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Preface

The field of artificial life (Alife) is a rapidly emerging area that draws on ex-
pertise from computer science, biology, psychology, to name a few. In essence it
is the study of systems related to life, its processes and evolution. These sys-
tems commonly use computer model simulations. The past decade has seen an
increasing stream of scientific articles devoted to the exploration of Alife.

The Australian Conference on Artificial Life (ACAL) series is a testament
to the above. It is a biannual event that originated in 2001 as the “Inaugral
Workshop on Artificial Life” as part of the 14" Joint Conference on Artificial
Intelligence. ACAL 2007 received 70 quality submissions of which 34 were ac-
cepted for oral presentation in the conference. Each paper was peer reviewed
by two or three members of the Program Committee. Apart from Australian
researchers, the conference attracted participants from a number of countries
across Europe, America, Asia-Pacific and Africa.

ACAL 2007 was fortunate to have four distinguished speakers in Alife to
address the conference. They were David Abramson (Monash University), Ken-
neth A. De Jong (George Mason University), K.C. Tan (National University of
Singapore) and Rodney Walker (Queensland University of Technology).

The organizers wish to thank a number of people and institutions for their
support of this event and publication. Importantly we would like to acknowledge
the effort and contributions of the Program Committee members and advisory
board. Our sponsors were: The Australian Computer Society, the ARC Complex
Open Systems Research Network, Bond University, The University of New South
Wales (Australian Defence Force Academy), University of Canberra, Australian
National University and the Gold Coast City Council. Their financial and in-
kind support ensured the costs were minimized for attendees. Finally, the editors
must pay tribute to the team at Springer.

We hope to repeat the success of ACAL 2007 with ACAL 2009. The venue
of this event will be announced in 2008.

December 2007 Marcus Randall
Hussein A. Abbass
Janet Wiles
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Alternative Solution Representations for the Job
Shop Scheduling Problem in Ant Colony
Optimisation

James Montgomery

Complex Intelligent Systems Laboratory
Centre for Information Technology Research
Faculty of Information & Communication Technologies
Swinburne University of Technology
Melbourne, Australia
jmontgomery@ict.swin.edu.au

Abstract. Ant colony optimisation (ACO), a constructive metaheuris-
tic inspired by the foraging behaviour of ants, has frequently been applied
to shop scheduling problems such as the job shop, in which a collection of
operations (grouped into jobs) must be scheduled for processing on dif-
ferent machines. In typical ACO applications solutions are generated by
constructing a permutation of the operations, from which a determinis-
tic algorithm can generate the actual schedule. An alternative approach
is to assign each machine one of a number of alternative dispatching
rules to determine its individual processing order. This representation
creates a substantially smaller search space biased towards good so-
lutions. A previous study compared the two alternatives applied to a
complex real-world instance and found that the new approach produced
better solutions more quickly than the original. This paper considers its
application to a wider set of standard benchmark job shop instances.
More detailed analysis of the resultant search space reveals that, while
it focuses on a smaller region of good solutions, it also excludes the
optimal solution. Nevertheless, comparison of the performance of ACO
algorithms using the different solution representations shows that, using
this solution space, ACO can find better solutions than with the typical
representation. Hence, it may offer a promising alternative for quickly
generating good solutions to seed a local search procedure which can
take those solutions to optimality.

Keywords: Ant colony optimisation, job shop scheduling, solution rep-
resentation.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic, inspired by the
foraging behaviour of ant colonies, that produces a number of solutions over
successive iterations of solution construction. During each iteration, a number of
artificial ants build solutions by probabilistically selecting from problem-specific

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 1 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 J. Montgomery

solution components, influenced by a parameterised model of solutions (called
a pheromone model in reference to ant trail pheromones). The parameters of
this model are updated at the end of each iteration using the solutions produced
so that, over time, the algorithm learns which solution components should be
combined to produce the best solutions. When adapting ACO to suit a problem
an algorithm designer must first decide how solutions are to be represented and
built (i.e., what base components are to be combined to form solutions) and then
what characteristics of the chosen representation are to be modelled.

Shop scheduling problems consist of a number of jobs, made up of a set of
operations, each of which must be scheduled for processing on one of a number
of machines. Precedence constraints are imposed on the operations of each job.
The majority of ACO algorithms for these problems represent solutions as per-
mutations of the operations to be scheduled (operations are the base components
of solutions), which determines the relative order of operations that require the
same machine (see, e.g., [TI2I34]). A deterministic algorithm can then produce
the best possible schedule given the precedence constraints established by the
permutation. This approach is more generally referred to as the list scheduler
algorithm [2.

An alternative approach is to assign different heuristics to each machine which
determine the relative processing order of operations, thereby searching the re-
duced space of schedules that can be produced by different combinations of the
heuristics. Building solutions in this manner may offer an advantage by concen-
trating the search on heuristically good solutions. A previous study compared
these two solution representations in ACO algorithms for a real-world job shop
scheduling problem (JSP) with staggered release and due dates modelled using
fuzzy sets [5]. Applied to that single real-world instance the alternative approach
performed extremely well, finding better solutions than the list scheduler ACO
in considerably less time. An open question was whether the same relative per-
formance would be observed on other, benchmark JSP instances.

This paper examines, in greater detail than in [5], the search space produced
by the alternative solution representation when applied to a number of com-
monly used benchmark JSP instances (Section Hl). An empirical comparison is
subsequently made of ACO algorithms using the typical and alternative solution
construction approaches (Sections [BHE]). Section [0 describes the implications of
the results for the future application of ACO to such problems. A formal descrip-
tion of the JSP and further details of the typical solution construction approach
are given first.

2 Job Shop Scheduling

The JSP examined in this study is of the n x m form, with a set of n jobs
Ji,...,J, and m machines M, ..., M,,. Each job consists of a predetermined
sequence of m operations, each of which requires one of the m machines. Only
one operation from a job may be processed at any given time, only one operation
may use a machine at any given time and operations may not be pre-empted.
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Table 1. JSP instances used in this study

Instance Best known n m

abzb 1234 10 10
abz6 943 10 10
abz7 656 20 15
abz8 669 20 15
abz9 679 20 15
ft10 930 10 10
ft20 1165 20 5
la21 1046 15 10
la24 935 15 10
la25 977 15 10
la27 1235 20 10
1a29 1152 20 10
la38 1196 15 15
la40 1222 15 15
orb08 899 10 10
orb09 934 10 10

The objective is to schedule operations for processing on machines such that the
total time to complete all jobs, the makespan, is minimised. The makespan of a
solution s is denoted Chaz(S).

Table [[] describes the instances used in this study to compare the alternative
solution representations. They are commonly used benchmarks in the ACO and
wider operations research literature and are all available from the OR-Library [0].

3 Typical Solution Construction for the JSP

To generate a solution to the JSP it is sufficient to determine the relative process-
ing order of operations that require the same machine. A deterministic algorithm
can then produce the best possible schedule given those constraints. Indeed, it
is common in ACO applications for the JSP and other related scheduling prob-
lems to generate a permutation of the operations, which implicitly determines
this relative order (e.g., [TI2I3/4U7]). These algorithms are restricted to creating
permutations that respect the required processing order of operations within
each job, which can consequently be called feasible permutations.

Different approaches to constructing solutions produce different search spaces.
The space of feasible permutations of operations for a JSP is very large (a weak
upper bound is O(k!), where k = n - m is the number of operations) and is cer-
tainly much larger than the space of feasible schedules [§]. This space also has a
slight bias towards good solutions, which can be exploited by some pheromone
models and proves disastrous for others. Another notable feature of this search
space is that while all solutions can be reached, solutions (schedules) are repre-
sented by differing numbers of permutations. These issues are discussed in some
detail by Montgomery, Randall and Hendtlass [S/9].
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4 Search Space Created by Dispatching Rules

An alternative approach to building solutions is to assign different dispatching
rules (i.e., ordering heuristics) to each machine, which subsequently build the
actual schedule. The search space then becomes the space of all possible com-
binations of rules assigned to machines, which is O(]D|™) where D is the set
of rules and m the number of machines. Given a small number of dispatching
rules this search space will correspond to a subset of the space of all feasi-
ble schedules. Further, given that dispatching rules are chosen with the aim of
minimising the makespan or number of tardy jobs, this is probably the case
even for large sets of rules. However, if the dispatching rules individually per-
form well it is expected that this reduced space largely consists of good quality
schedules.

Clearly, such an approach is inappropriate for single machine scheduling prob-
lems or problems in which too few criteria are available to heuristically determine
the processing order of competing operations, as in either situation the search
space is reduced by too great an amount. It is, however, entirely appropriate for
problems with multiple machines and various criteria upon which to judge com-
peting operations. This study examines its application to a number of common
benchmark JSPs using four dispatching rules. The remainder of this section
examines whether, for these instances using these four rules, the approach is
appropriate.

The four rules used in this study are Earliest Starting Time (EST), Shortest
Processing Time (SPT), Longest Processing Time (LPT) and Longest Remain-
ing Processing Time (LRPT). SPT and LPT relate to an individual operation’s
processing time while LRPT refers to the remaining processing time of a candi-
date operation’s containing job. EST is perhaps the simplest heuristic, choosing
the operation that can start the soonest, with ties broken randomly. Note that
the three other rules are not followed blindly: the earliest available operation is
always chosen except when there are two or more such operations, in which case
the rule determines which is given preference.

For small instances and a set of four rules it is possible to completely enumer-
ate the set of assignment solutions[] This was performed for the test instances
with up to 200 operations to discover the distribution of the cost of schedules
described. The distributions for the larger instances were estimated by sampling
4 % 10° randomly generated solutions. Note that as the EST rule breaks ties ran-
domly, there is some degree of error in the lower and upper bounds presented,
although it is likely the distributions described here are good approximations of
the true distributions. Fig. [l presents box-plots of the distributions discovered,
expressed in terms of the relative percentage deviation (RPD) from the best
known cost, defined as

! Although complete enumeration of the search space obviates the need for a meta-
heuristic, on any moderate-sized instance or as the number of rules grows it quickly
becomes impractical.
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RPD =

Cimaa(8) = Cmaz(s™) (1)
(s

Cma:v *)

where s is a solution and s* is the best known solution.

The most striking feature of the distributions is that they do not include the
optimum. Additionally, tests with a smaller number of rules found that man
unique assignment solutions generate the same schedule, as was anticipated
Nevertheless, it is still possible that the assignment approach does focus on a
good region of the space of schedules, and thus may present a good starting
point for the subsequent application of a local search algorithm. As the worst
cost is not known for these instances it cannot be proved that these distributions
are biased towards good solutions. However, examination of the cost distribution
of schedules produced by randomly generated feasible permutations lends some
support to that conjecture. Fig. 2 presents box-plots for the cost distributions for
4 x 10% randomly generated feasible permutations. Notably, the minima of those
distributions are in most cases above the median of those for assignment solutions
while the body of those distributions typically lies above the maximum of that
for assignment solutions. Of course, sample distributions for the permutation
approach do not represent the full space of solutions that can be represented
by permutations and indeed an ACO algorithm constructing permutations can
improve on the minima of those randomly generated samples (see Section [G for
such results).

Table 2] summarises the characteristics of the search spaces created by the
alternative construction approaches. With respect to search space size, the space
of assignments of rules to machines (for four rules) for the instances studied is
hundreds of orders of magnitude smaller than the upper bound on the space of
feasible permutations.

Clearly, the two alternative approaches offer a mixture of advantages and
disadvantages to any heuristic that uses them. The likelihood that, across a
wider range of instances, the dispatching rules approach excludes the optimal
certainly impacts on its utility. However, a previous comparative study of ACO
algorithms using both approaches applied to a large, complex JSP instance found
that the approach outperformed an ACO algorithm that constructs permutations
in terms of both solution quality and computation time [5]

Nevertheless, in a practical application of the approach, a local search com-
ponent is required if the schedules described by dispatching rules are to be fully
optimised. Furthermore, the local search cannot operate on the assignments di-
rectly, as that space does not contain the optimum. The next section compares
ACO algorithms using both solution construction approaches. To avoid the con-
founding effects of an integrated local search procedure, local search has not
been included in the algorithms compared in this paper.

2 Determining the number of distinct solutions was impractical with four rules.
3 The number of construction steps per solution in ACO for the JSP is n - m when
constructing permutations but only m when assigning dispatching rules.
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Table 2. Comparison of permutation and dispatching rules search spaces. k is number
of operations, D is set of dispatching rules, m is number of machines. Typically |D| <
m < k. Notes: # this result is true for the rules and instances used in this study.

Solution approach

Search space feature permutation  dispatching rules
Size < O(k!) o(|D|™)
Includes optimal solution yes no
Solution representation bias yes yes
Biased towards good solutions yes, but not yes

practically so [8l9]

5 Comparison ACO Algorithm Details

Two ACO algorithms were developed based on the MAX — MZN Ant Sys-
tem (MMAS), which has been found to work well in practice [I0]. The first
of these, denoted MMAS-P, constructs solutions as permutations of the oper-
ations, while the second, denoted MMAS-R, assigns dispatching rules to ma-
chines. The set of dispatching rules D consists of the four rules described in
Sectiondl Although local search is considered an integral part of state-of-the-art
ACO applications [ITIT2], in order to observe the differences between the two
approaches, local search is not incorporated into either.

The two solution representations require different pheromone models. The
models chosen have been found to produce the best performance for their re-
spective solution representations [9]. For MMAS-P, a pheromone value, denoted
7(0i, Oj)E exists for each directed pair of operations that use the same machine,
and represents the learned utility of operation o; preceding operation o; [13].
There may be several such precedence relations affected by the selection of a
single operation. During solution construction, the set of unscheduled opera-
tions that require the same machine as a candidate operation o is denoted by
Or¢. Blum and Sampels [I3] recommend taking the minimum of the relevant
pheromone values. This approach, like many ACO algorithms, benefits from the
incorporation of heuristic information in the construction decision, by conven-
tion denoted 7. While any dispatching rule could conceivably be used for this
purpose, Blum and Sampels [2] have found that the EST rule works well on a
range of instances. Accordingly,

no)=, @)

tes(0, sP)

where t.5(0, sP) is the earliest time operation o could start given the current
partial solution sP. Combining this measure with the pheromone information, at

4 7 is historically used in ACO due to the pheromone model’s inspiration in ant trasl

pheromones.
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each step of solution construction, the probability of selecting an operation o to
add to the partial permutation p is given by

(minoreoyl 7(o, or)) -n(o) if 0 ¢ pand |05 > 0

P(O’p) = ZO/QP (minoTeO;fl '7-(0/7 07‘)) . 77(0/) 3)
L if o ¢ pand |07 =0
0 otherwise.

Note that the second branch is required so that the last operation on each
machine is scheduled immediately, as there is no meaningful pheromone value
that can be used.

For MMAS-R, a pheromone value 7(Mjy,d) is associated with each combi-
nation of machine and dispatching rule (My,d) € M x D, where M is the set
of machines. At each step of solution construction, a machine is assigned a dis-
patching rule. Although the order in which assignments are made is significant
in problems where certain items may only be assigned a limited number of times
(e.g., in the generalised assignment problem [I4]), here there is no limit to the
number of times a rule can be used, so the assignment order is immaterial [5].
The probability of assigning a dispatching rule d € D to machine M}, is given by

o T(Mk7d)
Zd’eD\{d} (Mg, d')’

Pheromone values are updated the same way in both algorithms, with each
value 7 (corresponding to some value from either model) updated according to

P(My,d) (4)

r—(p=U)r+p-Ar (5)
where p is the pheromone evaporation rate and A7 is the amount of reinforce-

ment given to a particular pheromone value determined by

1
AT = ¢ Chiaz(s)

0 otherwise

if 7 is part of iteration best solution

(6)

where Cyqz(s) is the makespan of the solution s. Pheromone values are bounded
by [Tmins Tmaz], the values of which are controlled using the value of the current
best solution and size of the pheromone update in accordance with the rules
defined by Stiitzle and Hoos [10].

6 Computational Results

The performance of the algorithms was compared on the benchmark instances
described in Table [l The algorithms were implemented in the C language and
executed under Linux on a 3.2GHz Xeon processor. Each run used 100 ants
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Table 3. Minimum, median, maximum and interquartile range (IQR) of solution cost
(in RPD) for MMAS-P and MMAS-R. The last column shows the estimated best
possible RPD in the space of dispatching rules used in this study. Bold values indicate
the smaller value for that measure and that instance between MMAS-P and MMAS-
R. M-W test indicates the direction of the difference between the distributions of RPD
scores if the difference is statistically significant for o < 0.05.

MMAS-P M-W MMAS-R lower
Instance min  med max IQR test min med max IQR bound
abzb 2.6 4.3 6.3 1.2 < 5.3 5.3 5.3 0.0 53
abz6 0.4 2.4 4.0 1.8 < 7.1 7.1 7.3 0.0 7.1
ft10 8.6 13.5 14.8 2.5 < 11.7 15.6 15.6 0.4 117
ft20 12.8 17.5 24.8 8.3 > 5.9 7.1 8.2 0.6 5.8
orb08 9.7 196 219 6.5 149 18.0 184 0.3 149
orb09 1.5 6.3 9.3 3.6 < 6.1 9.2 12.0 3.5 6.1
la21 7.0 9.2 11.6 2.3 7.8 9.3 10.7 1.6 7.6
la24 7.6 10.0 12.7 2.8 9.5 9.5 9.5 0.0 9.5
la25 8.2 12.3 13.8 4.5 12.5 13.1 13.3 0.4 11.2
la27 11.3 14.0 18.0 3.4 > 8.3 10.1 10.9 1.5 8.3
1a29 15.5 16.8 20.0 1.0 > 156 16.1 16.2 0.4 15.1
la38 12.7 14.7 17.1 2.3 < 16.6 18.4 19.7 2.6 15.7
1a40 6.5 8.1 10.1 1.7 < 7.4 9.0 104 2.0 7.4
abz7 12.2 14.1 19.1 2.7 > 10.1 10.9 11.7 0.9 9.9
abz8 14.1 16.2 19.1 3.4 > 12.1 12.6 15.2 1.4 121
abz9 183 203 275 2.0 > 13.8 155 16.9 1.9 138

and executed 500 iterations of solution construction. The MMAS pheromone
decay control parameter p = 0.1. These settings were found to produce the best
performance in both algorithms. Each algorithm and instance combination was
executed across 10 random seeds.

6.1 Makespan

Table [ describes, for each instance, the distributions of best solution cost (ex-
pressed in RPD) for MMAS-P and MMAS-R found across multiple runs of
each algorithm. The instances appear in non-decreasing order of number of oper-
ations. Bold values indicate the smaller result within that instance and measure
(min, median, max or interquartile range (IQR)) between the alternative al-
gorithms. Although smaller values for IQR are not necessarily an indicator of
better performance, they do indicate more consistent performance. To give an
indication of the performance of MMAS-R in exploring the space of assign-
ments of dispatching rules, the last column gives the estimated lower bound on
solution cost for each instance. Mann-Whitney tests were used to compare the
distributions within each instance. Where those tests indicated a statistically
significant result (at or below the 5% level), the central column indicates the
direction of the difference (i.e., < means MMAS-P outperformed MMAS-R
while > indicates the opposite).
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Table 4. Median CPU time in seconds used to complete 500 iterations and until best
solution found, and iteration when best solution found, for MMAS-P and MMAS-R

Mean CPU time (s) Iteration when

Instance total best solution best found
MMAS-P MMAS-R MMAS-P MMAS-R MMAS-P MMAS-R

abzb 23.7 3.1 2.7 0.1 58 11
abz6 23.7 2.9 2.5 0.7 52 124
ft10 23.5 2.9 5.3 0.1 113 17
t20 46.4 3.7 17.5 1.7 189 238
orb08 22.9 2.9 4.6 0.6 100 102
orb09 23.6 3.1 4.7 2.0 100 324
la21 63.6 5.3 28.6 0.6 225 53
la24 63.3 5.2 19.6 0.3 155 31
la25 63.6 5.0 19.0 0.3 150 25
la27 130.6 8.1 58.9 1.9 226 114
la29 130.8 7.7 54.0 0.5 206 30
la38 118.3 8.4 32.2 0.6 136 35
la40 117.9 8.8 40.0 0.9 170 49
abz7 247.2 12.8 71.1 1.5 144 59
abz8 247.6 12.9 71.1 2.0 144 78
abz9 246.5 12.8 118.1 1.2 240 49

Based on these results, neither algorithm is clearly better than the other
across all instances studied. The apparently aberrant statistical result for the
la29 instance is because, even though MMAS-P found a better solution on
one of its runs, MMAS-R produced solutions of similar cost more consistently.
Considering just those instances where statistically significant differences were
found there is an apparent trend showing better performance from MMAS-R on
larger instances, although this may be an effect of the actual instances used. In
several cases MMAS-R was able to locate assignment solutions at the estimated
(for large instances) lower bound for the space it searches. Notably, it appears
that, in the absence of a local search procedure, the traditional construction
approach is unable to find the optimal solution even though it exists in the
space of solutions it searches. Thus both algorithms require local search in order
to find optimal solutions.

6.2 CPU Time

Table @l summarises the median computation time required to complete 500
iterations and until the best solution was found, as well as the iteration in which
the best solution was found. As predicted, MMAS-R is significantly faster than
MMAS-P due to the difference in the number of required construction steps
each iteration—as the number of operations grows the ratio between MMAS-
P’s and MMAS-R’s runtimes approaches the number of jobs n. MMAS-R also
frequently locates its best solution after fewer iterations than MMAS-P. The
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faster execution of MMAS-R commends it as a good alternative for integration
with a potentially computationally intensive local search, and would also allow
for a greater number of separate runs of the algorithm to be performed than
MMAS-P given the same amount of time.

7 Conclusions

Typical ACO algorithms for shop scheduling problems such as the JSP build
solutions as permutations of the operations to be scheduled, from which ac-
tual schedules are generated deterministically. An alternative approach when
the problem has multiple machines and various criteria upon which to judge the
urgency of competing operations is to assign different dispatching rules to each
machine. The chosen dispatching rules are then responsible for determining the
relative processing order of operations on each machine.

This paper examined the solution space produced by the space of dispatching
rule assignments on a number of commonly studied benchmark JSP instances.
Crucially, when using the four dispatching rules examined in this paper, that
space does not contain the optimal solution. Given that dispatching rules are
themselves simple heuristics, it is plausible that even with a vastly expanded
range of rules the optimal solution may still be out of reach. Consequently, any
real-world application employing this solution representation not only requires a
local search component, but that local search must work directly on the schedules
described by the dispatching rules and not the pattern of assignments.

Despite this severe drawback to the alternative solution representation, it
does appear to concentrate the search on promising areas of the solution space
and, in a constructive algorithm such as ACO, leads to a dramatic reduction
in required computation. A comparison of ACO algorithms employing both the
traditional solution representation and the alternative show a mixture of results,
with neither algorithm clearly outperforming the other across the test instances.
However, a slight trend for better performance from the new approach on the
larger instances, coupled with its reduced computation times, suggest that it is a
good candidate for seeding a local search procedure. As there is an unavoidable
interaction between ACO and the local search procedure it uses (as the locally
optimised solutions are used to update pheromone information), future work
could examine the relative performance of the two approaches when local search
is incorporated.
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Abstract. An inherent assumption in many search techniques is that informa-
tion from existing solution(s) can help guide the search process to find better
solutions. For example, memetic algorithms can use information from existing
local optima to effectively explore a globally convex search space, and genetic
algorithms assemble new solution candidates from existing solution compo-
nents. At the extreme, the quality of a random solution may even be used to
identify promising areas of the search space to explore. The best of several ran-
dom solutions can be viewed as a “smart” start point for a greedy search tech-
nique, and the benefits of “smart” start points are demonstrated on several
benchmark and real-world optimization problems. Although limitations exist,
“smart” start points are most likely to be useful on continuous domain problems
that have expensive solution evaluations.

Keywords: Heuristic Search, Fitness Landscapes, Coarse Search-Greedy Search.

1 Introduction

The easiest way to improve the performance of a greedy search technique is to run it
several times and return the best solution. Effectively, this procedure leads to a ran-
dom search in the (sub)space of local optima. Memetic algorithms can perform “a
special kind of ... search over the subspace of local optima” [14] that can be particu-
larly effective in globally convex search spaces [2, 6, 13]. However, if the number of
local optima that can be generated is extremely small, then the population required by
a memetic algorithm may not be possible.

The cost of finding local optima can be extremely high in certain real-world prob-
lems where solutions are evaluated by using a complex simulation (e.g. designing
phased array ultrasonic transducers [4]). In these search spaces, it may be beneficial to
use a coarse search technique to find and select the start points that will be used to
seed a greedy search technique. Since the greedy search technique will optimize the
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best preliminary solutions found by the coarse search process, there is an implicit as-
sumption in coarse search-greedy search that the quality of the local optima are di-
rectly related to the quality of the initial (partially optimized) solutions.

The coarsest coarse search technique is random search. The use of random search
as the coarse search technique also takes the relationship between start points and end
points to an extreme — is there a relationship between the fitness of a random start
point and the quality of its (nearby) local optima? On certain problems like the
Travelling Salesman Problem (TSP), there is no such relationship. However, this rela-
tionship has been found (and exploited) on several benchmark and real-world optimi-
zation problems with continuous domains.

Start points found by random search are called “smart” start points (because they
are better than random). When a relationship exists between the quality of a random
start point and the quality of its local optimum, “smart” start points can be used to im-
prove the performance of a greedy search technique. Conversely, “smart” start points
provide no benefit to the performance of a greedy search technique on a problem like
the TSP where there is no relationship between the quality of a random start tour and
a (random) two-opt solution.

The benefits of “smart” start points clearly depend on many characteristics of the
search space and the greedy search technique. For example, a problem on which the
search technique can always find the globally optimal solution will not need “smart”
start points. Conversely, a search technique that finds the nearest local optimum in a
highly multi-modal search space will definitely benefit from having a better starting
point. If many starting points can be explored, population-based search strategies like
memetic algorithms are likely to be quite effective. However, if the number of starting
points that can be explored is limited, then coarse search-greedy search may be more
effective, and it is thus useful to understand the role of “smart” start points.

To prepare the context for “smart” start points, a brief review of related search
techniques is presented in section 2. Section 3 focuses on the Travelling Salesman
Problem where the use of “smart” start points provides no advantage over random
tours. Sections 4 and 5 present results for benchmark optimization problems in the
continuous domain, and section 6 demonstrates that these results can be meaningfully
exploited on a real-world problem. A discussion of these results follows in section 7
before the conclusions in section 8.

2 Background

There have been many attempts to improve the performance of greedy search tech-
niques by combining them with other (coarser) search techniques that “intelligently”
select the start point(s) to be optimized. For example, simulated annealing can be
viewed as performing a coarse search at higher temperatures for the start point that
will eventually be optimized at lower temperatures [3]. Similarly, WoSP [8] can use a
“higher energy” particle swarm (PSO) [10] (that does not converge fully) to find the
start points for a separate greedy search technique.

The subspace of local optima can also be searched by using memetic algorithms. In
a globally convex search space where the best locally optimal solutions share many
similarities [2], a good start solution can be characterized as a solution that has many
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features in common with existing local optima. Start solutions with these characteris-
tics can be created by using crossover operators (e.g. [6,14]).

The fundamental requirement for all of the above search techniques is time — time
for an adequate cooling schedule, time for the particle swarm to (partially) converge,
or time to generate a large population of local optima. Greedy heuristics frequently
result from the need for time-compressed decisions. Fast computing has created an
abundance of computational time (to employ more thorough search techniques) for
many optimization problems. However, fast computing has also created the opportu-
nity to optimize new problems that previously could not even be modelled.

In optimization problems where the computational cost of modelling and/or simu-
lating a single solution is exceptionally high, there is still the need for highly efficient
search techniques. If the number of local optima that can be generated is too small to
create a viable population, then memetic algorithms will not be feasible. If the time
constraints are satisfied by using rapid cooling schedules or coarser PSOs, then a rela-
tionship between the quality of a (somewhat) random solution and the quality of its
corresponding local optimum will still be required. Therefore, there is value in know-
ing at the extreme if there is a relationship between the quality of a random solution
and the quality of its (nearby) local optima.

3 TSP Data

In the Travelling Salesman Problem (TSP), the goal is to minimize the cost of visiting
every city exactly once before returning home. Each solution of a TSP is a Hamilto-
nian cycle, so every (random) solution can be turned into the optimal solution through
a finite series of two-opt swaps. It is proposed that it may be possible for any typical
random solution (which has an average of one edge in common with the optimal solu-
tion) to be transformed into the optimal solution through a series of two-opt swaps
that decreases the length of the tour after each swap. It could then be similarly possi-
ble to transform the same random solution into any other two-opt optimum through a
(different) series of two-opt swaps that also decreases the length with each swap.

If each (typical) random solution can become any local optimum, then there should
be no relationship between the quality (where higher quality means a shorter length)
of a random TSP solution and a (random) two-opt solution that is generated from it.
In the following experiment, 120 random solutions are generated for each of the 15
Euclidean TSP instances from TSPLIB that has between 1000 and 2000 cities.
Random two-opt swaps are then applied, and any swap that increases the length is
rejected and any swap that reduces the length is accepted. The quality of the final
two-opt solutions is then compared for the 30 best and 30 worst random start tours.

For each set of 120 random solutions, the quality of the 30 best and 30 worst ran-
dom solutions is shown in Table 1. Due to the clear separation between each set of
best and worst solutions, the applied t-test easily shows that the best start solutions are
indeed significantly better. However, there is no significant difference (to the one in
twenty level) between the quality of two-opt solutions that are subsequently generated
from the best and the worst random start solutions (see Table 2). In fact, the two-opt
solutions generated from the worst initial tours are slightly better on 8 of the 15 TSP
instances.
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Table 1. Average (avg.) percent above known optimum and standard deviation (std. dev.) for
the 30 best and 30 worst of 120 random TSP solutions. The two-tailed, homescedastic t-test
(used for all experiments) confirms the clear separation of the two data sets.

Best Worst
Inst t-test
nstance avg. std. dev. avg. std. dev. ©
pr1002 2078% 22% 2178% 26% 0.0%
ul060 2434% 16% 2544% 24% 0.0%

vm1084 3402% 24% 3518% 21% 0.0%
pcb1173 2039% 12% 2127% 14% 0.0%

d1291 2898% 18% 3017% 23% 0.0%
11304 3500% 28% 3627% 21% 0.0%
11323 3444% 17% 3548% 25% 0.0%
nrwl379 2004% 12% 2091% 13% 0.0%
11400 7710% 94% 8052% 65% 0.0%
ul432 2055% 13% 2128% 10% 0.0%
11577 5211% 38% 5408% 41% 0.0%
d1655 2962% 23% 3057% 16% 0.0%
vm1748 4244% 27% 4380% 29% 0.0%
ul8l7 3122% 16% 3216% 13% 0.0%
11889 4463% 26% 4575% 20% 0.0%

Table 2. Data (similar to Table 1) for the two-opt solutions generated from the 30 best and 30
worst random start solutions. Values in bold represent an (insignificant) inverse relationship.

Best Worst

Instance avg. std. dev. avg. std. dev. st

pr1002 13.1% 1.1% 12.7% 1.0% 20.2%
ul060 12.7% 1.1% 12.8% 1.4% 71.7%
vm1084 12.4% 1.6% 13.0% 1.4% 12.7%
pcb1173 14.1% 1.0% 14.3% 1.2% 66.3%
d1291 16.9% 2.0% 16.8% 1.9% 76.0%
11304 15.0% 1.9% 15.2% 2.1% 82.2%
11323 14.5% 1.6% 14.2% 1.9% 59.2%
nrwl379 12.5% 0.9% 12.3% 0.8% 39.4%
11400 8.7% 1.7% 8.9% 2.1% 67.2%
ul432 14.1% 0.8% 14.1% 1.0% 94.2%
11577 14.4% 2.5% 13.4% 2.4% 13.0%
d1655 15.6% 1.3% 15.3% 1.4% 36.8%
vm1748 13.1% 1.0% 12.6% 1.3% 7.8%
ul8l17 17.9% 1.2% 18.1% 1.1% 45.1%
11889 14.9% 1.4% 14.8 % 1.4% 78.3%

On the TSP, there is no relationship between the quality of a random start tour and
the quality of a random two-opt solution that is generated from it. Therefore, there is
no expectation that “smart’ start points will help two-opt find better final solutions
than random start tours. This expectation is confirmed by the following experiment in
which 50 random tours are generated, the four best are optimized by two-opt, and the
best solution found from these “smart” start points is compared against the best of
four random two-opt solutions (e.g. the 1st, 31st, 61st, and 91st random two-opt solu-
tions generated for the previous experiments). In Table 3, it can be seen that there is
no significant difference between using random tours and “smart” start points, and
that the “smart” start points even lead to slightly worse final solutions on 11 of the 15
TSP instances.
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Table 3. Data (similar to Table 1) for the best of four random two-opt solutions and the
solutions found with “smart” start points. Values in bold help confirm that “smart” start points
provide no benefit on the TSP.

“Smart” Start Points ~ Four Random Tours

Instance avg. std. dev. avg. std. dev. ttest

pr1002 11.6% 0.8% 11.5% 1.0% 48.5%
ul060 11.6% 0.8% 11.5% 0.9% 42.6%
vm1084 11.4% 0.8% 10.9% 1.1% 6.9%
pcb1173 13.0% 0.6% 13.0% 0.7% 82.0%
d1291 15.2% 1.4% 15.0% 1.4% 49.7%
11304 12.7% 1.6% 12.9% 1.6% 60.9%
11323 12.3% 1.3% 12.4% 1.1% 69.2%
nrwl379 11.7% 0.5% 11.6% 0.5% 77.6%
11400 6.2% 1.0% 6.6% 0.8% 6.0%
ul432 13.3% 0.5% 13.4% 0.5% 66.7%
11577 10.8% 1.9% 10.5% 1.6% 44.5%
d1655 14.5% 0.9% 14.1% 0.8% 5.7%
vm1748 11.7% 0.8% 11.6% 0.9% 61.7%
ul817 16.9% 0.9% 16.6% 1.2% 26.3%
11889 13.1% 1.0% 13.0% 0.9% 60.9%

4 Introductory Data

The relationship between the quality of starting points and their associated local op-
tima is expected to be higher for optimization problems with continuous domains. In
particular, it is possible to map any (non-maximal) start point to a single local opti-
mum in a one-dimensional problem (see Figure 1). In higher dimensions, it may be
possible to reach multiple optima with a contour-following greedy algorithm, but it is
unlikely that the entire search space will be reachable from any (typical) random start
point. Thus, a random start point “maps” to a set of possible local optima, and the
quality of the random start point can be meaningfully related to the quality of the local
optima that a greedy search technique can reach from it.

f(x)=|x] —cos(5x)

xe[-10,10] M

The sample function (1) is shown in Figure 1. From a given start point, contour fol-
lowing (or calculation) will lead to the nearest local optimum. Similar to the TSP data,
the results shown in Table 4 compare the 30 best and 30 worst of 120 random points.
The strong correlation between the quality of the start and end points is easily exploited
by the “smart” start points to improve upon the performance of random start points.

5 Benchmark Data

The sample function in Figure 1 represents a trivial and highly idealized (globally
convex) search space with smooth local optima wells of similar size. Since the outer
local minima are worse solutions than the local maxima solutions that can lead to the
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Fig. 1. Profile of sample function

Table 4. Average (avg.) and standard deviation (std. dev.) for the 30 best and 30 worst of 120
random points and their subsequent local optima on the sample function. A better starting point
is a clear advantage for a highly local optimization technique, and this leads to a strong
advantage for “smart” start points.

Start 30 Best 30 Worst t-test
Poi avg. std. dev. avg. std. dev.
oints
1.01 0.75 8.39 1.00 0.0%
Local From 30 Best From 30 Worst t-test
Oni avg. std. dev. avg. std. dev.
ptima
0.17 0.87 7.42 1.20 0.0%
“Smart” Start Points Four Random Points ttest
avg. std. dev. avg. std. dev.
-0.79 0.48 0.55 1.46 0.0%

global minimum, there is an obvious relationship between the quality of a random
start point and the quality of its corresponding local optimum. The following experi-
ments on less-trivial benchmark problems attempt to determine if and when the above
relationship exists for more realistic situations.

The three benchmark problems used in this study are Ackley, Rastrigin, and
Schwefel. The Ackley and Rastrigin problems have similar search spaces to the sam-
ple function in one-dimension. However, these problems become much more interest-
ing in p = 30 dimensions and when a standard optimization method like fmincon is
used. The fmincon function is a greedy, gradient-based search technique that is
available in the MATLAB® Optimization Toolbox.

f(x)=20+e—-20exp(-0.2 izp: xl-2 )— exp(iﬁz cos(27x; ) 2)
V D il =

xe [-30,30]
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Fig. 2. Profile of Ackley function in one dimension

A profile of the Ackley function (2) in one dimension is shown in Figure 2. This
function easily traps gradient-based search techniques, so there is little change be-
tween the function values for the start and end points. Since the end points are close to
the start points, and since the search space has consistent undulations on top of a con-
vex base function, there is an inherent relationship between the quality of the start
points and the quality of the end points.

Using 120 random start points, the function values for the 30 best and 30 worst of
these points is shown in Table 5. Due to the steepness of the search space, all of these
start points appear to be in the broad plateau. There is a small range in magnitude
among the quality of the start points, and the difference between the quality of the
start points and the end points is also small. However, this difference is quite signifi-
cant (as shown by the calculated t-tests), so there is still a clear benefit to using
“smart” start points with fmincon on the Ackley function.

f(x)=10p + f (x? —10cos(27x; )
=l 3)

xe[-5.12,5.12]

Table 5. Data (similar to Table 4) for the Ackley function. Consistency in the performance of
the local optimization technique leads to a significant benefit to using “smart” start points.

Start 30 Best 30 Worst ttest
Points avg. std. dev. avg. std. dev.

20.8 0.17 21.3 0.08 0.0%
fmincon From 30 Best From 30 Worst ttest
Solutions avg. std. dev. avg. std. dev.

19.16 0.24 19.52 0.09 0.0%

“Smart” Start Points Four Random Points t-test

avg. std. dev. avg. std. dev.

18.83 0.21 19.15 0.23 0.0%
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Fig. 3. Profile of the Rastrigin function in one dimension

A profile of the Rastrigin function (3) in one dimension is shown in Figure 3, and it
should be noted that this profile is quite similar to that of the sample function shown
in Figure 1. However, compared to a contour-following algorithm that moves to the
nearest local minimum, the next test point used by fmincon may actually be in a dif-
ferent “valley” of the search space. Thus, fmincon should perform better than con-
tour following on the Rastrigin function (i.e. be less dependent on the start point), and
there should be less of a relationship between the quality of start and end points.

The results of the experiments for fmincon on the Rastrigin function are given in
Table 6. Although there is a significant difference between the quality of end points
for the best and worst start points, there is also a high variation in the consistency of
fmincon. On problems with a high variation, random restart of the greedy search
technique should be very effective — a set of random solutions will likely contain so-
lutions that are both much better and much worse than the average. This effectiveness
in random restart (and/or the high variation in the performance of the greedy search
technique) causes the benefits of “smart” start points to become insignificant on the
Rastrigin function.

F(x)=418.9829 + fx,. sin(ylxi))
i=1

xe[-512.03,511.97]

“)

Table 6. Data (similar to Table 4) for the Rastrigin function. The high variation in the quality
of end points allows random start points to be nearly as effective as the “smart” start points.

30 Best 30 Worst

t-test
PSt; 1t avg. std. dev. avg. std. dev. ©
oints
475.3 26.4 629.1 27.9 0.0%
fmincon From 30 Best From 30 Worst t-test
. avg. std. dev. avg. std. dev.
Solutions
161.7 47.7 228.2 48.9 0.0%
“Smart” Start Points Four Random Points ttest
avg. std. dev. avg. std. dev.

149.5 32.9 152.1 38.1 78.0%
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Fig. 4. Profile of the Schwefel function in one dimension

A profile of the Schwefel function (4) in one dimension is shown in Figure 4. This
function is particularly challenging because the second best minimum (which traps
many search techniques) is very far from the global minimum. It appears that fmin-
con is such a search technique that is easily trapped — it appears to produce many fi-
nal solutions that have values around the second best minimum (see Table 7). Subse-
quently, there is no (significant) relationship between the quality of start and end
points, and there is no benefit to using “smart” start points on the Schwefel function.

Table 7. Data (similar to Table 4) for the Schwefel function. A weak (and inverse) correlation
between the quality of the start and end points leads to no possibility of a benefit to using
“smart” start points.

Start 30 Best 30 Worst t-test
Points avg. std. dev. avg. std. dev.

11363 446 13995 583 0.0%
fmincon From 30 Best From 30 Worst ttest
Solutions avg. std. dev. avg. std. dev.

5502 627 5351 747 40.0%

“Smart” Start Points Four Random Points -t

-test
avg. std. dev. avg. std. dev.

5138 694 4680 518 0.5%

6 Real-World Data

There are many ways to find start points to seed a greedy search technique (e.g.
[8,14]). The reason to use random search to find “smart” start points is because these
other search techniques can be prohibitively expensive on certain problems. For ex-
ample, there are problems on which the evaluation of a solution involves a complex
and time-consuming simulation.

The following data are from optimizing the design of phased array ultrasonic
transducers. In this problem, each real-valued search point is converted into a design
for an ultrasonic transducer through the simulation and evaluation of a physics-based
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model [7,11]. The design produced through this simulation will consist of an integer
number of elements, and it is desirable to minimize this number. From a given start
point, it can take over 1 hour on a standard PC to find a locally optimal transducer de-
sign. This high computational cost leads to a practical limit on the number of start
points that can be optimized.

Two optimization techniques have been tested extensively on the ultrasonic trans-
ducer design problem — gradient descent in the form of fmincon from the
MATLAB® Optimization Toolbox and a (1+A)-evolution strategy. Previous experi-
ments have demonstrated that the evolution strategy performs better than fmincon,
and that “smart” start points can improve the performance of this evolution strategy
(see Table 8) [4]. However, the analysis of “smart” start points has not previously
been extended to fmincon.

Table 8. Data (similar to Table 4) for the ultrasonic transducer design problem. Although quite
robust, the performance of the (1+A)-evolution strategy still receives significant benefits from
using “smart” start points.

30 Best 30 Worst
Psz)t&r:s avg. std. dev. avg. std. dev. ttest
116.5 63.3 736.3 83.2 0.0%
From 30 Best From 30 Worst

21)41—1)1;)1_()]?155 avg. std. dev. avg. std. dev. ttest
31.7 3.1 34.1 5.7 4.2%
“Smart” Start Points Four Random Points ttest

avg. std. dev. avg. std. dev.
30.1 3.2 31.3 2.9 2.2%

An evolution strategy (ES) tends to perform better than gradient-based search
techniques in highly multi-modal search spaces because it is less prone to getting
trapped in (poor) local optima [1]. Subsequently, “smart” start points should provide
much greater benefits to fmincon. Using the same 120 random start points, the re-
sults for fmincon on the 30 best and 30 worst of these points is shown in Table 9.

Table 9. Data (similar to Table 4) for the ultrasonic transducer design problem. The inconsis-
tent performance of fmincon leads to greater benefits for using “smart” start points. These
benefits essentially compensate for the greater robustness of the evolution strategy.

Start 30 Best 30 Worst ttest
Poi avg. std. dev. avg. std. dev.
oints
116.5 63.3 736.3 83.2 0.0%
fmincon From 30 Best From 30 Worst t-test
. avg. std. dev. avg. std. dev.
Solutions
42.2 16.2 90.0 78.1 0.2%
“Smart” Start Points Four Random Points ttest
avg. std. dev. avg. std. dev.
30.2 2.5 33.0 4.4 0.4%
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The results from the random start points demonstrate that the (1+A)-ES is a much
more robust search technique and that fmincon frequently gets trapped in poor local
optima. Subsequently, the performance of fmincon is much more dependent upon
the quality of its initial starting point than the performance of the (1+\A)-ES. This
strong relationship between the quality of the start and end points leads to a similarly
strong benefit to using “smart” start points, and the subsequent performance of
fmincon is essentially the same as the (1+L)-ES when “smart” start points are used.
For this specific optimization problem, there is a similar advantage to finding good
start points as there is to developing a more effective and robust search technique.

7 Discussion

The improvement of greedy search techniques can follow one of two primary strate-
gies — escape from local optima to find better ones (e.g. simulated annealing) or
explore multiple optima independently (e.g. memetic algorithms). Results in the
literature suggest that exploring multiple optima (e.g. [12]) is more popular and
successful than attempting to escape from local optima (e.g. [9]).

The use of multiple runs introduces a new design consideration — a selection strat-
egy for the start points is required. This strategy may be trivial (e.g. random search) or
more complex (e.g. WoSP [8]). “Smart” start points are on the more simplistic end of
the spectrum, so their practical benefits are likely limited to optimization problems
with extremely expensive evaluations.

As more function evaluations become available, the justification to use random
search as the coarse search strategy will lessen. However, the search space feature re-
quired for “smart” start points to be effective (i.e. a strong correlation between the
quality of the start and end points) is likely to be an important indicator in the effec-
tiveness of other coarse search-greedy search implementations. This search space fea-
ture has been successfully exploited in a PSO-ES coarse search-greedy search tech-
nique for the design of phased array ultrasonic transducers [5].

8 Conclusions

A relationship between the quality of a random start point and its (nearby) local op-
tima can exist for some optimization problems. When this relationship exists, the use
of “smart” start points (found by random search) can perform better than the random
restart of a greedy search technique. This performance improvement can be useful on
optimization problems with expensive solution evaluations. More importantly, this re-
lationship can be a useful indicator of success for other coarse search-greedy search
implementations.
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Abstract. Stochastic solvers are researched primarily with the goal of
providing ‘black box’ optimisation approaches for situations where the
optimisation problem is too complex to model and therefore impossible
to solve using a deterministic approach. Sometimes, however, problems
or their instances have characteristics which interact with the solver in
undocumented and unpredictable ways. This paper reviews some per-
tinent examples in the literature and provides an experiment which
demonstrates that ant colony optimisation has arcane mechanisms which
are partly responsible for results which are currently attributed to the
pheromone-based learning.

1 Introduction

Employing heuristic (i.e. stochastic) methods to find near-optimal solutions is
motivated when time is more important than the knowledge of the quality the
solver can provide [I], or when the problem space is too complex to analyse.
However, considerable research effort is being dedicated to the discovery of
good matches between solvers and problems, indicating that although stochastic
solvers cannot guarantee the quality of a result, there are still expectations for
them to produce results of acceptable quality reliably. Reliability presumes that
the information about the solver’s performance on a problem covers all problem
instances, which can only be achieved when there is sufficient information about
both the solver and the problem.

Different algorithmic approaches make use of different problem features. This
is the principal reason why researchers explore different algorithms to be able to
issue recommendations on which algorithm is best applied to which kind of prob-
lem. It is easy to see that the search space of an optimisation problem is shaped
by search mechanisms of the solver [I2]. Fisher [5] demonstrates the influence of
the design on the form of the search landscape, which can also change drastically
through relatively trivial changes in the constraints or objective function.

It is often not immediately apparent how the solver interacts with the prob-
lem. Stochastic solvers are deliberately designed to employ intrinsic mechanisms
for handling the balance between exploration and exploitation, the two basic

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 2535] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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elements that enable search space sampling in an ‘informed’ way. Often these
elements are employed at the same time in different proportions, as is usually the
case in the constructive steps of Ant Colony Optimisation (ACO). Less frequently
the proportions between these elements in a move are chosen deliberately, as in
some forms of GA elitism. These basic principles are well understood, but the
exact mechanisms responsible for good results are not always obvious. If good
results are obtained, researchers are often less interested in investigating why
this is the case and how the results have come about [10].

2 Algorithm Unpredictabilities Uncovered

Many, possibly most, publications exploring the abilities and properties of sto-
chastic algorithms contain experiments which result in some unexpected ele-
ments of algorithm behaviour. Solving example problems with a promising new
procedure, authors often find that these perform very well on some problem in-
stances while not providing the same quality on others. While authors usually
seem to be more eager to report good results, unexpected behaviour is at least
as informative, if the unexpected results are explored thoroughly. Some explicit
endeavours to uncover unexpected behaviour are reported below.

Undocumented traits are typically only observed in a limited number of in-
stances. For example, Particle Swarm Optimisation (PSO) was shown to have a
bias toward searching along the dimension axes. To the best of our knowledge,
Janson and Middendorf [7] were the first to make this observation. They did so
more than a decade after PSO was first conceived, showing that most continous
functions PSO was usually used to solve were aligned along the dimensional
axes. Rotating the same functions to move the optima away from the axes lead
to experiments where PSO could not produce the same level of quality.

As an approach to solving dynamic problems with a Genetic Algorithm (GA),
Cobb [2] proposed triggered hypermutation. The increased mutation rate is ap-
plied when a change of fitness is detected in the best individuals of the cur-
rent population. As has subsequently been pointed out, on some occasions, the
change of problem state does not affect any location represented in the current
population [6].

Another illustrative example from the area of ACO is given by Merkle [9].
He considers a permutation problem (which is not a cycle) with x components.
To incur the minimal cost, the first two components can be assigned to any
position, while all other components can only be assigned to a single position
in the sequence without incurring a higher cost. The simplified cost matrix (the
original matrix [9] has 50 elements) is shown in Fig. Il

Solving the problem with ACO, Merkle observes that the optimal solution is
not found when the components are assigned to positions first-to-last. However,
the optimal solution is found easily when the solutions are built last-to-first. It is
easy to see why this is the case. As all positions incur the same cost for the first
two elements, no quality guidance is available if the uppermost two components
are the first to be assigned. Thus they are likely to occupy positions which are
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Fig. 1. Pheromone map for permutation problem described by Merkle [9], simplified

least-cost for subsequent components. As ant-based methods are constructive
algorithms, components are assigned one by one. If the majority of the problem
instances has only one least-cost position for each of the components, there may
be no awareness of this predicament.

3 Algorithm

For the experiments in this work, a very successful variation of ACO, Ant Colony
System (ACS) is used. It was first introduced by Dorigo and Gambardella [3],
a more detailed discussion has since been published by Dorigo and Stiitzle [4].
Because of its greedy solution construction process, it is particularly well suited
to Travelling Salesperson Problems (TSP) in Euclidean space. Like all ACO
algorithms, it maintains pheromone values associated with solution components.
In the case of the TSP, the solution components are the links or edges between
two nodes or cities.

The pheromone variables are initialised to a very small non-zero value which
traditionally has been defined as the inverse of the length of an upper bound
solution, such as a tour found by a nearest-neighbour heuristic. It has been
observed in many preliminary experiments, however, that the algorithm is not
sensitive to this value.

An ACS iteration is defined as a cycle in which a definable number of solutions
are built. At the end of the construction process, the links belonging to the
best-known tour (not necessarily found during the same iteration) have their
pheromone variables 7 updated according to Eq. [l The evaporation factor p =
0.1 balances the effects of recent experience with the additions brought about
by earlier good results.

1

1)=(1- 44 =
T+ D) = =p) 7 Fpx AA= L ength

(1)
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This positive feedback from the current most successful solution is employed
in the search for better solutions. For the choice of next step, the pheromone
variable is balanced against a heuristic, which in the case of the Euclidean TSP
has traditionally been the inverse of the edge’s length 1. The factor 5 (set to 2 in
our experiments as proposed in [3]) has been introduced as a weighting between
pheromone and heuristic value.

The maximum weighted product of pheromone and heuristic value is employed
most of the time, i. e. the variable gy which expresses the balance between choos-
ing the best available next link and choosing the next link probabilistically has
often been found to have its best setting at 0.9. It is compared to a uniform
random number ¢ at each step to determine the whether the greedy or the prob-
abilistic rule is to be applied to the choice of next link between the current
node ¢ and a node j which is not yet included in the solution. Eq. [2 formalises
this transition rule. A 90% greedy choice has initially [3] been found to pro-
duce the best performance on Euclidean TSPs, an observation confirmed by our
studies.

max 7j; * 77%6]‘ if g <qo
Tij * 175

= otherwise (2)
ST R

Dij

Whenever a link is chosen according to these rules and added to the current
solution, its pheromone value is reduced using the p factor. Consequently, toward
the end of a cycle, the best-known solution is followed to a decreasing extent. The
number of useful tours to be built during a cycle is therefore naturally limited
and can be calculated as demonstrated in [3], where as few as 10 tours per cycle
were adopted. In the current work, we allowed a wasteful 50 to be able to record
how early solution discoveries where likely to take place.

The flexible self-adjustment of the pheromone values is demonstrated in Fig.
The two plots follow the pheromone development on two edges. One of the two
links has a lower heuristic value 1. Over the first eight cycles, this link has its
pheromone value augmented to compensate for the lower heuristic value. After
the first pheromone update, the link’s product of pheromone and heuristic is
not high enough for the link to be chosen as often as to have its pheromone
level evaporated to the initial level. Therefore, the pheromone is adjusted to
a higher level over several cycles and retains that level during cycles 4 — 16
(measurements 8 — 32, as there are two measurements per cycle). At this stage
(cycle 17 or measurement 34), the link is excluded from the best-known solution,
to be included a second time in cycle 29 for a short period. While it is excluded,
no updates are carried out and the pheromone level quickly erodes to the initial
level.

In essence, the principle of the ACS paradigm, found to perform very suc-
cessfully on Euclidean TSPs of less than 100 nodes, is understood to consist of
two mechanisms balancing exploration and exploitation. The first mechanism is
represented by the 90% greedy choice of including the best next move according
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Fig. 2. Measuring the pheromone values of two links before and after the pheromone
updates during an ACS trial. It is clear that one of the two links was part of the
best-known solution throughout the trial.

to the maximum weighted product of heuristic and pheromone. The second is a
10% probabilistic exploration phase which makes small changes to the learned
optimum to search its neighbourhood for new optima. Our experiments are de-
signed to test whether this principle is actually solely responsible for the ACS
results.

4 Solving a TSP Using ACS

4.1 Some Characteristics of Euclidean TSPs

The fact that the best algorithms to solve the TSP are all iterative like the
very successful Lin-Kernighan approach [§] is a good indicator for the fact that
the optima in this problem are all located in close proximity. It is easy to see
why the greediest of the ACO implementations has been performing best on this
problem.

Analysing some geographical instances from the online TSP library [I1] such
as berlin52 or kroA100, it becomes clear that the optimal solution to these follows
the nearest-neighbour paradigm for around 50% of the links. If for each node,
the links to all other nodes are listed by proximity, the first and second choices
(first- and second-closest nodes) would be the nearest-neighbour choices for each
node. Only occasionally does the ideal tour require the use of a low-ranking
choice, which is counter-intuitive according to the heuristic value. Finding these
counter-intuitive links is the crux of the optimisation task the algorithm has to
perform.
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4.2 Experimental Studies

The experiments described in this work were prompted by the suspicion that,
as some of these counter-intuitive links are a long way down the preference list
of their adjacent nodes, it is highly unlikely that these can be found by the 10%
random-proportional choice alone. If a link is e.g. 13th on the list of choices for
next step, the probability for it to get chosen in connection with other links of
the best tour is very low. However, if most of the other options lead to nodes that
are already part of the current solution, the reduced number of choices augments
the probability of a counter-intuitive link being included.

An interesting problem instance to experiment on is kroA100 from the online
TSP library. It has one exceptionally long and therefore hard to find link needed
to form the shortest Hamiltonian cycle. The link between nodes 82 and 85 is
13th choice for node 82 and 22nd choice for node 85. Recording when and how
this edge is found is likely to offer some clues as to the characteristics of the
ACS algorithm. With the aim of making the problem easier and augmenting
the probability of the optimum being found, 60% of the nodes were removed to
leave the instance whose optimal solution is shown in Fig. Bl The numbers of
the nodes retained are visible in Fig.

Tour length: 8407.238

Fig. 3. Example problem used - 40 nodes from the kroA100 problem and the optimal
solution
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Percentage of Trials that found the Optimum

Number of node

Number of trials in which global optimum found

Fig. 4. Number of times (in 100 trials) the global optimum was found starting from
the same node every time. Only the ten worst-performing starting nodes and the ten
best-performing are shown. The intermediary 20 nodes have been omitted.

The reduction of choices as the solution building proceeds and fewer nodes
are available is suspected to contribute significantly to the discovery of long links
needed for the optimal tour. To verify this hypothesis, 40 different experiments
are set up with 100 trials each. In each of the experiment, all tours are built
starting from the same node. Observing whether there is a difference between
where the algorithm starts the construction and the discovery of the optimum
can be expected to offer clues as to whether a reduced choice has an influence.
Fig. @ shows how many times in 100 trials the optimum was found when starting
from a given node. Only the ten best-performing and the ten worst-performing
nodes are shown, as the crucial information lies in the disparity between these
extremes.

The graph shows a clear correlation, with only three of the nodes leading to
the discovery each time, while the worst-performing starting node has a success
rate of only 29%. From the nodes which have a 100% success rate, two are linked
by the counter-intuitive link which has been seen as the major obstacle to the
discovery of the best tour. This seems illogical, but it is easily explained by
the fact that the counter-intuitive link is found last, as the algorithm initially
starts building the tour away from it. By the time the construction reaches the
problematic link from the other end, there are no other choices left.
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Fig.5. In 1000 trials, how many times was each node part of the solution at the
moment the counter-intuitive component was discovered? Numbers on x-axis denote
the nodes, y-axis the number of trials.

In further trials where every node was used in turn as a starting node, the
presence of nodes in the solution at the time of the discovery of the counter-
intuitive link was recorded. When the trials use different starting nodes, the
optimum is found without fail in all of the 1000 trials. The number of times each
node was present in the half-finished solution at the time of the first inclusion
of the sought-after connection between 82 and 85 is shown in Fig. Bl The graph
reveals a striking pattern: Six of the forty nodes were present approximately one
fifth of the time while the other thirty-six were present four fifths of the time.
This suggests that there are few and very distinct part solutions which enable
the discovery of the counter-intuitive link. This supports our hypothesis, as it
suggests that the exclusion of a set of distinct nodes (the nodes which are likely
to compete for the next step) tends to lead to the discovery of a crucial element.

Fig. [l also reveals that among the adjacent nodes of the sought-after link,
85 is present 868 times and 82 is included 132 times. As we are examining the
event of including the link connecting them, it is not surprising that the two
numbers sum to 1000. However, the fact that it is discovered vastly more often
from node 85 seems counter-intuitive, as the sought-after link ranks 22nd among
the choices of 85.

To find an answer to this question, the ‘approach’ to the critical situation
was examined more closely. All part solutions at the stage of discovery were
examined for the exact sequence prior to arriving at node 85. Following the nodes
backwards from 85, the same sequence of 11 nodes appears in the record in over
60% of the cases. Fig. [l shows the sequence immediately prior to the approach
to node 85, from which the counter-intuitive link is subsequently discovered. The
path between the starting node (which is often, but not always, node 37 or 5)
up to node 25 can vary, but as Fig. [l shows, the solution is likely to include all
but six nodes at this stage.
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Fig. 6. Path to node 85 immediately before the discovery of the counter-intuitive edge
in over 60% of the trials

Examining the final steps before the discovery more closely, it becomes clear
that no counter-intuitive move has to be made during these last 11 steps to node
85, i.e. none of these steps requires any pheromone. Fig. [0l reveals the ranking
for each of the links. Note that the ranking would be different if the choice was
made from the opposite node, i.e. the path was created starting from node 85.
If a move was first choice for the current node, there is no question as to why
it was chosen. Therefore, Table [ lists the reasons for the inclusion of each link
which ranked lower than one for the node from which it was chosen. All of the
steps can be explained with the help of the heuristic value alone.

At the time of the inclusion, every one of them was the shortest available
link. No pheromone was needed; therefore the ACS learning mechanism was
not employed here. Whether any steps involving inferior ranks where included
earlier in the tour is a question that cannot be answered, as the solutions diverge
somewhat in the sequence prior to node 25.

However, using node 25 as a starting node, the optimal solution is discovered
in 70% of the trials (as shown in Fig.Hl). As starting from node 25 is likely to lead
to the sequence in Fig. [fl without other nodes present in the tour, the situation is
not ideal for finding the counter-intuitive edge. The fact that even with node 25
as a starting node, the optimum is found in 70% of the trials indicates that the
well-understood mechanism of 90% exploitation and 10% exploration is indeed
partly responsible for the algorithm’s performance.

Looking at how early in the cycle the counter-intuitive component is discov-
ered, there is a significant difference in the average number of tours built until the
discovery. Depending on the starting node, the link between nodes 82 and 85 may
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Table 1. Reasons for links shown in Fig. [f] were included. Only links with a rank bigger
than one are included.

Link Rank of Link Reason for Inclusion

81 — 69 2nd choice  1st choice (link to 25) already included

44 — 2 3rd choice  1st and 2nd choice (link to 50 and 73) already included
2 — 54 2nd choice  1st choice (link to 44) already included

64 — 68 9th choice  All higher ranks included (link to 81 is 8th choice)

be discovered on average as early as during the third or as late as during the sev-
enteenth tour construction. However, without examining the exact part solutions
that led to the discovery, it is not possible to deduce the reasons for the differences.

One might argue that the feature of a very long and counter-intuitive link
is typical only for this instance. However, if no counter-intuitive edges were
needed for the optimal solution, a nearest-neighbour heuristic would make a
better choice as a solver. It is therefore likely for similar situations to occur
in other problems, where there may be more, possibly higher-ranking inferior
choices which have to be included to create the optimal solution.

5 Conclusion

Stochastic algorithms are often explored experimentally in the literature for years
until some of their crucial intrinsic features are uncovered. These features may
manifest themselves when solving problems or instances whose characteristics
are not uncommon and cannot be dismissed as outliers.

In the current work, some experimental studies have revealed a simple pattern
in the behaviour of ACS, ten years after the algorithm was first introduced. A
subsequently published handbook of ACO [] by authors whose experience of
the algorithm cannot be doubted yields only a few passing hints with regards
to the feature discussed in this work. It contains the repeated recommendation
of starting the solution construction from a different random node each time.
While we have found that the recommendation is justified, the effects it has been
found to have might deserve a more thorough discussion.

In the field of stochastic algorithms, authors often research the application
of a particular algorithms to a number of problems in the hope of offering a
general-purpose black box approach for intractable or combinatorially complex
problems. However, it seems that without a deeper understanding of the problem,
its instances and the mechanisms of the algorithms, there can be no guarantee
as to the quality of the result.
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Abstract. In this paper an Ant Colony Optimization (ACO) approach
is extended to the safety and time critical domain of air traffic manage-
ment. This approach is used to generate a set of safe weather avoidance
trajectories in a high fidelity air traffic simulation environment. Safety
constraints are managed through an enumeration-and-elimination pro-
cedure. In this procedure the search space is discretized with each cell
forming a state in graph. The arcs of the graph represent possible transi-
tion from one state to another. This state space is then manipulated
to eliminate those states which violate aircraft performance parame-
ters. To evolve different search behaviour, we used two different ap-
proaches (dominance and scalarization) for updating the learned knowl-
edge (pheromone) in the environment. Results shows that our approach
generates set of weather avoidance trajectories which are inherently safe.

1 Introduction

Ant Colony Optimization (ACO) is a population based optimization technique
based on social behaviour of real ant colonies. It is an iterative, probabilistic,
meta-heuristic for finding solutions to hard combinatorial optimization problems
and shows several desirable properties for application in the transportation do-
main [I5]. ACO approaches are applied extensively to benchmark problems like
travelling salesman problem (TSP), the quadratic assignment problem (QAP),
and job shop scheduling problem [4]. ACO algorithms use simulated pheromone
as a collective form of self adaptation to produce increasingly better results.
ACO techniques are also extended for multi-objective optimization and exam-
ined notably in dynamic TSP and vehicle routing problems. Some of its variants
are applied on highly constrained problems in transport and telecommunication
domain [6]. One desirable area of extending ACO based approaches is safety crit-
ical domains such as Air Traffic Management [I5]. However, it is not yet clear
how to design an effective ACO algorithm for such problems.

In recent years, there has been a quantum increase in weather related air traffic
delays. Weather disturbances are the leading cause of delays in air traffic and
account for approximately 70% of all delays in US National Airspace alone [IT].
Previous approaches for weather avoidance systems are based on heuristic search
techniques such as A-Star [3], Depth First Search [9], etc. These approaches

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 36148] 2007.
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suffers from several drawbacks such as: the algorithm reports the first-found
trajectory, which is often sub-optimal, secondly the algorithm does not take into
consideration the aircraft performance envelop and other airspace constraints
and most importantly these approaches were not examined in a high fidelity air
traffic environment.

With the proposed flexibility given to the future pilots in trajectory plan-
ning [8], the previous approaches are deemed unsuitable. To incorporate safety
constraints we pre-process the search space based on aircraft performance en-
velop. This has two advantages, first it reduces the search space so that algo-
rithms can explore more and secondly this leads to a safety inherent design for
trajectory planning. We use goal directed search in ACO with multiple objec-
tives to generate a set of non-dominated solution trajectories, instead of a single
solution approach. We have used high fidelity air traffic simulation environment
for our experiments with realistic air traffic data and weather patterns obtained
from meteorological data.

For a variety of optimization problems, the quality of the solutions constructed
by ACO algorithms can be substantially improved through local search [6]. This
performance improvement depends upon how the local search interacts with
the design feature and parameter setting of the ACO [I0]. We have blended the
exploration feature of population based search (ACO) with the quick convergence
feature of the informed heuristic search (A-Star) and use it as our goal directed
search approach.

To incorporate multi-objective optimization in ACO we have used an intu-
itive means of incorporating iterative weight update mechanisms (for different
objectives) in the A-Star algorithm and used the A-Star objective function as
the visibility parameter of the ACO algorithm. We used different weather pat-
terns and carried out performance assessment of solutions generated by the ACO
algorithm using median attainment surface [I7]. We also evaluated several im-
plementation options for the ACO algorithm in terms of different pheromone
update mechanism with different combinations of exploration-exploitation and
heuristic desirability parameters.

The paper is organized as follows, in the next section we explain the weather
avoidance problem and state space pre-processing mechanism followed by the
design of the algorithm and a discussion of the two pheromone update strategies
employed. We then explain the experimental design and performance measures
used and we conclude with results and discussions.

2 Weather Avoidance in Air Traffic Management

2.1 Search Space

Finding weather avoidance trajectories can be seen as path planning in three di-
mensions, which is a well known NP-hard problem [5]. In air traffic management
this problem attains unique dimensions due to safety and airspace constraints
posed on it. Apart from the hard safety constraints in terms of aircraft per-
formance envelop, the objectives are to minimize severe weather cells impact,
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minimize changes in heading, minimize changes in altitude (climb & descent),
and minimize the distance travelled in a given route. The weather cells can
spread in an area extending up to 1000 square nautical mile. Finding feasible
solution in a such a large search space can be damning form safety and time
perspective. If number of states in search space can be reduced without compro-
mising the solution quality, we hypothesized this reduction of state space size
will result in faster convergence. In worst case the algorithm will emphasize on
learning transitions which are valid.

Classical approach of handling safety constraints uses penalty value. However,
if there are large number of parameter, there is no guarantee of feasibility of the
solutions. By pre-processing unfeasible transition in the search space, search is
guaranteed to produce feasible solutions We eliminate the state space recur-
sively starting from entry point in the 3-D grid (explained later) doing forward
recursion on different layers. At each layer we eliminate states which violate the
aircraft performance parameter, then we move to the following layer. Following
this approach we can guarantee that the resultant state space contains feasible
transitions only.

2.2 Weather Avoidance

The problem can then be stated as follows: Given an 3-D matrix (Airspace) of
dimensions i (latitude) x j (longitude) x k (altitude), an entry point x (start
manoeuvre point) and an exit point y (end manoeuvre point) find the set of
routes between x and y on given objectives. We have used ATOMS [2], a high

Search Space
A Detour P Weather Cells

An Optimized
Trajectory

L JGY

60 nmi

100 nmi

Fig. 1. Conceptual representation of weather avoidance algorithm design. Airspace is
discretized into 3-D grid, at a distance of 60nm (weather radar range) from the aircraft.
Optimized trajectories lead to reduction in fuel and time. TCP in the figure indicates
next trajectory change point, which is the reference point for computing the exit point
in the grid.
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fidelity purpose build Air Traffic Management Simulator to simulate bad weather
cells and air traffic. Weather cells were simulated by assigning a radar reflectivity,
(a measure of thunderstorm intensity) between 5 and 50 generated by a uniform
distribution random number generator, to the discretized cells of the airspace.
Each cluster of bad weather comprises of 6 to 12 thunderstorm cells of dimension
10nmi x 10nmi x 3000ft [I2]. We generated several weather scenarios ranging
from 6 to 12 cells in different patterns on the intended trajectory of a flight in
a high fidelity air traffic simulator [2]. As shown in the figure [T} the algorithm
upon detection of weather cells within 60nm, (weather radar range) generates
a three dimension volume around them. This airspace volume is of dimension
100nmi X 100nmi X 3000 ft.

This search space is then discretized in a grid of 10 x 10 x 3 (300 nodes), it
gives enough volume (1000 sq nautical mile) to cover the entire weather pattern.
Each cell in the grid forms a state in the graph. The arcs of the graph represent
possible transition from one state to another. The state space is then processed
by removing those states which violate aircraft performance parameters such as
bank angle, turn angle, operating altitude, maximum rate of climb or descent
etc. This performance data is derived from the Eurocontrol’s @ Base of Aircraft
Data (BADA) [I] based on the respective aircraft’s state information (speed,
altitude, heading etc.). The pseudo code for the same is presented in algorithm
[ In a grid of 3 X 10 X 10, we have 300 nodes with 4788 arcs which after
processing were reduced 163 nodes with 2591 arcs.

The resulting three dimensional grid is stored in a 3-D array data structure
as an enumerated state space where each element of the array represent a point
in the 3-D grid. Every array element stores the information about its position
(latitude, longitude and altitude) and all the immediate next links (which do
not violate aircraft performance envelop) from that point in the grid. Further
for each link the array element stores the heading change required, altitude
change required, distance between the two and the distance to exit point from
that link. The ACO perform search on this pre-processed state space.

3 Goal Directed Search : ACO with A-Star

To incorporated goal directed search in ACO we have used A-Star algorithm.
The details are as follows:

3.1 A Star

The A Star (A*) [13] algorithm is an informed heuristic search technique which
minimizes the estimated path cost to a goal state (destination). At node n, the
A* algorithm will choose the next state which minimizes the function f(n) =
g(n) + h(n), where g(n) gives the path cost from the current node to the next

2 Eurocontrol is the European organization for the safety of air navigation. It currently
numbers 31 member states. Eurocontrol has as its primary objective the development
of a seamless, pan-European air traffic management (ATM) system.
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Algorithm 1. The pseudo code for state space processing
Require: Aircraft Performance Database D :(Rate of Heading Change, Rate of Climb
& Descent, Altitude Ceiling, Max. Bank Angle, Max. Turn Angle, Max. Vertical
Speed)
Grid G with i x j x k dimensions
Exit node position in the grid(sink)
1: for Node in G do
2: Compute the turn angle, altitude change, rate of heading change require, rate
of altitude change required, vertical speed required from each node (xyz) to
the grid point (ijk) in G
3 if Transition from node xyz to grid point ijk violates D then
4 Eliminate the link
5: else
6: Retain the link
7 end if
8: end for
9: return Grid G with links within safety envelop

node j, and h(n) is the estimated cost from the next node to the destination node
(exit point). We define cost function g(n) as the sum of the normalized weather
intensity (W F'), normalized heading change (H F'), normalized altitude change
(AF) and normalized distance (DF) to the next node j. The heuristic function
h(n) is defined by the normalized estimated cost on the above objectives from
the next node j to the exit point in the search grid. We then form 1°(n) as the
weighted sum of the two objectives.

Y(n) = (WFxwy+HF xwy+AF xwy,+DF Xw)+(W Fegt xwp+H Fogp Xwq+AF g Xwp+D Fogp Xwy)

where wy, Wy, Wy, Wi, Wy, Wy, wr, ws are dynamically initialized polar weights on
the surface of a unit sphere [7] and W Fos;, H Fest, AFestandDF,g are the esti-
mated cost of weather cell impact, heading change, altitude change and distance
traveled respectively of reaching from the next node to exit node.

3.2 ACO

In ACO, the transition rule which is the probability for an ant k on node i to
choose node j while building its tour is given according to the following rule [0]

§ [argmas,cps ) % il i 0 < a0 N
J if ¢ > qo

where J € Jik is a node that is randomly selected according to the following
probability
P (1) = [7i5 (£)] x [135)° @)
e gelmin ()] x [nik]?
where 7;; is the pheromone value between the two nodes ¢ and j, § controls
the relative weight of 75, and ¢ is a random variable uniformly distributed over

[0, 1].
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Parameter go in equation 2 is a tunable parameter (0 < go < 1), where ¢ < qo
corresponds to an exploitation of the heuristic information of given objectives
and the learned knowledge memorized in terms of pheromone trails, whereas
q > qo favors more exploration of the search space. We tune this parameter in
the interval [0 1], to evolve different search behavior.

The visibility parameter 7;; in equation 2 represents the heuristics desirability
of choosing node j when at node i, it can be used to direct the search behavior
of ants by tuning § in the interval [0 1].

We have incorporated the inverse (since it is a minimization problem) of the
A-Star evaluation function 7(n) for the visibility parameter 7; ;.

Nij = Tl(.g) (3)

To evolve different search behaviour we assigned weights iteratively for the A*
objective function where for each objective a dynamic weight is assigned. In every
iteration the weights are re-initialized using the hypercube rejection method [7]
where weights are spread on the surface of a unit sphere. This results in dif-
ferent weights (relative importance) assigned to the objectives in each iteration
resulting in diverse solution paths.

The heuristics information represented by the visibility parameter 7;; is not
static as it is in the case of ACO algorithm, it changes due to the dynamic weight
initialization of A-Star objectives in every iteration. This parameter is also tuned
in the interval of 0 to 1. A value of 1 will result in a typical A-Star behaviour,
and a value of 0 is indicative of the use of pheromone information only.

3.3 Different Search Behaviour Resulting from Different Pheromone
Update Mechanism

We have investigated two different pheromone update strategies:

Pheromone update based on dominance : All valid solutions N from the current
set P and archive set A (which stores the non-dominated solution obtained so far)
are allowed to update the pheromone matrix. The pheromone update strategy
is based on the SPEA2 [16] mechanism, where each individual solution ¢ in the
archive A and the current set P is assigned a strength value S(i), representing
the number of solutions it dominates:

S()=|j|jePi+ANi>j| (4)

where | - | denotes the cardinality of a set, + stands for multi set union and the
symbol > corresponds to the Pareto dominance relation extended to individuals
(i = j if the vector encoded by i dominates the vector encoded by 7). Based on
the S value, the raw fitness R(7) of an individual 7 is calculated by summing the
strengths of its dominators in both archive and current population.

Ry = Y SG) (5)

JjePi+As,j-i
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R(i) = 0 corresponds to a non-dominated individual,while a high R(i) value
means that ¢ is dominated by many individuals. We then update the pheromone
quantity as:

VN e[PA]:7y(t) — (1= p) - Tuy(t) +p- (1 = R()) (6)

where p is the pheromone decay parameter, and (z,y) represent the links in the
solution path.We call this approach ACO-D.

Pheromone update based on scalarization: All the valid solutions N in the current
population P are allowed to update the pheromone matrix based on the quality
of the solution as:

Vo N €[P]:7ay(t) — (1= p) Tay(t) +p- (1= 9(n)) (7)

The quality of the solution is determined in terms of the scalarization ¥ (n) of
n objectives. This mechanism is analogous to real world ants which deposits a
higher quantity of pheromone returning from a rich food source. We call this
approach ACO-S.

For the management of pheromone evaporation, pheromone trails and
pheromone limits we have followed Max-Min Ant System (MMAS) [14] method-
ology, which sets the initial pheromone to a maximum value and ensures that
pheromone information remains in a defined bound, preventing local optima and
early convergence of solutions.

4 Experiment Design and Performance Measures

ATOMS was employed to generate weather patterns based on meteorological
data. Flights based on recorded air traffic data and flight plan was simulated
between two airports in the middle-east region. The aircraft was B747-400 with
cruise altitude 27kft. The algorithm was examined on three different weather
patterns: distributed dense weather cells, distributed sparse weather cells and
clustered weather cells. The solution trajectories generated in terms of grid index
were converted into artificial waypoint with associated latitude, longitude and
altitude and fed into the flight management system of the aircraft, which is then
flown in auto-pilot mode to fly the desired trajectory.

To evolve different search behaviours and understand performance of ACO
algorithm with heuristic search under various parameter configurations, we have
examined the following combinations:

1. Use of different combinations of values of the exploration-exploitation para-
meter (qo) and heuristic desirability parameter(().

2. Pheromone update mechanism based on Dominance v.s. pheromone update
mechanism based on Scalarization.

We performed preliminary experiments to determine both the size of the ant
colony, and the number of iteration required for convergence to a solution. We
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found that 30 ants with 300 iteration provides a good solution convergence. Based
on MMAS rules we set p = 0.9 for the pheromone evaporation. 7,,,, was set to a
theoretically largest value [14]. Combinations of the following values of parameter
$={0.1,0.3,0.5,0.7,0.9} and parameter go={0.1,0.3,0.5,0.7,0.9} were examined
to understand their effect on ACO with heuristic search performance.

To measure the performance of these aspects we have used the Median Attain-
ment Surface[I7], which quantifies how much an algorithm A is better (strictly
dominates) than algorithm B. We also used ANOVAN analysis which performs
multi-way (n-way) analysis of variance (ANOVA) for testing the effects of mul-
tiple factors (grouping variables) on the mean of the given vector.

5 Experiments and Results

The ACO-S and ACO-D were tested on three different weather patterns (distrib-
uted dense weather cells, distributed sparse weather cells and clustered weather
cells), as shown in the figure 2 Each experiment was run 20 times for each
instance for 300 iterations. Figure [3] shows a 3D view of the set of solution
trajectories generated by the ACO algorithm for a particular weather pattern.
The solution set contains trajectories with different trade offs. For all the given
combinations of gy (exploration-exploitation) and 3 (heuristic desirability) para-
meter, performance measures were computed, based on the outcome we plotted
color map which displays the solution quality over other configurations, where
darker shade indicates a good performance of the strategy parameter combina-
tion for the implied configuration in relation to all other combinations, and a
lighter shade shows bad performance.

Fig. 2. Air traffic simulator snap shot of the ACO generated avoidance trajectory in
the different weather scenarios. The three weather patterns with thunderstorm cells
with varying radar reflectivity can be seen. Flight is displayed along with its call sign,
altitude, speed and avoidance trajectory. OERK and OKBK shown in the figure are two
airports in the middle-east region. The area displayed is approx. 2500 nm x 1000nm.
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Fig. 3. A set of solution trajectories generated by ACO from grid entry point to grid
exit point. Some of the trajectories that passes through high intensity thunderstorm
cells (displayed as circles) are optimal on heading changes and distance traveled.

5.1 Median Attainment Surface

We computed the median attainment surface(MAS) for the non-dominated set
of solutions generated by the ACO with informed heuristics search for the two
approaches and for different parameter combinations. As shown in figure [4] and
judging from the average darkness, some interesting observations can be made
out of them. In dominance based pheromone update mechanism, we can see that
when ¢ is low (¢go=0.1 and ¢p=0.3) then high exploration (4=0.7) of search
space gives good results. When ¢ is medium (go=0.5) then high to very high
exploration( >0.7) is results in good solutions. When ¢q is high to very high
(go >0.7) then very high exploration (5=0.9) is undesirable. Best Solution were
obtained for parameter combination of go=0.7 and $=0.5. In scalarization based
pheromone update mechanism, we can see that with increasing value of gy we
get very good solutions and 3 has very marginal effect on the solution quality.
However, for all the good solutions we can see that parameter g has a value
of 0.5. In ACO-D over ACO-S, the color map indicates that high to very high
value of exploitation (go >0.7) in ACO-D gives good solution quality over ACO-
S and similarly in ACO-S over ACO-D, with high exploitation ACO-S gives
good solution quality over ACO-D. This indicates that very high exploitation
of learned knowledge in the search space coupled with medium to high use of
heuristic information can lead to good quality solutions for this kind of problems.

To get a more conclusive picture we then used ANOVAN analysis on MAS
data. Figure[B shows the ANOVAN analysis of ACO-S and ACO-D with different
factors qo and [3; each sub—figure presents the means and 95% confidence interval
of the means of each data groups. Figure Bl top left and right shows ANOVAN for
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Fig. 4. MAS performance of ACO-S with in its own set (top-left), ACO-D with in its
own set (top-right), ACO-D (y-axis) compared with ACO-S (x-axis) (bottom-left) and
ACO-S (x-axis) compared with ACO-D (y-axis) (bottom-right). Darker shade indicates
a good performance of the strategy parameter combination for the implied configuration
in relation to all other combinations, and a lighter shade shows bad performance.

ACO-S, ACO-D for various parameter combination. It can be seen that the best
strategy in both the approaches is high exploitation of embedded information
in the environment. with increased exploitation we get good results, but if too
much exploitation of heuristic is done the solution quality decreases. In ACO-
S this however depends on medium favour for heuristic information available
about the system. Whereas in ACO-D this depends on high favour for heuris-
tic information available about the system. Thus in dominance based approach
heuristic information plays a greater role than in scalarization based approach.
In general we can say that very high exploitation of learned knowledge coupled
with medium to high exploitation of heuristic information available about the
system leads to good quality solution.
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Fig.5. ANOVAN analysis (showing means and 95% confidence interval) grouped on
different set of go and 3 parameters for the two approaches.

6 Conclusion and Future Work

A safety inherent design coupled with goal directed search can provide a good
framework towards safety critical problems such as weather avoidance in air
traffic environment. Pre-processing the state space before search helps in reduc-
ing the search space and making the search manageable for a safety and time
critical domain. ACO with A-Star provided a good mechanism of incorporating
multiple objectives and combining the virtues of population based approach with
informed heuristics search. The algorithm generates a set of solution trajecto-
ries in different weather patterns successfully. The trajectories generated were
all flyable, such that they do not compromise the performance envelop of the
aircraft. The solution quality is strongly affected by exploitation of the embed-
ded information in the environment rather than the available heuristics. High
heuristic desirability leads to poor quality solution indicating early convergence
to sub-optimal solution due to more weight on the local information. Overall
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the best strategy was to exploit more what is learned about the search space and
use average local information. We will be further investigating this approach in
a dynamic weather environment with neighbouring air traffic.
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Abstract. Particles, gliders and domain walls have long been thought to
be the information transfer entities in cellular automata. In this paper we
present local transfer entropy, which quantifies the information transfer
on a local scale at each space-time point in cellular automata. Local
transfer entropy demonstrates quantitatively that particles, gliders and
domain walls are the dominant information transfer entities, thereby
supporting this important conjecture about the nature of information
transfer in cellular automata.

1 Introduction

Design and analysis of complex nonlinear behavior in artificial life systems has
recently begun to consider the concept of information transfer (e.g. via influ-
ence of agents over their environments [I], in co-ordination between individual
modules of modular robots [2], and inducing neural structure in robots [3]).
Nowhere is the consideration of information transfer more clear than in studies
of cellular automata (CAs), where the emergent structures known as particles,
gliders and domain walls have long been suggested to be the information trans-
fer entities therein [4J5]. Importantly, information transfer is also viewed as an
important component of complex behavior beyond the field of artificial life (e.g.
self-organization caused by dipole-dipole interactions in microtubules [6]).

Despite the abundance of complexity measures though (e.g. [7U8]), quantita-
tive studies of information transfer in complex systems are noticeably absent. We
derive a measure of local information transfer from the transfer entropy [9], an ex-
isting averaged information-theoretical measure. Local transfer entropy charac-
terizes the information transfer into each spatiotemporal point in a given system
rather than providing a global average over all points in an information channel.
Local transfer entropy facilitates close study of parameters of the average trans-
fer entropy, and is independently useful in highlighting or filtering “hot-spots”
in information channels. We apply local transfer entropy to Elementary Cellular
Automata (ECAs), a class of simple yet powerful discrete dynamical models. Lo-
cal transfer entropy profiles for ECAs highlight the particles, gliders and domain
walls as the dominant information transfer entities, importantly providing the
first quantitative evidence for this widely-accepted conjecture about the nature
of information transfer in CAs.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 49-[60] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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2 Information Transfer in Cellular Automata

We begin by introducing cellular automata (CAs), a renown example of complex
systems, and discuss the importance of information transfer therein so as to
contextualize our motivation. CAs are discrete dynamical systems consisting of
an array of cells which each synchronously update their state as a function of
the states of a fixed number of spatially neighboring cells using a uniform rule.
While the behavior of each cell is simple, their (non-linear) interactions can lead
to quite intricate global behavior. As such, CAs have become a well-studied
example of complex behavior, and been used to model a wide variety of real
world phenomena []. Elementary CAs, or ECAs, are a simple variety of 1D CAs
using binary states, deterministic rules and one neighbor on either side (i.e. cell
range r = 1). An example evolution of an ECA may be seen in Fig.[Tlh. Wolfram
[10] provides a more detailed introduction to CAs, and defines the Wolfram rule
number convention used here for describing update rules.

An important outcome of Wolfram’s well-known attempt to classify the as-
ymptotic behavior of CA rules into four classes [I0] was a focus on emergent
structure in CAs: particles, gliders and domains. A domain (formally defined
within computational mechanics [11])) is a set of background configurations in a
CA, any of which will update to another such configuration in the absence of a
disturbance. A domain may be a reqular, with periodic repetition, or is otherwise
irreqular. Particles are moving elements of coherent spatiotemporal structure;
gliders are periodically-repeating particles. Formally, particles are defined as a
boundary between two domains [I1]]; they can also be termed as domain walls,
though this is typically used with reference non-periodic particles.

The continuing focus on the dynamics of propagating and static structures
and their interactions (e.g. [8]) underlines the importance of information transfer
in CAs. Particles are often said to form the basis of information transmission,
and their interactions or collisions the basis of information modification (e.g.
[B]). In particular, we find these analogies in analyses of CAs performing in-
trinsic, universal or other specific computation [IIIT2], and discussions on the
nature of particles and their interactions [I2II3]. However, no study has quan-
tified the information transfer on average within specific channels or at specific
spatiotemporal points in a CA, nor quantitatively demonstrated that particles
(and gliders and domain walls) are in fact information transfer agents, there-
fore leaving these suggestions as conjecture only. We expect that a measure of
local information transfer into each spatiotemporal point in CAs would reveal
particles as the dominant information transfer agents.

Such spatiotemporal profiling can be viewed as a filtering for regions of interest
in CAs, several methods of which exist: finite state transducers [I1], frequency of
rule execution [§], local statistical complexity and local sensitivity [14], and local
information [I5]. All of these successfully highlight particles, and so filtering is
not a new concept. However the use of information transfer profiling could pro-
vide the first thoroughly quantitative evidence that particles are the information
transfer elements in CAs. Additionally, it would provide several filtered views by
examining each spatiotemporal direction of information transfer in the CA, and
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should reveal interesting differences in the parts of the structures highlighted.
In the following sections, we present the information-theoretical foundations for
and subsequently derive our local measure of information transfer.

3 Information-Theoretical Foundations

The measure of information transfer used here, transfer entropy, is defined using
information-theoretical quantities. Importantly, information theory (e.g. see [16])
is known to be a useful framework for the design and analysis of complex self-
organized systems (see [I7] and specific examples in [2[T13]).

The fundamental quantity is the Shannon entropy, the uncertainty associated
with any measurement = of a random variable X (logarithms are in base 2,
giving units in bits):

Zp ) log p(z (1)

The joint entropy of two random variables X and Y is a generalization to
quantify the uncertainty of their joint distribution:

H(X,Y) == p(z,y)logp(z,y). (2)

.y

The conditional entropy of X given Y is the average uncertainty that remains
about x when y is known

H(X|Y) ==Y plz,y)logp(z[y). (3)

T,y

The mutual information between X and Y measures the average reduction
in uncertainty about z that results from learning the value of y, or vice versa:

B . p(z,y)
Y) = ;p( ,y) log P(@)n(y): (4)
[(X:Y) = H(X) — H(X|Y) = H(Y) — H(Y|X). (5)

The conditional mutual information between X and Y given Z is the mutual
information between X and Y when Z is known:

I(X;Y|2) = H(X|Z) - HX|Y, 2). (6)

In the following section, we describe the use of information theory to define
transfer entropy as a directional, dynamic measure of information transfer, and
present local transfer entropy to quantify information transfer at each point in
space and time in a given system.
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4 Local Transfer Entropy

Mutual information has been a de facto candidate for measuring information
transfer in complex systems, e.g. [5]. Yet mutual information as an information
transfer contains no directionality; attempts to address this include using a time-
lag between the “source” and “destination” values (known as time-lagged mutual
information). However, this ignores the fundamental problem that it measures
statically shared information [9].

To address these inadequacies Schreiber introduced transfer entropy in [9], the
deviation from independence (in bits) of the state transition of an information
destination X from the (previous) state of an information source vl

(k)
P\Tn+11Tn " Yn
Tyx =3 plaa) log Pl o) (7)
- Plansilal)

Here n is a time index, z, represents the state transition tuple (z,1, J;%k),yn),
and x£ﬁ> represents the k past values of z from and including time n (with & =1
being the default choice). Reference [I8] points out that the transfer entropy can
be viewed as a conditional mutual information (), that is the average informa-
tion in the source about the next state of the destination that was not already
contained in the destination’s past.

To derive a local transfer entropy measure, we note that p(z,) may be ex-
pressed as the ratio of the count of observations ¢(z,,) of z,, to the total number
of observations N: p(z,) = ¢(z,)/N. (Note that perfect estimation of the prob-
ability distribution function p(z,) would require an infinite number of observa-
tions). We replace the count by its definition to get:

C(Zn)
plza) = D 1| /N. (8)

m=1

Substituting ([{) into (), we then bring the log term inside this inner sum, leaving
a double sum over each observation m for each possible tuple z,. We combine
these into a single sum over all N observations, and see that the transfer entropy
metric is a global average (or expectation value) of a local transfer entropy at
each observation:

T 1 zNzlog p(xn+1\x%k),yn) )
Y—-X — 9

N7 planalet?)

i.€. TYHX = <tny(n + ].)> . (10)

1 Schreiber’s presentation [9] considers the transfer from [ previous states of the source
variable. Here, we use [ = 1: only the one previous source value has a direct causal
influence on the destination in CAs, and we consider the information transfer in this
causal relationship only at the given time step.
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For systems such as CAs with homogeneous spatially-ordered agents, we instead
represent the local information transfer to cell X; from X;_; at time n 41 as:

k
P(@inir |t i)

1i,j,n +1,k) = log (1)

k
P&zt

t(i,j,n, k) is defined for every spatiotemporal destination (i,n), for every infor-
mation channel or direction j where sensible values for CAs are within the cell
range, |j| < r. For such systems, it is appropriate to estimate the probability
distributions used in (IIJ) from all spatiotemporal observations (i.e. from the
whole CA).

It is important to note that the destination’s own historical values can in-
directly influence it via the source, which may be mistaken as an independent
flow from the source. Such self-influence is a non-traveling form of information
(like standing waves), eliminated from the measurement by conditioning on the
destination’s history mgkyz However any self-influence transmitted prior to these
k values will not be eliminated; we generalize comments on the entropy rate in
[9) to suggest that the asymptote k — oo is most correct for agents displaying
non-Markovian dynamics. Local transfer entropy is then formally defined as:

k
P(@ini|esh) i)

t(i,j,n+1) = klim log , (12)

k
—oo (i i1z

though we acknowledge that its computation is not feasible in general, and retain
the notation t(i, j, n, k) for estimation with finite k.

While the averaged transfer entropy metric is constrained between 0 and log b
(where b is the number of possible states of the destination element), it is im-
portant to note that the local transfer entropy is not constrained so long as it
averages into this range. This means that is can be measured to be greater than
log b, indicating a very significant information transfer, and can also in fact be
measured to be negative. Local transfer entropy is negative where (given the
destination’s history) the source element is actually misleading about the next
state of the destination. It is possible for the source to be misleading in this
context where other information sources influence the destination.

We label the special case j = 0 as self-information transfer, where the source
element is the immediate past of the destination. By convention, we condition
this calculation on the k& values before the previous source value so as not to
condition on the source. Self-information transfer is not a particularly meaningful
quantity in and of itself, however it helps to form a useful visually filtered image
with transfer entropy profiles for other values of j in the summed information
information transfer profile ts(i,n, k) = Z;:_r t(i, j,n, k), where r is the range
of information contributors (i.e. the cell range r for CAs).
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5 Results and Discussion

The local transfer entropy (i, j,n, k) was measured for all space-time points
in instances of several important ECA rules. We ran each instance from an
initial randomized state of 8 000 cells, the first 30 time steps eliminated to
allow the CA to settle, and a further 500 time steps captured for investigation.
Periodic boundary conditions were used and results were confirmed by at least
10 runs from different initial states. All figures presented here were generated
using modifications to [19].

The raw states for rule 110 (a classically complex rule) are displayed in Fig. [Th.
As base cases we measured t(i, j,n,k = 1) (i.e. for the default destination con-
ditioning length k£ = 1), and time-lagged local mutual information (constructed
in the same way as our local metric of transfer entropy) which is equivalent to
t(i, j,n, k = 0). Despite the known existence of particles and collisions [8I14] for
this rule these measures were unable to quantitatively distinguish such struc-
ture with any more clarity than the raw CA plot itself (results not shown). The
comparison case of local mutual information mirrors that performed with the
globally averaged measures in [J], but the local profiles allow a more detailed
comparison here than their averages do.

We continue to measure local transfer entropy t(4, j,n, k) with larger values
of k (the examples in [9] all used & = 1 in less coupled systems). For k > 6
the particle regions contain distinguishably more information transfer than the
regular domains: this is shown for & = 6 in the information transfer profiles
for j = 1 (i.e. one cell to the right per unit time step) and j = —1 (i.e. one
cell to the left per unit time step) in Fig. [k and e respectively. As expected,
higher values of local transfer entropy are attributed by each measure to the
gliders moving in the same macroscopic direction of motion as the direction
of information transfer being measured. In contrast, notice that negative local
transfer entropy is attributed to gliders with a macroscopic direction of motion
orthogonal to the direction of information transfer being measured (see Fig. [Id
and f); this is because sources of information from the orthogonal direction to
the glider, which are still part of the domain, are misleading about the next state
of the destination. Fig. [Ib displays the summed profile ¢4(i,n, k = 6): this stark
contrast between the gliders and the domain gives a filtered plot very similar
to those produced for rule 110 by other filtering techniques (see [814]). Relying
on the average transfer entropy values as solitary numbers does not provide us
the same level of detail (e.g. for transfer one cell to the right per unit time
(t(i,j = 1,n,k =1)) = 0.21 bits and (t(z,7 = 1,n,k = 6)) = 0.12 bits).

Importantly, note that since regular domains are temporally periodic [13], with
period say p, local transfer entropy measurements with & > p in an infinite such
domain would not detect any additional information from the neighbors about
the next state of the destination cell than is contained in its p previous states.
That is to say, each cell’s individual dynamics would appear to be determinis-
tically Markovian. However the presence of gliders can render the probability
distributions of (1) to measure small but non-zero information transfer at cer-
tain points in the regular background domain (small enough to appear to be zero
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; b. (top right) Summed
profile ts(i,n,k = 6) of local transfer entropies ¢(i,j,n,k = 6), positive values only

shown, grayscale (all with 16 colors) with max. 7.80 bits (black), min. 0.00 bits (white);
c. (middle left) t(i,5 = 1,n,k = 20) (one cell to the right), positive values only, max.
4.95 bits (black), min. 0.00 bits (white); d. (middle right) t(i,j = 1,n,k = 20) ,
negative values only, max. 0.00 bits (white), min. -1.94 bits (black); e. (bottom left)

t(i,j = —1,n,k = 20) (one cell to the left), positive values only, max. 6.62 bits (black),
min. 0.00 bits (white); f. (bottom right) t(i,j

max. 0.00 bits (white), min. -2.05 bits (black).

Fig.1. ECA Rule 110: a. (top left) Raw CA (time is vertical); b.
)

= —1,n,k = 20), negative values only,

55



56 J.T. Lizier, M. Prokopenko, and A.Y. Zomaya

Fig. 2. ECA Rule 110: a. (top left) Raw CA; b. (top right) Summed profile ts(i,n, k =
16) of local transfer entropies t(%, j,n, k = 16), positive values only shown, grayscale
with max. 11.62 bits (black), min. 0.00 bits (white); c. (bottom left) t(i,j = 1,n,k = 16)
(one cell to the right), positive values only, max. 9.99 bits (black), min. 0.00 bits (white);
d. (bottom right) t(i,5 = —1,n,k = 16) (one cell to the left), positive values only, max.
10.43 bits (black), min. 0.00 bits (white).

in Fig. [[]). These small values in the domain are effectively an indication of the
absence of a glider, that is that the domain shall continue. These non-zero values
in the domain tend to be stronger in the wake of real gliders: because secondary
gliders often follow other gliders, there is a stronger indication of their absence.

While the results in Fig. [Ib visually match previous filtering work, each indi-
vidual cell’s dynamics are in fact non-Markovian, so using k — oo would provide
a more correct estimation of the information transfer in this system. Achieving



Information Transfer by Particles in Cellular Automata 57

Fig. 3. ECA Rule 146: a. (top left) Raw CA; b. (top right) Summed profile ¢s(i,n, k =
16) of local transfer entropies t(i, j,n, k = 16), positive values only shown, grayscale
with max. 13.50 bits (black), min. 0.00 bits (white); c. (bottom left) t(i,5 = 1,n, k = 16)
(one cell to the right), positive values only, max. 13.50 bits (black), min. 0.00 bits
(white); d. (bottom right) t(i,j = —1,n,k = 16) (one cell to the left), positive values
only, max. 10.66 bits (black), min. 0.00 bits (white).

the limit £ — oo is computationally infeasible, but reasonable estimates of the
probability distributions can be made for finite values of k in finite CA runs:
we therefore increase the destination conditioning length under consideration to
k = 16. We plot t(i, j,n, k = 16) for rule 110 for j = 1 and -1, and the summed
profile ¢5(i,n, k = 16), in Fig. @ Information transfer is highlighted almost ex-
clusively now in the direction of the macroscopic glider motion; this is even more
closely aligned with our expectations than was seen for k£ = 6. Much less of the
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gliders are highlighted than for £ = 6 or other techniques, with larger values of
information transfer concentrated around the leading time-edges of the gliders:
this indicates that much of the dynamics following the leading glider edges ap-
pear to have comprised non-traveling information. The small, non-zero transfer
in the domain remains, but these results provide quantitative evidence that glid-
ers are the dominant information transfer elements here. This is an important
distinction to previous filtering work: while the filtered results may appear sim-
ilar, it is only local information transfer style filtering that provides quantitative
evidence that gliders are the dominant information transfer agents.

Similarly, note that stationary (i.e. vertical) gliders are not highlighted by
this local transfer entropy method, while they are highlighted by other filtering
methods (e.g. [§]). With reference to the figures included here, in Fig. @b this
is noticeable in a somewhat similar fashion to the leading glider edges only be-
ing highlighted. Stationary gliders are not highlighted as significant information
transfer because the next states of their component cells are (almost) completely
predictable from their pasts, as is the case in the regular domain: there is no
independent transfer from the neighbors of those cells.

We also investigated rule 146, which contains domains walls against the back-
ground domain. Application of local transfer entropy to the sample run in Fig.[3h
highlights the domain walls as containing strong information transfer in each di-
rection of measurement (see Fig. Be and Fig.Bd). A complete picture is given by
its summed t4(i,n, k = 16) profile in Fig. Bb: the domain walls clearly contain
much stronger information transfer than the domain. This highlighting of the
domain walls is similar to that produced by other filtering techniques (e.g. [14]),
but again quantitatively confirms the domain walls as the dominant information
transfer agents.

6 Conclusion

In characterizing the information transfer into each spatiotemporal point in a
complex system, the local transfer entropy presents insights that cannot be ob-
tained using the averaged measure alone. Local transfer entropy is a valid filter
for coherent structure in CAs, and quantitatively supported the long-held conjec-
ture that particles, gliders and domain walls are the information transfer agents
in CAs. It is novel in comparison to other filtering methods: it provides views of
information transfer in each generic channel or direction, and highlights subtly
different parts of emergent structure (i.e. those which facilitate the information
transfer, being the leading glider edges).

The localization of transfer entropy is also a useful tool for investigating para-
meters of the transfer entropy itself. Here, our results underlined the importance
of appropriate destination conditioning lengths, and we intend to use the local
metric to investigate other variants of the transfer entropy (e.g. conditioning not
only on the past history of the destination but on other information sources) in
future work. We intend to provide a more complete analysis of the local transfer
entropy metric, its variants, and their application to CAs in the near future.
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Separately, we are examining the manner in which the local measure of infor-
mation transfer introduced here combines with information storage and modifi-
cation to form three axes of complexity as individual elements of computation
[20].

In providing evidence that particles are the dominant information transfer
agents in CAs, this result also provides the reverse evidence that transfer en-
tropy is the appropriate measure for information transfer in complex systems.
That being said, a comparison should be made with a localization of “informa-
tion flow” [I8] in future work. Local transfer entropy is ready to be applied to
more complex systems (e.g. microtubules [6]), for which it may prove similar
conjectures about information transfer.
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Abstract. Cell pattern formation has a crucial role in both artificial
and natural development. This paper presents an artificial development
model for cell pattern generation based on the cellular automata (CA)
paradigm. Cellular growth is controlled by a genome consisting of an
artificial regulatory network (ARN) and a series of structural genes. The
genome was evolved by a Genetic Algorithm (GA) in order to produce
2D cell patterns through the selective activation and inhibition of genes.
Morphogenetic gradients were used to provide cells with positional infor-
mation that constrained cellular replication. After a genome was evolved,
a single cell in the middle of the CA lattice was allowed to reproduce
until a cell pattern was formed. The model was applied to the problem
of growing a French flag pattern.

Keywords: Artificial Development, Cell Pattern, French Flag Problem,
Genetic Algorithm, Artificial Regulatory Network, Cellular Automata.

1 Introduction

In biological systems, development is a fascinating and very complex process
that involves following an extremely intricate program coded in the organism’s
genome. One of the crucial stages in the development of an organism is that
of pattern formation, where the fundamental body plans of the individual are
outlined. It is now evident that gene regulatory networks play a central role in
the development and metabolism of living organisms [I]. It has been discovered
in recent years that the diverse cell patterns created during the developmental
stages are mainly due to the selective activation and inhibition of very specific
regulatory genes.

Over the years, artificial models of cellular development have been proposed
with the objective of understanding how complex structures and patterns can
emerge from one or a small group of initial undifferentiated cells [2][3][4] [5][6]. In
this paper we propose an artificial development model that generates 2D patterns
by means of the selective activation and inhibition of development genes under
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the constraints of morphogenetic gradients. Cellular growth is achieved through
the expression of structural genes, which are in turn controlled by an Artificial
Regulatory Network (ARN) evolved by a Genetic Algorithm (GA). The ARN
determines when cells are allowed to grow and which gene to use for reproduction,
while morphogenetic gradients constrain the position at which cells can replicate.
Both the ARN and the structural genes constitute the artificial cell’s genome. In
order to test the functionality of the development program found by the GA, we
applied the evolved genome to a cellular growth model that we have successfully
used in the past to develop simple 2D and 3D geometrical shapes [7].

The paper starts with a section describing the cellular growth model, followed
by a section presenting the morphogenetic gradients used. The artificial cell’s
genome is presented next, followed by a section describing the GA and how it
was applied to evolve the genome. Results are presented next, followed by a
section of conclusions.

2 Cellular Growth Model

Cellular automata (CA) were chosen as models of cellular growth, as they provide
a simple mathematical model that can be used to study self-organizing features
of complex systems [§]. CA are characterized by a regular lattice of N identical
cells, an interaction neighborhood template 7, a finite set of cell states X, and a
space- and time-independent transition rule ¢ which is applied to every cell in
the lattice at each time step.

In the cellular growth model presented in this work, a 33 x 33 regular lattice
with non-periodic boundaries was used. The set of cell states was defined as
¥ ={0,1}, where 0 can be interpreted as an empty cell and 1 as an occupied or
active cell. The interaction template 1 used was an outer Moore neighborhood.
The CA’s rule ¢ was defined as a lookup table that determined, for each local
neighborhood, the state (empty or occupied) of the objective cell at the next time
step. For a 2-state CA, these update states are termed the rule table’s “output
bits”. The lookup table input was defined by the binary state value of cells in
the local interaction neighborhood, where 0 meant an empty cell and 1 meant
an occupied cell [9]. A cell can become active only if there is already an active
cell in the interaction neighborhood. Starting with an active cell in the middle of
the lattice, the CA algorithm is applied allowing active cells to reproduce for 100
time steps according to the rule table. During an iteration of the CA algorithm,
the sequence of reproduction of active cells is randomly selected in order to avoid
artifacts caused by a deterministic order of cell reproduction. Finally, cell death
is not considered in the present model for the sake of simplicity.

3 Morphogenetic Gradients

Since Turing’s seminal article on the theoretical influence of diffusing chemical
substances on an organism’s pattern development [I0], the role of these mole-
cules has been confirmed in a number of biological systems. These organizing
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substances have been termed morphogens due to their role in driving morpho-
genetic processes. In our proposed development model, morphogenetic gradients
were generated similar to those found in the eggs of the fruit fly Drosophila, where
orthogonal gradients offer a sort of Cartesian coordinate system [I1]. These gra-
dients provide reproducing cells with positional information in order to facilitate
the spatial generation of patterns. The artificial morphogenetic gradients were
set up as suggested in [3], where morphogens diffuse from a source towards a
sink, with uniform morphogen degradation throughout the gradient.

Before cells were allowed to reproduce in the cellular growth model, morpho-
genetic gradients were generated by diffusing the morphogens from one of the
CA boundaries for 1000 time steps. Initial morphogen concentration level was
set at 255 arbitrary units, and the source was replenished to the same level at
the beginning of each cycle. The sink was set up at the opposite boundary of
the lattice, where the morphogen level was always set to zero. At the end of
each time step, morphogens were degraded at a rate of 0.005 througout the CA
lattice. We defined two orthogonal gradients in the CA lattice, one generated
from left to right and the other from top to bottom (Fig. ).
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Fig. 1. Morphogenetic gradients (a) Left to Right; (b) Top to Bottom; (c¢) Morphogen
concentration graph

4 Genome

Genomes are the repository of genetic information in living organisms. They
are encoded as one or more chains of DNA, and they regularly interact with
other macromolecules, such as RNA and proteins. Artificial genomes are typically
coded as strings of discrete data types. The genome used in this model was
defined as a binary string starting with a series of ten regulatory genes, followed
by a number of structural genes (see Fig. ).

4.1 Regulatory Genes

The series of regulatory genes at the beginning of the genome constitutes an Ar-
tificial Regulatory Network (ARN). ARNs are computer models whose objective
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is to mimic to some extent the gene regulatory networks found in nature. ARNs
have previously been used to study differential gene expression either as a com-
putational paradigm or to solve particular problems [I2][I3][I4][I5]. The gene
regulatory network implemented in this work is an extension of the ARN pre-
sented in [16], which in turn is based on the model proposed by Banzhaf [T4].

In the present model, each regulatory gene consists of a series of eight in-
hibitor/enhancer sites, a series of five regulatory protein coding regions, and
two morphogen threshold activation sites that determine the allowed positions
for cell reproduction (Fig. 2)). Inhibitor/enhancer sites are composed of a 12-bit
function defining region and a regulatory site. Regulatory sites can behave either
as an enhancer or an inhibitor, depending on the configuration of the function
defining bits associated with them. If there are more 1’s than 0’s in the defining
bits region, then the regulatory site functions as an enhancer, but if there are
more 0’s than 1’s, then the site behaves as an inhibitor. Finally, if there is an
equal number of 1’s and 0’s, then the regulatory site is turned off [17].

Regulatory protein coding regions “translate” a protein using the majority
rule, i.e. for each bit position in these regions, the number of 1’s and 0’s is
counted and the bit that is in majority is translated into the regulatory protein.
The regulatory sites and the individual protein coding regions all have the same
size of 32 bits. Thus the protein translated from the coding regions can be
compared on a bit by bit basis with the regulatory site of the inhibitor and
enhancer sites, and the degree of matching can be measured. As in [I4], the
comparison was implemented by an XOR operation, which results in a “1” if the
corresponding bits are complementary. Each translated protein is compared with
the inhibitor and enhancer sites of all the regulatory genes in order to determine
the degree of interaction in the regulatory network. The influence of a protein
on an enhancer or inhibitor site is exponential with the number of matching
bits. The strength of excitation en or inhibition in for gene i with i = 1,...,n is
defined as
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where n is the total number of regulatory genes, v and w are the total number of
active enhancer and inhibitor sites, respectively, c; is the concentration of protein
j, B is a constant that fine-tunes the strength of matching, uj; and u;. are the
number of matches between protein j and the enhancer and inhibitor sites of
gene i, respectively, and uf,  and ug, are the maximum matches achievable
(32 bits) between a protein and an enhancer or inhibitor site, respectively [14].

Once the en and in values are obtained for all regulatory genes, the corre-
sponding change in concentration c¢ for protein 7 in one time step is calculated
using

((l; =0 (en; —in;) ¢, (3)

where 6 is a constant that regulates the degree of protein concentration change.

Protein concentrations are updated and if a new protein concentration results

in a negative value, the protein concentration is set to zero. Protein concen-

trations are then normalized so that total protein concentration is always the

unity. Parameters 3 and § were set to 1.0 and 1.0 x 105, respectively, as previously
reported [16].

The morphogen threshold activation sites provide reproducing cells with po-
sitional information as to where they are allowed to grow in the CA lattice.
There is one site for each of the two orthogonal morphogenetic gradients de-
scribed in Section Bl These sites are 9 bits in length, where the first bit defines
the allowed direction (above or below the threshold) of cellular growth, and the
next 8 bits code for the morphogen threshold activation level, which ranges from
0 to 28 — 1 = 255. If the site’s high order bit is 0, then cells are allowed to
replicate below the morphogen threshold level coded in the lower order eight
bits; if the value is 1, then cells are allowed to reproduce above the threshold
level. Since in a regulatory gene there is one site for each of the two orthogonal
morphogenetic gradients, for each pair of morphogen threshold activation levels,
the pair of high order bits defines in which of the four relative quadrants cells
expressing the associated structural gene can reproduce. Quadrants can have
irregular edges because morphogenetic gradients are not perfectly generated due
to local morphogen accumulation close to the non-periodic boundaries of the CA
lattice.

4.2 Structural Genes

Structural genes code for the particular shape grown by the reproducing cells
and were obtained using the methodology presented in [9]. Briefly, the CA rule
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table’s output bits from the cellular growth model described in Section 2l were
evolved by a GA in order to produce predefined 2D shapes.

Structural genes are always associated to the corresponding regulatory genes,
that is, structural gene number 1 is associated to regulatory gene number 1
and its related translated protein, and so on. A structural gene was defined as
being active if and only if the regulatory protein translated by the associated
regulatory gene was above a certain concentration threshold. The value chosen
for the threshold was 0.5, since the sum of all protein concentrations is always
1.0, and there can only be a protein at a time with a concentration above 0.5.
As a result, only one structural gene can be expressed at a particular time step
in a cell. If a structural gene is active, then the CA lookup table coded in it is
used to control cell reproduction. Given that the outer Moore neighborhood used
in the cellular growth model consists of the eight cells surrounding the central
cell, structural genes are all 256 bits in length (28 = 256) []. The number of
structural genes used in the genome depended on the particular pattern grown,
as described in Section [Al Structural gene expression is visualized in the cellular
growth model as a distinct external color for the cell.

5 Genetic Algorithm

Genetic algorithms (GAs) are search and optimization methods based on ideas
borrowed from natural genetics and evolution [I§]. A GA starts with a popula-
tion of chromosomes representing vectors in search space. Each chromosome is
evaluated according to a fitness function and the best individuals are selected.
A new generation of chromosomes is created by applying genetic operators on
selected individuals from the previous generation. The process is repeated until
the desired number of generations is reached or until the desired individual is
found.

The GA in this paper uses tournament selection with single-point crossover
and mutation as genetic operators. As in a previous report, we used the fol-
lowing parameter values [I6]. The initial population consisted of 1000 binary
chromosomes chosen at random. Tournaments were run with sets of 3 individu-
als randomly selected from the population. Crossover and mutation rates were
0.60 and 0.15, respectively. Finally, the number of generations was set at 50, as
there was no significant improvement after this number of generations.

The fitness function used by the GA was defined as

1 <~ ins; — Louts;
Fitness = b2 ! 4

k Z des; ’ (4)

i=1

where k is the number of different colored shapes, each corresponding to an
expressed structural gene, ins; is the number of active cells inside the desired
shape i with the correct color, outs; is the number of active cells outside the
desired shape 7, but with the correct color, and des; is the total number of cells
inside the desired shape i. Thus, a fitness value of 1 represents a perfect match.
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6 Results

The GA described in Section [f] was used in all cases to evolve the genome for
the desired colored patterns, where each color represented a different structural
gene being expressed. After a genome was obtained, an initial active cell was
placed in the middle of the CA lattice and was allowed to reproduce controlled
by the gene activation sequence found by the GA and under the restrictions
imposed by the morphogenetic fields. In order to grow the desired pattern with
a predefined color and position for each cell, the regulatory genes in the ARN
had to evolve to be activated in a precise sequence and for a specific num-
ber of iterations inside the allowed space defined by the morphogenetic fields.
Not all GA experiments produced a genome capable of generating the desired
pattern.

The artificial development model was applied to what is known as the French
flag problem. The problem of generating a French flag pattern was first intro-
duced by Wolpert in the late 1960s when trying to formulate the problem of
cell pattern development and regulation in living organisms [I9], and it has
been used since then by some authors to study the problem of artificial pat-
tern development [20]. In order to grow the French flag pattern, three different
structural genes were used. The first gene drove the creation of the central white
square, while the next two genes extended the central square to the left and
to the right, expressing the blue and the red color, respectively. The last two
structural genes do not code specifically for a square, instead they extend a ver-
tical line of cells to the left or to the right for as many time steps as they are
activated.

Figure [3 shows a 27 x 9 French flag grown from the expression of the three
structural genes mentioned above. The graph of the corresponding regulatory
protein concentration change over time is shown in Ble). Starting with an initial
white cell (a), a white central square is formed from the expression of gene
number 1 (b), the left blue square is then grown (c), followed by the right red
square (d). The evolved morphogenetic fields are shown for each of the three
structural genes. Since the pattern obtained was exactly as desired, the fitness
value assigned to the corresponding genome was 1.

In order to increase the complexity of the pattern generated, four different
structural genes were used to grow a French flag with a flagpole pattern. The
first three structural genes are the same as those used to grow the simple French
flag pattern. A fourth gene was added to create the brown flagpole by growing a
single line of cells downward from the lower left corner of a rectangle. However,
when trying to evolve a genome to produce the French flag with a flagpole pat-
tern, it was found that the GA could not easily evolve an activation sequence
that produced the desired pattern. Using the same approach as in [16], in order
to increase the likelihood for the GA to find an appropriate genome, instead of
using one series of four structural genes, a tandem of two identical series of four
structural genes was used, for a total of eight structural genes. In that manner,
for creating the central white square, the genome could express either structural
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Fig. 3. Growth of a French flag pattern. (a) Initial cell; (b) Central white square with
morphogenetic field for gene 1 (square); (c) White central square and left blue square
with morphogenetic field for gene 2 (extend to left); (d) Finished flag pattern with
morphogenetic field for gene 3 (extend to right); (e) Graph of the protein concentration
change from the genome expressing the French flag pattern.

Protein 3
(right)

Protein 5
(center)

Protein 4
(flagpole)

0.5

Protein 2
(left)

Protein concentration

0 20 40 60 80 100

Time steps

Fig. 4. Growth of a French flag with a flagpole pattern. (a) Central white square with
morphogenetic field for gene 5 (square); (b) White central square and right red pattern
with morphogenetic field for gene 3 (extend to right); (¢) White central square, right
red pattern and left blue square with morphogenetic field for gene 2 (extend to left);
(d) Finished flag with a flagpole pattern with morphogenetic field for gene 4 (flagpole);
(e) Graph of the protein concentration change from the genome expressing the French
flag with a flagpole pattern.

gene number 1 or gene number 5, for the left blue and right red squares it could
use genes 2 or 6, or genes 3 or 7, respectively, and finally for the flagpole it could
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make use of structural genes 4 or 8. Thus, the probability of finding an ARN that
could express a French flag with a flagpole pattern was significantly increased.

The 21 x 7 French flag with a flagpole pattern produced by the expression of
the configuration of structural genes mentioned above is shown in Fig. @l The
graph for the corresponding regulatory protein concentration change is shown
in @le). After the white central square is formed (a), a right red pattern (b)
and the left blue square (c) are sequentially grown, followed by the creation of
the flagpole (d). The evolved morphogenetic fields are shown for each of the
four structural genes expressed. Note that the white central square is formed
from the activation of the first gene from the second series of structural genes,
while the other three genes are expressed from the first series of the tandem. It
should also be noted that the last column of cells is missing from the red right
square, since the morphogenetic field for the gene that extends the red cells to
the right precluded growth from that point on (Fig. @(b)). On the other hand,
from the protein concentration graph in[(e), it is clear that this morphogenetic
field prevented the growth of red cells all the way to the right boundary, as gene
3 was active for more time steps than those required to grow the appropriate
red square pattern. The fitness value assigned to this pattern was 0.96, which
corresponded to the most successful simulation we obtained when trying to grow
this particular pattern.

7 Conclusion

The results presented in this paper show that the model proposed can give
consistent results when evolving a genome that controls growth of predefined 2D
cell patterns starting with a single cell. In particular, it was found that using this
model it was relatively easy to generate a French flag pattern from the expression
of three structural genes, although some problems were encountered when trying
to obtain a slightly more complex pattern that involved the expression of four
genes.

In general, the model proved to be suitable for obtaining simple patterns in-
volving the activation of up to four genes, but more work is needed in order to
explore pattern formation of more complex forms, both in 2D and 3D. It is also
desirable to search for a development model that can reliably synchronize the
activation of more than four genes. Furthermore, in order to increase the useful-
ness of the model, interaction with the environment and other artificial entities
may be necessary. Until now our work has been devoted to achieving predefined
patterns in a kind of directed evolution. However, it would be desirable to let
cells evolve into a functional pattern under environmental constraints without
any preconceived notion of the final pattern. The long-term goal of our work
is to study the emergent properties of the artificial development process. It is
conceivable that highly complex structures could one day be built through the
interaction of myriads of simpler entities controlled by a development program.
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Abstract. Evolutionary games are used to model and understand com-
plex real world situations in economics, defence, and industry. Tradi-
tionally, gaming models exhibit interactions among different players or
strategies. In the literature, the number of rounds - that a game between
different players contains - was treated as an experimental parameter.
In this paper, we show for the first time the effect of the number of
rounds on the strategic interactions in the Iterated Prisoner’s Dilemma.
We show that there is a cyclic behavior between the strategies and that
the number of rounds per game has a significant affect on the strategies’
payoffs, thus the evolutionary process.

1 Introduction

Real life situations exhibit complex behaviors that affect the decisions of all
parties involved. Simple games with rich dynamics have been used to understand
emergent behaviors in complex situations. The Prisoner’s Dilemma (PD) game,
despite its simplicity, has been used extensively in modeling several complex real-
world problems such as in international politics, economics and social systems

3.

Many biological systems are organized around cooperative interactions [12I13],
although natural selection is assumed to favor selfish behavior. Games have
proved to be a powerful tool to model and analyze how cooperation can evolve
in a population of selfish players, using the iterated version of games [3], or
structured populations [13] and investigating some interesting phenomenon such
as indirect reciprocity [12]. In evolutionary game theory, players are not assumed
to be rational but successful strategies (that have high utility) spread in the
population by being inherited or imitated [I2]. The rationality in this context is
reflected by the player’s utility function. Thus, the utility gained by the strategies
has a great affect on their spread or elimination from the population.

In many studies [T2IGIROUTITTITE], the PD game was used in modeling and
investigating several key aspects (i.e. cooperation evolution, history effect, num-
ber of players and information sharing). In spite of the diverse aspects that were
investigated, all these studies have a common issue. The number of rounds per
game between players was fixed to some experimental value - that differs from
one study to another - neglecting its potentially significant effect on the payoffs

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 72[83] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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gained by the strategies and thus, the evolutionary dynamics of their models. In
this paper, we empirically explore the relationships between strategies and show
that the number of rounds in any interaction has a great affect on the utility
gained by the players. These conclusions are not an artifact of the PD game but
apply generally to other evolutionary games.

The rest of the paper is organized as follows: in the following section, we
introduce the Iterated Prisoner’s Dilemma. Sections IIT and IV illustrate our
experimental setup and results, respectively. Conclusions and future work then
follow.

2 TIterated Prisoner’s Dilemma

The PD game is a non-zero sum and non-cooperative game. The basic form
of the PD game is a two-player game where there are two available choices
to each player: to cooperate or to defect. The payoff matrix of the PD game
(figure 1) must satisfy two conditions related to the players’ preferences [SUI5]:
T>R>P>Sand2x R>(S+T).

The PD game models the conflict between self interest (being selfish) and
the group interest; hence the dilemma. An individual rationality alone leads to a
poor outcome because of the existence of a Pareto optimal solution if both actors
cooperate. Iterated Prisoner’s Dilemma (IPD) is a series of repeated rounds of the
PD game. This feature makes the PD game more capable of modeling complex
situations where future interaction between the actors is influenced by their
history during playing the game [1I213]. For a sufficiently large weight (discount
factor) for future interactions, cooperation can emerge spontaneously. This is
a very interesting characteristic to observe how cooperation may evolve among
a group of potentially selfish players [15]. In many real world situations, the
evolution of cooperation is considered the best solution for the long run because
it represents the maximum benefit for the group or society. As such, numerous
studies have been conducted of the dynamics of the IPD game in order to discover
under what conditions cooperation evolves.

£ D
c R, R S, T
D T, S P F

Fig. 1. The payoff matrix of the 2-player PD Game
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Understanding the properties of successful strategies in IPD is vital to our
understanding of the dynamics of the game. Axelrod [1I3] attempted to discover
the properties of successful strategies in 2-players PD game through the forma-
tion of a computer tournament of 14 strategies that were submitted by different
researchers. The tournament was held in a round robin form (each strategy plays
with each other strategy including itself and the RANDOM strategy). Axelrod
discovered that properties like “to be nice” (not to be the first to defect), “to be
forgiving” (have propensity to cooperate after other’s defection, avoiding defec-
tion echo that will lead to unending mutual punishment) and “to be provocative”
(not to be exploited) existed in the top ranked strategies. The winner TIT FOR
TAT (TFT) strategy (start by cooperation and then do whatever the other
player does) depends on reciprocity. Axelrod held a second tournament [2] after
announcing the results and analysis of the first one, 62 strategies participated
and the winner was again TFT. The results of the second tournament were very
surprising because all participants knew the results of the first tournament but
no one could get a better performing strategy than TFT.

A more sophisticated way was needed to investigate the conditions of coopera-
tion. Axelrod [II5] proposed the idea of using genetic algorithms to evolve more
complex strategies. These strategies co-evolve in a population of competitive
strategies. Lindgren [I1] started with very simple strategies and used Genetic
Algorithms (GA) to evolve them to more complex ones. Axelrod [45] used GA
for evolving strategies where the strategy representation contains a history por-
tion which is used in remembering the players’ actions for the previous [ history
steps. If there were 3 players and two history steps, then the history portion will
consist of 6 bits (2 bits for each player indicating his own previous actions and
4 bits indicating the other players’ actions). The rest of the strategy represen-
tation will be a lookup table of size 2" where n is the number of players. Each
possible combination of a history has a corresponding action.

Yao and Darwen [I5] proposed another representation that is more space-
effective than Axelrod’s representation in n player games. In their representa-
tion, the history portion in the strategy representation will hold the player’s
own history and the number of players who cooperated in each of the considered
historical steps. This representation overcomes the drawbacks of Axelrod’s rep-
resentation like keeping unnecessary information about each player’s action and
the chromosome length that is significantly affected by the number of players
[15]. The rest of the strategy chromosome is also a lookup table. Different ways
for evaluating the fitness of the evolved strategies were suggested. Axelrod [4l5]
used 8 representative strategies from his second tournament, similarly in [I0],
six fixed strategies (ALLC, ALLD, TFT, TFTT, PAVLOV and RANDOM) were
used in evaluating the fitness, where these six strategies provide a good mix of
cooperators, defectors and strategies utilizing memory. Darwen and Yao [7I8//15]
used co-evolution for evaluating the fitness, where each strategy in the population
plays against every other strategy in the population, causing the environment
to continuously evolve. Darwen and Yao [7] used a GA to investigate the time
needed for the population to converge (in terms that the population bias will
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be greater than 85%) and the effect of seeding the initial population with well
known strategies such as TFT. Also in [I5] the effect of the number of players
and the number of history steps taken into account on the evolution of cooper-
ation were discussed. Yao [14] studied evolutionary stable strategies (Collective
Stability [3]), where strategies are called stable if they can’t be invaded by other
strategies.

Vital features were neglected in the PD abstraction formulation like the possi-
bility of communication between players and uncertainty about the other players’
previous actions [3]. Introducing new features to the PD game and considering
different scenarios for the game were very helpful to move the PD game closer to
modeling complex real world situations. Introducing different levels of coopera-
tion in the PD game and investigating their influence on the emergence of full
mutual cooperation was investigated in [8]. The introduction of multiple levels
of cooperation into IPD helps in studying the dynamics of real-world situations
that offer intermediate responses between full cooperation and full defection.
Chang and Yao [6] introduced noise to the IPD game, investigated the effect of
different (low and high) noise levels and how modeling mistakes in the players’
decisions influence the evolution of cooperation and the behavioral diversity in
the multiple levels of cooperation (how different the played choices are in the
game). Also studied was the effect of reputation on the dynamics of the game
[16] where information about players’ past actions are available for future oppo-
nents. Information sharing between IPD players was introduced in [9], where an
extra bit was added to the history portion, this bit holds the value of 0 if the
decisions to cooperate were greater than the decisions to defect in the previous
generation. The Addition of this extra bit doubles the chromosome length and
alters the dynamics of the game.

3 Experimental Design

Our aim in this paper is to investigate the effect of number of rounds in evolu-
tionary games (IPD as an example). We first investigated the number of rounds
in a non-evolutionary sense, then using conclusions drawn from our first ex-
periment, we conducted another set of experiments using evolutionary model.
Axelrod’s representation [4J5] is used (sufficient for 2-players IPD game) and the
simplest case where the players remember only one history step (remember his
own and opponent’s previous action) is considered. A lookup table in this case
is represented by a chromosome of six bits where the first two bits represent
the history portion in the chromosome and the other 4 bits for the strategy
itself as shown in figure 2] the history portion is used in determining the first
action for the strategy in any game. We carried out two types of experiments.
For the first experiment, we considered all the possible lookup representations
for one history step, a total of 64 lookup tables (26, where 6 is the total length).
Originally, we have 16 different strategies, and each of these 16 strategies has
four variants according to the different histories that can be associated with it
(’00%,°017, ’10” and ’11’). For any strategy, the history portion is mapped from a
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Convert to Decimal

Location
1—‘—1
0

Current Action

Fig. 2. The lookup table representation

binary representation to a real one in order to determine the location of the first
action. For a strategy, history portions that will lead to the same initial actions
will not affect the strategy behavior, and are considered to be redundant. We
start encapsulating the lookup representation space by considering two history
portion variants for each strategy, one that will lead to a ‘C’ initial action and
another that will lead to a ‘D’ initial action. The special cases, always cooperate
‘0000 and always defect ‘1111’ strategies were considered once because their
actions are fixed and independent from the history portion. After the encapsu-
lation, we have in total 30 unique lookup representations. We then established a
tournament between all the lookup representations and investigated the results
of the tournament after each round.

In the second experimental setup, We used GA to investigate the cooperation
level that evolves in a population of IPD players using conclusions from our first
experiment. A population of N = 100 strategies is initialized randomly. Each
player is evaluated by playing against each other player in the population; hence,
each player plays (N — 1) 2-players IPD game. Each game lasts for a certain
pre-defined number of rounds (varied to serve analytical purposes). After all
players finish playing against each other, each player is awarded a cumulative
payoff from the played (IPD) games. The fitness is calculated by dividing a
strategy’s cumulative payoff by the number of games it participated in multiplied
by the number of rounds in each IPD game to obtain the average payoff per
round for this strategy. Proportional (roulette wheel) selection is used where
the probability of selecting a strategy for mating is proportional to the ratio
between its payoff and the cumulative payoff of the whole population. We then
apply a one-point crossover and bit mutation for generating new offspring with
probabilities of 0.6 and 0.001 respectively. These parameters settings were used
by Yao and Darwen [15]. We used the following values for the IPD payoff matrix
for both experiments where R=3,5 =0, P=1and T =5.

4 Results and Discussions

Using our first experimental setup, we tried to investigate the interplay of the
interactions between different lookup tables (strategies with different initial
actions). Considering the unique lookup tables, we established a pair-wise
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tournament between all the lookup tables (each two play against each other
an IPD game). We monitored the results of the tournament across the rounds,
categorizing the result of a game into three types: Win, Draw and Loss. A win-
ner strategy is the one that scores higher cumulative payoff (across the rounds)
than its opponent, while a tie happens when both competing strategies score
the same cumulative payoff. We found that after what we call, a “warming-up”
period, each lookup table starts repeating its results against all the other lookup
tables. For example, as shown in table[Il TFT strategy ‘0101" after the first two
rounds (the warming-up period) starts repeating its results in a cyclic behavior
of length 12 rounds. At rounds 3 and initial action ‘C’, it does not win any game,
has a draw with 18 lookup tables and loses to 11 lookup tables. This behavior
is repeated exactly the same at round 15, as shown in table [Il it does not win
any game, has a draw and loses to exactly the same strategies as in round 3.
Comparing the TFT strategy results from rounds 3 to 14 with its results from
15 to 26, we will find that the strategies’ behavior is exactly repeated.

The explanation for this cyclic behavior is straight forward. Given that any
two strategies are fixed and deterministic, they will reproduce the same sequence
of actions if the history possessed by them is repeated. Knowing that the possible
histories between any two strategies are finite, the same history will be repeated
in an opposed game after a certain number of rounds. The warming-up period
is to overcome the effect of the pre-assumed initial action, that is independent
from the opponent that the strategy will face. The pre-assumed initial action

Table 1. Games’ results for the TFT strategy with ‘C’ and ‘D’ initial actions

(0)‘0101° (0)‘0101°
Rounds||Win Draw Loss||Win Draw Loss
1 0 14 15 15 14 0
2 0 14 15 15 14 0
3 0 18 11 11 18 0
4 0 18 11 11 18 0
5 0 14 15 || 15 14 0
6 0 19 10 || 10 19 0
7 0 15 14 || 14 15 0
8 0 17 12 12 17 0
9 0 18 11 11 18 0
10 0 16 13 || 13 16 0
11 0 14 15 15 14 0
12 0 21 8 8 21 0
13 0 15 14 14 15 0
14 0 15 14 || 14 15 0
15 0 18 11 11 18 0
16 0 18 11 11 18 0
17 0 14 15 || 15 14 0
18 0 19 10 || 10 19 0
19 0 15 14 14 15 0
20 0 17 12 12 17 0
21 0 18 11 || 11 18 0
22 0 16 13 || 13 16 0
23 0 14 15 15 14 0
24 0 21 8 8 21 0
25 0 15 14 14 15 0
26 0 15 14 || 14 15 0
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significantly affects the strategy performance against its opponents. For example,
the TFT strategy with ‘C’ initial action does not win any game and losses a
considerable number of games. The same strategy with ‘D’ initial action does
not lose any game and wins a considerable number of games. This behavior is
consistent with varying the number of rounds as is clear from table [l

Not all the lookup tables share the same warming-up period or the same cycle
length. Table 2] shows the warming-up periods and the cycle lengths for all the
30 unique lookup tables. Some lookup tables (i.e. S1 - S7, S14, S15, S22, S23
and S30) have a cycle length of 1, others have a cycle length of 3 (i.e. S16, S17,
528 and S29), 4 (i.e. S20, S21, S24 and S25), 6 (i.e. 526 and S27) and 12 (i.e.
S10 - S13, S18 and S19). Different initial actions do not affect the cycle length
of a strategy. But, different initial actions do affect the length of the warming-
up period, as shown in table 2l Until now, we were discussing the properties of
individual lookup tables. Considering the whole strategy space (all the 30 lookup
tables), what will be the warming-up period and the cycle length for the whole
system?. The warming-up period for the whole system will be the maximum
warming-up period possessed by all the strategies which is 6 rounds. Thus, after
a maximum of 6 rounds, all the strategies will enter their cycles. The cycle length
of the whole system is 12 rounds, which is the lowest (least) common multiple
(LCM) for all the strategies cycle lengths. Thus, after a warming-up period of
6 rounds, the results of games between strategies in the whole system will be
repeated every 12 rounds. In other words, assuming a population of strategies in
an evolutionary context, where each strategy plays against all other strategies
in the population an iterated IPD game that consists of a pre-defined number
of rounds. The results (in term of win, draw or loss) of all games played in the
population, if the game consists of 7 rounds or of 19 rounds or of 31 rounds
(any number of rounds that is more than 6 - warming-up period, and increased
continuously by 12 rounds - cycle length) will be the same.

But in an evolutionary context, the evolutionary process does not care much
about the results of games between strategies in term of win, draw and loss.
It cares only for the average payoff accumulated by a strategy from playing
against other strategies that exist in the population. A strategy’s average payoff
(fitness) is used to determine if it is a successful strategy that will be inher-
ited and imitated, compared to other strategies in the population. The question
now becomes: Do strategies accumulate the same payoff across different cycles,
knowing that the games’ results are fixed? For addressing such a question, using
our experimental first setup, we reported the average accumulated payoff by a
lookup table playing against all the other lookup tables - 15 complete cycles
for the whole system after the warming-up period - for 186 rounds per game.
These 15 complete cycles are sufficient that at least each strategy experienced
15 individual cycles. Figure [3] shows the average accumulated payoff by some
strategies across their different cycles. The dashed line represents a strategy’s
average payoff in its first cycle. For lookup tables such as S1 and S2, the average
payoff is fixed and does not change from one cycle to another, and this repre-
sents one type of lookup tables. But for the rest of the strategies in figure B this
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Table 2. The “warming-up” period and cycle length for each strategy

S Initial Action Strategy Warming-up Cycle Length

S1 # 0000 1 1
S2 0 0001 1 1
S3 1 0001 5 1
S4 0 0010 1 1
S5 1 0010 5 1
S6 0 0011 1 1
S7 1 0011 1 1
S8 0 0100 1 6
S9 1 0100 5 6
S10 0 0101 2 12
S11 1 0101 2 12
S12 0 0110 3 12
S13 1 0110 6 12
S14 0 0111 5 1
S15 1 0111 1 1
S16 0 1000 4 3
S17 1 1000 6 3
S18 0 1001 6 12
S19 1 1001 3 12
S20 0 1010 5 4
S21 1 1010 5 4
S22 0 1011 5 1
523 1 1011 1 1
S24 0 1100 5 4
S25 1 1100 5 4
S26 0 1101 5 6
S27 1 1101 1 6
528 0 1110 6 3
S29 1 1110 4 3
S30 # 1111 1 1

is not the case. The average payoff keeps changing from one cycle to the next
in an increasing (i.e. S8, S10 and S13) or decreasing (i.e. S3, S9, S11, S17 and
S19) pattern (except 520 and S21S). The initial action showed a great effect on
average payoff that a strategy accumulates across cycles, although it does not
affect the cycle length. For example, S2 and S3 are the same strategy ‘0001’ but
with different initial actions. It is clear from figure 3] that the average payoff of
S2 is fixed across cycles but the average payoff of S3 is changing in a decreasing
pattern. It is clear also that the average payoff that a strategy accumulates in
its first cycle (the dashed line) varies dramatically depending on the position
in the cycle. The differences between a strategy’s average payoff across cycles is
large in early cycles. But these differences start vanishing after a considerable
number of cycles, and also the average payoff becomes stable and approximately
a straight line, which indicates that the position in the cycle does not matter
any more.

After showing the effects of number of rounds in a non-evolutionary sense,
we will illustrate these effects in an evolutionary environment using our second
experimental setup. Figure @l shows the cooperation level that evolves if we set
the number of rounds per game to be within the warming-up period (from 1 to
6 rounds per game). The cooperation level keeps increasing by the increase in
the number of rounds. But the cooperation level is very low, and approximately
the nash equilibrium of the PD game in very early rounds (1 and 2 rounds
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Fig. 3. The average payoff accumulated by different strategies (i.e. S1-S3, S8-S11, S13,
S17 & S19 - S21) by playing against all other strategies, the dashed line indicates the
average payoff of the strategy’s first cycle.

per game) which means that cooperation does not evolve at all (as if we are
in the zero history case). Thus, setting the number of rounds per game to be
in the warming-up period will evolve a very low level of cooperation and the
model’s results will be misleading. We then investigated the cooperation levels
that evolve inside the cycles. We set the number of rounds to be in the first cycle
(from 7 to 18 rounds per game). Figure [ shows the average payoff of 30 runs at
the last generation (generation 500), it is clear that the average payoff changes
dramatically depending on your positions in the cycle. The difference between the
maximum average payoff obtained (at 13 rounds per game) and the minimum one
(at 8 rounds per game) in the first cycle is 0.804, which is considered relatively
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a high difference when compared to the payoff matrix cardinalities we are using.
Comparing the average payoffs obtained in both cycle 1 and cycle 15 (shown in
figure[l), it is clear that the variance of average payofls in cycle 15 (from 175 to
186 rounds per game) is much smaller where the difference between the maximum
average payoff and the minimum is 0.257. This indicates that the dynamics of
the evolutionary model is almost stable after a considerable number of cycles.
We can observe in cycle 15 that the average payoff is even repeated in different
number of rounds (i.e. the same in 176, 182 and 185 rounds per game, and in 177
and 178 rounds per game, also in 175, 181 and 184 rounds per game), this is not
the case in cycle 1. Figure [}l shows also the average payoffs obtained in cycle 17
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and 20, where the difference between the maximum and the minimum average
payoffs obtained is continuously decreasing, 0.161 and 0.135, respectively. The
number of rounds issue is directly related to the computational effort of the
evolutionary model. For early system cycles, the dynamics of the game must be
investigated at each and every step of the cycle. After a considerable number of
cycles (i.e. 20 cycles), running the evolutionary model at any step of the cycle is
sufficient to obtain the true and accurate dynamics.

5 Conclusion and Future Work

The number of rounds per evolutionary game has been treated as an experi-
mental parameter in the literature. In this paper, we investigated the effect of
number of rounds per game. We showed that there is a cyclic behavior in the
strategic interactions, and that the average payoff gained by a strategy will be
affected dramatically as a function the number of the cycle and its position in-
side the cycle (for early cycles). Moving to evolutionary models, we showed that
a very low cooperation level evolves within the warming-up period. Setting the
number of rounds to be in the first system cycle will give a misleading indicator
for the cooperation level. In order to determine the true dynamics of evolution-
ary games, the number of rounds has to be determined carefully to reflect the
true payoff that a player accumulates, and this in turn will affect the evolution-
ary process and the evolutionary models’ conclusions. Taking this study a step
further, investigating these conclusions using other strategy representations will
be of great benefit.

Acknowledgements

This work is supported by the Australian Research Council (ARC) discovery
scheme grant number DP0667123. The experiments are run on the Australian
Center for Advanced Computing (AC3) super computing facilities.

References

1. Axelrod, R.M.: Effective choice in the prisoner’s dilemma. Journal of Conflict Res-
olution 24(1), 3-25 (1980a)

2. Axelrod, R.M.: More effective choice in the prisoner’s dilemma. Journal of Conflict
Resolution 24(3), 379-403 (1980b)

3. Axelrod, R.M.: The Evolution of Cooperation. Basic Books, New York (1984)

4. Axelrod, R.M.: The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In:
Genetic Algorithms and Simulated Annealing, Morgan Kaufmann, San Francisco
(1987)

5. Axelrod, R.M.: The Complexity of Cooperation. Princeton University Press, New
Jersey (1997)

6. Chong, S.Y., Yao, X.: Behavioral diversity, choices, and noise in the iterated pris-
oner’s dilemma. IEEE Transactions on Evolutionary Computation 9(6), 540-551
(2005)



10.

11.

12.

13.

14.

15.

16.

Rounds Effect in Evolutionary Games 83

. Darwen, P.J., Yao, X.: On evolving robust strategies for iterated prisoner’s

dilemma. In: Yao, X. (ed.) Progress in Evolutionary Computation. LNCS, vol. 956,
pp. 276-292. Springer, Heidelberg (1995)

. Darwen, P.J., Yao, X.: Why more choices cause less cooperation in iterated pris-

oner’s dilemma. In: Proceedings of the 2001 Congress on Evolutionary Compu-
tation, Piscataway, NJ, USA, May 2001, pp. 987-994. IEEE Press, Los Alamitos
(2001)

. Ghoneim, A., Abbass, H., Barlow, M.: Information sharing in the iterated prisoner’s

dilemma. In: 2007 IEEE Symposium on Computational Intelligence and Games,
Honolulu, Hawaii, USA, April 2007, vol. 8, pp. 56-62 (2007)

Goh, C.K., Quek, H.Y., Teoh, E.J., Tan, K.C.: Evolution and incremental learning
in the iterative prisoner’s dilemma. In: The 2005 IEEE Congress on, vol. 3, pp.
2629-2636. IEEE Press, Los Alamitos (2005)

Lindgren, K.: Evolutionary phenomena in simple dynamics. Artificial Life IT 10,
295-312 (1991)

Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437(27), 1291
1298 (2005)

Ohtsuki, H., Hauert, C., Liberman, E., Nowak, M.A.: A simple rule for the evolution
of cooperation on graphs and social networks. Nature 441(25), 502-505 (2006)
Yao, X.: Evolutionary stability in the n-person iterated prisoner’s dilemma. BioSys-
tems 37(3), 189-197 (1996)

Yao, X., Darwen, P.J.: An experimental study of n-person iterated prisoner’s
dilemma games. Informatica 18(4), 435-450 (1994)

Yao, X., Darwen, P.J.: How important is your reputation in a multi-agent environ-
ment. In: Proc. of the 1999 IEEE Conference on Systems, Man, and Cybernetics,
Piscataway, NJ, USA, October 1999, pp. 575-580. IEEE Press, Los Alamitos (1999)



Modelling Architectural Visual Experience
Using Non-linear Dimensionality Reduction

Stephan K. Chalup, Riley Clement, Chris Tucker, and Michael J. Ostwald

Faculty of Engineering and Built Environment, The University of Newcastle,
Callaghan 2308, Australia
Stephan.Chalup@newcastle.edu.au
Tel.: +61 2 492 16080

Abstract. This paper addresses the topic of how architectural visual
experience can be represented and utilised by a software system. The
long-term aim is to equip an artificial agent with the ability to make
sensible decisions about aesthetics and proportions. The focus of the
investigation is on the feature of line distributions extracted from digi-
tal images of house facades. It is demonstrated how the dimensionality
reduction method isomap can be applied to calculate non-linear “street-
manifolds” where each point on the manifold corresponds to a house
fagade. Through interpolation between manifold points and the applica-
tion of an inverse Hough transform, basic structure plans for new house
fagades are obtained. If the interpolated points are close to the manifold
it can be argued that the new plans reflect the character of the surround-
ing streetscape. The method is also demonstrated using basic examples
which can be represented by circles.

1 Introduction

Aesthetical perception is an important factor in understanding the interaction
of a living individual with its environment. The discipline of environmental aes-
thetics argues that the environment is fully integrated with the individual []
and that “aesthetic values pervade the entire range of human culture” [2] which
includes environmental and architectural design of gardens, landscapes, cities,
and virtual space.

The concept of streetmanifolds was introduced in previous papers [56] to
provide a holistic geometrical representation of the visual experience which can
be gained through evaluation of a large set of house fagades. Navigation in the
streetmanifold would correspond to continuous morphing and interpolating be-
tween facade designs represented by the data set of images of house fagades.
The concepts of holism, continuity, and clustering are associated with manifold
learning [26l29] but can also be found in Gestalt psychology [I8/30] which has
close links to the concepts of visual neuroscience [7].

The hypothesis of the present study is that the visual experience gained by
an architect through visual perception of thousands of house facades during his
education and professional life may be captured in a structure which corresponds
to some form of streetmanifold.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 84[95] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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The house facades along a street contribute to the character of a streetscape
[9U27128]. This is an important factor for architects who design a new house for
an empty spot between the other houses of a street such that the new house
harmoniously relates to the neighbourhood [12].

The present study’s streetmanifolds are based on the calculation of pairwise
distances between digital images of house facades. At the current stage of the
project the focus is on an important feature in the visual perception of houses
which is the distribution of lines determined by the edges of the main compo-
nents of a house facade. Typically most of the lines have horizontal or vertical
direction with a few approximately diagonally oriented lines along the roof or
gable. Figure [Il shows examples of house fagades with virtual lines along edges
extracted using a Hough transform [T4124].

The approach to take line directions as the central feature for the calculation
of streetmanifolds is supported by research in visual neuroscience which found
that detection of edge directions is a key component of the human visual sys-
tem [IBIT9]. It also was found that the visual system has specialised areas for
representation of different entities such as buildings [11].

The main new contribution of the present article is to utilise the streetmani-
folds calculated from our dataset of house fagades in [5] to generate basic plans
for new house facades. The new plans are distributions of lines which are obtained
through linear interpolation of points on the streetmanifold and application of
an inverse Hough transform.

Previous related work which addresses how artificial life methods can be ap-
plied in architecture include philosophical discussions [21] or software develop-
ment associated with the area of emergent design [I3I20/22]. Reich [21] addressed
the topic of how aesthetic judgment can be incorporated in computational de-
sign. He claimed that aesthetic criteria are embedded in designers’ expertise and
their use is manifested in existing designs. Reich discussed how rationalistic and
romanticistic aesthetic criteria can synergistically be applied to design. A prac-
tical example was presented in a system for the design of cable-stayed brides.
Frazer [10] proposed a generative design tool for architects based on cellular au-
tomata. An artificial life based emergent design software system was developed
by Ross et al. [22] which allows architects to endow elements of an architectural
scenario with agency and dynamic spatial interaction. Hemberg et al. [13] devel-
oped computational generative design software for architects which can generate
three dimensional forms and surfaces. Their system used evolutionary algorithms
and L-systems grammars with the aim of being able to grow and evolve organic
forms.

The remaining sections of this paper address the topic of manifold learning
(section [2), some basic examples of learning circle manifolds (section [), the
procedure required to extract a streetmanifold from a set of digital images of
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Fig. 1. Six clusters of houses (A-F) found in the streetmanifolds

house fagades (section Hl), and a description of how to generate plans for new
houses through interpolation of manifold points (section [l). In section [Gl a brief
discussion and summary of the results is provided.

2 DManifold Learning

Manifolds are locally Euclidean spaces with some additional very general mathe-
matical properties [25]. In dimension one they appear as continuous deformations
of lines and circles and in dimension two they are surfaces derived from spheres,
tori, pretzel surfaces, or similar objects. The manifold concept generalises to
higher dimensions.
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Manifold learning describes algorithms for non-linear dimensionality reduc-
tion [4J23]. The aim of manifold learning algorithms is to detect the essential
underlying geometric structure of a high-dimensional data set, to extract it as
a low-dimensional manifold and to embed it faithfully into a low-dimensional
space.

In contrast to the relatively new manifold learning techniques, traditional
methods for dimensionality reduction such as principal component analysis
(PCA) [16] or multidimensional scaling (MDS) [8] were designed for reducing
the dimensionality of data when the underlying structure was linear.

Two manifold learning methods, isomap [26] and maximum variance unfolding
(MVU) [29], have been employed in the present project to calculate streetman-
ifolds [B]. Both methods can be applied by first calculating a distance matrix
based on a weighted k-nearest neighbour graph of the data points.

In isomap [26] these pairwise distances, which can be regarded as approxima-
tions to geodesic distances on the manifold, are fed into MDS. That is, isomap
can be regarded as a modification of MDS where instead of the Euclidean dis-
tances approximations to geodesic distances are used. MDS then maps the data
into a lower dimensional space while preserving the pairwise distances [g].

The aim of MVU [29/23] is to maximise the sum of pairwise distances of all
data points, i.e. 3, (Ilyi — y;1? - énw(xi,a;)), where dyn (2, x;) is 1 if 2; and
x; are nearest neighbours and 0 otherwise; the maximisation is subject to two
conditions which postulate that: (I) distances between nearest neighbour inputs
should be the same as between the associated outputs, i.e. |ly; —y;||* = ||z — ;||
and (II) the outputs should be centered at the origin, i.e. >, y; = 0.

Fig. 2. Circle extracted from images of a rotating shackle using 4-isomap
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3 Extracting Circle Manifolds

A simple example of how manifold learning works is shown in figure2l A sequence
of digital images of a rotating shackle was taken, i.e. the underlying dynamics of
the data set was a rotation. The dimension of the space of digital images is the
number of pixels in each image, i.e. 192 x 292. Isomap with k£ = 4 was able to
extract a 1-dimensional circle embedded in R? from the rotating shackle data.

In a second experiment, instead of taking pictures of a rotating object, we
rotated the camera at the center point of a circle. Figure [3] shows that the result
4-isomap extracted from an image sequence taken by an HD video camera while
rotated in the middle of Wheeler place in Newcastle is, as expected, again a
circle. The data consisted of about 200 overlapping frames sampled from the
video sequence.

Al
i "“mu

Fig. 3. Circle extracted by 4-isomap from images taken by an HD video camera rotating
about 360° in the middle of Wheeler place in Newcastle. For the experiment about
200 overlapping frames were extracted from the video sequence. Twelve of them are
displayed above together with the corresponding points on the circle manifold.
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4 Calculating Streetmanifolds

The calculation of the streetmanifolds was based on a dataset of several hundred
digital images of house facades which were taken in Newcastle and selected by
a team of researchers from architecture. Some example images are shown in
figure [l

A line can be regarded as a set of points x = (z1,72) € R? and can be
determined by using the Hessian normal form { x € R?; [cos¢,sinp]-x—b =0},
where ¢ € [0,360°[ controls the slope of the line’s normal vector and b € R is its
perpendicular distance from the origin. Using the Hough transform [I424] each
image was associated with an array of discrete parameters (¢, b) € [0, 360°[ x R—
the Hough array—where each point corresponds to a line in the image.

For the application of isomap and MVU the distance between each pair of
Hough arrays was calculated. The discrete set of point values in the Hough arrays
was smoothed by multiplying each point in the array with a Gaussian function.
Then for each pair of arrays A = (a;;) =t m and B = (b;;) i=Lm their Euclid-

applied after normalisation of the arrays: dgpq.t(A, B) = 1 —Zi;ll,...,m Vij \/bij.

..... n

Application of isomap or MVU allowed to embed the manifold of Hough arrays
into two or three-dimensional space (figures @ Bl and []).

(o]
(8]
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e

Fig. 4. Streetmanifold calculated with isomap and a Bhattacharyya based distance.
Greylevel encodes the third dimension.
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Fig. 5. Streetmanifold calculated with MVU and a Bhattacharyya based distance. The
manifold is very similar to the manifold in figure[dl The same clusters can be identified.

To evaluate the streetmanifold we selected six clusters of houses (A-F) in fig-
ures [ Bl and [6l Four representative houses from each of the six clusters are
shown in figure[Il We found (cf. [5]) that houses of category A were narrow and
had a relatively high percentage of vertical lines. In contrast the houses of cate-
gory B were wide and had strong horizontal and vertical components. Category
C had houses of medium width with many horizontal lines. The D category was
very similar to the C category but the houses were wider in D. In the E category
houses were hidden behind trees and the distribution of horizontal and vertical
lines tended to be homogeneous. The associated cluster was located at a close
to central position. Cluster F contained houses with average characteristics.

5 Generating Design Templates for New House Facades
Through Interpolation of Streetmanifold Points

The geometry of the streetmanifold is determined by the distances between all
records of the dataset. Therefore the streetmanifold calculated from the image
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Fig. 6. Streetmanifold calculated with MVU and Euclidean distance appears to have
a different shape but shows similar clusters as the manifolds in figures @l and

dataset of the houses of a street or neighbourhood can be regarded as a repre-
sentation of the aesthetical character of the streetscape.

Points on or close to the streetmanifold represent Hough arrays of facades
which have similar features as those of the images which were used to generate
the manifold. Through application of an inverse Hough transform it is possible
to generate for each manifold point a line distribution as shown in the middle
column of figure [l These patterns of lines may be used as plans for architects
to outline basic proportions of a house which should fit into the streetscape.

In the present study several pairs of house fagades were selected and for each
pair a linear interpolation of the associated Hough arrays was calculated. Then
an inverse Hough transform was applied to the result of the interpolation. Before
interpolation the Hough arrays were smoothed by multiplying each peak with a
Gaussian function. The inverse Hough transform was calculated by selecting the
30 highest local maxima of the sum of the two smoothed Hough Arrays.

The middle column of figure [7 shows the resulting plans obtained by the
procedure of interpolation between Hough arrays of the pairs (A2, B2), (F4, B1),
(A1, A2), (A1, D2), and (A1, F1), respectively. The house fagades were selected
from the data used to calculate the streetmanifolds and are also displayed in
figure [[l The format and size of the plans in the middle column of figure [ was



92 S.K. Chalup et al.

i

]

I I ]

Interpolation of A1l and A2
I 5 (|

'l

Tt
—'.i'i

Interpolation of A1l and F1

|
= |
—

——— ot —

5 =
1 ]
=)

|

e — ;777_!;1 — —

Interpolation of F4 and B1

Fig. 7. The middle column shows the inverse Hough transforms of interpolations be-
tween Hough arrays corresponding to five pairs of house fagades. The outcome indicates
that interpolation between A1l and A2 or Al and F1 led to sensible results in contrast
to interpolation between distant points such as A2 and B2.
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determined by taking the maximum of heights and the maximum of widths of
the two images of the house fagades which were used in the interpolation process.

6 Discussion and Summary

The streetmanifolds in figures[H and [f] show a comparable structure of clusters to
the streetmanifolds of figured and our previous results [5]. The resulting clusters
suggest that the streetmanifolds have captured and smoothly organised a variety
of line-based features of the whole data set in one object.

Although streetmanifolds are non-linear we have employed linear interpola-
tions of smoothed Hough arrays to generate plans for new houses. That means
that for points close to each other such as Al and A2 the interpolation result
is likely to be close to the manifold. But for points distant to each other such
as A2 and B2 the interpolation result may lie far outside the manifold and may
hence not be representative for the character of the streetscape.

In some cases we added the interpolation result to the initial data set of
Hough arrays and recalculated the streetmanifolds. For arrays resulting from
interpolation of nearby points the manifold did not change much. However, for
some arrays resulting from interpolation of distant points, the newly calculated
streetmanifolds changed significantly compared to the original.

These results seem to support the hypothesis that local interpolation (e.g.
between Al and A2), or interpolation on the streetmanifold, may lead to plans
which are conform with the character of the streetscape.

Future research may investigate alternative options of interpolation on street-
manifolds and their use in software systems for generative design in virtual worlds
or application software for architects.
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Abstract. Misperception is a common cause of error for individuals and
organisations. Conventional wisdom suggests that its effects are detri-
mental to the misperceiver or its society as a whole. However, in some
circumstances misperception can provide a benefit either by diversify-
ing the behaviour of a population or by discouraging behaviour that has
a negative impact on the population. In such cases adaptive pressures
will drive the population to evolve a probability of misperception that
is optimal for that environment. We explore this hypothesis using an
evolutionary artificial life simulation.

Keywords: Artificial Life, Misperception, Evolutionary Simulation.

1 Introduction

Misperception can be said to occur when an entity gathers information from
its environment and uses that information to produce an internal model of the
world that may or may not accurately represent the surrounding physical envi-
ronment [I]. Misperception may be caused unintentionally by flaws within the
misperceiver or intentionally by other entities performing Information Warfare
attacks [2]. Any information sensor that is used to gather information from the
environment can be affected by misperception. Entities may misperceive any
element of their environment — such as the existence or non-existence of other
entities, their attributes or the relationships between entities in the environment.

Russell and Norvig [3] describe the basic cycle of a simple intelligent agent
as consisting of information collection, orientation relative to the environment,
decision-making and action execution. This cycle describes a feedback loop be-
tween the agent and its environment, as the agent’s actions will affect the state
of its environment, which can be observed in the future. Similar models of the
decision-making cycle are also discussed in psychology [4] and military science [5].

The first opportunity for misperception in an agent’s decision-making cycle oc-
curs while it gathers information from its environment. There are many possible
causes of a dysfunction here, including sensor limitations, natural deterioration
and external attack. In all of these cases the agent is unable to correctly perceive
the environment and unknowingly gathers incorrect information, which it uses

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAT 4828, pp. 96 2007.
© Springer-Verlag Berlin Heidelberg 2007
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to update the its internal representation of the world. The agent’s future actions
can be affected by the incorrect information.

The second opportunity for misperception in the agent’s decision-making
process occurs when the agent incorrectly processes the gathered information
and then updates its internal representation of the world with the incorrectly
processed information. This introduces inaccuracies into the agent’s representa-
tion of the world.

The various causes of misperception introduce some form of singular or re-
peated error into an agent’s representation of their environment. Typically, con-
siderations of misperception assume that it is due to an unintentional error of the
misperceiver and that it reoccurs with some frequency. Unintentional repeated
misperception can therefore be modelled as a random error that occurs with a
certain probability.

1.1 Artificial Life Simulations of Misperception

Misperception is an everyday occurrence in the real world, yet it is rarely found
in artificial life simulations. Presumably this is because of the common belief that
misperception is always detrimental. However, this is not true in some cases.

Doran [6] demonstrated two similar cases where agents may hold incorrect
beliefs without the individual agents or their society suffering a detrimental
effect. In both of these cases the agent’s misbeliefs discourage detrimental be-
haviour. Doran simulated an environment where agents could move around a
two-dimensional space, harvest resources and asexually reproduce. Agents were
able to misbelieve in both cases, with their misbeliefs spread by communication
or inherited from their parent.

The first simulated environment contained a fatal zone, which killed any
agents who entered immediately. Agents could only harvest a resource if they
believed that they were the nearest agent to that resource. The agents were able
to misbelieve the existence of pseudo-agents where none actually existed. Agents
are deterred from harvesting a resource whenever they believe a pseudo-agent is
closer to that resource. Most of the agents in this society developed the belief
that pseudo-agents existed in the fatal zone, which deterred them from entering
the fatal zone to harvest resources. The misbelieving population was fitter than
one without misbelief: individual agents benefited by avoiding the fatal zone,
while the agent’s society benefited by increasing in size.

A second experiment looked at the formation of cults. In this experiment (ab-
sent a fatal zone) the agents were able to form friendships, which allowed them to
exchange information about resource locations. Agents were also able to kill other
agents. However, agents were prevented from killing any agents with whom they
shared a common friend. The misbelief that could form in this society was the
belief that resources were actually agents, called “resource agents”. Agents could
also decide that resource agents were their friends. These rules allowed the agents
to construct long-lasting “cults”, where many agents shared a common misbelief
in a resource agent who was their friend. For a cult to outlast its individual mem-
ber agents its figurehead must be a resource agent, as resource agents only “die”
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when no agents believe in them. The misbelief in resource agents allowed cults to
survive as long as there were followers, and the restriction on killing fellow cult
members allowed the agents’ society to grow in size.

More directly relevant to our work, Akaishi and Arita [7I8] hypothesised that
misperception could prove to be adaptive in cases where it increases the diversity
of a population’s collective beliefs and thereby increases the diversity of the pop-
ulation’s collective behaviour. Increased behavioural diversity should help reduce
direct competition between agents for access to popular locations or resources.

This hypothesis was tested with a simulation of a two-dimensional grid world
populated by agents and resource nodes. As agents traversed their environment,
they would gather resources from stable resource nodes and maintain an inter-
nal map of where they believed resource nodes existed. The fitness of individual
agents was a function of the quantity of resources gathered, while the popula-
tion’s fitness was determined by the average resources gathered. Agents could
misperceive every time they viewed the environment, with the probability being
a constant for the entire population. Misperception only affected the perception
of resources, either their existence or their location. Misperception of existence
could cause the appearance of either a resource where none existed or an empty
location where there was a resource. Misperception of location occurred when an
agent correctly perceived the contents of a location but stored the information
in a random location in its world map.

The results of their simulation demonstrated that a population with a mis-
perception probability up to 10% collected more resources on average than a
population with no misperception. Optimal resource gathering occurred when
the misperception probability was 1%. The fact that a misperception probability
of up to 10% is better than no misperception is counter-intuitive. Their results
support their hypothesis that behavioural diversity caused by misperception is
beneficial. Consider an agent in a region that is densely populated with other
agents and so is constantly competing for access to resources. If this agent mis-
perceives, it may convince itself to head into a less populated, less competitive
area. In this example, misperception would have provided a benefit.

One of Akaishi and Arita’s [7] claims was that misperception would provide
an evolutionary benefit. However, their simulated system implemented no evolu-
tionary mechanisms. Although they found a “fitness” benefit for misperception,
fitness was defined strictly in terms of resource gathering. It is easy to believe that
this can translate into an evolutionary benefit, but they failed to demonstrate
it. Some of our work here was inspired by the idea of making such a demonstra-
tion. If there is evolutionary value to misperception, it should be possible for a
population of foraging agents to evolve to a stable state with a misperception
probability that is significantly above 0%.

2 Methodology

We now describe our simulation technique. As in Akaishi and Arita’s simula-
tion, our agents inhabit a two-dimensional square grid world containing resource
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nodes. The agents move about this world gathering resources from these nodes.
While exploring, the agents maintain an internal map of where they believe re-
sources are located. In this simulation all misperceptions are caused by sensor
failures, which result in either location or existence misperception with an equal
probability. Cells may only be occupied by one agent at a time.

Evolutionary simulation requires a population of agents that evolve over the
duration of the simulation. Existing agents reproduce to produce periodically,
while agents die from old age or starvation. A population cap is used to prevent
overcrowding.

Each turn agents must metabolise resources at the basic metabolic rate
(BMR), or else starve. Agents also require a predetermined quantity of resources
in order to reproduce, which equals one half of the parental investment in the
health of their offspring. Once an agent can afford to have offspring it can re-
produce with any other agent it encounters who also has sufficient resources; in
other words, reproduction is sexual but genderless.

Each agent has its own inherited misperception probability that determines
how likely it is to misperceive any object it observes. This misperception prob-
ability derives from one of its parents and may be altered by mutation.

During each turn of the simulation, every agent is activated (in a random
order) and proceeds through its action cycle, consisting of perception, decision-
making, movement and, possibly, mating and gathering. First, the agent per-
ceives its surroundings, with its misperception probability determining whether
or not it misperceives what is in each location. The agent then updates its re-
source map. Next, the agent decides which resource node is closest and adopts
this resource node as its intended destination. The agent then moves toward its
destination. If two agents who may reproduce meet, they will reproduce if there
is room in the simulation for a new agent. Once the agent has finished moving,
if its location contains a resource node it will gather any available resources.
Finally, the agent consumes the amount of resources determined by its basic
metabolic rate. If the agent has insufficient resources, then it dies of starvation
and is removed from the simulation.

The major simulation parameters are the maximum agent density, the re-
source density, the basic metabolic rate and the parental investment cost. These
parameters determine how much competition there will be for resources and how
many resources are needed both to stay alive and to reproduce.

As there are too many potential combinations of these parameters to inves-
tigate, we have paired some, investigating them in combination. In this way,
agent density and resource density were paired (Table[]]) as they main determin-
ers of resource competition. Basic metabolic rate and offspring cost were also
paired together (Table[d), as jointly affecting the cost of living. Combining these
pairs produced 36 different parameter sets to explore. For these simulations we
used EnFuzion, a commercialised derivative of Nimrod [9], a software tool that
supports efficient parallel search through the parametric space on a computer
cluster.
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Table 1. Agent Density and Resource Table 2. Basic Metabolic Rate and
Density pairings Offspring Cost pairings
Agent Resource Basic Offspring
Density Density Metabolic Cost
30%  25% Rate
30% 10% 0.2 25
30% 5% 0.15 100
25% 15% 0.1 50
20% 10% 0.05 500
15% 10%
15% 5%
10% 5%
5% 5%

2.1 Experiment 1

The first experiment was aimed at demonstrating that the previously claimed
benefit of misperception in a foraging environment exists, by showing that an
evolved misperception probability could be greater than zero. This simulation
was performed for each of the 36 parameter sets.

2.2 Experiment 2

Our second experiment tested Akaishi and Arita’s hypothesis that misperception
provides a benefit specifically by increasing the agents’ behavioural diversity. If
this claim is true, then any mechanism (misperception or otherwise) that in-
troduces relevant diversity into the behaviour of the agent population should
provide a noticeable benefit. To test this hypothesis, four different foraging be-
haviours were implemented in the simulation and compared against each other.
These foraging behaviours were: misperception-affected foraging (as in Exper-
iment 1), misaction-affected foraging, reflexive foraging and perfect-perception
foraging.

Misperception-affected foraging is the standard foraging method used in the
simulation. Behavioural diversity is introduced by the agents’ differing beliefs
about resource node locations.

Misaction-affected foraging is similar to misperception-affected foraging, ex-
cept that the random errors occur during the movement stage instead of the per-
ception stage. A misaction causes the agent to move in an unintended direction.

Reflexive foraging replaces the agent’s resource node discovery and path plan-
ning with random movement. Agents move randomly about the world until they
observe a resource node within their perception range. They then move to the
node’s location and gather its resources. Clearly, the randomness of agents’ move-
ment introduces substantial diversity to their behaviour.

Perfect-perception foraging agents are agents who utilise the same decision-
making methods as misperception- or misaction-affected foraging agents, but are
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unaffected by misperception or misaction. These agents will have very little be-
havioural diversity and make a baseline for comparison. If behavioural diversity
provides a benefit to the population, then perfect-perception foraging should
perform the worst of all the foraging methods.

3 Results

3.1 Experiment 1

If misperception has evolutionary value then the population of foraging agents
should evolve to a stable state with a misperception probability that is sig-
nificantly above zero. When agents reproduce, the new offspring may have its
misperception probability mutated by adding a small normally distributed delta
value with a mean of 0.0 and a controllable standard deviation (o). Hence, 95%
of the mutated misperception probabilities will be within £1.960 of the origi-
nal misperception probability. Call this range of misperception probabilities the
mutation range. For all simulations the standard deviation was 0.02, so the mu-
tation range was 0.0392 (or 3.92%). If the difference between the two agents’
misperception probabilities is greater than the mutation range, then the two
agents are unlikely to be parent and child. We report a population’s average
misperception probability as significantly different from 0% if that probability
is greater than 3.92%. (Because of the very large number of agents sampled —
around 50 million per estimated probability — the sample variance in estimating
the average misperception probability was ignored.)

The average misperception probabilities for all the parameter sets are shown
in Figure[ll There are seven identified parameter sets (numbered 1-7) where the
average misperception probability is significantly different from zero, especially
for parameter sets 1 and 2. There are two further points (8 and 9) identified in
Figure[Il because they contain substantial subpopulations of misperceivers.

The majority of these numbered points occur when the agent density is 5%
(relatively low density) or when the offspring cost is 500 resources (at its highest).
In the latter case, the need for resources is highest, so the selection pressure in
favour of successful foragers is greatest. Following the interpretation of [7]],
misperception benefit occurs in this simulation when clusters of agents gather
around resource nodes and form a “traffic jam”. Occasional misperception aids
by sending some agents away from the food source allowing their relatives the
opportunity to collect the resource, supporting a inclusive fitness (kin selection)
advantage for the misperception. So long as the misperception rate is low, the
misdirected agents may well also then locate a new, uncongested resource node.
In any case, were misperception to provide no benefit at all, we would see a
completely flat plot with the average misperception probabilities not significantly
different from 0%. The results show that there is an evolutionary benefit to
misperception in many of our simulations.

We also divided the agent population into three groups based on their mis-
perception probability and compared their total population size and fitness. One
group contains agents whose misperception probability is 0%, another contains
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Fig. 1. Average Misperception Probabilities

agents whose misperception probability not significantly different from 0%, while
the last contains agents whose misperception probability significantly different
from 0%. If misperception is beneficial, then the agents who are significantly
different from 0% should be more numerous and fitter. The percentage of the
total agent population of each distinct agent group is shown in Figure [2] for all
36 parameter sets. The numbered parameter sets have a substantial percentage
of the population that is significantly different from the 0% misperception prob-
ability; also, less than 10% of their populations has a misperception probability
of 0%.

To measure agent’s fitness we used its potential offspring, that is, how many
offspring it could afford to parent from its surplus resources. A measure of ac-
tual offspring is not suitable for our simulation, as agents are prevented from
reproducing whenever the environment is full. The potential number of offspring
is only calculated after the agent has died, as the calculation (II) requires the
agent’s total resources gathered and its age.

Total Resources Gathered — (Age x BMR)

Potential Offspring = Offspring Cost
spring Cos

(1)

The average potential offspring of the 36 parameter sets is shown in Figure [3]
again divided into three groups based on their misperception probability. In the
majority of the parameter sets there is no difference in the average potential
offspring between agents with different misperception probabilities. From this
we can argue that misperception is not providing a noticeable benefit through
increased potential offspring. However, some parameter sets show subpopula-
tions with very substantially larger fitness corresponding to subpopulations with
higher misperception probabilities, especially sets 1, 3 and 9.
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3.2 Experiment 2

Any measure of the misperception probability is meaningless for populations
that use either reflexive foraging or perfect-perception foraging, as both foraging
methods lack misperception. The only value worth comparing is the average
potential offspring due to different foraging behaviours.

Misaction-affected foraging (Figure Hl) has several parameter sets where the
agents whose misaction probability is significantly different from 0% have more
potential offspring than their competitors with lower misaction probabilities.
There are many more parameter sets where this occurs than compared to
misperception-affected foraging, which implies that misaction as implemented
in this simulation offers a greater benefit than misperception. This benefit is
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expressed as more effective foraging, which allows an agent potentially to pro-
duce more offspring. While these benefits are more observable in the parameter
sets where offspring cost less, in all cases agents whose misaction probability is
significantly different from 0% have more potential offspring.

As the misperception probability is meaningless for reflexive foraging agents,
the total population was combined together to determine their average potential
offspring (Figure [B). The agent populations had more potential offspring than
any of the other foraging methods for many of the parameter sets. This may have
been due to a higher level of behavioural diversity arising from their random
foraging.

The average potential offspring measure for perfect-perception foraging is
calculated together, as all the agents have a misperception probability of 0%.
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Populations of agents with perfect-perception foraging behaviours (Figure [])
only outperformed the reflexive foraging behaviour for a few parameter sets.
When compared against misperception-affected foraging and misaction-affected
foraging, the perfect-perception foraging behaviour had either slightly less or
slightly more potential offspring. When the four different foraging methods are
compared, perfect-perception foraging has the least potential offspring in the
majority of cases. Following Akaishi and Arita’s hypothesis, this would be due
to the lack of behavioural diversity in its agent populations. While conventional
wisdom suggests perfect-perception foraging will be fitter than the three alter-
natives, this does not always occur.
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Fig. 6. Average potential offspring (perfect-perception foraging)

4 Conclusion

Our results support and extend earlier work that showed a general benefit from
misperception. In particular, this benefit is demonstrated in an evolutionary en-
vironment, with misperception achieving evolutionary stability. As in prior work,
misperception is only beneficial when it is infrequent. Our results also directly
support prior speculation that the benefit works through introducing behav-
ioural diversity. Furthermore, in at least some circumstances, we have shown
that a more direct introduction of behavioural diversity can have greater benefit
than misperception itself.

Contemplated future work includes identifying other situations where misper-
ception could be adaptive, such as cases where individuals misperceive the value
of various attributes of objects they can perceive in their environment. Also, the
evolution of self-deception in social simulation is a likely extension of these ideas.
Finally, another potential area to explore is to focus on the link between mis-
perception and altruism and on kin selection as a driving force in the evolution
of misperception.
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Abstract. The origin and evolution of language have been the sub-
jects of numerous debates and hypotheses. Nevertheless, they remain
difficult to study in a scientific manner. In this paper, we focus on
the string-context mutual segmentation hypothesis proposed by Merker
and Okanoya, which is based on experimental findings related to an-
imal songs. As a first step in formally exploring this hypothesis, we
model the evolution of agent discourse using coupled recurrent networks
(RNNs). This model is a simplified representation of this hypothesis;
that is, agents are situated in a single context (e.g., behavioral, social,
or environmental) and they mutually learn their utterance strings from
the prediction dynamics of their RNNs. Our simulation demonstrates
the emergence of shared utterance patterns, which are culturally trans-
mitted from one generation to the next. Furthermore, the distribution of
the shared patterns changes over the course of this evolution. These find-
ings demonstrate an important aspect of language evolution: “language
shaped by society.”

1 Introduction

1.1 Approaches to Language Evolution

How did modern human language evolve into a complex system? While this
issue has attracted the attention of many scholars and has been the subjects
of numerous debates and hypotheses, the origin and evolution of language are
still unknown. Language is not a single faculty but a complex system comprising
many cognitive sub-faculties, some of which are shared by non-human animals.
As suggested by Hauser et al. [4], to understand the origin and evolution of
language, it is important to compare the prelinguistic ability of animals and
human language in terms of not only homologies but also differences . This is a
plausible approach to clarifying the origin and evolution of language.

Another plausible approach is computational modeling. The iterated learn-
ing model (ILM) proposed by Kirby shows that, even without natural selection,
cultural transmission from generation to generation can produce the syntactical
structure of language such as compositionality and recursion [B]. Many other
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Contgxt A
String A: bfafmdasgganfhdayaaxcpya...
Agent A

Fig. 1. Schematic illustration of mutual segmentation hypothesis: When agents with
segmentation ability collaborate, the common parts of the context they face and the
sound strings they utter can be mutually segmented. Small portions of the sound strings
can be linked to specific contexts.

computational models have been studied, each of which models a different as-
pect of language evolution, such as the evolution of a signal system [I9], the
emergence of linguistic communication [81[18], the evolution of syntax [3,[9], and
the origin of meaning [I5]. Computational models provide good testbeds for the
systematic exploration of hypotheses on language evolution. They can also be
used to identify novel linguistic phenomena resulting from the interactions of
agents.

Both approaches are promising for clarifying the origin and evolution of lan-
guage in a scientific manner. Moreover, the interplay between them may be
beneficial [T3].

1.2 String-Context Mutual Segmentation Hypothesis

Here, we briefly review the string-context mutual segmentation hypothesis, which
is a language evolution hypothesis proposed by Merker and Okanoya [6L[10]. This
hypothesis was motivated by the biological evidences of animal songs. Figure [I]
is a schematic illustration of this hypothesis. Let us consider a society without
language in which agents make utterances (like songs) that are specific to behav-
ioral, social, and/or environmental contexts. Further, let us suppose that each
agent has segmentation ability, which is the prelinguistic ability to find discrete
patterns in contexts and utterance strings. It should be noted that primitive
segmentation ability can be found in non-human animals, particularly in song-
birds. Juvenile songbirds learn sound patterns (called chunks) found in the tutor
birds’ songs by using statistical cues such as the transition probability of sound
elements [17].

When agents with segmentation ability collaborate, the existence of shared
substrings embedded in strings uttered in contexts that also have some fea-
tures in common, the possibility exists of extracting the substring as a marker
for the shared contextual aspect by mutual segmentation on the basis of statis-
tical learning. Small segmented parts of sound strings can be linked to ever more
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I-Langage in
the Neural Network

E-Language in
the Social Network

Fig. 2. Schematic illustration of simplified model: As evolution proceeds, the neural
network of each agent and the social network of agents coevolve, and shared utterance
patterns emerge

specific contexts, as shown in Figlll As a consequence, a meaningful word could
come into existence, and its iterated usage could popularize it among the agents.

The key concept of such a “holistic 7 mechanism was proposed independently
by Kirby [5] and Wray [20], and can also be found in the work of Mithen [7]. In
the publications [6LT0], Merker and Okanoya show how this key concept allows
a path to be completed from unsemanticized song to language on the basis of
attested behavioral biology and neural mechanisms, emphasizing the importance
of vocal leaning as a driving force of language evolution. Experimental findings
for non-human animals provide a considerable amount of information on which
to model the string-context mutual segmentation hypothesis. In this paper, we
explore this hypothesis by using a simple artificial life model.

2 Model

We begin by modeling the evolution of agent discourse, which is a simplified
representation of the string-context mutual segmentation hypothesis with only
a single context. That is, agents are situated in the same context and mutually
learn utterance strings, as shown in Fig[2

To model the segmentation ability, we use a simple recurrent network (RNN).
As many previous studies have shown, RNNs can learn the sequential structures
in a self-supervised manner [I12,[T]. Furthermore, language evolution has been
simulated by using the population of agents modeled by RNNs [8[I8]. These
studies revealed that the prediction dynamics of RNNs is essential to learning
the structure of temporal sequences like language.

While previous models focused on the accuracy of a sequential leaning task,
we focus on an emergent property — how shared utterance patterns emerge from
the prediction dynamics of agents with RNNs. In this section, we describe our
model architecture and simulation setup.
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Agent A (speaker) Agent B (hearer)

Feedback
........................... a ---Output

Utterance Role
Input Input

Fig. 3. Discourse of coupled recurrent networks: The first ten input neurons of RNNs
receive utterance information, in which alphabetic letters are coded with ten basis
vectors. An additional input neuron is used for assigning an agent’s role: a speaker (1)
or a hearer (0).

2.1 Agents

Each agent is modeled as a simple recurrent network (RNN), used for both
speech and recognition during discourse. The RNN has a layered structure with
an additional input neuron, as shown in FiglQl The input layer receives two
types of inputs. The first ten input neurons receive utterance information, in
which alphabetic letters (from “a” to “j”, in this model) are coded with ten
basis vectors; e.g., a—[000000001], b—[001000000], for example. The other input
neuron is used for assigning an agent’s role as a speaker (1) or a hearer (0). If
a hearer gets a letter “a”, his input vector is expressed as [00000000010] (see
FigBl). This additional input is important for making different states in the
hidden layer, related to the agent’s role. The outputs of the RNN are translated
into an alphabetic letter by a winner-take-all process, in which the maximum
neural output becomes one and the others become zero.
The dynamics of the RNN is expressed as the following equations:

y;(t) = Q(Z wigai(t) + Y wiyi(t — 1) + b)) (1)

!
2(t) = Q(Z w;ry;(t) + br) (2)

1

- 1+e® (3)

where ¢ is the sigmoid function, w is the neural connection weights, and y and
z are the neural outputs of the hidden and output layers, respectively. In this
paper, the size of the input layer is set to 11, the hidden and context layers to
22, and the output layer to 10.

g(x)
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2.2 Discourse

Agent discourse is simulated by coupling two RNNs, as shown in Fig[] [16]. Dur-
ing a discourse, two agents are randomly chosen from the population of agents;
one as a speaker and the other as a hearer. The speaker begins an utterance by
setting the initial inputs [00000000001](i.e., no utterance information with the
speaker’s identifier (1)) and continues the utterance by feeding back the outputs
to the input layer. When the speaker utters a string, the hearer receives it and
predicts the speaker’s next utterance. During the discourse, the hearer learns the
sequential structure of an utterance string in a self-supervised manner; in this
model, the RNN of a hearer is trained using the error back propagation (BP)
algorithm [12].

In the BP algorithm, the connection weights of the RNN are updated as the
following equation:

dE(w)

wt+1)=w()—n Ow e

+ aAw(t), (4)
where w(t) is the connection weight vector of the RNN at learning step ¢, and
E(t) is the error function. The constants 7 and « are the coefficients of learning
and inertia, respectively. In this paper, these values are set as n = 0.1 and
a=0.8.

The discourse is evaluated in terms of its predictability (i.e., the number of
shared patterns) and the complexity of the strings that agents utter or predict.
A pattern is defined as a substring found in both an utterance and a predic-
tion string and that consist of more than two types of letters (i.e., a one-letter
repetition like “aaa” is not a pattern). For example, for the discourse

— a speaker (utterances): uuukcwrukplkbatuclaat. . .
— a hearer (predictions): xtxtoutrudixtxplkbqg. ..,

there is one shared pattern: plk. After the discourse, we perform a simple pattern
matching procedure, in which the number of patterns shared between the speaker
and hearer is calculated.

The scores of the speaker (Ss,) and hearer (Sp,) in a discourse are calculated
using the following equations:

Sep =Y NITNP™ x H,, (5)

Shr = ZNilterm X Hpyr (6)

7

where N/ denotes the number of letter types per shared pattern-i and NP*"
denotes the number of pattern-i. Furthermore, Hy, and Hj, denote the infor-
mation entropies of the speaker’s utterance string and the hearer’s prediction
one. Using these H,, and H},, we can consider the endogenous trend in string
complexity in this model.
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Fig. 4. Evolutionary time course of model. The connection weights of an RNN are
coded by a chromosome. Agents are created by decoding the inherited chromosomes.
After all discourses, the agents are sorted by score and the top ten agents leave offspring
(i.e., encode their innate chromosomes with mutations).
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Fig. 5. Average score across 3000 generations: Step-wise evolution is observed at about
generation 550

2.3 Evolution

To evolve the agents, a simple genetic algorithm (GA) with ranking selection
and point mutation is used after a certain number of discourses. Figure [ shows
the evolutionary time course. In this model, the connection weights of an RNN
are encoded by an artificial chromosome, which crosses from one generation to
another.
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The agents leave offspring in accordance with their total scores across all
discourses. Only the top ten agents can leave offspring: each of them leaves one
copy offspring without mutations; furthermore, the best agent can leave 4 mutant
offspring, the second can leave 3, the third can leave 2, the fourth can leave 1.
The other agents are removed from the population.

A mutant offspring inherits a parent chromosome with point mutations, where
a small amount of noise is added (at most 20% per chromosome). As shown in
Figll the ”Darwinian mechanism” is used in this model; that is, offspring inher-
its a parent’s innate chromosome, which encodes the initial connection weights
of the RNN, NOT the one that encodes the learned connection weights, which
is used in the “Lamarckian mechanism.” We use the Darwinian mechanism be-
cause it is more adaptive in a dynamical environment [I4] and more natural even
in our abstracted evolution.

3 Simulation

At the initial state (generation zero) of the simulation, we make 20 agents, each
of which has an RNN with random connection weights. The only differences be-
tween the agents are the connection weights. The other simulation parameters
are set as mentioned in the previous sections. Every agent makes an utterance
or a prediction sting with the length Ly, = 30 per discourse, and the usable al-
phabetic letters are 10 (from “a” to “j”). In each generation, 1000 discourses are
carried out for two randomly selected agents. The Darwinian evolution (FigHl)

proceeds for 3000 generations.

3.1 Evolution of Discourse

We observe a step-wise evolution, as shown in Figlll The score increases rapidly
at about generation 550; it then remains approximately the same score up to
generation 3000. These findings indicate that there is a transition through which
the agents become more communicative in their discourses, as we will see in the
next section. The evolution of the information entropies of the utterance strings
(Hp,) and prediction strings (Hy,) are shown in Figlll These entropies also
exhibits a step-wise evolution; both H, and Hj, suddenly increase at about
generation 550 and then decrease slightly over the subsequent generations.

Comparing the information entropies between utterances and predictions in
Figlel we see that the entropy of predictions (Hy,.) always larger than that of
utterances (Hsp). This suggests that the prediction ability of agents preceded
their utterance ability. When agents play a hearer role, they predict and learn
utterance patterns by updating the connection weights of their RNNs. On the
other hand, when agents play a speaker role, they make utterances on the basis
of their RNNs, which have already been structured and do not change during
a discourse. Playing a hearer role is the only chance agents get to modify their
innate RNNs during their lifetime and thereby increasing their prediction ability.
This secondarily affects the utterance ability.
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Fig. 6. Information entropies of utterance and prediction strings: The information
entropy of prediction strings are larger than that of utterance strings

Generation 0 Generation 100

agent[1l7] aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa agent[14] aaaaccacaacaaaccacaccccaacccce
agent[16] _jjjjjaaaaaaaaaaaaaaaaaaaaaaaa agent[00] _acccccacaaaccacaacaaaccaaaacc
agent[16] bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb agent[00] cacacccaacacccaaccaaaaccccccce
agent[13] _aaaaaaaal >bbbbbk >bbb agent[01] _cccccececccecceccecccccaaaccecece
agent[00] acacaaaccaacaccaccacaccaacaaaa agent[06] acaaacaacccaccaaccacacccaaaaca
agent[16] _iiiiiijiiiiiiiiaccccccccacaaa agent[07] _cccaccccaaaacaacaacaacaacaaca
Generation 500 Generation 600

agent[14] iaiaaaaaciciaaaaccaicaciaiaiaa agent[12] hhichiiihiaccahaccchhciiiahhih
agent[03] _iiiiiijiiiiiiiiiijaiiaaiaiaia agent[18] _cchiaiaahhaiaiciaacichcaihhah
agent[13] aaaacaaccccaaaaccaaacaccaacacc agent[10] iaaaccihchhciaiahcaicahahhaice
agent[02] _iiaaicaicaiaacaaiaccaaciiciai agent[19] _accccahcacaccahhachhhchhccaac
agent[02] cicaiiccaiaiiiacaiciaiccciiacc agent[07] cacacahcaacahaacaachaiahahcaca
agent[10] _chchcheccfefhechhchhcechahaaac agent[14] _cccccccceccccccacaaacaaaaaaaaa

Generation 3000
agent[04] chchhhaaaahcchchachhachahchach
agent[08] _cacccacahhccaacaaahhhaahhaach

agent[01] ahacachahacacaaccacchcccchhhha
agent[04] _haachcchccaachcacccccahahhahh

agent[15] ccceccecececccececccccececccecececccececee
agent[04] _aahacchcahchhhachhchahchhhaac

agent[01] acaaccacaaahchcahhachhchchchhe
agent[1l] _acaaacacaaaaaacaaaaaahchchchh

Fig. 7. Examples of agent discourses: At the initial stage, the utterance and prediction
strings are simple; after generation 550, they become more complex

Figure [ shows examples of agent discourses in each generation. In generation
zero, the utterance and prediction strings are simple. Almost all the speakers
repeat a single letter like “aaa...” or “bbb...”";only a few utter multiple letters
like “acac. ..” It should be noted that agents with randomly connected RNNs are
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not random speakers (i.e., random letter generators) and that most of them have
poor utterance ability. In this generation, we can identify adaptive behaviors of
hearers, who easily change their predictions through learning. As a consequence,
the information entropy of hearers (Hp,) does not become zero. For example,
agent 16 can recall a pattern “ac” after a sequence of wrong predictions with
“i”. In this way, agents who make better predictions obtain higher scores and
leave more offspring in the early stages of evolution. We can also see in Figli]
that agent 16 behaves differently depending on his role, which is an important
finding. When he is a speaker, he utters only “i”, while he recall a several letters
when he is a hearer. This shows that the additional input neuron we introduced
works as intended.

As the evolution proceeds, the strings of both utterances and predictions
evolve and become more complex, and several shared patterns emerge. In gener-
ation 100, the utterance strings consist of only two letters, “a” and “c”, which
have been in steadily use in the agent society. In generation 500, a novel letter
“h” that has never been observed before begins to be used, and then it becomes
used more and more. Interestingly, in generation 3000, we can find stereotyped
discourses in which agent 4, who is the best agent at the time, produces similar
strings despite his role. Even when an utterance string is a simple repetition
of “c”, agent 4 robustly predicts different patterns such as “ac” and “ah,” and
thus obtains the highest scores on the whole. This is in contrast to the adaptive
behaviors of initial agents in the early stages of evolution. This interesting phe-
nomenon may be related to the statistical property of shared utterance patterns
in the society of agents. As shown in the next section, this is because “ah” and
“ac ” are dominant in the frequency of shared patterns, so the BP learning for
the rare repetition of “c” has little effect.

3.2 Statistical Properties of Shared Patterns

Figure [8 shows the statistical properties of the shared utterance patterns in the
agent society; the number for each pattern and their rank are plotted on a log-log
scale, which is called a Zipf plot. In human language, the frequency of any word
is inversely proportional to its rank in the frequency table, and the slope is —1
in a log-log plot, which is called “Zipf’s law” [21]. It should be noted that the
shared patterns in this model are not strikingly parallels with actual words and
that they have many overlaps; for example, given a pattern set {abab,ababab},
“ac” is repeatedly counted and the resulting counts are ab(5), abab(2), and
ababab(1). Only statistical cues such as frequency are available to segment such
patterns — the model has no semantics to serve as cues for segmenting.
Different characteristics in the Zipf plots (Fig[]) are evident in the shared
utterance patterns. In generation zero, the most common pattern is “ac,” and
the top five shared patterns are combinations of “a” and “c.” The slope is close
to —1, but this is not a case of human language. In generation 100, we observe
the same top five patterns, except “ aaac.” In generation 600, a new letter, “h”,
appears in the top five patterns, resulting more diversity in the shared patterns.
This causes the information entropies to rapidly increase between generations



116 K. Sasahara, B. Merker, and K. Okanoya

10000 Top five patterns ) 0+ Top five patterns
. ac (107) RIIS
1000 1000 T . ca(11352)
. acc (69) - . aac (5174)
ig 1005y aI;;ha=-0.94 . aac (40) : . alpha = -1.80™ . acc (5152)
2 . (R=0.95) . aaac (27) 2 (R?= 0.95) R . caa (5024)
0\” B
o, caa (27)
10 10

1 10 100 1000 10000 1 10 100 1000 10000
Rank Rank
Generation 0 Generation 100
w0t N\ Top five patterns || 10000+« o, Top five patterns
T . ca(12335) Fin . ch (9354)
1000 1000 \*\\g . hc (8986)
et = . caa (5715) N . ha(7091)
3 alpha =-1.81 3
£ (R2=0953) s . aac (5607) £ 100 = \\ . ah (7041)
= . cca (5024) alpha =-1.68
(R?= 0.962)
10 10 *
1 1
1 10 100 1000 10000 1 10 100 1000 10000
Rank Rank
Generation 500 Generation 600
il === Top five patterns | " Top five patterns
e . ah (8705) T 1. fi (1320)
1000 \\ . ac (8692) 1000 o 4sosmmng, 2. ga (1223)
. \ . ca(8474) o 3. dh (1209)
£ 100 al;:ha:-lASS N] . ha (8423) £ 100 g 4. hc(1193)
: = 0s8] . ch (7988) L 5. ji (1165)
100 100 1
1 1
1 10 100 1000 10000 1 10 100 1000 10000
Rank Rank
Generation 3000 Random

Fig. 8. Statistics for shared utterance patterns in agent society: The building block
pattern “ac” is culturally transmitted from generation to generation. Zipf slope varies
from —1.85 to —0.94. When the same pattern matching method is applied to random
dummy data, the slope is flat, unlike the other slopes.

500 and 600, as shown in Figlfl resulting in the step-wise evolution of average
scores shown in Fighl

Furthermore, we can find pattern “ac” in the top five patterns not only in the
early stages of the evolution but also in the later stages. This suggests that this
pattern originates in the initial agent society because it is more popular than
the other patterns. It is thus culturally transmitted through agent discourse and
becomes frequently used in the shared patterns. Through the evolution, pattern
“ac” functioned as a building block for longer patterns.

Through the evolution, the Zipf slope varied from —1.85 to —0.94. As the
evolution proceeds, the Zipf plots exhibits terraced slopes, and each terrace
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corresponds to a certain group of patterns; for example, in the generation 3000,
the top five patterns have almost equal frequency, and they are building blocks
for larger patterns, such as “ahaccahach.” In addition, the slopes are different
from that for the random dummy data, as shown in Fig[8

4 Discussion and Conclusion

We have demonstrated the evolution of agent discourse by using coupled recur-
rent networks (RNNs). This model is a simplified version of the string-context
mutual segmentation hypothesis, in which agents are situated in a single con-
text and mutually learn their utterance patterns suitable for the context. As a
result, we observe the emergence of shared utterance patterns, which are cultur-
ally transmitted from one generation to the next. Furthermore, the distribution
of shared patterns changes over the course of evolution. These findings demon-
strate an important aspect of language evolution; namely, “language shaped by
society.”

In the emergence of shared patterns, “the prediction chain reaction” (PCR)
of the agents with RNNs is an important driving force; that is, agents learn the
verbal behaviors of others that learn. The introduction of information entropy
into the scores (i.e., eqs.(5) and (6)) models an endogenous driving force for
the string complexity. To predict the utterance patterns precisely, then simple
ones are more effective for this task, but there exists a trend for the string
complexity in this model. Thus, two driving forces balance between predictability
and complexity, affecting the emergence of shared patterns.

Our model at present has only a single context, and the context affect nei-
ther the utterances nor prediction strings. utterance and prediction strings. As
mentioned in Section.2] contexts may help differentiate the usage of utterance
patterns by agents, and the strings and contexts may interplay with one another.
We plan to introduce more contexts into this model and use it to explore the
string-context mutual segmentation hypothesis in greater depth.
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Abstract. The evolutionary behavior of three hierarchical relationships, HIFF-
C, HIFF-II and HIFF-M is studied in the context of two computational models,
J and JGA. In J, entities are composed from other entities in the population.
JGA is a panmictic genetic algorithm. Results from our experiments indicate
that specificity in a relationship enhances convergence to a global optimum in
both models. When there is little specificity in the relationship, external
conditions such as join rate, crossover rate, agitation type or selection
mechanism need to be set appropriately. Our results also suggest that
cooperation is neither necessary nor sufficient for the evolution of higher level
entities. We found that cooperation was evolutionary advantages in J only for
relationships with little to no top-down inter-level conflict.

Keywords: major evolutionary transition, hierarchical relationships, multi-level
selection, inter-level conflict, specificity, genetic algorithms, population
diversity.

1 Introduction

A major theme in evolutionary biology is the formation of higher level entities from
lower level entities. This formation is also known as a major evolutionary transition
(MET) [6]. A difficulty with the MET theory is, understanding why higher level
entities can be stable and replicated as wholes in the face of selection forces at play
amongst their self-interested lower level entities. Reeve and Keller speak of the need
for attractive forces to exceed the repulsive and centrifugal forces for there to be
stability within a collective [2, p.7]. They define these forces in terms of absolute
inclusive fitness. Michod [7] stresses the necessity of cooperative interactions among
lower level units to form emergent higher level groups, and conflict mediation in
favor of the higher-level unit for groups to transition to new evolutionary individuals.
Further, how the units of a group are reorganized and conflict mediated in a transition
to individuality, can influence the individual’s evolvability in the future [7]. The
problem of stability, that is keeping autonomous units together as cooperating wholes,
is not limited to the biological realm but applicable also to the evolution of
complexity from simplicity, in general.

In reference [5], we explored this problem of stability from a logical (vs. physical-
chemical) point of view. In that study, we assumed that two necessary conditions for a
MET, as suggested by existing theory, namely multi-level selection in favour of

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 119 2007.
© Springer-Verlag Berlin Heidelberg 2007



120 S. Khor

higher level adaptation (cooperation) and protective barriers against disintegration
such as membrane enveloped compartments are in place, and focused instead on how
relationships between parts affect the formation and stability of composite entities. By
relationship we mean how parts of a whole interact with each other within the whole.
A composite entity is an entity formed from previously existing entities. The study in
[5] was made with a model called J. In that study we found that composite entities
formed under a relationship with high specificity (section 2.3) were more stable, and
their stability were impervious to conditions created by different selection
mechanisms and agitation type (section 3.1).

In this paper, we use the same J model used in our previous experiments [5], but on
a different relationship (HIFF-II). This relationship differs from those studied in [5]
because it has high top-down inter-level conflict (TDILC) (section 2.2). TDILC
makes the problem of bottom-up evolution via a MET approach more interesting
because short-term mutualism can degenerate into long term behavior that is
detrimental to the whole. Relationships between biological entities are dynamic and
on a continuum [1]. We report in this paper that evolving higher level entities under
the HIFF-II relationship with J is more challenging than the previous two
relationships (HIFF-C and HIFF-M). Enforcing cooperation and using protective
barriers actually made it more difficult to evolve HIFF-II entities in the J model. This
result is not too surprising given that HIFF-II does not evolve easily under the two
selection mechanisms available to J [3]. However, even when we adapted J to use
SM3 (RMHC3 in [3]), a selection strategy that is known to be successful for HIFF-II,
the success rate was less than 100% given the parameters of the experiment. SM3
involves cooperation at all levels, not just between lower level entities for the interest
of higher level entities as in SM2, but also between higher level entities for the
interest of lower level entities. From our experience with J and HIFF-II, we conclude
that it is more difficult for entities with high top-down inter-level conflict to evolve
with the MET approach because (i) more negotiation of interests between parts at
different levels is required, (ii) the evolution is more sensitive to external conditions,
and (iii) the evolution takes a greater length of time.

The difficulties we experienced with J and HIFF-II led us to design the JGA model
which we introduce in this paper. JGA combines aspects of the J model into a genetic
algorithm (GA). Instead of incrementally evolving larger entities from smaller ones,
entities in JGA start out at the target size but with randomly chosen parts. As in our
experiments with the J model [5], we found HIFF-M entities least particular about the
parameter settings of JGA. HIFF-C and HIFF-II entities were more particular. In
addition, HIFF-C entities performed slightly worse than HIFF-II entities under JGA.
JGA is a panmictic genetic algorithm and so is susceptible to loss of population
diversity. A population losses its diversity when all individuals in the population carry
the same value for one or more genes. From our JGA experiments, we hypothesize
that the high level of specificity in the HIFF-M relationship helps to decelerate
population diversity loss. By our definition in section 2.3, specificity is lowest in
HIFF-C and highest in HIFF-M. We plan to test this hypothesis and study population
diversity under the different relationships. As with any computer simulation study, it
remains to be seen how dependent this conclusion is on the models and the parameter
settings we used, and also the characteristics of the problem.
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2 Background

This section defines the three relationships used in our experiments and reviews
previous work to compare and understand the behavior of these relationships. The
concepts of top-down inter-level conflict and specificity are defined.

2.1 The Relationships (HIFF-C, HIFF-II, HIFF-M)

A relationship is a set of weighted links that defines how variables (genes) of an
entity’s genotype interact with each other. We experiment with three hierarchical
relationships: HIFF-C, HIFF-II and HIFF-M. These relationships are variants of the
Hierarchical-If-And-Only-If (HIFF) problem [8]. The three relationships lend entities
the same hierarchical structure. An entity’s size refers to the length of its genotype, a
{0, 1}V string. Discussion in this paper assumes the binary alphabet {0, 1} is used. An
entity of size N=2" where n € Z", is decomposed to log, N levels. The levels of the
hierarchy are labeled 1 ... n from the bottom-up and there is a total ordering on the set
of levels. At level A, the N variables are partitioned into N/2* non-overlapping
modules of consecutively located genes. Every variable belongs to exactly one
module of level A. Each module at level A has 2" variables. The minimum module size
is 2 and each module of size 2' where i € Z* and i > 1 consists of exactly two other
distinct sub-modules. Figure 1 illustrates how a size 8 entity is decomposed into
levels and modules.

Level 3 (highest level)

There is one
Level 2 module of size 8
¢ ¢ ¢ ¢ at level 3, two

modules of size 4

| | | | | at level 2 and four
modules of size 2
at level 1.

Level 1 (lowest level).

Fig. 1. Hierarchical decomposition for an entity of size 8

The maximum fitness contribution of a module at any level is 1. Therefore the
optimal fitness value for level A is N/2". The total fitness of an entity is the sum of all
level fitness values in its hierarchy. Therefore the optimal total fitness is N-1. When
necessary, we write the level fitness values of an entity in level descending order and
call this structure the phenotype. The optimal phenotype is thus { 2°, 2", ..., 2"2 2"").

The weight of a link between genes i and j of an entity defines the contribution
made by i and j to the entity’s fitness when i and j satisfy the constraint associated
with the link. In this paper, all constraints are IFFs. Therefore optimal solutions are
maximally similar. Since the values (alleles) we use are {0, 1}, there are two optimal
genotypes for each relationship, the all ones genotype 1 and the all zeroes genotype 0.
The structure (which variables interact) and the weights of the links for each of the
relationships are defined next.
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HIFF-C. This is the continuous version of the HIFF problem [8]. Every variable
interacts with every other variable in an entity. Fitness of a HIFF-C module is given
by (p X g) + (1 — p) X (1 — g) where p and q are the proportion of ones in the first and
second halves of the module respectively. For example, the HIFF-C phenotype for
entity with genotype 1000 1100 is { 0.5, 0.5, 3.0 ) and the total HIFF-C fitness for this
entity is 4.0. The level 3 fitness is 0.5 because p =1/4, q = 2/4, and (0.25 X 0.5) + (1 —
0.25) x (1 = 0.5) = 0.5. At level 2, the two modules are 1000 and 1100. Fitness of the
1000 module is (0.5 x 0) + (0.5 x 1) = 0.5. Fitness of the 1100 module is (1.0 x 0) + (0
x 1) =0. Thus, fitness at level 2 is (0.5 + 0) =0.5.

HIFF-IL. [3] Every variable interacts with n other distinct variables in an entity. n is
the number of levels in the hierarchy for the entity. Fitness of a HIFF-II module at
level A is calculated by doing a pair-wise comparison of genes in the first half of a
module with genes in the second half of a module (Figure 2):

(i) gene i is compared with gene 2% 4 i of a module for i = o,..., oM -1,
(ii) the number of matches is divided by half the module size, 2+

Interactions at A =2

Interactions at L = 1

Fig. 2. Interaction diagram for HIFF-II, N = 4

For example, the HIFF-II phenotype for entity with genotype 1000 1100 is { 0.75,
0.5, 3.0 ) and the total HIFF-II fitness for this entity is 4.25. At level 3, the
interactions are between the following four pairs: (0-1, 4-1), (1-0, 5-1), (2-0, 6-0), (3-
0, 7-0). An interaction pair (i-a, j-b) means the gene at position i has value a, and it
interacts with the gene at position j which has value b. For an IFF problem (i-a, j-b) =
1 if a = b, and 0 otherwise. So the interaction pairs at level 3 return the values 1, 0, 1
and 1 respectively. This means there are 3 matches at level 3. Since a module at level
3 has 8 variables, by rule (ii) above, the fitness value of level 3 is 3/4 = 0.75.

HIFF-M. [4] For all modules m at every levels A, if the first (0) and the middle Y
variables of m have the same value (Figure 3), 1 fitness point is awarded to m. For
example, the HIFF-M phenotype for entity with genotype 1000 1100 is { 1, 0, 3 ) and
the total HIFF-M fitness for this entity is 4. At level 2, the interaction pairs are (0-1,
2-0) and (4-1, 6-0). Since there are no matches, level 2 fitness is 0.

Interactions at A =2

Interactions at A =1

Fig. 3. Interaction diagram for HIFF-M, N =4
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A general principle for all three relationships is intra-module interactions outweigh
inter-module interactions. This accounts for the more rapid optimization of lower
level modules under normal conditions; that is when total fitness is used by selection
(section 2.2). Further, all three relationships are non-linear; the fitness contribution of
a pair of interacting variables may be higher than the sum of their individual fitness
contributions.

2.2 Top-Down Inter-Level Conflict (TDILC)

The combination of (i) lower level modules adapting quicker than higher level
modules, (ii) the existence of two optimal solutions for every module, and (iii) the
requirement that all modules adapt to the same optimal solution if a globally optimal
solution is to be found, creates conflict between levels. What is evolutionary
advantages to lower level modules need not be beneficial to the whole entity in the
long run. This bottom-up conflict presents itself when the selection mechanism
compares entities by their fotal fitness values because by default, lower level modules
make a larger fitness contribution than higher level modules in all three relationships.
We refer to this selection mechanism as SM/. With SM1, a variant entity replaces its
parent entity if its total fitness is equal to or greater than the total fitness of its parent
entity. Otherwise, the variant is discarded.

Another selection mechanism that we will use in our experiments is a multi-level
selection scheme that prioritizes the optimization of higher levels. This selection
mechanism is called SM2 (also known as RMHC?2 in [4]) and it works by comparing
entities using their phenotype values in level descending order. SM2 replaces a parent
entity with its variant entity if the variant is fitter than its parent at level A and is as fit
as its parent at all levels above A. A variant also replaces its parent entity if it is as fit
as its parent at all levels. Otherwise, the variant is discarded.

Because SM2 favours higher level modules, inter-level conflict arises when
adaptations that are good for higher levels prevent optimization of lower level
modules. Such top-down inter-level conflict (TDILC) exists for the HIFF-II and
HIFF-M relationships. HIFF-C does not have TDILC under SM2 because the optimal
set of genotypes at the highest level consists of global optima only (Table 1). Thus
optimization of higher level modules also optimizes lower level modules.

Table 1. Optimal genotypes (local optima) by level, N =4

Level HIFF-C HIFF-11 HIFF-M
2 {0000, 1111} | {0000, 0101, 1010, 1111} | { 0%0*, 1*1*}
1 {0000, 0011, 1100, 1111}

TDILC None | High | Low

* is a placeholder and may take either a ‘0’ or ‘1’ value.

Top-down inter-level conflict is higher in HIFF-II than HIFF-M because HIFF-II
defines more distinct constraints per level (N/2) than HIFF-M (N/ZK) at levels above
level 1. Further, the set of constraints for any level in HIFF-II involves all variables.
Therefore, fit higher level HIFF-II modules lock in more genes per level and leave
fewer degrees of freedom for lower level modules than HIFF-M.
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2.3 Specificity

Specificity refers to how difficult it is for independent entities to become part of a
composite entity. Specificity at level A refers to the number of genotype
configurations with 0O fitness value at level A.

For HIFF-C, there are only two situations when a module’s fitness is 0: (i) p = 0
and q =1 and (ii) p = 1 and q = 0. Since fitness of a level is the sum of the fitness of
its modules, and there are N/2* modules at level A, specificity for HIFF-C at level A is

N2 Specificity at the highest level (A = n) for HIFF-C is therefore 2. N=2"
(section 2.1).

HIFF-II has N/2 distinct constraints per level and these constraints involve all
variables. Since there are 2 configurations per constraint that contributes O to fitness,
specificity per level for HIFF-II is the same for all levels and is 2%,

HIFF-M has N/2" distinct constraints per level and each constraint is applied to the
first and middle variables of each module at level A. This leaves (2" — 2)-N/2*
variables free to take on any value without affecting the fitness of level A. Therefore
specificity at level A for HIFF-M is 2"/ @ INIE ik simplifies to 2N~ At
the highest level, specificity for HIFE-M is 2",

The calculations in this section serve to show that for A > 1, HIFF-C < HIFF-II <
HIFF-M where ‘<’ means is less specific than.

3 Models

The objective of this paper is to study how the relationships described in section 2
influence evolution in two computational models: J and JGA.

The J model adopts the major evolutionary transition (MET) [6] approach to
evolution; entities are recursively composed from smaller entities until they reach the
target size. A difficulty with the MET approach as we mentioned in section 1 is
keeping parts of a composite entity together. We explored this stability problem for
HIFF-C and HIFF-M using J in [5]. In that study, runs were made under different
selection mechanisms (SM1, SM2) and agitation types (R, NR). These two
dimensions represent enforced cooperation and enforced cohesion respectively. With
SMI (section 2.2), all parts “act for their own self-interest”, there is no cooperation
between parts. With SM2 (section 2.2), cooperation between parts is enforced in the
sense that the interest of the whole takes precedence over the interests of the parts. NR
(non-random) agitation type (section 3.1) enforces cohesion by limiting the number of
parts a composite entity can disintegrate into. In this paper, we focus on the stability
of HIFF-II entities evolving with the J model. Stability of HIFF-C and HIFF-M
entities was discussed in [5].

This paper also introduces JGA. In JGA, entities start out at the target size and
evolution is via crossover, mutation and selection. JGA adopts the approach common
in genetic algorithms. The replacement strategy for the crossover operator in JGA is
similar to the decision condition for the join and exchange operators in J, a new or
child entity replaces its donor or parent entities in the population only if it is strictly
fitter than both of its donor or parent entities. JGA uses the same mutation operator as
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J with SM1. Part of the motivation for JGA was the difficulty we experienced trying
to evolve HIFF-II entities with J (section 4.1).

3.1 The J Model

The specific J algorithm used in our experiments is outlined in this section. Evolution
in J starts with a population of entities each having a size 2 random genotype.
Evolution in J proceeds with either a join, exchange or mutation operation in each
iteration, until either an optimal entity of the size desired is created or the maximum
number of iterations is reached. The total amount of genetic material (512 X 2 bits)
stays constant throughout a run.

Algorithm for J
create 512 entities each with a size 2 random genotype
while number of iterations < 50,000
increment number of iterations by 1
if number of iterations is divisible by 50
if fittest entity is also globally optimal and of size 128, stop.
record statistics . -
if random real number in [0.0, 1.0] < 0.5 — > i thejoin rate
chose 2 random distinct entities, el and ¢2
if el.size = e2.size and el.size x 2 < 128 and random integer in [1, 2] =1
join e2 to el
else
exchange parts of el and e2

else
select an entity, €0, using fitness-proportionate (roulette-wheel) selection
mutate €0

A join event enables two random distinct entities (el, e2) of the same size to
concatenate their genotypes to form a new entity (e3) and see whether there is
additional benefit to exist as one instead of two entities. If e3 is strictly fitter than the
sum fitness of el and e2, e3 is added to the population and el and e2 are removed
from the population. A successful join reduces population size by 1.

An exchange event enables parts (modules) of two random distinct entities (the
donor entities), which may be of different sizes, to try out a different configuration.
This new configuration succeeds if it provides a better context for the parts involved.
If this is the case, the two donor entities disintegrate.

The first step in an exchange between two donor entities (el and e2) is to split el
and e2 into their constituent parts. The granularity of parts from this split depends on
the agitation type (AT), which is a parameter of J. If AT is random (R), then el and
2 may be split into parts of any size 2’ where 1 < i < log, of the smaller entity size. If
AT is non-random (NR), then part size is either the smaller entity size or when entities
are of equal size, half the size of a donor entity.

These parts are then assembled into a new entity e3 of size equal to the larger of
the donor entities. If a part in e3 is strictly fitter on average than a part in el and a part
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in e2, then we add e3 and the remaining unused parts to the population, and remove
el and e2 from the population. Otherwise, el and e2 are left intact in the population'.

Fitness of a part in an entity e is the total fitness of e divided by the number of parts
used to create e or the number of parts e is split into. Suppose el is 1111 1001, e2 is
11, the relationship is HIFF-C and AT is NR. Then el is split into 4 equal sized parts,
i.e. 11, 11, 10 and O1. Fitness of a part in el is 4/4 = 1. Fitness of a part in e2 is 1/1 =
1. Let e3 = 1111 1101. This exchange succeeds because fitness of a part in e3 is
5.25/4 = 1.3125, which is greater than 1. Simple average is used so that all parts in an
entity have the same fitness value. This makes the decision whether to keep e3 or
discard it straightforward.

A mutate operation on e0 makes a clone entity e3 of e0 and then complements 1 to
k genes randomly chosen with replacement from e3’s genotype where k is P, X
e3.size. e3 competes with e0 for a place in the population using either the SM1 or
SM2 replacement strategy (section 2). P, is the mutation rate. In the experiments
(section 4), P, is 0.03125 or 4/128.

3.2 JGA

The specific JGA algorithm used in our experiments is outlined in this section. The
population size is constant (steady-state) throughout a run.

Algorithm for JGA

create 128 entities each with random genotype of length 128
while number of iterations < 100,000
increment number of iterations by 1
if number of iterations is divisible by 50
if fittest entity is also globally optimal, stop.
record statistics 0.5 is the
chose 2 random distinct entities, el and e2/ crossover rate
if random real number in [0.0, 1.0] < 0.5
produce c1 and c2 by doing a 2-point crossover between el and e2
if cl is strictly fitter than both el and e2, replace el with cl
if ¢2 if strictly fitter than both el and e2, replace e2 with c2
else
produce cl by mutating el
if cl is as fit as or fitter than el, replace el with cl
produce c2 by mutating e2
if 2 is as fit as or fitter than e2, replace e2 with c2

A crossover between a pair of entities el and e2 is made by randomly choosing two
locations x and y in a genotype where x < y. The genotype of el (e2)’s child entity, cl
(c2), inherits el (e2)’s genes at all locations except those between x and y which it
inherits from e2 (el). A child entity cl produced by mutating an entity el inherits all

"In [5], we mistakenly said that a successful exchange increases population size by at least 1. A
successful exchange does not decrease population size.
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of el’s genes except at 1 to k random locations where the complement of el’s genes
are inherited instead. k is P, X el.size = 4 since P,, is 0.03125 or 4/128 and all entities
in JGA are of the same size which in our experiments is 128.

4 Experiments and Discussion of Results

In the experiments with J, we gauge stability by monitoring the weighted average age
(WAA) of a population throughout a run. A steady rise in WAA indicates stability. In
JGA, the emphasis is on the success rate and speed of evolution.

4.1 The J Model

Table 2 summarizes the results of our experiments with J. Except for the HIFF-M
relationship, introducing enforced cooperation (via SM2) and/or enforced cohesion
(via non-random agitation type) either lengthens average time to optimum or reduces
success rate.

Table 2. Number of times a globally optimal entity (N=128) is found out of 30 random runs
and the average number of iterations successful runs took

Selection Scheme

Agitation SMI (compares total fitness) SM2 (does multi-level selection)
Type HIFF Success Iterations Success Iterations
Non-random C 5 14,960 (9,447) 30 22,480 (2,827)
(NR) 11 5 21,960 (9,941) 0 -

M 30 10,820 (805) 30 10,700 (683)

C 30 13,690 (2,100) 30 19,380 (5,939)
?;)“dom 1 30 15,040 (2,617) 0 ;

M 30 11,530 (820) 30 11,490 (784)

Standard deviation is reported in parentheses.

In [5], we reported that entities evolving with J under the HIFF-M relationship
were more stable than entities evolving with J under HIFF-C because the HIFF-M
relationship is more specific. We explained in [5] how specificity (section 2.3) helps
to improve stability of composite entities by making it more difficult for joins and
exchanges to succeed, thus giving more time for entities to optimize themselves
before becoming parts of composite entities. Successful joins and exchanges exert
downward pressure on WAA while unsuccessful exchanges push WAA up.
Therefore, the WAA graph for HIFF-M show steady rise because there is less
downward than upward pressure on WAA for HIFF-M. Another effect of specificity
is slower decline in population size for HIFF-M than HIFF-C, which in turn affects
the granularity of exchanged parts when non-random agitation type is used.

We also reported in [5] that lowering the join rate from 0.5 to 0.25 for HIFF-C
(NR, SM2) shortened evolutionary time to optimum and improved stability. Here we
provide further evidence to support this (Figure 4).
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30 - Join rate = 0.25 Join rate = 0.5
5 Success = 30/30 Success = 30/30
| Average = 18,010 Average = 22,480
20 L Std. dev. = 6,068 Std. dev. = 2,827
Median = 15,900 Median = 22,525

15
10 +

5 |-

oL =

10,000+ 20,000+ 30,000+ 0 10000 20000

Left: Number of HIFF-C (NR, SM2) runs that took x iterations on average to complete
successfully. A join rate of 0.25 brings average evolutionary time required for HIFF-C (NR,
SM2) closer to the average (13,690) found with HIFF-C (R, SM1) runs. Right: Population size
over iterations for (NR, SM2) with different join rates. HIFF-C (NR, SM2) benefits from a
lower join rate which results in a slower decline in population size because population diversity
in terms of entity size is maintained for a longer period of time. Diverse entity sizes means
more configuration possibilities for exchanges with NR agitation type.

140 30

120 + HIFF-C (NR, SM2)
100 | Join rate = 0.25
20
80
60
40 | 10
20 W@M"
0 | | 0

Left: Best fitness over iterations in 000’s for 5 HIFF-C (NR, SM2) random runs which
completed in less than 20,000 iterations with J at join rate 0.25. The step pattern of these graphs
shows evidence of optimal modules combining to form larger optimal modules. Recall that
optimal fitness for a module of size 2" is 2" -1. Hence we see vertical jumps around fitness
values 15, 31 and 63. Right: WAA over iterations in 000’s for runs plotted in the graph on the
left. Steady rise in WAA indicates exchanges are on the whole not successful, thus composite
entities are stable. The volatile nature of the WAA graph for HIFF-C (NR, SM2) when join rate
is 0.5 can be seen in Fig. 3B of reference [5]. Space constraint prevents us from reproducing it
here.

Fig. 4. Lowering join rate improves stability and performance for HIFF-C entities evolving
with J under (NR, SM2) conditions

HIFF-11

Stability of the successful HIFF-II runs reported in Table 2 is poorest compared with
HIFF-C and especially HIFF-M runs. Here we try to improve the stability and success
rate for HIFF-II entities evolving with the J model. Like HIFF-C, HIFF-II is less
specific than HIFF-M. Since lowering the join rate improved stability for HIFF-C, we
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try to do the same for HIFF-II. Through trial and error, we found that lowering the
join rate to 0.125 and increasing the maximum number of iterations to 100,000,
improved the success rate for HIFF-II (NR, SM1) to 25/30 (83%) and improved
stability (Figure 5). However, the successful runs took much longer to complete,
42,670 iterations on average with a standard deviation of 14,750. Only 20/30 (67%)
HIFF-II (NR, SM1) J runs completed successfully when the join rate was 0.25.

30

2000

WAA for HIFF-II (NR, SM1) WAA for HIFF-1I (NR, SM1)
1500 + Join rate = 0.5 20k Join rate = 0.125

1000 r
101
500 r
0 t 0 1 1 1
0 10 20 30 0 10 2 30

Fig. 5. WAA over evolutionary time for successful HIFF-II (NR, SM1) runs at different join
rates. Note the different scales for the y-axis.

We could not find any configuration of parameter values that was successful at
least 50% of the time for the SM2 categories. We attribute this to (i) the high level of
top-down inter-level conflict in HIFF-II entities under SM2 that prevents further
adaptation of entities via mutation once their highest level is optimal, and (ii) to the
genotype configurations that SM2 produces for HIFF-II which has a higher number of
switches on average than those produced by SM1. A swifch marks a change in value.
For example, the genotype configuration 0111 0011 has 3 switches. The average
switch count for a best genotype configuration at the end of 5 randomly sampled
unsuccessful HIFF-II (NR, SM1) runs at join rate 0.5 was 2.6 while the same statistic
was 52.6 and 60.2 for HIFF-II (NR, SM2) and HIFF-II (R, SM2) runs at join rate 0.5
respectively. It is less probable to produce a genotype with a low number of switches
through an exchange of parts with a high than low number of switches. Further,
subsequent mutation and replacement under SM2 could increase the number of
switches for a genotype.

Previously in [3], we found that HIFF-II entities can evolve to optimality under the
SM3 (RMHCS3 in [3]) selection (replacement) scheme. With SM3, a variant replaces
its parent only if it is not less fit than its parent at any level. With join rate at 0.125,
24/30 (80%) HIFF-II (NR, SM3) J runs completed successfully using 47,800
iterations on average with standard deviation of 16,480. The WAA graphs for 5
randomly sampled HIFF-II (NR, SM3) is similar to Fig. 5 (Right). However, even
with a selection scheme that removes inter-level conflict (SM3) in the sense that no
level adapts at the expense of another higher or lower level, evolution time to
optimality is high compared with the average time found for HIFF-II (R, SM1) runs.

Hence we conclude that introducing cooperation (SM2 or SM3) and/or barriers
against disintegration (NR) seems to make the evolutionary problem more difficult for
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HIFF-II entities. In contrast, the addition of SM2 and NR reduced evolutionary time
for HIFF-M entities, while an appropriate join rate could reduce evolutionary time for
HIFF-C (NR, SM2). But for HIFF-II, the (R, SM1) combination seems to work the
best for bottom-up evolution under J.

4.2 JGA

Table 3 reports the results for our experiments with JGA. Figure 6 shows the
percentage of genes (bits) where > 90% of the population carries the same value, over
evolutionary time.

Table 3. JGA results N=128 04
5 shortest
Crossover Rate = 0.5 03 1 g%E}F:-ICI and
HIFF Success Iterations successful runs
C 29/50 31,450 (15,190) 02 r
I 32/50 34,420 (17,000) 5 longest
M 50/50 34,940 (9,946) 01 L HIFF-M
’ successful
Crossover Rate = 0.25 00 ) run?
HIFF Success Iterations '
0 20000 40000 60000 80000
C 40/50 40,060 (13,210)
I 42/50 45,360 (17,160) X
M 50/50 54’320 (1 1’370) Flg. 6. At crossover rate 025, HIFF-C

and HIFF-II JGA runs lose diversity

Standard deviation is reported inparentheses.
faster then HIFF-M
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Abstract. In this study, we describe an evolutionary mechanism — Dual Phase
Evolution (DPE) — and argue that it plays a key role in the emergence of
internal structure in complex adaptive systems (CAS). Our DPE theory
proposes that CAS exhibit two well-defined phases — selection and variation —
and that shifts from one phase to the other are triggered by external
perturbations. We discuss empirical data which demonstrates that DPE
processes play a prominent role in species evolution within landscapes and
argue that processes governing a wide range of self-organising phenomena are
similar in nature. In support, we present a simulation model of adaptive
radiation in landscapes. In the model, organisms normally exist within a
connected landscape in which selection maintains them in a stable state.
Intermittent disturbances (such as fires, commentary impacts) flip the system
into a disconnected phase, in which populations become fragmented, freeing up
areas of empty space in which selection pressure lessens and genetic variation
predominates. The simulation results show that the DPE mechanism may
indeed facilitate the appearance of complex diversity in a landscape ecosystem.

Keywords: Dual Phase Evolution, complex systems, speciation, adaptive radia-
tion, simulation.

1 Introduction

An intriguing question motivated by new fields of research, such as artificial life and
evolutionary computation, is whether biological evolution can provide insights about
self-organisation in complex adaptive systems (CAS). Our recent studies show that
deep similarities do exist between biological evolution and adaptive processes in other
systems [2, 3]. Based on these similarities, we have proposed a theory of the existence
of a family of adaptive processes, which we term Dual Phase Evolution (DPE) [4].

In this study, we further develop the theory of Dual Phase Evolution. We show
how DPE operates in several systems and investigate its implications for patterns of
species evolution. We begin by reviewing the theory of DPE and present some of the
supporting evidence. We then provide a model of adaptive radiation (global
speciation dynamics) in landscapes and use it to demonstrate how DPE can facilitate
the appearance of perpetual novelty in ecosystems.

M. Randall, H.A. Abbass, and J. Wiles (Eds.): ACAL 2007, LNAI 4828, pp. 131 2007.
© Springer-Verlag Berlin Heidelberg 2007
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2 Dual Phase Evolution

CAS exhibit a sustained diversity of their locally interacting components. In the
absence of a global controller CAS exhibit far-from-equilibrium dynamics, and
permanent novelty and adaptation [5, 6]. This is facilitated by the complex
organisation of the locally interacting systems’ components and their interrelations.

There is a large body of evidence that suggests that structure of CAS emerges
through self-organisation [5], however, the specific mechanisms governing this
process are not well understood. There is a large amount of evidence (see next
section) that CAS generally tend to self-organise towards a stable, balanced state. A
number of adaptive mechanisms present in CAS cause these systems to exhibit little
large-scale variation over long periods of time. Such mechanisms may include lower
order dynamics such as feedback loops and higher order dynamics such as evolution
driven by selection (in a general sense) [7]. It has been demonstrated in analytical [8,
9] and computational [7] models that lower-order local dynamics are capable of
stabilising a system over a large range or external forcing, and that higher order local
dynamics (evolutionary dynamics) can greatly increase the stabilising effect.

The same adaptive forces that are responsible for global stability of CAS may work
to inhibit novelty and change within such systems. In particular, selection acting on
systems’ components at various hierarchical levels of organisation, as well as on the
topology and types of their interactions, may drive a system as a whole to a local
optimum state, thereby preventing innovation [5]. There are two mechanisms that
have the potential to work against such long-term stasis.

One such mechanism is co-evolution. Local adaptation of system components
driven by selection may affect the selection criteria (the fitness landscape) for other
components, which will also adapt as a result. The adaptation of the components
affected in such a way may in turn cause changes in the fitness landscapes of other
components, including the components which initiated the changes in the first place.
The feedback loops which can arise in this way may function as sources of perpetual
novelty because the selection acts on random variation and the results of such
feedbacks may be different for each loop. However, it is not clear that co-evolution is
capable of providing the degree of innovation observed in many natural CAS. For
instance, analytical models [10] suggest that selection rather than variation (in this
case genetic drift) drives speciation. As a result, co-evolutionary feedback loops are
likely to quickly (on evolutionary timescales) lead to stable system states that reside at
local optima of the global fitness landscape. Once such a state is reached, selection
towards the optimum makes variations that could disturb the stability highly unlikely
[10], and therefore rare.

The second mechanism that may function as a source of continual novelty in CAS
is external disturbance. It has been shown, that evolutionary innovations in various
natural CAS often coincide with external perturbations (e.g. [11], see also next
section), some of such examples are discussed in the following sections. External
disturbances may affect a system in several ways and move it from the local fitness
optimum thereby disturbing the stable configuration.

Once away from a local optimum, the system enters a phase in which it is driven
by variation and change. Any chance variation of some local component or
substructure may provide a better adaptation to the local constraints and selection will
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facilitate the proliferation of such change. As long as the disturbed system is far from
a fitness optimum, selection will therefore amplify rather than inhibit some local
random variations. Over time, components and their interactions on various system
levels will be driven towards new local fitness optima and the inhibitory effects of
selection on variation will increase again. Eventually, the whole system will develop
towards a new stable balance-state. Different perturbations will continue to affect the
system causing it to flip between balance phases dominated by stabilising selection
and exploration phases dominated by directional selection.

We propose a general mechanism governing many processes in CAS. This
mechanism, Dual Phase Evolution (figure 1), can be summarised as follows: CAS
develop towards a balanced state. In this state they are stabilised through various
processes including selection, and exhibit little large-scale variations (on
evolutionary timescales). The balance state is disturbed by external perturbations
which unbalance systems and flip them into a phase in which they exhibit variation on
all scales. Over time, stabilising processes drive systems into a new balance-state.

While some parts of the system may be completely or partly reorganised during a
variation phase following a particular disaster, others will remain stable. These stable
parts may form new interactions and assume new roles within the changing system.
Such stable sub-systems can act as functional components during a variation phase.
We speculate that this may be the mechanism that facilitates the emergence of closed
components in complex systems. When a sub-system consisting of several
components remains stable during a variation phase, it may act as a functional
component in the re-organised system. It is possible that this mechanism is
responsible for the emergence of hierarchical levels of organisation found in CAS.

Balance phase Variation phase
Selection maintains stability at ) Evolutionary exploration
a local optimum Disturbance
- modifies components
- modifies relationships
- modifies external systems
Stable system | | Unbalanced system
Pressure towards stability
- e.g. selection

Fig. 1. The mechanism of dual phase evolution. Systems flip between balance and variation
phases. External disturbances unbalance stable systems, variation facilitates evolutionary
exploration, internal pressures drive the system into a new stable state.

2.1 Contrast Between DPE and SOC

In contrast to DPE, the theory of Self-Organized Criticality (SOC) suggests [12, 13]
that CAS self-organise to a critical state, in which the complexity of systems’
responses to external stimuli emerges through a propagation of the stimuli through
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local component interactions with thresholds at each component. These propagations
result in avalanches of different sizes. This theory of SOC suggests that CAS evolve
to reside at the “edge-of-chaos™ [14, 15], a transition state between the general stasis
of equilibrium systems and the random behaviour of chaotic systems.

As the response propagation avalanches in SOC systems follow a power law
distribution, an observation of this distribution in data is often used as an indication
that a system may self-organise to a critical state. A number of models [12] led to
suggestions that various complex systems, some of which are adaptive, may exhibit
SOC dynamics. For instance, it has been suggested [16] that the self-organisation of
the biosphere to a critical state may be an explanation for punctuated equilibria [17],
since the sizes of extinction events observed in the fossil record follow a power law
distribution. However, the extent to which SOC presents the general form for
organisation of CAS remains doubtful. In many cases there are several processes
which may lead to power-law distributed data. For instance, [18] demonstrates a non-
critical extinction model without any species interactions that yields a power-law with
an exponent closer [7] to the empirical punctuated equilibria data. It has been
suggested at various occasions (e.g. [19, 20]) that the critical behaviour requires fine-
tuning of an order parameter. Furthermore, it remains unclear whether SOC occurs in
non-conservative systems [19, 21]. It has been attempted to avoid some of the
problems related to SOC by using a notion of nearly-critical behaviour which can be
applied to a wider range of systems (e.g. [21]), however, the generality of SOC theory
remains inconclusive. Here, we aim to pinpoint the key difference between DPE and
SOC, as it is a widely considered theory of self-organisation in CAS.

The SOC view is that CAS self-organise towards a critical region (see above). If
we were to describe DPE using the SOC-vocabulary, we would say — CAS develop to
a balance-state, where they are stabilised by internal forces (e.g. selection); external
disturbances repeatedly push a system across the critical region, to a chaotic state (in
the sense that systems responses to random stimuli and variations are unpredictable),
from which the system returns to a new balance-state, accumulating order and
complexity on the way.

3 DPE in Biological Evolution

Evolution occurs in fits and starts. This pattern of change is clear in the geologic
record. The system of geologic classification reflects a history in which similar
assemblages of fauna and flora predominated for long time periods of time, often tens
of millions of years. These periods are punctuated by abrupt changes in species
composition. Recent research has revealed that the changes between geologic eras are
associated with mass extinction events. Recognising this pattern led Eldredge and
Gould [17] to put forward the idea of punctuated equilibrium, in which the general
pattern of evolution is constant composition punctuated by mass extinctions, followed
by brief periods of rapid speciation.

Alvarez et al. [22] found evidence that the Cretaceous-Tertiary boundary was
associated with impact of a large comet. Research since then has produced evidence
that asteroid impacts, volcanic activity and climate change are associated with many
other geological boundaries as well.
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Green et al. [2] proposed a mechanism to explain the above observations. For most
of the time, pressure for space or niches within a landscape impose selective pressure.
Established populations restrict the spread of invaders. Widespread populations are
genetically “connected” and genetic variation is suppressed [2]. When a major
disturbance occurs, the above patterns are reversed: vast areas of free space are
opened up; suppressed species are free to expand into the new territory; selective
pressure becomes negligible; and established populations become fragmented.

There is abundant evidence that Dual Phase Evolution, and processes closely
related to it, occur in many contexts. There are striking similarities between species
evolution, on a scale of millions of years, and forest change, which occurs on a scale
of thousands of years. Forest history, as recorded by preserved pollen, shows that
during postglacial (the last 12,000 years), forest composition changed in fits and
starts. This pattern is reflected by the systematics used by palaeontologists, who
divide the postglacial history into pollen zones. The zones have more or less constant
composition, with rapid changes from one zone to another. Studies of the process
have shown that major forest fires triggered the rapid changes, with the species
composition being determined by climate at the time [11].

In certain regions, fluctuations in landscape connectivity have been linked to the
evolutionary radiation of whole groups of animals. In Great: In lakes of east Africa,
for instance, the explosive speciation in cichlid fishes has been linked to changes in
water level [23, 24]. During periods of high water level, environments are connected,
but become fragmented when water levels are low. Similarly, Hewitt [25] argues that
repeated glaciations throughout the Quaternary caused species ranges in North
America and Europe to fragment, leaving surviving populations in isolated refugia.
These isolated populations diverged genetically, but later reunited, creating a complex
genetic patchwork in species such as the European hedgehog, Chorthippus
grasshoppers and bears, and sometimes leading to speciation. Numerous similar
parapatric species occur in the mountains of Sulawesi that are thought to have
diverged during periods of habitat fragmentation [26]. Taxa include Chitaura
grasshoppers, macaques, pond-skaters, cicadas, carpenter bees, butterflies, limacodid
moths and tiger beetles. Likewise, Amazonian insects are thought to have diversified
in response to fluctuating connectivity in forest canopy density [27].

Habitat fragmentation at fine temporal scales does not always lead to speciation:
instead, the outcome may be formation of genetic suture zones, where populations
that have diverged while separated meet and interbreed. Some authors suggest that
fragmentation may even contribute to evolutionary stasis. For example, Bennet [28]
argues that Milankovitch climate oscillations, which occur on the order of 10-100ky,
cause continual changes in the direction of selection, preventing species from
adapting locally and therefore speciating. Similarly, Coope [29] notes the prevalence
of stasis among temperate Quaternary insect species despite the appearance of
incipient ecological species in modern fragmented fauna. Clearly, there is still much
to be discovered about the impact of habitat fragmentation on evolution.

4 Simulation Model of DPE

In order to further investigate the effect of the DPE-process on evolutionary
ecosystems, we created a computational simulation model. The model investigates the
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adaptive radiation exhibited by a population of individuals in a landscape. Adaptive
radiation is usually described as the evolution of ecological and phenotypic diversity
within a rapidly multiplying lineage leading to utilisation of new ecological niches
[30]. Our aim is to investigate the potential consequences of the DPE mechanism on
adaptive radiation in landscape ecosystems.

The model consists of a population of haploid individuals situated on a two-
dimensional landscape. The model is based on a well-known model of adaptive
radiation [30] that did not incorporate DPE. The landscape consists of a 100x100 grid
of cells. Each cell has a maximum carrying capacity of up to 4 individuals. (The
numbers given here are parameter values for a base scenario. Other scenarios and the
sensitivity analysis systematically varied these parameters).

The environment allows 60 possible niches, where each niche is represented by a
string of 20 bits; a bit represents the requirement, that a particular trait must be
present (1) or absent (0) in an individual in order to be well adapted to that niche. The
niches are not location specific. Individuals’ genotypes are also represented by bit-
strings of length 20; the bits represent the presence (1) or absence (0) of the above
traits (note, here genotype equals phenotype; elsewhere [31] we show analytically that
this approach is computationally equivalent to the genotype-phenotype setup used in
[30] when the number of traits in our model equals to the number of traits X the
number of loci per trait in Gavrilets’ model). The individuals evolve to adapt to one of
the niches. At each time-step an individual is assumed to occupy the niche which best
matches the individual’s traits.

The fitness of an individual is determined in proportion to the hamming distance
between the individual’s genotype and its niche and is scaled by the niche condition.
The niche condition is a number between 0 and 1 that describes how appropriate a
particular niche is within the current environment (i.e. in a desert environment, the
niche “hot & dry sand” may have condition = 1 and individuals well adapted to that
niche will have a high fitness; individuals which are well adapted to the niche “cold
and wet soil” will have a low fitness as such niche will have a much lower condition
in this climate). 30 out of the 60 model niches are called “normal”, they have a
condition = 1. The other 30 niches describe the environmental conditions short after a
disaster. In the base setup, in which there are no disturbances, the condition of these
disaster-niches is set to 0.2.

The life-cycle of the model organisms is reproduction — selection — dispersal, the
generations are non-overlapping. Individuals mate within their occupied cell only.
Each individual in a cell is selected once as “mother”. A “father” is then randomly
selected from the remaining individuals of the cell (regardless of their niche). If there
is only one individual in a cell, it will engage in hermaphroditism. The number of
offspring each couple produces is Poisson-distributed with A = 5. Reproduction is
through free recombination; each offspring is subject to a mutation rate of 0.00001
per gene, which corresponds to background mutation rate in nature [32]. Once all
individuals have mated, the old population is replaced by the offspring. It is then
determined which individuals of the new population will survive to the age of
reproduction, by reducing the number of individuals in each cell to its carrying



A Dual Phase Evolution Model of Adaptive Radiation in Landscapes 137

capacity (4). The probability of survival is given directly by an organism’s fitness.
Finally, the surviving individuals may disperse across the landscape. With probability
of 0.1, each individual will migrate to one of the neighbouring cells. After all
individuals have migrated, the current generation will engage in reproduction and
complete the live-cycle.

The model is initialised with a small population of clones of 2 randomly chosen
individuals and thereafter simulated for 40,000 generations.

4.1 Basis Scenario

Initially we ran the model without any disturbances. The results are generally in line
with what was observed in [30]. At the beginning of the simulation there is a burst of
adaptive radiation which leads to a large number of niches being utilised. After a
while (typically 5 to 10 thousand generations), the number of utilised niches begins to
decline slowly. Most niche-proportions (proportion of the population occupying a
certain niche out of the total model population) fall below 0.1 and then either engage
in uncorrelated fluctuations or decline to 0. The proportions of 1 to 3 niches typically
remain above the threshold of 0.1. Out of these “dominating” niches, one typically
grows in proportion slowly, while the others decline accordingly. Sometimes, two
rather than one niches gain a stable proportion while the others decline (figure 2).

In addition, we observed some patterns that were not initially expected from the
model, but are known to occur in nature. These patterns include the dominance of
lower-fitness populations over closed spatial patches [33] and the occurrence of stable
hybrid zones [34] maintained by a balance between dispersal and selection against
hybrids. These observation provide an indication that our model correctly captures the
relevant landscape dynamics [35].

4.2 Disturbances

We modified the basis scenario such that at each generation a disaster occurred with
probability 5x10”. During each disaster, all individuals in most landscape cells were
wiped out. The cells were selected by setting a random point in the landscape as
disaster centre and wiping out all cells within a certain radius around the centre; the
radius was normally distributed around 30 cells (sensitivity analysis, not shown,
shows that if the average radius exceeds a certain threshold, the model behaviour is
not sensitive to the impact radius). Then a new impact centre was randomly selected.
This process was repeated until 95% of cells were wiped out. Whatever the nature of
a disaster (bush fire, volcanic eruption, disease, etc) it will not only wipe out the
population in affected areas, but also alter the local environment. To model this, the
conditions of normal niches in areas affected by the disaster were reduced to 0.2,
while the conditions of the disaster-niches in these areas were raised to 1. In a
sensitivity analysis (not shown) we have verified that reducing the normal niche
condition to any value below 0.5 does not affect the qualitative system behaviour.
This altered environment was maintained at the impact sites for se