
Large Scale Simulation of Tor:
Modelling a Global Passive Adversary

Gavin O’ Gorman and Stephen Blott

Dublin City University
Glasnevin, D9, Dublin, Ireland

{gogorman,sblott}@computing.dcu.ie

Abstract. Implementing global passive adversary attacks on currently
deployed low latency anonymous networks is not feasible. This paper
describes the implementation of a large scale, discrete event based sim-
ulation of Tor, using the SSFNet simulator. Several global passive ad-
versary attacks are implemented on a simulated Tor network comprised
of approximately 6000 nodes. The attacks prove to be highly accurate
(80 percent stream correlation rate) for low traffic conditions but sig-
nificantly less effective on denser, multiplexed links (18 percent success
rate).

1 Introduction

The Internet, specifically TCP/IP, was not designed to provide anonymity. One
solution to this problem is to create an overlay network, that is, a network which
runs on top of an existing TCP/IP network. By abstracting away from IP ad-
dresses of hosts, the overlay network allows for the explicit control of the routing
of its messages. This control enables the obfuscation of sender and receiver ad-
dresses, and thus offers a degree of anonymity.

An accurate, scalable testbed for implementing new features and measuring
anonymity is required to test theorized attacks against these overlay networks.
Establishing test networks in a lab is a limited option, such a test network could
not scale to current and future deployment sizes. Creating a comprehensive ana-
lytical model is difficult given the level of complexity in current overlay networks.

One solution is to use discrete event-based simulation. This is the approach
described in this paper.

– We describe a discrete event-based simulation of a popular low latency
anonymising network, Tor, using the SSFNet simulator. Our simulation mod-
els the Tor routing of HTTP data with circuits, stream multiplexing, proxies,
routers and exit routers.

– We have implemented several preliminary global passive adversary attacks
using approximately 4500 HTTP clients, 100 HTTP servers and over 950
Tor routers.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 48–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Large Scale Simulation of Tor 49

Tor. Several anonymous network designs have been developed which attempt
to apply mixes to low latency traffic. The most widely-used of these tools is
Tor [1], the second generation onion router. The current Tor network contains
approximately 900 router nodes with hundreds of thousands of streams transiting
the network [2].

The Tor network consists of proxies, onion routers and exit routers. A user
runs a Tor proxy on their local machine which offers a SOCKS interface to TCP
applications. This Tor proxy begins the process of establishing a circuit through
the Tor network of onion routers, to a suitable exit router and finally to the
target TCP server. Circuits are established in a telescoping manner. On circuit
establishment, the incoming TCP stream is routed over the circuit.

SSFNet. Discrete event-based simulation is used to create an abstract repre-
sentation of the important elements of a system. Event based simulation allows
one to build models of systems and investigate how the system might work under
different conditions.

The Scalable Simulation Framework (SSF) [3], has been designed to model
large scale simulations. The framework describes an interface for a simulation
kernel. This generic kernel can then be built upon to implement varying simu-
lators, of which network simulators are one type.

2 Our Implementation

Apart from some simulation specific techniques for ensuring a linear time ex-
ecution of events, the simulation code itself is very similar to that of a real
application. Three distinct network elements were created, on top of those al-
ready provided by the simulation libraries. These network elements are a proxy,
a router and an exit router.

2.1 Protocol

The circuit establishment protocol described in the Tor design document [1] is
simulated exactly. Encryption is not simulated; for our purposes, there is no
need.

Traffic routed through the modeled Tor network is provided by a HTTP traffic
generator, SSF.OS.WWW distributed with the SSFNet protocols. Further details
of the traffic generator can be found in the appendix of [4].

Data received from the HTTP client is broken into 512-byte cells, labelled
with the correct stream ID and sent to the router associated with that stream.
Each router passes the data on, until the exit router receives it, recreates the
original data, and sends this to the target server.

Several traffic streams may be multiplexed over circuit connections. For ex-
ample, if the proxy receives a new incoming client connection and chooses as
the first router on its path one to which a connection is already available, then
that socket is reused. A new stream ID is allocated to the stream, the circuit
establishment procedure is followed, and the stream is correctly routed.

50 G. O’ Gorman and S. Blott

2.2 Topology

The network topology used is taken from the SSFNet website. It is an simplifica-
tion of a US ISP. The topology consists of 24 interconnected autonomous systems
(AS), where each AS is composed of a number of sub networks. One proxy, two
onion routers and one exit router were added to each of the subnetworks, evenly
distributing the nodes throughout the network. This results in 325 proxies, 650
router nodes and 325 exit router nodes in the whole network, approximating the
number of onion routers in the currently deployed Tor network. The number of
clients per LAN was then set to 5, resulting in a total of 5760 clients.

3 Attacks and Results

We have implemented a number of attacks as discussed in detail below. The
results from these attacks allow us to demonstrate the correctness of the Tor
simulation, in that the results we observe are very similar to those previously
published.

The attacks are performed with an increasing number of clients to model an
increase in density of traffic across multiplexed connections. Also, with more
traffic, there will be greater delay across the network.

The simulation is run for 1120 seconds. The initial 1000 seconds is to allow
for the BGP and OSPF routing to settle. After this 1000 seconds, the HTTP
clients begin connecting to the Tor network and to their target server. After 60
seconds, at time 1060, tcpdump output is recorded for another 60 seconds until
time 1120, at which point the simulation terminates. The initial 60 seconds is to
allow the Tor routers to settle into equilibrium.

3.1 Connection Start Tracking Attack

Connection start tracking was described by Serjantov et. al[5]. It works by track-
ing the initialization time of a connection as it spans the network. If a stream
is seen to enter and then emerge from the network in a certain timeframe, it is
possible to associate the two events. As demonstrated by Serjantov et al., the at-
tack requires lone connections to successfully link streams. However, on a busy
multiplexed network, connection start and end tracking serves as an effective
filter to reduce the number of potential streams.

In our implementation of this attack, we take the time of the first HTTP
response packet, add a variable delay (d) to it and compare this time with all
recorded Tor streams. As the traffic is multiplexed, it is not possible to determine
exactly when traffic streams start and end. Also with the extra delay introduced
by more traffic, there is the need for a variable delay value. We perform the
attack using values of d ranging from .1 to 2 seconds, increasing in increments
of .1s, and with increasing numbers of clients as described above.

As seen in Fig. 1(a), the initial start and end tracking filter eliminates a high
percentage of streams, up to 98% on the sparse traffic network and 96% on the
densest network.

Large Scale Simulation of Tor 51

3.2 Packet Counting Attack

A packet counting attack introduced in [6] and further expounded in [5] consists
of counting the number of packets entering a node and subsequently leaving
a node for a given time interval. By comparing the number of packets for a
particular stream entering a node with the number of packets leaving the node
it can be possible to determine to which node/link the packets from that stream
are being sent.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

el
im

in
at

ed

delay(s)

Start and end stream filter

1 AS
8 ASs

16 ASs
24 ASs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

el
im

in
at

ed

delay(s)

Packet counting filter

1 AS
8 ASs

16 ASs
24 ASs

(a) (b)

Fig. 1. Start connection tracking and packet counting filters

The same method of varying the d value is used as above, but the streams
being analyzed are those that have previously been filtered by the start and end
time attack. Figure 1(b) shows that the 2% to 4% of streams left by the start
and end time attack are further reduced by approximately 5% to 15% with the
packet counting attack.

3.3 Stream Correlation Attack

Fixed Time Window. Traffic correlation attacks were proposed and imple-
mented in [7]. The technique is to set a windows size W and count the number
of packets received, beginning at time t, during that window size. This process is
repeated for the duration of the stream. The sequence of packet counts can then
be compared with the sequences from other streams in the network. The cross
correlation coefficient function used to compare these sequences is below [7]:

r(d) =
∑

i((xi − μ)(x′
i+d − μ′))

√∑
i(xi − μ)2

√∑
i(x

′
i+d − μ′)2

The two streams being compared are x and x′ with d being the delay value. xi

is the ith packet count of stream x and x′
i is the ith packet count of stream x′. μ

is the average of packet counts in stream x and μ′ is the average of packet counts
in stream x′. The more the result tends towards 1, the greater the similarity of

52 G. O’ Gorman and S. Blott

the streams. This same correlation function was also used in [8,9] for end to end
traffic confirmation.

Some minor modifications to the attack are needed. The first is that the Tor
protocol breaks the HTTP data into 512 byte cells. As such, the number of
packets being sent from the HTTP server is not the same as the number of
packets received at the Tor proxy. Allowing for this is straightforward.

For the fixed interval attack, a time window of 1s is used, as recommended by
Shmatikov & Wang [8]. The fixed time interval attack is highly effective, Fig, 2,
with approximately 80% of streams correctly identified on the low traffic network.
Most connections were lone and so easily correlated. On the denser networks, the
attack proved to be less effective with the extra noise of the multiplexed traffic. As
the delay was increased, the accuracy of the attack fell rapidly. With the denser
network, the most accurate attacks are still at .1s delay, demonstrating that net-
work congestion did not prove to be an issue as anticipated. This is most likely as
a result of high bandwidth of clients and servers. Realistic bandwidth values and
increased traffic should demonstrate the effect of congestion on the network.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

co
rr

ec
tly

 c
or

re
la

te
d

delay(s)

Fixed time window of 1s attack

1 AS
8 ASs

16 ASs
24 ASs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

co
rr

ec
tly

 c
or

re
la

te
d

delay(s)

HTTP Peak extraction attack

1 AS
8 ASs

16 ASs
24 ASs

(a) (b)

Fig. 2. Success rate of correlation attacks

Peak Extraction. An alternative to using a fixed time interval is to break each
stream into fixed fractions, count the number of packets observed in these frac-
tions and correlate them with the function above. The values for these fractions
can be determined by examining the HTTP stream. HTTP traffic is bursty. A
certain web page will contain a number of objects, each of which is downloaded
individually and can be observed as a burst of traffic, or a peak, across the con-
nection. We obtain ratios for each peak termination. These ratios can then be
applied to the Tor stream. Allowing for the delay d the corresponding packet
counts should be equal.

The results of the peak extraction attack are presented in Fig. 2(b). The
attack is not as effective as the fixed window of 1s attack, however it is slightly
more robust when inaccurate delay values are used. The percentage of streams
successfully identified decreases at a lower rate than the fixed interval attack.
The success rate surpasses the fixed interval attack for larger delay values.

Large Scale Simulation of Tor 53

4 Related Work

Initial analytical work [10], using traffic matrices, provided metrics for measuring
the effort required to thwart stream correlation attacks. This work was extended,
using entropy to measure anonymity [11]. Real traffic measurements are taken
from a campus network, however no attacks are described.

Later work by Levine et al. [7] describes global passive adversary attacks for
stream correlation. The technique used is described in the results section. The
Levine et al. attacks do not account for the multiplexing of traffic streams. The
cross correlation coefficient was later utilized by Bissias et al. [9] to correlate
encrypted HTTP streams.

Shmatikov & Wang [8] extend the original attack of Levine et al. by proposing
and testing a new defense. This defense, adaptive padding, involves applying
padding to ensure that streams are indistinguishable from each other. As with
Levine et al. the attacks are performed on links with non-multiplexed streams.
Also, as is pointed out in the paper, stream times are also not taken into account,
whereas in our attacks, we filter results by checking start and end time.

Zhu et al. [12] use mutual information and frequency analysis (wavelets/FFT)
to correlate TCP traffic streams. In ongoing experimental work, we have applied
frequency analysis to HTTP streams generated by the simulation. As yet, the
accuracy of the method appears quite low as the bursty nature of HTTP traffic
does not lend itself to frequency analysis.

In terms of scale, Bauer et al. [13] have implemented perhaps the most ambi-
tious attacks to date, using approximately 60 Tor nodes distributed across the
globe in a test network. Our simulation in contrast utilise approximately 6000
nodes.

5 Future Work

Our initial work on TCP stream analysis, using wavelets and Fourier transforms
shows promise. We intend developing these attacks in conjunction with more
realistic topologies. Additional work to verify the fidelity of the simulation to
the real Tor client will consist of packet count and timing analysis on small scale
networks.

Beyond that, we intend measuring the average delay for streams crossing the
network and introducing delay to the Tor nodes. We can measure the impact
this has on the network in terms of Quality of Service and effectiveness against
stream correlation. The overall goal is to determine the optimal compromise
between latency and anonymity for anonymous networks.

6 Conclusion

We have developed an initial Tor simulation. We have begun verification the sim-
ulation with the implementation of previously discussed attacks and obtained
expected results. The simulation needs to be extended to replicate the traffic

54 G. O’ Gorman and S. Blott

control techniques Tor utilises. Given that, we will be able to reliably measure
quality of service across the network. This, in combination with the attacks pre-
sented will allow us to quantify the compromise between latency and annonymity
for a given network configuration.

The ability to test and implement new features on the Tor simulation will, we
believe, prove to be invaluable for the Tor developers and future researchers.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

2. Developers, T.: Tor website (June 2007), http://tor.eff.org
3. Cowie, J., Liu, H.: Towards realistic million-node internet simulations. In: Proceed-

ings of the 1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (1999)

4. Feldmann, A., Gilbert, A., Huang, P., Willinger, W.: Dynamics of IP traffic: A
study of the role of variability and the impact of control. In: Proceedings of ACM
SIGCOMM 1999, pp. 301–313. ACM Press, New York (1999)

5. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
Springer, Heidelberg (2003)

6. Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity
providing systems. In: Moskowitz, I.S. (ed.) Proceedings of Information Hiding
Workshop (IH 2001). LNCS, vol. 2137, pp. 245–257. Springer, Heidelberg (2001)

7. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency
mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, Springer, Heidel-
berg (2004)

8. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, Springer, Heidelberg (2006)

9. Bissias, G.D., Liberatore, M., Levine, B.N.: Privacy vulnerabilities in encrypted
http streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856,
Springer, Heidelberg (2006)

10. Venkatraman, B., Newman-Wolfe, R.: Performance analysis of a method for high
level prevention of traffic analysis using measurements from a campus network.
Computer Security Applications Conference, Proceedings, 10th Annual (1994) 288–
297 (1994)

11. Newman, R.E., Moskowitz, I.S., Syverson, P., Serjantov, A.: Metrics for traffic
analysis prevention. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, Springer,
Heidelberg (2003)

12. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET
2004. LNCS, vol. 3424, Springer, Heidelberg (2005)

13. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-Resource Routing
Attacks Against Anonymous Systems. Technical Report CU-CS-1025-07, Univer-
sity of Colorado at Boulder (2007)

http://tor.eff.org

	Large Scale Simulation of Tor: Modelling a Global Passive Adversary
	Introduction
	Our Implementation
	Protocol
	Topology

	Attacks and Results
	Connection Start Tracking Attack
	Packet Counting Attack
	Stream Correlation Attack

	Related Work
	Future Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

