.2, 
while the conditions of the disaster-niches in these areas were raised to 1. In a 
sensitivity analysis (not shown) we have verified that reducing the normal niche 
condition to any value below 0.5 does not affect the qualitative system behaviour. 
This altered environment was maintained at the impact sites for several thousand 
generations and then stepwise returned to normal using a linear interpolation between 
the disaster environment and the normal environment. This strategy is similar to a 
number of cellular landscape models incorporating disturbances (e.g. [33]). 
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Fig. 2. Typical runs. Basis case (top). Left: The population proportions of all niches are disp- 
layed. An initial burst of adaptive radiation is followed by populations of 3 niches taking over 
the entire population. After 40,000 generations it can be expected that a single niche will soon 
take over the entire landscape. Right: the number of utilised niches at each generation from the 
same simulation run. Disaster case (bottom). Left: The population proportions of all niches are 
displayed. While in long phases between disturbances the dynamics are similar to above, 
disasters are followed by phases of intense variation. After the effects of a disaster have faded 
out, new niches appear to be colonised. Right: the number of utilised niches drops immediately 
after a disaster as the populations utilising the niches are wiped out. However, the reduced 
competition in the freed-up areas allows genetic variations to colonise new niches. This figure 
was generated using the real-time plotter LiveGraph [1]. 

The general model behaviour in the disaster scenario can be described as follows: 
A disaster kills a large part of the population, wiping out entire niche-populations. 
The number of utilised niches therefore drops. However, the remaining population 
can now expand into the freed-up areas and colonise the disaster-niches available in 
the disturbed landscape, which leads to a quick growth of utilised niches. As the 
disturbed areas recover from the disaster, some of the normal niches are re-populated. 
In addition, some of the normal niches not used before the disturbance are also 
utilised. By the time the landscape has fully recovered, the number of utilised niches 
is typically large. As the landscape is fully populated at this point, selection now 
slowly reduces the number of utilised niches until the next disturbance (figure 2). 

5   Results 

The quantities offering the most insights into how disasters affect landscape evolution 
in the context of DPE are niche turnover and diversity. Niche turnover is the number 
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of niches that have been utilised throughout the history of the landscape up to a 
certain point of time. The continual new adaptation to unused habitat niches is one of 
the key properties in biological CAS. Diversity is a necessary basis on which selection 
can act in CAS. While continual evolutionary innovation does not necessarily lead to 
increased diversity, a certain degree of diversity is required for such innovation. There 
are various ways to measure diversity [36, 37]. As phylogeny based measures are not 
meaningful within the model, we will apply several information theoretic measures: 
species richness (taken here as “niches richness”) as well as the Simpson, Shannon 
and Pielou measures of diversity [37]. 

 

Fig. 3. Measurement results of typical runs. Measurements were taken every 250 genera- tions; 
measurements taken during variation phases (crowedness < 0.9) are removed. Basis scenario 
(left): Initially, a burst in niches turnover, Shannon diversity as well as species richness (taken 
here as niches richness) can be observed. After a while selection drives to inhibit diversity and 
further turnover of niches. Disaster scenario (right): Variation phases induced by disasters are 
followed by a jump in diversity as well as the discovery of new habitat niches. This figure was 
generated using the real-time plotter LiveGraph [1]. 

Sensitivity analysis shows that the model is sensitive to extremely small parameter 
values. For instance, the disaster dynamics described here could not always be 
observed on grids of size 30×30 and smaller. This may be because the spatial 
distribution of genotype differences is too small on grids of this size. Runs involving 
8 and less niches also did not always produce the disaster scenario dynamics. This 
was mostly due to the fact that all niches were utilised and no further diversification 
was possible. In addition, selection will always drive the genotypes towards the 
available niches and a very small number of niches will work strongly against 
diversification. A very small number of traits (< 10) also tended to not produce 
interesting dynamics. This is probably due to the small number of possible genotypes 
in such a setup and a small mutation probability per genotype. Once the parameters 
exceed some threshold, the qualitative dynamics of the model are not sensitive to 
specific values. In general, the parameters used for both, the basis and the disaster 
scenario, lie well above these thresholds. Of course, particularly large parameter 
values lead to unreasonably long simulation run times. Our strategy of choosing the 
parameter values was therefore to choose values as large as possible, while still 
achieving a reasonable computation time (one model run on our workstation – 
Pentium 4 Prescott, 3.2 GHz, 1GB RAM – takes approx. 9 hours). 
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Table 1. Niche turnover and diversity measured at the end of each run. 20 control runs were 
performed for each scenario. Given are the minimum and the maximum values, the average, 
and the standard deviation. 

 

Simpson diversity Shannon diversity Pielou diversity 
 Min 

val. 
Max 
val. 

Mean Std. 
div. 

Min 
val. 

Max 
val. 

Mean Std. 
div. 

Min 
val. 

Max 
val. 

Mean Std. 
div. 

Basis 
scenario 

0.01 0.75 0.42 0.19 0.04 2.20 1.10 0.50 0.03 0.58 0.35 0.13 

Disaster 
scenario 

0.18 0.90 0.60 0.17 0.47 3.81 1.87 0.76 0.26 0.69 0.46 0.11 

 

Species richness Niches turnover (all) Niches turnover (normal) 

 Min 
val. 

Max 
val. 

Mean Std. 
div. 

Min 
val. 

Max 
val. 

Mean Std. 
div. 

Min 
val. 

Max 
val. 

Mean Std. 
div. 

Basis 
scenario 

0.09 1.89 0.82 0.52 2 9 5.38 1.88 2 9 5.29 1.79 

Disaster 
scenario 

0.09 4.15 1.86 1.06 6 22 14.81 3.7 3 11 8.05 1.88 

 

 

For both, the basis and the disaster scenario we performed 20 control runs. At 
intervals of 250 generations we calculated the turnover of utilised niches and the four 
measures of diversity described above. In order to ensure the comparability of the 
results, we have calculated the turnover of all niches as well as the turnover of normal 
niches only. This is because disaster-niches are expected to be rarely utilised in the 
basis setup. In addition, the model population during the variation phase is expected 
to exhibit increased diversity. This can be expected and we are primarily interested 
whether this diversity will persist into the next balance phase. We therefore removed 
the data points observed during the variation phases. Selection in the model is due to 
restricted carrying capacity of the landscape cells. Therefore, selection is inhibited 
while the landscape is under-populated. We define: 

crowdness =  
current population

maximum popolation
 =  

current population
number of cells × cell carrying capacity

 

We can now define variation phases as phases during which crowdness < 0.9. The 
general behaviour of niche populations in each case is discussed in the previous 
section. The measured quantities at the end of each run are summarised in table 1. 

Typical simulation results are depicted in figure 3. It can be seen that all kinds of 
diversity as well as the niche turnover are consistently higher in the disaster scenario. 
Two-sample t-tests confirm with confidence 99% (α = 0.01) that the means of all 6 
statistics listed in table 1 are higher in the disaster scenario. 

6   Discussion and Future Work 

The results support our claim that the DPE mechanism contributes to the emergence 
of sustained diversity and perpetual novelty in biological CAS. As discussed earlier, 
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another mechanism that can lead to such novelty is co-evolution. The present model 
continuously exhibits novelty, but it does not include any species interactions. This 
supports the argument from an earlier section that sustained novelty does not 
necessarily require co-evolution. It is interesting to see this work being extended in 
the future to incorporate co-evolution in some form. For instance, this could be done 
by varying the “normal” fitness landscape over time. For instance, this could be done 
by introducing new normal niches over the run-time of the simulation or by varying 
the conditions of the existing niches.  

In the present model, disturbances facilitate continuous novelty in two ways. By 
wiping out large areas, the disasters separate the remaining populations in 
disconnected islands, preventing gene flow between sub-populations. This can lead to 
divergence of two population islands through genetic drift. In addition, the disasters 
free up large areas, into which the remaining populations can expand. In an adapted 
population, random mutations are likely to be selected out. As selection is temporarily 
inhibited after a disaster (because the freed-up cells are not filled to their carrying 
capacity), mutations can lead to adaptations to new niches, even if the fitness within 
those niches it initially low. Such adaptations will be amplified by the high condition 
of the disaster niches in disturbed areas even after the disturbed areas have been 
repopulated. The sensitivity analysis of the model has shown that if the impact radii of 
the disasters are extremely small, the dynamics of the disaster scenarios cannot be 
observed. A possible reason for this is that such setup is essentially equivalent to 
selecting the cells affected by disasters in an independently randomly distributed 
manner. Rather than freeing up large areas, such method leads to feeing up many 
small patches which will be immediately repopulated by individuals from remaining 
population sites, which will, on average, be close by. The resulting variation phase of 
inhibited selection will be very short and not sufficient for sub-populations to diverge. 
In nature, sites affected by disasters are not independently distributed. If a landscape 
patch was affected by a disaster, the nearby patches are more likely to be affected 
than those far away. However, further research of the relationship between particular 
disaster types (impact distribution, size, etc.) and their effects on ecosystem properties 
(diversity, niche utilisation, etc.) may provide interesting results. 

In summary, the simulation results of both the basis and the disaster scenarios 
exhibit patterns [35] observed in the corresponding ecosystems [11, 33, 34]. The 
model also confirms the implications of the DPE theory (see previous sections) on 
landscape evolution. Clearly, much interesting research remains to be done to 
investigate the role of DPE in biological and other CAS.  
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Abstract. Biological development is a complex process that mediates
between genotypes, to which mutations occur, and phenotypes, on which
selection acts. Properties of development can therefore have considerable
impact on evolution. However, in many existing simulation models of de-
velopment, the developmental process itself is difficult to recover and/or
analyse. We have previously introduced a model of development in which
the developmental process is represented as a cell lineage. Here we use
this model to further explore the control of development, and the influ-
ence that development has on shaping an adaptive landscape.

1 Introduction

Novel phenotypic forms arise from gene mutations that reprogram developmental
trajectories [1]. Evolution by natural selection occurs because certain individuals,
by virtue of some heritable phenotypic trait, stand a better chance of surviving
to pass on their genes to offspring than others. The specific phenotypic traits
that increase an organism’s chance of reproduction will depend on the nature of
the ecological niche it inhabits. In a relatively stable environment, it is therefore
possible to imagine an adaptive gradient mapped to phenotypic space.

The idea of an adaptive phenotypic space was introduced by Simpson [2], who
described a two-dimensional landscape representing the possible combinations
of two phenotypic characters in which elevation corresponded to fitness. The
highest point in the landscape represents the phenotype that is most adapted to
the current environment. Because environments are dynamic, the location of this
optimum point will move over time. Simpson’s adaptive phenotypic landscape is
a descendant of the fitness landscape described by Wright [3] but differs in two
respects. First, the axes of Wright’s fitness landscape represent gene frequencies
rather than phenotypic characters. Second, the structure of fitness landscapes is
typically more complex due to epistatic interactions between genes.

There is an important relationship between genotypic and phenotypic land-
scapes. The adaptive phenotypic landscape specifies the direction of evolution
favoured by selection. However, any movement from phenotype A to phenotype
B in phenotypic space is contingent upon genotype B being mutationally accessi-
ble from genotype A in genotypic space (Figure 1). The mapping from a genotype
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Fig. 1. Phenotypic adaptation depends on mutational accessibility. In order for phe-
notype adaptation to proceed from phenotype A to phenotype B, there must be a
mutationally accessible path of genotypes between genotypes A and B. The mapping
from genotypic to phenotypic space will be affected by the nature of development.

to a phenotype is defined by the developmental process; therefore, properties of
the developmental process will affect adaptation. Determining the impact that
development has on adaptive landscapes requires a better understanding of the
mapping between genotypic and phenotypic space.

This study explores the effect on evolution of a developmental mapping based
on the dynamics of a gene regulatory network. The following section describes
the artificial cell lineage model. Two series of simulations are then used to explore
the effects of different phenotypic constraints, and different target complexities,
on adaptive search difficulty. Finally, the results of these simulations are analysed
to provide insight into the characteristics of the adaptive landscape.

2 The Artificial Cell Lineage Model

The artificial cell lineage model consists of two components: a network compo-
nent that generates the gene expression dynamics controlling development and a
cell lineage component that defines how these dynamics are interpreted to define
an ontogeny. The model is described briefly here; a more thorough description
and justification can be found elsewhere ([4,5]).

The genetic component of the model is defined by a network of interacting
nodes, based on a standard recurrent network architecture. Three layers of nodes
represent NI input, NR regulatory and NO output genes respectively. All input
nodes are connected to all regulatory nodes, all regulatory nodes are connected to
all output nodes, and each regulatory node is connected to, on average, K other
regulatory nodes (including self connections). The interactions between two net-
work layers are represented by a weight matrix, in which the entry at row i, column
j specifies the influence that gene j has on gene i. For the simulations, random
networks were created by setting each weight to a value drawn at random from
a Gaussian distribution with mean zero and standard deviation W . The state of
the network was updated synchronously in discrete time steps, with the activation
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of node i at time t + 1, ai(t + 1), given by ai(t + 1) = σ
( ∑N

j=1 wijaj(t) − θi

)

where wij is the level of the interaction from node j to node i, θi is the activation
threshold of node i, and σ(x) is the logistic sigmoid function.

A cell lineage is a record of a developmental trajectory in the form of a binary
tree [6]: the root node represents the fertilised egg cell; the non-terminal nodes
represent the transient states that cells pass through whilst differentiating; and
the terminal nodes represent the final differentiated cells that exist at the end of
the developmental process. Therefore, the terminal nodes of the cell lineage that
represent an organism’s phenotype, and the topology of the tree describes the
relationship between all cells that existed at some point during development.

The network model described above is a general purpose computing device.
In a developmental system, the computation performed is the transformation of
a temporal sequence of contextual inputs into an ordered pattern of cell division
and differentiation events. Two input nodes specified the relative position of a
cell with respect to its sibling. After division, the activation of these nodes was
set to {0, 1} in the left daughter and {1, 0} in the right daughter. The output
nodes were used to determine cell division and differentiation. If the activation
of the first output node was above a certain division threshold θd, that cell would
divide, otherwise it would differentiate. In development, the likelihood of a cell
continuing to divide decreases over time. To simulate this, the division threshold
was scaled dynamically, according to θd = 1 − 0.01eλd where d was the depth of
the current cell and λ was a scaling parameter. Once a cell stopped dividing, the
remaining NO − 1 output nodes were used to determine its differentiation type
via a ‘one-hot’ or exclusive encoding scheme.

3 Evolving Complex Cell Lineages

We have previously demonstrated that the artificial cell lineage model is capable
of generating a diverse range of ontogenies of varying levels of complexity [7,8,4].
The aims of these simulations were to investigate the effect of different pheno-
typic distance metrics on the type of lineages located by adaptive search, and to
investigate how the difficulty of adaptive search increased as phenotypic targets
became more complex. The specific targets for the adaptive tasks used in this
study are derived from the lineages of the organisms C. elegans and H. roretzi.
The use of targets derived from real lineages is important because we know that
they have been evolved once, and hence are of a biologically plausible level of
complexity. Defining and measuring biological complexity are difficult issues: a
full description of the metric employed here can be found in [5], and further
exploration of the complexity of cell lineages can be found in [9].

We make a simplifying assumption that adaptation is occurring in a fixed
environment, and the target phenotype is the most highly adapted to that envi-
ronment. Fitness was calculated in terms the distance between the current and
target phenotypes. In a real environment, ecological niches are highly dynamic,
changing as environments change or according to fluctuations in co-evolutionary
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Fig. 2. The four phenotypic distance metrics as applied to the C. elegans male V6L.pap
lineage [10]. See text for a full description of each metric.

relationships. However, when environmental change is slower than adaptation,
the assumption of a static fitness landscape is not implausible.

3.1 Measuring Fitness

Cell lineages are an organisational, rather than morphological, description of a
phenotype and can be quantified and compared in an automated fashion. We
defined four metrics based on the phenotypic component of a cell lineage (i.e., the
terminal cells) in terms of the intersection between three types of constraint:
on the set of cell identities, the relative spatial location of each cell, and the
point in developmental time at which they appear. The first and most basic
constraint is on the cell fate distribution: the requirement that a certain number
of cells of each specific type are present at the end of development. The second
and third constraints require that each terminal cell be correctly positioned in
relation to the other cells in the phenotype, and appear at the correct time during
development. We do not suggest that natural selection acts to explicitly satisfy
these constraints, but rather that they may serve as surrogates for a broad range
of selective criteria operating on development.

For each of the fitness metrics used in this study, the identity constraint was
considered fundamental and always used, in addition to which temporal and
spatial constraints could be applied either separately or together. The practical
implication of each of these constraints and their intersection is illustrated in
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Table 1. Performance of walks using different phenotypic distance metrics

Temporal Spatial Perfect Runs Unique
Constraint Constraint (of 500) Lineages

No No 499 496
No Yes 288 103
Yes No 201 113
Yes Yes 27 1

Figure 2. In each case, the fitness metric is applied to the terminal cells of the
fully developed cell lineage.

No temporal or spatial constraints. When there were no temporal or spatial
constraints, a phenotype was considered as an unordered set of cell fates and the
fitness f(C, T ) of the current cell fate set C with respect to the target cell fate
set T was defined as: f(C, T ) =

(
|(C ∩ T )| − |(C � T )|

)
/|T | where |T | is the size

of set T , C ∩ T is the intersection of sets C and T and C � T is the symmetric
difference of sets C and T .

Temporal constraints only. When temporal constraints were used, each cell
fate was tagged with its depth in the lineage and preceding equation was used
to calculate fitness.
Spatial constraints only. When spatial constraints were used, a phenotype
was considered as an ordered sequence of cell fates and the fitness f(C, T ) of the
current cell fate sequence C with respect to the target cell fate sequences T was
defined as: f(C, T ) =

(
Lev(C, T )

)
/|T | where Lev(C, T ) was the Levenshtein

distance between sequences C and T (see [5] for the algorithm used to calculate
this metric) and |T | was the length of sequence T .
Both temporal and spatial constraints. When both temporal and spatial
constraints were used, each cell fate was tagged with its depth in the lineage and
the preceding equation was used to calculate fitness.

3.2 Comparison of Different Phenotypic Distance Metrics

An initial set of adaptive walks compared the effect of using the four differ-
ent phenotypic distance metrics described above as fitness measures. For each
metric, an ensemble of 500 networks with eight fully connected regulatory nodes
(N = 8, K = 8, W = 2.0) were created and adaptive walks were performed. Each
adaptive walk consisted of 20,000 steps; at each step, a new network was created
by replacing one weight at random with a new value drawn from a Gaussian dis-
tribution with mean zero and standard deviation W . The newly created network
replaced the current network if its fitness was equal to or greater than that of
the current lineage.

As anticipated, as phenotypic definition became more constrained, the dif-
ficulty of the search process increased (Table 1). With no spatial or temporal
constraints, only one of 500 walks failed to find a perfect solution (i.e., a cell lin-
eage whose terminal nodes consisted of the correct quantity of each cell type). In
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Table 2. Target Lineage Details

Lineage Number of Number of Maximum Weighted
Cells Cell Types Depth Complexity

C. elegans maleV6Lpap 12 4 5 6.55
C. elegans C 48 4 6 11.23

C. elegans MSp 46 5 7 22.49
C. elegans MSa 48 5 7 26.55
H. roretzi (half) 55 7 6 31.57

contrast, with both spatial and temporal constraints, only 27 of 500 walks were
able to find lineages that produced the target phenotype. When the phenotypic
definition incorporated either spatial or temporal constraints, around half of
the runs found lineages that produced the target phenotype. Spatial constraints
were moderately easier to satisfy than temporal constraints (288 compared to
201 perfect solutions).

The phenotypic definition had a significant effect on the variety of lineages that
were found. Of the 499 solutions found with no spatial and temporal constraints,
496 of the lineages generating these phenotypes were unique. In contrast, the
intersection of spatial and temporal constraints restricted the space of possible
solutions to a single lineage, that of the original data set. One explanation for the
lower rate of success under this phenotypic definition appears to be the structure
of the adaptive landscape. Using the least constrained phenotypic definition
means that a greater number of lineages map to the target phenotype, and hence
a larger proportion of genotypic space maps, via ontogeny, to a perfect fitness
value. When the most constrained phenotypic definition is used, only a single
lineage maps to the target phenotype, and hence a much smaller proportion of
genotypic space maps to a perfect fitness value.

3.3 Comparison of Different Phenotypic Targets

The second series of adaptive walks compared the performance of adaptive walks
on five target lineages derived from real data sets (Table 2). The first target
lineage was the C. elegans male V6L.pap used above (shown in Figure 2). Three
further target lineages from C. elegans were also used: the sublineage of the
C founder cell, which produces the muscle and epidermis cells in the posterior
region of the worm’s body; and two sublineages, MSa and MSp, of the MS
founder cell, which primarily produces the pharynx (a digestive organ), but also
some muscle cells and the somatic gonad precursors [11]. The final target lineage
was taken from the ascidian H. roretzi [12].

For each phenotypic target, an ensemble of 50 random networks (N = 16, K =
16, W = 2.0) was generated and adaptive walks were performed as above. The
second phenotypic definition (spatial constraints only) was used to evaluate the
fitness of each phenotype. Each adaptive walk consisted of 60,000 steps.

The results of these simulations demonstrate that adaptive search becomes
more difficult as the complexity of the target lineage increases (Table 3). While
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Table 3. Performance of walks using targets of varying complexity

Target Best Remaining Avg. Fitness Perfect Runs
Lineage Fitness Errors (Std. Dev.) (of 50)

C. elegans maleV6Lpap 1.0 - 0.938 (0.071) 24
C. elegans C 1.0 - 0.950 (0.038) 6

C. elegans MSp 0.956 3 0.852 (0.068) -
C. elegans MSa 0.958 3 0.834 (0.076) -
H. roretzi (half) 0.982 1 0.745 (0.074) -

almost half of the walks were able to locate the simplest lineage (C. elegans
maleV6Lpap), the best performing walk on the most complex lineage (H. roretzi)
contained a single incorrect cell after 60,000 steps. In order to demonstrate that
the MSp, MSa and H. roretzi tasks were in fact achievable, the best performing
networks on each of these targets were re-run with no limitations on the maxi-
mum length of the walk. At least one walk was able to locate each of the target
lineages; however the search times required were on the order of 300,000 steps.

3.4 Analysis of an Adaptive Walk

The progress of an adaptive walk towards a target may be measured in several
ways (Figure 3 shows the first 60,000 steps of a successful adaptive walk using
the H. roretzi target, after which only one incorrect terminal cell remained).

Fitness followed a hyperbolic trajectory over the duration of the walk; a
pattern commonly observed in evolution under both computational and in vitro
conditions [13].

Complexity (as defined in [5]) tended to increase over the course of the adap-
tive walk, achieving the complexity of the target lineage after approximately
7,000 steps and thereafter fluctuating about that value. Comparing the fitness
and complexity plots, it is evident that there is a degree of neutrality in the map-
ping from ontogenetic space (measured by complexity) to the fitness landscape.
Clearly it is possible for multiple lineages to share an equal fitness value, and for
an adaptive walk to move between these equivalent lineages via mutation.

Genotypic substitution rate measures the acceptance of newly created
networks. Initially, around 60% of mutations are accepted (i.e., are either ben-
eficial or neutral). This probability decreases at a constant rate until around
step 7,000. After this point, approximately 20% of mutations are accepted with
a moderate decrease over the remainder of the walk. Should this statistic ever
reach zero, it is possible that no further adaptation could occur as the network
weights would be so finely tuned that any mutation would be detrimental. In
practice, this phenomenon was never observed in any of the simulations reported
here: there was sufficient neutrality in the gene network to lineage mapping to
ensure that some change was possible.

Phenotypic substitution rate measures the acceptance of networks that
generated a different phenotype to the previous network. Initially, around 10%
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Fig. 3. Analysis of a single adaptive walk using the H. roretzi target lineage. From top
to bottom, the plots show: (a) fitness; (b) complexity; (c) genotypic substitution rate;
(d) phenotypic substitution rate; (e) accepted phenotype novelty rate; (f) generated
phenotype novelty rate. See text for further details.
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of accepted networks generate different phenotypes. This probability decreases
to almost zero after approximately 10,000 generations and thereafter fluctuates.
Towards the end of the adaptive walk, the probability of phenotypic substitution
falls to zero. The discrepancy between the probability of genotypic and pheno-
typic substitution can be explained by the degree of neutrality in the mapping
from genotypic to phenotypic space: while a relatively constant number of mu-
tations are accepted throughout the adaptive walk, the proportion of these that
result in phenotypic change decreases.

Accepted phenotype novelty rate measures the acceptance of networks
that generated a previously unseen phenotype. Again, a rapid initial decrease
was followed by a gradual decrease to zero as the adaptive walk proceeded. Given
the many-to-one mapping from genotypic to phenotypic space, it is possible that
a previously seen phenotype could be rediscovered from an entirely different
position in genotypic space. This rediscovery could therefore be advantageous if
the new genotype responsible is located in a more promising region of genotypic
space—one in which the mutationally accessible ontogenies result in more fit
phenotypes.

Generated phenotype novelty rate measures the generation of novel phe-
notypes by a newly created network, irrespective of whether its fitness is better
than, equal to or worse than the current best. Phenotypic discovery remained
high (above 50%) over the entire duration of the adaptive walk. This constant
rate of discovery suggests that, while more accurate lineages do become harder
to find, it is not due to the potential diversity of the system being exhausted.
Novel phenotypes continue to be generated; however, the vast majority of these
are less fit than the current best phenotype.

4 The Relationship Between Evolution and Development

The ontogenetic mapping results in multiple types of neutrality. Two
types of neutrality were observed to affect the adaptive exploration of geno-
typic space. The first is in the mapping from genotype and ontogeny. There are
many different combinations of network weights that produce identical cell lin-
eage trees. This neutrality accounts for the high rate of genotypic substitution
observed in the adaptive walks (Figure 3(c)).

The second type of neutrality is in the mapping from phenotype to fitness.
Considering for a moment just the spatially constrained phenotype definition:
a mutation which swaps the identities of two incorrect terminal cells in such a
way that they are still incorrect will produce a novel phenotype without any
change in fitness. The adaptive walks revealed that phenotypes were frequently
substituted while on a plateau of neutral fitness (Figure 3(a) and (d)). For ex-
ample, during one long period of stasis (approximately steps 1200–1800) there
was considerable neutral substitution until, around step 1800, a burst of novel
phenotypic substitution resulted in further fitness increases. Two interpretations
of this dynamic are possible. First, the neutrality may have been beneficial, as it
allowed search to continue where it would otherwise have become trapped at a
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Fig. 4. Summary of different types of neutrality affecting adaptive search. Many differ-
ent genotypes map to a single ontogeny. More than one ontogeny may map to a given
phenotype. Finally, multiple phenotypes have equivalent fitness values.

local optima. Second, the neutrality may have been a hindrance, introducing a
long period of drift where a more rapid transition to a more fit phenotype could
otherwise have been achieved. Distinguishing between these two possibilities is
difficult, as it implies a comparison with a search landscape that lacks neutrality,
but is otherwise identical.

A third type of neutrality—in the mapping from ontogeny to phenotype—
is known to be possible: In the first series of adaptive walks, under all but
the strictest set of phenotypic constraints, multiple lineages were located that
mapped to the target phenotype. In practice, none of the adaptive walks in the
second series were observed to exploit this form of neutrality. One possible ex-
planation for this is that these neutral lineages are located at some distance from
one another with respect to genotypic space, such that they are not mutationally
accessible to one another. Figure 4 summarises the different types of neutrality
that were observed or inferred from the adaptive walks.

Phenotypic improvements occur across a range of scales. Analysis of
the accepted mutations over the adaptive walk shown in Figure 3 revealed that
mutations can cause phenotypic improvement across a wide range of scales. At
the lower end of the spectrum were those frequently accepted mutations that
modified the identity of a single terminal cell, and those that added or removed
a single cell. At the upper end of the spectrum were those more rarely accepted
mutations that introduced or removed a new cell type, and those that added or
removed an entire branch of the cell lineage. The size of a phenotypic improve-
ment was estimated by applying the fitness function using the pre-mutation lin-
eage as the current solution and the post-mutation lineage as the target solution.
The sizes of such changes follow a power law distribution (Figure 5).

The scale of evolutionary change is a subject of ongoing debate in evolution-
ary biology [14]. The essence of the debate concerns how to explain the evolution
of species as inferred from the fossil record: is the selection of individual muta-
tions a sufficient mechanism, or are higher-level evolutionary forces necessary?
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Fig. 5. The distribution of phenotypic improvements indicates that beneficial muta-
tions occur across a range of scales. Mutation size was measured as the distance between
the initial and mutant lineages for each accepted mutations and sorted into exponen-
tially scaled bins.

Fisher [15] argued that mutations of large effect would be far less likely to be
beneficial, and hence only mutations of small effect were likely to be significant.
Kimura [16] challenged this claim, pointing out that if very rare large benefi-
cial mutations did occur, they would be more likely to be fixed, and hence the
distribution of mutation sizes would be skewed. The distribution observed in Fig-
ure 5 supports the claim that mutations causing both large and small phenotypic
changes can be accepted during an adaptive walk.

Figure 5 also highlights one of the benefits of the gene network approach to
modelling ontogeny. If the cell lineage representation had been modified directly
by the adaptive process, we would have needed to specify the sizes and types of
mutations that were possible (e.g., swapping sublineages, or adding and delet-
ing terminals) As it is, we did not need to impose a preconceived step size on
the adaptive process—it emerged naturally as a consequence of the dynamic
mapping.

5 Conclusions

Our investigations demonstrate that adaptive search is capable of locating net-
works whose dynamics generate specific complex developmental patterns derived
from real cell lineages. Search difficulty is affected both by the types of constraint
(spatial and temporal) applied to the phenotypic targets, as well as their com-
plexity. The dynamics of search suggest that the adaptive landscapes resulting
from the proposed developmental mapping are dominated by the presence of
several different levels of neutrality.
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Abstract. This paper illustrates how the Quadratic Assignment Prob-
lem (QAP) is used as a mathematical model that helps to produce a
visualization of microarray data, based on the relationships between the
objects (genes or samples). The visualization method can also incorpo-
rate the result of a clustering algorithm to facilitate the process of data
analysis. Specifically, we show the integration with a graph-based clus-
tering algorithm that outperforms the results against other benchmarks,
namely k−means and self-organizing maps. Even though the application
uses gene expression data, the method is general and only requires a sim-
ilarity function being defined between pairs of objects. The microarray
dataset is based on the budding yeast (S. cerevisiae). It is composed of
79 samples taken from different experiments and 2,467 genes. The pro-
posed method delivers an automatically generated visualization of the
microarray dataset based on the integration of the relationships coming
from similarity measures, a clustering result and a graph structure.

1 Introduction

The analysis of gene expression data coming from microarray technologies has
become an important challenge for computer scientists working in bioinformatics.
Among the techniques available, the visualization of microarray data is crucial
to assist the analysis. Currently, it is mainly carried out by the use of heat maps
of the gene expression, which give the user a clear appreciation of how a set
of genes are expressed along a set of samples, experiments or conditions. An-
other approach is the use of graph visualization algorithms. After modeling the
microarray data as a graph (which is generally obtained with different ad hoc
procedures), different graph layout algorithms are applied, like the force-direct
[1] or the circular layout [2,1]. An important step in these visualization methods
is the definition of the graph, since the result of the graph layout algorithms
will depend on the structure of the graph, which in general disregard any other
information from the dataset. For example, a generally employed method to
build such a graph is to define a distance or similarity between genes and then
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a threshold value such that a graph will be constructed with a one-to-one map
between vertices and genes; an edge connects a pair of genes if, and only if, they
are at a distance smaller than the threshold value. A force-direct layout algo-
rithm can subsequently be applied with forces that attract vertices connected
by these edges, and in some cases the pairs of vertices not connected tend to be
separated via ad hoc repulsion forces. As a result, it is expected that the layout
of the graph will have the elements with similar expression pattern linked by an
edge, and consequently closer in the layout.

In this work we propose a different visualization method for microarray data
based on the modeling of the layout problem as an instance of the Quadratic
Assignment Problem (QAP). Briefly, the QAP considers a set of objects to be as-
signed on a set of available locations, considering the flow between all the objects
and the distance between all the locations, aiming to minimize the overall flow
cost. The layout solution will provide a visualization of the objects (representing
genes or samples) where the position of each will depend on the relationships
between them in the dataset. Moreover, we combine our visualization technique
with a graph-based clustering algorithm that uses a combination of k Nearest
Neighbors and Minimum Spanning Tree, showing the versatility of our visual-
ization method to display the components with the integration of several levels
of information. In order to illustrate the method’s performance, we considered
a dataset used by Eisen et al. [3] composed of the expression of 2,467 genes
over 79 samples from time courses during different experiments on the budding
yeast S. cerevisiae. We use the visualization method proposed on both genes
and samples. The output shows the ability of the method to produce a layout
based on the integration of different levels of information: a) similarity be-
tween objects (genes or samples), b) a representative graph structure
and c) a clustering result. Also, because of the formulation of the problem,
we can mathematically guarantee that all the relationships will be considered in
the generation of the layout.

The paper is organized as follows: first we present the mathematical formu-
lation of the layout problem as an instance of the QAP. Next, the graph-based
clustering method is described. Furthermore, we show the computational results
on the microarray dataset and the comparison with two other clustering algo-
rithms: k-Means [4] and self organizing maps (SOM) [5]. Finally, the analysis
and conclusions are drawn.

2 QAP-Based Layout Method

The Quadratic Assignment Problem (QAP) belongs to the NP-hard class and it
is a well-studied combinatorial optimization problem [6,7,8]. In this problem, the
task is to assign a set of n objects to m locations (m ≥ n). A matrix L = {lij}
of distances between the m locations is given as input, as it is also given a
matrix F = {fij} of flows between the n objects. The objective is to minimize
the overall transportation cost between all the objects considering both the flow
between each pair of them and the distances between the locations in which
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objects are being assigned. Formally, the objective function to be minimized is
the following:

Cost(S) =
n∑

i=1

n∑

j=1

fij lS(i)S(j), (1)

where S(i) represents the assigned location of the object i in solution S. In this
paper, we are using a mathematical formalization of the visualization problem
in which we have QAP instances with n objects and m >> n available locations.
In order to create one of these instances we use the following procedure:

1. each of the n objects represents either a sample or a gene;
2. a matrix D of distances between each pair of objects is computed using a

distance metric, for example based on Pearson Correlation, Euclidean or
Cosine distances, among others;

3. the flow fij (matrix F ) between any pair of objects i and j is defined as
fij = 1

dij
(∀ i �= j, 0 otherwise);

4. a grid of m locations (m >> n) is defined;
5. the distance between each pair of locations in the grid (matrix L) is calcu-

lated using Euclidean distance.

Clearly, higher flow values will be assigned to objects that are very similar and
lower flow values to samples that are dissimilar. A good solution for the QAP
will put the objects with a high flow closer in the layout, which is exactly our
goal.

2.1 Proximity Graph Clustering Method

As we mentioned in the introduction, there are several alternatives to define a
graph that represents the most important proximity relationships in the dataset.
Our ad-hoc proximity graph is built using information from a minimum spanning
tree (GMST ) and a k-nearest neighbors (GkNN ) graphs. A minimum spanning
tree is a connected, acyclic subgraph GMST (V, EMST ) containing all the nodes
of G and whose edges total sum has minimum weight. On the other hand, a k-
nearest neighbors correspond to the graph GkNN (V, EkNN ), where eij ∈ EkNN

iff j is one of the k nearest neighbors of i.
Initially, we create a complete undirected weighted graph G(V, E, w) using

the distance matrix D, such that the weight wij = dij . We define our proximity
graph, namely Gcluster(V, Ecluster), such that Ecluster = EMST ∩ EkNN . This
type of proximity graph was also used in González-Barrios and Quiroz (2003) [9].
In their paper, the authors fixed k = � ln(n) � as the parameter for the kNN
graph, where n represents the number of vertices in the graph G. After many
tests, we adopted a variant of that expression for the value of k, which is shown
in expression 2.

k = min {� ln(n) � ; min k / GkNN is connected} (2)
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The graph Gcluster has c ≥ 1 disconnected subgraphs (G1
cluster , ..., G

c
cluster).

The process is applied recursively on each subgraph of Gcluster until no further
partition is found. In Figure 1 we show the algorithm of this process.

MST-kNN (D: distance matrix)
compute G.
compute GMST .
compute GkNN according to expression 2.
Gcluster = {Vcluster = V, Ecluster = EMST ∩ EkNN}
if (# of subgraphs of Gcluster > 1) then

for each subgraph Gi
cluster ∈ Gcluster

Gcluster =
�

i MST -kNN(submatrix(D, Gi
cluster))

end for
end if
return Gcluster

Fig. 1. Pseudo-code of the proximity graph based clustering method

The final output is a partition of the set of elements based only on the
data provided (the distance matrix D between the elements) and with no user-
determined parameter. However, it is also possible to provide a maximum value
for k and thus have more control over the algorithm. In addition to the clusters
themselves, the edges of the graph Gcluster represent elements that are close to
each other.

2.2 Integration of Proximity Graph Clustering with the
Visualization Method

In order to integrate the result of the graph-based clustering presented in 2.1 with
the visualizationmethod proposed,we consider each subgraphGi

cluster ∈ Gcluster

as a QAP instance that it will be independently optimised. In addition, for each of
them, we also redefine the flow for each pair of samples (or genes) in the cluster as
show in 3, since the edges that belong to the Gcluster are responsible for keeping the
cluster together. After several tests, we define 1000 as the multiplicative factor for
those edges, because it allows the method to better represent the graph structure
on the layout.

fij =

{
1000
dij

, if eij ∈ Ecluster ;
1

dij
, otherwise.

(3)

Following the creation of several QAP instances, one for each cluster, we have to
place all clusters in a single layout. To do so, another QAP instance is created.
In this case, each object represents one of the clusters Gi

cluster . This instance
is created by building a fully connected graph GC(VC , EC , wC) where |VC | = c
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(number of subgraphs in Gcluster) and the weight wCij corresponds to the average
flow between the subgraphs Gi

cluster and Gj
cluster , calculated as:

wCij =

∑

p∈Gi
cluster

∑

q∈Gj
cluster

dpq

|V i
cluster | ∗ |V j

cluster |
(4)

From GC , the new QAP instance is created as was describe in section 2. To
tackle the QAP problem, we use a memetic algorithm described in [10]. The
memetic algorithm will produce a solution for the QAP, which will correspond
to the layout of the data. The method produces a layout in two stages: first,
the samples (or genes) are located according to the relationships between all the
components of each cluster and finally, the position of each cluster is determined
by the relationships between different clusters, considering the average distances
among all components of each pair of clusters.

3 Experiments

3.1 Data Description

The dataset used in this work originates from the yeast (Saccharomyces cere-
visiae) gene expression microarray used by Eisen et al. [3]. The original yeast
whole-genome data contains the cDNA sequences associated to 9,800 ORFs
(open reading frames) and 79 samples. The samples are divided into eight ref-
erence groups associated to experiments on the budding yeast S. cerevisiae,
namely alpha factor - 18 samples (alpha factor arrest and release); CDC15 -
15 samples (cdc15 arrest and release); cold shock - 4 samples; diauxic shift -
7 samples; DTT shock - 4 samples; elutriation - 14 samples; heat shock - 6
samples; and sporulation - 11 samples. We use the freely available data (from
http://www.pnas.org/cgi/content/full/95/25/14863/DC1) corresponding to the
Fig. 2 of the work presented by Eisen et al. [3]. It contains a subset of 2,467
genes with functional annotations.

3.2 Computational Experiments

The experiments were performed on samples and genes separately. Firstly, we
calculate the distance matrix D, using as distance metric the Pearson Correlation
as shown in 5, where ρij represents the Pearson correlation either between a
pair of genes or a pair of samples. This produces a distance matrix with values
between 0 (if the elements are perfectly correlated) and 2 (if the elements are
perfectly anti-correlated).

dij = 1 − ρij . (5)

To find a solution to the QAP instances, we used the Memetic Algorithm de-
scribed in [10]. The methods were coded in Java, and run in a Pentium IV (2,3
GHz) workstation. The program generates a GML file with the location of each
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sample in a grid. To visualize the file, we use the yEd Graph Editor, freely
available at http://www.yworks.com/.

In the case of samples, since they are from eight different experiments on
yeast, it is supposed that samples belonging to the same experiment, should
have similar expression patterns, consequently they should be put closer in the
final layout. We performed two tests: first, we applied the visualization method
on the complete dataset without the use of the graph-based clustering method,
to illustrate its ability to produce a layout with the samples with similar expres-
sion patterns together, and second, we combined the output of the graph-based
clustering algorithm presented in 2.1 with the visualization method.

In the case of genes, we expect that genes with similar functional annotation
have a similar expression profile, so, they should be assigned closer in the vi-
sualization. We present the result for the 2,467 genes in the dataset using the
complete method proposed (visualization + clustering) to show how it performs
in a larger dataset. We show how the method is capable of place closer genes
with similar functional annotation even if they are in different clusters.

Results: In the first experiment, we applied the visualization method on the
79 samples, without the use of any extra parameter. In Figure 2 we show the
layout produced by the memetic algorithm. The samples have different shapes
to indicate the experiment to which they belong. It is clear in the figure that

Fig. 2. QAP-based visualization of the 79 samples of yeast, considering the expression
similarity between the samples
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the organization of the samples shows elements with a similar gene expression
pattern (with higher correlation) located closer, giving to the user an informative
display of the data.

In the second experiment with samples, we integrate the visualization method
with the graph-based clustering algorithm. It is important to clarify that we
could integrate the result of any clustering algorithm with the visualization
method. We first compared the solution of the graph-based clustering algo-
rithm against k-means [4] and SOM [5], using the homogeneity (H) and sep-
aration (S) indexes [11], which give us an idea of how similar and dissimilar
are the elements into a cluster and among the clusters respectively. To run
the two algorithms, we used the software Expander [11], available online at
http://www.cs.tau.ac.il/∼rshamir/expander/ and also to evaluate the indexes
H and S for each solution. Since the algorithm implementations are non deter-
ministic, we ran each of them 10 times for different parameters. For the k-means
algorithm, we tested for k = 8, 9 and 10, and in the case of SOM, we used grids
of sizes 2x4, 3x3, and 2x5. In Table 1 we show the average H and S indexes for
each of the algorithms with different input parameters.

Table 1. Results for k -means, SOM and the MST-kNN approach in terms of homo-
geneity and separation. Several parameters configurations are shown for k -means and
SOM, along with the average results for 10 runs. The MST-kNN approach had the best
results in both criteria.

Method Parameter Havg Savg #clusters

k -means k = 8 0.487 0.099 8

k = 9 0.511 0.094 9

k = 10 0.526 0.108 10

SOM 2 x 4 0.589 0.111 7 and 8

3 x 3 0.579 0.107 8 and 9

2 x 5 0.619 0.116 9 and 10

MST-kNN — 0.642 0.057 9

We also ran the fuzzy k-means algorithm presented in [12] and the MOCK
algorithm presented by Handl and Knowles in [13], for the 79 samples. In the
first case, the program provided by the author gave an “out of memory” error
after more than one hour processing and the latter could not recommend a spe-
cific solution from a set of solutions found by the algorithm.

We chose the clustering algorithm presented in 2.1 because it has a better
performance in comparison with the two other classical algorithms, and it also
provides a graph structure that allows us to show the capacity of integrate this in-
formation in the visualization. Once the clusters are obtained, we proceed to the
visualization of the clusters, applying the layout process described in section 2.
The resulting graph layout using the clustering generated by the MST-kNN is
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shown in Figure 3. We emphasize that the layout algorithm arranges first the ob-
jects within each cluster according to the similarity between them, and then the
position of the clusters relative to each other taking into account the similarity
between their components.

From a computational cost point of view, the method took less than 30 sec
to produce the layout, including the clustering algorithm (which for this dataset
takes less than one second).

The final experiment corresponds to the visualization of the 2,467 genes in
the dataset, as a proof of the scalability of the method. The result is showed in
Figure 4. In this case, the clustering algorithm took 27 seconds and the layout
less than 10 minutes, running 30 generations of the MA for each QAP instances
created (52 for clusters, plus one for the clusters layout).

4 Discussion

Figures 2 and 3 show that the layout correlates well with the type of experiment
to which the individual samples belong to. However, there is one particular sam-
ple (spo-0 ), that seems to be close to samples of other type. In both figures
sample spo-0 is closer to alpha experiments. At first sight this may indicate
an error, as in general the correlation with sample type is strong, however the
expression pattern of sample spo-0 is closer to alpha than sporulation exper-
iments with an average gene expression correlation of 0.112 to alpha samples
and -0.010 to sporulation samples. In Fig. 5 we show the heatmap of the gene
expression of alpha and sporulation experiments. The hierarchical tree on the
left also has spo-0 in the same subtree that contains all alpha samples as leaves.
The most similar sporulation sample to spo-0 corresponds to spo5 2 and it is
the 23rd nearest neighbor of spo-0 , indicating that indeed spo-0 should not be
assigned close to the other sporulation samples. On the other hand, one of the
issues of clustering algorithms is that they show different degrees of sensitiv-
ity, separating in more classes than necessary (showing probable subclasses) or
keeping elements from different classes together. Both situations are covered by
this visualization method. In the first case, if a cluster is split the layout method
manages to put them together as can be seen in Fig. 3. The clustering algorithm
split the experiment cdc-15, but the layout method put them together in the
result. In the second case, the layout method manages to put together samples
from different experiments closer (see middle-bottom cluster in Fig. 3).

For genes, we use the functional annotation of genes to show the main char-
acteristics of the method: when a group is split the visualization manages to put
it together in the grid (Protein Degradation and Protein Synthesis) and, into a
cluster, it manages to organize similar genes together (Glycolysis). This result
confirms the ability of the visualization method to layout together clusters with
similar components, and arrange elements within a cluster according to their
similarity. The groups mentioned are the main groups found by Eisen et al. [3],
but with our method, we are able to find larger groups of genes with the same
functional annotation than in the original work.
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Fig. 3. QAP-based visualization of the clusters identified by the MST-kNN method.
One can see that the result of the clustering method is mainly according with the
experiments from which the samples come. Important, is that even when the MST-
kNN approach assigns samples from the same reference group to two or more clusters,
the QAP-based layout puts them in adjacent positions, e.g. cdc15 (enclosed clusters),
evidencing their similarity.
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Fig. 4. Visualization of the 2,467 genes using the QAP-based approach presented. The
same groups highlighted by Eisen et al in [3] are found here, but our method also
put together clusters composed with a majority of genes with the same functional
annotation.
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Fig. 5. Expression profiles of the samples in the sporulation and alpha factor exper-
iments. It shows that the expression of spo0 is more similar to alpha factor samples
than to other sporulation samples (see arrow).

5 Conclusions

We have presented a visualization method for the analysis of gene expression
data coming from microarray technology. The method is based in a mathematical
formulation of the visualization problem as instances of the QAP. The proposal
is competitive with others and it provides a novel visualization approach. The
main advantages are:

1. The position of the objects are decided according to the relationships among
all the objects (either samples or genes) in the dataset, giving to the user a
layout based on the whole information provided by the dataset.

2. The combinatorial optimization approach proposed here is novel, and can be
synergistically “seeded” by other algorithms, like a force-directed approach
allowing it to have a better starting point.

3. The ability to integrate the result of a clustering technique with the visual-
ization method provides an easily interpretable positioning of the elements,
with optimization for the layout within a cluster, and a global optimization
of the layouts of the clusters.

4. Finally, the method can integrate a graph structure in the visualization by
increasing the flows of some relationships.

Most of the software packages that are available for gene expression analy-
sis lack of visualization systems that provide a reliable and information-based
layout that can assist the interpretation of the datasets. Most of them consider
only some graph-layout algorithms and generally they only use heatmaps. The
method proposed arises as a good alternative to be integrated in the current soft-
ware packages for microarray data analysis, because it has a good performance,
it is scalable and its characteristics make it unique.
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Abstract. Self-assembly and self-replication are the main common thematic 
features of living organism.  The life of most living organisms bases on 
biomolecular systems such as DNA and RNA.  Self-replication and assembly 
are emergent properties of such systems. These biomolecular systems have 
common thematic features that enable them from self-replicating and self-
assembling themselves. In this paper, I try to generalize these common thematic 
features to generate a generalized model of the complement-based self-
replicated, self-assembled systems. In this model, I explained the main 
requirements for achieving these systems in terms of basic system components 
and how these components interact with each other through self-assembling 
rule set and complement-based replication rule set generating systems with 
potential to be self-replicated machines. After generating this model, I have 
applied this model to DNA and simulated its basics.  

Keywords: Self-assembly, Self-replication, DNA, Wang Tiles, self-organiz-
ation, artificial life, simulation. 

1   Introduction 

Building artificial systems that exhibit the features of living organisms is one of most 
active research areas in today's world [5]. Scientists around the world try with a high-
level of cooperation to generate machines with features of biological systems. 

Self-assembly, self-replication, self-healing and adaptation to the surrounding 
environment are the main common distinguished features of living cells. First, self-
assembly is a process by which simple objects autonomously assemble into complex 
systems [6]. It is an advantageous manufacturing approach where with an appropriate 
set of components, the target system will be generated [6].  Scientists, especially 
Astrobiologists such as Deamer, consider it as the main reason behind the existence of 
living systems. Deamer described the development of life as a sequence of self 
assembly processes. This sequence of self-assembly processes transformed a soap of 
molecules into a cell-like membranous structure capable of capturing energy and 
nutrients from surrounding environments that began to grow and reproduce [7]. 

Second, self-replication which is considered as one of the main features of living 
systems came under intensive research investigations since 1940 when J. von Neumann 
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introduced his theory of self-reproducing automata [2, 3 and 4]. Since then, it has 
become one of the most active challenges of research in the field of artificial life. A lot 
of research has been done to investigate the process of self-replication such as the work 
done by Hod Lipson at Cornell university [8, 9 and 10], and Hiroki Sayama [1]. 

The most powerful feature of the living cells or organisms is their ability to self-
heal themselves as well as their ability to adapt to new conditions. These features will 
be handled in future investigation. 

In this paper,  I gave a simple overview about different self-replication approaches  
in categories of the main important themes of self-replication such as universal 
constructor suggest by von Neumann, self-replication loops suggested by Langton and  
Artificial Chemistry approaches introduced by Hutton in section two,  and followed 
by detailed description of CBSRSAS in section three. In section four, I described 
DNA as an example of CBSRSAS, followed by a simple simulation of CBSRSAS 
basics in section five, and finally in the last section by  a detailed discussion of 
CBSRSAS and its characteristics with a summary of suggested future investigation. 

2   Approaches to Self-Replication 

It is around six decades since Von Neumann; the father of self-replication as consider- 
ed by most of researchers, suggested his first model about self-replication. Since then, 
Self-replication attracted a lot of scientists and researchers who have done a lot of 
work to investigate this area which classified into Universal constructor, Self-
replication loops, and artificial chemistry. 

2.1   Universal Constructor 

Von Neumann self-replication approaches based on designing or building a universal 
constructor that can build any thing even if this thing is the universal constructor in 
itself [4]. Von Neumann self-replication suggested five approaches for building a 
universal constructor. The most the successful one was the cellular automata model in 
which the universal constructor was composed of a group of thousand cells that began 
in a specific configuration of initial states. In addition, there is a line of cells or a tape 
for any given finite set of configuration or cells. The tape can instruct the universal 
constructor to build the given configuration.  Therefore, the tape of universal 
constructor configuration can cause the universal constructor to build a copy of itself, 
thereby self-replicating. 

2.2   Self-Replicating Loops 

Self-replicating loops is a simple cellular automat model suggested by Langton. This 
model is more efficient and simpler than the Von Neumann cellular automata model 
of self-replication. It has the advantages of generating replicates of the systems 
without the trail of generating other systems. The cellular automata model of Langton 
approach consists of eight states other than twenty nine states as in Von Neumann's 
approach. The constructor consisted of a group about hundred cells in a specific 
configuration. Langton's constructor cells are arranged in a loop. The states of the 
cells in the loop go through a cycle, periodically creating a copy of the original 
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system loop starting from the initial loop increasing numbers of copies spread across 
the grid.  This approach has been developed by a lot of studies such as [15], [16], [17] 
and [18]. Self-replicating loops approaches have not only proven superiority offer the 
universal constructor approaches, but they have also proven success in generating an 
interesting behavior such as evolution self-repair, in performing computation, and at 
last but not the least, in generating a structures. 

2.3   Artificial Chemistry 

Self-replication in artificial chemistry simulation using a template based approach 
[19] was introduced by Hutton.  Simulation of self-replication in artificial chemistry 
begins with a seed chain in a soup of molecules which generate another parallel chain 
of molecules near by.  When the parallel chain is completed, it separates from the 
seed chain and the process repeats.  Hutton tried to use a cellular automata model but 
the discrete space constrained the mobility of the simulated molecules. So he 
suggested another model designed based on the continuous space. In this model, 
molecules move in a continuous two-dimensional space, following linear trajectories 
until an obstacle such as the container wall or another molecules is encountered. 
When molecules make contact with each other, they undergo a chemical reaction that 
bonds them together, according to the rules of artificial chemistry.   

3   Complement-Based Self-Replicated, Self-Assembled System 
(CBSRSAS) 

In this section, I will explain the main components and rules suggested for generating 
complement-based self-replicated and self-assembled systems.  I will explain what the 
basic system components and what the main characteristics of these main components 
are, and how these characteristics may lead to autonomous replication and assembling 
of the systems. 

3.1   System Component 

System component is an item composed of two types of sections (see fig 1.): the first 
type of sections is the complement interaction section. It is the place where 
complements can interact. This section type determines relationships between 
different system components and plays an important role in generating replicates; 
second type of sections is the self-assembly section type. 

In this type, objects take specific colors which determine the interaction between 
system components in the same system, and help generating specific segments of a 
system or the system itself.  System component may have one or more replication 
section and one or more self-assembly section. 

3.2   System Component Set 

Basic system components represented as (ƒ) are all the components of which system 
will generate. The system can be described as β where β is a spatial order of I ∈ (ƒ).    
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Fig. 1. Shows examples of system component where SC1 is a system component consist a 
complament interaction and a self-assembly interaction system, SC2 is composed of two self-
assembly sections and one complement interaction section, and SC5 is composed of  of  three 
self-assembly interaction sections and three complement interaction sections. 

3.3   Complement-Based Replication Rule Set 

Each item in (ƒ) may have one or more complements. Each pair of items (item and its 
complement) is called a complement-based replication rule. Complement-based 
replication rule set which is donated by ℜ includes all system complement-based 
replication rules. For example, the complement-based rule set of in fig 2 section B 
where items or system components have a one to one relationship is  ℜb = { {A,B} , 
{C,C} , {D,F}}, while complement-based replication rule set of fig 2 section A  is ℜa 
= {{A, A}, {A, B}, {A, C}, {B, D}, {C, C}, {D, F}}. This rule set may generate the 
same system but there is a probability of mutation. This probability depends on the 
average number of the complements pair of a single system component.  The more the 
object has complements, the less probable the target systems are generated and the 
higher probability for mutations to occur at the side of this object.  Consequently, 
complement-replication rule set ℜa is not a good complement-based replication rule 
set, while complement replication rule set ℜb is a one to one relationship. Therefore 
no mutations are expected in case of replication because each system component has 
its complement. 

3.4   Assembling Rule Set 

The Assembling rule set determines how system components interact with each other 
in case of collision on self-assembling sections of system components. This idea is 
driven from Wang tile or Wang dominoes (see fig 3) proposed by Hao Wang in 1961 
[14]. His main purpose was to use a given finite set of geometrical tiles to determine 
whether they could be arranged using each tile as many times as necessary to cover 
the entire plan without gap [13]. 
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                              A                                                                B  

Fig. 2. (A) Replication rule set with a many  to many relationship; (B) Replication rule set with 
a one to one relationship 

 

Fig. 3. Wang Tiles or Wang dominoes [13] 

In the assembling rule set, the interactions between colors are stored in a 
symmetric matrix called a stickiness matrix (see fig 4).    

To illustrate, assume we have two system components. Each one has one self-
assembling section with color A for the first system component and color B for the 
second.  If the interaction between color A and B in the case of collision satisfies a 
specific rule such as equation 1, they either stay together if they satisfy stability 
condition defined in the rule or continue moving according their  previous states. 

3.5   Kinematics Model 

Each system component should have capabilities to move freely and autonomously. 
This movement should not burden the capabilities of objects to interact with each 
other from the side of either self-assembly or self-replication section.  

The kinematics model is not only dedicated to the kinematics model of the system 
components, but it may also include a kinematics model of the complement 
interaction sections and self-assembly interaction sections. 

 

Fig. 4. Interaction Matrix or stickiness matrix [13] 
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3.6   Replication-Initiation Rule Set 

Replication-initiation rule sets are the main signals that may be required to initiate the 
replication process. By these signals, the complementary relations of the system are 
broken leading to breaking the system into its complementary parts. The number of 
complementary parts depends on the number of the complement interaction sections in 
the system components. If the system component has N complement interaction 
sections, then the process of breaking system component will lead to N complementary 
parts. Each complementary part can generate the system again. Although the advantages 
of having more than one complement interaction sections, generating many replicates, it 
may require complex procedures for setting replication-initiation rule set.  

3.7   Replication Machinery 

To replicate systems of this type, it is required to break the system into two 
complementary parts and bring the system components for each of the two parts. 
There are two machinery types for handling this type of replication. The first type of 
machinery depends totally on system components and its kinematics model which I 
called the autonomous replication machinery. The second machinery depends on the 
interaction between the system and other systems or agents. This machinery is called 
the agent-based replication machinery.  The agent-based replication machinery is the 
most famous in biological or natural systems. 

4   DNA as an Example of Complement-Based Self-Replicated, Self-
Assembled Systems 

DNA is behind the most of living organisms. DNA is not only a storage area of 
biological information, but it is also behind the most biological processes in living 
organisms; its characteristics enable living organism from self-replicating and self-
assembling themselves. [12] 

4.1   System Components of DNA 

System components of DNA are cytosine, thymine, guanine and adenine which are 
called by chemists as nucleotides. These components are mainly composed of 
phosphate group, five-carbon sugar group and nitrogen base as shown in table 1. 

4.2   DNA Self-Assembling Rule Set 

Each nucleotide or system component has two sides where self-assembly occurs. The 
first one is the OH group at the third carbon atom in sugar group which I call τ, and 
HOPO3 or phosphate group which I call ε. 

In the interaction matrix above (fig 5), the interaction between  τ  and ε (i.e. F) 
represent the minimum energy required to break the bond between τ  and ε. So DNA 
stability or assembling requires the free energy around DNA to be less than F and 
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Table 1. Basic system components of DNA (nucleotides) [12] 

Cytosine Thymine 

Guanine Adenine 

 

      Item        
Item    

K F 
F L  

Fig. 5. Interaction Matrix 

greater for disassembling.  K represents the interaction between two groups of  τ and 
L represents the interaction between two groups of ε. Naturally, No interaction 
usually occurring between two groups of the same type in case of DNA assembling 
then L and K, So I suggest that L and K values to be zero.     

4.3   DNA Complement-Based Replication Rule Set 

Nucleotides or system components of DNA have two complement-based replication rules 
which are considered as the main reason behind self-replication of most living organisms. 
These rules can be summarized as  ℜ = {{guanine, cytosine}, {adenine, thymine}} as 
shown in table 2.  The rules emerge from the number of hydrogen bonds between 
different pairs. For the first pair {Guanine and cytosine}, the number of hydrogen bonds is 
three, while the number of hydrogen bonds for the second pair is two [12]. 

4.4   Replication-Initiation Rule Set 

Replication-initiation rule set differs according to the biological organism in which 
DNA exists. For example, in E. coli DNA replication is mediated by DnaA, while in 
archaea DNA replication is mediated by Cdc6/Orc1 [11]. 
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Table 2. DNA Complement-Based Replication Rule Set [12] 

First complement-based Replication Rule in 

DNA is  {Guanine, Cytosine} 

Second Complement-based Replication 

Rule in DNA is  {Adenine, Thymine} 
 

 

4.5   Replication Machinery 

Most of the DNA in biological cells depends on a protein or a set of proteins to be 
replicated (i.e. Agent-based replication machinery). Check [11] for more information. 

5   Simulation of CBSRSAS 

I have implemented a software tool that enables its users from mimicking the process 
of creating self-assembled and self-replicated systems. It enables them form creating a 
set of system components. Each system component has two side where self-
assembling occurs. These sides are on the right and left sides of the system 
components. Each side of self-assembling section has a color ξ which is selected 
randomly from a set of colors called assembling controlling set ψ. It also enables 
them from generating the assembling controlling set (i.e. colors) and the interactions 
between each pair of ξ. These interactions are stored in two dimensions array called 
the assembling rule set. System component also has another section that enables 
system component to be integrated with its complement. Finally, this software tool 
also enables users from determining complement-based replication rule set (see fig 6). 

5.1   Kinematics of System Components  

After generating system components, assembling rule set and self-replication rule set, 
and determining the number of objects to be modeled in the simulator, the objects will 
move randomly in Brownian motion up, down, left, and right. If these objects collide 
together from the side of self-assembly section, they either stay together forming a 
new system or continue moving according to their previous states as shown in 
equation (1) [13]. 

⎭
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Equation 1 states the result of interaction between Objects ( JI OO , ), if interaction 

between colors on their self-assembly section are greater than temperature–environmental 
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variable affecting self-assembly of objects- objects will  stay together forming a new 
system. Otherwise, they will continue moving according to their previous state. 

5.2   Replication Initiation and Machinery  

In this simulation, the replication is initiated by replication breaking items. They are 
hard coded items that move randomly with the same container in which system 
components move. Once it is attached to any system, the system breaks into its 
complementary parts. After this division occurs every complementary part is 
considered as a blue print for the former system. The autonomous movement of 
system component takes the responsibility of generating replicates by attached to 
either of complementary parts. This section require a lot of future investigations to 
handle possibility of creating specific replication breaking items for specific systems 
and to add agents to support process of replication. 

 

 
 

Fig. 6. Snapshot of the simulator 
 

6   Discussion and Future Work 

In this paper, I suggested a model of self-assembled and self-replicated systems which 
may be classified as an artificial chemistry self-replication approach, and applied it to 
one of the most famous bimolecular systems, DNA.  This model may be considered 
as a blue print for systems that can exhibit the living organisms’ features of self-
assembling and self-replication. 

I defined the main requirements of the CBSRSAS such as the main system compon 
ents and their parts which are classified as a self-assembly interaction section and a 
complement interaction section. To build a complex system, it may be possible to 
define more than one interaction section for either self-assembly section or 
complementary section. CBSRSAS with many complement interaction sections has 
capability to produce a more replicas but require more complex procedures to 
replicate such as checking whether all complementary parts are complete and 
handling the breaking of complementary relations or interactions. While CBSRSAS 
with many self-assembly sections has ability to build a chain with complex structure. 

Relative to the simulation suggested in fifth section, it was very simple. It was to 
just visualize a very simple model of CBSRSAS. Unfortunately, I failed to get a good 
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result of this simulator relative to the limited space. But I suggested improvements to 
this simulation to be handled as future investigations. 

Relative to the future research investigation, I think that CBSRSAS have a lot of 
potentials for future investigations. I classified it according to area of investigation 
into: Robotics, Simulation, and Chemistry.  

 
Fig. 7. Represent an example for CBSRSAS 

Robotics  
Applying CBSRSAS to robotics may be an interesting future investigation. 
CBSRSAS can help building self-assembled and self-replicated Robotics. If robotics 
are built with a CBSRSAS characteristics such as one presented in the fig 7, defining 
self-assembly interaction sections and complement interaction sections and defining 
self-assembling rule set as well as self-replication rule set, It may generate a powerful 
robotics with interesting behavior and capabilities of generating themselves either 
through self-assembly or self-replication. 

Simulation 
One of the main future investigations regarding this paper is to build a complex 
graphical representation of CBSRSAS with more complex dynamics assigned to self-
assembly interaction sections and complement interaction sections, defining agents to 
bring system components to complementary parts and handling the basics of physics 
such as repulsive field, momentum and viscosity.  

Chemistry 
Investigating the possibility of generating CBSRSAS at atomic or molecular details in 
chemistry may lead to discovering other systems with higher  assembling and 
replication rate than the existed ones such as DNA and RNA and, consequently, 
creating a new type of living systems. Currently, I investigate in the possibility of 
generating CBSRSAS system dedicated to generate specific protein and taking the 
advantages of DNA as powerful encoding system and RNA as protein-manufacturing 
factory.  
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Abstract. Running droplets have been studied recent years as dissipa-
tive macroscopic structures with locomotive capability, a characteristic
of which is shared with biological systems. We constructed a numerical
model of a droplet that integrates fluid dynamics and chemical reac-
tion. Our results show that the chemical gradient generates droplet’s
motion, accompanied with convection flow. This convection flow con-
tributes sustaining the chemical gradient, making a positive feedback
loop. The simulated droplet self-maintains a chemical gradient, a pre-
requisite for locomotion, which constitutes a prototype of autonomous
movement.

1 Introduction

Since the pioneering work of von Neumann [1] and succeeding studies by stim-
ulated researchers, self-reproduction has been intensively studied in the field of
artificial life [2,3]. While self-reproduction is, beyond question, essential to life
for its relevance to evolution, motility of biological systems is no less essential
than self-reproduction.

Biological systems are non-equilibrium macroscopic structures, many of which
show locomotive capability. As a dissipative structure, the natural cell receives
resources from its environment and coverts them into waste through metabolism.
The accumulated waste unless removed will saturate the local environment effec-
tively slowing or stopping the metabolism that created it. Moving through the
environment to obtain new resource allows biological systems to avoid the equi-
librium. A self-movement becomes particularly important when a system acquires
sensors and the adequate coupling between sensors and motors. A self-movement
with sensors will differentiate context of the environment, which is food and where
is enemy, to increase the value of survivability. We thus think the locomotion or
exploratory behaviors is a basis of further evolution to take off.

In the field of artificial life, movement has drawn much attention through the
recent enthusiasm for embodied cognition and situatedness. On the other hand
there has not been much work to date on movement in simple chemically em-
bodied systems such as protocells. Suzuki and Ikegami [4] have constructed an
abstract model on a running cell in which metabolism and motility is coupled,
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(a) (b)

Fig. 1. (a) Experimental setup. The concave glass slide is filled with aqueous solution.
An oil droplet is then added and observed by a microscope. (b) Schematic representa-
tion of the droplet with convection flow inside. This droplet moves to the right.

employing a stochastic automata. Numerical result shows that the cell demon-
strates the motility driven by inhomogeneous configurations of chemicals in the
cell, which can be distinguished from Brownian motion.

From laboratory experiments it has been shown that oil droplets placed in
aqueous media sometimes exhibit spontaneous movements. Difference in inter-
facial tension at the droplet boundary is responsible for the movement, known
as Marangoni effect. For example, an oil droplet [5] is driven by receiving sur-
factants from the environment to create Marangoni effect, constituting a non-
equilibrium structure with locomotive capability, the property of which is shared
with living things, thus providing a prototype of biological movements. Recently
we conducted a series of experiments on spontaneous motions of oil droplet
with its boundary covered with fatty acid [Fig. 1 (a)] [6]. The oil droplet con-
tains fatty acid anhydride that reacts with water at the boundary to produce
fatty acid. Since the interfacial tension depends largely on the fatty acid concen-
tration, inhomogeneity in the distribution of the chemical causes a Marangoni
effect resulting in droplet’s locomotion. Along with the movement, convection
flow is observed as shown in Fig. 1 (b), whose axis coincides with the direction
of movement.

Convection flow has been also observed in some of other studies but it remains
unclear whether the convection flow is merely a byproduct of droplet motion or it
contributes to the motion in a positive manner. Since in our experiment convec-
tion flow carries fatty acid anhydride toward the boundary or reaction region, it
is implied that convection flow plays a role in enhancing locomotive behavior. It
is then interesting in a sense that chemical gradient generates motion together
with convection flow, which, in turn, sustains chemical gradient by providing
reaction substrate, forming a circular relation and self-maintained movement.
This paper aims to evaluate this conjecture. We have constructed a numerical
model of a droplet that integrates fluid dynamics and chemical reaction. In the
subsequent sections we explain our model in detail, report the result of droplet’s
motions and conclude with summary and discussion.

2 Numerical Simulation

We introduce a model that qualitatively reproduces the behaviors observed in the
experiment. As we saw, chemical reaction and convection flow are coupled and
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play a key role to sustain droplet motion. For decades, spatial structures formed
through chemical reaction have been typically studied as reaction diffusion. To
model running droplet we have to introduce the flow of the reaction field itself.
Therefore, the model must include both fluid dynamics and a chemical reaction.

On the similar line Kitahata et al. [7] conducted numerical simulations which
incorporate both convection flow and reaction diffusion system. In their model
chemical gradient produced by BZ reaction generated the differentiated interfa-
cial tension on the liquid-liquid interface. Assuming that the interface is a fixed
straight line, it was shown that convection flow is generated near the interface
due to Marangoni effect and moves along with chemical traveling wave. Our
model differs in that it deals with the movement of droplet itself, which have
the curved geometry and can change its shape. The governing equations are as
follows.

Governing Equations

∇ · u(x, t) = 0 (1)

(
∂

∂t
+ u(x, t) · ∇)u(x, t) = −1

ρ
∇P (x, t) + ν∇2u(x, t) + aFsδ (2)

Fs(x, t) = γ(v(x, t))κn + ∇γ(v(x, t)) (3)
γ(v(x, t)) = v(x, t) + b (4)

(
∂

∂t
+ u(x, t) · ∇)v(x, t) = G(v(x, t))δ + Dv∇2v(x, t) (5)

G(v(x, t)) =

{
c, if 0 ≤ x < 0.8
0.1c, else if 0.8 ≤ x < 1
0, otherwise

(6)

Equations (1)-(4) describe the dynamics of an incompressible fluid and (5) and
(6) are for chemical reaction. Eq.(1) represents the conservation of mass. Eq.(2)
represents the conservation of momentum or Navier-Stokes equation. The third
term in the right hand side is a force at the interface which is defined in eq.(3).
The first term in RHS of (3) constitutes interfacial tension. κ,n, δ are curvature,
normal vector of interface, delta function, respectively. Delta function takes a
positive value at an interface , otherwise 0. γ is an intensity of interfacial tension
which depends on chemical concentration. Here we simply assume it is linear to
chemical concentration(4). The second term in eq.(3) is a force generated due
to the difference of γ, that is, Marangoni effect. Eq.(5) is the same as reaction
diffusion equation except for the advection term which enable the flow of chem-
ical field. For simplicity, we deal with a single chemical species whose amount is
represented with v. Chemical reaction is defined as in (6).

Numerical Procedure

Space is two dimensional and described by a square mesh 64 by 64. We solve
partial differential equations by finite difference method. Density function φ is
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defined to discriminate the droplet from the surrounding medium. It is set to
1 inside the droplet, otherwise 0 as an initial condition. φ is advected as (7).
Interface between the two fluids can be detected by the difference in φ. δ function
in eq.(2) and (5) can be substituted by ∇φ (8). To obtain ∇φ, the stepwise-value
φ needs to be smoothed out beforehand as numerical treatment. Here we apply
eq.(10) to φ eight times, which gives about four mesh wide boundary. Two fluids
can have different physical properties. When the densities of droplet fluid and
surrounding media are ρ1 and ρ2 respectively, the density at the position x
at time t is expressed as in (10). The kinematic viscocity is written similarly
(11). Using these values, the governing equations can be solved as if we dealt
with a single type of fluid. As a simulation scheme we used cubic-polynomial
interpolation method. It interpolates the values between two neighboring mesh
points using cubic polynomial to suppress numerical errors and is known for its
simple algorithm [8]. Numerical procedure is summarized as follows.

(
∂

∂t
+ u(x, t) · ∇)φ(x, t) = 0 (7)

δ = ∇φ (8)

φnew
i,j =

1
2
φi,j +

1
2

· 1
1 + 4C1 + 4C2

{φi,j + (9)

C1(φi−1,j + φi+1,j + φi,j−1 + φi,j+1) +
C2(φi−1,j−1 + φi−1,j+1 + φi+1,j−1 + φi+1,j+1)}
(
C1 = 1/(1 + 1/

√
2), C2 = C1/

√
2
)

ρ(x, t) = φ(x, t)ρ1 + (1 − φ(x, t))ρ2 (10)
ν(x, t) = φ(x, t)ν1 + (1 − φ(x, t))ν2 (11)

1. set an initial condition as will be described in (12).
2. calculate the interfacial force Fs, using eq. (3).
3. – solve the Navier-Stokes equation (2) and continuity equation (1) to get

u and P updated.
– φ and v are also updated through advection and chemical reaction by

eq. (7) and (5).
4. Iterate 2 and 3.

3 Results

In this section we report the simulation results of the above-mentioned model. We
impose the chemical distribution with gradient as an initial condition. Chemical
concentration is highest at left end of the droplet and is decreasing to the right
end. Besides, Chemical is set dense near droplet’s boundary (Fig. 2 (a)). It is
written as follows.

v =
{

|θ|/π · (|x|/R)3, if |x| ≤ R
0, otherwise

(12)
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(a) (b) (c)

Fig. 2. (a)an initial condition: the chemical is asymmetrically distributed inside the
droplet. The line showing the boundary of the droplet is drawn as the contour where
φ = 0.5. (b)The droplets marches from left to right. The line shows the trajectory of
the center of mass. (c)The velocity field is shown. Each of short lines at mesh points
represents a velocity vector at its location. Convection flow is observed whose axis is
directed to the droplet’s movement.

Here, x, R, θ, are a positional vector, diameter of the droplet and radian mea-
sured from the center of droplet as the original. The parameters used in our
simulations are listed at the end of this paper [table 1].

As the simulation proceeds, we can observe that the droplet moves to the right
(Fig. 2 (b)). This rightward motion is produced because interfacial tension is
stronger at the left boundary than at right one due to chemical gradient. During
its locomotion velocity field is formed as shown in Fig. 2 (c). Inside the droplet
we can see convection generated whose axis coincides with the direction in which
droplet moves. The chemical flows within the droplet and then reaches the right
side and then flows along the upper or lower boundary, gradually approaching
the left side. This structure of convection flow can be equated with that observed
in the experiments and reproduces it well.

As mentioned before, it is implied that chemical gradient is being sustained
possibly because chemical reaction at an interface is balanced with convection
flow which transports fresh chemical for the reaction. To verify this conjecture,
we run simulations with the following two scenarios and compared them one
another.

no reaction condition. If there is no reaction at the interface, chemical gra-
dient is expected to decline, flowing away from the boundary due to convec-
tion flow. This condition is realized simply by ignoring the reaction term in
Eq. 5.

no convection condition. We conducted a simulation in which the initial
chemical distribution is not altered by convection flow. The droplet’s cen-
ter of mass velocity

∫
φudV/

∫
φdV (V : volume) is calculated from veloc-

ity field. Then we drift the droplet with this velocity uniformly. Chemical
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Fig. 3. (upper) Trajectory of droplets’ movement. Each figure corresponds to a regular
case (left), no chemical reaction case (middle) and no convection case (right). (lower)
the snapshot of chemical gradient for each of three cases at the same time elapsed since
the start.

distribution moves in space without being deformed as if it were rigid body
because its velocity gets independent from the position. While convection
cannot affect the chemical gradient, chemical reaction can increase chemical
product. Though this situation is physically impossible, it is conducted as
virtual setting for comparison.

Results are shown in Fig. 3 and 4 along with the result of the regular case
in which both reaction and convection are intact. Fig. 3 (upper) shows the dis-
tance of locomotion. In all cases droplet begins to travel and after a while cease
to move. While the difference in the distance of displacement is not significant,
the droplet travels longer distance in the regular case than in the other two sce-
narios. Fig. 3 (lower) shows the snapshot of chemical gradient for each of three
cases at the same time elapsed since the start. We can see that chemical gradient
remains similar along the interface in the regular case. In no reaction case chem-
ical is diluted and shows diminished gradient at the interface. On the contrary,
chemicals are accumulated in no convection case, showing isotropic distribution.
The reason of higher motility in the regular case is that chemical production
is balanced with convection flow which takes away the chemical from the inter-
face. Fig. 4 shows the speed of locomotion. The regular case demonstrates higher
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Fig. 4. The horizontal and vertical axes represent simulation time and the speed of
droplet’s center of mass, respectively. Regular case shows the highest speed among
three scenarios.
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Fig. 5. The parameter dependencies on reaction rate c (a) and a, the coefficient of
the force Fs (b). The horizontal and vertical axes stand for each of parameter values
and the displacement distance, respectively. The horizontal dotted line represents the
length of droplet’s radius for comparison.

speed than the other two. These results indicate that droplet can have higher
locomotive capability when convection and reaction works cooperatively.

To understand further the relation between the chemical reaction and con-
vection flow, we tested how the droplet’s behavior depends on the reaction rate
c and the parameter a which determines the convection flow. Fig. 5 (a) shows
dependencies on c with a fixed. We can see that around a specific parameter
region the droplet accomplishes the maximum displacement distance. Fig. 5 (b)
illustrates dependencies on c. Again, specific c region is favorable for locomotion.
Both reaction rate and Marangoni effect have an influence on motility.

4 Conclusion and Future Work

We qualitatively reproduced the movement of a droplet, using the model which
couples the fluid dynamics and chemical reaction. Staring from the initial
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condition in which chemical gradient is appropriately set inside the droplet, we
observed that droplet shows directional motion. This movement is generated by
the imbalance in interfacial tension which can be locally different, depending on
the chemical concentration on the interface. Along with its motion, convection
flow is also observed inside the droplet, whose axis coincides with the direction
in which the droplet marches. The capability of movement is influenced by the
two parameters, intensity of interfacial tension depending on the chemical and
reaction rate of chemical at the interface. We checked that the maximum trav-
eling distance is achieved at the parameter region where the two parameters
take specific values to balance the two contrary effects: chemical reaction which
increases the chemical concentration till the saturation and convection flow that
carries away chemicals from the interface. Lack of either one would cause faster
decline of chemical gradient, resulting in poor motility. Besides, to see whether
the convection flow contributes to the droplet’s motion in a positive manner, we
compare the observed running behavior with that in a virtual scenario in which
convection flow doesn’t affect the initial distribution of the chemical. While the
droplet exhibits directional movement in both cases, it displays higher motility
when convection flow is incorporated. Therefore we can say that there exists a
case where convection flow enhances the running behavior.

Chemical gradient is a prerequisite for generating motion. In addition, the
chemical gradient is being sustained and generated by the droplet itself in the
course of time. Decades ago, autopoiesis was suggested as biological model which
sustains itself by reproducing its components and boundary conditions. In our
model the chemical gradient and convection flow constitute a positive feedback
loop which sustain the droplet’s motion. This is a self-sustenance of motion,
as autopoiesis is for reproduction, and can be regarded as extension to a more
general conception where the motion is also self-maintained as reproduction is.

A special emphasis has been put on self-reproduction in the field of artificial
life both from theoretical and empirical points of views [2,9,10,11,12,13], while
movements have not drawn much attention until recent years. However, when
it comes to autonomy, the essential characteristics in which life manifests itself,
we can hardly imagine life without movement.

In biological experiments chemotaxis of bacteria and other organisms has been
studied, which is considered to be the prototype of cognitive behaviors [14].
From very different points of view in psychology, Gibson[15] and more recently
O’Regan and Noë [16] in particular contributed much to the shift of paradigms in
cognition from a passive view that sensor input is a signal fed from environments
to agents to an alternative view that input is generated by agents through their
exploratory movements.

Adaptive behavior and cognitive capabilities are now considered in terms of
correlation between movements and sensor input. Various computational models
and robotic experiments have been suggested to illuminate sensor-motor loops
[17]. Our research on the droplet serves as a model which exemplifies the self-
maintenance of movement and bridges the gap between protocell models and
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Table 1. Parameters: Values above are used in our simulation, unless specified in the
text. To determine Reynolds number by Re = uL/ν, the diameter of the droplet 2R
and the average velocity at the center of droplet’s mass are used as representative
length L and velocity u, respectively.

parameter description value

ρ1 density (droplet) 1.2

ρ2 density (surrounding media) 1.0

ν1 kinematic viscosity (droplet) 1.7 × 10−6

ν2 kinematic viscosity (surrounding media) 1.0 × 10−6

R the radius of a droplet 0.2

δh mesh size 1.56 × 10−2

Re Reynolds number 15

Dv chemical diffusion coefficient 0.2

a the coefficient of force Fs 1.0 × 10−8

b the constant in the interfacial tension term 0.2

c chemical reation rate 1.0 × 10−5

locomotive agent models, which have been sometimes considered unrelated to
one another.

Some issues remain to be addressed as future work. Spatio-temporal struc-
tures formed by reaction diffusion system can be introduced in our model. An
interplay between diffusion and convection might have some significance. In lab-
oratory experiment Kitahata [7], for example, showed that droplets loaded with
BZ reaction diffusion system demonstrate oscillatory movements driven by os-
cillatory chemical patterns. Besides, it is widely reported that convection and
diffusion take place inside the cell. Our model can be used to simulate and an-
alyze such situations. Secondly, we imposed a chemical gradient as an initial
condition to initiate movement. On the other hand, droplets in the experiment
spontaneously give rise to symmetry break without special treatment of chemical
gradient as an initial condition. Symmetry breaking and initiation of movement
are left to future work. Thirdly, The shape of the object, in general, can affect
the mode of its movement or be altered along with the movement. For example,
camphor, which is also known to show running behavior, generates directional
or circular motion, depending on its shape. Relation between the shape and its
mode of motion can also be of importance.
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Abstract. There has been some ambiguity about the growth of attractors in
Kauffman networks with network size. Some recent work has linked this to the
role and growth of circuits or loops of boolean variables. Using numerical meth-
ods we have investigated the growth of structural circuits in Kauffman networks
and suggest that the exponential growth in the number of structural circuits places
a lower bound on the complexity of the growth of boolean dependency loops and
hence of the number of attractors. We use a fast and exact circuit enumeration
method that does not rely on sampling trajectories. We also explore the role of
structural self-edges, or self-inputs in the NK-model, and how they affect the
number of structural circuits and hence of attractors.

Keywords: Kauffman networks; Random boolean functions; Circuit enumera-
tion; Loops; Attractors.

1 Introduction

Random Boolean Network (RBN) models are effectively a generalisation of the 1-
dimensional Cellular Automata model [1]. Kauffman’s NK-Model [2] of an N-node
network with K-inputs to a boolean function residing on each node has found an im-
portant role in the study of complex network properties. RBNs have found important
applications in biological gene regulatory networks [3] but also in more diverse areas
such as quantum gravity through their relationship with φ3-networks [4,5]. RBNs have
many interesting properties [6] and have been amenable to various analyses [7] includ-
ing mean-field theory. They continue to be an important and interesting tool in studying
biological and artificial life problems.

A key property of RBNs is the now well established existence of a frozen phase
and a chaotic phase [8, 9] and the critical phase transition lies at the integer value of
connectivity Kc = 1

2p(1−p) = 2 for unbiased networks with a mean boolean function
output value of p = 0.5. It is therefore of most interest to study RBNs at or around this
critical value.

The Random Boolean Network or graph G is expressed as a four-tuple G = (V, E,
F, x) and has N = |V | = |F | = |x| nodes or vertices, and Ne = |E| directed edges or
arcs, which express the Ki inputs for node i. The Kauffman NK-Network is constructed
with fixed K = 1, 2, 3, .. and a boolean function fi of Ki inputs is assigned to each
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node. All the nodes of the network carry boolean variables xi which may be initialised
randomly and which are updated (usually, but not necessarily) synchronously so that:

xi(t) ← fi (xj(t − 1)) , j = 1, 2, ..., Ki (1)

The NK-network model assigns the Ki inputs for node i randomly and with uniform
probability across all nodes. Even for a large network there is still a non-zero probability
of assigning a node as one of its own inputs. In the case of Ki > 1 there is also a
possibility of assigning a node j as an input of i more than once. These self-edges or
multiple edges can have a subtle effect on the behaviour of the NK-network model.

Fig. 1. 12 Node Network with K = 1 inputs, showing the output degree of each node

Figure 1 shows a small example Random Boolean Network of 12 nodes, each with
K = 1 inputs. The out-degree varies depending upon the number of other nodes that
depend upon each node, and for this network self-arcs are allowed. This example is frag-
mented into two independent components and there are interesting structural changes
in the component composition of RBNs between K = 1 and K = 2.

Work has been carried out on a number of different update mechanisms for boolean
networks including asynchronous algorithms [10]. In this paper we consider only syn-
chronous updating where all nodes execute their boolean function once, together, and
at every time step. A significant body of work has now been carried out on the roles
of different sub-classes of boolean functions including the so called canalizing func-
tions [11] and in particular the effect of the frozen or fixed-value boolean functions on
particular elements of the network.

A consequence of the boolean functions in RBNs is the formation of attractor basins
[12]. These are observed in RBN models whereby diverse initial starting conditions will
still lead to statistically similar behaviour. The state of the network falls into attractor
cycles whereby a chain of interdependence of nodes (via their boolean functions) leads
to the network periodically repeating its state. The number and length of these periods
or attractors is of great importance in understanding the behaviour of the NK-model and
associated application problems. This can be seen quantitatively by tracking a metric
such as changes in the normalised Hamming distance between the network’s successive
boolean states.
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Of particular recent interest in the literature has been the uncertainty concerning the
number of attractors [13, 14] and how their number and lengths varied with the size of
the network. Scaling was initially believed to be O(

√
N) [15]. It was later reported as

linear [16], and then as “faster than linear” [17] and subsequently as “stretched expo-
nential” in [18, 19] but is now known to be faster than any power law [20].

A recent review of the RBN model [7] discusses the attractor behaviour in terms
of the loops of boolean variable states that form and several exact results concerning
these loops have been obtained [21]. Important observations concern the distribution of
components with particular sub-classes of possible boolean functions. These “relevant
elements” are defined as those nodes that are not frozen and that control at least one
other relevant element in the system [19]. A number of important results have been ob-
tained using particular sub-classes of the possible boolean functions. Drossel et al. have
considered networks with only non-fixed boolean functions thus making all elements
relevant and have therefore shown the equivalence of K = 1 and K = 2 networks
under appropriate restrictions on the boolean functions used.

In this paper we use numerical methods to investigate the role that structural circuits
play in the complex structure of the network and the resulting attractor behaviour of
RBNs. Recent work in the literature has used trajectory sampling. The combinatorics
of RBN models means that the number of boolean functions grows as 22K

and a rapid
growth in the number of possible network states with network size. Taking limited num-
bers of sample trajectories through this state space can lead to very misleading results.
Numerical sub-sampling of attractor trajectories seems to be the main difficulty behind
obtaining a good understanding of attractor scaling. We focus on the structural proper-
ties of RBNs including the number and length distribution of elementary circuits and of
components. We compute these properties exactly using brute force enumeration tech-
niques for a range of network sizes and connectivities. Our statistical sampling is only
over different randomly configured networks, not over attractor trajectories.

In [22] we described the D Code we developed to simulate very large-scale Ran-
dom Boolean Networks. In this paper we exploit this capability to study the cluster and
monomer populations in large systems for which even an O(n2) cluster labelling algo-
rithm is feasible. However, in the study of circuits we are severely limited by the time
complexity of even the best circuit enumeration algorithm we have been able to find
(see section 3).

As we discuss in section 2, there is a close relationship between the number of el-
ementary circuits in the underpinning structural network and the number of attractors
that can be supported in an associated RBN. We also analyse the role that self-edges
play in the structural networks and the consequences for both the number of circuits
and disconnected components. We present some results for various network sizes and
connectivities, with and without self-edges in section 4 and draw some conclusions on
scaling with N and K in section 5.

2 Attractor Numbers

Figure 2 shows a network with N = 16, K = 2. The construction algorithm has allowed
self-arcs - in other words the inputs for each node have been chosen according to a flat
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Fig. 2. 16 Node Network with K = 2 inputs, showing the output degree of each node and one of
the circuits in the graph, connecting node 0 to node 15. This network allows self-arcs.

uniform distribution so they can connect to themselves. The consequent self-edges allow
self-inputs in the corresponding RBN. These are known to play a vital role in supporting
the number of attractors. A self-input or “self-ancestor” in the input dependence chain
of boolean variables anchors the periodic or attractor behaviour [7] of RBNs.

We felt intuitively that the presence of structural circuits would also be vital to the
periodic attractor behaviour. Figure 2 shows one such circuit or loop in the network
structure. In fact, exact enumeration (as shown in figure 3) indicates that there are 22
circuits composed as follows: 4 of length 1; 2 of length 3; 4 of length 5; 2 of length 6;
6 of length 8; and 4 of length 10. If self-edges are disallowed we would obtain a higher
number of circuits present in the network.

As Drossel et al. have shown there are definite relationships between the number
of attractors and the number of loops. Qualitatively summarizing, the number of struc-

0 10 11 6 13 3 4 15 0 1 8 4 13 12 1
0 10 11 6 13 12 1 8 0 1 8 4 13 12 1
0 10 11 6 13 12 1 8 4 15 0 3 3
0 10 11 6 13 12 1 8 0 3 4 13 3
0 10 11 6 13 12 1 8 4 15 0 3 6 13 3
0 10 11 6 13 15 0 6 13 12 10 11 6
0 14 11 6 13 3 4 15 0 6 13 12 14 11 6
0 14 11 6 13 12 1 8 0 8 8
0 14 11 6 13 12 1 8 4 15 0 9 9
0 14 11 6 13 12 1 8 0 12 12
0 14 11 6 13 12 1 8 4 15 0
0 14 11 6 13 15 0

Fig. 3. 22 Circuits found in the network shown in figure 2 which has 16 nodes and 32 arcs and
allows self-arcs. Note there are repeated circuits due to the presence of a multiple-arc connecting
nodes 12 and 1.
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tural circuits provides a lower bound on the number of possible attractors. It therefore
gives insight into the controversy over the number of attractors in RBNs to consider the
exactly enumerated number and distribution of circuits in the underlying networks.

An elementary circuit is a closed path along a subset of the edges of the graph such
that no node, apart from the first and last, appears twice. The number of elementary
circuits for a fully connected graph is bounded by

∑N−1
i=1 CN

N−i+1(N − i)!, [23]. This
expression represents the limit for the number of structural circuits in an NK-network
when K → N .

3 Graph Algorithms

RBNs can be represented in a number of different data structures in computer simu-
lation programs. We used a neighbour list approach [24] and have experimented with
various structures for boolean variables and boolean functions using the D program-
ming language [22]. D is essentially a systems-oriented programming language derived
from C and C++. It is a good platform for custom simulation codes that must be efficient
in both time and space to tackle problems with high computational complexity.

The problem of component labelling or clustering is well known and we used a
simple colour propagation algorithm [25] which was readily re-implemented as part of
our custom RBN code.

Various algorithms have been formulated to count the circuits in a graph but these
either use infeasible amounts of memory or are time exponential [26, 27] with a time
bound of O(N.e(c+1)). We count circuits using a variation of Johnson’s algorithm [28]
implemented in D. For graphs of N vertices, e edges, c circuits and 1 fully connected
component, Johnson’s algorithm is time bounded in time by O ((N + e)(c + 1)) and
space bounded by O(N + e). Unlike Johnson’s algorithm our code copes with partially
connected graphs without resorting to the need to treat each of the possible Nc > 1
components separately [29]. This is still a highly expensive process since the number
of circuits c itself grows very rapidly with (N, e).

In the graph literature the term loop is unfortunately sometimes used to describe a
self-edge or a circuit of length 1. In the NK-networks we study the number of self-edges
is much less than N , even for low K . However we do count them and observe the effect
of allowing them in the number of possible circuits and their length histograms.

On a modern compute server with 4GBytes memory and a speed of 2.66GHz, we
found it was entirely feasible to enumerate circuits exactly in networks of up to N ≈
100 for K = 1, 2. Smaller networks were required for higher K . We were able to
count components quite easily up to networks of around N ≈ 20, 000. We were able to
exploit the near-linear speed-up of parallel job-farming to average our exact enumera-
tion/counting results over many independently generated networks.

4 Numerical Results

In this section we present results for the number of component clusters; the number of
monomers and the number and length distribution of circuits. The sample numbers are
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Fig. 4. Number of Cluster Components for Kauffman Networks of K = 1, 2, 3, 4, 5, 6

shown but typically these are over 100,000 independently generated NK-networks for
K=1,2 and 100 for K=3,4 and 10 for K=5,6 and higher.

Figure 4 shows the variation of the mean number of clusters in NK-networks. For
K ≥ 2 the system is dominated by a single giant cluster, although even in large net-
works it is still possible for a single isolated monomer to exist. The figure shows that
for K = 1 that the number of component clusters Nc ≈ 0.345 log2 N + 0.65, showing
that a range of different cluster sizes are co-existing even in arbitrarily large networks.

It is instructive to consider what size distribution makes up the number of compo-
nents. Figure 5 shows the cluster size distribution averaged over one million sample
networks of size N = 256. Interestingly this shows a relationship between the mean
population 〈P 〉 for cluster component size s such that log 〈P 〉 ≈ As−0.89. This rela-
tionship appears to hold true for arbitrarily large network sizes, but only for sizes up to
one half of the total network size. For K > 1 the size distribution is completely dull -
being just one single cluster of size N .

One might expect that in those regimes where there are multiple components, sin-
gle isolated monomers or other very small-sized components dominate the component
distribution. However the number of monomers is almost entirely flat, independent of
the network size. In the case of K = 1 it is small but definitely non-zero. In the case
of K > 1 the number of monomers is almost completely zero on average. Figure 6
shows the variation in the number of monomers over the same networks sampled for
components in figures 4 and 5. This suggests an interesting cluster size multi-scale be-
haviour for K = 1 and in particular that the cluster composition is influenced by two
competing effects. As the network grows in size there are more nodes and therefore
there is a growing possibility of some being disconnected, but conversely there are also
more arcs available in the network and therefore a higher probability of each node being
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Fig. 5. The cluster size distribution for a K = 1 network, generated using the algorithm de-
scribed. Using N = 256 and 1,000,000 sample networks. Note the plot does not show the single
giant component that occurs for K > 1.

Fig. 6. Number of Monomers for Kauffman Networks of K = 1, 2, 3, 4, 5, 6
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Fig. 7. Growth of the number of circuits with network size for Kauffman Networks of K =
1, 2, 3, 4, 5, 5

connected to some other node. The number of monomers is affected surprisingly little
by whether the network is allowed to have self-edges or not.

Unlike the number of monomers and components, the number of elementary circuits
is significantly affected by the presence of self-edges in the network. Figure 7 shows
the growth of the number of circuits with network size in NK-networks. It is clear that
for K > 1 the number of circuits grows very rapidly - much faster than any power law.
This would appear to confirm the present view that the related number of attractors in
an RBN will grow at least this fast. A least-squares fit again reveals that the number
of circuits or loops varies as NL ≈ ALebN . It is not entirely clear from our data what
the exact relationship between exponent b and K is. While there is clearly a positive
monotonic relationship, our data are not good enough to distinguish b linear with K or
log K or some power law in K .

It is interesting that for K > 1 the presence of self-edges in the network considerably
lowers the number of circuits present. It does not appear to influence the value of b or its
relationship with K . However for K = 1 networks, the presence of self-edges actually
raises the number of circuits.

This is intriguing since the self-arcs are vital for loops in RBNs but this entirely
structural behaviour crossover occurs exactly at the RBN critical Kc value.

Figure 8 shows the growth of the number of circuits with network size in Kauffman
networks for the special case of K = 1. This definitely does not exhibit the same rela-
tionship as for K > 1. Even over the relatively small network sizes of N = 10, ...100
the data are consistent with a power law NL ≈ Nx where x ≈ 0.225 ± 0.003 for
a network with no self-edges, and x ≈ 0.187 ± 0.003 when self-edges are present.
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Fig. 8. Growth of the number of circuits with network size for Kauffman Networks of K = 1

Fig. 9. Circuit length distribution in a 24 Node Kauffman Network for K = 1, 2, 3, 4, 5, 6 with
and without self-edges allowed in the network
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Although even with 100,000 sample networks there is still a sizeable spread in the mean
number of circuits (shown by the uncertainty bars on the plot), the high quality nature
of the numerical fit suggests these split behaviours are significant.

Figure 9 shows the distribution of circuit lengths in 24 node NK-networks for K =
1, 2, 3, 4, 5, 6. This is again averaged over many samples (100,000 for K = 1, 2; 100
for K = 2, 3; and 10 for K = 5, 6). The distribution shows again the split behaviour for
the cases K > 1 for which the self-edges lower the number of circuits of each length,
and for K = 1 for which the self-edges raise the number of circuits. The shape of the
distribution itself if quite revealing. For K > 1 there will be circuits of lengths up to
the Hamiltonian circuit length of LH ≡ N , with a modal value at some lesser length
that increases with K . For the case of K = 1 however, the modal length is always unity
and the maximum circuit length is truncated (perhaps only in the limit of large N ?) to
N/2. As the uncertainty bars on the plots show, very large samples are needed to extract
smooth mean values the longer length parts of the distributions for K = 1, 2.

5 Discussion and Conclusions

We have explored several of the structural properties of the NK-network model and have
found that the number of circuits grows faster than any power law with network size.
This confirms that the number of attractor loops in Random Boolean Networks should
also grow faster than any power law. This behaviour also gives some insights into why
particular lengths of attractors should form, based upon the shape of the circuits length
distribution.

We have identified some intriguing structural behaviour between the values 1 <
K < 2 where the circuit length distribution function exhibits a change over from ex-
ponential decay to growth towards a non-unit modal value. Our data appears to show
that the network self-edges or RBN nodes with self-inputs have a decisive role to play
in influencing the location of the phase transition and hence the number of circuits and
hence attractors present. The structural components, which for K > 1 are completely
dominated by the giant component and are insensitive in number to the presence or ab-
sence of self-edges. For K = 1 however, disconnected components of sizes up to half
the network size are present, and not just monomers. It also appears that for K = 1 the
self-edges dominate the circuit size distribution and are the most prevalent loop type
present.

We observe that the number of circuits displays some dependence on the presence
of multiple-edges. We are investigating this more thoroughly, but preliminary data sug-
gests that the number of multiple-edges grow logarithmically with N and of course can
only affect (by definition) NK-networks with K > 1. Eliminating multiple-edges like
self-edges from the network generation model does change the connection distribution
probability away from a flat uniform one.

We have determined some of the growth behaviours for monomers, components and
circuits. We might expect the results we have found to hold well, on average for finite
practicably sized networks as well as for the large N limit. We are investing more com-
putational effort into studies of higher K values to investigate the exponent dependence
on K for the number of circuits.
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Abstract. The course of the evolution of a population is affected by chance 
events, the population’s genetic history and adaptation via selection. The 
presence of individual lifetime learning is also known to influence the course of 
a population’s evolution. The experiments reported here, examine the effects 
that lifetime learning has on the roles played by chance, history and adaptation 
in the evolution of populations of simple neural networks. The effects of 
chance, history and adaptation on both learned fitness (fitness after learning) 
and innate fitness were considered both when learning incurred no cost and 
when a fitness cost was incurred for learning. When learning was cost-free it 
was found to decrease the influence of adaptation, history and chance on 
learned fitness, while having the opposite or possibly no effect on innate fitness. 
When a fitness cost was incurred for learning, the role of adaptation in 
determining innate fitness increased, while the roles of chance and history 
decreased for both learned and innate fitness. These observed effects are 
interpreted in light prior results on the effects of learning on evolution.  

Keywords: Evolution, Chance, History, Adaptation, Learning, Baldwin Effect. 

1   Introduction 

The state of an evolving population can be attributed to the effects of three primary 
forces: chance, history and adaptation. Adaptation, defined as the cumulative effects 
of ongoing selection, tends to increase a population’s fitness as it is tailored to its 
ecological niche. Both chance and history have the effect of opening and/or closing 
potential avenues along which a population might adapt. History constrains the 
evolutionary paths that are accessible to a population based upon ancestry and prior 
selection. Similarly, chance events such as random mutations, genetic drift or other 
stochastic events alter the evolutionary paths accessible to a population. 

While the majority of studies of evolution, in both biology and artificial life, have 
focused on adaptation as the primary agent of evolutionary change, a number of 
studies have begun to reveal that both history and chance can play non-trivial roles. 
Most notably, Travisano, Mongold, Bennett and Lenski [1] studied populations of 
evolving E. coli bacteria in several controlled experiments that allowed them to 
directly assess the roles of chance, history and adaptation. They found, not 
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unexpectedly, that adaptation is the largest influence on the reproductive success of a 
population (i.e. fitness). However, they also report that in the evolution of traits less 
directly associated with fitness, E. coli cell size in their experiments, chance and 
history played a much more significant role. In addition, there is a growing number of 
reports of biological, ecological and genetic studies that investigate the roles of 
chance and/or history in addition to adaptation [2,3,4,5,6]. 

Investigations and applications of chance and history have also appeared in the 
artificial life literature. In an experiment paralleling that of Travisano et. al., 
Wagenaar and Adami evolved populations of “digital organisms” in the AVIDA 
system, obtaining comparable results [7]. In the area of evolutionary robotics, 
researchers have made practical application of the effects of history. They have used 
carefully designed fitness functions that change over time so as to steadily shape the 
population in such a way as to make accessible behaviors that evolution would 
otherwise be highly unlikely find [8,9,10]. 

The experiment presented here parallels that of Travisano et. al. and Wagenaar 
and Adami. It differs however, in that it begins to investigate how lifetime learning 
influences the effects of chance, history and adaptation. There is ample evidence that 
the course of evolution can be altered by lifetime learning [11,12,13]. Thus, 
examining the roles of chance, history and adaptation in the presence of lifetime 
learning provides an opportunity to examine the effects of learning on evolution from 
a new angle. The essence of what is reported here is an experiment in which the 
effects of chance, history and adaptation are observed in three populations of evolving 
neural networks. One population uses feed-forward networks to model non-learning 
individuals. The other two populations use back-propagation to model individuals 
capable of lifetime learning. In one learning population there is no cost for learning, 
while in the other there is a cost associated with learning. The observed effects of 
chance, history and adaptation are compared among the three populations and 
interpreted in light of known effect of learning on evolution. 

2   Methods 

The experimental design used here is based on that developed by Travisano et. al [1] 
and later applied by Wagenaar and Adami [7]. Figure 1(a) provides a schematic 
representation of the experiment. A number of parent populations are evolved in one 
environment (the pre-transfer environment) until they are well adapted. Each parent 
population is then cloned, producing a set of child populations that will be referred to 
as sibling populations. All of the child populations are then evolved in a significantly 
different environment (the post-transfer environment). Figure 1(b) illustrates this 
process, showing the mean fitness for a parent population it evolves in the pre-transfer 
environment, followed by the mean fitness of the sibling populations derived from it 
as they evolve in the post-transfer environment. As will be discussed below, this 
design makes it possible to isolate the effects due to chance, history and adaptation. 

2.1   Measuring Chance, History and Adaptation 

The effects of each of the components of evolutionary change, chance, history and 
adaptation, can be extracted from the results of this experiment. To measure 
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Fig. 1. (a) A schematic representation of the experiment. (b) The fitness of a single parent 
population during 200 generations of evolution in the pre-transfer environment and the fitness 
of 5 of its child populations during 200 generations of evolution in the post-transfer 
environment. 

adaptation, the mean fitness of each child population in the post-transfer environment, 
prior to any evolution in that environment, is noted as its ancestral fitness. At any 
subsequent time, the contribution of adaptation is given by the difference between the 
current mean fitness of a child population and its ancestral fitness averaged across all 
child populations.  

Chance and history are measured by the degree to which they affect the variability 
of the mean fitness of the child populations. Chance is given by the standard deviation 
in mean fitness among sibling populations averaged across the parent populations. To 
see why this measure reflects chance, consider that when each population begins its 
evolution in the post-transfer environment it is genetically identical to all of its sibling 
populations. Thus, any differences that arise in the mean fitness between two sibling 
populations can only be due to the occurrence of different sequences of random 
mutations, i.e. chance. The effect of history is computed by first averaging the mean 
fitness values within each set of sibling populations. The standard deviation of these 
values then represents the effect of history. By averaging the mean fitness values 
within sets of sibling populations, the effects of chance can be canceled out. Thus, any 
differences in average fitness between sets of sibling populations derived from 
different parents can be attributed to differences in their parents, i.e. history.  

The experiment design described above is a two-level nested ANOVA [14] with the 
replicated measurements being the fitness values of the individuals in the populations. 
The effect of chance is given by the square root of the within groups variance 
component. The effect of history is given by the square root of the between groups 
variance component. In addition, 95% confidence intervals have been computed for 
each of the variance components. The square roots of those confidence intervals then 
represent 95% confidence intervals on the contributions of chance and history. 

2.2   Implementation Details 

Travisano et. al performed their experiment using E. coli bacteria. Wagenaar and Adami 
performed their experiment using virtual organisms in the Avida system. While it would 
have been preferable to make direct comparisons to the results from these earlier 



204 G. Braught and A. Dean 

experiments, neither approach readily lent itself to the study of learning organisms. 
Instead, following in the model of so many artificial life experiments, the results 
reported here are based on the analysis of evolving populations of neural networks.  

Figure 2 shows the phenotype and genotype of the individuals used in the 
experiments as well as the tasks used as the pre and post-transfer environments. Each 
individual was modeled as a 3 layer fully connected feed forward network with 4 
inputs, 4 hidden neurons and 2 output neurons, all with sigmoid activation functions. 
The genotype for each individual contained genes that encoded the weight of each 
connection, including a bias for each neuron (30 weights in all). In addition to genes 
for the weights, each individual’s genotype also contained another gene (gene0). This 
gene had no influence on the individual’s phenotype and thus no effect on fitness. 
Gene0 was included as a control; allowing the examination of the effects of chance, 
history and adaptation on a selectively neutral trait (see section 3.1). It plays the same 
role in these experiments as cell size did for Travisano et. al and program length did 
for Wagenaar and Adami. 
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1100   1 0 
1101   0 1 
1110   1 0 
1111   0 0 

 

Fig. 2. (a) The structure of an individual’s phenotype and genotype. (b) The pre-transfer 
environment and (c) post-transfer environment used for fitness evaluation. 

In the experiments reported here 20 parent populations of 100 individuals each 
were used. The individuals in the parent populations were generated at random and 
were evolved in the pre-transfer environment until they were well adapted (< 10% 
error in the pre-transfer environment). Once well adapted, the best individual from 
each parent population was cloned 100 times to produce a child population. Each 
child population was then repeatedly cloned to produce 20 sibling populations from 
each parent. Each set of sibling populations were then cloned 3 times producing 
populations for non-learning, no-cost-learning and costly-learning. In all, 1200 child 
populations were evolved in the post-transfer environment.  

Individual fitness during evolution was given by the percentage of input patterns 
from the environment (pre or post-transfer as appropriate) for which the individual’s 
neural network produced outputs within 0.2 of the correct responses. In the non-
learning populations, an individual’s genes directly coded the neural network used for 
its fitness evaluation. For individuals in the learning populations an innate fitness and 
a learned fitness were computed. An individual’s innate fitness was found in the same 
way as for the non-learning individuals. For no-cost-learning, an individual’s learned 
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fitness was given by the percentage of correct outputs generated by the neural 
network after 25 epochs of back-propagation. For costly-learning, an individual’s 
learned fitness was the average of its innate fitness and its fitness after 25 epochs of 
back-propagation. 

Additional details of the evolutionary and learning algorithms were as follows. 
Roulette wheel selection was used. Selection for learning populations was performed 
using the learned fitness, however reproduction was performed using the gene values 
from before back propagation. Individuals were reproduced asexually with a mutation 
rate of 15%. Genes were mutated by addition of a pseudo-random value drawn from a 
Gaussian distribution with zero mean and unit standard deviation. During back 
propagation, a learning rate of 0.05 and a momentum term of 0.95 were used. 

3   Results 

3.1   Results for Gene0 

The absence of selective pressure on gene0 would imply that its value should undergo 
a random walk and consequently adaptation should have no consistent effect on the 
value of gene 0. Figure 3 confirms this intuition, showing that the effect of adaptation 
wanders randomly about its initial value of 0. The traces for chance and history in 
figure 3 also confirm intuition. Initially all of the populations within a set of sibling 
populations are identical, making the influence of chance initially 0. Each set of 
sibling populations, however derives from a different parent population. Thus, 
because the parent populations do differ from one another, the effect of history is 
initially non-zero. However, over time, the accumulation of unique sequences of 
random mutations causes the populations within a set of siblings to differ from one 
another, increasing the influence of chance. This accumulation of mutations also 
decreases the differences in mean value between sets of sibling populations, causing 
the effect of history to diminish over time, eventually becoming negligible. Though 
not shown, the results for no-cost-learning and costly-learning gave similar results. 
These results are qualitatively similar to those reported for E. coli cells size by 
Travisano et. al. [1] and for program length by Wagenaar and Adami [7]. 

3.2   Adaptation 

In all of the cases where fitness was analyzed, adaptation was the dominant influence. 
However, there were differences in its effect between the non-learning, no-cost-
learning and costly-learning populations. There were also differences in the effect of 
adaptation on innate and learned fitness. These differences can be understood on the 
basis of prior results on the Baldwin effect [15, 16] and on the evolution of robustness 
with respect to mutations [17, 18, 19, 20]. 

Figure 4(a) compares the effects of adaptation on fitness in the non-learning 
populations to learned fitness in both types of learning populations. In the trial shown, 
the effect of adaptation is largest on the non-learning population. In other trials, the 
role of adaptation on learned fitness was occasionally greater for costly-learning 
populations than for non-learning populations. However, the role of adaptation on the 
non-learning and costly-learning populations was always greater than for the no-cost-
learning populations. 
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Fig. 3. The effects of adaptation, chance and history on a selectively neutral trait (gene0) (a) 
over the first 200 generations of evolution in the post-transfer environment (b) over 5000 
generations. Error bars show 95% confidence intervals. Note: The traces on this and subsequent 
graphs have been offset slightly along the generation axis to allow the effective display of 
overlapping error bars. 

Initially, the results in figure 4(a) were surprising. Intuition suggests that the 
learned fitness of the learning populations would be greater than the fitness of the 
non-learning populations, which also suggested that adaptation would be playing a 
larger role in their evolution. However, because learning plays a role in determining 
learned fitness this is not necessarily true. Learning populations have not only higher 
learned fitness values but they also have higher ancestral fitness values (also due to 
learning). Thus, because the learning populations begin with higher ancestral fitness 
values and because there is a ceiling on the fitness that can be achieved in this 
experiment the effect of adaptation can actually be diminished by learning. 

Figure 4(b) considers the role of adaptation in determining innate fitness. It shows 
that the effect of adaptation on the innate fitness of the costly-learning populations is 
greater than for the non-learning populations, which in turn is greater than for the no-
cost-learning populations. The significant increase in the role of adaptation in 
determining innate fitness of the costly-learning population seen in figure 4(b) can be 
attributed to the Baldwin effect. Specifically, this increase in the role of adaptation is 
driven by the cost of learning [15]. Because all individuals are of approximately equal 
learning ability, reducing the cost of learning produces a selective benefit. This 
benefit results in innate fitness values being pulled closer and closer to the level of the 
learned fitness values. Thus, because the ancestral value of innate fitness is lower than 
the ancestral value of learned fitness, the effect of adaptation on innate fitness is 
greater than for learned fitness. As seen in figure 5(a), the difference in the effect of 
adaptation on learned and innate fitness for costly-learning populations approaches a 
constant value. This is a result of the learned fitness reaching a plateau and the innate 
fitness rising to the same plateau. 

For the no-cost-learning populations the case is somewhat different. As shown in 
figure 5(b) the effect of adaptation on innate fitness is slightly less than its effect on 
learned fitness early in the evolution, and this difference diminishes over time. In this 
case, because learning has no cost it serves to hide differences in innate fitness from 
selection. This hiding effect greatly reduces the evolutionary pressure that would 
otherwise narrow the gap between the innate and learned fitness values [16]. 
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Fig. 4. The influence of adaptation on learned and innate fitness. (a) A comparison of the effect 
of adaptation on fitness in the non-learning populations to the learned fitness of the learning 
populations. (b) The same comparison using the innate fitness of the learning populations. 

However, the effect of adaptation on innate fitness is still increasing both over time 
and relative to its effect on learned fitness. This increase is driven by the evolution of 
robustness with respect to mutation, which leads to more conservative transmission of 
fitness from parents to offspring [17, 18, 19]. When the innate and learned fitness 
values are close, less of the learning capability is necessary to achieve the learned 
fitness. Thus, there is learning capability “in reserve” that can be used to compensate 
for mutations inherited during reproduction. Therefore, parents with small differences 
in innate and learned fitness are more likely to have offspring that are able to maintain 
the same level of learned fitness as their ancestors despite the accumulation of 
mutations. If the simulation were run for a longer period of time it is expected that the 
effect of adaptation on innate fitness would, via this effect, become greater than its 
effect on learned fitness. It is also worth mention that this selective pressure is likely 
at work in the costly-learning case as well but is significantly weaker than, and thus 
masked by, the effect due to the cost of learning. 
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Fig. 5. The effects of adaptation on learned and innate fitness (a) in costly-learning populations 
and (b) in no-cost-learning populations 

3.3   Chance and History 

As with adaptation, the roles of chance and history were significantly affected by 
lifetime learning. Also, as with adaptation, there were dramatic differences in the 
roles of chance and history between the no-cost-learning populations and the costly-
learning populations. The graphs in figure 6 illustrate the effects of chance and history 
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on learned and innate fitness and for non-learning, no-cost-learning and costly-
learning populations. Taken collectively, the graphs in figure 6 show that learning 
significantly reduces the variability in learned fitness due to both chance and history 
as compared to non-learning populations. However, learning only affects the 
variability of innate fitness due to chance and history when there is a cost associated 
with learning.  

With no-cost-learning (figures 6(a) and 6(c)), learning hides innate differences 
between individuals, allowing individuals with differences in innate fitness to achieve 
similar levels of learned fitness. Thus, with no-cost-learning there is more variability 
in innate fitness than in learned fitness both within a set of siblings (chance), and 
between sets of siblings (history). However, when costly-learning is used (figures 6(b) 
and 6(d)), the selective pressure to bring the innate fitness closer to the learned fitness 
reduces the variability of the innate fitness.  
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Fig. 6. The roles of chance and history. (a) Chance in no-cost-learning-populations. (b) Chance 
in costly-learning populations. (c) History in no-cost-learning populations. (d) History in 
costly-learning populations. The role of chance (in a and b) or history (in c and d) in the non-
learning populations is also shown for reference. 

Another effect of costly-learning that can be seen in figures 6(b) and 6(d) is that 
chance and history affect innate and learned fitness differently at different times. 
Early in the post-transfer evolution, both chance and history have a larger effect on 
innate fitness than on learned fitness. Later in the evolution, this difference is largely 
erased. The early differences appear because immediately post-transfer accumulating 
mutations increase the genetic diversity of the populations. This increase in genetic 
diversity is directly reflected by greater variability in the innate fitness of individuals 
and consequently in the mean innate fitness of their populations (i.e. chance). Further, 
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the propensity for increased genetic variability to translate into increased variability in 
mean population fitness will vary depending upon the parent population (i.e. history). 
This same increase in genetic diversity affects the learned fitness as well, though less 
dramatically, resulting in the effects of chance and history being smaller for learned 
fitness than innate fitness. These early differences in the effects of chance and history 
diminish over time due to the increasing similarity of the innate and learned fitness 
values caused by the Baldwin effect, as described earlier.  

Another feature of the results in figure 6 is the similarity of the effects of chance on 
innate fitness in no-cost-learning and non-learning populations. If no-cost-learning is 
hiding innate differences from selection, it would be reasonable to expect more 
variability in the innate fitness of the no-cost-learning populations than in the fitness 
of the non-learning populations. It seems likely that this observed similarity in the 
effects of chance on innate fitness in the no-cost-learning and non-learning 
populations is simply an artifact of the strength of the learning mechanism. It is 
expected that if more learning epochs were used, learning would mask genetic 
differences to a greater degree, thus lessening the selective pressure to eliminate them. 
The result being that effect of chance on the innate fitness of no-cost-learning 
populations would increase to a level greater than that for non-learning populations. 
Further investigation would be required to test this hypothesis. 

4   Discussion 

The results and analysis presented above have described how known effects of 
lifetime learning on evolution are expressed in the roles played by chance, history and 
adaptation in evolution. Costly-learning significantly increased the role played by 
adaptation in a population’s innate fitness via the second phase of the Baldwin effect, 
where genetic assimilation reduces learning costs. Conversely, no-cost learning 
significantly reduced the role of adaptation on innate fitness, via the ability of 
learning to hide individual genetic differences. However, over time, the role of 
adaptation on innate fitness of the populations using no-cost-learning did increase due 
to the improved genetic robustness provided by learning. Learning, both costly and 
no-cost, significantly reduced the effects of both history and chance on learned 
fitness. Thus, two learning individuals, with distinct genetic histories and 
experiencing unique chance events, will be more likely to have similar learned-fitness 
than two similar non-learning individuals. With costly-learning, the roles of history 
and chance in determining innate fitness were also decreased. 

Gould has famously asked what would happen if we were able to "replay life's 
tape" from the arrival of unicellular organisms, would the result look anything like it 
does now [21]? Of course the neural networks evolved here are far from unicellular 
organisms and the static environments are equally distant from the complex 
ecosystems of natural evolution. However, in their small way, these results suggest 
that by reducing the roles played by chance and history, the arrival of lifetime 
learning may increase the odds that evolution would follow a similar course if it were 
rerun from that point forward. Other researchers have suggested that the effects of 
history will differ between sexual and asexual reproduction [22]. Thus, further 
experiments involving more complex virtual organisms, a variety of reproductive 
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mechanisms, and a dynamic environment incorporating coevolution, perhaps through 
adaptation of Kauffman's NKC landscape [23], are necessary before drawing any 
conclusions about the generality of these results. 
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Abstract. In this paper, we propose the application of hierarchical
self-organizing maps to the unsupervised acoustic classification of bird
species. We describe a series of experiments on the automated categoriza-
tion of tropical antbirds from their songs. Experimental results showed
that accurate classification can be achieved using the proposed model.
In addition, we discuss how categorization capabilities could be deployed
in sensor arrays.

1 Introduction

We are engaged in a research program that aims to explore the capabilities of
sensor arrays for the acoustic monitoring of bird behavior and diversity. Our long
term goal is to create sensor arrays that behave as a single ensemble (Taylor,
2002). In this idealization, sensor nodes can recognize concepts and discourse in-
telligently about them (Lee et al, 2003). Constructing autonomous sensor arrays
possessing problem solving capabilities in a variety of environments remains a
challenge for artificial life research.

We believe that creating adaptive sensor arrays would be a major step towards
realizing the full potential of this emerging technology (Estrin et al, 2001). Sim-
ilarly, we think sensor arrays are excellent platforms for studying fundamental
aspects of living systems such as emergence, self-organization and the evolution
of communication systems (Collier and Taylor, 2004).

Pervasive in living entities is the remarkable ability to distinguish among dif-
ferent elements of the environment. This involves the identification of meaningful
categories describing different aspects of the environment and is often critical for
the viability of an organism (Pfeifer and Bongard, 2007). Moreover, we believe
that the emergence of learnable languages in sensor arrays would be contingent
to the ability of associating symbolic descriptions to cognitive salient categories
(Stabler et al, 2003).

Several computational models have proven to be highly effective for the ac-
curate classification of acoustic signals, such as hidden Markov models, among

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 212–221, 2007.
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others (Rabiner, 1993). However, the later methods possess the limitation that
they often require the explicit intervention of a teacher (i. e. supervised learning).
Much of the categorization is developed in living systems without the explicit
intervention of a teacher (i.e. unsupervised learning). If we are to develop adap-
tive sensor arrays, our computational methods should adhere to unsupervised
learning, whenever possible.

In this work, we explore the capabilities of self-organizing maps for categoriz-
ing different species of birds from their songs. Moreover, we would like to pose
here that a hierarchy of self-organizing maps provides an effective method for
the unsupervised acoustic classification of bird species.

We conducted a series of computational experiments in which bird songs are
transformed into strings of symbols and then classified from this representa-
tion using hierarchical self-organizing maps. Experimental results show that the
proposed method is capable of categorizing four species of antbirds accurately.

2 Methods

2.1 Hierarchical Competitive Learning

The simplest form of a self-organizing map is the competitive learning network
(Kohonen, 1997). This network consists of a single layer of output units ci, each
fully connected to a set of inputs oj via excitatory connections wij (Hertz et al,
1991). Figure 1 shows an example of such a network.

O1 O2 O3 O4

O

w

C

3CC 2C 1

i

ik

k

Fig. 1. Simple competitive learning network

Given an input vector o, the winner is the unit ci∗ with the weight vector wi∗

that satifies the condition:

|wi∗ − o| ≤ |wi − o| (for all i)

The learning process consists of updating weights wi∗j for the winning unit
ci∗ only, using the standard competitive learning rule:

Δwi∗j = η(oj − wi∗j)
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Fig. 2. Hierarchical competitive learning network

where η ∈ [0, 1] is the learning constant. This learning rule moves wi∗j directly
towards oj .

A hierarchical competitive learning network has two or more layers, each
consisting of a simple competitive learning network (Kohonen, 1997). In such a
network, each layer produces a new representation of the input data. Each layer
in the network is expected to elucidate features that are implicit in the original
representation. A two-layer hierarchical competitive learning network is depicted
in Figure 2.

2.2 The Model

We propose a model for the unsupervised acoustic classification of bird species.
The overall approach consists of transforming the acoustic signal of bird songs
into strings of symbols. This transformation is achieved by the unsupervised clas-
sification of syllables of the original acoustic signal using a competitive learning
network. Unsupervised species classification is achieved using a second com-
petitive learning network that classifies strings of symbols from their syllable
structure features.

A block diagram describing the proposed model is shown in Figure 3. Each
module composing the diagram will be described in the experiments section of
this paper.
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3 Experiments and Results

3.1 Dataset

The samples used in the experiments reported here came from two sources: the
Macaulay Library of Natural Sounds of the Cornell Laboratory of Ornithology
and from recordings obtained in the field by one of the co-authors of this pa-
per. The dataset consists of songs from four different antbird species that are
abundant at the Montes Azules Biosphere Reserve in Chiapas, Mexico. They are
listed in Table 1.

The spectrograms describing the songs of each species are shown in Figure 4. It
can be appreciated that the songs from different species posses a similar structure.
In effect, they consist of repetitive segments of sounds that spawns over similar

Fig. 4. Spectrograms for BAS (upper left), DAB (upper right), GAS (lower left) and
MAT (lower right)
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Table 1. Bird species used in the experiments

label species samples
BAS Barred antshrike 12
DAB Dusky antbird 12
GAS Great antshrike 12
MAT Mexican antthrush 12

frequency spectra. These similarities pose challenges for automated species recog-
nition; especially for those methods that rely on unsupervised classification.

3.2 Syllable Identification

Bird song is thought to possess a hierarchical organization similar to that used for
describing human language. In effect, bird song is typically described as consist-
ing of phrases, syllables and elements (Catchpole and Slater, 1995). Compared
to that of other singing birds, the structure of antbird songs is relatively simple.
As a consequence, we believe that a two-level description consisting of songs and
syllables would provide sufficient information elements for accurate automated
recognition.

For experiments reported here, songs were segmented using the Raven bird
song analysis program (Charif, 2004). Syllables were identified by small discon-
tinuities in the corresponding spectrogram as shown in Figure 5.

Fig. 5. Syllable identification

3.3 Spectral Analysis

Using the procedure described above, we obtained a collection a syllable samples
as listed in Table 2. For each sample, we obtained a series of temporal and
spectral measurements using Raven. These parameters are extracted from the
sound signal using the short-time Fourier transform (STFT) (Charif, 2004).
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Table 2. Number of syllable samples per species

label samples
BAS 216
DAB 129
GAS 339
MAT 117

3.4 Feature Extraction

Previous work on species recognition using discriminant feature analysis have
demonstrated the existence of minimal subsets of features for accurate discrim-
ination of different bird species (Nelson, 1989). These subsets of features have
proven to depend heavily on the species to be discriminated. However, some
parameters such as high frequency and duration are commonly present in these
results. From these observations, we select a collection of measurements for each
syllable. These measurements are described in Table 3.

Table 3. Acoustic features

parameter description
Low frequency The lower frequency bound of the syllable
High frequency The upper frequency bound of the syllable
Delta time The duration of the syllable
Max amplitude The upper amplitude bound of the syllable
Max power The upper power bound of the syllable

A normalization process was applied to this data as the selected measurements
spawn different orders of magnitude. Using the mean and the standard deviation
of each measurement, we obtained a collection of feature vectors described as
z-scores.

3.5 Syllable Classification

The collection of feature vectors describing syllables were classified using a sim-
ple competitive learning network. Once the syllables have been categorized we
proceeded to represent the original songs as strings of symbols using the label
from each syllable category. Table 4 shows the string representation of a sub-
set of the songs obtained using a two-unit competitive learning network, each
representing an hypothetical syllable, with η = 0.1 and epochs = 1000.

Similarly, Table 5 shows the string representation of a subset of the songs
obtained using a four-unit competitive learning network, each representing an
hypothetical syllable, with η = 0.1 and epochs = 1000.
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Table 4. String representation of songs with 2 syllables

label string
BAS1 BBBBBBBBBBAAABABBBBBBA
BAS2 BBBBBBAAAABBBAAABBBBAAAAA
BAS3 BBBBBBBBBAABAABBAABBBBBBA
DAB1 BBBBBBBBBBBBBBB
DAB2 BBBBBBBBBBBBBB
DAB3 BBBBBBBBBBBBBB
GAS1 BBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
GAS2 BBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
GAS3 BBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
MAT1 BBBBBBBBBBBBB
MAT2 BBBBBBBBBBBBB
MAT3 BBBBBBBBBBBBB

Table 5. String representation of songs with 4 syllables

label string
BAS1 DDDAAAAAABAAAAAAAAABAC
BAS2 DDDAAAAAAAABBBABBBBBBBAAB
BAS3 DDDAAAAAAAAABAAAAAAAAAAAC
DAB1 DBBBBBBBBBDDDDD
DAB2 DBBBBBBDDDDDDD
DAB3 DDBBBBBBBBDDDD
GAS1 DDDDCCCDCCCCCCCCCCCCBCCACBAACCAAAABACCD
GAS2 DDACCCCCCBCCCCBCCCCCACAACABBABBBBAAD
GAS3 DDDCDCCCCCCBCCCCBBBCCBCCAABAABABBBBBCD
MAT1 DDDDDDDDDDDDD
MAT2 DBBBBBBDDDBBB
MAT3 BBBBBBBBBBBBB

3.6 Syllable Transition Analysis

Once represented as strings of syllables, bird songs are more amenable to their
syntax analysis. This abstract representation of songs hides much detail of the
acoustic signal and emphasizes others. For example, the calculation of syllable
composition of songs is straightforward from this representation.

In this work, we propose to describe the structure of each song using the
length (l), the number of different syllables (Σ) and the frequency of each pair
of syllable combinations in the song. In this way, we obtained an additional
collection of feature vectors as shown in Table 6 for the two-syllable experiment.

Similarly, Table 7 shows the feature vectors obtained for the four-syllable
experiment. For this experiment, there are 16 (4× 4) two-syllable combinations.

These feature vectors were again normalized as z-scores.
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Table 6. Syllable transition analysis with two syllables

label l Σ AA AB BA BB

BAS1 22 2 2 2 3 14
BAS2 25 2 9 2 3 10
BAS3 25 2 3 3 4 14
DAB1 15 1 0 0 0 14
DAB2 14 1 0 0 0 13
DAB3 14 1 0 0 0 13
GAS1 39 2 35 1 1 1
GAS2 36 2 32 1 1 1
GAS3 38 2 33 1 1 2
MAT1 13 1 0 0 0 12
MAT2 13 1 0 0 0 12
MAT3 13 1 0 0 0 12

Table 7. Syllable transition analysis with four syllables

label l Σ AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD

BAS1 22 4 13 2 1 0 2 0 0 0 0 0 0 0 1 0 0 2
BAS2 25 3 8 3 0 0 2 8 0 0 0 0 0 0 1 0 0 2
BAS3 25 4 18 1 1 0 1 0 0 0 0 0 0 0 1 0 0 2
DAB1 15 2 0 0 0 0 0 8 0 1 0 0 0 0 0 1 0 4
DAB2 14 2 0 0 0 0 0 5 0 1 0 0 0 0 0 1 0 5
DAB3 14 2 0 0 0 0 0 7 0 1 0 0 0 0 0 1 0 4
GAS1 39 4 4 1 3 1 2 0 1 0 2 2 16 2 0 0 2 3
GAS2 36 4 2 2 3 0 2 3 2 0 3 2 12 0 1 0 0 1
GAS3 38 4 2 3 0 0 2 5 4 0 1 3 10 2 0 0 2 2
MAT1 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
MAT2 13 2 0 0 0 0 0 5 0 1 0 0 0 0 0 2 0 2
MAT3 13 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0

Table 8. Unsupervised classification results with two-syllables

Species classification
BAS 100%
DAB 100%
GAS 100%
MAT 92%

Table 9. Unsupervised classification results with four-syllables

Species classification
BAS 100%
DAB 92%
GAS 100%
MAT 83%
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3.7 Species Classification

The collection of feature vectors describing the structure of songs were classi-
fied, again, using a simple competitive learning network. Table 8 shows the accu-
racy of classification obtained for the two-syllable experiment using a four-unit
competitive learning network, each representing a different species, with η = 0.1
and epochs = 1000.

Similarly, Table 9 shows the accuracy in classification obtained for the four-
syllable experiment using a four-unit competitive learning network each repre-
senting a different species, with η = 0.1 and epochs = 1000.

It should be noted that the proposed model has been tested for generalization
using an additional test set with similar results.

4 Discussion

Despite its preliminary character, the results shown here seem to indicate that
meaningful acoustic categorization of bird species can emerge using hierarchical
self-organizing maps. They also show that the accuracy in classification depends
on the number of syllables describing the bird songs. This suggests the existence
of a particular number of syllables for representing bird songs that is optimum
for accurate species classification.

We show that using different abstraction levels for the description of bird song
provides a convenient approach for analyzing different aspect of acoustic signals.
On the one hand, temporal and spectral features have proven to be useful for
the categorization of song segments. On the other hand, compositional features
of syllables have proven to be sufficiently informative for species classification.

We think the proposed method could be extended in several ways. For in-
stance, different sources of information could be combined within the same layer
(e. g. acoustic localization of signal and the signal itself). Other extensions, such
as adding higher layers would combine information from lower-layers for describ-
ing more abstract scenarios (e. g. two birds in the same territory at the same
time).

It should be noted that the proposed model has only been tested in a simple
simulated setting. We will test the proposed model in real settings in the near
future.
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The Prisoner’s Dilemma with Image Scoring on

Networks: How Does a Player’s Strategy
Depend on Its Place in the Social Network?

Markus Brede

CSIRO Marine and Atmospheric Research,
GPO Box 284, Canberra 2601, Australia

Abstract. We investigate the evolution of cooperation in the prisoner’s
dilemma on different types of interaction networks. Agents interact with
their network neighbours. An agent is classified by a value S ∈ [−1, 1]
denoting its strategy and by its image score. It will cooperate if the
opponents relative image score is above S and defect otherwise. Agents
spread their strategies to their network neighbours proportionally to pay-
off differences. We find that network topology strongly influences the av-
erage cooperation rate; networks with low degree variance allowing for
the largest amount of cooperation. In heterogeneous networks an agents
place in the network strongly influences its strategy. Thus, agents on
hub nodes are found to ‘police’ the population, while being on low de-
gree nodes tends to favour over-generous less discriminating strategies.

Keywords: Evolution of cooperation, prisoner’s dilemma, heterogeneous
populations, scale-free graphs.

1 Introduction

A fundamental question in sociobiology is how cooperation and altruism have
evolved. Despite its importance, understanding the evolution of cooperation re-
mains one of the challenges to current research (for a summary see, e.g., [1]). In
a series of articles starting with [3] particularly the question of the evolution of
cooperation not based on kin selection as in many examples in the animal king-
dom, but on the evolution of indirect reciprocity [3] (and [4] for experiments)
and moral systems [2] has found much emphasis.

The prisoner’s dilemma is frequently studied as a common framework for
the evolution of cooperation between unrelated individuals [5]. In the prisoner’s
dilemma, individuals are faced with a choice between two strategies cooperation
and defection. For mutual cooperation both receive a reward R, for mutual
defection P , whereas a defector exploiting a cooperator receives T while the
exploited cooperator gets an amount S. The balance between payoffs is chosen as
T > R > P > S and R > (T +S)/2, such that in a one-shot interaction defection
appears the best choice for both players individually whereas mutual cooperation
gives the better average reward for both. Repeated interactions in the iterated
prisoner’s dilemma [5] or taking into account the opponents reputation in more
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sophisticated strategies can lead to more cooperative behaviour than in the one-
shot game.

Starting from the important observation that most contact networks exhibit
very heterogeneous topologies [6], the evolution of cooperation on graphs has
found some interest recently [8,9,10,11,12]. For instance, in [8,9,10] it is found
that scale-free interaction networks grown after the preferential attachment pro-
cedure of Barabási and Albert [14] greatly facilitate cooperation for the one-shot
prisoner’s dilemma. In this paper, we re-examine the model of Santos et al. [10]
in a situation where players have knowledge about their opponents previous be-
haviour and can evolve more sophisticated strategies than simple defection or
cooperation, based on their opponents reputation. We investigate the evolution
of cooperation based on image scoring on several types of networks and explain
how individuals’ strategies vary with their place in the network.

2 Simulations

We consider a set of agents that play a standard prisoner’s dilemma, the para–
metrization of which follows the conventional setting 2 > T = b > 1, R = 1, P =
S = 0 introduced in [7]. Agents are identified with nodes of a network and
interact only with their network neighbours. In a typical iteration, in random
order, every agent will interact with each of its neighbours once, but again in each
iteration in a new randomly diced order. Thus, agents with different numbers of
neighbours interact a different number of times. The total number of interactions
in one round is given by the number of links in the network.

It is probably worthwhile to stress that the situation even for interactions via
a random network is different from interactions in a well mixed population. In
the latter case, agents typically have randomly chosen interaction partners, that
are different in each round of the evolution. In contrast, in the network scenario
agents always interact with the same neighbours (even though they might change
their strategies, see below).

In our experiment agents’ decisions whether to cooperate or defect are based
on memory about their opponents’ behaviour towards other agents in the past.
More precisely, this is modelled as a variation of the imagescore framework in-
troduced in [3]. Thus, every agent is associated with an image score I that is
increased by one if the agent cooperates in an interaction and decreased by one
if it defected. Likewise an agent is characterized by a threshold value S ∈ [−1, 1]
that defines its strategy. If an agent with strategy S interacts with another agent
with imagescore I who had M previous interactions, the first agent will cooperate
if I/M ≥ S and defect otherwise. The introduction of relative imagescores and
strategies as expectations on relative imagescores of opponents proves necessary
because players may have different numbers of interactions.

Clearly, a value of S = −1 defines a pure cooperator, S = 1 a defector while
in the terminology of [3] S = 0 is a discriminator. Values in between characterize
different levels of discrimination with S < 0 describing a tendency to cooperate
even against ‘bad’ opponents while a strategy S > 0 will defect more often than
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cooperate even against ‘good’ opponents. The average of S over the population
also gives an indication whether interactions are typically cooperative. In our
experiments below we allow players discrete values of S = −1, −.9, ..., .9, 1.

After a round of playing PD against their neighbouring agents’ total payoffs
π are determined. Because an agent’s number of interactions is given by the
number of its neighbours k the maximum payoff possible is kb. The evolution of
strategies in the population is then carried out in the following way, which is the
finite populations analogue of replicator dynamics [10,13]. Each node, e.g. i, on
the network randomly selects one of its neighbours, e.g. j. The player at node i
then adopts the strategy of player j with probability

p = max ((πj − πi)/(kgb), 0) , (1)

where kg = max(ki, kj), i.e. proportional to the payoff difference. Further, to
simulate invasions of new strategies, a player will be replaced by a player with
a randomly chosen strategy with probability pinvade.

It is to be noted that by having more interactions than average nodes hub
nodes a priori have a higher potential fitness giving them a better chance to
spread their strategies in the population. Because strategies are spread to neigh-
bours, for a strategy to do well in the population it is required that it receives
large payoffs when interacting with itself. This is the reason for the marked
preponderance of cooperation in preferentially grown scale-free networks in the
single shot experiments — where players either cooperate or defect (without
memory) — as described in [10]. Roughly, this effect will also be observable in
our experiments. However, since agents are endowed with the ability to discrim-
inate between ‘good’ and ‘bad’ opponents it will not be dominant.

In the following section we study the evolution of cooperation on different
types of networks. Our main focus lies on the interdependence between degree
heterogeneity and the average rate of cooperative interactions C in the station-
ary state of the evolution dynamics. For this purpose, we investigate the model
on three classes of networks, scale-free (SF) networks constructed after the model
of Barabási and Albert [14], Erdós-Rényi random graphs (ER) [15] and regular
random graphs (REG), see, e.g., [16]. The SF networks exhibit the largest vari-
ance in the degree distribution, ER have a small but non-zero degree variance,
while in regular random graphs all nodes have the same degree. In all cases we
ensure that the networks investigated were connected.

3 Experimental Methodology and Results

Similar to the case of unconstrained interactions in the donor recipient model
of [3] for very low rates of invasions (pinvade ≈ 0) we find that the popula-
tion quickly evolves to a very high level of cooperation (C ≈ 1) provided the
mean degree 〈k〉 of the interaction network is large enough. Generally, in accord
with observations of [3] a larger number of interactions per round, i.e. a larger
number of links in the interaction network, leads to higher levels of cooperation.
For the simulations below we chose 〈k〉 = 10 guaranteeing that the networks
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Fig. 1. Evolution of cooperation for different types of networks, SFNW (SF), regu-
lar graphs (REG) and Erdos-Renyi random graphs (ER) all with k = 10. Otherwise
pinvade = .1, b = 1.5, N = 10.000 averaged over 100 Runs.

of N = 10, 000 players we investigated were sparse, but dense enough that co-
operation could evolve in the absence (or for low rates) of invasions. We also
systematically varied link densities, observing that lower link densities enhance
the results presented below, while much larger link densities reduce differences
between different types of networks. The qualitative nature of our observations
was, however, unchanged. All following simulation results represent averages over
at least 100 different network configurations for each of which a random strategy
initialization was chosen.

3.1 Evolution of Cooperation on Different Networks

In the data displayed in Figure 1 the evolution of cooperation in the three dif-
ferent classes of networks is compared. Initially, nodes follow randomly chosen
strategies selected from a uniform distribution over −1, −.9, ..., .9, 1, resulting in
average cooperation rates close to C = 11/21, the expected cooperation rate
for random strategy encounters. As the evolution progresses more cooperative
strategies with S < 0 are selected against less cooperative ones with S > 0 such
that high levels of cooperation can be reached.

In the data one clearly observes that the largest cooperation rates are ob-
tained on regular graphs, followed by ER random graphs and SF networks with
a markedly decreased value of C. This is in stark contrast to the results of
[10] observing that cooperation is strongly facilitated by SF interaction network
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topologies. How can these discrepancies be explained? We will advance two main
arguments.

First, the result of Santos et al. [8,9,10] is based on an experiment with-
out invasions of new players into the population (i.e. for pinvade = 0 in our
case). Thus, in their evolution procedure hub nodes, the centres of cooperation,
by spreading the cooperative strategy to their neighbours can effectively shield
themselves off from defectors. If still present in the stationary state defectors
are pushed towards low degree nodes at the periphery of the network. This ef-
fect is strongly facilitated in assortative SF networks [6]. The introduction of
invasions, however, introduces an effect that can pierce the ‘cooperator shield’
generated by hub nodes, causing waves of defection spreading through the net-
work. The spreading of these is facilitated by the same assortative SF structure
that facilitated cooperation before.

To test the validity of the first argument we have also carried out simulations
with the original model of [10], where we introduced an additional rate of inva-
sions of new strategies pinvade, such that any player is replaced by a random
player (with p = 1/2 a defector and with q = 1/2 a cooperator). The simulations
prove that the very high levels of cooperation found in the absence of invasions
quickly break down for pinvade > 0 (data not shown).

The second argument relates to the ‘learning behaviour’ to find the optimal
strategy S. Since nodes of different degree have different numbers of interactions,
pressures to learn the ‘right’ strategy are different for the respective players. In
general, a player on a hub node can afford less efficiency in terms of payoff per
interaction than a player on a low degree node. That is, players on hub nodes
can allow themselves to be choosy; relatively a defection against them does not
count as heavily as against a player on a low degree node. In contrast, since
having only a few interactions to gain payoff from, players on low degree nodes
are forced into a different mode of behaviour. Why does this impede and not
facilitate cooperation? The reason is that the improved discrimination abilities
evolving in hubs (caused by the many interactions they have) are traded-off
against much poorer behaviour found on low degree nodes which constitute the
bulk of the population. Since having only few interactions players on low degree
nodes are forced into overgenerous behaviour, i.e. are expected to have lower
average strategy values 〈S〉 than average nodes.

Further, having only few interactions favours specialization. Thus, being not
exposed to a representative mix of the overall population low degree nodes on
the periphery are more likely to adapt to the pecularities of a few special neigh-
bours. This delays the evolution into the stationary state and explains the longer
transients in SF networks compared to ER random graphs and regular random
graphs seen in Fig. 1.

In passing we also note that this decrease of a networks ability to facilitate
cooperation with the degree variance strongly resembles synchronization prob-
lems on networks. Also in this context the same decrease of synchronizability
with degree heterogeneity is observed [17].
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Fig. 2. Dependence of (a) image (b) threshold (c) avg. cooperation rate and (d) avg.
payoff per interaction on the degree. SFNW k = 10, pinvade = .05, b = 1.5, N = 10, 000
averaged over 100 Runs. Avg. cooperation rate is C = .86.

3.2 Dependance of the Role of a Player on Its Place in the Network

The above is underlined by the simulation data for the dependence of agents av-
erage image, strategy, cooperation rate and payoff per interaction on the number
of neighbours shown in Figure 2. Figure 2b underlines the point made in the pre-
vious paragraph: there is a clear correlation for increasing average strategy values
〈S〉 with increasing degree. This reveals different roles for different nodes in the
network. Hub nodes with average strategies 〈S〉 ≈ 0 work as good discriminators
that police the network. Consequently they have lower cooperation rates than
average nodes (cf. Fig. 2c). Hub nodes will quickly recognise cheaters and can
afford to punish them, even as that means a worse image (cf. Fig. 2a) and a
reduction in their payoff per interaction (cf. Fig. 2). However, the relative payoff
per interaction decays slower than 1/k, still retaining their advantage in payoff
over other nodes. Thus, they are still strong spreaders of their strategies.

3.3 Stability of Cooperation

Next we investigate the dependence of the average cooperation rate on the rate
of external invasions pinvade, i.e. the stability of cooperation to external noise.
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Fig. 3. Dependence of the average cooperation rate C on the rate of external invasions
pinvade for SF networks (SF), ER random graphs (ER) and random regular graphs
(REG) with k = 10. The other parameters are b = 1.5, N = 10.000 and data points
represent averages over 100 Runs. Error bars are about the size of the symbols.

Data for this are shown in Fig. 3. Even though for low invasion rates average
cooperation rates are close to perfect cooperation C = 1 in all three different
classes of networks cooperation markedly drops for larger values of pinvade. As
discussed above, the drop is strongest for SF networks and least for random
regular graphs.

We also explored finite size effects, checking whether the results presented in
Fig. 3 differ for different numbers of agents N in the population. A systematic
investigation shows that the average levels of cooperation quickly saturate at
the values displayed in Fig. 3 for network sizes larger than approximately N =
100. In smaller systems, however, the advantage of regular interaction network
topologies over more heterogeneous topologies is found to be more expressed.

Differences in the cooperation rates for the three different types of networks
are of the order of 10%-20% larger for smaller link densities and smaller on more
densely connected networks. The maximum difference is typically realized for
invasion rates around pinvade = 1/4, becoming much smaller as the noise level
is further increased.

In summary, our experiments in this section verify that the statement that
random regular graphs allow for more cooperation than ER and SF graphs holds
over the entire range of invasion rates. This being so indicates that some contact
networks facilitate cooperation while others impede it. Naturally the question
arises: What is the network that allows for the most cooperation? The absence
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of a good and easy to calculate indicator of cooperation on a network (like, e.g.,
the eigenvalue criterion for the synchronizability of networks [18]) renders a di-
rect optimization approach as in [17] unfeasible. Nevertheless our observations
seem to encourage a more extensive study in the spirit of the present paper,
addressing the dependence of the level of cooperation on specific network prop-
erties, like the link reciprocity (for directed graphs), cliquishness or the degree
assortativeness.

4 Conclusions

In this paper we have presented simulation results about the evolution of cooper-
ation in a prisoner’s dilemma where players’ interactions are defined by a contact
network. Players’ decisions whether to defect or cooperate are determined by a
strategy that takes into account their opponents reputation which is determined
by the opponent’s previous behaviour against other players.

Investigating the evolution on different types of networks we observe that in
contrast to previous results for the one-shot prisoner’s dilemma [10] coopera-
tion is typically facilitated by very homogeneous contact networks, where no
player has more interaction partners than another. The difference between the
results for the one-shot situation and the more complicated scenario where play-
ers take into account opponents reputation is explained by differences between
the learning behaviour of players with different numbers of interaction partners.
Whereas players on hub nodes evolve to become very effective discriminators
that (by punishing invadors that pursue strategies that prefer defection) effec-
tively police the population, players on low degree nodes become over-generous.
The over-generous behaviour of players on low degree nodes results from two
sources. One reason is an increased pressure to cooperate (since individual in-
teractions count more heavily players with fewer interactions can less well afford
the risk to defect in a generally cooperative environment). The second is rooted
in the overspecialization to a small number of neighbours rather than adaptation
to a representative sample of the population.

An early criticism against the simple variant of image scoring, that we based
our experiments on, was that it hardly appears reasonable to decrease the rep-
utation of a player who justly defects against (and thus punishes) an opponent.
A more realistic framework should thus be more elaborate, allowing for a more
sophisticated set of values for each individual player like in [19]. Such a scheme,
however, is second order. It requires every player to form his own perception
about the image of its interaction partners. For reasons of computation time
we have avoided such a more complicated setup in this study. Further exper-
iments, to be reported elsewhere, however, suggest that the basic result that
cooperation in scenarios with sophisticated strategies that allow for memory is
facilitated by homogeneous networks is independant of the detailed setup of the
experiment.

In a more speculative vein, our results suggest several interesting patterns
that could be tested in social interactions. For instance, it appears worthwhile to
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investigate whether a correlation between an individual’s place in a social net-
work and its likelihood to cooperate can be verified. Second, an interesting so-
ciological study might address the question whether hub node individuals really
are more likely to enforce cooperation?
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Abstract. Ant inspired algorithms have recently gained popularity for
use in multi-objective problem domains. The Population-based ACO,
which uses a population of solutions as well as the traditional pheromone
matrix, has been demonstrated as an effective problem solving strat-
egy for solving combinatorial multi-objective optimisation problems, al-
though this algorithm has yet to be applied to multi-objective function
optimisation problems. This paper tests the suitability of a Population-
based ACO algorithm for the multi-objective function optimisation prob-
lem. Results are given for a suite of problems of varying complexity.

1 Introduction

Ant Colony Optimisation (ACO) [10, 13], an optimisation methodology based
on the foraging behaviour of Argentine ants, has been shown to be useful in
the location of optimal or near-optimal solutions to optimisation problems. The
first applications of ACO algorithms were to combinatorial optimisation prob-
lems such as the Travelling Salesman Problem (TSP) and Quadratic Assignment
Problem (QAP), although in recent years the paradigm has been applied to a
much wider range of problem domains. A problem domain that remains relatively
unexplored by ACO though is Multi-objective Function Optimisation (MOFO).

Multiple Objective Optimisation (MOO) is concerned with finding multiple
‘trade-off’ solutions in order to optimise many (in most cases conflicting or or-
thogonal) objectives. MOO problems are found frequently in real-world applica-
tions and a commonly cited example is designing an automobile, where a designer
may be attempting to simultaneously decrease cost and increase safety and com-
fort. In this example it is fairly clear that the designer must be willing to make
trade-offs between all of these objectives because they are non-complimentary.
For all MOO problems there is a set of optimal trade-off solutions which are re-
ferred to as the Pareto set, after the economist Vilfredo Pareto. To be classified
as Pareto optimal a solution must not be worse then any other valid solution
in all objectives. A Pareto optimal solution cannot increase its quality in any
objective without simultaneously decreasing its quality in another objective.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 232–244, 2007.
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This study is concerned with the evaluation of a new Population-based ACO
algorithm: Population-based ACO for Multi-objective Function Optimisation
(PACO-MOFO). The PACO-MOFO algorithm is an extension of previously
published work which includes the application of two novel Niching PACO al-
gorithms to a suite of Single-objective Function Optimisation Problems [2] and
an improvement of an existing PACO algorithm with a crowding replacement
operation for the Multi-objective Travelling Salesman Problem (CPACO) [3].
The PACO-MOFO uses a similar approach to those of the previous works which
is primarily the use of niching techniques such as crowding [9, 27] and fitness
sharing [19] to maintain solution diversity, taken from the field of Evolutionary
Computation (EC). The purpose of maintaining diversity in MOO is to encour-
age an algorithm to cover the entire Pareto front rather than converging to one
specific location [7]. As such, the performance of the PACO-MOFO algorithm is
measured by its ability to not only locate good areas of the Pareto front but to
spread the population uniformly across it. To determine this, attainment surface
comparison described in Sec. 4.2 is used.

2 Population-Based Ant Colony Optimisation

The Population-based Ant Colony Optimisation (PACO) algorithm was intro-
duced in [21, 22] and later extended for a multi-objective optimisation problem,
the single machine total tardiness problem with changeover costs (PACO-MO)
[20, 23]. The defining difference between PACO and canonical ACO algorithms is
the method of solution storage. Whereas most traditional ACO algorithms (Ant
System [12], Ant Colony Systems [17], Max-Min Ant Systems [34]) store solution
information from an (artificial) ant in a pheromone matrix only, PACO stores
solutions in a population and then uses this population to make adjustments to
the pheromone matrix. At any time the individual pheromone values contained
in the pheromone matrix will reflect the state of the population. PACO still
uses the core principles of ACO which include stepwise construction (solutions
are constructed one piece at a time) and the use of global information in solu-
tions’ construction, i.e. unlike a Genetic Algorithm, all solutions influence the
creation of a new solution rather than a few parent solutions. In other respects,
there is little difference in the overall algorithmic structure between PACO and
ACO as illustrated in Figure 1, and it may be useful to think of the differences
that do exist as implementation differences; although these differences can have
far-reaching effects on the performance and applicability of the algorithms.

2.1 PACO for Multiple Objective Optimisation

There have been many ant-inspired algorithms proposed for multi-objective opti-
misation problems and Garc̀ıa-Mart́ınez, et.al. [18] published an excellent review
and analysis paper on the subject. In that paper eight major ant-inspired algo-
rithms along with two state-of-the-art Genetic Algorithms (NSGA-II & SPEA2)
were implemented and compared. For the particular test cases used (instances
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Fig. 1. Process organisation of a traditional ACO algorithm versus a population-based
ACO algorithm using terminology defined in defined in [1, 5, 11] (taken from [1])

of a bi-criteria TSP) the ant-inspired algorithms performed well. The single
Population-based ACO algorithm included in the study, PACO-MO (mentioned
previously), performed consistently within the top three ant-inspired algorithms.
The PACO-MO algorithm was the subject of a later study that improved not
only the quality of result but reduced the overall computational complexity [3].

A trait common to ACO algorithms applied to MOO problems is the pres-
ence of multiple pheromone matrices (usually one per objective). These methods
tend to store solution quality information in these multiple pheromone matrices
and then recombine it according to a unique weight function associated with
each artificial ant. A disadvantage of such a technique is that it assumes that
information about one objective combined in even proportion with information
about another objective will provide good information about the 50/50 trade-off
point between these objectives. If this assumption is not true then it is probable
that these algorithms may have difficulty locating specific areas of the Pareto
front. In the case of PACO-MO and CPACO this assumption is not made since
by maintaining a population of solutions it is quite simple to store solutions from
the entire extent of the objective space and thus aim to achieve even coverage of
the Pareto front. This is similar to other multiple objective Genetic Algorithms
such as NSGA-II, which also use a single population of solutions. Unlike other
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Multi-objective ACO algorithms CPACO uses a single temporary pheromone
matrix. Each iteration a new pheromone matrix is calculated as follows:

1. All solutions (s) in the population (S) are assigned an integer rank according
to the dominance ranking procedure used by the NSGA-II algorithm, see [8]
for details.

2. All elements in the temporary pheromone matrix are initialised to some
initial value (τinit).

3. All solutions in the population increment the corresponding elements in the
temporary pheromone matrix according to the inverse of their rank, i.e.
Δτs

ij = 1/
(
srank

)
.

2.2 PACO for Continuous Domains

To date, many ant-inspired approaches for application to function optimisation
problems have been proposed, with the Ant Colony Metaphor for Continuous
Design Spaces [4] being the first. That algorithm starts by placing a ‘nest’ some-
where in the n-dimensional search space. after which it projects a group of vec-
tors (ants) into the search space around the nest. Over successive iterations it
gradually adjusts the direction of these vectors towards promising areas of the
search space. Other approaches include ACO for Continuous Domains with Ag-
gregation Pheromones Metaphor (APS) [35], Continuous Interacting Ant Colony
(CIAC) [14] and Continuous ACO (CACO) [29].

ACO for Continuous Domains (ACOCD) [32, 33], an extension of PACO,
maintains a population where every population member represents a single point
in the n-dimensional search space. Each population member is also assigned a
quality which is used for selection purposes. Solution construction is achieved by
way of sampling each dimension in turn (stepwise) using a combination of the
population’s Probability Density Functions to resolve each new point. Newly
constructed solutions are evaluated if they fall within the bounds of solution
space (otherwise they are discarded) and, if valid, inserted into the population
using a quality based replacement strategy.

It is worth mentioning that, to date, there has been one other ant-inspired
approach for the MOFO problem [30], however, since this approach was based
on the Ant Colony Metaphor for Continuous Design Spaces it is strictly not an
ACO algorithm per se [32]. While the algorithm was demonstrated as a good
approach for the problems tested, it resembles something closer to a Genetic
Algorithm since it uses crossover and mutation to generate new solutions rather
than stepwise construction and as such is not included here for comparison.

3 PACO-MOFO

PACO-MOFO reuses components of both ACOCD and CPACO. Considering
the problem domain, a pheromone matrix comprised of discrete values is not
required, instead Probability Density Functions are used in a similar fashion to
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ACOCD. A discrete population is utilised that is modified using a crowding dis-
tance comparison operation. The crowding replacement operation ensures that
the population retains diverse solutions from the objective space, while a fitness
sharing selection strategy encourages an even sampling of the objective space.
PACO-MOFO is an a posteori preference articulation method as defined in [25],
i.e., no preference information is provided to the search process before it begins,
rather the search process generates a set of good solutions for the decision maker
who then selects from this set. Algorithm 1 outlines the PACO-MOFO algorithm
details.

Algorithm 1. Population-based ACO for Multi-objective Function Optimisa-
tion (PACO-MOFO)
1: Initialise population with uniform random solutions (size = number of ants)
2: while stopping criterion not met do
3: Rank population according to NSGA2 fitness ranking procedure
4: Set fitness of each population member as inverse of rank
5: Adjust fitness of population by applying fitness sharing
6: for i = 1 to number of ants do
7: Create new empty solution snew

i

8: for j = 1 to number of dimensions do
9: Probabilistically select a solution (s) from the population based on the

adjusted fitness raised to a history exponent power (fitnessα), using
a biased roulette wheel selection strategy with replacement.

10: μ = sj � Calculate mean
11: r = Dimension j’s range
12: c = (sin (π/2 × remaining evaluations/maximum evaluations))2

13: σ = r × c/6 � Calculate standard deviation
14: repeat
15: snew

i,j = Gaussian weighted random value using calculated σ and μ.
16: until snew

i,j is within bounds of dimension j
17: end for
18: Evaluate new solution snew

i for all objectives
19: end for
20: for i = 1 to number of ants do
21: Select random subset of solutions S from population
22: if snew

i is better in all objectives (strongly dominates) than closest matching
solution from S (closest match in terms of objective space) then

23: Replace closest matching solution with snew
i

24: else
25: Discard snew

i

26: end if
27: end for
28: end while

As was previously mentioned PACO-MOFO uses two forms of niching, crowd-
ing and fitness sharing, for the population replacement and selection mecha-
nisms. The specific crowding technique used is Restricted Tournament Selection
(RTS) [24]. RTS works by selecting a random subset of the population (crowding
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window size) and comparing a new solution against this subset to determine the
closest match. If the new solution is better than the closest match (in the case
of MOO better means strongly dominating) the closest match is replaced, other-
wise the new solution is discarded. In this sense crowding manages the amount
of stored diversity in the population. Just using crowding to control diversity is
not enough, however, since selection of solutions from the population for new
solution construction must utilise the stored diversity. If only certain solutions
are sampled from the population then this negates the utility of having diver-
sity in the population in the first place. In PACO-MOFO fitness sharing [19]
has been employed to ensure a balanced sampling of the population. It works
by grouping population members according to their proximity in the objective
space and derating their quality if they belong to a densely packed neighbour-
hood of solutions. Fitness sharing advantages the reuse of good quality solutions
that are located in sparsely populated areas of the objective space.

4 Test Setup

4.1 Test Problems

The problems selected for testing the proposed algorithm are well documented
benchmark test functions. They are taken from [36], and the nomenclature from
that source reused, although primary sources are also included where relevant.

MOP1. Schaffer’s two objective function [31] is a historically significant test
function. It has a one dimensional decision space and two objectives. It is usually
unbounded or defined over large bounds, we use the bounds: −105 ≤ x ≤ 105.

f1 (x) = x2

f2 (x) = (x − 2)2 (1)

MOP2. Fonseca’s two objective function [15] is a useful test problem since it
allows arbitrary scaling of the number of decision variables without changing the
shape of the Pareto front which is continuous and concave. The decision variable
space is defined for each dimension as: −4 ≤ xi ≤ 4; i = 1, 2, . . . , n

f1 (x) = 1 − exp

(

−
n∑

i=1

(

xi − 1√
n

)2
)

f2 (x) = 1 − exp

(

−
n∑

i=1

(

xi +
1√
n

)2
)

(2)

MOP3. Poloni’s two objective function [28] contains two decision variables and
is a maximisation problem that has two discontinuous Pareto fronts. Its decision
space is bounded as: −π ≤ x, y ≤ π
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f1 (x, y) = −
[
1 + (A1 − B1)

2 + (A2 − B2)
2
]

f2 (x, y) = −
[
(x + 3)2 + (y + 1)2

]
(3)

A1 = 0.5 × sin (1) − 2.0 × cos (1) + sin (2) − 1.5 × cos (2)
A2 = 1.5 × sin (1) − cos (1) + 2 × sin (2) − 0.5 × cos (2)
B1 = 0.5 × sin (x) − 2.0 × cos (x) + sin (y) − 1.5 × cos (y)
B2 = 1.5 × sin (x) − cos (x) + 2 sin (y) − 0.5 × cos (y)

MOP6. This last problem was proposed by Deb [6] and is a two objective, two
decision variable problem with four discontinuous Pareto fronts. The decision
variable space is defined as: 0 ≤ x, y ≤ 1

f1 (x, y) = x

f2 (x, y) = (1 + 10y) ×
[

1 −
(

x

1 + 10y

)2

− x

1 + 10y
sin (8πx)

]

(4)

4.2 Performance Metric: Summary Attainment Surface

The metric selected to measure the performance of the PACO-MOFO algo-
rithm is the summary attainment surface analysis technique [26]. This metric
has been chosen since it takes into consideration an algorithm’s ability to not
only find solutions close to the Pareto front, but also to obtain a diverse range
of solutions along the Pareto front. The method is an extension of the work
of [16] which was developed to determine the median performance of a stochastic
multi-objective optimisation algorithm over several experimental runs. All sum-
mary attainment surfaces produced in this study have been created with the aid
of Knowles’ software package available from http://dbkgroup.org/knowles/
plot attainments/.

5 Results and Analysis

5.1 Testing with Two Decision Variables

Both PACO-MOFO and NSGA2 were run 100 times on all test problems de-
fined for two decision variables and two objectives. Each algorithm was allowed
100,000 solution evaluations and the final population was recorded. The algo-
rithm configuration parameters were the same for all trials and are reproduced
in Tab. 1. The average attainment surfaces obtained are shown in Fig. 2.

Except for MOP1 (where NSGA2 is better) there is no statistical difference1

between the attainment surfaces generated for the control algorithm (NSGA2)

1 Verified by comparing the attainment surfaces using non-parametric statistics.
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Fig. 2. Attainment surfaces generated from 100 runs of PACO-MOFO and NSGA2
applied to benchmark functions: MOP1, MOP2, MOP3 & MOP6

and the PACO-MOFO algorithm. This is a good result as it demonstrates that
on these few benchmark instances the PACO-MOFO algorithm performs on par
with an accepted state-of-the-art MOO algorithm in three out of four test cases.
Remembering that the intention was not to outperform NSGA2, simply to obtain
a result that was somewhat comparable.

5.2 Testing with More Decision Variables

The MOP2 problem was included since it allows arbitrary scaling of the decision
space without affecting the shape of the Pareto front. To test the PACO-MOFO
algorithms ability to scale (with regard to the number of decision variables) the
MOP2 problem was defined in various decision variable dimensions (5,10,15,20)
and compared against the NSGA2 algorithm (Fig. 5.1).

The MOP2 problem is extremely difficult in higher dimensions due to the
lack of directional information (i.e. the objective functions return a value of 1
for most points in the decision variable space). Given that a random initial popu-
lation will most likely contain many solutions with objective values of (1.0, 1.0),
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Table 1. Algorithm parameter settings

Algorithm No. of Ants (m) /
Population Size

History
Exponent

Crowding
Window

Fitness Sharing Ra-
dius (h = objectives)

PACO-MOCO 50 1.0 0.5 1/
�
(m)1/h − 1

�

NSGA2 100 n/a n/a n/a

Algorithm Fitness Sharing
Power

Crossover
Probability

Mutation
Probability

Std. Dev. of Gaussian
Mutation

PACO-MOCO 1.0 n/a n/a n/a
NSGA2 n/a 0.97 0.50 1% of dimension range

the PACO-MOFO algorithm will approach the Pareto front from the top-right
corner of Fig. 3(b). Since a crowding replacement scheme is being used, the al-
gorithm will concentrate its search effort on the few good solutions found at the
middle of the Pareto front and thus will be slow in exploring outward across
the extent of the entire Pareto front, thus explaining the convex Pareto fronts
generated. NSGA2 does not suffer from this problem since its population is more
volatile and it replaces solutions in a generational manner meaning a quicker up-
take of solutions from across the entire Pareto front. The trade-off to this is that
in the centre of the Pareto front the solutions found are worse than those found
by PACO-MOFO. It cannot be said then which algorithm is better, however,
interestingly NSGA2 failed to find any solutions other than those with objec-
tive values (1.0, 1.0) above 20 dimensions, while it took PACO-MOFO until 30
dimensions to do the same.

5.3 Computational Efficiency

Not accounting for possible implementation inefficiencies, as a general guide the
run times of the NSGA2 and PACO-MOFO were approximately equal. More
precisely though the computational complexity of the PACO-MOFO algorithm
is derived mostly from two sources, solution ranking (including fitness shar-
ing) and population maintenance (replacement). The solution ranking procedure
comprises two steps, the first step is the NSGA2 ranking procedure which has a
worst case complexity of O(hN2) where h is the number of objectives, and N the
population size. The second step is the fitness sharing quality adjustment which
has a complexity of O(N2) since every population member has to determine
its closest members. It may be possible to mitigate some of this computational
effort by combining these two steps, and this is an area of likely future work.
The complexity of the crowding replacement operation is dependent on the size
of the crowding window (w) since it selects a subset (in this case 1/2 of N)
of the population and uses an objective space comparison to find the closest
subset member to the new solution and then performs a single non-dominance
check, of total complexity O((N/w)2 + h). The solution creation procedure is
relatively lean compared to these other processes and as such has not been
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included. Compared to NSGA2 the PACO-MOFO algorithm is comparable since
both algorithms perform similar sort and crowding distance calculations.

6 Conclusion and Future Work

This paper has introduced a new Population-based ACO algorithm for Multi-
objective Function Optimisation, PACO-MOFO. It was never expected that
PACO-MOFO was going to be able to achieve a superior result to a second gener-
ation Genetic Algorithm such as NSGA2 on first application, however compara-
ble results were obtained on three out of four cases. As the first proof-of-concept
study a good starting point for future work has been set and it is expected that
with more work, improvements to the solution quality and computational effi-
ciency can be made. Some important results obtained were the insights gained
into the sampling behaviour of the algorithm observed in Sec. 5.2. As always,
time and space constraints limit the number of test cases able to be included,
however an already continuing area of future work is the application of PACO-
MOFO to MOFO problems with larger numbers of objectives. Perhaps the most
significant contribution of this paper is the expansion of the area of applicability
of Population-based ACO algorithms to another problem domain.
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Abstract. This paper describes the effects of adding gene reincarnation
to a biologically inspired evolutionary algorithm. When using the biolog-
ically inspired part of the algorithm we are able to draw on experience
from real life. Reincarnation capabilities, however, must be constructed
without any real life experience to guide us. This paper addresses the
question ‘can reincarnation be added to a genetic algorithm in such a
way as to modify the resulting evolutionary process’? Reincarnation in
this context requires that genetic information, saved from earlier gener-
ations, be bought back and reintroduced into the population at a later
time. A simple algorithm is introduced that selects particular genetic ma-
terial to add to the storage, performs regular culls of the stored material
and inserts some of the stored material back into targeted individuals in
later generations. Preliminary experiments show that while much of the
reinserted material vanishes without having any obvious evolutionary ef-
fect, a small proportion remains for many generations and changes the
course of the evolution compared to a genetic algorithm identical in all
respects except that it lacks reincarnation.

1 Introduction

Genetic Algorithms (GA) are a family of robust optimisation techniques that
are based on Darwinian evolution [1,2]. Although the artificial representation
of genetic structure is quite rudimentary, these methods can be used to find
solutions to a plethora of problems. The procedure uses Darwinian selection to
cause a ‘population’ of possible answers to evolve towards better answers. This is
done through successive generations of evolution in which new potential solutions
are ‘bred’ from the previous generation, with better performing solutions being
rewarded with a higher probability of passing on their own genetic material
to future generations. Individual solutions consist of a chromosome of genes,
and it is the values of these that specify the particular solution represented
by this chromosome. Typical GA implementations tend to winnow this genetic
information as they progress from one generation to the next.

As pieces of existing solutions are recombined with each other (or copied) and
mutated (usually small variations in gene value are applied with an often low
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probability), the GA causes the population as a whole to ‘explore’ the problem,
particularly concentrating on regions with promisingly high fitness. This concen-
tration of effort is a result of the predominance in the population of particular
gene values associated with higher fitness regions. One of the unfortunate draw-
backs of the GA is that it is not guaranteed to find the global optimum for every
problem. A particular set of gene values may so dominate a population that
every individual chromosome describes a very similar solution within a small
region of problem space - an inspection of corresponding gene values from the
chromosomes of all the individuals will show little diversity in the values stored.
When this happens the GA is said to have converged. Premature convergence
is said to have occurred if the solution converged on is sub-optimal [3,4]. With
no diversity in gene values, standard recombination is highly unlikely to result
in exploration outside the current region (unless extreme mutation is allowed)
as the new individuals produced will effectively be clones of existing individuals.
Since escape from premature convergence is extremely hard, various strategies
have been undertaken in order to avoid it. Each of these approaches attempts
to preserve diversity in gene values without inhibiting the general focus of the
search toward regions of known merit. It has been shown that the performance
of the GA can be improved by means of the concept of using ‘islands’ [5,6].
Island populations can be thought of as dividing an entire population of a GA
into physically separate (or caste) parts. It has been noted that under such cir-
cumstances each group within the total population will evolve separately. Each
population’s genetic mix is loosely linked with the others by the occasional trans-
fer of entire individual solutions between groups. The advantage of this method
does not become apparent until differing conditions, such as the imposition of
varying probabilities of mutation, are applied to each population. For further
discussion of this see, for example, [7].

High mutation, that is larger changes applied with a higher than usual prob-
ability, has the effect of significantly increasing the diversity of gene values but,
being a stochastic process, may interfere with the guided exploration of prob-
lem space. It may produce movements that are inconsistent with the (unknown)
scale of the significant features in problem space. Cyclic mutation addresses these
concerns by the periodic variation of mutation parameters (probability and/or
maximum magnitude) throughout the evolution process [8]. High mutation pe-
riods force an increase in diversity and are followed by periods of low mutation
that allow the exploration of the problem space now occupied. Tabu search main-
tains a list of areas of the solution space that have already been searched [9].
When used in collaboration with an evolutionary algorithm the breeding process
is modified so that only solutions not already on this tabu list are allowed to be
bred. This pushes future generations into areas that have been less thoroughly
investigated. For a non-quantized problem space, a special neural network may
be used to store an ever-evolving series of pointers to regions of known good and
bad points. Then the probability of a new solution being accepted into the popu-
lation is inversely proportional to the distance from the closest of these points. It
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is important that the probability coefficients differ between good and bad points
as both of these directly prevent convergence (premature or otherwise)[10].

The current work takes a different approach to paper [13], using two island
populations, one of which is conventional and contains the current population.
The other island contains information taken from earlier populations, and holds
it for possible reinsertion into the current population, that is old genetic material
now extinct may be ‘reincarnated’ into a later generation. The aim of reintro-
ducing old genetic material is to preserve useful diversity, where useful diversity
is that which has a beneficial effect on evolutionary progress by allowing some
backtracking to occur along the path to the solution, thus hopefully providing an
escape mechanism from evolutionary ‘dead-ends’. Acan and Tekol have reported
on chromosome reuse [11]. In their work, after the breeding process, individuals
from some fitter part of the population that have not been selected as a par-
ent are copied into extra storage. At the creation of the next generation these
individuals compete equally with the members of the current conventional pop-
ulation for parenting opportunity. This auxiliary storage has a fixed maximum
size, once this is filled only individuals with a fitness higher than the least fit
individual currently there can be added and replace that weakest individual.
This approach constitutes an extension to the concept of elite [12] individuals.

This paper involves a more extended process in which a random selection is
made from a large but not infinite pool taken from all the deliberative stored
extinct gene values that have been stored for possible targeted reintroduction
into the current population. It represents a substantial development of the ideas
first introduced in [13], in particular in the way in which the storage is managed.

2 A Discussion of the Algorithm

There are a variety of reasons for storing information for possible later reinser-
tion: because it is very good or because it is about to become extinct (disap-
pearing from the population so it is no longer available as a genetic building
block). The normal evolutionary process will result in good information playing
a part in the evolution of the populations of solutions, reintroducing it is likely
to drive the population back towards previously explored areas of problem space
(albeit good areas). Storing individuals about to vanish from the population can
be of some use as [11] has shown, at least for solutions whose performance is
reasonable but which have not had the opportunity to pass on their gene values
via normal parenting.

Storing individual genes (rather than whole individuals) when these gene val-
ues are about to become extinct should not be restricted to the genes of highly
fit individuals: a poor individual performance might be a result of the combining
of some ‘good - potentially useful’ gene values with some ‘poor - almost certainly
useless’ gene values. Since in general interchanging gene values between different
gene positions is unhelpful, it will be necessary to maintain a separate storage
area for each gene position. Storing every now extinct value for every gene po-
sition for all time would obviously lead to excessive amounts of storage being
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required (as well as the amount of computational overhead) and so a cull has
to be performed periodically of the stored gene values. The reinsertion of stored
gene values into the population has to be done in such a way as to maintain
diversity. When a new population is bred using conventional GA parameters the
diversity of the gene values is noted. A gene that is over represented in this
new population has some of its instances replaced by values drawn randomly
for the appropriate storage area. The actual instances to be replaced are chosen
randomly from the set of over represented genes.

3 The Algorithm in Detail

A flow chart of the full algorithm is shown in figure 1. The grey shaded steps
are conventional GA steps and will not be discussed further in this paper. The
remaining algorithm steps can essentially be summarised into three subsections:
Storage of gene values, replacement of over represented gene values with stored
gene values and attrition of stored gene values. This process is carried out for
every gene position in the solution chromosome.

3.1 Storage of Gene Values

When storing extinct gene values it seems likely to be beneficial to exercise some
degree of restraint because of the practicalities of maintaining increasingly large
lists. A balance point needs to be found between the practical implementation
of the storage mechanism and the desire not to throw away potentially useful
gene values. The actual quantity of gene values stored need not be dispropor-
tionately large when compared to the actual number of gene values replaced in
the population, since a relative few can actually be reused per generation. The
exclusivity rule applied to the storage of genes in the algorithm prevents identi-
cal values contained in storage from being readmitted. For the real valued genes
used presently, a slight variation to this is actually used: A similarity threshold
is applied so that very minor variations in the floating-point value can be ne-
glected in the interests of maintaining a shorter (and thus more manageable)
storage list. The similarity threshold must be of reasonable magnitude when
compared to the features of the problem space being examined. The smaller this
number the more information that is stored.

3.2 Replacement of Overrepresented Genes in the Population

Fundamental to gene reinsertion are the questions of what genes are to be replaced
and which genes are they to be replaced with from the storage. The present series
of experiments relies on simple rules for storage and retrieval of genes together
with the rate and targeting of attrition within the storage mechanism.

The choice of which genes are to be removed from the population is based upon
the desire to thwart premature convergence. In replacing a proportion of the
most heavily represented (indeed over represented) gene values with dissimilar
gene values from storage the overall tendency of the algorithm to premature
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Fig. 1. Flow chart of the algorithm including reincarnation

convergence is lessened. It should be noted that this affects the whole population
and that elites are not immune to having genes replaced.

Let the number of occurrences of a particular gene value be A and the
(population size / number of different gene values in population) be Avg. Fur-
ther let (Rf) be the replacement factor (the proportion that are randomly se-
lected to be replaced [0..1]). Then the exact number of instances nominated for
replacement,R, is calculated as follows. If A <= Avg then R = 0, otherwise
R = Truncate((A − Avg) ∗ Rf). The use of this selection method has the result
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of producing significantly higher diversity measurements at all stages of the pro-
gression of the population. The metric used in this paper for measuring genetic
diversity within the population for a particular gene position is the number of
different gene values (for the particular gene position in question) divided by
the population size (1/Avg), thus a number close to zero is converged and a one
represents a gene position where all values are entirely different.

3.3 Attrition of Gene Values Within the Storage Mechanism

In Prime and Hendtlass [13], gene storage size was essentially unlimited. The
implicit limitation imposed by the similarity threshold upon entry to storage
served to slow the rate of entry and to make sure that the gene values contained
were of some minimum diversity. Once a gene value had been planted in storage
though, its tenure there would be indefinite. Over the course of the simulation
(say, 1000 generations) a large number of genes would be stored. A significant
percentage of the stored gene values would be completely irrelevant (from the
perspective of an external a priori knowledge of the global optimum of the
problem) to the progression of the algorithm. Also the reader will note that the
average age of the stored genetic material will increase with each generation and
that a gene stored in the final few generations would have a relatively low chance
of reincarnation when compared to a gene stored in the first generation being
restored to the population in the few generations immediately following.

A concept of relevancy can qualitatively be applied to the storage mechanism
by the introduction of an attrition factor based on the similarity of the stored
genetic material to the population of the current generation. A high rate of decay
would result in a smaller storage memory, with a high degree of similarity to the
genes to the current population. This could, but need not, imply a higher short
term relevance to the problem. Conversely, a low rate of decay could result in a
larger quantity and variety of stored gene values but with likely lower short-term
relevance. By means of analogy, a lower rate of decay results in the maintaining
of a larger haystack in the hope of not throwing out the needle it may contain!
In order to hopefully keep the stored genes relevant the proposed algorithm
employs a decay mechanism that specifies a percentage of the stored genes to
be deleted each generation. Just as with the decision of which genes to replace
within the population, the decision of which genes to remove from storage during
the attrition phase could also have an effect on the overall progression of the
algorithm. While similar effects were seen when removing the oldest gene values,
a clear performance advantage was achieved by eliminating the genes with the
poorest associated fitness in the storage. Only results for this second culling
method are presented in this paper. In all methods the rationale is to weight the
charitable effects of reincarnation towards better stored gene fitnesses.

4 The Effects of Reincarnation

The basic principle of Darwinian evolution is that features or abilities bene-
ficial to survival in the current environment survive and spread, while those



Mechanisms for Evolutionary Reincarnation 251

0 40 80 120 160
Time remaining in population after return
(points with return duration < 5 suppressed)

0

1

2

3

F
itn

es
s 

/ a
ve

ra
ge

 fi
tn

es
s 

at
 s

to
re

 g
en

er
at

io
n

Fig. 2. The time all reincarnated gene values remain in the population (excluding those
that remain for four or less generations)

detrimental to survival die out. Thus if reincarnation is to have any effect on
evolutionary progress this should first be manifested by the prolonged existence
in the current gene pool of some reincarnated features. Figures 2 and 3 show the
length of time reincarnated features remained in the population, plotted as a
function of the apparent relative fitness (2) or the length of time they had been
in storage (3). As can clearly be seen some reincarnated gene values did remain
in the population for up to 120 generations. Some qualification must be made,
all trace of about 85% of reincarnated values disappeared from the population
in 4 or less generations and are not plotted in the two figures. Figure 2 shows
the reincarnation history of gene one taken from a single (albeit typical) run
solving Ackley’s function in 30 dimensions with a (relatively small) population
of 200. Since this is a minimisation function, individuals with ‘Fitness / average
fitness at store generation’ less than one were fitter than the population average
when they were stored. From figure 2 there is no clear relationship between the
relative fitness when stored and the time a reincarnated gene value remained in
the population (and hence its apparent usefulness). This is to be expected as the
fitness of an individual is calculated from all of its gene values and so will not
necessarily correlate well with any one particular gene value.

Figure 2 shows that the longer a gene value had been stored the less time it
was likely to remain in the population when returned but that there were some
notable exceptions to this. Again this is intuitively reasonable as, in general,
when evolution moves into new regions few of the values stored earlier are likely
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Fig. 3. A histogram of the time all reincarnated gene values that last for five or more
generations remained in the population as a function of the number of generations for
which they had been stored

to still be relevant. At first sight figure 3 also suggests that few ‘long term’
storage residents ever last 5 or more generations after reincarnation. More likely
the low number of such events on the plot is just a result of the pruning of the
stored individuals which results in there being very few ’old’ stored gene values
to be reincarnated.

Experiments used in this work were conducted using the Conventional and
Reincarnation GA’s with the Ackley function (simulated in 30 dimensions) as
the test problem. The Ackley function [14] is a minimisation problem with a
global optimum (minimum) at (0, 0,...., 0, 0) with score of 0. Formally the score
F (x̄) for any position x̄ is given by

F (x̄) = −20exp
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For this problem
xi ∈ (−32.768, 32.768)

As this is a minimisation problem a low score represents high fitness. A variety of
parameter values have been used to generate results, with each result presented
being the average of 100 test runs. The probability of mutation used for all
results is 2% per (real valued) gene. The magnitude of mutation as applied to
the gene values is a zero-centred Gaussian distributed number added to the
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previous gene value, with standard deviations of 0.5 and 4.0. The number of
elites is also varied with 1 and 30 elites being used. The above parameters were
chosen because they represent a relatively favourable choice to one of each of the
demonstrated algorithms. 1000 generations were simulated for every test using
an attrition rate (Kr) of the least fit 5% of the stored individuals per generation.

For the RGA the replacement factor (Rf) is also varied so that the effect of
the aggressive gene replacement can be shown. The four results graphs presented
demonstrate the possible combinations of few and many elites (1 and 30) and
high and low Rf (1/7th and 1/15th respectively). Within each graph, the mag-
nitude of mutation is varied so as to favour each algorithm in turn. The reader
will note that identical results for the conventional GA are replicated in figures
4(a) and 4(b) and also in 4(c) and 4(d).

The low mutation magnitude used ensures the conventional GA is prematurely
converged in all cases, this suggesting that the magnitude of mutation change is
not compatible with the features of the problem space. For the higher mutation
magnitude the conventional GA almost always finds the global minimum. For the
RGA the opposite appears to be true: For all settings explored the RGA produces
its best outputs for the lower mutation magnitude settings. The RGA seemingly
is deriving the required randomness (for coarse search) from the reinserted genes.
In all cases the RGA has a more rapid initial fitness improvement than the GA,
however upon completion of 1000 generations the conventional GA always has
a better average fitness value than the RGA. An increase in the number of
elites hastens the final convergence of the GA (and in fact does so for all RGA
simulations too), see figures 4(a) and 4(c). Generally, the RGA demonstrated an
‘average fitness plateau’ suggesting that a certain proportion of tests do not solve
the test problem. This trait is not demonstrated by the GA for the high mutation
magnitude setting. The fitness level at which this plateau occurs is affected by
all of elitism, mutation magnitude and Rf settings and is of interest for further
discussion. Figures 4(a) and 4(c) (also figures 4(b) and 4(d)) show that high
elitism improves the fitness plateau effect. A more gentle replacement factor
similarly improves performance when comparing comparable plots on figures
4(a) and 4(b) (and also figures 4(c) and 4(d)). The best observed performance
for the RGA is derived from a combination of low Rf (gentle replacement), high
elitism, and low mutation magnitude and is seen in figure 4(c). From figures 4(c)
and 4(d) it can be seen that the RGA with low mutation is not equivalent to
the GA with higher mutation as the final results differ significantly: while they
have some similar effects, reincarnation is not simply another way of performing
mutation.

Replacement factor clearly affects the fitness plateau of the RGA. The exact
number of gene reinsertions per gene is not precisely fixed by the replacement
factor since other characteristics (such as mutation) affect the rate at which
the relatively fit begin to dominate the evolutionary process. For more gentle
replacement (Rf = 1/15) it is of note that at steady state only about six out
of 200 genes are replaced per generation, with a more aggressive Rf of 1/7 this
number is close to 11 per generation.



254 B. Prime and T. Hendtlass

0 200 400 600 800 1000
Generations

0

4

8

12

16

20

24

A
ve

ra
ge

 b
es

t f
itn

es
s

GA, Mut SD = 0.5
GA, Mut SD = 4.0
RGA, Mut SD = 0.5, Rf = (1/15)
RGA, Mut SD = 4.0, Rf = (1/15)

Ackley 30D, 100 runs, Average Best Fitness
Mutation probability = 2%, 1 elite,storage Kr = worst 5%

(a) 1 in 15 storage return rate and one elite
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(c) 1 in 15 storage return rate and 30 elites
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Fig. 4. Relative performance of a conventional GA and a reincarnation GA (RGA) for
low and high mutation magnitude.

4.1 The New Role of Elites

The real-valued GA as implemented in this work utilises a variety of relatively
disruptive parameters such as uniform crossover and tournament parent selec-
tion to slow down the rate of convergence in both the conventional GA and in
the RGA. The use of such techniques to produce more randomised offspring,
as compared to say, single point crossover and roulette parent selection, results
in an altered balance of ‘normal’ optimal parameters for the conventional GA.
Often for the conventional GA it can be shown that only a few (for example 2)
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elites are required to produce steady improvement in best score with extras pro-
ducing diminishing returns. In this work, significantly more elites also improve
the performance of the conventional GA for the above stated reasons. The RGA
produces more optimal results (relative to itself) by the use of significantly more
elites that might be expected in its working population of 200, in fact even more
than 30 elites can be used with only beneficial effects witnessed. Since elite solu-
tions tend to occur more often in the population (due to their high fitness) and
are subject to alteration (by gene replacement), the elite section of the popu-
lation explicitly qualifies itself for the most rigorous gene replacement with the
current replacement rule. This tends to produce (structurally speaking) close-to-
elite individuals that vary by one or more reincarnated genes. The reincarnation
algorithm needs more elites because it modifies them so heavily.

5 Conclusions and Future Work

This paper considers if reincarnation would have an effect on an artificial evolu-
tionary process, and clearly shows that it does. While the results reported in this
paper only use one function, work on a number of other functions indicates that
those results have similar characteristics. While the choice of which gene values
in the current population to save is the same as in [13], the addition of attrition
of the stored gene values based on the assigned fitness together with a deliber-
ative rather than random method for deciding which gene values are modified
by reincarnation has produced an algorithm that clearly shows that reincarna-
tion has an effect on the progress of evolution. In the early stages it seems that
reincarnation has similar effects to increasing mutation although not exactly the
same. By the time of convergence at the global optimum reincarnation is no
longer of use just degrading the final performance.

Further work on a wider range of problems will establish exactly how the
effects of reincarnation differ from those of high mutation, knowledge needed to
establish the best way to apply reincarnation. Already it is clear that for simple,
single optimum, static problems constant reincarnation is unlikely to be the best
strategy. Hopefully, at least for a range of problems, careful use of reincarnation
will produce a better performance than would be obtained without it.

It has been noted that, particularly for low replacement factors (Rf), that
the average assigned quantity of stored genes is much higher than the average
assigned quantity of those that actually are placed back into the working popula-
tion. This implies that the use of a guided choice of the replacement values (e.g.
by tournament selection) may prove better than the current random selection.
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Abstract. In this paper, an evolutionary algorithm with spatially dis-
tributed surrogates (EASDS) for multiobjective optimization is presented.
The algorithm performs actual analysis for the initial population and
periodically every few generations. An external archive of the unique
solutions evaluated using the actual analysis is maintained to train the
surrogate models. The data points in the archive are split into multiple
partitions using k-Means clustering. A Radial Basis Function (RBF) net-
work surrogate model is built for each partition using a fraction of the
points in that partition. The rest of the points in the partition are used
as a validation data to decide the prediction accuracy of the surrogate
model. Prediction of a new candidate solution is done by the surrogate
model with the least prediction error in the neighborhood of that point.
Five multiobjective test problems are presented in this study and a com-
parison with Nondominated Sorting Genetic Algorithm II (NSGA-II) is
included to highlight the benefits offered by our approach. EASDS al-
gorithm consistently reported better nondominated solutions for all the
test cases for the same number of actual evaluations as compared to a
single global surrogate model and NSGA-II.

1 Introduction

Evolutionary algorithms (EAs) are particularly attractive for multiobjective
problems as they result in a set of nondominated solutions in a single run. Fur-
thermore, EAs do not rely on functional and slope continuity and thus can be
readily applied to optimization problems with mixed variables. However, EAs
are essentially population based methods and require evaluation of numerous
solutions before converging to the desired set of solutions. Such an approach
turns out to be computationally prohibitive for realistic Multidisciplinary De-
sign Optimization (MDO) problems and there is a growing interest in the use of
surrogates to reduce the number of actual function evaluations.

A comprehensive review on the use of fitness approximation in the context
of evolutionary computation has been reported by Jin [1]. The choice of sur-
rogate models reported in literature range from neural network based models
like multilayer perceptrons, radial basis function networks, quadratic response
surfaces, Kriging and cokriging models. A vast majority of surrogate assisted
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optimization methods rely on the use of a single global surrogate model. The
surrogate model is either created once and used subsequently throughout the
course of search (one shot approach) or created periodically. Algorithms based
on the one shot training of the approximation model(s) [2,3] are likely to face
the problems when the initial set of solutions generated differ substantially from
the final set as in the case of the test function SCH1 [4]. Periodic retraining
is necessary as the search proceeds to localized areas. In order to capture local
behavior, hierarchical surrogate models have been proposed by Zhou et al [5]
and the use of artificial neural network models in the local search strategy have
been used by Gasper-Cunha and Vieira [6].

To improve the prediction accuracy with limited samples, multiple surrogates
can be used in place of the single surrogate model. Common use of multiple
surrogates is in the form of surrogate ensembles where a collection of surrogate
models with varying parameters usually trained simultaneously by techniques
such as bagging [7], and boosting [8] are used. A survey of neural network en-
semble has been reported by Zhao et al [9]. Jin and Sendhoff [10] reported the
use of clustering and neural network ensembles to reduce the fitness evaluations.
They use k-Means clustering to identify the candidate solutions which need to
be evaluated using the actual analysis. Hamza and Saitou [11] have used poly-
nomial regression surrogate ensembles with weighted average response and the
most conservative response in the co-evolutionary genetic algorithm for vehicle
crash-worthiness design.

Another approach based on multiple surrogates is to use different types of
surrogate models simultaneously. Goel et al [3] and Zerpa et al [12] have used
a weighted average model resulting from three surrogate types (polynomial re-
sponse surface model, kriging, and radial basis function). The two approaches
differ in the determination of the weights for averaging. Zhou et al [13] reported
the use of multiple approximation models in the context of memetic algorithm
to perform the local search. They even propose using a surrogate ensemble as
one of the approximation models.

In the context of multiobjective optimization, Nain and Deb [14] proposed a
multifidelity model (coarse to fine grain) for surrogate assisted multiobjective op-
timization where a multilayer perceptron was periodically retrained and used in
alternation with actual computations to solve a B-spline curve fitting problem. A
similar approach of alternating between actual analysis (K) and surrogate mod-
els (S) have been reported by Ray and Smith [15]. The study used a RBF model
that was trained using the candidate solutions of the population after every K
generations. Nain and Deb [16] reported the performance of successive surrogate
models on two test functions viz. ZDT4 and TNK. Pareto Efficient Global Op-
timization (ParEGO) algorithm [17] relies on a kriging based surrogate and the
sampling points are generated via design of experiments. However, the method
requires knowledge about the limits of the objective function space and can-
not guarantee a uniform distribution of the solutions along the nondominated
front. Emmerich et al [18] use confidence interval predicted by the kriging model
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to screen candidates for actual evaluation, reducing the computational cost. A
recent paper by Chafekar et al [19] reports the use of multiple GAs, each of
which uses a reduced model of the objective function with a regular information
exchange among GAs to obtain a well distributed nondominated set of solutions.

In this paper an evolutionary algorithm with spatially distributed surrogates
(EASDS) is presented. This approach uses multiple surrogates that are spatially
distributed in the design space. An archive of the solutions evaluated using the
actual analysis is maintained and used to train the surrogate models. The solu-
tions in the archive are split in multiple partitions using k-Means clustering. Us-
ing a fraction of the solutions in each partition a Radial Basis Function network
surrogate model is trained. The unused points in each of the partition are used to
assess the prediction accuracy of the surrogate model. The performance of the
EASDS is compared with Nondominated Sorting Genetic Algorithm (NSGA-
II) [20] using an equal number of actual function evaluations. The effect of the
number of partitions is also studied and the performance is compared with a
single global surrogate model.

2 An Evolutionary Algorithm with Spatially Distributed
Surrogates

The pseudo code of the proposed Evolutionary Algorithm with Spatially Dis-
tributed Surrogates (EASDS) is outlined in Algorithm 1.

Algorithm 1. Evolutionary Algorithm with Spatially Distributed Surrogates
Require: NG > 1 {Number of Generations}
Require: M > 0 {Population size}
Require: K > 1 {Number of partitions}
Require: ITRAIN > 0 {Periodic Surrogate Training Interval}
1: A = ∅ {Archive of the Solutions}
2: P1 = Initialize()
3: Evaluate(P1)
4: A = AddToArchive(A, P1)
5: S = BuildSurrogates(A, K)
6: for i = 2 to NG do
7: if modulo(i, ITRAIN ) == 0 then
8: Evaluate(Pi−1) {Evaluate parent population using the Actual Analysis}
9: A = AddToArchive(A, Pi−1)

10: S = BuildSurrogates(A, K)
11: end if
12: Ci−1 = Evolve(Pi−1, S)
13: EvaluateSurrogate(Ci−1, S)
14: Pi = Reduce(Pi−1 + Ci−1)
15: end for
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The basic evolutionary algorithm is on the same lines as that of NSGA-II by
Deb et al [20]. The algorithm starts with a random initial population and eval-
uates the population using actual evaluations. Spatially Distributed Surrogate
models (using Radial Basis Function network) are created for all the objectives
and the constraints. An external archive of actual evaluations is maintained in
EASDS and used to periodically train the surrogate models for all the objectives
and the constraints. The components of EASDS are described below.

2.1 Initialization

All the solutions in the population are initialized randomly by selecting each
variable value from the specified range for that variable.

2.2 Archive of the Actual Evaluations

All the unique candidate solutions that are evaluated using the actual analysis
are maintained in an external archive. Every ITRAIN generations, the parent
population is evaluated using the actual analysis functions and then added to
the archive. New solution is added to the archive only if the normalized distance
(using the Euclidean norm) between the new solution and each of the solutions
in the archive is more than user defined distance criterion. This condition avoids
the numerical difficulties of building the surrogates if the solutions are too close.

2.3 Evolutionary Strategy

The evolutionary strategy of EASDS is the same as that of NSGA-II. Binary
tournament is used for the selection the parents undergoing crossover. The sim-
ulated binary crossover (SBX) operator [21] and a polynomial mutation opera-
tor [22] are used to create an offspring population from the parent population.

2.4 Building Spatially Distributed Surrogate Models

Outlined in Algorithm 2 are the steps involved in building the RBF surrogate
models for the objectives and the constraints. A collection of RBF surrogate
models is created to approximate the objectives and the constraints. The archive
is split into K partitions (A1, . . . , AK) using k-Means clustering algorithm where
the design variables x1, . . . , xn are used as the clustering attributes.

The solutions in each of the partitions are used to build the RBF surrogate
models for the objectives and the constraints. Only a fraction (0 < α < 1) of
the solutions are used to train the surrogate model and the rest are used as the
validation data set. EASDS uses 80% of the solutions in each partition as the
training data and the remaining 20% are used to validate the surrogate models.

If there are very few solutions in a partition (insufficient to build the RBF
surrogate model), no surrogate models are built using that partition. If the pre-
diction error on the validation data set in the partition is more than the user
defined threshold, the surrogate model on that partition is deemed invalid.
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Algorithm 2. Building Spatially Distributed Surrogate Models
Require: A {Archive of actual evaluations}
Require: K {Number of partitions}
Require: m ≥ 2 {Number of objectives}
Require: p ≥ 0 {Number of constraints}
1: A1, . . . , AK = KMeans(A, K)
2: for i = 1 to K do
3: for j = 1 to m do
4: Si,fj = RBF Train(Ai, fj)
5: end for
6: for j = 1 to p do
7: Si,gj = RBF Train(Ai, gj)
8: end for
9: end for

k-Means Clustering Algorithm. A k-Means clustering algorithm [23] is used
to split given data points into k clusters or partitions. The main idea of k-Means
clustering is to define k centroids, one for each cluster, and then assign each data
point to one of the k clusters so as to minimize a measure of dispersion within
the clusters. A very common measure is the sum of squared Euclidean distances
from the centroid of each cluster.

Radial Basis Function Network Surrogate. Radial Basis function networks
belong to the class of Artificial Neural Networks (ANNs) and are a popular choice
for approximating nonlinear functions. A radial basis function (RBF) φ has its
output symmetric around an associated centre μ.

φ(x) = φ(‖x − μ‖)

where the argument of φ is a vector norm. A common RBF is the Gaussian
function with the Euclidean norm.

φ(r) = e−r2/σ2

where σ is the scale or width parameter. A set of RBFs can serve as a basis for
representing a wide class of functions that are expressible as linear combinations
of the chosen RBFs as shown in Eq. 1.

y(x) =
k∑

i=1

wi φ(‖x − μi‖) (1)

Here, k is typically smaller than the number of data points. The coefficients wi

are the unknown parameters that are to be “learned.” The training is usually
achieved via the least squares solution:

w = A+ y (2)

where A+ is the pseudo-inverse and y is the target output vector.
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2.5 Evaluation Using Spatially Distributed Surrogate Models

For accurate prediction of the objectives and the constraints for a new candi-
date solution, a surrogate model with the least prediction error is chosen from
spatially distributed surrogate models. If the new candidate solution is far (us-
ing the Euclidean distance measure) from all the solutions in the archive, it is
evaluated using the actual analysis.

From the archive of solutions, S solutions closest (using the Euclidean norm)
to a new candidate are selected. The values of the objectives and the constraints
of these S points are predicted using each of the surrogate models in the col-
lection. For each of the surrogate models, prediction error (RMSE) is computed
using the actual and the predicted values of the objectives and the constraints.
Surrogate model with the least prediction error is then used to predict the value
at the new candidate solution.

2.6 Reduction

The reduction procedure retains the best individuals from the parent and the
offspring population (elitism). Combined solutions from the parent population
and the offspring population are ranked using the non-dominated sorting and the
crowding distance criterion [24]. M elite solutions (better fitness) are retained for
the next generation from a set of 2M solutions (parent and offspring population).
If there are less than M feasible solutions, then infeasible solutions with smaller
values of maximum constraint violation are retained.

3 Numerical Examples

3.1 Test Problems

The first two constrained test problems are SRN and OSY [25]. The ZDT test
problems [25] are two objective unconstrained problems framed by Zitzler et al
and they are of the form as shown in Eq. 3.

Minimize f1(x),
f2(x) = g(x) h(f1(x), g(x)).

(3)

The description of all the test problems is given in Table 1.

3.2 Experimental Setup

A population size of 100 is used for all the test problems and the algorithm is
run for 101 generations. All the test problems are evaluated using EASDS and
NSGA-II. For EASDS, the surrogate models were retrained every 5 generations
(ITRAIN = 5). The probability of crossover is set to 0.9 and the probability
of mutation is set to 0.1. The Distribution index for crossover is 10 and the
distribution index for mutation is 20. A new solution is added to the archive
if the normalized distance between the new solution and closest solution in the
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Table 1. Test Problems

Problem Dim Objectives & Constraints Bounds

SRN 2

f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2

f2(x) = 9x1 − (x2 − 1)2

x2
1 + x2

2 ≤ 225, x1 − 3x2 + 10 ≤ 0

x ∈ [−20, 20]2

OSY 6

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2]

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

x1 + x2 − 2 ≥ 0, 6 − x1 − x2 ≥ 0,

2 − x2 + x1 ≥ 0, 4 − (x3 − 3)2 − x4 ≥ 0,

2 − x1 + 3x2 ≥ 0, (x5 − 3)2 + x6 − 4 ≥ 0

x1, x2, x6 ∈ [0, 10]

x3, x5 ∈ [1, 5]

x4 ∈ [0, 6]

ZDT1 10

f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 −
�

f1/g

x ∈ [0, 1]10

ZDT2 10

f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 − (f1/g)2
x ∈ [0, 1]10

ZDT3 10

f1(x) = x1

g(x) = 1 + 9
n−1

�n
i=2 xi

h(f1, g) = 1 −
�

f1/g − (f1/g) sin(10πf1)

x ∈ [0, 1]10

archive is more than 0.01. If the prediction error (RMSE) of a surrogate over
validation data is less than 20%, then it is considered valid.

To compare the effects of the number of the surrogate models (corresponding
to the number of partitions of the archive), each of the problems was run with
3, 5 and 8 partitions. All the test problems are also run with single surrogate
model.

The same random seed and hence the same initial population is used for both,
EASDS and NSGA-II. Since the number of actual function evaluations in EASDS
are much less than 10100 (100×101), NSGA-II is run for fewer generations (with
similar number of function evaluations) for performance comparison.

4 Results

Shown in Table 2 are the function evaluations used by EASDS for different
number of partitions (K). Traditional evolutionary algorithms with population
size of 100 evolved over 101 generations will result in 10, 100 function evalua-
tions. In EASDS, the population is evaluated using the actual evaluations every
ITRAIN = 5 generations, hence the minimum number of actual evaluations is
2100.

As seen from Table 2, the number of function evaluations for problem OSY
decreases as the number of partitions is increased. This shows that the prediction
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Table 2. Function Evaluations used by EASDS

Function Evaluations

Problem K = 3 K = 5 K = 8

OSY 7139 4111 3620

SRN 2100 2100 2100

ZDT1 2100 2600 2600

ZDT2 2100 2600 2600

ZDT3 2100 2600 2600

accuracy of the surrogate models with K = 3 partitions is poor as compared to
the surrogate models with K = 8 partitions. If all the surrogates models are
invalid (prediction accuracy over the validation data set is more than the user
defined threshold), actual evaluations are used.

The non-dominated solutions for problem OSY obtained by EASDS using 3,
5, and 8 partitions are shows in Fig. 1. It is observed that the non-dominated
solutions of the EASDS with 8 partitions follow the Pareto front much more
accurately than the EASDS with 3 and 5 partitions.

For test problem SRN, the number of function evaluations used are 2100, the
minimum possible. This indicates that EASDS with 3, 5, or 8 partitions is able
to correctly capture the behavior of the function SRN. As seen in Fig. 2, the
non-dominated solutions of EASDS with 3, 5, and 8 partitions are overlapping.
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problem SRN

Test problems ZDT1, ZDT2, and ZDT3 show a different trend in function
evaluations as compared to OSY. The number of function evaluations used by
EASDS increase for 5 and 8 partitions as compared to 3 partitions. This can be
explained by the fact that the surrogate models in the initial few generations
are not very accurate and the actual evaluations are used to evaluate the entire
population. In the earlier generations, there are fewer solutions in the archive
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and those solutions are distributed spatially and split in to multiple partitions to
build the surrogate models. Thus each partition might have insufficient number of
points to capture the correct behavior of the function and the prediction accuracy
is low. As the number of solutions accumulate in the archive, the accuracies of
the surrogate models also increase.

Shown in Fig. 3 are the non-dominated solutions for problem ZDT1 obtained
by EASDS using 3, 5, and 8 partitions and they are overlapping. It shows that
the function ZDT1 is approximated accurately using the surrogate models with
3, 5, and 8 partitions. For the test function ZDT2, the non-dominated solutions
are shown in Fig. 4. The surrogate models with 8 partitions are able to achieve
better spread of the non-dominated solutions on the Pareto front indicating
that surrogate models with 8 partitions have better prediction accuracy than
surrogate models with 3 and 5 partitions.
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Shown in Fig. 5 are the non-dominated solutions for problem ZDT3 obtained
by EASDS using 3, 5, and 8 partitions. It is seen that none of the surrogate
models are able to completely capture the disjoint Pareto front. Surrogate models
with 8 partitions seem to have a better spread than the ones with 5 partitions
which are better than the ones with 3 partitions.

Shown in Fig. 6 are the non-dominated solutions for problem OSY obtained
by EASDS using 8 partitions (EASDS), single global surrogate model (SGS)
and NSGA-II with the same number of function evaluations. The performance
of EASDS is better at capturing the Pareto front.

The non-dominated solutions obtained for the problem SRN by EASDS, SGS,
and NSGA-II are shown in Fig. 7. Even a single global surrogate is able to capture
the behavior of the function adequately and the non-dominated solutions overlap.

The benefit of the spatially distributed surrogate models can be seen from the
results of ZDT1, ZDT2, and ZDT3 which are 10-D functions. It can be seen from
Figs. 8, 9, and 10 that EASDS captures the Pareto front better than NSGA-II
and single global surrogate model (SGS).
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5 Summary and Conclusions

In this paper an evolutionary algorithm with spatially distributed surrogates
(EASDS) for multiobjective optimization is presented. This approach is an al-
ternative to recent surrogate ensemble proposals, where either multiple types of
global surrogates are used or multiple number of same type of surrogates are
used for better approximation. EASDS is compared with the non-dominated
sorting algorithm (NSGA-II) and single global surrogate model on a set of test
functions. Different number of partitions (3, 5, and 8) are used to build the
surrogate models and corresponding performance is compared.

It is seen from Figs. 1 - 5 that the surrogate models with more partitions
perform better. With more partitions the function behavior is captured better
by splitting the design space in multiple regions and approximating each region
locally. But as the number of partitions is increased, more number of evalua-
tions are required to populate each partition sufficiently (to be able to correctly
capture the behavior of the function locally in the partition). With the compu-
tational budget of 1200 evaluations EASDS is able to capture the behavior of
10-D optimization problem with up to 8 partitions. For a smaller computational
budget or higher dimensional problem, one may need to use more conservative
number of partitions.

Compared to the single global surrogate model and NSGA-II, EASDS per-
forms much better indicating the benefits of the local surrogates built over
smaller regions. Effectiveness of EASDS at capturing the Pareto front and the
spread of solutions along the Pareto front is clearly seen from Figs. 6, 8, and 9.
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Abstract. In this paper, we provide the reasons why the dissimilarity-
scaling parameter (α) in the neighbourhood function of ant-based clus-
tering is critical for detecting the correct number of clusters in data
sources. We then examine a recently proposed method named ATTA;
we show that there is no need to use a population of α-adaptive ants
to reproduce ATTA’s results. We devise a method to estimate a fixed
(i.e, non-adaptive) single value of α for each dataset. We also introduce
a simplified version of ATTA, called SATTA. The reason for introducing
SATTA is two-fold: first, to test our proposed α-estimation method; and,
second, to simulate ant-based clustering from a purely stochastic perspec-
tive. SATTA omits the ant colony but reuses important ant heuristics.
Experimental results show that SATTA generally performs better than
ATTA on clusters with different densities and clusters that are elon-
gated. Finally, we show that the results can be further improved using a
majority voting scheme.

1 Introduction

Ant-based clustering is inspired from the cemetery formation and brood-sorting
activities found in real ant colonies. This approach is motivated by the collective
problem solving ability found in simple social insects (ants, bees, termites, etc)
[2]. Initially proposed by Deneubourg et al. [3], robotic ants have been used to
cluster physical objects. Deneubourg’s model was later extended by Lumer and
Faieta [7] to cluster numerical data. Since then, a number of variants have been
proposed; some interesting examples include: (i) combining ant-based clustering
with K-means ([8], [9]), (ii) using pheromone in ant-based clustering [10], and
(iii) specific extensions of Lumer and Faieta’s model: Ant-Q [6] and its successor
ATTA [5].

Most of the recent studies in ant-based clustering have shown promising re-
sults; however, the working principle of this method remains elusive. In this
paper, we study a critical parameter in ant-based clustering: the dissimilarity-
scaling parameter (α) in the neighbourhood function. Previous works have used
a population of heterogeneous ants (e.g., see [5], [7]), in which ants differ by asso-
ciating with different α-values. However, two issues remain: (i) why is the value
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of α parameter critical and (ii) is there a need to use multiple ants to estimate
multiple α-values to produce good clustering results? In this paper, we first give
the reasons why α is a critical parameter. We also show that a fixed single value
of α (for each dataset) is enough to reproduce the existing clustering results.

We propose a method that estimates only a single value of α; this implies
that there is no need to use multiple ant-like agents to estimate multiple α-
values as in ATTA [5]. Furthermore, our α-value is estimated independently of
the clustering process whereas in ATTA the values of α are adapted throughout
the entire clustering process; this suggests that there is no need to learn the
values of α during the clustering process.

We also present a simplified version of ATTA, called SATTA. SATTA is used
to test the estimated α, and it reuses important ant heuristics. However, SATTA
differs from ant-based clustering (ATTA) in the following ways: (i) it does not
employ a colony of heterogeneous ants, but uses only random sampling to emu-
late the pick and drop actions of randomly moving ants; (ii) it uses the above-
mentioned α-estimation method and also filters noise and outliers in the pre-
processing stage. Although our method is simpler than traditional ant-based
clustering, it has produced comparable or better clustering results as compared
to the recently proposed ATTA model [5].

In the next section we discuss the issues identified. Section 3 presents the
proposed method. Section 4 shows that the results of our method are comparable
to ATTA and better under some conditions. Section 5 concludes this paper.

2 Issues in Ant-Based Clustering

2.1 Why Is the Value of α Critical?

In the data clustering model proposed by Lumer and Faieta [7], they have gen-
eralised the neighbourhood function as:

f(i) = max

⎛

⎝0.0,
1
σ2

∑

j

(

1 − δ(i, j)
α

)
⎞

⎠ . (1)

Here, α scales the distance δ(i, j) between a currently picked data item i and all
the data item j in the neighbourhood of the grid space in which the ants operate.
The size of the ant’s perception region is σ2, which is defined as σ2 = (2r + 1)2,
where r is the perceptive radius.

Handl et al. [5] introduced two modifications to the neighborhood function.
First, they kept σ2 as a constant of 8 regardless of r. Second, they added the
following constraint to maintain that any item in a grid-neighbourhood is no
more than α-distance apart from the item i at the center of the neighbourhood:

f∗(i) =
{

f(i) if ∀j (δ(i, j) < α)
0.0 else.

(2)

While it is generally known that the value of α can somehow affect cluster de-
tection, the criticality of α is not well illustrated in the literature. Take the
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skewed data in Figure 1(a) as an example, Figure 1(b) shows the distribution
of the normalised pairwise Euclidean distances among all data points in the
skewed dataset: the left most distribution contains the intra-cluster pairwise
distances, and the remaining three distributions contain the inter-cluster pair-
wise distances.

In this example, the best α-value is 0.04, which scales the intra-cluster pair-
wise distances to be less than one, and scales the inter-cluster pairwise distances
to be more than one. Thus, the α-value detects the four underlying clusters in
the skewed dataset. If α-value is in [0.15, 1], then only two clusters are detected:
the first cluster is C1, and the second cluster contains C2, C3 and C4.

In summary, there are two reasons why α should not be set arbitrarily. First,
the range of good α-values can be quite narrow in some cases; and if we set α
arbitrarily, then we can miss a good α-value easily. Second, an inappropriate α-
value set arbitrarily can lead to misleading results; it can produce wrong number
of clusters that appear to be ‘correctly’ built on the grid, which leads to a false
detection of cluster structure.
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(a) Skewed dataset
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Fig. 1. (a) The skewed dataset contains three nearby clusters and one cluster far from
the rest. (b) The best α-value is 0.04 as shown by the dotted line

2.2 Do We Need Heterogenous Ants and Multiple Adaptive
α-Values?

In this work, we focus on ATTA [5] since it is well-tested and it shows impressive
results. However, our previous study [11] with an earlier version of ATTA (known
as Ant-Q [6]) shows that there is no need to use a population of ants. This also
implies that there is no need to use heterogenous ants to estimate multiple α-
values in order to reproduce the results of ATTA. To show that this implication
is plausible, Figure 2(b) shows that after the initial stage of α-adaptation, the
α-values of different ants in ATTA converge to an average value of 0.3. This
observation is confirmed by running ATTA on VaryDensity dataset using one
ant (i.e., only one α-value), and the clustering results (e.g., the F-Measure [12])
are the same as those produced by ten ants (i.e., ten α-values). With the above
analysis, we believe that a single value of α can be used to reproduce the results
of ATTA.
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(a) VaryDensity dataset
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(b) Evolution of multiple α-values

Fig. 2. (a) This dataset contains three low density clusters (C1, C2, and C3) and one
high density cluster (C4). (b) When clustering the VaryDensity dataset, the α-values
of all the ten ants in ATTA converge during the process. For clarity, we only show the
evolution of α-values for three typical ants.

3 The Proposed Method

In this section, we propose a new method that estimates only a single α-value
to be used before clustering starts. We also describe a noise filtering process.
We then propose a stochastic clustering (SATTA) algorithm to work with the
estimated α.

3.1 Estimating the Dissimilarity-Scaling Parameter

The main idea here is to use ant heuristics (which are designed to be used in the
grid-space) to estimate an α-value in the data-space. First, we use the k-nearest
neighbourhood in the data-space to approximate the grid-neighbourhood in the
grid-space. Then, we test if a given α-value will render each item i to be similar
to its nearest neighbours in the data-space. In order to test the similarity, we
borrow the formulae from ant-clustering. Table 1 presents how each formula in
ant-clustering is being adapted for α-estimation in the data-space.

Note that this is not a clustering process; rather, it is a pre-processing step
that occurs before clustering begins. Indeed, this procedure takes a negligible
time to compute as compared to the runtime of the main clustering process.

Now, we show how to estimate α. First, we compute and store the k-nearest
neighbours (DNeigh) for each data item i in a data-space (D). Then, for each
item i in D, we perform two steps: (i) compute the average similarity of i with
its nearest neighbours (using Equations 4 and 5 in Table 1); and (ii) simulate
a drop event for i using Equation 6 in Table 1. This process is repeated for all
items in D, and is based on a given α-value.

If a given α-value is very small, then we expect very few successful drop events
to occur in the above process; but as the value of α becomes bigger, then we
expect more items to be dropped successfully. When α is increased to a point
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Table 1. This table shows how the formulae used by ATTA in the grid-space are being
adapted to estimate an α-value in the data-space. Once α is estimated (in the data-
space) in this pre-processing stage, it will be used during the actual clustering process
in the grid-space. In Equation 6, Rand(0,1) is a random variable in [0, 1].

Equations used by ATTA Equations adapted for α-estimation
in the grid-space in the data-space

Equation (1): Equation (4):

f(i) = max
�
0.0, 1

σ2

�
j

�
1 − δ(i,j)

α

��
F (i) = max

�
0.0, 1

σ2

�
j∈DNeigh

�
1 − δ(i,j)

α

��

Equation (2): Equation (5):

f∗(i) =
�

f(i) if ∀j (δ(i, j) < α)
0.0 else.

F ∗(i) =
�

F (i) if ∀j (δ(i, j) < α)
0.0 else.

Equation (3): Equation (6):

p∗
drop(i) =

�
1.0 if f∗(i) ≥ 1.0
f∗(i)4 else.

DropEvent(i) =

�
1 if F ∗(i)4 ≥ Rand(0, 1)
0 else.

that it first renders every item to be successfully dropped, then this is an α-value
that we can use for clustering on the grid.

Given a fixed α-value, we can measure the proportion of successful drop events
using Equation 7, and this is also the expected drop probability for a dataset D
with n items:

avgPdrop(α) =
1
n

∑

i∈D

DropEvent(i). (7)

Figure 3 shows a plot of avgPdrop(α) over α in [0, 0.1] for the Skewed dataset
shown in Figure 1(a). To make the neighbourhood function discriminative to
dissimilar items, we find the smallest α-value that renders an expected drop
probability of one. Figure 3 shows that a good α-value is about 0.03.

It is desirable to estimate the value of α automatically from a data source,
and we can do so using the following recursive binary search:

αt =

⎧
⎨

⎩

0.5 if t = 0
αt−1 − α0

2t if t > 0 ∧ avgPdrop(αt−1) ≥ 1.0 (8)
αt−1 + α0

2t if t > 0 ∧ avgPdrop(αt−1) < 1.0

The search involves t = 0, 1, ..., 6. We end at t = 6 because α0
26 is 1

27 , which makes
the estimation precise enough in general cases.

Since α is obtained based on neighbours in the data-space rather than neigh-
bours in the grid-space, the estimated α-value is conservative. This is because
each item on the grid is unlikely to be surrounded by their actual neighbours in
the data-space. Thus, we expect the actual α used on the grid to be higher than
our estimated α. To improve the estimated α-value, we repeat the binary search
twenty times, and choose the highest α-value found in the process.
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Fig. 3. Plot of avgPdrop(α) over α; the estimated α-value is about 0.025 for the Skewed
dataset, and this is close to the ideal α-value in Figure 1(b).

3.2 Dealing with Noise and Outliers

The value of data-neighbourhood function (Equation 5), which we denote as
F ∗-value, is associated with data density: data points with high F ∗-values are
usually located near the core of each cluster, while low F ∗-valued points are
usually noise or outliers. To reduce uncertainty errors, we can remove noise and
outliers by removing the low F ∗-valued points. In the experiments reported in
section 4, we remove 10% of the bottommost F ∗-valued points from each dataset.

3.3 Main Clustering Algorithm

Algorithm 1 presents our proposed stochastic clustering (SATTA) algorithm.
Since we do not use any ant-like agents, the random visitations of items (by the
ants) are now simulated using random sampling. First, we randomly select an
item i from the dataset; we repeat this random sampling step until i is picked
up (using pick probability proposed by Handl et al.[5]). In Algorithm 1, when
an item i is being selected, it simulates an event that a free ant A finds and
picks up an item i from the grid; when an item j is being randomly selected, it
simulates an event that the (randomly moving) loaded ant A encounters another
item j on the grid. If i is similar enough to the items in the surroundings of item
j (i.e., the probability of dropping i onto j’s neighbourhood is high), then i is
moved to an empty grid cell near to j using a random search used by [5]. If i is
not dropped at the location near j, then the process is repeated for a different
selected item. If item i still cannot be dropped even after a maximum number of
trials (maxTrial), then i is returned to its original position. Algorithm 1 ends
when the maximum number of iterations is reached.

Clustering process. First, the pre-processing consists of three steps: (i) store
all the pairwise dissimilarities in a matrix, (ii) automatically estimate the value
of α using the method described in section 3.1, and, (iii) filter noise and outliers
as described in section 3.2. Then, the main clustering process, which has two
phases, begins. Phase one contains 30n iterations (where n is the data size).
To build up the clusters quickly, we use a perceptive radius (r) to one. In phase
two, the purpose is to increase spatial separation among clusters (this is required
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Algorithm 1. Stochastic Clustering (SATTA)
Begin
INITIALIZATION
Randomly distribute the data on a two-dimensional toroidal grid
MAIN LOOP
for iteration = 1 to maxIteration do

repeat
Randomly select an item i from the data source with n items

until i is picked up
Let the location of i be origLoc
Let Trial be 0
while Trial < maxTrial do

Randomly select an item j from the data source
Move i to the location of j
if i can be dropped at its current location then

Move item i to an empty grid location near j
T rial = maxTrial + 1 // to terminate while loop

else
Increment Trial by one

end if
if Trial == maxTrial then

Move item i back to its origLoc // cannot find a destination cluster
end if

end while
end for
End

for automatic cluster retrieval [5]), so we increase r to two, then three; in each
setting of r we run 5n iterations. Once the clusters are formed on the grid, we
retrieve the clusters using the single-link cluster retrieval method as used by
ATTA [5], and then we assign each of the noisy points d (previously removed in
(iii) above) to a cluster if that cluster contains an item closest to d. As a result,
we group the entire dataset into different clusters.

Algorithm 1 builds preliminary clusters on the grid quickly, but these clusters
are not compact. To improve the compactness of these clusters, we modify Al-
gorithm 1 slightly after the first 10n iterations: we move i to an empty cell near
j before we test if i can be dropped at its current location.

Before we compare the results of SATTA to ATTA in the next section, Table 2
summarizes the similarities and differences between SATTA and ATTA.

4 Experimental Set Up and Results

4.1 Experimental Setup

We reuse the real and synthetic datasets used in testing ATTA. These datasets
are detailed in [4] and therefore briefly covered here. The Squares series represent
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Table 2. Similarities and differences between SATTA and ATTA. Items marked with
* are the pre-processing stages.

ATTA SATTA

*Stores all dissimilarities in a matrix. *Same as ATTA.

Uses a two-dimensional grid. Same as ATTA.

Estimates multiple values of α (each ant
stores one α).

Estimates a single value of α.

Adjusts α-values throughout the cluster-
ing process.

*Estimates an α-value before clustering
begins.

No filtering process. *Filters noise and outliers.

Uses a population of ten ants to pick and
drop data items.

Randomly samples data items.

Increases perceptive radius (r) from one
to five at five equal intervals. This is to in-
crease spatial separation among clusters.

Increases r from one to three, with a sub-
stantially longer interval for r=1; then set
r = 2 & 3, each at a shorter interval.

Ants are required to disperse data at the
middle of the clustering process.

No data dispersion.

Uses ant’s local memory with a look-ahead
strategy to search for destination items.

Uses random search for destination items.

clusters that are increasingly overlapped. The Sizes datasets have the ratios
between the cluster sizes vary from 2 to 10. In addition to the datasets used
by ATTA, we introduce the Skewed, VaryDensity and Triangle datasets to test
the algorithms’ ability to deal with clusters with different shapes and densities.
All the synthetic datasets contain 1000 instances and four clusters of bivariate
normal distributions. To demonstrate the algorithm’s capability in practice, we
also use the real data from UCI Machine Learning Repository [1]. These datasets
include: Wisconsin, Iris, Wine, Dermatology, Zoo, Yeast and Digits.

The square grid dimension is
√

10n where n is data size; this is based on
Handl’s recommendation [4]. The maxTrial in Algorithm 1 is set to 2000. For
α-estimation, the number of the k-nearest neighbours used is 24. We also remove
10% noise from each dataset; note that the noise points are assigned back to their
core clusters for final evaluation.

Results of each dataset were obtained based on 50 independent runs, and
finally evaluated using the F-measure [12] and the number of clusters detected
by both SATTA and ATTA. For the three additional datasets, we obtained the
ATTA’s results using the ATTA source codes supplied by Handl [4]. As for the
rest of the datasets, the results of ATTA were provided by Handl [4].

4.2 Results

Table 3 presents the F-measure and the number of clusters detected by ATTA
and SATTA across each dataset.
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Table 3. Clustering Results for SATTA and ATTA: each entry is the mean ± standard
deviation over 50 runs. Better results are in boldface.

Data Set #Clusters
F-Measure #Clusters Detected

SATTA ATTA SATTA ATTA

Square1 4 .985±.005 .984±.004 4.04±.198 4 ±0

Square3 4 .937±.026 .940±.009 4.08±.396 4±0

Square5 4 .785±.108 .790±.061 3.66±.798 3.74±.482

Sizes1 4 .987±.004 .984±.004 4±0 4±0

Sizes3 4 .985±.014 .984±.018 4.06±.24 3.98±.14

Sizes5 4 .988±.014 .986±.019 3.98±.14 3.9±.196

Skewed 4 1±0 1±0 4±0 4±0

Triangle 4 .993±.030 .938±0.040 4±.202 4.84±0.842

VaryDensity 4 .917±.046 .835±0.015 3.84±.422 3.06±0.240

Wisconsin 2 .975±0 .968±.001 2±0 2±0

Iris 3 .815±.008 .817±.015 2.98±.14 3.02±.14

Wine 3 .893±.04 .876±.021 3.48±.614 3±0

Dermatology 6 .894±.002 .846±.049 5±0 4.36±.625

Zoo 7 .801±.034 .819±.047 3.9±.463 3.88±.431

Yeast 10 .453±.032 .435±.035 5.28±.809 5.36±1.179

Digits 10 .633±.033 .504±.031 9.12±1.043 5.3±.806

Results from synthetic data. For the Square series data, ATTA performs
better than SATTA in the highly overlapped Square3 and Square5 datasets. As
for the Sizes series data, both ATTA and SATTA show good performance.

For the Triangle dataset shown in Figure 4(a), ATTA tends to produce more
than the four actual clusters whereas SATTA consistently detects the four actual
clusters and gives a higher F-Measure. Recall that ATTA increases the perceptive
radius (r) from one to five; when r is large, there are more items compared in
the neighborhood function. If a cluster is elongated, then there is a high chance
that an item is more than α-distance apart from the item at the center of the
neighborhood. If this occurs, the neighbourhood function value is set to zero by
Equation 2 and this promotes the cluster to split. Figure 4(b) shows an example
that the elongated cluster is divided into two and three sub-clusters when r is
four and five respectively.

For the VaryDensity dataset shown in Figure 2(a), SATTA usually produces
four clusters and gives a higher F-Measure than ATTA. ATTA incorrectly merged
cluster C2 and C4 because ATTA tends to adjust its α-values based on majority
of the low density data points, which results in higher α-value and it cannot
distinguish clusters C2 and C4.

As for the skewed dataset, both ATTA and SATTA perform well in detecting
the four clusters. If no α-estimation is used, then SATTA returns two clusters
(instead of four clusters) for any α-value between [0.15, 1.0].
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(a) Triangle dataset

r = 1 r = 2 r = 3 r = 4 r = 5 

(b) Effects of increasing perceptive radius

Fig. 4. (a) The Triangle dataset contains one elongated and three spherical clusters.
(b) When the perceptive radius (r) increases to four or five, the elongated cluster in
the Triangle dataset is sub-divided on the grid.

Table 4. Improved clustering results for SATTA∗ and ATTA∗. Each entry is the mean
± standard deviation over ten runs of the majority voting scheme. Better results are
in boldface.

Data Set #Clusters
F-Measure #Clusters Detected

SATTA∗ ATTA∗ SATTA∗ ATTA∗

Square1 4 .986±.004 .984±.004 4±0 4±0

Square3 4 .944±.010 .940±.009 4±0 4±0

Square5 4 .829±.044 .820±.024 3.90±.31 4±0

Sizes1 4 .987±.004 .984±.004 4±0 4±0

Sizes3 4 .988±.004 .987±.003 4±0 4±0

Sizes5 4 .990±.004 .989±.004 4±0 4±0

Skewed 4 1±0 1±0 4±0 4±0

Triangle 4 .999±.005 .931±.042 4±0 4.93±.78

VaryDensity 4 .928±.037 .833±.001 3.93±.26 3±0

Wisconsin 2 .975±0 - 2±0 -

Iris 3 .816±.006 - 3±0 -

Wine 3 .908±.034 - 3.17±.379 -

Dermatology 6 .894±.002 - 5±0 -

Zoo 7 .814±.011 - 4±0 -

Yeast 10 .461±.026 - 5.14±.516 -

Digits 10 .639±.034 - 9.04±.859 -

Results from real data. The last part of Table 3 shows that SATTA per-
forms comparably with ATTA on most of the real datasets. For the Dermatology
and Digits datasets, SATTA performs better because our estimated α-value is
generally conservatively small, and this makes the neighbourhood function more
discriminative on dissimilar items. For the Zoo dataset, both ATTA and SATTA
fail to detect some of the small clusters. Handl [4] suggested that this is because
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the neighborhood function requires clusters to have a minimum size in order to
form stable clusters on the grid. For the Yeast dataset, both ATTA and SATTA
also perform poorly; previous study [4] has suggested that this is because the
cluster structure of Yeast dataset is not easily noticeable.

Improving the results. We can improve the consistency of results for SATTA
and ATTA in Table 3. This is done using a majority voting scheme, which
involves two steps: (i) examine the results of five sequential runs, (ii) only take
the results (F-measure and number of clusters detected) associated with the
most frequently occurring number-of-clusters-detected in the five runs. For
example, if ‘3 clusters detected’ occurs two times, and ‘4 clusters detected’ occurs
three times, then ‘4 clusters detected’ is the most frequently occurring result and
the three results associated with ‘4 clusters detected’ are used for final evaluation.
If a tie occurs then random selection is used.

Since the results of each dataset in Table 3 are based on 50 runs, the above
procedure is executed ten times for each dataset. Table 4 shows that the results
of SATTA and ATTA have been improved by their respective enhanced versions:
SATTA∗ and ATTA∗. In addition, SATTA∗ now generally outperforms ATTA∗

on the synthetic datasets. Although the results of ATTA∗ on real data are not
available (this is because we currently do not have enough details of ATTA’s
results on real data to perform majority voting), the results of SATTA∗ on real
data have generally improved.

5 Concluding Remarks

This work demonstrates a new method to estimate a single value of parameter α,
and the estimated α is used with our stochastic clustering method. The proposed
stochastic clustering model is a non-ant counterpart of ant-based clustering: it
builds upon important ant heuristics contributed by previous works (e.g., [5], [7]).
Thus, this work highlights the values of ant-clustering heuristics, and strengthens
its most intriguing promise: automatic cluster detection in a dataset with no
additional information. On the other hand, our current and previous results [11]
continue to challenge a common belief in ant-based clustering that a population
of ants is required to achieve good clustering results. We hope that our work can
spark further investigation from a swarm intelligence perspective: to understand
how collective intelligence can be exploited in ant-based clustering. Although
we study ant-based clustering from a purely stochastic perspective, we believe
that the additional understanding gained from either perspective will advance
the state-of-the-art in ant-based clustering.

Since our focus is on the approach to α-estimation, we have not considered
additional heuristics to speed up the overall clustering process. However, our
latest preliminary results suggest that, with additional heuristics, SATTA is
likely to work faster than ATTA.
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Abstract. We present an artificial chemistry model where genotypic
and phenotypic strings react with each other. The model prevents the
genome from directly coding for genotype-phenotype mappings or for
gene-replication enzymes. Experiments demonstrate the genome can
evolve to manipulate reactions of phenotypic strings in such a way as
to alter the genotype-phenotype mapping, and produce gene-replication
enzymes.

1 Introduction

Artificial chemistries [2] are abstract chemical models, where entities represented
as ‘molecules’ undergo collision reactions or transformations according to a set
of rules, inside some specified environment. Artificial chemistries have been ap-
plied to the investigation of many life-like phenomena including autocatalytic
‘metabolisms’ [1,3].

Some artificial chemistry models include both informational (gene) and func-
tional (protein) molecules and permit translation of proteins from genes, as well
as gene replication by proteins [4,8]. It has been shown that evolving a genotype-
phenotype mapping provides the opportunity to transform a problem represen-
tation into a form that is easier to solve [5]. Artificial chemistries with genes
and proteins have been designed to evolve a genotype-phenotype mapping, of-
ten implemented by permitting genes to code for genotype-phenotype mapping
molecules [7,9].

We are interested in developing an artificial chemistry where ‘services’ required
by the genes cannot be directly produced from molecules coded for by the genes.
This feature is intended to force the genome to only manipulate protein-protein
reactions (from an inflow of ‘food’ proteins) in order to construct molecules
for providing those services. While models such as [6,10] have evolved protein-
protein metabolisms by manipulating genomes external to the reaction set, we
are interested in evolving protein-protein metabolisms under internally produced
genetic control.

Our initial artificial chemistry is designed so that molecules for the gene ‘ser-
vices’ of gene-duplication and genotype-phenotype mapping can only be imple-
mented by service molecules produced from protein-protein reactions.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 281–291, 2007.
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The artificial chemistry imposes some general syntax restrictions on the struc-
ture of genes, proteins and service molecules, but does not specify a priori the
effectiveness of any particular (legal) arrangement of atoms. Instead, the seman-
tics of a molecule depends on the set of other molecules that it is in, forcing the
genes and service molecules to co-evolve in order to be effective.

This paper presents the model and describes the current implementation. Pre-
liminary results are presented. They demonstrate the model is capable of evolv-
ing from initially random molecules, to genetically manipulate protein-protein
reactions and produce service molecules for genotype-phenotype mapping and
potential gene-duplication.

2 The Model

An artificial chemistry can be described [2] as a triple (S,R,A) where S is the
set of all possible molecules, R is the set of collision rules describing interactions
among molecules, and A is the control algorithm for describing the domain and
how the rules are applied to the molecules. The main contribution of our model
is the approach to the collision rules.

2.1 The Control Algorithm

The control algorithm determines how the collision rules will be applied to a
collection of molecules, manages the ‘reactor vessel’ environment of the mole-
cules, and implements an evolutionary algorithm based on a reaction-set fitness
function.

Each reaction set operates in its own simulated well-stirred (i.e. dimensionless)
vessel, which is initially seeded with a food stock of random protein molecules
and a random stock of genes. The food stock does not include gene-replication
molecules or genotype-phenotype mapping molecules. The food stock has its con-
centration increased at a steady rate, while the concentration of genes remains
constant. The simulated vessel has a total atom-count limit, beyond which mole-
cules are randomly selected for overflow. Future implementations will permit
gene replication and gene overflow. Currently we prevent gene molecules from
overflowing, and do not implement gene replication.

Once the concentration of a molecule exceeds a user specified threshold, it can
potentially take part in chemical reactions. Such reactions may change the con-
centrations of the molecule and result in new molecular species, which may also
take part in reactions if their concentrations exceed the concentration threshold.

The control algorithm implements an evolutionary algorithm. A generation
consists of running each reaction set for a user defined number of cycles. A cycle
involves adding food stock to the reaction set and stochastically performing
molecular collisions until the concentrations of reaction inputs are insufficient to
run any more reactions. The simulated vessel then overflows until the number
of atoms in the vessel falls below a specified threshold value. The total number
of gene-replication molecules produced by a reaction set over the cycles is used
as that set’s fitness score for that generation.
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At the end of a generation, the evolutionary algorithm copies the two highest
scoring reaction sets into the next generation. The rest of the generation is
populated with copies of reaction sets with some of their genes mutated. The
reaction sets are selected for copying by weighted roulette wheel selection based
on their fitness score.

2.2 Molecules

We define molecules as consisting of character-based strings, drawn from the set
of {F,G,C,P,1,2,3,4,x,y,z}.

Gene molecules can only be composed from {x,y,z}. Gene molecules are ca-
pable of undergoing mutation, while other molecules are not.

Protein molecules can be composed of any atoms as long as they contain at
least one atom from {F,G,C,P,1,2,3,4}.

Service molecules are a subclass of protein, used to implement a genotype-
phenotype mapping, or to perform gene replication. Genotype-phenotype service
molecules consist of two atoms drawn from {F,G,C,P,1,2,3,4} followed by two
or more atoms drawn from {x,y,z}. Gene-replication service molecules have a
mirror-image syntax to genotype-phenotype service molecules: i.e. two or more
atoms from {x,y,z} followed by two atoms drawn from {F,G,C,P,1,2,3,4}.

2.3 Collision Rules

The model supports two types molecular interaction: protein-protein interactions
and interactions between service molecules (a subtype of protein) and genes.

Protein-protein interactions. If two or more protein molecules collide, one
of the proteins is randomly chosen to act as a catalyst in a potential reaction,
performing some arrangement of operations on the other molecule(s).

We chose a simple pattern matching operation to determine whether collid-
ing protein molecules interact. Protein-protein reactions are only possible if the
molecules bind. A subset of atoms, called latch atoms, drawn from {1,2,3,4}, de-
termine if protein molecules will bind, and how they will be aligned if a binding
does occur. Latch atoms on one molecule are attracted to latch atoms on another
molecule, according to the attraction patterns 1:3, 3:1, 2:4 or 4:2. A protein will
bind to a (catalyst) protein if more than a specified number of their latch atoms
bind (in the current implementation, this threshold is two). The heterogeneous
binding pattern was chosen to reduce the probability of a protein binding with,
and possibly destroying, itself.

A protein acting as a catalyst may perform cut (ligation) or paste (polymeri-
sation) operations on the bound molecule(s). The cut operation is specified by
a C atom, and paste by a P atom.

Protein molecules may also contain two inert atoms, indicated by F and G.
Figure 1 illustrates the operation of protein binding, with cut and paste op-

erations. Sites of ligation or polymerisation are shown in grey.
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Fig. 1. The cut and paste operations

Service molecule protein-gene interactions. The model is intended to pre-
vent genes from directly coding for molecules that provide services to genes
such as gene replication or a genotype-phenotype mapping. However the model
has to permit the production of such molecules from protein-protein reactions.
In addition, the protein-protein reactions to produce genotype-phenotype map-
ping molecules must be simple enough for a reasonable probability that, given
a random collection of proteins, genotype-phenotype mapping molecules could
be produced by chance. Without this, the system would not have an initial
genotype-phenotype mapping and genetic manipulation of the system would be
impossible. The service molecule syntax, described in Sect. 2.1 was designed to
meet these constraints.

A simple pattern matching operation was used to determine if and where ser-
vice proteins could interact with genes. Genes are composed solely of template
atoms, drawn from {x,y,z}. The template atoms of a service protein may bind
with gene template atoms according to the patterns x:x, y:y or z:z. Each ser-
vice protein template atom must bind with a gene template atom, otherwise a
reaction will not occur.

To translate a gene into a protein, genotype-phenotype mapping molecules
bind to the gene as illustrated in the left-hand side of Fig. 2. The first atom
of each mapping molecule then polymerises to produce a new protein (in the
example, protein P2 is produced). The syntax of genotype-phenotype map-
ping molecules could have been designed to contain only a single atom from
{F,G,C,P,1,2,3,4}, instead of two such atoms. The current syntax was chosen
due to considerations for future modification of the model, which will not be
presented here.

A gene may contain regions that no mapping molecule matches. These regions
act to stop translation, permitting a gene to have several protein coding regions,
each separated by ’stop’ regions.

Gene replication could be implemented by a system similar to that for
genotype-phenotype mapping. However in this case, it is the template atom
regions of the gene-replication molecules that polymerise into a new gene mole-
cule. The process is illustrated in the right-hand side of Fig. 2. Gene replication
is currently not enabled.
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Fig. 2. Gene translation and replication

3 Experiments and Results

Recall that our model was designed to force genes to manipulate protein-protein
reactions in order to produce service molecules required by the genes. In this
section we describe our series of experiments to generate the expected behaviour
of increasing production of potential gene-replication molecules.

The fitness score of a reaction set would increase if genes were able to ma-
nipulate protein-protein reactions to increase the production of gene-replication
molecules. To test this, we initialised the artificial chemistry system with random
molecules and ran it under various settings to see if fitness scores improved over
time. None of these initial, unreported, experiments resulted in improvements
in fitness score. Analysis showed that genes required more genotype-phenotype
mapping molecules than could be produced from the provided concentration
of food stock. Therefore genes could not be translated and could not influence
protein-protein reactions. Increasing the concentration of each food stock species
resulted in an unacceptable run time.

Based on these results, we altered our model to permit unlimited use of
any genotype-phenotype mapping molecules produced from protein-protein re-
actions. The genes still had to evolve to control the protein-protein reactions
leading to genotype-phenotype mapping molecule production. The total atom-
count was kept constant by counting the number of atoms in gene-translated
proteins and adding that number to the atom-overflow cycle of the simula-
tor. The alteration to the model permitted improvements in the fitness score
to evolve and various settings of the simulator were investigated (not reported
here) resulting in the choice of running the simulator for 600 generations of 300
feed-react-overflow cycles each. Approximately 7% of a reaction set’s non-gene
contents were replaced with food stock in each cycle. The mutation rate was
0.2% of gene atoms. Figure 3 shows the best-of-generation fitness score for a
run using these settings. The model was able to evolve increasingly successful
reaction sets, increasing the system’s fitness by 223%.
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Fig. 3. Best-of-generation fitness verses generation

Fig. 4. Fitness verses generation of the ancestors of the highest scoring reaction set
from generation 600

The evolutionary algorithm performed duplication and mutation of reaction
sets, but not crossover. This meant each reaction set in generation 600 had a
single ancestor in each of the previous generations. The ancestors of the winning
reaction set from generation 600 were examined. Their scores are shown in Fig. 4.
Analysis of these ancestors was undertaken to reveal how their genes evolved to
increase the reaction set fitness.

3.1 Genetic Influence over Protein-Protein Reactions

There are two ways genes could influence the production of gene-replication
molecules. Firstly, the genes could produce proteins that impede reactions detri-
mental to gene-replication molecule production. Such genes will be called imped-
ing genes. Secondly, they could produce proteins that form part of the reaction
path for the production of gene-replication molecules. These genes will be called
production genes.

Production genes were identified by working backwards through the reactions
from gene-replication molecule to food stock, and tagging any genes that pro-
duced molecules in the reactions.
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Fig. 5. Generation 59 production gene reaction subset

In order to determine if impeding genes existed, an additional experiment
was performed where all genes except production genes in a reaction set were
prevented from producing proteins. The results were then compared against
running the reaction set with all genes turned off. It was found that turning off
the production genes was equivalent to turning off all genes, indicating that the
reaction set did not use impeding genes.

Improvements in reaction set scores (and thus gene-replication molecule pro-
duction) began from generation 59. Prior to then, although genes were pro-
ducing proteins, those proteins were not influencing reactions that produced
gene-replication molecules.

At generation 59, the reaction set contained 9,526 molecular species and 4002
reactions. This was the first reaction set to contain a production gene, G1, pro-
ducing a molecule that lead to the production of a gene-replication molecule r2.
Figure 5 shows the reactions leading to the production of r2. Each molecular
species has been given an integer identifier. The identifiers are prefaced as fol-
lowing: f indicates a food stock protein, G indicates a gene, non-food proteins
are prefaced with p, t indicates a genotype-phenotype mapping molecule and r
indicates a gene-replication molecule. An example reaction shown in the figure
is: food protein f11 reacts with food protein f12 to produce genotype-phenotype
molecule t14. The t14 molecule is then used by gene G1 (together with genotype-
phenotype molecules t15, t16, t17 and t18) to produce protein p13. Protein p13
then reacts with food protein f9 to produce gene-replication molecule r2.

Further evolution of the system produced additional production genes, result-
ing in the production of further species of gene-replication molecule. For example,
the major increase in fitness at generation 191 was caused by the evolution of
two additional production genes. By generation 600 the reaction set had 13 pro-
duction genes, assisting the production of 9 species of gene-replication molecule.
Figure 6 shows these reactions (a subset of the 21139 reactions occurring in the
entire reaction set). In order to reduce the complexity of the figure, the only
molecules labelled are genes and gene-replication molecules. Reactions between
geneotype-phenotype molecules and genes are shown with dotted lines.
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Fig. 6. Generation 600 production gene reaction subset

3.2 Genetic Influence over the Genotype-Phenotype Mapping

The genotype-phenotype mapping produced by the initial random reaction set
was a many-to-many mapping between template-atom-pattern and protein-atom.
This meant a single segment of gene could be translated multiple ways, resulting
in the production of more than one protein. Table 1 compares the set of genotype-
phenotype mapping molecules forming the initial genetic code and the set of
mapping molecules produced in generation 600. The first atom (underlined) is
coded for by the string of template atoms (italicised). This means some genotype-
phenotype mapping molecules are functionally equivalent. For example GPzx
and GGzx both map zx to G. Gene template atom sequences not included in the
genetic code can be considered as stop instructions.

Table 1 shows that most of the genotype-phenotype mapping molecules pro-
duced from the initial random reaction set continued to be used in generation
600. However the evolving genes did modify the reaction set to expand the ge-
netic code. The final genetic code included every two-atom template pattern
except zy and zz (which therefore formed ‘stop translation’ codes) although a
mapping for zzx was produced. Since genes could use an unlimited supply of any
genotype-phenotype mapping molecules produced by protein-protein reactions,
there was no incentive to prevent the waste of mapping molecules. This meant a
single region of gene could be translated into multiple species of protein without
penalty. Therefore there was no incentive to evolve a non-overlapping genetic
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Table 1. Genotype-phenotype mapping molecules of generation 0 and generation 600

Generation 0 Generation 600

CPxx CPxx
3Fxy

GGxz GGxz
PCxz

FFyx FFyx
P1yx

G4yy G4yy
PPyy
F4yy F4yy
FFyz FFyz
PFyz PFyz
PPyz PPyz
GPzx GPzx

GGzx
1Fzzx 1Fzzx

code, and every incentive to ensure almost every gene template pattern could be
translated.

Analysis of the reaction sets showed genes modified the genetic code by evolv-
ing to code for proteins that modified the protein-protein reaction set to produce
new classes of genotype-phenotype mapping molecule. For example, Fig. 7 shows
part of the reaction set for generation 250. Protein p67 was produced from trans-
lating gene G20 (reactions producing the genotype-phenotype molecules used by
G20 are not shown). Protein p67 then catalysed a reaction with food molecule
f59, leading to the production of genotype-phenotype mapping molecule t40
(which was then used by other genes). Such new species of mapping molecule
could permit previously un-translatable gene template-atom sequences to be ac-
cepted and translated, effectively increasing the number of genes participating
in the reaction set.

Analysis of the reaction sets also demonstrated a co-evolution of the genetic
code, genes and other reaction set molecules resulting in autocatalytic reaction
loops involving genes. For example, Fig. 8 shows part of another reaction sub-
set from generation 250. It shows the genotype-phenotype molecules used by

G20 p67 t40

f59
G18

G29

G4
G16

G5

Fig. 7. Genetic control of reaction creating genotype-phenotype molecule
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G28 p81 t42

f64

Fig. 8. Gene use of genotype-phenotype mapping molecule produced only from trans-
lation of that gene

gene G28, and the molecules required to create one of those genotype-phenotype
molecules, t42. It can be seen that t42 is produced from the reaction of protein
p81 with food protein molecule f64. However protein p81, used to create t42, is
produced by gene G28, which requires t42. The full reaction set was examined,
revealing that no other reaction produced p81. This leads to an apparent paradox
in that gene G28 couldn’t be translated without genotype-phenotype mapping
molecule t42, yet the translation of G28 was required to produce t42. Analysis of
the reaction set’s ancestors showed that there used to be an alternative form of
production of t42 (thus enabling gene G28 to use it), and later evolution caused
the demise of the alternative pathway, leaving the autocatalytic loop between
G28 and t42.

4 Conclusions and Future Work

We have presented an artificial chemistry containing informational (gene) and
functional (protein) molecules, designed so that gene ‘services’ of gene replication
and a genotype-phenotype mapping can only be produced by genetic manipula-
tion of protein-protein reactions. We presented preliminary results showing the
system can and does evolve genetic control of protein-protein reactions in order
to produce a genotype-phenotype mapping and increase production of poten-
tial gene-replicating molecules. Future work will include further experiments to
examine the range of gene control over protein-protein reactions possible under
our model.

Currently, a given genetic sequence can lead to the translation of more than
one species of molecule due to overlap in the genetic code. If only one of the
species from such translations was useful, then the genotype-phenotype mapping
molecules used to produce the other translations would have been wasted. A
future area of investigation will be to introduce a cost of wasting genotype-
phenotype mapping molecules, providing a selection pressure to remove genetic
code overlap.

Another area of investigation will be to place the replication of genes under
genetic control, via the use of gene-replication molecules. Genes will be permitted
to overflow the simulated vessel, providing pressure to copy genes before they
are flushed out. The eventual intention is to divide each reaction set into two
after a set time period, implementing a simple form of reproduction and further
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pressuring the reaction set to copy genes and other vital molecules before the
division occurs.

References

1. Bagley, R.J., Farmer, J.D.: Spontaneous Emergence of a Metabolism. In: Langton,
et al. (eds.) Artificial Life II, SFI Studies in the Sciences of Complexity, vol. X,
Addison-Wesley, Reading (1991)

2. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries - A Review. Artificial
Life 7, 225–275 (2001)

3. Farmer, J.D., Kauffmann, S.A., Packard, N.H.: Autocatalytic Replication of Poly-
mers. Physica 22D, 50–67 (1986)

4. Hutton, T.J.: Evolvable Self-Reproducing Cells in a Two-Dimensional Artificial
Chemistry. Artificial Life 13, 11–30 (2007)

5. Kargupta, H., Ghosh, S.: Toward Machine Learning Through Genetic Code-like
Transformations. Genetic Programming and Evolvable Machines 3(3), 231–258
(2002)

6. Lohn, J.D., Colombano, S.P., Scargle, J., Stassinopoulos, D., Haith, G.L.: Evolving
Catalytic Reaction Sets using Genetic Algorithms. In: Proc. IEEE Int. Conf. on
Evolutionary Computation, New York, pp. 487–492 (1998)

7. Piaseczny, W., Suzuki, H., Sawai, H.: Chemical Genetic Programming - Evolution-
ary Optimization of the Translation from Genotype String to Phenotypic Trees.
In: Sugisaka, M., Tanaka, H. (eds.) Proc. 9th Int. Symposium on Artificial Life and
Robotics, vol. 2, pp. 571–574 (2004)

8. Suzuki, H.: Models for the Conservation of Genetic Information with String-Based
Artificial Chemistry. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim,
J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 78–88. Springer, Heidelberg
(2003)

9. Suzuki, H., Sawai, H., Piaseczny, W.: Chemical Genetic Algorithms - Evolutionary
Optimization of Binary-to-Real-Value Translation in Genetic Algorithms. Artificial
Life 12, 89–115 (2006)

10. Ziegler, J., Banzhaf, W.: Evolving Control Metabolisms for a Robot. Artificial
Life 7, 171–190 (2001)



M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 292–304, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

In-Formation Flocking: An Approach to Data 
Visualization Using Multi-agent Formation Behavior 

Andrew Vande Moere and Andrea Lau 

Key Centre of Design Computing and Cognition 
Faculty of Architecture, Design and Planning 

The University of Sydney, Australia 
{andrew,andrea}@arch.usyd.edu.au 

Abstract. This paper presents in-formation flocking, a novel information 
visualization technique that extends the original information flocking concept 
with dynamic and data-driven visual formation behavior generation. This 
approach extends the emergent swarming properties of a decentralized multi-
agent system in order to represent complex time-varying datasets through 
visually-recognizable formations and motion typologies. In-formation flocking 
is capable of representing volatile and inherently chaotic time-varying datasets 
while sustaining a comprehensible representation at a global level as well as 
revealing more detailed patterns in subsets of the data. This paper demonstrates 
the capabilities of in-formation flocking to historical stock market data. 

Keywords: data visualization, swarming, flocking, boids, motion, emergence, 
multi-agent systems, self-organization, artificial life. 

1   Introduction 

Behavioral rule-based flocking is a well-known computer graphics technique that 
provides a conceptual means for visually simulating the natural phenomenon of 
aggregate motion in birds, fish and other animals. The principle of computational 
flocking simulation assigns each individual group member or boid, short for bird 
object, with a fixed set of behavior rules [1]. Flocking is an example of an emergent 
process, which demonstrates complex behavior that arises from a collection of entities 
that were not individually and explicitly programmed to do so. The recursive 
interactions of each single entity to those in its immediate environment cause a 
process which, on a holistic level, can lead to perceivable complex behaviors and an 
increase in order of the whole collection of entities.  

In this paper, the apparent order generated by emergence is exploited to represent 
patterns reflecting relationships in complex, time-varying datasets. Accordingly, we 
believe that self-organization principles such as flocking can be used for visualizing 
abstract data, as it is theoretically possible to group similar data entities without the 
need for supervision, pre-calculating data similarity matrices or predetermined data 
mapping algorithms. In-formation flocking, an extension of the information flocking 
[2, 3] approach, aims to generate more readily recognizable flocking motion 
typologies. Instead of representing data tendencies by separating apparently 
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randomly-moving clusters, in-formation flocking is capable of making dynamic 
patterns and clusters more apparent by integrating the process of decentralized 
formation flying. Formation flying, as exhibited by birds, describes the synchronized 
movement of a group in readily distinguishable shapes. Formation flying is believed 
to be reflective of the underlying internal relationships and energy considerations 
within the social hierarchy of a flock [4]. Here, the in-formation flocking concept 
aims to exploits the visually perceivable order as an additional, readily distinguishable 
visual cue for representing dynamic similarities in complex, time-varying datasets. 

We believe in-formation flocking is capable of representing highly volatile, even 
potentially chaotic, time-varying datasets. By exploiting the concept of emergence 
and self-organization, this research proposes an alternative data mapping technique 
that is not predefined or predetermined as in common data mapping techniques within 
the field of information visualization. In-formation flocking is capable of providing a 
global and local view of the whole dataset over time based on animating readily 
recognizable and interpretable motion typologies. 

2   Background 

The original information flocking approach applies emergent spatial clustering 
behavior of boids to the field of data visualization by assigning a unique data object to 
each boid [2]. As the three basic behavior rules are extended with an additional data 
similarity rule, boids with similar data objects tend to flock towards each other. As an 
emergent result, underlying similarity relationships between data objects are revealed 
through the formation of separate spatial clusters. More recently, the information 
flocking concept has been extended to complex and time-varying datasets, and the 
representation of dynamic data tendencies by distinct dynamic motion typologies [3]. 
Other research has combined the information flocking algorithm with foraging 
behavior, enabling clusters of data items to be found according to their spatial 
position and density [5]. In contrast, our research is not concerned with data mining 
applications, but focuses on generating more readily discernable, self-organizing 
information displays. 

The boids concept is an example of a decentralized multi-agent system. An agent is 
a system situated within an environment, which senses its immediate environment and 
can act on it autonomously, over time, to achieve a set of objectives [6]. Some agents 
can collaborate with others, can perceive and respond to changes, and can exhibit 
goal-directed behavior. A multi-agent system consists of multiple agents, mostly 
because they pursue different goals, or because the environment is too complex for a 
single agent to observe efficiently. A decentralized multi-agent system contains 
numerous equal agents that have communication links with those in their 
neighborhood, either directly or through the environment, but always in absence of a 
centralized coordinator. In visualization, several agent-based approaches have been 
used to display internal properties, such as the relationships between agents for 
monitoring and engineering purposes [7]. Multi-agent systems have been 
implemented to structure the data flow, such as for the generation of information 
visualizations of complex fuzzy systems [8], or to determine the choice of the most 
effective visualization method depending on the dataset and user tasks [9].  
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Self-organizing systems have been used to create emergent spatial organizations which 
reveal relationships between data objects. The Narcissus approach, for instance, aims to 
integrate behavioral rules into agents in order to aid the comprehension of both high-
level and low-level structures using distinctive emergent shapes [10]. 

Motion is a powerful graphical cue that is capable of attracting attention, 
maintaining motivation and facilitating comprehension, learning, memory and 
efficient communication in the contexts of learning or knowledge discovery. 
Generally, animated objects follow predefined paths or trajectories defined by specific 
mathematical functions or user-defined control points. Alternatively, motion can be 
generated by behavior rules, which are inherently unpredictable and more suitable to 
convey interpretative behavior. Some researchers have demonstrated that even simple 
motion cues can reveal causal relationships, as launching, entraining and triggering 
[11]. Ware et al. have demonstrated the rich expressive visual language of motion in 
the context of information visualization [12]. Lethbridge and Ware [13] used behavior 
functions based on distance, velocity and direction to model complicated relationships 
such as pulling, pushing, chasing, escaping, repulsion, collision and anticipation.  

Conceptual flocking models reveal that overall group structures in animals are 
directly affected by transformations at local levels [14]. That is, high-level aggregate 
movement is dictated by a decentralized system of individuals. This concept has been 
applied to the decentralized formation of robots in space [15-17]. Fredslund and 
Mataric employ a neighbor-referenced approach, which requires that robots attempt 
to stay at a fixed distance and angle from their so-called robot friend [17]. This 
approach only requires one robot – the friend – to determine the heading of another, 
rather than more centralized approaches such as unit-center-referenced (i.e. robots 
determine their positions relative to a centre average) and leader-referenced (i.e. 
positions are determined relative to a single leader). Thus, in neighbor-referenced 
formation, a single conductor or leader, is able to ‘drag’ a whole formation forward 
through the downward filtering of iterative friend relationships [17]. Other researchers 
have compared the appropriateness and optimization of each of these three techniques 
to the problem of obstacle avoidance [15, 16]. 

3   In-Formation Flocking Approach 

In our in-formation flocking approach, each boid represents a unique data object, 
retrieved from a time-varying dataset. As illustrated in Figure 1, each boid has a 
limited field of perception, and is able to communicate only with boids in its 
immediate vicinity. Each boid is governed by an identical set of behavior rules, which 
are executed in parallel for the whole boid collection. These rules determine the visual 
characteristics of a boid, such as its speed and direction. The rules take into account 
any time-varying changes in the data object which the boid represents, as well as the 
relative positions, velocities and data values of the boids in its immediate 
neighborhood. During the visualization, the data values for each boid are updated to 
match the data values of the next successive iteration in the time-varying dataset, 
according to a virtual timeline. As a result, each boid is continuously governed by a 
small set of behavior rules which are directly affected by its own data values as well 
as those of its immediate boid-neighbors. 
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Fig. 1. A boid (center), its view of the neighborhood and its flocking rules ranges of influence 

These local, data-driven influences between pairs of boids cause an emergent 
pattern of visual formations to appear on a global scale. Notably, boids can consider 
local information only, and have no reference to the global pattern they may be part 
of. These patterns are able to represent dynamic dataset alterations, as they are 
essentially formed out of the interactions between pair-wise members according to 
their relative data values. The visualization is self-organizing and based on the 
dynamic properties of the underlying data phenomena rather than a traditional, 
predetermined data mapping rules that directly translate data values into visual form. 

3.1   Behavior Rules 

Each boid obeys five behavior rules, which are determined by pair-wise comparisons 
between boids. A behavior rule is only invoked when a boid is in the field of vision of 
another boid. The fields of vision are ordered by size, where davoid < dcopy < dcentre < 
dsimilar < dformation so that the behavior rules act as sequential steps and do not overlap. 

Rule 1. Collision Avoidance. Each boid avoids any other boid which is within the 
collision avoid range davoid. This rule withholds boids to visually overlap, as it causes 
them to actively move away from each other when nearby. 

Rule 2. Velocity Matching. Each boid copies the direction and speed of any other 
boid which is within the velocity matching range dcopy. This rule causes groups of 
boids to move towards a similar general direction.  

Rule 3. Flock Centering. Each boid moves towards the perceived center of gravity of 
all neighboring boids, present within the centering range dcentre. This rule causes 
localized flocking to occur, so that little internal order occurs over time.  

Rule 4. Data Similarity. Each boid moves towards any other boid with a similar data 
object within a distance range dsimilar and a data range of qsimilar. This rule groups boids 
that experience similar data changes [2, 3]. It is proportional to distance, so that boids 
far away move more quickly towards each other than those nearby. 

Rule 5. Formation Forming. Each boid attempts to reach a spot that is positioned at 
a specific distance and angle from the most similar boid within a formation finding 
range dformation and a data range of qsimilar [15, 17]. This rule causes visually 
distinguishable formations to form containing multiple boid members. 

The different weighting factors wr are applied to the vector outcome vr of each 
behavioral rule, depending on the importance of its relative influence. A new velocity 
vnew is calculated using these vectors, and added to the current velocity. d is the 
distance between a boid and its neighbor in a pair-wise comparison. 
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3.2   Formation Flocking 

The in-formation flocking approach extends the original information flocking 
algorithm [2, 3] with an additional formation-making rule. This rule generates 
formations consisting of boids that have experienced similar data value changes 
between successive time steps. In order to exhibit in-formation flocking (or formation 
forming) behavior, a boid’s data change must be greater than a minimum relative data 
value difference threshold qchange, which is the relative change in data values between 
the current and previous time steps of the time-varying dataset. 

previous

previouscurrent
change q

) - q(q
  q =  (2) 

If the difference between a pair of boids’ qchange is less than the minimum data 
value difference threshold, normal information flocking behavior will be exhibited, 
that is similar boids will move together in independent flocks. Only if qchang between a 
pair of boids is more than the predefined minimum threshold value will formation 
forming be invoked, described by the following steps.  

For a predefined data attribute, each boid attempts to find another boid that 
contains the most similar data values, here called friend. Accordingly, once the boid-
to-friend relationship is established, the boid becomes its friend’s follower L (friend 
and follower terminology is borrowed from [17]). As a restricting rule, each boid may 
only have one single friend F and one single follower L. More specifically, for a boid 
X with data change qX to become the friend of a boid A with a data change qA, where 
qsimilar is the maximum largest difference between the value of two points: 
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A data splitting rule internally orders resulting groups. If boid X already has a 
follower F with change qF, boid A may only split this relationship if it is more similar: 

XLXA qqqq −≤−  (4) 

As boids split their friend-follower relationships when ‘more similar’ boids have 
been detected in its neighborhood in an iterative fashion, formations are ordered by 
data similarity along the chain of friends and followers, providing a chain-like 
representation of data similarity. This process of friend- and follower-determination 
happens continuously, so that the formations constantly change as all data values are 
continuously updated over time.  
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Fig. 2. Reversal of relationships in a friend-follower chain to generate a 2-sided formation 

The aim of each boid in a formation is to stay close to an “ideal position” relative 
to its friend as defined by a distance and an angle, proportional to the data attribute. 
This relatively simple means of formation-forming would obviously result in a single, 
straight line. Our approach of formation forming, however, entails that a wedge-like 
shape with two arms to either side is produced by specifying a single boid as a leader, 
which in turn is followed to the left and right side by a number of boids, as shown in 
Figure 2. Accordingly, one half of the boids in the formation must reverse their 
friend-follower relationships, and follow their followers rather than their friends. 
Because of the data splitting rule, all boids are ordered emergently by data similarity 
from left to right (or vice versa) along both the wedges. As shown in Figure 3, in the 
case of a formation with an even number of boids, one of the middle boids must 
follow the other directly (orthogonally) to the side. 

 

Fig. 3. Wedge and inverted-wedge shapes reflect positive and negative data value averages. A 
sharper angle between arms reflects larger variation in data change for the whole group. 

The angle at which each boid follows its friend is controlled by an averaged data 
value of the whole group. This average is determined by the boids in a decentralized 
manner, in which each boid in a formation recalculates and passes on a new average 
from its friend to its follower. The angle α of a wedge is determined by the average 
data value av and a predefined maximum average data value max. 
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Figure 3 shows the emergent result of this algorithm: a negative numerical average 
value will construct an inverted-wedge: boids move in the opposite direction than the 
direction of the wedge. Accordingly, a sharp peak (i.e. small wedge angle) indicates a 
high average data change while an almost wide angle or horizontal line (i.e. large 
wedge angle) conveys close to no variation in the boids’ data values.  
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The ideal distance dideal between a boid and its friend is determined by their relative 
data similarity, proportional to the maximum difference qsimilar. The distance dstep is 
interpolated between a minimum dmin and maximum dmax in which a friend must lie in. 
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Using knowledge of a friend’s position Fpos and velocity vel, in addition to the 
angle α to follow a boid A calculates its ideal formation position Bformation. The boid 
then calculates its new position Bnew according to Bformation in the following manner. 
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The resulting angles are scaled depending on the relative position of a boid along a 
wedge to generate a unified curved-like wedge rather than a sharp difference between 
the two arms, as illustrated in Figure 4. In addition, members of a formation are 
connected by a continuous spline. Both these visual features emphasize formations as 
distinct, continuous shapes rather than two separate sequences of objects [18]. 

 

Fig. 4. Altering the relative formation angle from a straight line (a) to a continuous curve (b) 

4   Data Analysis Scenario 

The in-formation flocking approach was implemented for a large, complex, time-
varying dataset: the historical US stock market opening and closing prices, and 
volume traded, over a one-year period of the 500 leading US companies [19]. Our 
current prototype application, programmed in Java3D, includes several interactive 
sliders. These interactive tools were especially required while developing for fine-
tuning the weights and threshold values towards the most optimized emergent results. 

Each boid represents a single stock market quote company. The formation flocking 
represents the percentage change in closing price over a day. The minimum data value 
change threshold for a closing quote price change is 3%. The maximum difference 
qsimilar between the data value of a boid and its friend is fixed at 0.1%. The volume 
traded each day is represented by the relative size of the boid. 

Several patterns and tendencies can be perceived using the in-formation flocking 
approach. Firstly, data-similar groups of boids which have experienced relatively 
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large changes in value are highlighted through formation forming. The number of 
boids involved in each formation shows the extent to which the similarity is common. 
The shape of the wedge reflects the average across the formation, which can then be 
compared with other groups. This shape is emphasized by the use of a continuous, 
underlying curve, in order to link members of a group, and differentiate between the 
shapes of emerging flocks (for example, formations a and b in Figure 5).  

 

Fig. 5. Components of in-formation flocking, after 250 iterations: separate groups emerge on 28 
June 2005, with differentiating features: size, angle, and direction, versus traditional price 
history line charts. Each formation represents stocks which have experienced almost identical 
stock price changes (identical / parallel stock price changes, as highlighted in yellow on the line 
charts). (Charts are based on MSN MoneyCentral http://moneycentral.msn.com). 

The traditional line charts in Figure 5 highlight the correlations between the data 
changes and formation representations. For example, chart f shows the almost 
identical, steep drop in price experienced by all the boids in formation f at exactly the 
same time. Although all groups from a to e have experienced similar, parallel 
increases in price as can be perceived from charts a to e, the formations clearly show 
five separate subsets which cannot be readily seen in the charts. Formation c 
corresponds to the pair of lines at the top of chart b to e; this is due to the similar 
starting and ending points of the line for that particular day. Although the line charts 
might seem more comprehensible in showing stocks which have experienced similar 
price changes, they only show a small subset of the total of 37 stock quotes in the 
dataset. In contrast, in-formation flocking is able to depict the whole dataset while 
highlighting meaningful data patterns as they happen and change over time. 

The current prototype allows several different subsets of data similarity to be 
visually depicted, through the use of motion typology and color coding. Figure 6 
shows the in-formation flocking on one of the worst days experienced by the stock 
market in 2005. Several distinguishable groups emerge: a large group of boids move 
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in formation c, two smaller formations a and b, a green and red cluster, and a large 
red flock which has separated itself from the others. The visual focus lies on the 
emerging formation c, which correlates with a large group of similarly-changing 
boids between the values of -3.5% and -2.9% for that day (see histogram). A 
histogram of the stock market on the day reveals that the spatial separation of the 
large red group from the others is representative of the dip that occurs around -0.7%. 

 

Fig. 6. The state of the stock market on 22 February 2005, as shown by its constituent subsets 
of data changes, versus a frequency histogram of data value changes. Formations a and b 
represent two groups of stocks experiencing large data changes (less than -4%); formation c 
reveals a large emerging group experiencing changes of between -3% and -4%, while two red 
information flocking clusters highlight the distinct dip as seen in the histogram. 

In Figure 7, there are three formations consisting of stock quotes which have all 
experienced large positive price changes of over 3%. Formation a is a flock which has 
experienced a high average data of 5.6%, represented by a narrow wedge angle. In 
contrast, formation b and c convey a wider angle between the wedges, as they 
experienced an average data change of 3.0% and 3.5%, respectively. The relative 
distance between boid members in each formation conveys the relative similarity 
linking the boids and their friends. For instance, in formation b, boid PD is much 
closer to its friend, NSC, than NSC is to its friend UST. This data dependency is also 
reflected in the data tables, showing how PD versus NSC percentage change (0.007) 
is smaller than NSC to UST (0.05). 

 

Fig. 7. Shape comparison between different formations on 21 December 2004, as related to the 
group average. The tables show differences in change between boids and their friends. 
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Figure 8 shows the difference in formation patterns when altering the weight 
values for the minimum relative data value difference threshold mt and maximum 
difference md. Increasing the minimum threshold causes less boids to satisfy the rule 
for minimum change thus creating low numbers of groups exhibit in-formation 
behaviors (Figure 8, a and b). Decreasing the minimum threshold causes more groups 
to form (d). Increasing the maximum difference creates longer chains of boids (a and 
c), whilst decreasing the difference causes shorter chains groups to form (b and d).  

 

Fig. 8. Formations differences by adjusting minimum threshold (mt), maximum difference (md) 

5   Discussion 

The in-formation flocking approach highlights several important characteristics. 

Decentralized Multi-Agent System for Data Visualization. The agent-based metho- 
dology supports the dynamic nature of time-varying datasets as each individual ‘data 
object’ continuously adapts to a changing neighborhood of data values. The 
decentralized approach is fundamentally different from the normal data mapping 
method in data visualization, as the resulting visual cues are emergent and inherently 
unpredictable. It forms the first step towards data visualizations that self-organize, 
capable of recognizing and highlighting data patterns in an unsupervised fashion 

Motion Typology as a Visual Cue. The use of movement enhances the connected- 
ness between similar boids through uniform velocity and direction, and through the 
formation of shapes and wedges. Dissimilar clusters of boids can also be 
differentiated by comparing motion typologies. In this work, the use of motion is 
necessitated by the nature of time-varying data, which can be studied over time in 
order to create an understanding of complex, dynamic trends that happen in parallel. 

Application Domain. We claim that in-formation flocking is most appropriate for 
representing noisy or highly volatile time-varying datasets with hundreds of data 
items. Datasets with underlying (but not explicitly-defined) group-structures between 
data objects could also be effectively represented by both in-formation and 
information flocking. These methods are specifically useful in recognizing short- and 
long-term trends and tendencies that were not known before.  

Parameter Dependency. Emergent pattern quality is highly dependent on predefined 
algorithmic parameters, which generally need to be fine-tuned in relation to specific 
dataset characteristics by a process of trial-and-error. However, even these 
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characteristics generally change over time within a dataset (e.g. volatility of data 
alterations, data size) questioning the validity of keeping these parameters constant.   

Performance. The current implementation has not been optimized for any 
performance issues in the context of computational efficiency or visual rendering, as 
we instead focused on demonstrating the in-formation flocking concept. As a worst-
case scenario, the performance for n boids is O(n2) dramatically increasing the 
number of calculations needed as the number of boids increases. As ascertained 
through experimentation, a visualization of about a thousand items slows down the 
frame rate between one and two frames per second on a computer equipped with a 
Pentium M 2.0GHz processor. Improvements in processing speed could be achieved 
by updating only a portion of the boids at each iteration, delegating the calculation 
and rendering tasks between two processors, or requiring only one boid in a pair-wise 
comparison to perform the necessary calculations. 

Formation Flying. As mentioned previously, research in the field of biology suggests 
that the shape and angle at which birds fly in formation is variable to the relationship 
between birds and to energy considerations within the flock [4]. Although this 
research does not aim to create an accurate simulation of natural phenomena, it may 
be beneficial to integrate knowledge about the physics of and social reasons for 
formation flying in order to create a truly biologically-valid data visualization. The 
use of phenomena discovered in nature as a metaphor for information visualization 
may aid the understandability and learnability of the approach for users. In particular, 
the use of artificial life insights also demonstrates how interdisciplinary knowledge 
can enrich the field of data visualization [20]. 

6   Conclusion 

This paper presented a novel approach of visualizing complex, time-varying datasets 
using a decentralized, multi-agent formation flocking metaphor. It extends the 
original notion of information flocking [2, 3] with the concept of in-formation 
flocking, which is implemented as a single, relatively simple, additional behavior rule. 
As a result, each boid continuously searches and positions itself relative to data-
similar friends, resulting in visual formations that can be interpreted in the context of  
time-varying data tendencies and trends. The relative distance between boids in a 
formation reflects their degree of similarity, while the wedge angle of the formation 
visualizes the average data variation experienced by the group. Thus, the shape of 
each formation in addition to the spatial clustering of boids creates an overall 
representation of data patterns within time-varying datasets. 

With the future integration of algorithmic optimizations, in-formation flocking 
could be applied in real-time to time-varying datasets consisting of thousands of 
items. Future developments could integrate additional features to convey underlying 
data phenomena (e.g. news stories) as flock obstacles or attractors. The application 
could be enhanced by including dynamic user querying and filtering, and the ability to 
trace data values or formations. Behavioral rules could be made more flexible to 
increase the number of emergent characteristics for representing a larger range of data 



 In-Formation Flocking: An Approach to Data Visualization 303 

attributes. Further research should focus on user evaluations to analyze the potential 
for this approach in the context of complex pattern discovery for time-varying 
datasets and the use of motion typologies for interpreting dynamic data patterns. 
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Abstract. In this paper, we apply a theoretical swarm-generating tech-
nique to a system implementing cluster-based construction. The tech-
nique, known as swarm engineering consists of two stages. In the first
stage, which is top down, the global goal is expressed in such a way that
specific conditions may be developed which, when satisfied, guarantees
achievement of the global goal. The second step, which is bottom up,
concerns the design of specific agents. These agents, once built in accor-
dance with the conditions from the top-down step, will provably lead to
the global goal. We develop parts of this theory and apply them to the
cluster-based construction problem.

1 Introduction

Swarm-based systems have received an increasing amount of attention over the
past few years owing to the remarkable abilities of swarms of agents to do things
en masse that none of the individual agents can do. The phenomenon of emer-
gence, in which agents carry out actions that they are not explicitly designed to
do, has captured the imagination of many engineers and scientists and this has
led to a flurry of work.

A number of researchers have explored the potential use of swarms to carry out
construction tasks[11,12,13,14]. Much of this work has centered around trying
to understand how animal systems accomplish this task and then to reproduce
what animals have done. While many of these studies have produced interesting
initial steps, few have actually made the transition from a proof of concept to a
useful and competitive construction idea.

Our interest in swarms centers around the careful design of swarms using a
reproducible methodology. To date, no standard technique exists which can be
used to design swarms with specific global properties. As a result, most practi-
tioners of swarm design must resort to using their own skill as engineers to build
swarms of particular design. There is no guarantee that the desired swarm can
be built at all. There is no way of knowing whether or not a particular behavior
will yield the desired global behavior without running the task.

In this paper, we extend our previous work on puck clustering by applying
the formal swarm engineering technique we call the Hamiltonian method of
swarm design to the wall-building subproblem. This problem involves building
walls between existing placed clusters. Once we’ve solved this problem from a
theoretical standpoint, we apply it to a simulated swarm of agents.
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Though this paper deals only with artificial swarms, this methodology may be
used to understand natural systems as well. Each natural system has global prop-
erties that must be satisfied in order to accomplish tasks that help keep it alive.
Understanding the minimal requirements of that task will help the researcher
identify agent behaviors that lead to specific swarm-level behaviors. Moreover,
the identification of these behaviors helps to understand how the agents main-
tain the swarm and how each small behavior contributes to the global behavior
of the swarm.

The paper proceeds in the following way. Section 2 reviews swarm-based con-
struction work. Section 3 describes the swarm engineering methodology and its
application to this problem. Section 4 gives simulation results. Finally, Section
5 offers some discussion and concluding remarks.

2 Previous Work in Swarm Construction

Swarm based construction deals specifically with the use of swarms of robots
in construction. Unlike regular construction, the “workers” in this swarm based
system do not use high-level reasoning. The swarm, however, does behave like
the insects, exhibiting remarkably dynamic properties that make construction
possible. Once developed, swarm based construction applications might range
from assisting in civil disasters to remote construction problems in which human
labor is impossible or dangerous; robots can be used to build replacement homes
in areas struck by disaster, construct levee banks to restrain floodwaters, and
build walls to retain chemical spills or nuclear radiation leaks. Swarms have
also been envisioned as a solution to building underwater facilities and even
structures in space. The main question in dealing with any of these problems lies
in determining the role of the swarm, the various castes required, the interaction
of the various castes, and the control algorithms for each of the agents in each
of the castes.

It is interesting to look at the animal kingdom as a source of inspiration for the
design of construction swarms. For instance, bulldozer ants have been observed
to build nests by plowing material away from the nest site. These ants, behaving
like little “bulldozers”, ensure that the construction site is clear of rocks and
other obstacles. Parker, Zhang, and Kube [12] explore this collective construction
strategy, which they call “blind bulldozing”. In their study, the robots, like the
ants, carve a nest out of an excess material or rubble. The robots plow a nest
by continuing to push the material until the robots cannot exert enough force to
move the material. By pushing back the material, the robots build a circular wall
structure that encircles the nested area. This version of site preparation can be
implemented in the first step of construction. The robots that accomplish this
task may be thought of as a specific caste of robots that perform the initial
construction task, with subsequent castes required for further construction.

While the blind bulldozing methodology does not lead directly to methods
for the construction of larger structures, the simplicity of the method is alluring.
Not only is a single individual capable of accomplishing the entire task if given
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enough time, but other individuals can be added to the task seamlessly, without
affecting the original agent’s behavior or design. Moreover, additional individuals
have a very small effect on the original individual as long as the number of new
individuals is relatively small. As a result, the method is both scalable and robust
to failure of a single individual. These qualities are desirable, and therefore should
appear in the construction task.

This approach has already been used to construct complex structures using
modified algorithms “borrowed” from the natural world. Ants can construct
complex structures such as arches by first forming small piles of sand and adding
onto these piles. Two piles are started near one another. Ants continually place
bits of sand on top of the piles, making the overall piles grow upward. The
piles grow up, and can bend over as they are buit up. When the piles are built
up and curve inward towards one another, eventually meeting at the top. In
[1], Bowyer implements a similar method to build arches and walls by adding
blobs of polymer foam to piles of foam initially placed near one another. In this
instantiation, the robots have legs, which allow them to climb the foam walls
and build on the existing structure. The structures developed using this method
in the laboratory resembled that found in the natural world, while illustrating
one important aspect of the overall task design process - the morphological
instantiation of the robot itself.

Our approach to construction is therefore based on this general approach.
We are developing a methodology that can be accomplished with groups of
individuals or with single individuals, with a graceful improvement in overall
performance as new individuals are added to the task. On top of this, we would
like predictability in our final results in the sense that we know within given
tolerances what type of structure will emerge. This is very different from the
requirements of a natural system, as a natural system will have differing overall
structure depending on nuances of the environment, and therefore we depart
from strict adherence to the designs of a natural world.

The general puck clustering methodology [9,10] satisfies the requirements out-
lined above. This methodology focuses on creating clusters of predetermined size
and multiplicity. Special care is taken to provide theory that allows predictions
as to the final state of the system to be made. This methodology, which has also
been “borrowed” from the natural world, also has the beneficial characteristics
described above. Namely, the clustering can be accomplished by a single indi-
vidual, it benefits from the addition of new individuals, and the addition of new
individuals is nearly invisible to the already existing individuals in the system.

Studies have also focused on the movement and correct placement of the clus-
ters formed using the puck clustering methodology. These studies have demon-
strated that it is possible to move clusters into predetermined relative positions
with precise specificity. This means that a complex cluster grouping can be
constructed using agents whose knowledge of the overall structure is extremely
limited. However, the final arrangement of clusters is predictable and reasonable.
Estimations can be made as to the completion time of such a task. Once again,
these algorithms have the general properties described above - the potential for



308 L. Lai et al.

completion even with a single agent, and the seamless addition opportunity for
new agents of similar design.

3 Swarm Engineering

Swarm engineering [8] is a method composed of two steps that generates agents
and associated algorithms which accomplish predetermined tasks. The first step
of swarm engineering consists of the creation of a swarm condition. It is the
condition that, when satisfied, leads to the specific completion of the global goal.
No specific method exists for this step and the creation of a swarm condition
is problem-dependent. The second step is the creation of swarm behaviors that
satisfy the given swarm condition.

This two-step process guarantees the achievement of the desired global be-
havior. However, no general set of techniques has been developed for designing
swarms. Because the agents interact independently, they may exhibit unforeseen
behaviors. Small deviations in the individual agents’ behaviors may cause a large
change in the overall system behavior. Therefore, much effort has been expended
to devise a rigorous methodology to avoid this potential problem. One of these
efforts is [8]; we review the major points from [9].

Our strategy is to begin with an examination of the desired property for
the construction of walls using properties that the agent can sense. Once this
property has been constructed, an examination of its dynamics will yield a re-
quirement for the behaviors of the agents which causes the system’s generation
of the desired property.

Our theoretical work is validated using a simulation consisting of a two-
dimensional ”world” populated by inanimate and animate objects. The inan-
imate objects are the pucks, which are circular in shape and do not move. The
animate objects are the agents. The agents can move around, avoid one another,
walk on, pick up, and put down the pucks. Agents are also circular, primarily in
order to simplify the simulation. Agents are larger than pucks, with the previous
having a diameter of two units while the latter has a diameter of one unit. The
simulation is depicted in Figure 1.

The rules of the simulations are meant to mimick conditions that occur in
with real laboratory robots. Agents are embodied and so cannot pass over one
another. Agents are equipped with collision sensors which allow them to avoid
collisions. Moreover, their visual sensors are limited in range, though they’ve
been made to allow a 360 degree visual field. The agents can sense other agents
and pucks within four hundred (400) units and avoid collisions with Agents are
limited in their ability to pick up or place down pucks, so as to simulate similar
limitations for real agents equipped with grippers. Once pucks have been placed,
they stay where they’ve been placed until another agent comes along and moves
the puck. We examine the behaviour of our agents within an embodied virtual
system.

Initially, the agents do not carry any pucks. The system contains clusters of
pucks that have been placed to mark the endpoints of a wall in accordance with
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Fig. 1. This depicts the two-dimensional system. The small building materials are
scattered about. Two large clusters used as construction markers are evident, as are
three agents. The agents’ behavior will move the building materials into the space
between the two clusters.

the approach of [9,10]. Each of these endpoint clusters is made using pucks of a
type that the agents have been programmed to ignore. This way the agents do
not move the marking clusters. Pucks of a different type than any of the marking
clusters are initially placed somewhere in the arena to be used as building mate-
rials. They are either randomly placed or placed in a single large pile, typically
much larger than the marking clusters. These pucks may be picked up and put
down as the structure being built is constructed.

The system allows agents to carry out construction task by moving pucks in
some way from the starting location to other locations. The task is considered
completed when all of the pucks that can be placed are placed in the desired
region. In this system, we assume that all agents can walk over the pucks, but
not over one-another.

3.1 Top Down

In [8], guidelines were generated for writing a global property. The first of these
guidelines suggests that the global property be a function of local properties that
are themselves accessible to a single agent. Once we write the global property,
Pj , then differentiating gives the equation

bj =
dPj

dt
=

nb∑

i=1

∂Pj

∂bi

dbi

dt
+

nP∑

i=1

∂Pj

∂Pi
bi (1)
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Where P1, P2, . . . , PnP are the properties of the system, and b1, b2, . . . , bnb
are

the behaviors of the system. This equation expresses the golbal property in terms
of other, possibly simpler properties that make it up.

The global property for the current work is that the agents move building
materials into a region between two already placed clusters. The material must
be placed in such a way that it can be used as a foundation for the construction
of a larger structure above it. Because this is meant to be a foundation for a
larger structure, conditions must be generated which allow for the generation of
a foundation with a minimal number of gaps between the building blocks. We
assume that the building blocks are all identical. We also assume that they can
be placed on top of one another if needed.

We are interested in a system built using agents of minimal complexity. This
avoids the potential complications that might arise from the use of sophisticated
agents with complex parts and behaviors. As a result, our system utilizes very
simple agents which we expect to be able to complete the task in tandem. As
a result, we focus on the local actions of the agents. Suppose that an agent
encounters a piece of building material. Should the agent pick it up and move
it, or should it leave the material where it is? In general, one might expect it to
be left where it is unless it is not in the desired region.

It is realistic to expect that a single agent built with current technology on
board can tell whether or not an encountered puck is in the desired region. It
is also realistic to expect that the agents can determine the range and direction
to the nearest region. Thus, our microscopic property can realistically be the
minimal distance a puck has to the desired region. This is, of course, zero if the
puck is in the desired region.

As a result of this, we can write the global property as

PG =
∑

p∈{pucks}
dp. (2)

where dp is the distance the individual puck is from the desired wall region.
Differentiating this equation, we obtain

bg =
∑

p∈{pucks}
bp. (3)

This equation illustrates the idea that the global behavior is a function of the
behaviors of the individual pucks. Moreover, these behaviors are functionally
independent (they interact with a ‘+’ sign). They can therefore happen without
directly interacting agents. Since the behavior of the individual pucks is con-
trolled through the agent behaviors, we have a natural method of manipulating
the global property.

Let us examine what the end points of the global property ought to be. Ini-
tially, the property has some value determined by the organization of the set of
pucks. This value must be reduced by at least
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δPg =
∑

p∈{M closest pucks}
dp. (4)

The reduction of δPg guarantees that the correct layout of pucks has occurred.
Such a layout will be guaranteed if at least M pucks are moved into the region
from the exterior region. Thus, we now have a general condition which, when
satisfied, will give us the global goal. The next task is to create a behavior that
is capable of producing it.

It is perhaps not easy to see how this analysis guarantees that the global goal
will be met. However, the property so chosen has a unique numerical value at the
system configuration desired. The task then, is to find out how to generate this
specific numerical value. The specific agents required to achieve this numerical
value may be chosen from any number of potential agents whose affect on this
property is to move its numerical value from the current system configuration
to the desired one.

We also assume, for the moment that the agents need only mark the founda-
tion of the structure being built. More than one property is required for three-
dimensional construction, and that is beyond the scope of this paper.

3.2 Bottom Up

Now that a top down condition has been created, we can turn to the bottom up
portion of the swarm engineering methodology. Our task is to create a behavior
which provably completes the condition from the top-down portion. Thus, this
subsection will focus on the development of a behavior set for the individual
agents that accomplishes the task in a provable way. This allows the swarm to
be designed robustly whilst sidestepping much of the complexity associated with
the interactions between agents.

In this study, we’ve created a global property PG, which is the sum of all
the distances from each puck to the region where the wall is to be built. To
manipulate PG the robots need to have a mechanism for sensing, picking up,
transporting, and dropping off pucks. Thus, a basic outline of local behaviors
for PG to reach the desired state is to pick up pucks that are not in the region,
move them to the region, and drop them off at an appropriate location within
the region. It is necessary that the robots know if they are in the region, in
order to ensure that the pucks are dropped off at the right spot. This requires
the robots to know where to go if they are not in the region. Many robots
are present and moving at the same time in the system. Collisions are extremely
likely, particularly as the number of robots increases. In order to avoid collisions,
robots must have the ability to sense one another and use this information to
robustly avoid collisions.

This gives an idea of what kind of hardware one might need. Clearly some type
of sensor array is required which will provide this information along with general
obstacle proximity data. Processing is required to determine what direction to
go based on sensor data. How much processing is required is not clear, as it will
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depend on the precise method used to determine the direction. Actuators include
both movement mechanisms (i.e. legs, wheels, propellers, floatation devices, etc.)
and grippers for grasping and holding the pucks.

Now that we have an idea of what the various requirements of the agents’
hardware are, we can proceed to build the behaviors. Note that we can choose
any behaviors as long as they complete the global task. Thus, the approach allows
us to have the same kind of creativeness while guaranteeing that the outcome
will be as desired.

The agents in our system have two states: those that are carrying pucks and
those that are not. The way each agent moves depends on which of these states
it has. Moreover, we assume that the agents are aware of where they are with
respect to the construction region (the region between the demarkating clusters).
The agents’ control algorithm, which utilizes both of these pieces of information,
is summarized in the flowchart in Figure 2.

move along
angle bisector

Begin
robot is 
carrying
puck

Move Randomly away
from other robots

Other robot
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Fig. 2. This flowchart gives an outline of the agent’s behavior

If an agent is carrying a puck it will first determine if it is in the region. To do
this it first calculates the directions of the tangent segments from itself to each
of the clusters. It then calculates the angles between each of the four pairs of
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Robot not in region

Robot not in regionRobot in region

Robot not in region

Robot

Cluster

(b)

(c) (d)

All angles < 180

(a)

θ1
θ2

θ3
θ4

One angle > 180

One angle > 180 One angle > 180

Fig. 3. These figures show different situations in which the agent is either in or out of
the region. In (a), the agent is in the region because the all the angles, θi, are less than
180o. In (b), (c), and (d), the agent is not in the region because the at least one θi is
greater than 180o so the agent is not in the region.

adjacent tangent lines, as shown in Figure 3. If all four of these angles are less
than 180o, then the agent is in the region; otherwise, it is not.

When a puck-carrying agent determines it is in the region, it will check
whether it is near another puck inside the region. If it is, it will drop off its
puck next to that puck. If it is not near another puck, it will move a short
distance in a random direction.

If a puck-carrying agent is not in the region, it will determine the directions
from itself to each of the two wall-demarcating clusters. After this, it will calcu-
late the angle bisector of these two rays. If there are no nearby agents in that
direction, it will move a short distance along the angle bisector, as shown in
Figure 4. If there is a nearby agent in that direction, it will move in a random
direction to avoid a collision.

This way, at each iteration before the agent reaches the region, the agent will
re-calculate the angle bisector as before; however, because the locations of the
clusters have changed slightly relative to the agent, the agents’ directions vary
slightly. Thus the agents move along a curve, whose endpoint is always a point
on the wall. Because each individual angle bisector intersects the wall, the agent
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Fig. 4. This shows the pathway that the agent follows. Every iteration, the agent
calculates a different angle bisector, as it moves to a new location, resulting in a curved
path. The dash line is the angle bisector that agent calculates at the current location.

always move towards the region, as shown in Figure 4. The point along the wall
that the agent reaches first depends on the the original location of the puck. The
movement along the angle bisectors ensures that the pucks will be transferred
to the region.

If the agent is not carrying a puck, it will determine if there is a nearby puck
it can pick up. If so and if the puck is not in the region or in one of the clusters
it will pick up the puck. If no puck is located nearby the agent which is not in
the region or in one of the intial clusters, then the agent will spiral to search for
a puck. We say that an agent is lost if it is more than 150 units away from a
central location, which in our simulation is defined as the average of the positions
of the clusters. Once an agent is lost it will continue to be lost until it is less
than 20 units from the central location. If the agent is not lost it will spiral.
If the agent is lost it will move toward the central location, this ensures that
agents do not just keep spiraling forever and leave the construction area if they
do not encounter a puck. In either case if the agent cannot move in the specified
manner without hitting another agent, then it will move in a random direction
which is not toward any nearby agents.

It is perhaps very easy to see that the effect of the behavior of the agents will
be to wander around the arena until they come into contact with the pucks. Once
these pucks are picked up, they will be carried by the agents into the building
region, and be dropped off at whatever available location the agent carrying
them can find. Mathematically, this means that

δPg =
∑

p∈{M pucks}
dp. (5)

which is at least as large a change as that given in (4). Thus, we can be sure
that this behavioral set will accomplish the task.
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4 Different Geometric Shapes

In the previous section, we discussed how to build single walls. To build rooms
with more than one wall, a mechanism must be developed to build different
geometric structures. We extend the previously discussed theory to create a
multi-walled structure.

To build a multi-walled structure, it is assumed that n clusters, rather than
two, have been placed to mark the endpoints of the various walls. Our goal is
to build walls between certain specified pairs of clusters, but not other pairs of
clusters. This means that there will be multiple construction regions (one for
each desired wall), instead of just one. As before, it is realistic to assume that
a single agent can determine whether or not an encounted puck is in a region,
and that a single agent can calculate the range and direction to any region. So
we realisitically make the microscopic property be the distance a puck is from
the nearest region. We may write the global property as,

PG =
∑

p∈{pucks}
dp (6)

where dp is the distance from p to the desired region. The initial value of PG

is determined by the initial arrangment of the pucks. This must decrease by at
least

δPg =
∑

p∈{M pucks}
dp. (7)

where the M pucks are the minimal number of pucks, and the closest ones,
required to fill the various regions without unabmiguously.

It should be clear that the agents in this new system must have all the be-
haviors described in section 3. In addition the agents must be able to determine
if a given pair of clusters are required to have a wall between them to ensure
that walls are only built in the specified locations. Also, when carrying pucks,
agents must be able to choose a specific region, determine its direction, and move
towards it.

In our simulation, the pucks in each of these clusters are different. In other
words, cluster 1 consists of puck type 1, cluster 2 consists of puck type 2, cluster
3 consists of puck type 3, and so on. The use of differing puck types ensures
that the agents do not destroy the clusters and remove the markers by using the
pucks in the clusters as building material. A different set of pucks than those in
the clusters is used to build the walls.

As an example, the square structure from Figure 5a has four clusters. This
means that there are six possible walls - the sides and the diagonals. If all the
marking clusters were made up of pucks of the same type, the agents would
not have been able to differentiate between them and there would be no way to
determine which pairs of clusters to build walls between. In this case, all six walls
would be built, resulting in a square with a cross inside. Since this final shape is
not what we desire in this case, the new method of using multiple cluster puck
types is the obvious choice.
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(a) square

(b) hexagon

(c) square divided in 4 squares

(d) This structure can be used as a foundation for buildings with doors.

Fig. 5. The figures above are screen-shots of different steps in our simulation. As the
first column illustrates, our simulation is initialized with arbitrarily scattered pucks
and specifically placed clusters that mark off the edges of the wall foundation. Each
consecutive column is a snap-shot of what the system looked like after a certain amount
of time passed. The last column is the finalized structure.
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In these simulations, we utilize agents which have identical physical properties
to those of the agents used int he previous simulations. However, each of the new
agents is provided with a list indicating between which pairs of clusters to drop
off the pucks, or in other words where to build the walls.

To implement this new global property, the same local behaviors used to build
a one-walled structure are maintained. The agent’s behavior after picking up a
puck, however, is modified so that it does not move along the angle bisector of
the angle between the clusters and itself. There are too many clusters, which
complicate this behavior. Instead, the agent randomly chooses one wall to move
toward and calculates its direction from that wall as if it were in a single-walled
system.

The structures that agents may build in this way can be quite complex. Not
only can the structures have many walls, but they can be designed to be practical.
As an example, consider the agents laying out the floor plan of a house (Figure 6).
The mechanisms described here can be used to carry out practical construction,
a natural extension of the work in this paper.

a b

c d

Fig. 6. This algorithm can be used to make a foundation for the outline of a typical
house with two bedrooms, a kitchen, and a bathroom
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5 Summary and Concluding Remarks

One of the great hopes of swarm systems in the early years was the develop-
ment of swarms capable of completing construction of large complex structures
completely without the need for external intervention [3][11][12][13][14]. Much
of this work is based on observations and adaptations of existing systems in the
natural world [2] [3][4][5][6][7]. Work continues on this to this day, but has yet
to produce a satisfactory solution.

Perhaps one of the reasons this has been so is that most construction swarms
have been able to do one or two steps of the whole task, but have not been able
to handle the complexity of a true construction task. This may, in turn, be due to
the paucity of a theoretical or principalled mechanisms for swarm design. It is ex-
tremely difficult to design a swarm of agents that completes the task it is supposed
to be completing because the unintended interactions between the agents in the
swarm are extremely likely to cause trouble in generating the correct global be-
havior. In fact, there is no prior theoretical work done that indicates a mechanism
for predicting the global effect of particular local behaviors.

In this paper, we’ve created a method for generating swarms based on an ex-
amination of the meaning of the equations that describe the evolution of proper-
ties according to their associated behaviors. This is a very powerful exploration,
as it affords us the ability to turn the tables on swarm generation. Rather than
generating a swarm based on the ”guess and check” method during which the
individual agent is designed and then examined in simulations or real embodied
fabrications, we’ve designed a method that allows us to say ahead of time what
the actual agents will do, individually and in a group. Once these agents are built,
we know that the global goal will be able to be achieved, as the interactions are
implicitly taken into account.

The remainder of the paper was devoted to demonstrating how the technique
could be applied to the swarm-based construction problem. The sensor require-
ments and mobility requirements as well as behaviors could be shown, then, to
satisfy the numerical requirements of the theoretical approach. As a result, the
property P reached the desired value, and the fact that it would reach this value
meant that the system would converge to the desired state eventually. In other
words, it was possible to predict the behavior of the system before the agents
themselves had been constructed.

The problem we’ve examined is part of a larger problem in swarm-based
construction. This larger problem can be explored by creating similar properties
whose values are unique, given the specific stages that the system is in. As we’ve
seen, as long as this numerical value is specific to the desired state, and the
behaviors are designed to generate that desired numerical value, the system will
take on the desired states. This is the next stage of this line of research.

In artificial life research, much of the discussion has historically centered
around the question of what constitutes a lifelike system. In this particular dis-
cussion, we might also ask, what properties of a lifelike system can we expect and
how might we generate them? Moreover, we can approach this by utilizing the
sensor, processor, and actuator capabilities of the agents to generate the global
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property. Then, the requirements for the agent behaviors can be constructed.
Such an approach might reliably generate agents whose behaviors make the sys-
tem act more like a living system as a result of generating behaviors of the agents
that create the desired system behaviors.

Anecdotally, we found that our method, when properly applied, trimmed the
design time from several weeks of trial and error to several minutes of careful plan-
ning. If this is the improvement from a single stage of design, one might expect sev-
eral to have a far greater improvement, possibly making a task that is currently
impossible possible. More work is needed to determine whether or not this is so.
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Abstract. We propose an automata induction approach to modeling
birdsongs on the basis of Angluin’s induction algorithm, which ensures
that k-reversible languages can be learned from positive samples in poly-
nomial time. There are similarities between Angluin’s algorithm and the
vocal learning of songbirds; for example, during a critical period, song-
birds learn songs from positive samples of conspecific birds. In our pre-
vious method, we could not construct song syntaxes for complex songs.
In this paper, we introduce a pattern extraction method to improve our
previous method and propose a new birdsong modeling method. We es-
timate the robustness and properness of our method by using artificial
song data, and demonstrate that the song syntaxes of the Bengalese finch
can be successfully represented as reversible automata. As a result, al-
most all Bengalese finchs’ song syntaxes can be represented with lower
k-reversibility; further, one song has 3-reversibility song syntax showing
the highest reversibility.

1 Introduction

The Bengalese finch (Lonchura striata var. domestica) is known as a popular fowl
in Japan. They have a complex song structure as compared to other songbirds,
such as Zebra finches.

Recent studies on Bengalese finches have reported unique features of their
courtship songs. The songs of male Bengalese finches are neither monotonous nor
random; they consist of chunks, each of which is a fixed sequence of a few song
notes. The song of each individual can be reconstructed by a finite automaton,
which we call song syntax (see Fig. 1(a)) [5]. Thus, the songs of Bengalese finches
have “double articulation,” which is one of the important faculties of human
language (i.e., a sentence consists of words, which consist of phonemes). Song
syntax is controlled by song control nuclei in the brain. The hierarchy of song
control nuclei directly corresponds to the song hierarchy [5]. Due to the structural
and functional similarities of vocal leaning between songbirds and humans, the
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former have been actively studied as good models of human language [3]. In
particular, the song syntax of Bengalese finches sheds light on the biological
foundations of syntax.
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Fig. 1. A courtship song and the song syntaxes of Bengalese finches given in two
different ways. The letter string represents the courtship song of a male Bengalese
finch. (a) is constructed using N-gram model, and (b) is constructed using our method
(1-reversible automaton).

To model birdsong syntaxes, we focus on k-reversible languages, which are
subclasses of regular languages. Angluin presented an efficient induction
algorithm from positive samples, where k = 0, 1, 2, ... [1]. Angluin’s algorithm
provides a finite automaton that accepts the smallest k-reversible language,
including the given finite positive sample, within polynomial time. Based on
Angluin’s algorithm, Berwick et al. proposed a computer model for learning the
English auxiliary verb system by using the complete corpus of grammatical sen-
tences [2]. k-reversible automaton A is a type of deterministic finite automata
and has following property:

– A is deterministic finite automata
– no two final states of A have a common k-leader
– no two states of A having a common successor have a common k-leader

It should be noted that when A is an automaton, the string u is said to be
a k-leader of the state q in A if and only if |u| = k and δr(q, ur) �= ∅, where δr

denotes the reverse of the state transition function δ, and ur denotes the reverse
of the string u.

So far, Bengalese finches’ songs have been analyzed using N -gram models [4].
The N -gram model is effective for the visualization of the structures of song
sequences; however, it does not ensure the uniqueness of the resulting automata
from given birdsong samples. Therefore, an appropriate N must be selected for
each sample through trial and error. On the other hand, if we use the standard
minimization algorithm for finite automata, it turns out that simple automata
cannot be obtained from the given birdsong samples.

We had proposed a method based on Angluin’s inference algorithm to model
the syntax of birdsongs [7]. However, it had several problems: it could not rep-
resent repeated structures, and it was very difficult to construct an appropriate
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syntax from complex songs. To resolve these problems, in this paper, we in-
troduce a new pattern extraction method for identifying the chunk structure.
Then, we propose a new method to model birdsong syntaxes and demonstrate
the extraction of song syntaxes.

2 Method

This section describes the method for representing song syntaxes of Bengalese
finches as k-reversible automata and the necessary concepts for the method.

2.1 Song Units

Based on phonetic characteristics, recorded songs are converted from sounds to
texts by assigning one symbol to the identical phonemes. A bout refers to a
sequence wherein songbirds continue to sing at a draft. The text data of songs
is organized as bouts. The following examples are parts of bouts in the songs of
a Bengalese finch.

(b1) abcdbefggabcdbefggabcdbefggabcdbefgghijklibkmgggabcdbefgg...
(b2) abcdbefggabcdbefgghijklibkmgggabcdbefggabcdbefgghijklibkm...

We can find several identical substrings that frequently appear in a bout (e.g.,
“abcdbefgg” and “abcdbefgghijklibkmgg”). These substrings are called song
units. A bout consists of several song units that appear repeatedly in it. It is the
goal of this paper to construct a song syntax from given song units. Thus, it is
necessary to extract song units from a bout.

A typical element pattern frequently appears at the beginning of a bout.
When this pattern appears in a bout, we delimit the bout into song units since
the pattern can be thought to be the beginning of a song unit. In the above
example, the pattern “abcd” appears at the beginning of a bout. If we delimit
the bouts into song units by using this pattern, it turns out that the bouts consist
of two types of song units as shown below.

(b1) abcdbefgg
abcdbefgg
abcdbefgg
abcdbefgghijklibkmggg

(b2) abcdbefgg
abcdbefgghijklibkmggg
abcdbefgg
abcdbefgghijklibkmggg

2.2 Chunk Extraction

To construct song syntaxes, we use Angluin’s learning algorithm for k-reversible
automata. From its formal definition, an input for this algorithm must be a
sequence of words. Therefore, a sequence of chunks should be used as an input
in song syntax analysis. However, there is no mathematical definition or an
appropriate dictionary of chunks. In this paper, we newly introduce a pattern
extraction method based on the N -gram model for finding the chunk structure,
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which is called “chunk extraction method.” This method extracts chunks by
using statistical information of song note transitions. In this paper, we define a
chunk as a substring obtained by this method.

In our previous method, inputs for the algorithm were not sequences of chunks.
So, we could not construct appropriate song syntaxes for complex songs. Thus,
we try to improve the song syntax analysis by the chunk extraction.

Basic Ideas
Our chunk extraction method is based on the N -gram model. In the N -gram
model, the next word in a word sequence is predicted from the previous N − 1
words. In our method, chunks are extracted by using the branch structures of
the N -gram model of a given phoneme sequence.

Let us consider the case when a sample is {abcdefg,abfg}. Trained re-
searchers can find three chunks {ab,cde,fg} from this sample. In order to obtain
these chunks in a simple fashion, we can use a bigram (the case when N = 2) (see
Fig. 2(a)). If we treat a node with an indegree or outdegree greater than one as
the boundary of chunks, we obtain three chunks {ab,cde,fg} from the bigram in
this specific example. However, we cannot always use this simple method based
on bigrams. For example, in the case of a sample {abcdefag,abfag}, chunks
should be {ab,cde,fag}. However, if we also use a bigram for this sample,
the chunks {a,b,cde,f,g} are obtained (see Fig. 2(b)). Namely, when differ-
ent chunks contain the same phoneme, the above procedure fails. To resolve
this situation, we use a trigram (the case when N = 3) (see Fig. 2(c)) for this
sample. As a result, we can represent in the way that a phoneme “a” appears
in different chunks. However, we still obtain an inappropriate set of chunks,
{ab,cdef,f,ag}. If a larger N is selected, the boundary of chunks tends to shift
backwards; however, this is inappropriate in some cases.

a
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e

g

(a)

a

b g

c

f

d

e

(b)

 a

ab

bc

bfcd

de

ef

fa

ag

(c)

Fig. 2. Examples of the chunk extraction using the N-gram models. Given a sample
{abcdefg,abfg}, (a) is constructed by the bigram. Given a sample {abcdefag,abfag},
(b) is constructed by the bigram and (c) by the trigram.

In order to resolve this problem, we propose the following procedure to extract
chunks from a sample S.



324 Y. Kakishita et al.

1. For a large enough N , construct an N -gram model from the sample S.
2. At each node, delete the historical information.
3. Continue to merge states B1 and B2 where any of the following is true:

– There exist transitions from B1 and B2 to a common state by a common
symbol.

– There exist transitions from a common state to B1 and B2 by a common
symbol.

Using this procedure, we can obtain the appropriate set of chunks from the
sample set {abcdefag,abfag} mentioned above. In step 1, the N -gram model
in Fig. 3(a) is constructed. Here, we set N = 3, since N should be less than or
equal to the maximum length of a chunk. In step 2, the historical information
is deleted from the nodes, and the diagram shown in Fig.3(b) is obtained. Note
that Fig.3(b) is a transition diagram among phonemes. In Fig. 3(b), there are
two “f” nodes, which have transitions to the node labeled by “a”. In step 3,
these two nodes are merged and the diagram in Fig. 3(c) is obtained. In Fig.
3(c) , since the boundaries of chunks are “b” node and “f” node, the set of
chunks {ab,cde,fag} will be obtained.

 a

ab

bc

bfcd

de

ef

fa

ag

(a)

a

b

c

fd

e

f

a

g

(b) (c)

Fig. 3. Diagrams obtained in the process of the chunk extraction. (a) is the trigram
obtained in step 1. (b) is the transition diagram obtained in step 2. (c) is the chunk
diagram obtained in step 3; the dotted rectangles show the obtained chunks.

By the operation given in Step 3, a bigram-like structure is introduced. By
this operation, the obtained diagram, which is called “the chunk diagram,” not
only has global historical information of the N -gram model constructed in Step
1 but also local historical information of the bigram-like model. Thus, we can
correctly extract the chunks {ab,cde,fag} from the chunk diagram.

Notes on Merge Operation
The courtship songs of Bengalese finches may include many types of noises;
for example, endogenous ones such as mis-singing and stop-singing by Bengalese
finches and exoteric ones created by humans. Since our chunk extraction method
and Angluin’s algorithm presupposes complete positive samples as inputs, it
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is necessary to reduce the noises included in our song data before using the
algorithms.

In this paper, nodes and edges with occurrence probabilities below a certain
threshold value are treated as noises. This threshold value is called the “the
transition threshold” and is denoted by TT . During the chunk extraction, the
noisy nodes and noisy edges should be carefully treated in Step 3. Before the
merge operation of states is executed, there are six possible patterns of situations
of noisy nodes and noisy edges, as shown in Fig. 4.

Fig. 4. Six possible patterns of situations of noisy nodes and edges. Noisy nodes and
edges are drawn by thin lines.

The ordinary case is shown in (a). In the case of (b) or (c), it is not appropriate
to merge the two states into one. This is because each upper node in the figure
is not a noisy one, and hence, the node has many occurrences. Thus if we merge
these two nodes into one, some global historical information may be lost. In the
cases of (d), (e), and (f), a noisy node will be merged into the node that is not
noisy. By treating noises in this fashion during the merge operations, we can
simultaneously perform noise determination and chunk extraction.

2.3 Extracting Song Syntax

k-Reversibility
It is difficult to constrain the k-reversibility of a song syntax. To obtain reversible
automata that are not over-generalized, we adopt the following criteria, which
are identical to those proposed by Berwick et al. [2].

– Starting from k = 0, increase k, till the constructed song syntax has repeated
structures that do not exist in the given samples.

Fig. 5. Reversibility and Automata
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If the song units are {“ab”, “ab cd ef”, “ab cd ef ef”} (chunks are de-
limited by space), the repeatable chunk is “ef” only. The resulting 0-reversible
automaton is shown in Fig. 5(a). This automaton has a loop of “cd” as well as
“ef”. This indicates the over-generalization of the song syntax, because the song
units that are not included in the original data such as “ab cd cd ef” can be
accepted. However, if k = 1, then we can obtain a suitable reversible automaton
that is not over-generalized, as shown in Fig. 5(b). This concept is essential in
our method, and thus we can uniquely decide k.

Induction Algorithm of Song Syntax
We show the induction algorithm of song syntax below.

Induction Algorithm of Song Syntax� �

Input: a song sample with bout S.
Output: a k-reversible automaton A that accepts S.
Procedure:
1. Construct a song unit sample S′ from S.
2. Convert to chunk data S′′ from S′ using the chunk extraction method.
3. Construct a prefix-tree automaton P from S′′.
4. Remove the transitions with “!” in P and set the result in P ′.
5. Let k = 0.
6. Continue to merge states B1 and B2 where any of the following is true:

· B1 and B2 have a common k-leader and both are final states.
· B1 and B2 have a common k-leader and transitions to B3

with a common input (chunk).
· There is a transition with a common input (chunk) to B1 and B2 from B3.

7. Set the result in A′. If A′ has repeated structures that do not exist in given
samples, then repeat step 6 with k = k + 1; otherwise, A = A′.

� �

2.4 Example

We present an example of the analysis of birdsong using our method. The texts
of Fig. 6(a) are bouts of a male Bengalese finch and Fig. 6(b) are song units
obtained from Fig. 6(a). Fig. 6(d) shows the chunk diagram constructed from
Fig. 6(b). We can extract a sequence of chunks by using the chunk diagram (see
Fig. 6(c)).

Using the result of chunk extraction shown in Fig. 6(c) as S′′, we construct a
prefix-tree automaton P , remove the transitions including “!” in P , and set the
result in P ′ as shown in Fig. 7(a).

Nextly we merge the states in P ′ using Angluin’s algorithm. Fig. 7(b) shows
the song syntax as a 0-reversible automaton. This song syntax has a loop of
“aabc”, indicating its over-generalization. With k = 1, we then apply the merge
operation to P ′. Fig. 7(c) shows the song syntax as a 1-reversible automaton.
This automaton has no repeated structures that do not exist in the original
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(a) Bouts
faabcdddddefffaabcddddddffffaabcddddddefffffaabcdddddfafffabcdddddd...
faabcdddddefffaabcddddddefffaabcdddddddfffaabcddddddefffffaabcf

(b) Song Units
faabcddddde
fffaabcddddddffffaabcdddddde
fffffaabcdddddfafffabcdddddd...
fffaabcff

(c) Sequence of Chunks
f aabc d d d d d e
f f f aabc d d d d d d f f f f...
f f f f f aabc d d d d d f a f!...
f f f aabc f! f !

(d)

Fig. 6. An example of the chunk diagram of a male Bengalese finch’s songs. The chunk
diagram is constructed from 37 song units. By using the obtained chunk diagram, the
song unit data is converted into a sequence of chunks in the following fashion. For
example, at the beginning, several transitions are possible from the node “f”; a blank
symbol, which is the delimiter of chunks, is inserted after the first input symbol “f”.
During the transition “aabc”, the possible transition is uniquely determined, and so it
is treated as a single chunk. Note that a→f is a noisy transition in this example. If this
transition occurs, the special symbol “!” is printed in the output text. In this text, “f”
and “aabc” are successfully treated as chunks, and the special symbol “!” is assigned
to noisy sequences.

songs. In this case, the induction algorithm stops, and the resulting 1-reversible
automaton is the target song syntax from the song sample S.

Our previous method could construct automata only for simple songs and
could not ones for complex songs like the above example. In addition, a repeated
structure like “f” in Fig. 7(c) could not be represented in our previous method.
By using our new method, we can deal with a repeated structure, as shown in
Fig. 7(c), and we can construct automata for complex songs (see section 3.3).

3 Result

3.1 Robustness Against Noise

To study the robustness against noise of our method, we developed a song gener-
ator — a program for creating artificial song unit data based on the song syntax
shown in Fig. 8.

The song generator can add five types of noises, which are based on our
observations of real song data.
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Fig. 7. (a) is prefix-tree automaton P ′. (b) is constructed as 0-reversible automaton
and (c) is constructed as 1-reversible automaton.

1. Repetition1: Repeat a few head symbols
(e.g., abcdef → ababcdef or aaabcdef)

2. Repetition2: Repeat a few tail symbols
(e.g., abcdef → abcdefef or abcdefff)

3. Skip: A song note is skipped
(e.g., abcdef → abdef)

4. Simple mistake: A wrong song note is output
(e.g., abcdef → abfdef)

5. Stop: Stop singing at the non-final states
(e.g., abcdef → abcd)

With the song generator, we created artificial song data with noises 10%, 30%,
50%, and 70%, respectively. For example, 50% noises means that songs contain
any one of above noises per two song units.

In our method, the robustness against noise depends on the chunk extraction
method. This section examines the parameter setting of the chunk extraction
method for the induction of correct song syntaxes. Fig. 9 and Fig. 10 show the
relationship between the amount of noise and TT regarding each song syntax;
each point denotes the average value of TT that can provide the correct syntax
(N is fixed as 3).

These figures indicate two important features. First, as the noise per song
unit increases, TT for constructing the correct reversible automaton increases.
Second, even if the song unit size decreases TT per song unit does not change
as much. For example, in the case of RA K0 (Fig. 8(a)), a good setting of TT is
approximately 50 when the song unit size = 300; TT is approximately 35 when
the song unit size = 200. In both cases, TT per song unit size is approximately
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Fig. 8. Artificial song syntaxes. (a) RA K0, (b) RA K1, (c) RA K2, and (d) RA K3.
They belong to 0, 1, 2, and 3-reversible languages, respectively.

17%. We conclude that in the Bengalese finches’ songs, the appropriate TT is
5% to 15% of the song unit size.

It should be noted that the automata induction is not always possible; if the
song unit size decreases, and the amount of noise increases, it becomes harder
to obtain correct reversible automata.

3.2 Size of Required Samples

We estimated the number of samples that are necessary to correctly extract the
song syntax. Fig. 11 shows the relationships between the noise ratio and the
necessary number of song units to correctly extract the syntax. We randomly
selected song units from the artificial song data obtained in the previous section
and estimated the number of song units required for correct song syntax induc-
tion. We repeated this estimation 300 times and plotted the mean values of the
number of song units for correct song syntax induction.

This result suggests that more and more song units are required as the k-
reversibility of songs increase. In addition, it is found that the noises affect the
induction of song syntaxes seriously in the cases of complex songs. For example,
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Fig. 9. Results of (a)RA K0 and (b)RA K1 in Fig. 8. Horizontal axis represents noise
per song unit. Vertical axis represents TT per song unit.
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Fig. 10. Results of (a)RA K2 and (b)RA K3 in Fig. 8. Horizontal axis represents noise
per song unit. Vertical axis represents TT per song unit.
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Fig. 11. Relationship between noise rate and song unit size for the induction of correct
song syntax

for a simple song syntax like RA K0 in Fig. 8(a), the correct automaton can
be obtained from 10 song units even when the noise rate is 70%. However, in
the case of a complex song syntax like RA K3 in Fig. 8(d), there is an essential
difference between the cases when the noise ratio is 10% (40 song units are
required) and 70% (90 song units are required).

3.3 Analysis of Complex Birdsongs

We show the results of the induction of Bengalese finches’ song syntaxes. These
are from the cases of the adult birds (BF1 and BF2). As per the estimation
mentioned in section 3.1, we set TT at 10% of the song unit size.

Fig. 12 shows a part of the song unit and the reversible automaton of BF1.
BF1’s songs are comparatively complex in Bengalese finches’ songs. The song
syntax of BF1 can be represented as a 1-reversible automaton. We have analyzed
more than 20 Bengalese finches’ songs using our method, and almost all the songs
can be represented as 0-reversible or 1-reversible automaton.
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(BF1) bcddefghefghijkfddefghighijkfdefghighijkfdefgh...
bcbcbcddefghijkfd
bcbcddefghijkfefghighijkfddefghijkf
bcbcddefghijkfef

Fig. 12. BF1 (# of song units = 140, k = 1, N = 4, TT = 14)

(BF2) bababacdaabcdefggghiijkaafggghibcdeb
babababababcdefggghi
babacdaabcdefggghiijkaafggghibcdeb
babababcdefggghi

b

a

cdeb
cda a b cde fggghi

a

cde
b

fggghi ijkaa
b

b

Fig. 13. BF2 (# of song units = 450, k = 3, N = 3, TT = 45)

Fig. 13 shows a part of the song unit and the reversible automaton of BF2.
BF2 has the most complex song syntax we have ever obtained, and 3-reversiblity
is required to represent the song syntax appropriately.

This result suggests that a complex song syntax tends to have higher k-
reversibility and includes many transitions, which correspond to possible song
variations.

These songs could not be constructed as reversible automata using our previ-
ous method. We now can appropriately construct the song syntaxes by using our
new method with the chunk extraction. In addition, our new method enables to
represent repeated structures like sequence of “ef gh” in Fig. 12.

4 Conclusion and Discussion

Recently, formal inductive inference has been applied to bioinformatics [6], but it
has rarely been applied to ethology. In this paper, we proposed an automata induc-
tion approach to the song syntax of the Bengalese finch by introducing a new pat-
tern extraction method and extending Angluin’s induction algorithm. Due to the
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similarity between Angluin’s algorithm and the vocal learning of songbirds (i.e.,
bothare learning frompositive samples), ourmethodhasbiologicalplausibility.Us-
ing the proposedmethod,we analyzed the actual songdata ofBengalese finches and
demonstrated that song syntaxes couldbe representedask-reversible automata.As
a result,we can extract appropriate song syntax and chunk structure. Furthermore,
we can construct the complex song syntaxes, which we cannot using the previous
method without the chunk extraction.

In most cases, simple Bengalese finches’ songs can be represented by 0 or 1-
reversibility. Further, we observed a 3-reversible automaton, which is the most
complex song syntax we have ever had. Thus, the degree of k-reversibility may re-
flect the complexity of songs. To explore the significance of k-reversibility in song
syntax, further investigations on a wide variety of songs should be undertaken.

As mentioned in section 3.1, the setting of the transition threshold(TT ) is an
important factor for extracting the correct syntax in our method. In this paper, we
estimated the robustness and properness of our method using artificial song data
and obtained some important results. First, the value of TT should be decided as a
ratio of the number of song units; the appropriate TT is approximately 5% to 15%
of number of song units. Second, the noises affect to the induction of song syntaxes
seriously in the cases of higher k-reversibility songs. This result suggests that more
song units are required for the induction of complex songs.
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Abstract. In this paper, we propose a modification to particle swarm
optimization in order to speed up the optimization process. The modifi-
cation is applied to the constriction coefficient, an important parameter
that controls the convergence rate. To validate the proposed strategy,
we carried out a number of experiments on a wide range of 25 standard
test problems. The obtained results show that the proposed strategy
significantly improves the performance of the selected PSO algorithm.

1 Introduction

In recent years, there has been an increasing number of research papers using
the particle swarm optimization (PSO) algorithm to solve hard optimization
problems. In contrast to other population–based search techniques such as evo-
lutionary algorithms, PSO is inspired by the social behavior of a swarm such as
bird flocking or fish schooling [6,2]. Since the introduction of the PSO algorithm
in 1995 by Kennedy and Eberhart [6], there have been tremendous efforts to
improve the performance of PSO. This effort materialized through studying a
number of parameters such as the constriction coefficient [1], the inertia weight
[10], adjusting the bound of the velocity [3]; and through the use of cluster analy-
sis [5]. The PSO algorithm has also been used successfully to solve problems in
dynamic [9], multi-objective environments [14,8].

In this paper, we modify the constriction coefficient, where it is varied during
the optimization process. We call this new PSO version APSO, for “Adaptive”
PSO. By decaying this coefficient value over time, we can reduce the fluctuation
of the particle velocity. Our approach was validated by conducting a series of
experiments on 25 standard test problems. The test problems are associated
with different difficulties that usually exist in practical optimization problems
such as multi-modality, epistasis (rotation), and noise. The proposed scheme is
compared against other versions of the PSO algorithm.

The remainder of the paper is organized as follows: an overview of PSO and
related work is presented in Section 2. The proposed methodology is introduced
in Section 3. The test problems along with a discussion of problem difficulties
and experimental studies are presented in Section 4. The last section is devoted
to the conclusion.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 333–344, 2007.
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2 Background

The particle swarm optimization algorithm is inspired by the natural phenom-
ena of bird flocking. The principle of bird flocking is applied in optimization
problems as follows. A population of solutions (particles/swarm) is generated.
The movement of each particle is determined by its location and velocity. By
changing the velocities over time, the particles are likely to move towards the
global optima. Clearly, the behavior of a particle is dependant on how the asso-
ciated velocity vector is defined. As originally stated in [6] (p. 1946): Formally,
assume vi(t) and xi(t) are the velocity and position of a particle i at time t, we
calculate the particle’s velocity and position at time t+1 as follows:

vi(t + 1) = vi(t) + c1r1(Pi(t) − xi(t)) + c2r2(Pg(t) − xi(t))
xi(t + 1) = xi(t) + vi(t + 1) (1)

in which Pi is the best position the particle has achieved (the local best position)
and Pg is the global best position (could be the best for the swarm); coefficients
c1 and c2 are used to compromise the search towards the best local knowledge
of the particle and the best knowledge of the entire swarm; and r1 and r2 are
random values between 0 and 1.

The strategy for determining the particle’s velocity obviously has a strong
effect on the optimization process. If Pg(t) is the global best that the swarm has
found so far, we get the gbest version of the PSO algorithm [2]. On the other
hand, if Pg(t) is defined separately for each particle as the best position found
within the neighborhood of the local best position, we get the lbest version [4].
There are some discussions on the advantages/disadvantages of these versions
[13] for controlling the balance between exploitation and exploration. However,
in this paper, we consider the case of the gbest version only. There is no particular
reason for selecting this option. From this point onwards, we use the term PSO
for the gbest version.

There have been several attempts to control the exploitation and exploration
abilities of the PSO algorithm. An obvious approach is to adjust c1 and c2 for the
balance between the local and global directions; or to limit the range of velocity
between [−Vmax, Vmax] as follows (this is for the case of positive velocities; for
negative velocities, it needs to be adjusted accordingly):

vt+1 =
{

vt+1, if vt+1 < Vmax

Vmax, Otherwise (2)

Recently, Kwok et al [7] investigated the performance of the PSO algorithm
with different schemes for setting the control coefficients (c1 and c2) using scalars,
uniform, and gaussian generated values. Their investigation showed a good per-
formance of the PSO algorithm using randomly generated coefficients over the
fixed-value ones.

In [10], Shi and Eberhart proposed the concept of inertia weight (w) to control
exploration and exploitation (see Eq. 3). One of the interesting aspects of this
work is that the inertia weight sets the influence level of the effect of the history
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on the current velocity. They found that if w ≥ 1, the velocities will increase
over time, the swarm will diverge and therefore it affects the exploitation of the
algorithm.

vi(t + 1) = wvi(t) + c1r1(Pi(t) − xi(t)) + c2r2(Pg(t) − xi(t)) (3)

Meanwhile, Clerc and Kennedy [1] introduced the constriction coefficient to
ensure the stable convergence of the PSO algorithm (see Eq. 4 and 5). In compar-
ison to Eq. 3, we can see that, for a given χ, we will have w = χ, the first constant
is c1χ, and the second one is c2χ. Therefore, the effect of the constriction factor
is somewhat similar to that of the inertia weight.

vi(t + 1) = χ[vi(t) + c1r1(Pi(t) − xi(t)) + c2r2(Pg(t) − xi(t))] (4)

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2 (5)

All the above work recommended fixed values for controlling the parameters;
for example, Clerc and Kennedy [1] indicated that ϕ = 4.1, χ ≈ 0.729, and
c1 = c2 = 2.05 . However, it is obvious that when the algorithm converges,
the fixed values of the parameters might cause the unnecessary fluctuation of
particles. The question is whether we can allow some of parameters changed over
time following either fixed or adaptive patterns?

Fan [3] introduced an approach to adapt Vmax for the PSO algorithm in
which the value of Vmax is reduced over time as in Eq. 6. This approach does
not directly change the value of the velocity; however, it will adjust the bound
for the velocity over time.

Vmax(t) =
[
1 −

( t

T

)h]
Vmax(0) (6)

where T is the maximum number of iterations, h is a positive constant which is
chosen by “trial and error”, and Vmax(0) also depends on test problems. In the
paper, the author showed an excellent performance of this approach in compar-
ison with the standard version of the PSO algorithm.

Another approach is to adapt the inertia weight over time. An example is
referred to in Suganthan’s work [11] where the author used linear decay of the
inertia weight (Eq. 7)

w(t) =
[
w(0) − w(T )

](
1 − t

T

)
+ w(T ) (7)

where w(0) is the predefined initial weight and w(T ) is the predefined weight at
time T.

From the previous analysis, we can see that although χ is an important factor
to control the convergence of PSO algorithm, there is no research on how to
adapt χ. Therefore, it is the motivation for this paper to look at this issue. In
the next section we will introduce a method to adapt χ and also discuss how it
is different from previous work.
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3 The Modified Strategy for the Constriction Factor

3.1 Time-Dependent Strategy

We first clarify that this paper is about adapting a parameter rather than self-
adaptation of the parameter. The first refers to the process of allowing the para-
meter to change in response to changes in one or more of the search algorithm’s
states. Therefore, we can adapt a parameter by introducing a control parameter
for it. However, self-adaptation normally refers to a process by which the change
in the value of a parameter does not introduce additional control parameters;
hence, the word “self”.

We propose to use both the inertia weight and the constriction coefficient.
We still keep a relatively small and fixed value of the inertia weight (0.729,
as pointed out from Maurice Clerc’s analysis and also discussed in [2]) and
allow χ to be adapted (χ0 = 1.0) through decaying its value over time. The
reason to employ the inertia weight is that, early in the search, the value of χ
is around 1.0, the inertia weight will be responsible for keeping the algorithm
exploring. As the value of χ gets smaller, χ will take over the role of the inertia
weight.

Under our strategy, updating the velocity is performed as in Eq. 8 where χ
acts as a function of the time-step.

vi(t + 1) = χ(t + 1)[w ∗ vi(t) + c1r1(Pi(t) − xi(t)) + c2r2(Pg(t) − xi(t))] (8)

We use two different nonlinear decay rules to adapt χ. For the first one (Eq. 9),
χ is annealed by a factor of ( t

T )h at each time step t (T is the maximum number
of time steps). The parameter h is used to adjust the reduction rate of the
velocity. For the second rule (Eq. 10), we add a small random effect to the first
rule.

– The first rule: APSO1

χ(t) = 1 −
( t

T

)h

(9)

– The second rule: APSO2

χ(t) =
[
1 −

( t

T

)h]
rand(0, 1) (10)

Clearly, the main difference between our proposed strategy and the adaptation
of Vmax (we call it DPSO) is that we directly make changes to the velocities of
the particles, instead of adapting the bound of the velocity as in DPSO. It is
worthwhile to note that the method of using the constriction coefficient has a
stable convergence towards the global optima, while this is not guaranteed in
the case of using Vmax (see [1]).
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3.2 Non-linear Reduction of the Constriction Coefficient

From Eq. 8, we can see that the rate of reduction of the constriction coefficient
has an important effect on the convergence of APSO. A fast reduction of χ
might not be good for converging to the optima in the multi-modal problems
where APSO can be trapped easily in local optima. However, if χ decays too
slowly, it might affect the convergence speed of the algorithm. From Equations
9 and 10, it can be realized that the rate of reduction can be controlled by
adjusting the parameter h. For unimodal problems, the effect of h is obvious. If
h increases, it will slow down the reduction of χ, and therefore reduces the speed
of convergence. However, note that real-world problems are rarely unimodal.

To investigate this matter, we carried out an experiment in which APSO1
was used to test a well-known multi-modal Rastrigin problem (the detailed de-
scription of this problem is given in Section 4), and with different h (each was
tested with 25 different runs). The average error values (the difference between
the obtained best solution and the optima) was recorded after 1e5 evaluations.
These values are plotted in Figure 1.

Fig. 1. The error values recorded after 1e5 for different h. The horizontal axis is for h,
while the vertical one is for the error.

The figure shows an obvious tendency that if the value of h is too small,
it will slow down the convergence of the algorithm, while the large value of h
also deteriorates the performance of the algorithm. From Eq 9, we can easily
explain this phenomena. Since t

T ≤ 1, if we reduce h, the rate of reduction in
the function of the constriction coefficient (Eq 9) will be faster. Therefore, in
multi-modal problems, the side effect might be that the algorithm pre-maturely
converges, and hence gets trapped at local optima. Meanwhile, if we increase
h, the rate will be slower and the algorithm may over-emphasize explorations,
therefore, losing the balance between exploration and exploitation.

3.3 Behavior of APSO

In this section, we will investigate the behavior of APSO (we use APSO1) by
considering the change of the velocity over time. We also make a comparison with
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the method of adapting Vmax (DPSO). For DPSO, all velocities of the particles
are restricted by the bound of Vmax. Since Vmax decays over time, the velocities of
the particles in the population will quickly become identical and approach zero.
This causes a considerable reduction of the diversity of the population. Therefore,
in multi-modal, rotated, or noisy problems, it will affect the performance of
DPSO. Meanwhile, for our strategy, all particles are allowed a certain level of
freedom since their velocities are adapted independently. Therefore, we expect
the variance of the velocities in the population to be higher than that of DPSO.

To verify this issue, we tested both APSO1 and DPSO on the Rastrigin prob-
lem to measure the variance (or the standard deviation) of the velocities in the
population over time. The parameter h was kept the same for both algorithms
and set as recommended in [3]. In Figure 2, we plot the standard deviation of
the velocities of the particles over time. For this problem, it has a 10-D search
space, so that we will have 10 continuous lines on each figure where each line is
for the standard deviation of the velocity in each dimension.

Fig. 2. The variation of the velocity in Rastrigin problem. The left graph is for APSO1,
and the right one is for DPSO.

Form the figure, we can see clearly that the variance of the velocity for DPSO
is quickly reduced as expected. Further, its reduction is quite smooth. Whereas,
for APSO1, the reduction rate of the velocity is much slower and zigzagged.
These results is consistent with our explanation.

4 Experimental Studies

4.1 Test Problems and Experiment Settings

In order to examine the performance of APSO, we used a number of standard
problems such as Sphere, Griewank’s, Schwefel’s, Rosenbrock’s, Rastrigin’s, etc.
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They cover both uni-modal and multi-modal functions. However, in our experi-
ments, we want to add to these problems a wide range of difficulties that usually
exist in practice:

– Shifting: Most test problems have an optima at the origin. For those algo-
rithms that have a bias of approaching the origin, they will easily solve these
problems. Therefore, we use shifting to examine the existence of such a bias.

– Rotation: Rotation adds a high level of linkage (interaction). This makes
the problem become non-decomposable.

– Noise: Noise is unavoidable in all practical optimization problems (especially
engineering design problems). It usually deceives the optimizers.

– Narrow basin of the optima: This causes an algorithm to spend more
time to obtain information about the optima; especially in multi-modal prob-
lems. It increases the chance that the algorithm gets stuck in a local optima.

– Problem composition: This makes artificial test problems closer to the
practical ones, which are usually black-box. With composition, the problem
structure becomes more complicated or un-clear.

For this, we used a wide range of 25 test problems which were introduced at
a special session of the IEEE Congress on Evolutionary Computation 2005 [12].
They all have 10 variables. All important features of the problems are listed in
Table 1. However, for a detailed description, readers are referred to [12].

For each test on a particular problem, we run the algorithm 25 times with
different seeds. For APSO, the parameter h was set to 2.0 as recommended in
Section 3.2, while w, c1, and c2 followed the standard settings: 0.729, 2.05, 2.05

Table 1. Test problems and Descriptions: (F1 ÷ F5) are uni-modal, F6 ÷ F25 are
multi-modal, F3 ÷ F25 are rotated, and F15 ÷ F25 are hybrid

Probs Descriptions
F1 Shifted Sphere Function
F2 Shifted Schwefels Problem 1.2
F3 Shifted Rotated High Conditioned Elliptic Function
F4 Shifted Schwefels Problem 1.2 with Noise in Fitness
F5 Schwefels Problem 2.6 with Global Optimum on Bounds
F6 Shifted Rosenbrocks Function
F7 Shifted Rotated Griewanks Function without Bounds
F8 Shifted Rotated Ackleys Function with Global Optimum on Bounds
F9 Shifted Rastrigins Function
F10 Shifted Rotated Rastrigins Function
F11 Shifted Rotated Weierstrass Function
F12 Schwefels Problem 2.13
F13 Expanded Extended Griewanks plus Rosenbrocks Function
F14 Shifted Rotated Expanded Scaffers F6
F15 Hybrid Composition Function
F16 Rotated Hybrid Composition Function
F17 Rotated Hybrid Composition Function with Noise in Fitness
F18 Rotated Hybrid Composition Function
F19 Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum
F20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds
F21 Rotated Hybrid Composition Function
F22 Rotated Hybrid Composition Function with High Condition Number Matrix
F23 Non-Continuous Rotated Hybrid Composition Function
F24 Rotated Hybrid Composition Function
F25 Rotated Hybrid Composition Function without Bounds



340 L.T. Bui, O. Soliman, and H.A. Abbass

respectively. We also tested the performance of the PSO algorithm using the
inertia weight and with the above settings, called IPSO as well as DPSO - the
modified version using the technique of adapting Vmax with Vmax(0) = 0.2 and
h = 0.05 (as recommended by its author). These are also the best settings we
found for DPSO after a series of experiments. In all cases, the population size
was 100. The criteria for comparison include error rate after 1e5 evaluations,
and the speed of convergence.

4.2 Performance Analysis

We start our analysis on the performance of APSO by recording the error value
(the difference between the obtained objective value and the optima’s) after 1e5
evaluations. The mean and standard deviation values of the 25 different runs are
reported in Table 2 for all problems.

Table 2. Error values (mean and standard deviation) that the different algorithms
achieved after 1e5 evaluations for all problems: all values in bold are the best ones
among the different algorithms. We use † to indicate the difference between the results
of the algorithm and APOS1 is statistically significant (using t-test with the significance
level of 0.05).

APSO1 APSO2 IPSO DPSO

F1 0.000+0.000 0.000+0.000 29.402+43.209† 0.000+0.000
F2 0.000+0.000 9.365+18.933† 333.338+159.758† 0.000+0.000
F3 201517.228 520624.004 1746681.800 234706.324

+141658.655 +350540.389† +1081941.056† +144922.625
F4 2.243+6.201 802.939+1214.050† 529.214+273.340† 0.000+0.000
F5 1129.207+949.066 312.626+591.144† 4677.125+879.774† 0.006+0.002†
F6 74.916+99.698 83.515+167.631 35447.754+78082.281† 27.827+73.101
F7 0.230+0.138 4.344+3.810† 0.656+0.303† 1.919+0.730†
F8 20.302+0.051 20.303+0.070 20.362+0.041† 20.183+0.077†
F9 2.667+1.268 12.934+4.989† 7.045+3.955† 0.637+0.938†
F10 14.407+5.872 22.207+9.337† 35.593+10.700† 22.848+9.273†
F11 4.741+1.363 5.777+1.762† 6.841+2.193† 2.006+1.262†
F12 94.029+201.318 3040.124+3556.954† 1218.953+1162.912† 373.896+583.386†
F13 0.643+0.229 1.099+0.571† 1.333+0.545† 0.719+0.202
F14 2.926+0.345 3.485+0.437† 3.378+0.301† 3.139+0.436

F15 119.126+120.629 324.316+145.824† 182.053+70.153† 240.365+192.898†
F16 135.310+28.141 144.635+19.650 179.893+32.797† 151.012+28.133
F17 130.347+18.753 143.213+27.281 207.949+26.806† 160.943+40.726†
F18 808.528+179.442 917.157+122.130† 911.298+104.314† 883.394+203.050†
F19 803.662+178.977 917.730+120.888† 918.716+111.619† 898.986+200.665†
F20 784.674+188.930 917.738+120.894† 908.786+108.523† 897.091+199.256†
F21 633.026+279.892 978.696+234.801† 613.081+285.171 906.711+291.857†
F22 765.011+105.418 812.280+46.952† 823.703+37.271† 797.034+47.880
F23 769.328+210.998 1036.789+266.986† 768.038+209.080 877.885+265.022
F24 236.000+99.216 438.868+368.698† 327.705+125.475† 418.217+348.385†
F25 406.635+19.698 1029.979+239.062† 411.878+19.126† 454.104+186.589

For the two simple uni-modal problems (F1 and F2), we expect both APSO1
and APSO2 to converge quickly to the optima. However, APSO2 converged only
in the case of F1. To explain why APSO2 did not converge in F2 after 1e5
evaluations, recall that for APSO2, we multiplied the component of rand(0, 1)
by the value of χ (that is also between 0 and 1). The multiplication of these two
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components resulted in a faster reduction of the velocity. This resulted in a pre-
mature convergence for APSO2 and therefore a faster convergence in comparison
with APSO1. We will look at this matter later on in the section. Note that,
the difficulty of shifting in these experiments does not have much effect on the
performance of both versions of APSO.

The difference in performance between the APSO1 and APSO2 is obvious in
harder problems starting with F3 to F25. In almost all problems, multi-modality,
rotation, or noise caused both APSO1 and APSO2 more difficulties. However,
APSO2 was inferior to APSO1. The difference between the obtained results from
25 problems are significant (except for F1, F16 and F17). This implies that the
use of a random factor is not useful for our strategy.

We now shift our attention to the performance of APSO (especially APSO1)
in comparison with other versions of the PSO algorithm: IPSO and DPSO.
It is clear that IPSO (the standard one) had the worst performance amongst
the contestants. It did not reach the optima in all 25 problems, even for F1,
a shifted unimodal problem. The t-test also supports the findings where the
results achieved by IPSO are almost significantly worse than that of APSO1.
However, IPSO achieved better performance on F21 and F23. These differences
are not statistically significant. These results indicate that the use of fixed coef-
ficients does not give the PSO algorithm the best performance in comparison to
parameter-variable strategies.

In comparison to DPSO (adapting Vmax), APSO1 had smaller error values in
most problems. As shown in Table 2, DPSO is significantly better than APSO1
only in four (out of 25) problems including: F5, F8, F9, F11. Especially, DPSO
performed badly in almost all rotated problems. The adaptation of the boundary
causes the velocities of particles to quickly decay and become identical.

Interestingly, DPSO’s performance was inferior to APSO1 in all composition
problems (although there are some problems where the results are not signifi-
cantly different). Recall that composition problems were used in order to repre-
sent a class of black-box problems with different difficulties.

The last consideration is given to the convergence rate of all test versions of
PSO algorithms. We visualized the error values over time for some problems in
Figures 3, 4. Once again, IPSO shows a very slow convergence in comparison with
the others; even after 1e5 evaluations, it still did not converge for all problems.

In all cases, DPSO and APSO2 converged quickly at early generations. How-
ever, they made very little improvement in later ones. This might be the cause
for the inferior performance shown in Table 2. For DPSO, the stagnation is per-
haps because of the quick reduction of Vmax; so that in special situations such
as rotation or composition, it did not have enough diversity to recover from the
effect of difficulties.

In general, the results indicated that under the proposed strategies, the PSO
algorithm becomes much more reliable and effective in searching for optima.
Furthermore, the adaption of the constriction coefficient showed a better ca-
pability of the PSO algorithm in solving practical black-box problems than its
counterpart of adapting Vmax.
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Fig. 3. Convergence graphs for algorithms on F7,F8, F9 (from top to bottom)
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5 Conclusion and Future Work

In this paper, we proposed two modified strategies for adjusting the constriction
coefficient χ. Instead of using a fixed χ, we propose to non-linearly decay χ
over time from 1.0 to 0.0. By using the proposed constriction coefficient, we
can reduce the reliance of the algorithm on fixed parameters. We compared the
performance of the PSO algorithm using the proposed methodology to that of
IPSO and the technique of adapting Vmax (the bound of the velocity) (DPSO) on
25 test problems with different difficulties. The experimental results showed that
the performance of the proposed approach was better when compared to IPSO
and DPSO. For future work, we intend to investigate this strategy in the domain
of evolutionary multi-objective optimization and also with the lbest version.
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A Differential Evolution Variant of NSGA II for Real 
World Multiobjective Optimization 

Chung Kwan, Fan Yang, and Che Chang  

Electrical and Computer Engineering, National University of Singapore 

Abstract. This paper proposes the replacement of mutation and crossover op-
erators of the NSGA II with a variant of differential evolution (DE). The result-
ing algorithm, termed NSGAII-DE, is tested on three test problems, and shown 
to be comparable to NSGA II. The algorithm is subsequently applied to two real 
world problems: (i.) a mass rapid transit scheduling problem and (ii.) the opti-
mization of inspection frequencies for power substations. For both the real 
world problems, NSGAII-DE is found to have generated better results based on 
comparative studies.  

Keywords: differential evolution (DE), NSGA II, real world problems. 

1   Introduction 

The non-dominated sorting genetic algorithm II (NSGA II) was developed by Deb et 
al. [1] to improve the NSGA [2]. The main attraction of NSGA II is its fast non-
dominated sorting algorithm that is computationally more efficient than most avail-
able non-dominated sorting techniques. In addition, a crowding distance assignment 
algorithm without a need for a niching parameter for maintaining the diversity among 
pareto-optimal solutions adds to the attraction of this algorithm. NSGA II is currently 
one of the most popular multiobjective evolutionary algorithms (MOEAs), with com-
parisons made with other well known MOEAs like SPEA [3] and PAES [4], achiev-
ing competitive superior results for many test problems. 

To further improve the algorithm, this paper proposes to replace the crossover and 
mutation operators of the original NSGA II algorithm using a variant of differential 
evolution DE [5].Termed NSGAII-DE, the algorithm is tested with three selected test 
problems. They are based on Schaffer (SCH) [6], Kursawe (KUR) [7], and Zitzler’s 
test problems (ZDT6) [8]. To demonstrate the ability of the proposed algorithm in real 
world problems, the algorithm is tested on a mass rapid transit scheduling problem 
improvised from [9] and the optimization of inspection frequencies for substations 
modeled in [10]. 

2   Development of Proposed Algorithm 

2.1   Background and Related Works 

Kwan and Chang proposed a DE-based heuristic in [9] for solution to a simplified 
train scheduling problem. For that problem, the variant for generating mutant vector V 
for the (G+1)th generation of the ith candidate solution Xi is: 
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where r1, r2, r3  ∈ [1, N] are randomly selected solutions from the population of size 
N. F and λ are amplification factors for the bracketed terms. Motivated by initial suc-
cess, attempts are made to further apply the proposed algorithm to other types of 
problems. However, subsequent tests revealed that this variant does not converge fast 
enough for many applications. This motivates us to explore a better variant to suit a 
wider range of real world applications. 

Recently, multi-objective DE based techniques are also reported in works like [11] 
and [12]. Notably, a similar attempt to replace the crossover and mutation rates by a 
rotationally invariant DE variant was noted in [13], where the authors reported better 
performance of their NSDE than the NSGA II for a class of rotated problems. These 
further support the notion that the common mutation and crossover operators may not 
be effective in handling certain problems. 

2.2   Proposed Variant 

The proposed variant presented in equation (2) replaces the term Xr1,G in equation (1) 
with XrBest,G and omit the Xi,G term. Thus, instead of generating each mutant vector 
with respect to Xi,G, Vi,G+1 is generated with respect to the term XrBest,G. 
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where r2 and r3∈[1, N] are randomly chosen solutions from the population of size N. 
In the single objective case, XrBest,G is merely the best solution for the Gth generation. 
In the multiobjective case, however, the notion of 'best' is no longer a single optimum 
term, but is chosen from a set of non-dominated or Pareto-optimal solutions. In this 
work, XrBest,G is randomly chosen from the top 30% of set of solutions of the Gth gen-
eration. The NSGA II algorithm ranks each candidate solution from '1' onwards de-
pending on how many solutions it is dominated by.  Solutions with ranking of '1' de-
note the non-dominated solutions in the current population. The higher the rank value 
of a solution, the more it is dominated by other solutions. Besides that, the crowding-
distance-assignment assigns each solution based on density estimation, with a higher 
value representing lesser crowding of other solutions around its vicinity. Solutions at 
the boundary points are assigned ∞. rBest is selected first based on the non-dominated 
ranking followed by the crowding-distance-assignment. E.g. if more than 30% of so-
lutions are ranked '1', a crowding-distance-assignment of higher value (with the same 
non-dominated ranking) would be preferred to those of lower values in consideration 
of whether a solution should be included as one of the possible choices in the set 
where XrBest,G is chosen from. 

The 'crossover' operator of DE generates a trial vector Ui,G+1 as presented in equa-
tion (3): 
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where CR is the crossover rate. j denotes the jth decision variable of the ith candidate 
solution. r(j) is a randomly chosen number in [0,1]. Thus, if the randomly generated 
r(j) of the jth decision variable is smaller or equal to the crossover rate CR, Uji,G+1 will 
take the value of the mutated vector Vji,G+1, else it will take the value of the original 
candidate solution Xji,G. In addition, to prevent degeneration, the term rn(i) is a ran-
domly chosen decision variable j in the ith candidate solution which will be chosen to 
be replaced by the mutant vector. 

Unlike in the single objective version of DE proposed in [5], Ui,G+1 does not re-
place the current Xi,G if it is better, but it is treated as a member of the child population 
candidate as provided in the NSGA II structure, and is involved in non-dominated 
ranking and crowding distance assignment. 

The proposed variant is tested in this paper using theoretical test problems first and 
subsequently on two real world problems. 

3   Comparison with Test Problems 

In order to test the effectiveness of our proposed algorithm, we test the algorithm with 
the three test problems SCH, KUR and ZDT6 detailed in Table 1. All approaches are 
run for a maximum of 25000 function evaluations (translated to 250 generations with 
population size of 100). 

The real-coded version of the NSGA II is used, with associated parameters, cross-
over and mutation distribution index (ηc and ηm), both set to 20 as recommended. The 
NSGAII-DE has crossover settings CR and F set to 0.8 and λ set to 1. Codes are im-
plemented in Matlab. Ten runs are performed for each algorithm. 

The three test problems are selected because of the following reasons – SCH is se-
lected to test the convergence for a large range of variable(s). KUR is selected to test 
convergence to a nonconvex and discontinuous objective space, and ZDT6 is used to 
test convergence to a nonconvex and nonuniformly spaced objective space. Such fea-
tures are common in the real-world problems, which we will be applying the algorithm 
to ultimately. Pareto fronts for all the cases are presented in Fig.1. In Fig.1(a) and (b), 
the two Pareto fronts from NSGA II and NSGA II-DE coincide with each other. 
Whereas in Fig.1(c), it is obvious that NSGA II-DE performs better than NSGA II. 

In addition, two performance measures proposed in [1] correspond to two goals in 
a multiobjective optimization, i.e. convergence and diversity: The convergence metric 
γ measures the extent of convergence of the solutions generated by the algorithms to a 
known set of pareto-optimal solutions by computing the Euclidean distance between 
the solutions. The second diversity metric Δ (see equation (1) of [1]) provides a meas-
ure comparing the Euclidean distance between each pareto-optimal solution against 
all the others. Table 2 shows the mean (first rows) and variance (second rows) of the 
convergence metric γ. A better convergence is obtained by the NSGA II-DE for both 
KUR and ZDT6, but it performs slightly worse for SCH. Table 3 shows the mean and 
variance of the diversity metric Δ. Better diversity measures are noted for NSGA II-
DE in all three test problems. 

With this initial testing on theoretical problems, we established the comparable 
performance of the DE variant with the original NSGA II, and proceed to applying the 
algorithms on the two real-world problems. 
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Fig. 1. Pareto fronts of test problems (a). SCH, (b). KUR, and (c). ZDT6 

4   Mass Rapid Transit Schedule Optimization 

4.1   Background and Formulation 

Waiting time and traveling time are important service quality objectives considered in 
the optimal generation of a mass rapid transit schedule. In this paper, each service 
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Table 1. Theoretical test problems used in this study 
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Table 2. Mean (first row) and variance (second row) of the convergence metric γ 

Algorithm SCH KUR ZDT6 
NSGA II 0.003098 

0 
0.025761 
0.000564 

0.86599 
0 

NSGA II-DE 0.003262 
0 

0.015507 
0.000005 

0.86425 
0.000028 

Table 3. Mean (first row) and variance (second row) of the diversity metric Δ 

Algorithm SCH KUR ZDT6 
NSGA II 0.47102 

0.004493 
0.53958 
0.006099 

0.77723 
0.15121 

NSGA II-DE 0.4554 
0.000527 

0.40955 
0.000464 

0.58166 
0.07022 

quality is investigated with respect to the economic objective of operating cost. The 
work is extended from [9] by increasing the number of variables from 7 to 108 taking 
into account for instantaneous variables relating to dwell time at each passenger sta-
tion and run time/ coast level profiles between all track sections. Previously, all the 
service qualities are combined into a weighted sum that is minimized against the op-
erating cost. This paper investigates the effect that each of the service-related attribute 
has on operating cost instead. 

An intuitive way to incorporate the objective(s) is to minimize the absolute waiting 
time and traveling time of the whole system. However, [14] has pointed out that the 
'expectation' concept of passengers is a more accurate reflection of passengers' atti-
tude towards waiting time and traveling time than the objective(s) above. Adopting 
that idea, a waiting time dissatisfaction index (DIWT(t)) was derived in equation (4) 
and an actual to shortest journey time ratio (ASJR) defined in equation (5). 
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DIWT(t) denotes the average waiting time dissatisfaction incurred by passengers on a 
particular passenger platform, where EWT denotes the amount of time that a group of 
passengers are willing to wait before any 'dissatisfaction' is incurred, taken as 60 sec-
onds in this paper. Tfirst is the time interval to the arrival of the 1st train. A linear dis-
satisfaction measure represents the dissatisfaction of passengers up to the point where 
the first train arrives (under a periodic planning timetable without real time opera-
tional adjustment, this is taken as the dispatch interval). If passengers cannot get onto 
the first train that arrives due to congestion, the waiting time dissatisfaction index will 
increase in a quadratic manner (implied by the α(t)2 term). 

To reflect the total traveling time 'dissatisfaction', we propose an actual to shortest 
journey time ratio. The shortest journey time is calculated based on the summation of 
minimum run times and the minimum dwell time allowable at each station respec-
tively. The ASJR definition is: 

Time Travel TotalShortest 

Time Travel Total Actual=ASJR  (5) 

where the shortest total travel time can be deemed the 'expected' total traveling time 
of the passengers. 

Under certain operating range, each of the two service qualities is found to be con-
tradictory with the operating cost. Shortening the run time between each station to 
shorten the traveling time, for example, leads to an increase in electrical energy con-
sumption [15], which in turn increases the operating cost.  Reducing the waiting time 
by increasing the dispatch intervals increases the number of trains in the system and 
increases the operating cost as well.  The aim of applying NSGAII-DE is to discover 
the range where each service quality is found to have a conflicting relationship with 
operating cost. This will facilitate the decision making process for implementation 
considerations. 

Detailed definition of operating cost as well as the passenger flow model equations 
can be found in [9]. Note that the cost coefficients have to be changed to protect the 
privacy of the study system and the cost values should by no means be interpreted to 
represent the true values. 

4.2   Decision Variables, Constraints and Other Settings 

The decision variables to be optimized are dispatch frequencies, dwell times (stopping 
times) at each station as well as coast levels between each section track relating run-
ning time to the electrical energy consumption. Some of the constants relating to 
maximum train capacity and allowable passenger build-up on each station are summa-
rized in Table 4. Besides the constant parameters, constraints on the bounds on each 
decision variable and the safety distances allowable between trains apply. Interested 
readers are encouraged to read [9] for a more detailed description of the problem. 
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The optimization parameters are presented in Table 5. The population size of 100 
and the maximum iterations are determined after trials are conducted. The mutation, 
crossover distribution index and other parameters are unchanged as in the test case 
studies. 

Table 4. Constant parameters used in the scheduling model 

Parameters Values 
Expected waiting time EWT 60 seconds 
Maximum train capacity TMAX 1500 passengers 
Shortest possible total traveling time (dir1) 3163 seconds 
Shortest possible total traveling time (dir2) 3154 seconds 
Maximum allowable passenger build-up on each station (PMAX) 1000 passengers 

Table 5. Optimization parameters 

Algorithm ηm ηc F λ Coding 
Population 
Size 

Max Iteration 

NSGA II 20 20 - - Real 100 2500 
NSGA II-
DE 

20 20 0.8 1 Real 100 2500 

4.3   Pareto-Fronts Generated 

Multiple runs are conducted for each algorithm to determine its consistency. The av-
erage and best results for each algorithm are presented. The average results are plotted 
to provide insight in terms of the consistency of the Pareto-optimal solutions. 

Two sets of Pareto-fronts generated in Figs.2 and 3 demonstrate the superiority of 
the proposed NSGA II-DE technique over NSGA II. NSGA II-DE is seen to clearly 
dominate NSGA II solutions for both situations. Moreover, slight deviations were 
noted for the average results and best results for NSGA II-DE as compared to NSGA 
II for both Figs.2 and 3. 

1.2 1.4 1.6 1.8 2

x 10
5

0

5

10

15

20

25

30

Operating Cost

To
ta

l w
ai

ti
n
g
 t
im

e 
di

ss
at

is
fa

ct
io

n
 in

d
ex

 

 

NSGA II (best)
NSGA II-DE (best)
NSGA II (ave)
NSGA II-DE(ave)

 

Fig. 2. Pareto plots of operating cost vs. total waiting time dissatisfaction 
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Fig. 3. Pareto plots of operating cost vs. actual to shortest journey time ratio 

4.4   Summary of Results and Physical Implications 

The two figures display the 'trade-off' relationships between each service quality and 
the corresponding range of operating cost. Operating cost trading off with the total 
waiting dissatisfaction index range from approximately $129000 to $190000, while 
that for actual to shortest journey time ratio is a much shorter range from $126000 to 
$130000. For the purpose of illustration, this paper has optimized each service quality 
with operating cost as two objective problems. The establishment of NSGAII-DE as 
the most appropriate algorithm in this work allows us to extend it to more objectives 
in the future. 

Furthermore, the identification of the trade-off regions for each service quality with 
respect to operating costs provides greater insight into the problem itself for discover-
ing domain knowledge which can be subsequently employed in more objectives to 
shorten the computational time. 

5   Inspection Frequencies Optimization for Substations 

5.1   Background 

Improving overall reliability and reducing operating cost are the two most important 
but often conflicting objectives for substation optimization. A Markov and system re-
liability model are developed to assess the impact of changing inspection frequencies 
of individual component on reliability and operating cost for various substation con-
figurations in [10]. 

At the component-specific level, the deterioration process is modeled with a three-
state Markov process shown in Fig. 4. As time progresses, transitions from one state 
to the next are made. Should proper maintenance be taken after the inspection, the 
component can be restored from deteriorated condition back to a better one. In this 
model, λi,i+1  is the transition rate from state i to i+1, λi, f denotes transition rate from 
state i to failure state, and μi,j represents the transition rate from state i back to j (j<i).  
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Generally speaking, with more frequent inspections and subsequent maintenance 
actions carried out, a component can be restored faster from a more deteriorated state 
to a better state. 

For component n, the expected maintenance cost, ECm,n, and the expected repair 
cost, ECr,n, are calculated using the equations (6) and (7): 
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where EqivalentIi is a product of the state probability and inspection frequency in 
that state, representing the equivalent inspection frequency in state i, and Eqiva-
lentCmk is the equivalent cost of maintenance type k (k=1, 2, 3). Cr is the failure cost 
each time. 

At the system-specific level, the adopted system reliability model was developed to 
assess the composite reliability of power generation and distribution [16], which 
views substation configurations as being connected in series or parallel or a combina-
tion of both. 

The overall cost containing the capital and operating costs and the Loss of Ex-
pected Energy (LOEE) are the two criteria to evaluate the performance of substation 
configurations. 

The overall cost (C) in one substation can be easily calculated by: 

RateCapCECECC
M

n
nrnm ×++=∑

=1
,, )(  (8) 

where CapC is the capital cost, and Rate is the interest and depression rate. M is the 
number of components. 

LOEE is the reliability objective which measures the reliability worth associated 
with the cost of the customers due to the failure, which is expressed as: 

∑
=

××=
m

p
ppp DuLPfLOEE

1

 (9) 

where m is the number of load points in one substation, Pfp is the probability of failure 
at load point p. Lp is the loss of load (MW) due to the failure at load point p, and Dup 
is the duration of failure at load point p. 

5.2   Case Studies 

Two basic substation configurations analyzed in this paper are shown in Fig. 5. The 
capital cost is calculated based on the typical data about the length of bus, number of 
breakers, transformers and other system equipment. Other parameters are set as: Rate 
= 12%, N = 3. The optimization parameters are laid out in Table 6. 
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Fig. 4. Three state Markov model Fig. 5. Typical substation configurations 

Table 6. Optimization parameters (c1—configuraiton 1; c2—congfiguration 2) 

Algorithm ηm ηc F λ Coding Population Size Max Iteration 
NSGA II 20 20 - - Real 110(c1) 120(c2) 65 (c1) 85(c2) 
NSGA IIDE 20 20 0.8 1 Real 110(c1) 120(c2) 65 (c1) 85(c2) 

 
(a) 

 
(b) 

Fig. 6. Pareto plots of LOEE vs. overall cost for (a) configuration 1, and (2) configuration 2 
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5.3   Optimization Results 

The minimization of overall cost (equation (9)) against LOEE (equation (10)) is pre-
sented for the two configurations depicted in Fig 6. The same model with four con-
figurations has been studied in [10]. The two sets of Pareto-fronts generated in Fig.6 
demonstrate the superiority of the proposed NSGA II-DE technique over NSGA II. 
NSGA II-DE is seen to clearly dominate NSGA II solutions for both situations. 

6   Conclusion 

This paper has identified a differential evolution (DE) variant of the NSGA II that is 
well suited to real world applications.  The algorithm, termed NSGAII-DE, was tested 
against three test problems and found to outperform NSGA II in terms of both con-
vergence for KUR and ZDT6 and diversity for all three test problems. The extension 
of the problem to two real world problems, an optimal train scheduling problem and a 
substation optimization problem, demonstrate the effectiveness of this algorithm 
when compared with NSGA II.  
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Abstract. Previous research has shown that artificial immune systems can be 
used to produce robust schedules in a manufacturing environment. The main 
goal is to develop building blocks (antibodies) of partial schedules that can be 
used to construct backup solutions (antigens) when disturbances occur during 
production. The building blocks are created based upon underpinning ideas 
from artificial immune systems and evolved using a genetic algorithm (Phase I). 
Each partial schedule (antibody) is assigned a fitness value and the best partial 
schedules are selected to be converted into complete schedules (antigens). We 
further investigate whether simulated annealing and the great deluge algorithm 
can improve the results when hybridised with our artificial immune system 
(Phase II). We use ten fixed solutions as our target and measure how well we 
cover these specific scenarios.  

Keywords: Artificial immune systems, simulated annealing, great deluge algo- 
rithm, job shop scheduling. 

1   Introduction 

Job shop scheduling problems are concerned with tackling the problem of assigning n 
jobs to m machines and are very well studied. The problem has been addressed using 
several local search techniques such as tabu search, genetic algorithms and simulated 
annealing as observed by Jain and Meeran in [20] who analysed some of the 
techniques used and made comparisons between them. In this paper, we are 
specifically trying to tackle the problem of changing job shop environments. Such 
changes include the unexpected arrival dates of jobs into the factory. If jobs arrive too 
early, it could lead to them being stored for long periods of time and if they arrive 
late, it could cause delays in processing other jobs [12,21]. An efficient method of 
rescheduling is needed to manage the problem. 
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2   Problem Description 

Job shop schedules require constant revision as problems could happen during 
production and delays could cost money and time. For a detailed discussion of job 
shop problems, see [4] and [24]. Rescheduling is important to ensure the production 
can maintain its flow and minimize interruption. A quick solution to such a problem is 
usually very much preferred compared to starting from scratch. This observation 
represents the motivation for this paper. It addresses the goal of being able to generate 
a diverse range of partial schedules that could be used as a replacement in the event of 
changes in a job shop environment. These partial schedules should enable us to 
generate a new complete schedule in order to keep the manufacturing process flowing 
smoothly with a low level of interruption. In this paper, we will employ an artificial 
immune system algorithm to build these partial schedules. We use previous, complete 
schedules (later known as the antigen universe) to build a collection of partial 
schedules. This data stems from [18]: the number of jobs used is 15, assigned to five 
machines. We employ precedence constraints to the jobs when building the partial 
schedules. These partial schedules are then evolved using a genetic algorithm. These 
processes will be explained in Section 3.1. In Section 3.2, we hybridise the newly 
developed artificial immune system with local search to see whether there is 
improvement to the results. 

3   A Hybrid Metaheuristic Model 

Artificial immune systems (AIS) are motivated by immunology. The biological 
immune system defends the body from antigens. It generates antibodies that can 
attack specific antigen. An overview of artificial immune systems research can be 
seen in [2] and [7]. 

Previous research on AIS for scheduling has shown that an AIS model can be used 
in a job shop setting. Different scheduling problems have been addressed including 
the job shop scheduling problem [5,6,13], the hybrid flow shop scheduling problem 
[11] and the job shop rescheduling problem [16,17,18], which is the main concern of 
this paper. Hart and Ross [17], in their research, tackled this problem by building a 
block of partial schedules. There are many definitions given to the antibody and the 
antigen for the problem, which are used to build the partial schedules. We are 
employing the definition given by Hart and Ross in [17]. The key definitions used in 
this research are outlined below: 

• An antigen is defined as “the sequence of jobs on a particular machine given a 
particular scenario” [17], which represents a full schedule for the problem. The 
antigens are represented by a sequence of numbers of length 15 for the problem 
tested here. 

• An antibody is defined as “a short sequence of jobs that is common to more than 
one schedule” [17], which is also known as a partial schedule. The antibodies are 
represented by sequences of numbers of length 5, where the length of an antibody 
is less than the length of an antigen. 
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• An antigen universe is considered to be a collection of antigens (sequence of 
jobs) to be matched with the antibodies (partial schedules). An antigen universe 
has to be prepared before we can build an antibody population. 

• An antibody population is a collection of partial schedules constructed from gene 
libraries. 

• Gene libraries consist of genotypes [19,23]. The gene libraries in this research are 
constructed from all the antigens in the antigen universe.  

• A final population consists of a collection of best antibodies. When we hybridise 
our AIS model with a local search method, the final population from our AIS 
model will be the initial solutions to the local search method. 

• Fitness represents the value assigned to each antibody in the antibody population 
to evaluate the coverage of an antibody over the antigens. The higher the fitness, 
the better an antibody will be. 

We have divided our work into two phases. In the first phase, an AIS model is used 
to generate the antibody population, with l = 5 where l is the length of an antibody. A 
genetic algorithm is then used to evolve the antibodies. The idea is that only the 
antibodies with the highest fitness (i.e. the best antibodies) that have most of the jobs 
matched with the antigens will be kept in the final population. It is important to note 
here that we used a genetic algorithm to evolve the antibody population as used in 
[17,18]. We modified the algorithm in [17,18] with the aim of improving the results. 
The simulated annealing and great deluge algorithms are then applied respectively in 
the second phase by using the best antibodies selected in the first phase (final 
population) as initial solutions. In this research, we are using the parameters adapted 
from [3]. The aim is to investigate if we can improve the fitness of the antibodies 
developed in the final population in Phase I as both local search methods have been 
known to produce good results for other scheduling problems such as examination 
timetabling (e.g. [3,8]).  

3.1   Phase I: The Artificial Immune System Model 

Before we generate the antibody populations, we need to have an antigen universe. 
The antigen universe for this research is the same as that used by Hart and Ross [18], 
which is based on a benchmark problem by Morton and Pentico [22]. The number of 
jobs used in this problem is 15 and the jobs have to be assigned to five machines. Hart 
and Ross created ten test scenarios by mutating the arrival dates of the jobs to a 
random date between 0 – 300 with a probability of 0.2. The arrival dates must not be 
less than pt days before the due date, where pt is the processing time of the job. A 
genetic algorithm developed by Fang et al [12] is used to generate five schedules for 
each of these test-scenarios. This resulted in five sets of ten schedules; one for each 
machine, and these schedules became the antigen universe for this research. This 
research uses the antigen universe generated from one of the machines with the 
assumption that all machines have a similar pattern of jobs.  

Generating the Antibody Population. The first step in this model is to generate an 
antibody population (a collection of antibodies) from gene libraries [6,17,18,26]. The 
gene libraries in this research are constructed from all the antigens in the antigen 
universe. The antigens are divided into five libraries, where each library consists of 
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ten partial schedules of size 3 also known as components. An antibody for this 
research is constructed based on a modular design method [14,19,23,25] where the 
length of each antibody is 1/3 the length of each antigen. We are using a small size 
problem because we are interested in evolving the antibodies using the AIS algorithm 
and hybridising the model with a local search method to see if we can improve the 
results. In our future work, a larger size of problem will be used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Constructing an antibody from gene libraries  

In the example in Figure 1, the gene libraries consist of four libraries and each 
library contains three components. Three jobs are allocated in each component. 
Following the modular design method, there are several ways to combine the 
components from gene libraries to produce an antibody. In Figure 1, we select the 
first component from Library 1 and combine it with the second component from 
Library 2 to produce an antibody. Since the length of an antibody is 5 jobs, a possible 
combination between components in Library 1and Library 2  
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can be constructed from this example, where n1 and n2 represent the number of jobs in 
the components from the first and second library, respectively, and r1 and r2 represent 
the number of jobs to be selected from the components (r1 + r2 = 5). In Figure 1, we 
can see a combination of three jobs from the first component and two jobs from the 
second component. Therefore, jobs 1, 2 and 7 from the first component in Library 1 
are combined with jobs 6 and 8 selected from the second component in Library 2. We 
can get other combinations from these two components using (1) above to generate an 
antibody population. This process is repeated until all the components in Library 1 
have been combined with all the components in Library 2 as well as all the other 
libraries. 
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We also have to ensure that there will be no duplicate jobs in the antibody. We 
compare each antibody generated in the population and eliminate the antibodies with 
duplicated jobs. The process will go on until a population of antibodies is generated. 
By doing this, we develop a level of antibody diversity.  

We generate three types of antibody populations: 

1. A population with antibody duplication (we can have several similar antibodies in 
one population) – Type A (4514 antibodies) 

2. A population with no antibody duplication regardless of the source gene libraries 
(no similar antibodies in one population) – Type B (2416 antibodies) 

3. A population with antibody duplication (only when the antibodies are constructed 
from different source libraries) – Type C (2839 antibodies) 

We generated these versions to see whether having a large number of similar 
antibodies in one population would affect the coverage of the antigen universe by the 
antibody population. An initial antibody population of size 100 is selected randomly.  

The Matching Function. A matching function is used as the evaluation function 
within the genetic algorithm to calculate the fitness of each antibody in the antibody 
population. A sample of antigens is first selected from the antigen universe. Each 
antibody is then matched against each of the antigens selected by aligning an antigen 
string with an antibody string and calculating a matching score.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The process of matching an antibody with an antigen by aligning the antibody at every 
possible alignment position 

Based on the example in Figure 2, if there is an antigen string ‘1 2 7 4 3 9 6 8 14 5 
13 12 10 11 15’, and an antibody string ‘4 3 9 5 12’, we have to align the antibody at 
every possible alignment position with the antigen gene by gene in order to calculate 
a matching score. A matching score is calculated by summing up the scores from the 
matches where a match of each position contributes a score of five. Therefore, based 
on the number of matches between both the antibody and the antigen, the matching 
score for the example given above is 15, which is the best possible match found 
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                                                                                                                   Score 
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(highest matching score) by this process. Since an antibody is matched with each of 
the antigens in the sample, if the antibody is matched against more than one antigen, a 
total matching score for the antibody is arrived at by summing up the highest 
matching scores of matching the antibody with each of the antigens in the previous 
process. 

Hart and Ross [17] selected certain samples of antibodies from the antibody 
population to be matched with a sample of antigens and repeated the matching 
process for a certain number of iterations based on the number of antigens selected. In 
our algorithm, we matched all the antibodies in the population with the antigens and 
ran the matching process only once. We would also like to note that, for our 
preliminary experiments, we did not include any wildcard genes in any antibody in 
the antibody population as we wanted to see the exact fitness of the antibodies as we 
matched them with the antigens. In [17], the authors allow a wild card match between 
the antibody and the antigen. A wild card is used as a substitute to any job. 

Crossover and Mutation. A genetic algorithm was implemented based on GENESIS 
[15] and this was used to evolve the antibody population. We used an order-based 
crossover operator, as it can ensure no job duplication in an antibody for any 
relationship between two parent antibodies. During crossover, we applied tournament 
selection to select the best antibody to be included in the next generation. We 
evaluated the fitness of the children produced and compared their fitness with the 
fitness of the parents. If the children had lower fitness than the parents, they were 
discarded, and the parents were selected for inclusion in the next generation. Only the 
best antibodies, i.e. antibodies with the highest fitness, were considered for the next 
generation. A mutation operator, which randomly mutates each gene with a 
probability of 0.2, was also applied as used in [17]. 

3.2   Phase II: Simulated Annealing and the Great Deluge Algorithm 

In the second phase, we apply local search methods on the final population generated 
from the first phase to improve the fitness of the antibodies. 

Simulated Annealing. The simulated annealing algorithm is well studied and an 
overview and description is presented in [1].  

As mentioned above, the initial solution for this algorithm is provided by the final 
population developed using the model described in Section 3.1. We set the initial 
temperature T0 to 5000 and the final temperature Tf  to 0.05. The temperature will be 
decreased by α, where α is defined as 0.98 which has been found to be an effective 
value in the literature [8,9,27]. 

While the current temperature is greater than the final temperature, new antibodies, 
Abnew are generated. This is done by applying two different operators, respectively in 
two different experiments; changing one job in Ab or swapping two jobs in Ab, where 
Ab represents the antibodies in the antibody population. The fitness of each antibody 
is then calculated using the same matching function as applied in the artificial 
immune system model.  The new antibody will be kept if the fitness of the new 
antibody is better than the fitness of the current best antibody in the antibody 
population. Otherwise, it is accepted with a probability of e-δ/T. Here, δ is defined as 
the difference between the fitness of the new antibody and the old antibody. We also 
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record the best antibody found overall. This is included in the antibody population 
(final solution) if it is better than the original antibody. 

The Great Deluge Algorithm. Dueck [10] introduced the Great Deluge algorithm in 
1993. This algorithm is similar to Simulated Annealing but it has a different 
acceptance process for worse solutions. The control parameter in this algorithm is 
called a level or boundary. A worse solution is still acceptable as long as it is within 
the boundary, which, at the beginning, is set to the fitness of the initial solution. The 
boundary is then decreased by a fixed decay rate, β, at every iteration of the search. 

The initial solution for this algorithm is also provided by the final population 
generated using the artificial immune system model in Phase I. Here we set the number 
of iterations, iter to 120, which is the possible number of new antibodies generated by 
an antibody. We also set the estimated quality of the final solution, f(EQ), which is the 
maximum fitness value for an antibody, depending on the number of antigens selected 
in the matching function. If the number of antigens selected is one, the maximum fitness 
value for f(EQ) is 25. This estimated quality represents the final estimated fitness value 
of an antibody. The boundary to the fitness of each antibody known as boundary is 
decreased by a decreasing rate, β [3] which is defined as follows: 

β = (f(Ab) – f(EQ)) / iter . (2) 

While the number of iterations does not exceed iter, new antibodies are generated 
by using the same two operators used in the simulated annealing algorithm. We then 
calculate the fitness of each new antibody generated, f(Ab), by using the same 
matching function as described in Phase I. A new antibody which is worse than the 
old one will only be accepted if its fitness is less than the boundary. This loop will 
also stop if there is no more improvement within a fixed number of iterations. 

4   Experiments and Results 

As described in Section 3.1, Hart and Ross created ten test scenarios from a base 
problem, jb11, taken from Morton and Pentico [18,22] and the schedules generated 
from the problem became the antigen universe for this research. We generate three 
types of antibody populations in order to determine whether having a large number of 
similar antibodies in one population would affect the coverage of the antigen universe 
by the antibody population. Our program was coded in C and the experiments were 
executed on a PC in Windows XP environment with a Pentium 4-2.4 GHz processor 
and 512 MB RAM. 

In the first phase, an initial population of size 100 was selected randomly for each 
type of antibody population and these populations were evolved using a genetic 
algorithm for 250 generations, with a crossover rate of 0.7 as used in [17]. We used two 
mutation rates in the experiments. A mutation rate of 0.2 is employed as it is the same 
parameter used in [17] and, therefore, it is easier for us to make a comparison with those 
results. We then used a mutation rate of 0.001 as this gave us a steady growth of the 
fitness of the antibodies in the antibody population. The antibodies evolved here were 
the antibodies with the highest fitness value in each generation. At the end of the 
generation, the antibody library should consist of a collection of general and specific 
antibodies, which could either match many antigens or only one specific antigen. 
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Tables 1 and 2 show the average number of antigens that cannot be matched by 
any antibody for a matching threshold ranging from 2 to 5. A matching threshold, tm, 
is a guideline on when we can determine whether an antibody and antigen are 
matched. The number of genes to bind or match must be greater or equal to the 
threshold value of tm [17]. This experiment tests the coverage of the antigen universe 
by the antibody population. Table 1 shows the results of the experiment by Hart and 
Ross [17]. Table 2 shows the results of our experiments performed on final 
populations generated from the antibody population Type A, Type B and Type C, 
respectively (from Phase I) with a mutation rate of 0.2.  

Table 1. Average number of antigens (out of a possible 10) not matched by any antibody as 
generated by Hart and Ross [17] 

Ag = 1 Ag = 4 Ag = 8 

Ab Ab Ab 
Match 
Thres-
hold 

5 10 30 5 10 30 5 10 30 

2 0.9 0.0 0.0 2.2 0.9 0.0 3.5 2.5 0.9 

3 5.3 2.6 1.6 5.4 3.2 2.0 5.5 4.7 4.1 

4 8.7 7.1 5.2 7.8 7.3 6.3 8.6 8.1 8.2 

5 9.7 9.5 8.8 9.5 9.5 8.7 9.7 9.6 9.5 

 
In Table 1, the results from Hart and Ross managed to create a trend where the 

average number of antigens not matched by any antibody decreases as the size of the 
antibody samples, s increases from 5 to 30. The results in Table 2 are in line with the 
trend where the average number of unmatched antigens still decreases when the 
whole population is matched against the antigens. However, the main difference 
between the results compared to Hart and Ross’s was that as we increase the number 
of antigens, the average number of antigens that cannot be matched by any antibody 
decreases. While the result in [17] could be interpreted as evidence that more specific 
antibodies have been produced, we believe that, as we expose more antigens to the 
antibodies, the fitness of the antibodies would increase and therefore would result in 
more antigens getting matched or recognized. Therefore with our model, we can 
produce partial schedules that can be used as replacement to an actual schedule when 
disturbances occur. 

We also ran experiments to see if our Phase II could improve the results. Two 
different sets of experiments have been carried out, where we use the final 
populations generated using our artificial immune system as initial solutions to the 
simulated annealing and the great deluge algorithms separately (Phase II). Ten 
different sets of antibody populations (initial solutions) were used for each sample of 
antigens. The final populations generated from this phase were then matched with all 
the existing ten antigens to illustrate the diversity of the antibodies/partial schedules 
created. Two different operators were tested. As the operator swapping two jobs 
generated similar results, we present only the results tested with the operator of 
changing one job in each antibody.  
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Table 2. Average number of antigens (out of a possible 10) not matched by any antibody 
(modified algorithm for AIS) 

Ab = 100 

Type A Type B Type C 

Ag Ag Ag 

Match 
Thres-
hold 

1 4 8 1 4 8 1 4 8 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.4 0.0 0.0 0.9 0.1 0.0 0.8 0.1 0.0 

4 6.5 3.6 1.3 6.2 3.4 1.4 6.6 3.2 1.3 

5 8.5 6.3 4.7 8.3 6.6 5.3 8.2 7.1 5.8 

Table 3. Average number of antigens (out of a possible 10) not matched by any antibody in 
population Type A (for New AIS (our artificial immune system), AIS+SA (our artificial 
immune system hybridised with the simulated annealing algorithm) and AIS+GD (our artificial 
immune system hybridised with the great deluge algorithm)) 

Ab = 100 

New AIS AIS + SA AIS + GD 

Ag Ag Ag 

Match 
Thres-
hold 

1 4 8 1 4 8 1 4 8 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.6 0.1 0.0 1.5 0.3 0.0 1.4 0.4 0.0 

4 6.8 3.0 1.0 6.6 4.7 0.6 6.5 4.0 1.4 

5 7.9 6.0 4.4 8.3 5.3 3.5 8.2 5.1 4.8 
Fitness 
Diff. 
(%)    

28.5 11.7 4.8 28.8 10.7 4.7 

The results depicted in Table 3 are the average number of antigens not matched by 
any antibody for both hybrid models compared to the artificial immune system alone 
with a mutation rate of 0.001 on antibody population Type A. We also show the 
percentage of the fitness improvement on antibodies generated using the hybrid 
search algorithm compared with the fitness of the antibodies generated using our new 
artificial immune system algorithm in the table. It is important to note that the time 
taken to generate initial antibody populations is less than one minute. The time taken 
to get a final population (antibody population) using our artificial immune system 
algorithm (from Phase I) is between one to two minutes while the time taken to get a 
final solution (antibody population) using a hybrid with the simulated annealing and 
great deluge algorithms, respectively (Phase II) is one minute or less. This applies to 
any parameter used to evolve the final populations. We believe this is due to the 
cooling schedule that is used in the simulated annealing algorithm and the number of 
iterations set in the great deluge algorithm. 
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The results of the experiments show, not surprisingly, that the hybrid search 
algorithms do improve on the artificial immune system algorithm developed in [17] 
and in this research. However, the hybrid algorithm does not improve the coverage of 
the antigen universe compared to our artificial immune system algorithm alone except 
for certain combinations of the number of antigens and the matching threshold. This 
is probably due to the large number of general antibodies (partial schedules) produced 
using the artificial immune system that can be matched with most of the antigens. 
Both hybrid models produced more specific antibodies and, therefore, could not cover 
most of the antigens.  

The fitness of the antibodies in the population, however, does improve, as depicted 
in the last row in Table 3. Here we total up the fitness of all the antibodies in all ten 
different sets of antibody populations for each sample of antigens for both hybrid 
search algorithms and our artificial immune system algorithm. The fitness of the 
whole antibody populations generated using the hybrid simulated annealing and the 
hybrid great deluge algorithm, respectively increases by more than 28% over the 
antibodies using the artificial immune system alone. However, the percentage drops 
gradually as the number of antigens selected increases.   

5   Conclusion 

This paper has solved a simple job shop scheduling problem. We have developed an 
artificial immune system model by drawing upon the research in [17,18]. Our 
empirical results represent an improvement upon those in [17,18]. We also 
investigated the use of local search methods to further improve the partial schedules 
developed in the antibody population. The results obtained indicated that the 
hybridisation of our artificial immune system approach with simulated annealing and 
great deluge, respectively, did not yield improvement in terms of the coverage of the 
antigen universe. However, they did improve the fitness of the antibodies produced in 
the population. This is important, as we need to provide a range of good partial 
schedules that can be used to replace certain jobs in the actual schedule when we have 
changes in the arrival dates of the jobs. We will also use the results as a platform for 
our future work on hyper heuristic. For the problem, the antibodies will represent a 
sequence of low level heuristic.  
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Abstract. Extremal optimisation (EO) is a relatively new meta-
heuristic technique that is based on the principles of self organising
criticality. It allows for a poorly performing solution component to be
removed at each iteration of the algorithm and be replaced by a random
one. Over time, improvements emerge and the system is driven towards
good quality solutions. There has been very little literature concerning
EO and combinatorial optimisation and relatively few computational
results have been reported. In this paper, an enhanced model of EO,
which allows the traversal feasible and infeasible spaces, is presented.
This improved version is able to operate on single solutions as well as
populations of solutions. In addition to local search, a simple partial fea-
sibility restoration heuristic is introduced. The computational results for
the generalised assignment problem indicate that it provides significantly
better quality solutions over a sophisticated ant colony optimisation im-
plementation.

Keywords: extremal optimisation, generalised assignment problem.

1 Introduction

The idea of self-organising criticality (SOC) has been an important part of biol-
ogy and evolutionary theory for a number of years. It is only recently that these
concepts have been applied to solving optimisation problems [1]. One of the main
expressions of these ideas has been by Boettcher and Percus [1, 3] in the form
of Extremal Optimisation (EO). The following is a representative sample of the
work in this area.

In terms of benchmark problems, Boettcher and Percus [1, 3] have described
and carried out only limited experimentation on the travelling salesman problem
(TSP). More successful application has been in graph (bi)partitioning [1] and
the MAX-CUT problems [3]. For these at least, EO can locate optimal and near
optimal solutions and is comparable to other meta-heuristics.

Beyond the original applications, some work has been done to adapt the
standard EO algorithm to dynamic combinatorial optimisation. As an example,
Moser and Hendtlass [11, 12] apply EO to a dynamic version of the composition
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problem. During the course of solving the problem with EO, the problem may
undergo a variety of transformations to its structure and/or data. Despite the
EO solver not being made aware of specific changes, it is able to adapt to them
more readily than a standard ACS solver. This, however, was the reverse for the
static version of the problem.

Randall and Lewis [15] present an extended form of EO. A controlling heuristic
is used to manage a number of EO solutions. This is referred to as evolution-
ary population dynamics (EPD). Experiments on multi-dimensional knapsack
problem instances showed that EO with EPD achieved equal or better results
than EO alone on almost all tests cases (in one case it was slightly worse, with a
difference of only 1%). On all test cases EO with EPD also achieved its results
in less time. On average, EO required 80% more time to obtain generally poorer
results. The results using EO with EPD were also compared with tests using a
standard ant colony optimisation (ACO) solver. EO with EPD was been found
to deliver near-optimal results faster than the existing ACO algorithm, and the
speed of the algorithm could be expected to improve for larger problem sizes.

For EO to be widely adopted for combinatorial problems, it needs to be shown
that it is capable of being competitive with other meta-heuristics. The enhance-
ments to EO outlined in this paper demonstrate this. The remainder is organised
as follows. Section 2 gives an overview of EO. Section 3 describes some enhance-
ments to EO. In simple terms, these are the ability to move between feasible
and infeasible space (while being driven towards the former) and a population
approach. The results across a set of generalised assignment problems (GAPs)
are discussed in Section 4. Finally, the conclusions and future research directions
are given in Section 5.

2 Extremal Optimisation

Extremal optimisation is one of a number of emerging biologically inspired
metaphors for solving combinatorial optimisation problems. As it is relatively
new in the field, compared to more established techniques such as ant colony op-
timisation [6], genetic algorithms [7] and particle swarm optimisation [8], there
exists wide scope to apply and to extend this meta-heuristic.

Boettcher and Percus [1, 3, 4] describe the general tenets of EO. Nature
can be seen as an optimising system in which the aim is to allow competitive
species to populate environments. In the course of the evolutionary process,
successful species will have the ability to adapt to changing conditions while
the less successful will suffer and may become extinct. This notion extends to
the genetic level as well. Poorly performing genes are replaced using random
mutation. Over time, if the species does not become extinct, its overall fitness
will increase.

For combinatorial optimisation problems, the genes represent solution com-
ponents. To illustrate the operation of EO, the TSP is used. This is because it is
a well-known benchmark problem; has been studied extensively in the literature
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and is one of the few problems that has been solved by EO. The application to
the target problem, the GAP, is dealt with in detail in the next section.

In the case of the TSP, solution components are the cities that make up a
tour. In the original EO algorithm, the worst component would be replaced by
one generated at random. The worst component is the city which is connected
to its two furthest neighbours (given by ranks). However, as the performance
of this version of the algorithm was unacceptable, τ -EO was introduced [3]. In
this form a poor component is chosen probabilistically. This is achieved using a
parameter τ and Equation 1.

Pi = i−τ 1 ≤ i ≤ n (1)

Where:

i is the rank of the component,
Pi is the probability (Pi = [0, 1]) that component i is chosen and
n is the number of components.

Ranking components from worst to best (i.e., rank one is given to the worst
component), roulette wheel selection is used to choose the component to replace.
For permutation problems such as the TSP, the way to replace the chosen node
is not immediately obvious. Choosing a random node to swap this one with is
likely to produce a worse result. To increase the chance of a better solution
being produced, the worst edge connecting this node is first chosen and deleted.
The node is then reconnected to its probabilistically chosen best neighbour. The
third edge from this node (i.e., the one needed to be removed to ensure a valid
permutation) is removed. The two remaining nodes that only have one edge each
are then connected together, ensuring a valid permutation.

The entire procedure is repeated for a user-specified number of iterations, or
until the search obtains a particular solution quality.

3 Some EO Enhancements

The enhancements to EO will be discussed in terms of the test application prob-
lem, the GAP. Their applicability, however, is much wider than just this prob-
lem. In particular, the emphasis is on constrained problems - other examples of
which are bin packing, graph colouring, knapsack, scheduling and timetabling.
The generalised assignment problem [10] is a problem in which jobs are assigned
to agents for these agents to perform subject to capacity constraints. Each job
may be performed by one agent only. The aim is to minimise the total cost of
assigning the jobs to the set of agents. Its mathematical formulation is given in
Equations 2-5.

Minimise
N∑

i=1

M∑

j=1

cijxij (2)

s.t.
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N∑

i=1

aijxij ≤ bj ∀j 1 ≤ j ≤ M (3)

M∑

j=1

xij = 1 ∀i 1 ≤ i ≤ N (4)

xij ∈ {0, 1} ∀i 1 ≤ i ≤ N ∀j 1 ≤ j ≤ M (5)

Where:

cij is the cost of assigning job i to agent j,
aij is the resource required by agent j to perform job i,
xij is 1 if job i is assigned to agent j, 0 otherwise,
bj is the capacity of agent j,
M is the number of agents and
N is the number of jobs.

3.1 Moving Between Feasible and Infeasible Space

EO’s initial applications to combinatorial optimisation problems (such as the
TSP) were not promising, with results being not competitive with other heuris-
tics. Problems for which the solution is a permutation, such as the TSP and
quadratic assignment problem, are particularly problematic. These types of prob-
lems often require omplex sets of movements in search space to ensure that an-
other permutation can be produced. This somewhat strict approach of forcing
solutions to be structurally feasible often results in a decrease in overall solution
quality.

For problems that do not possess such structural properties, but have capacity
type constraints, EO is a natural fit. As EO only makes a small change at each
iteration - allowing many transitions to be made in computationally reasonable
time - it may not matter that the solution is feasible at all times. Overall,
many feasible solutions will be still produced. At each iteration of the algorithm,
the component to be changed will depend on whether the solution is currently
feasible or infeasible:

– A feasible solution - In essence, a probabilistic greedy move is performed in
order to optimise the objective function. This is done by changing a high cost
job-to-agent assignment to a random agent. As a result of this transition, it
is possible that an infeasible solution has been produced.

– An infeasible solution - The focus changes to moving the solution back to
a feasible state. As such, a component to change is chosen according to the
amount of infeasibility it contributes to the solution. This is the amount
of resource that the job-agent pairing requires - i.e., the higher this value,
the more likely it is to be chosen. Initial experimentation revealed that the
search process spent a great number of iterations in infeasible space. There-
fore, a simple, non-degenerative, parameter-free heuristic was devised (see
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Algorithm 1) that would reduce the amount of infeasibility of a solution.
This is only a partial feasibility restoration algorithm and has a computa-
tional complexity of only O(MN). It does not need to guarantee feasibility
because of EO’s own ability to move back to feasible space. It’s use is akin
to local search for feasible solutions.

Algorithm 1. The partial feasibility restoration algorithm for the GAP.
for all agents do

if this agent is overloaded (infeasible) then
Determine the job whose resource requirement most closely matches that of this
agent’s amount of infeasibility
Find a new agent that can take this job without becoming infeasible
if such an agent exists then

Update the solution and it’s cost
else

Do nothing
end if

end if
end for

3.2 Local Search

Local search is solely driven toward optimising the objective function, moving
only in feasible space, and making purely greedy moves. As such, it is in con-
trast to the balanced EO strategy described previously. However, it is useful for
obtaining locally optimal solutions which cannot be guaranteed by EO.

For the GAP, in which the overall costs of assignment of jobs to agents, two
possible operations exist. “Move” moves an item from one group to another. The
job and agent are chosen such that the (negative) change in the objective function
is the greatest. This is a variable length search stopping when an improving move
cannot be found. “Swap” works in a similar way except that at each iteration, two
items are chosen such that their swap will lead to the most improvement in the
objective function. The combination of the two operators hass been shown to be
more effective than when either is used alone (see for example Randall [13, 14]).

3.3 Population of EO Solutions

According to the principles of the Bak-Sneppen model of evolution, the weakest
member of a population and its closest neighbours die and are replaced by new
members. A simple computational model of this behaviour can be used to extend
EO to being a population based approach. It is implemented in the following
way:

1. Create a population of EO solutions (rather than just the normal single
solution).

2. Allow all of the solutions to be changed according to EO principles.
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3. At every pre-determined iteration count for which each population member
has completed N EO operations, select the member with the worst solution
cost. Also choose its two closest neighbours (in terms of number of common
solution components).

4. Replace these three solutions with ones generated at random.
5. Resume the search process.

This approach represents a simplification of the EPSOC (Evolutionary Pro-
gramming using Self Organising Criticality) algorithm [9, 15]. The only extra
parameter that the new population EO requires is the population size.

4 Computational Experiments

The computing platform used to perform the experiments is a 3GHz Pentium 4
based PC. Each problem instance is run across ten random seeds. The experi-
mental programs are coded in the C language and compiled with gcc. The only
two EO parameters are τ and the number of iterations it is to run for. τ is set as
1.5 (a value consistent with Boettcher and Percus [2]), while the latter is 500,000.
This value is the same as used by Randall and Lewis [15]. Additionally it is an
underestimate of the equivalent steps used by Randall’s [14] ACO implementa-
tions. These used 3000 iterative colonies having ten ants each and performing N
constructive steps. Given the lower value of N = 100, this equates to 3,000,000
EO transitions. It must be borne in mind, however, that EO accesses local search
more frequently than ACO.

The test suite of problems is the large-sized set of Chu and Beasley [5]. The
definitions are as follows and are reproduced from this work. Generally, the type

Table 1. The problem instances used in this study. Note that the first number in the
name represents the number of agents while the second is the number of jobs. For
instance, ‘A5-100’ is of Type A with 5 agents and 100 jobs.

Instance Best known Instance Best known
cost cost

A5-100 1698 C5-100 1931
A5-200 3235 C5-200 3458
A10-100 1360 C10-100 1403
A10-200 2623 C10-200 2814
A20-100 1158 C20-100 1244
A20-200 2339 C20-200 2397
B5-100 1843 D5-100 6373
B5-200 3553 D5-200 12796
B10-100 1407 D10-100 6379
B10-200 2831 D10-200 12601
B20-100 1166 D20-100 6269
B20-200 2340 D20-200 12452
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A problems are the easiest to solve while the D problems are the hardest (as they
are the most constrained). The characteristics of each of the problem instances
are given in Table 1.

Type A: aij are integers from U(5, 25), cij are integers fromU(10, 50)
and bi = 0.6( n

m )15+ 0.4R where R = maxi∈I

∑
j∈J,Ij=i aij and Ij =

min[i | cij ≤ ckj , ∀k ∈ I].
Type B: aij and cij are the same as Type A and bi is set to70% of
the value given in Type A.
Type C: aij and cij are the same as Type A and bi = 0.8

∑
j∈J

aij

m .
Type D: aij are integers from U(1, 100), cij = 111 − aij + e where e
are integers from U(−10, 10) and bi = 0.8

∑
j∈J

aij

m .

Table 2. The cost results of running the four variants of EO. These are for the entire
problem set across ten random seeds. The results are represented as relative percentage
differences (RPDs) from the optimal cost. RPD is given as a−b

b
× 100 where a is the

best cost achieved in a run and b is the optimal cost of the problem instance. Note that
‘Min’, ‘Med’ and ‘Max’ denote minimum, median and maximum respectively. ‘ls’ refers
to the local search heuristic and ‘pfr’ is the partial feasibility restoration algorithm.
Bolded items indicate the best result for combination and measure.

ls off, pfr off ls off, pfr on ls on, pfr off ls on, pfr on
Problem Min Med Max Min Med Max Min Med Max Min Med Max

A5-100 4.42 4.98 5.65 7.01 8.69 11.43 0 0 0 0 0 0
A5-200 4.05 4.85 5.22 5.5 6.12 7.11 0 0 0 0 0 0
A10-100 5.96 7.17 7.5 5.44 6.14 6.69 0 0 0 0 0 0
A10-200 5.26 5.66 5.91 5.34 5.87 6.14 0 0 0 0 0 0
A20-100 11.83 13.17 13.56 13.82 14.98 16.41 0 0 0 0 0 0
A20-200 7.65 8.61 9.32 9.36 10.99 11.37 0 0 0 0 0 0
B5-100 16.33 17.39 19.37 15.63 17.77 18.29 1.36 1.71 1.95 0.71 1.03 1.41
B5-200 11.54 12.86 14.07 18.18 19.69 20.8 1.91 2.14 2.45 0.42 0.48 0.56
B10-100 17.77 20.97 21.96 22.89 24.02 25.66 0 0.07 0.14 0 0 0
B10-200 19.64 21.03 21.62 29.28 33.36 34.23 1.06 1.8 1.98 0.6 0.76 1.02
B20-100 27.7 30.66 31.56 29.33 32.72 33.36 0.17 0.39 0.51 0.09 0.17 0.26
B20-200 19.23 20.51 21.71 40.21 41.86 43.68 0.3 0.43 0.51 0.17 0.21 0.26
C5-100 12.12 13.15 14.66 14.45 16.24 17.45 0.57 1.04 1.24 0.36 0.6 0.78
C5-200 12.9 13.69 13.91 20.71 22.33 22.99 1.3 1.74 2.34 0.29 0.52 0.67
C10-100 28.08 31.93 33.43 23.31 27.33 29.72 1.35 2.07 2.21 0.71 1.1 1.28
C10-200 15.81 16.68 17.87 28.71 30.69 31.17 1.53 1.71 2.03 0.46 0.82 1.03
C20-100 45.74 53.05 55.71 31.35 34.28 36.82 1.61 2.17 2.73 0.72 1.05 1.13
C20-200 28.79 30.14 32.17 41.97 45.62 46.93 1.96 2.09 2.29 0.92 1.17 1.29
D5-100 6.5 7.45 8.39 5.37 5.64 5.87 2.43 2.93 3.17 1.37 1.54 1.65
D5-200 7.46 7.72 8.07 6.46 6.7 6.89 2.88 3.1 3.33 1.52 1.63 1.71
D10-100 13.54 14.59 15.6 8.29 8.58 8.87 2.82 3.29 3.54 2.15 2.56 2.76
D10-200 12.07 12.6 13.15 8.49 8.65 8.97 1.84 2.07 2.39 1.24 1.54 1.6
D20-100 23.26 24.53 24.76 8.17 8.53 8.82 2.81 3.19 3.46 2.14 2.47 2.58
D20-200 18.89 19.81 20.56 8.95 9.12 9.48 2.51 2.85 2.92 1.55 1.69 1.81
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The computational experiments are naturally divided into two parts. The
first part is to test the effect of the combinations of the local search and partial
feasibility restoration heuristics. Given that these may be turned on and off,
this leads to four groups of results. The Kruskal-Wallis statistical procedure
will be used to detect if there is any significant difference between the groups.
If one is present, post-hoc testing will be used to determine the nature of the
difference. These results will be compared to those of Randall’s [14] competitive
ant colony optimisation implementation. In the second part of the experiments,
the population approach will be trialed. The population size parameter will be
tested using the four values of {5, 10, 15, 20} on the D class problem instances.
Again, Kruskal-Wallis will be used to help to determine the most appropriate
population size. These results will be compared against those of the first part of
the experiments.

Table 3. Table 1 as reproduced from Randall [14]. Three different ACO implementa-
tions were used. The first two (i.e., “Compete 1” and “Compete 2’) allowed ants to
compete for solution components, while “Control” was a standard ACO implementa-
tion. For details of the three solvers, please refer to this paper. Note that bolded items
indicate the best result for the combination of problem and measure.

Optimal Compete 1 Compete 2 Control
Problem Cost Min Med Max Min Med Max Min Med Max

A5-100 1698 0 0 0 0 0 0 0 0 0
A5-200 3235 0 0 0 0 0 0 0 0 0
A10-100 1360 0 0 0 0 0 0 0 0 0
A10-200 2623 0 0 0 0 0 0 0 0 0
A20-100 1158 0 0 0 0 0 0 0 0 0
A20-200 2339 0.04 0.04 0.04 0 0 0.04 0 0 0.04
B5-100 1843 0.43 0.71 0.92 0.65 1 1.14 3.36 4.72 6.02
B5-200 3553 0.51 0.65 0.79 0.53 0.66 0.87 0.73 0.89 1.04
B10-100 1407 0.07 0.28 0.43 0 0 0.07 0.07 0.14 0.36
B10-200 2831 1.31 1.45 1.66 1.27 1.54 1.62 1.38 1.7 2.08
B20-100 1166 0.69 1.03 1.11 0.34 0.6 0.77 0.26 0.69 0.94
B20-200 2340 0.64 0.75 0.81 0.43 0.56 0.64 0.51 0.68 0.81
C5-100 1931 0.31 0.57 0.73 0.67 0.85 1.04 0.62 1.09 1.35
C5-200 3458 0.52 0.67 0.81 0.35 0.64 0.75 0.49 0.78 1.01
C10-100 1403 1.14 1.43 1.57 0.93 1.18 1.57 1.5 1.75 2.07
C10-200 2814 0.92 1.33 1.46 1.39 1.58 1.78 1.46 1.74 1.92
C20-100 1244 1.69 1.89 2.49 0.88 1.17 1.53 1.53 1.65 2.25
C20-200 2397 1.63 1.98 2.13 1.34 1.81 2 1.88 2.07 2.17
D5-100 6373 1.99 2.38 2.51 2.97 3.21 3.4 3.36 3.88 4.14
D5-200 12796 2.31 2.5 2.79 3.17 3.26 3.39 3.4 3.56 3.74
D10-100 6379 3.45 3.66 3.87 4.04 4.37 4.61 4.33 4.45 4.73
D10-200 12601 2.77 3.02 3.18 3.56 3.84 3.95 3.4 3.92 4.03
D20-100 6269 3.51 3.55 3.96 3.53 3.88 4.15 3.73 4.07 4.4
D20-200 12452 3.17 3.48 3.7 4.09 4.26 4.41 4.14 4.33 4.49
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Table 2 shows the results of part 1 of the experiments. For reference, the
results of competitive ACO [14] are reproduced in Table 3.

The patterns that can be observed in Table 2 are as follows. EO requires
local search in order to be effective. In terms of the first two result columns, it
is interesting to note that using the partial feasibility restoration heuristic is,
on the whole, worse than not using it. However, the reverse is very much the
case when local search is switched on. Improved solutions are produced by using
the two heuristics in combination, rather than just using local search alone.
The extra computational effort of the partial feasibility restoration algorithm
was negligable (typically less than one percent more CPU time). Running the
Kruskal-Wallis statitical procedure confirms this. Unsurprisingly, a significant
difference is recorded between the four groups of results. This is significant at
the 0.05 level. Post-hoc testing also revealed that indeed the combination of the
two heuristics was significantly better than local search on its own.

Further comparison of these results against those in Table 3 showed that this
variant of EO is significantly better than the competitive ACO implementations.
The only problem on which it does not better or equal its performance is B5-100
(though the difference is negligible). It might be argued that ACO would benefit
from the use of the partial feasibility restoration heuristic. However, as the ACO
implementations are constructive, and discard the colonys’s solutions after each
iteration of the algorithm, the heuristic in its present form is incompatible with
it. Another interesting point of comaparison is that, unlike the ACO implemen-
tations, EO often locates improved solutions late in the run. This suggest that
it is less prone to premature convergence. Figure 1 presents a graph of a typical
run of EO as visual affirmation of this.

Initial investigation of different population sizes for part two of the experi-
ments showed that there was no statistically significant difference between them.

Fig. 1. A typical run for EO on the problem D5-100. The markers indicate the iterations
at which EO finds new best solutions. Notice that EO is able to quickly come to a good
solution, and spends the remaining time making slight improvements.
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Table 4. The RPD cost results of running the population version of EO. Note that a
bolded itme indicates that the particular result is strictly better than the corresponding
result of the fourth group of results in Table 2.

Problem Min Med Max

A5-100 0 0 0
A5-200 0 0 0
A10-100 0 0 0
A10-200 0 0 0
A20-100 0 0 0
A20-200 0 0 0
B5-100 0.27 0.73 0.81
B5-200 0.34 0.37 0.45
B10-100 0 0 0
B10-200 0.39 0.44 0.53
B20-100 0 0.09 0.09
B20-200 0.09 0.13 0.13
C5-100 0.05 0.34 0.47
C5-200 0.23 0.35 0.43
C10-100 0.29 0.5 0.71
C10-200 0.28 0.41 0.57
C20-100 0.24 0.32 0.4
C20-200 0.5 0.56 0.71
D5-100 1 1.21 1.43
D5-200 1.04 1.17 1.32
D10-100 1.83 2.12 2.27
D10-200 0.87 0.92 1.02
D20-100 1.8 1.97 2.11
D20-200 1.15 1.24 1.4

The Kruskal-Wallis ranks indicated that larger size populations tended to pro-
duce better results. Accordingly, the setting of a population size of 20 members
across 25,000 iterations (i.e., making 500,000 in total) was run across all problem
istances. These results are given in Table 4.

It is evident from Table 4 that the population approach produces superior
results, particularly on the harder problem instances. In fact, it is statistically
significantly better. It is believed that further improvements may be gained by
experimenting the number of iterations that the algorithm performs before it
replaces the worst solution members.

5 Conclusions

Even though EO is, on the surface, a relatively simple meta-heuristic, it is capa-
ble of delivering very good quality solutions. However, as demonstrated herein
for the generalised assignment problem, it does require supporting algorithms to
achieve this success. One of EO’s strength is that can easy be adapted so that



Enhancements to Extremal Optimisation for Generalised Assignment 379

it can move between feasible and infeasible space. When in feasible space, it is
able to use local search. When it is not, it can use a partial feasibility restoration
heuristic that will drive it toward feasible space. The combination of these two
support mechanisms produces a powerful search effect that is able to outperform
a sophisticated ACO implementation. Ongoing work, using the bin packing and
graph colouring problems, suggests that this pattern of results is a consistent
one.

It is believed that further improvement can be achieved by considering other
meta-heuristic devices and the manipulation of the τ parameter. These devices
include such techniques as intensification/ diversification, a tabu memory and
candidate set strategies. Of particular interest will be the development of the
population approach sketched out in this paper. Some aspects of investiga-
tion include the addition of population learning mechanisms (such as ACO’s
pheromone) and different methods of determining the extinction of solution
members.
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Abstract. Ovarian cancer is a primary gynecological cancer which pathological 
stages include benign, borderline and invasive stages cause death in many 
countries. In this paper, linear regression, analysis of variance (ANOVA) and 
support vector machine (SVM) are used to identify the gene markers of ovarian 
cancer for an authentic cDNA expression datasets among 8 normal ovarian 
tumors, 6 borderline of cancers, 7 ovarian cancer at stage I and 9 ovarian cancer 
at stage III samples. First, the linear regression analysis obtains 200 useful 
genes with largest residuals. Further select 14 genes by ANOVA and Scheffe 
when P-value is less than 0.000005. Then, we use support vector machine to 
classify the pathological stages by gene expressions. Five experiments are 
performed with clustering conditions. In the first clustering experiment, the 
cluster 1 includes BOT, and other pathological stages are in cluster 2. They 
have significant differences at BOT stage and can get average accuracy about 
95.686% in cross-validation. It is quite precise for classifying pathological 
stages by gene expressions. The average accuracy of all clustering experiments 
is about 88.541% in cross-validation. Besides, we also develop a statistical 
analysis system including linear regression and ANOVA function for gene 
expression analysis. The experimental results and our analysis system can assist 
biologists and doctors to research and diagnose ovarian cancer by gene 
expressions. 

Keywords: Microarray, systems biology, ovarian cancer, ANOVA, support 
vector machine (SVM), gene expression. 

1   Introduction 

Ovarian cancer is one of the primary gynecological cancers to cause death in many 
countries [1], especially in the United States, Canada and Europe [2]. In the 
comparisons of 97% ovarian tumor cases, ovarian cancer can be classified into three 
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major pathological stages: benign, borderline and invasive stages. It is more difficult 
to diagnose the symptom before the benign tumors becoming malignancies than other 
gynecological cancers, and the overall 5-year survival rate is about 46% [3]. Hence, 
how to diagnose the ovarian cancer before entering the invasive stages is very 
important. In recent years, many researchers have discovered many oncogenes which 
are related to ovarian cancer and have different gene expressions for different 
pathological stages in biological experiments. This paper uses support vector machine 
and statistical methods to analyze the expressions of a great deal of genes to find the 
high related genes to help cancer researchers find the more useful gene markers and 
also to assist doctors diagnose the ovarian cancer more precisely. 

In many research papers about ovarian cancer, the relationship between gene 
expressions and ovarian cancer has been reported [7-12]. These papers present 
important and useful information for some ovarian cancer and more specific markers 
have been discovered from many gene expression analysis and identification. The 
researchers discovered the ovarian cancer specific markers by distinguishing the 
difference of gene expressions at different pathogenic stages of ovarian cancer. 
Analyzing the difference of gene expressions at each pathogenic stage is also helpful 
to describe the sequential states from benign to invasive tissue. 

Microarray is a popular and useful tool to analyze the gene expressions. This 
technology helps cancer researchers to distinguish the difference of gene expressions 
profile between normal and malignant tissues [6]. Furthermore, microarray datasets 
also are useful for classifying tumors by their expression profiles and provide useful 
biological, prognostic and diagnostic information for mechanistic research and 
contrivance [3]. Most microarray databases usually include tens of thousands of genes 
extracted from many anamnesis data. Identifying the cancer specific gene markers 
from a large number of data by manpower is imprecise, expensive and time 
consuming. Hence, we can perform this work by computer science techniques to get 
more performance, and further to develop therapy software systems for assisting 
diagnosis and therapy. 

In this paper, the ovarian cDNA expression database is obtained from ovarian 
tissues of patients and collected in years 2001-2003 under collaborative efforts of 
surgical and pathological units at China Medical University Hospital in Taiwan. This 
database includes ovarian cDNA expression datasets of 30 patients, and each sample 
includes 9,600 genes. The pathogenic stages of ovarian cancer include benign ovarian 
tumor (OVT), borderline tumor (BOT), ovarian cancer at stage I (OVCA-I), and 
ovarian cancer at stage III (OVCA-III). The number of samples for OVT, BOT, 
OVCA-I and OVCA-III is 8, 6, 7 and 9, respectively. In statistics, when the number 
of samples is more than thirty, the samples are enough to represent the population. 
Hence, the size of our ovarian cDNA expression database is large enough to be 
analyzed in statistical methods and can provide reliable analysis results. The analysis 
methods include two stages: the first stage is preprocessing stage for culling the most 
of nonspecific genes, and the second stage uses classification method to identify the 
oncogenes which might be the ovarian cancer specific markers. Because of our 
database includes 9,600 genes, it is too much for analyzing. At the first stage, the 
linear regression analysis is used to select the genes that their expressions are 
appearing different from others. The analysis of variable (ANOVA) method is used to 
test and select the gene expression values are appearing different in various 
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pathogenic stages. At the second stage, a supervised classification method, support 
vector machine (SVM) is used to classify each pathogenic stage by the expressions of 
the selected genes. When one or some genes can provide well classification results, it 
means that these genes can used to identify the tissue of a patient is belonged to which 
pathogenic stages. 

The analysis procedure and methods are presented in Section 2. Some analysis data 
and results are shown in Section 3. Section 4 presents some discussions and future 
works of this paper. 

2   Related Analysis Methods 

2.1   Linear Regression 

In statistics, a classic problem is how to define the relationship between two sets of 
random variables X and Y. Linear regression is used to obtain a straight line to 
represent a fit relationship between two set of data [25]. The equation of linear 
regression line is defined as Equation (1), and the variables X and Y can be classified 
into an explanatory and a dependent variable. Least squares method is the most 
common one to fit a regression line of linear regression. It finds the best fitting line 
for the data with the least sum of the squares of the vertical deviations between each 
data point and the line, and the vertical deviations also are called residuals.  

Y = a + bX + e (1) 

where e is a residual and is a random variable with mean zero; a and b are the 
coefficients which can get the smallest sum of the square residuals. 

2.2   Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) is a statistical method which used to test the 
difference exists in the means of more than two populations. Another similar method 
is t-test which can be used to test the difference of means between two populations. 
ANOVA and t-test both are based on the well-known hypothesis testing. Hypothesis 
testing is used to test the means of more than one population are the same or not. 
Before testing, there is a hypothesis that the means of all populations are the same, 
and this hypothesis is called null hypothesis. Another hypothesis is an alternative 
hypothesis which supposes the null hypothesis is not true. In actual cases, when the 
means of different data are not equal in certain probability, the null hypothesis must 
be rejected and the alternative hypothesis is accepted. The probability are called P-
value, when the P-value is less then the lower bound α, it is more difficult to reject 
null hypothesis. In ANOVA and t-test, the difference of means is estimated by the 
standard error. The hypothesis testing has two well-known kinds of errors. The first 
kind of errors is occurring when the null hypothesis actually is true, but the statistical 
decision is false, this error is called “Type I error”. The second kind of errors is 
occurring when the null hypothesis is actually false, but the statistical decision is true, 
and this error is called “Type II error”. In practice, ANOVA uses pairwise t-tests to 
test the differences in more than two populations. 
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In this paper, ANOVA is used to test and distinguish the difference of gene 
expressions at OVT, BOT, OVCA-I and OVCA-III stages. When a gene which have 
specific different between each pathological stage, it can be used to classify each 
pathological stage more easily. Hence, ANOVA is an important and useful 
preprocessing method for selecting these suspect disease linked genes, and let the 
following classification procedure perform effectively to get the oncogenes to be 
ovarian cancer specific marks. 

2.3   Support Vector Machine (SVM) 

Support vector machine (SVM) is a superior learning algorithm based on statistical 
theory proposed by Vapnik and collaborators [13, 14]. In recent years, SVM is 
generally applied in bioinformatics, pattern recognition, feature classification and 
function approximation. SVM is based on the idea of structured risk minimization on 
a nested set structure of separating hyperplanes. SVM maps the nonlinear feature 
space to the linear feature space, the linear feature space is in high dimensional space 
where the classification becomes efficiently and precisely. 

In general, when SVM in binary classification condition, the sample data set 
{( , ) | 1, 2,..., },  R ,  R,n

i i i iS x y i l x y= = ∈ ∈  that xi denotes the ith input pattern with n 

tuples, and {1, 1},iy ∈ − is the ith output result. According to above factors, the trained 

SVM should minimize the generalization error, or at least minimizes an upper bound 
on it. It is shown that the hyperplane with this property is the one that leaves the 
maximum margin between the two classes. Given a new data z to classify, the optimal 
function can be described as follow: 
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3   Methods and Analyzed Results 

Microarray chips include many fluorescence spot ellipses to measure the expression 
intensities of different genes. Before hybridizing, the researches should determine 
which genes they want to measure and locate each gene on the microarray chip. 
Generally speaking, the microarray datasets must include the samples of different 
pathological stages for distinguishing the gene expression of each stage. The most 
common method of estimating the gene expression is determined by the mean 
fluorescence intensities of the all pixels within the spot ellipse. The gene expressions 
which are extracted from the normal and cancerous cases are defined as NEI and CEI. 
In order to let the gene expressions have consistent base, the background value of 
normal and cancerous cases are defined as NEB and CEB. The normalized gene 
expressions NNEI and NCEI can be obtained by Equation (3). In our ovarian cDNA 
expression database, the gene expressions are calculated by Equation (4) and are 
stored in decimal fraction form. 
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In this paper, the research topic is about ovarian cancer specific markers 
identification. The database is obtained from the ovarian tissues of the patients, was 
collected in years 2001-2003 under collaborative efforts of surgical and pathological 
units at China Medical University Hospital in Taiwan. This database includes ovarian 
cDNA expression datasets of 30 patients, and each sample includes 9,600 genes. The 
pathogenic stages of ovarian cancer are defined as benign ovarian tumor (OVT), 
borderline tumor (BOT), ovarian cancer at stage I (OVCA-I), and ovarian cancer at 
stage III (OVCA-III). The number of samples at OVT, BOT, OVCA-I and OVCA-III 
is 8, 6, 7 and 9. In statistics, when the number of samples is more than thirty, the 
samples are enough to represent the statistical population. Hence, our database is 
large enough to be analyzed in statistical methods and can provide reliable analysis 
results. 

Because of our cDNA expression datasets of ovarian cancer include 9,600 genes 
for each sample. Expression of many genes may not have significant difference 
between each pathological stage. In our analysis system, each gene expression can be 
shown as a curve line graph and further analyze each gene expression using medians, 
means and distribution with different pathological stages. The linear regression 
analysis can be used to reduce the number of genes by genetic expression analysis. In 
our linear regression, variables X are the means of each gene in the samples of OVT, 
and variables Y are the means of each gene in samples of BOT, OVCA-I and OVCA-
III. All genes are sorted by their residuals, and the genes which have 200 largest 
residuals are selected to be the output of linear regression analysis. The data point 
with largest residuals have significant differences between the values of X and Y, it 
also means the gene expressions may have significant differences between normal and 
cancerous tissues. 

The ovarian cancer gene markers are genes that have a significant difference 
between each pathological stage. Analysis of variance (ANOVA) and Scheffe are 
used to test and identify the differences of gene expressions. The genes with 
significant differences may have correlation with ovarian cancer and can assist the 
biologists to identify the oncogenes more effectively. This paper performs ANOVA 
analysis for each gene respectively. When the testing result of a gene rejects H0, it 
presents the gene has significant differences between each pathological stage and can 
be used to get better results of clustering some stages. After ANOVA, the Scheffe is 
used to perform some multiple comparisons for each gene between each pair of all 
pathological stages. Theoretically, when the P-value of hypothesis testing is less 
than ( 0.05)α = , the data has significant difference. In our experiment, when the α-

value is set to 0.000005, we still can get 14 genes which have significant differences. 
It means the expressions of 14 genes have very significant differences at each 
pathetical stage, They include: EGR1 (early growth response 1), MMP2 (matrix 
metalloproteinase 2), C1S (complement component 1, s subcomponent), SPARCL1 
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(SPARC like 1), FN1 (fibronectin 1), C19orf7 (chromosome 19 open reading  
frame 7), C9orf40 (chromosome 9 open reading frame 40), WEDC2 (WAP four 
disulfide core domain 2), CDK5R1 (Cyclin-ependent kinase 5), DHFR (dihydrofolate 
reductase), KIAA0576 (KIAA0576 protein), MYST2 (MYST histone 
acetyltransferase 2), PGK1 (phosphoglycerate kinase 1) and MDFI (MyoD family 
inhibitor). 

According to the 14 genes by ANOVA analysis, the procedure in this section is to 
classify the datasets of these 14 genes into 5 conditions by BOT, respectively. The 
gene expression datasets of 14 genes analyzed by ANOVA are going to train  
SVM. After training SVM, the optimal decision function f (x) also can be obtained. 
Consequently, the testing datasets can be classified by the optimal decision  
function f (x) with 5 classified conditions by BOT. 

Considering the classified conditions, there are 5 classified conditions which are: 

C : BOT1Classifier 1 
C :  OVT, OVCA-I, OVCA-III2

⎧⎪
⎨
⎪⎩

, 
C : OVT,BOT, OVCA-I1Classifier 2 
C :  OVCA-III2

⎧⎪
⎨
⎪⎩

, 

C : OVT,BOT1Classifier 3 
C :  OVCA-I, OVCA-III2

⎧⎪
⎨
⎪⎩

, 
C : BOT, OVCA-I1Classifier 4 
C :  OVT, OVCA-III2

⎧⎪
⎨
⎪⎩

, 

C : OVT1Classifier 5 
C :  BOT, OVCA-I, OVCA-III2

⎧⎪
⎨
⎪⎩

. 

In the classification experiment, LIBSVM [26] is applied in classification where 
the kernel type is radial basis function (RBF). The gene expression datasets of 14 
genes are classified by the trained SVM for 5 classification conditions, respectively. 
The classification results of these 5 conditions are shown in Table 1 to Table 5, 
respectively. In the classification results, we can discover the expression in different 
classification conditions for 14 genes by BOT. In classifier 1, there are 4 notable 
genes including early growth response 1, dihydrofolate reductase, KIAA0576 protein 
and MyoD family inhibitor. The classifications for classifier 2 to classifier 4 also have 
high accuracy of classification; the genes are notable by SVM classifications. In 
classifier 5, the average accuracy of classification is 79.269%. However, fibronectin 1 
has 80.488% accuracy to distinguish whether the tumor is cancerous or not in our 
experiments. 

From the classification results, we can discover the notable expression of 14 genes 
at BOT stage. Therefore, the proposed method can clearly analyze human ovarian 
cancer by these 14 genes at BOT stage before turning to ovarian cancer stage. 

Table 1. Classification Results of Classifier 1 

Gene Name Accuracy (%) 
early growth response 1 92.5 
dihydrofolate reductase 95.122 
KIAA0576 protein 100 
MyoD family inhibitor 95.122 
Average 95.686 
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Table 2. Classification Results of Classifier 2 

Gene Name Accuracy (%) 
chromosome 19 open reading frame 7 90.244 
cyclin-dependent kinase 5 92.683 
MYST histone acetyltransferase 2 90.244 

Average  91.057 

Table 3. Classification Results of Classifier 3 

Gene Name Accuracy (%) 
matrix metalloproteinase 2  85.366 
SPARC-like 1 87.543 

Average  86.455 

Table 4. Classification Results of Classifier 4 

Gene Name Accuracy (%) 
WAP four-disulfide core domain 2 90.239 
phosphoglycerate kinase 1 85.366 
chromosome 9 open reading frame 40 95.122 

Average  90.242 

Table 5. Classification Results of Classifier 5 

Gene Name Accuracy (%) 
complement component 1, s subcomponent 78.049 
fibronectin 1 80.488 

Average  79.269 

4   Discussions 

In this paper, we use some statistical methods and support vector machine to analyze 
and identify the ovarian cancer gene markers for an authentic ovarian cDNA 
expression database at various stages of ovarian tumors (among 8 normal ovarian 
tumors, 6 borderline of cancers, 7 ovarian cancer at stage I and 9 ovarian cancer at 
stage III). The total number of samples is 30, hence the analysis results are authentic 
in statistical theory. First, linear regression analysis can be used to obtain 200 useful 
genes with largest residuals which in order to perform statistical testing and multiple 
comparisons for these genes by ANOVA and Scheffe. It can select 14 genes which 
have significant differences for each pathological stage when the α-value is 0.000005. 
Most of these genes are the oncogenes of cancers presented in many biological 
experiments and research papers [15-24]. Hence, it means that our ANOVA analysis 
can obtain the genes wanted for us correctly and effectively. 
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Then, we use SVM to classify the pathological stages by gene expressions. In the 
first classification experiment, the cluster 1 includes BOT, and other pathological 
stages are in cluster 2. We find the expressions of 4 genes have significant differences 
at BOT stage and can get average accuracy about 95.686% in cross-validation. It is 
quite precise for classifying pathological stages by gene expressions. This 
classification is very useful and can be applied to assist biologists or doctors to 
identify or diagnose whether the patients are passing the borderline of tumor stage 
into malignant tumors. The second classification experiment includes 3 genes, and its 
average accuracy is about 91.057% in cross-validation. This classification can be used 
to identify the patients who are entering ovarian cancer. The other kinds of 
classification experiments can get accuracy about 86.455%, 90.242% and 79.269% in 
cross-validation, respectively. They also can be used to identify pathological stages of 
ovarian cancer in different requirements and applications, which can keep stable 
accuracy rate. 

In average expressions of the discovered genes at four stages, we can discover 
which gene is remarkable and probably transform to ovarian cancer. Finally, this 
paper uses statistical methods and support vector machine for identifying various 
stages of ovarian cancer by gene expressions. The analyzed results show that the 
proposed method can get the average accuracy is about 88.541%, and it can provide 
assistances for biologists and doctors. The proposed method can be extensively 
applied to microarray analysis and bioinformatics in different kinds of cancer for gene 
expression analysis. 
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Abstract. This paper explores the capabilities of genetic algorithms
for reconstructing ancestral DNA sequences. We conducted a series of
experiments on reconstructing ancestral states from a given collection
of taxa and their phylogenetic relationships. We tested the proposed
model using simulated phylogenies obtained from actual DNA sequences
by applying realistic mutation rates. Experimental results demonstrated
that the recursive application of genetic algorithms to smaller instances
of the problem allows us to reconstruct ancestral DNA states accurately.

1 Introduction

Nowadays, an increasing number of complete genomes from diverse organisms is
available to enable the understanding of life at the molecular level. The elucida-
tion of accurate evolutionary relationships among these organisms (and perhaps
others, including extinct species) from their molecular data remains a challenge
for molecular evolution research.

Molecular evolution investigations incorporating ancestral sequences hold the
potential for providing a larger picture of the evolutionary process. In effect, these
studies would help us to understand fundamental mechanisms of evolutionary
change that operate at the molecular level, such as gene duplication and hori-
zontal gene transfer. For instance, ancestral sequence reconstruction algorithms
have been used for predicting protein function, and for discovering potential gene
homologues, among other applications (Edwards and Shields, 2005; Collins, et
al, 2003, Blanchette, et al, 2004).

Ancestral sequence reconstruction algorithms work by searching among possi-
ble states for those that exhibit desirable properties according to some specified
optimality criterion (e. g. maximum parsimony, maximum likelihood) (Felsen-
stein, 2004). However, it is currently impossible for even the faster computers to
exhaustively search all possible states for more than a moderate number of taxa,
since they can be associated to huge numbers of different sequences, but only
one of which is presumably the correct representation of the actual evolutionary
history.
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There have been many attempts to develop robust and fast ancestral sequence
reconstruction algorithms (Hall, 2006; Koshi and Goldstein, 1996; Pupko, et al,
2000; Pupko, et al, 2002; Yang, et al, 1995). However, there is no general, sound
and complete method capable of producing the optimal ancestral sequences from
an arbitrary collection of taxa. For example, maximum parsimony are capable
of producing the correct states only when there are no backward and no parallel
substitutions at each nucleotide site. In practice, however, nucleotide sequences
are often subject to these changes (Avise, 2004).

There is an increasing interest in applying evolutionary algorithms to compu-
tationally intensive bioinformatics problems (Fogel and Corne, 2003). For exam-
ple, previous work on phylogenetic reconstruction using genetic algorithms has
yielded competitive results (Lewis, 1998; Matsuda, 1996). We would like to posit
here that artificial evolution (i. e. genetic algorithms) can be used to simulate
natural evolution backwards to reconstruct ancestral states accurately.

This paper describe a series of experiments on the reconstruction of ancestral
DNA sequences using simulated phylogenies. Preliminary results indicate that
the proposed method is able to reconstruct ancestral DNA sequences accurately.
In effect, recursive genetic algorithms slightly outperform maximum parsimony
and maximum likelihood methods in our experiments. In addition, we found that
the recursive application of the GAs is a promising heuristic for approximating
hierarchically structured problems.

2 Methods

2.1 Data Set

A common complication in ancestral sequence reconstruction experiments is that
true ancestral states are seldom known with absolute certainty. In effect, there
is commonly a lack of direct evidence to evaluate the performance of ancestral
inference. The creation of artificial phylogenies using simulation (Hillis, 1995) is
becoming a widely used method for the validation of phylogenetic reconstruction
algorithms. In the experiments reported here, we use a collection of artificial
phylogenies generated from fragments of actual bacterial genomes to test the
performance of the proposed method.

Particularly, we created a data set of fixed length nucleotide ancestral se-
quences by simulating the mutation process recursively. Using Kimura’s two-
parameter model, we obtained a collection of 4-level trees by the progressive
application of the mutation rate (0.1) to each node of the tree (beginning at
the ancestral node) to obtain 0, 1 or 2 child nodes. According to the underlying
substitution model, mutations were further divided into transitions (70%) and
transversions (30%) (Kimura, 1980). We tested the proposed method using both
symmetric and asymmetric trees as shown in Figure 1 and Figure 2, respectively.

The existence of simulated phylogenies including ancestral sequences allows
us to validate the accuracy of the proposed method objectively. Particularly, the
performance of the genetic algorithm will be assessed by comparing the obtained
ancestral sequences to those of the simulated phylogenies.
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Taxa

P0

P1 P2

P11 P12 P21 P22

P111 P112 P121 P122 P211 P212 P221 P222

Ancestral node

Fig. 1. Symetric tree

Taxa

P0

P1 P2

P11 P12

P112P111 P121 P122

P1111 P1112 P1121 P1122

Ancestral node

Fig. 2. Asymetric tree

2.2 Genetic Algorithms

We designed a genetic algorithm to evolve a population of ancestral sequences.
In general, the design of a genetic algorithm involves the definition of the genome
representation, genetic operators, fitness function, and parameters for the simu-
lations (Mitchell, 1996).

Genome representation. Each individual of the population consists of a fixed-
lenght binary string representing the concatenation of the ancestral sequences
intended to be reconstructed. Figure 3 shows the chromosome that represents
a candidate solution for the tree of Figure 1, assuming the objective of recon-
structing all of the ancestral sequences of the tree.

P22P0 P1 P2 P11 P12 P21

Fig. 3. GA chromosomes consist of binary coded ancestral sequences



Ancestral DNA Sequence Reconstruction 393

Fitness function. Ancestral sequences along with evolutionary change should
be able to explain the observed taxa; the converse should also be true. In effect,
mutation progressively alters the genomes of organisms over generations. How-
ever, mutation rates are often small so as to allow natural selection to preserve
characteristics that contribute to the adaptation of organisms. As a consequence,
we expect taxa sequences to be highly similar to those of their immediate an-
cestor. However, these similarities are expected to be progressively diluted as we
approach the origin of the underlying phylogenetic tree.

Following these observations, we formulated the fitness function as the pair-
wise comparisons of the evolving ancestral sequences to those of their immediate
descendants. Specifically, matchings between an ancestral sequence and a de-
scendant sequence at corresponding positions are added to overall fitness (+1),
mismatchings at corresponding positions do not contribute to the fitness of the
candidate solution.

Note that the fitness function does not carry information on the underlying
substitution model (i.e. transition-tranversition rate). We hypothesize that the
proposed fitness function is sufficiently informative for the accurate reconstruc-
tion of ancestral states.

Genetic operators. We used fitness proportional selection with linear scal-
ing, one-point crossover and point mutation that operate on fixed length binary
chromosomes. This genetic operators combination is often used in the practice
of genetic algorithms (Mitchell, 1996).

Parameters for the simulations. Simulations were conducted using differ-
ent combinations of parameter values: generations (1000–10000), population size
(1000–6000), chromosome length (100–1600), crossover probability (0.6-0.7) and
mutation probability (0.001-0.01). This parameters were obtained from empirical
observations of preliminary experiments.

3 Experiments and Results

3.1 Canonical GAs: Symmetric Trees

In this experiment, we explore the capabilities of simple GAs for simultaneously
reconstructing all the ancestral sequences of a symmetric 4-level tree. Particu-
larly, ancestral sequences Pi were reconstructed from taxa Tj (see Figure 4).

Figure 5 presents the results of this experiment. In can be appreciated that
fitness increased rapidly in early stages of the simulation. However, the algorithm
showed a poor performance when comparing the evolved sequences with the
original ancestral sequences belonging to the simulated phylogenies.

Therefore, we concluded that reconstructing ancestral sequences simultane-
ously would be extremely hard in practice as errors at a particular ancestral
sequence would be easily propagated in the chromosome. This is an indication
of the existence of a high degree of epistasis (i. e. interactions among genes) in
the representation. To overcome this limitation, we believe the problem should
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P6

T1 T2 T3 T4 T5 T6 T7 T8

P0

P1 P2

P3 P4 P5

Fig. 4. Simultaneous reconstruction of ancestral sequences

be approached using a divide-and-conquer strategy. As a consequence, we arrived
to the formulation of recursive genetic algorithms (RGAs).

3.2 Recursive GAs: Symmetric Trees

A recursive GA consists of the progressive application of the GA to approximate
a hierarchically structured problem. The proposed GA uses the results produced
in previous applications of the algorithm in solving smaller nested instances of
the problem.
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Fig. 5. Simulation results
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T8T1 T2

P1 P2

T3 T4

P3 P4

T5 T6 T7

Fig. 6. Reconstruction of ancestral sequences by level

proc reconstruct (node)
for each child i of node

if (i �= leaf)
reconstruct(i)

end for
run GA to reconstruct node from all child i
return (node)

end proc

Fig. 7. reconstruct procedure

Particularly, in reconstructing ancestral sequences, the recursive GA may be
viewed as a bottom-up procedure. The ancestral sequences produced by the
application of the GA to the taxa are used to progressively reconstruct the
ancestral sequences of the nodes belonging to higher levels of the phylogenetic
tree. This procedure may be organized as the top-down nesting of calls to the
GA and bottom-up reconstruction of each level of the tree (see Figure 6).

The pseudocode of the recursive procedure is delineated in figure 7. The pro-
cedure is called recursively from the root of the tree until the leaves are reached.
Then the reconstruction of ancestral sequences is achieved by the application of
the GA during the bottom-up transversal of the tree.

Figure 8 presents the results of this experiment. Each graph shows the con-
vergence of the algorithm for each of the three reconstructed levels of the tree.
Note there are differences in the degree of fitness of different levels as there
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T4T1 T2

P1 P2

T3

Fig. 9. 4 × 2 strategy

Weighting of relations

P1 P2

T2T1

P1 P2 P1 P2

T1 T2 T1 T2

+1 +1 +1 +1 +1 +1

+1 +1.5 +2

Fig. 10. Weighted similarity to the co-evolving sibling

are fewer sequences at the upper levels of the tree. However, convergence was
achieved consistently. Particularly, the algorithm showed a better performance
than the previous experiment when comparing the reconstructed sequences with
the original ancestral sequences of the simulated phylogenies.

We also conducted a series of experiments consisting of the application of
the recursive GA to small instances of the ancestral sequence reconstruction
problem. Particularly, we inferred two ancestral sequences from four taxa in one
application of the GA. We called this approach the 4×2 strategy. Figure 9 shows
and example in which sequences P1 and P2 are simultaneously reconstructed from
sequences T1, T2, T3 and T4.

In this strategy two ancestral sequences will be evolving simultaneously. The
existence of a co-evolving sibling in the chromosome can be useful to solve
conflicting states among descendants of a node. For example, if sequences T1
and T2 has a conflicting state at position k then the state of the ancestral se-
quence P1 at position k could be either the state of T1 or state of T2 at position
k. However, the state of P2 at position k can be used to solve this conflict. There-
fore, the fitness function is modified to consider these matchings. Particularly,
for each matching at corresponding positions of sibling sequences, a weighted
similarity coefficient w is added to the overall fitness of the candidate solution.

We considered different values for the weighted similarity w of an ancestral
sequence to his co-evolving sibling as shown in Figure 10. The value of w = 2.0
seemed to be the most appropriate in our preliminary experiments.
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Fig. 11. Results by level 4 × 2 strategy

Figure 11 presents the results of this experiment. Each graph shows the con-
vergence of the algorithm for each of the three levels of the tree. Note there
are similarities in the degree of fitness at different instances of the algorithm as
there are always two evolving ancestral sequences. The algorithm showed a better
performance than both previous experiments when comparing the reconstructed
sequences to the original ancestral sequences of the simulated phylogenies.

3.3 Recursive GAs: Asymmetric Trees

In this experiment, we were unable to use the 4×2 strategy as an asymmetric tree
would not possess this structure in general. Instead, we used a 2 × 1 strategy, in
which the recursive GA is used to infer one ancestral sequence at each application
of the GA (see Figure 12).

T1 T2

P

Fig. 12. 2 × 1 strategy

Figure 13 presents the results of this experiment. Each graph shows the con-
vergence of the algorithm for each of the three levels of the tree. This experiment
produced results that are comparable to those produced by the 4 × 2 strategy
with respect to the original ancestral sequences.

3.4 Overall Results

Table 1 presents the average accuracy of each of the previous experiments with
respect to the original sequences over 10 simulations. Results indicate that the
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Fig. 13. Results by level 2 × 1 strategy

application of the recursive GA to smaller instances of the problem produces
better results. Particularly, the 4×2 strategy produced very competitive results,
comparable to those produced by traditional methods (Zhang and Nei, 1997).

Table 1. Overall results

Level of the tree Level-by-level 4 × 2 strategy 2 × 1 strategy
Level 0 71% 94% 90%
Level 1 88% 91% 87%
Level 2 93% 91% 91%

It is important to point out that asymmetric trees are more common in prac-
tice than symmetric trees. Therefore, the fact that the performance of the recur-
sive GA scaled gracefully from symmetric to asymmetric trees shows that the
proposed method is a promising approach to ancestral sequence reconstruction.

3.5 Comparative Study

In addition, we conducted a preliminary comparative study with conventional
approaches. Particularly, we contrasted the obtained results with those produced
by the maximum parsimony (MP) and maximum likelihood (ML) algorithms
using the PHYLIP program (Retief, 2000). The comparisons are shown in figures
16 and 17, respectively.

Table 2. Comparative study: MP vs. RGA

Method Symmetric trees Asymmetric trees
Maximum Parsimony (MP) 95% 94%
Recursive GA (RGA) 96% 97%

Both MP and ML algorithms were unsuccessful in reconstructing the topology
of the underlying tree. Therefore, comparisons were conducted exclusively with
respect to the root node of the tree. Experiments using simulated phylogenies
allowed us to uncover this limitations of conventional phylogenetic reconstruction
algorithms.
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Table 3. Comparative study: ML vs. RGA

Method Symmetric trees Asymmetric trees
Maximum Likelihood (ML) 96% 96%
Recursive GA (RGA) 96% 97%

4 Discussion

The preliminary results reported here indicate that genetic algorithms are ca-
pable of reconstructing ancestral DNA sequences accurately. However, due to
the potential propagation of errors produced by a high degree of epistasis in
the representation, it is necessary to apply this search procedure using a divide-
and-conquer strategy. We propose here to perform genetic search recursively, by
the subsequent application of the GA to the results produced by the previous
application of the GA. In this way, we arrived to the formulation of the recursive
genetic algorithm search procedure.

Overall, we believe that GAs provide an appropriate methodology for search-
ing the space of DNA ancestral sequences. In effect, phylogenetic studies are
often confronted to the fact that most phylogenetic inference algorithms for re-
constructing ancestral sequences are intractable for realistic applications. On the
contrary, GAs are able to produce competitive results using a moderate amount
of computational resources.

The construction of simulated phylogenetic trees allowed us to validate the
performance of the proposed method objectively. The results were consistent
even when either a moderate or a large number of artificially created ancestral
sequences were considered.

The focus of this study has been on the reconstruction of DNA sequences. An
immediate extension of this work would be the consideration of protein sequences
(Cai, et al, 2004). In addition, careful statistical validations are required to attest
the accuracy of the GA approach to ancestral sequence reconstruction in general.

Once reliable ancestral sequences from extinct organisms reconstructed in
silico are available, it would be interesting to formulate and test new hypothesis
on molecular evolution. These studies would provide a larger framework for
understanding the properties of evolution.
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