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Abstract. Monitoring untrusted code for harmful behaviour is an im-
portant security issue. Many approaches have been proposed for restrict-
ing activities and the range of untrusted code. Among these, run-time
monitoring is a promising approach for constricting run-time behaviour
of programs. In this paper we describe a method of containing the effects
of untrusted code with respect to a specified policy. We use a guarded
command like language for specifying policies that could monitor system
calls, APIs or library routines of the underlying system. We also discuss a
system call monitoring architecture for an operating system like Linux.
We provide semantics of the language in terms of Security Automata
and also discuss how pure past temporal properties can be automatically
compiled into policies in guarded command language. This allows users
to specify policies in terms of logical formulae and automatically gener-
ate monitoring algorithm for the same in terms of guarded commands.
We show how simple modifications allow us to specify constraints on the
overall behaviour of a group of processes.

1 Introduction

Software is a very important and very complex component of computer systems.
A user does not have a thorough understanding of most of the code running
on his machine. In such a scenario, code containing malicious payload becomes
a serious threat [14]. Such a piece of code tricks the unsuspecting user into
believing that it adds functionality to the device. In [18], Ken Thomson showed
how a seemingly harmless compiler could be loaded with harmful content that
would open a backdoor to the system.

The amount of damage that can be incurred by malicious code can be huge.
It can perform a range of nasty activities from corrupting a system to obtaining
complete control over it. The situation becomes worse when one considers mobile
platforms that have limited capabilities (which also come at a price). It therefore
becomes important to make sure that these capabilities are not abused and to
also provide mechanisms that ensure that untrusted code does not breach user’s
expectations. Achieving this objective is not easy. It is difficult to check code for
malicious content. Code writers use a high level of sophistication to make sure
that the unwanted behaviour goes undetected. It is impractical to expect the end
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user to carefully examine and execute untrusted code so as not to compromise
system security.

Run-time monitoring of code comes across as a promising approach to con-
strain activities of a running program. In such scenarios, a user typically writes
a policy which is then used to instrument code (to insert checks at appropri-
ate places) or which is compiled into a separate monitor. Many specification
languages and monitoring mechanisms have been proposed. Some of the specifi-
cation languages are platform specific (e.g., for Linux) while some are specific to
a programming language (e.g., Java). In order to achieve platform independence,
it has been proposed to abstract the underlying system. The policy specification
can then be provided in terms of the abstraction [19]. Often, policy specifica-
tion becomes difficult and user requires good amount of knowledge about the
specification language to ensure that he has written the correct policy.

In order to make specification easier, we use a simple Guarded Command
Policy Specification Language (GCPSL) to specify security policies that have
to be enforced on untrusted code. GCPSL has the advantage that it describes
the actions that monitor has to perform and the state information it has to
maintain to enforce the policy. When untrusted code is executed, the actions
performed by the code are monitored. At any point of time, if the code is about
to violate a security policy, then the execution is terminated. We show the con-
nection between pure past temporal specification and GCPSL. This helps us to
automatically generate monitoring algorithm for a policy specified as a temporal
logic formula (with past temporal operators). We discuss a sample monitoring
architecture for system calls and extend the specification language to allow for-
mulation of policies constraining the behaviour of a set of processes. The rest of
the paper is organized as follows: section 2 provides the syntax and semantics of
the (GCPSL), section 3 describes a system call monitoring architecture, in sec-
tion 4 we outline the extension to GCPSL to handle a set of processes, in section
5 we show how temporal constraints can be compiled into monitor specification
in GCPSL, in section 6 we discuss the state of the implementation, section 7
describes related work and section 8 presents the conclusion.

2 Guarded Command Policy Specification Language

Guarded command language [4] is a well founded and structured formulation
widely used for a variety of specification and applications. A guarded command
is of the form G → S where G is a proposition and S is a statement. When
G evaluates to true, S is executed. Guarded command language also contains
conditional and repetitive structures as shown below:

if do
G0 → S0 G0 → S0
G1 → S1 G1 → S1
. . . . . .
Gn → Sn Gn → Sn

fi od
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In each case, more than one guard could evaluate to true at a time. In this case,
one of the statements is chosen non-deterministically. Thus, non-determinism is
an intrinsic property of guarded command language. When none of the guards
evaluate to true, execution is aborted.

GCPSL, like guarded command language, is a list of guarded commands.
To ensure determinacy, the guards must be mutually exclusive (i.e., at most
one guard can evaluate to true at a given time). However, to allow for easier
specification of policies, we do not require that the guards be mutually exclusive.
Whenever more than one guard evaluates to true, we execute the instructions
following the first true guard. Here, we assume that the policies are written at the
level of system calls, library routines or APIs i.e., a policy imposes constraints
on how these calls can be used by untrusted code. State variables keep track
of current state of execution of code and are updated upon witnessing relevant
actions (in this case, method calls with actual arguments).

2.1 Syntax of GCPSL

A policy in the language consists of two sections; first part (which is optional)
is used to declare state variables and the second part is a list of guarded com-
mands. The syntax is shown below.

state:
var type1 state var1= initial value1;
...

command:
(method call1(x,y,z)) ∧ (condition1 ∨ condition2) → statement1; . . . ;
(method call2(w)) ∧ (condition3) → terminate;
...

default: skip | terminate;

State variable declaration consists of the keyword “state” followed by a series
of variable declarations. The state variables have to be initialized to some value
so that a unique start state can be determined. Guarded command list consists
of the keyword “command” followed by at least one guarded command and the
“default” action is either skip or terminate. Each guarded command consists of
a guard followed by one or more statements. A guard can be a boolean com-
bination of conditions: it could be an event denoting method call/s (with the
name of the call and a list of arguments) or a comparison of expressions (involv-
ing only constants, state variables and formal arguments to the current method
call). Statements can either update the state variables and allow the action or
terminate the program under supervision or skip updation and allow the aciton.
State variables are updated after the actual method call returns. Statements
can use the return value of the call through the keyword “result”. The “default”
declaration tells what should be done when none of the guards evaluate to true.
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Example 1. Consider a policy which states that processes cannot write more
than 80KB (total) into files. This policy could be specified as:
state:

int written=0;
command:

(write(fd, buff, num bytes)) ∧ (written < 80000) ∧
(written + num bytes ≤ 80000) → written= written + result;

!(write(fd, buff, num bytes)) → skip;
default: terminate;

2.2 Semantics of GCPSL

We provide semantics using security automata as defined in [16]. The security
automaton is a 4-tuple 〈Q, Σ, δ, Q〉. The set of states Q is the set of values that
the state variables can take. Suppose that the state variable declaration is as
shown below:
state:

var type 1 s1 = c1;
...
var type n sn = cn;

Let val be a function that takes as input a variable and returns the set of
values (of appropriate type) that it can take. Then the set of states Q can be
defined as:

Q = val(s1) × · · · × val(sn).
The initial state is the set of initial values that are assigned to state variables

(i.e., 〈c1, · · · , cn〉). The alphabet Σ is the set of monitored method call events.
It is defined as:
Σ = {method call(v1, · · · , vn) | method call(x1, · · · , xn) is a method call with

formal arguments x1, · · · , xn and ∀1 ≤ i ≤ n. vi ∈ val(xi)}
We now define the transition function. Consider the command section of a

policy as defined below:
command:

guard1 → statement1
...
guardm → statementm

Let G be a function that evaluates each guard on current state and current
input symbol and returns the index of the first guard that evaluates to true (if
none of the guards evaluates to true, it returns 0). G is defined as:

G: Q × Σ → {0, · · · , m}
Let Fi be the partial function associated with the statement part of guarded

command i. This function captures the way in which statement i updates the
state. We use function G to select appropriate function Fi on a given 〈input
state, symbol〉 pair. We then define the transition function in terms of Fi.
Formally,

∀1 ≤ i ≤ m. Fi : Q × Σ → Q and
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!write(fd, buff, num_bytes)

write(fd, buff, num_bytes) /\

write(fd, buff, num_bytes) /\

written+num_bytes<=80K

written<=80K

written+num_bytes>80K

written>80K

!write(fd, buff, num_bytes)

Fig. 1. Automaton for example 1

∀q ∈ Q and ∀a ∈ Σ, F0(q, a) = q
(if specification has “default: skip”) and

∀q ∈ Q and ∀a ∈ Σ, F0(q, a) is not defined
(if specification has “default: terminate”)

Thus, ∀q ∈ Q and ∀a ∈ Σ, δ(q, a) = FG(q,a)(q, a).
Figure 1 shows the security automaton (reduced to 2 states) for policy shown

in example 1.

3 A Sample Monitoring Architecture: Monitoring System
Calls Without Program Instrumentation

System calls constitute an important programming aid. They abstract away low
level hardware details from the programmer. All access to underlying hardware
is made through these system calls (which are provided by the operating system
through libraries). Thus, system calls form an important boundary at which we
can monitor program actions.

Monitoring system calls at run-time can be done without modifying un-
trusted code. System calls are made by generating an interrupt (e.g., int 80x
on Linux/i86). This transfers the control to kernel mode. The service for this
interrupt uses a system call table (set by the operating system) that is looked
up (using the value in register eax as index) and control is transferred to code
for the appropriate system call in kernel space. The process is shown in fig. 2.

Since all the necessary information is already maintained by the operating sys-
tem, we only have to intercept system calls inside the kernel and check whether
they should be allowed. To make this decision, the kernel module consults a user
space monitoring module. The user space module allows user to specify policies,
compiles them and then takes a decision based on information provided by the
kernel module (figure 3).

For example, consider a policy that no file in “/bin” can be written into. To
enforce this policy, we write the following specification:
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routine

Application

Interrupt
Vector Table

int 0x80
(system call)

kernel space

system call
actual 

_system_call_table

user space

return edge

eax

forward control flow

Service

Fig. 2. System call architecture in Linux
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error
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routine

Fig. 3. System call monitoring architecture in Linux

commands:
(open(file name, access mode)) ∧ (file path(file name)==“/bin”) ∧

((access mode==O WRONLY) ∨ (access mode==O RDWR))
→terminate;

default: skip;
The “file path()” function takes a file name and returns the absolute path

of the file. This function is not a system call or a library routine but such
functions can be used to make specification easier. Based on the target platform,
the run-time enforcement mechanism implements the necessary functionality.
The policy can be easily compiled into user space module of the monitor. The
kernel module signals the user space module when relevant system calls are
made (along with state information and arguments). Shown below is a part of
C code (for user space component) compiled from the GCPSL policy shown
above:
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action = get event();
if ( (strcmp(action.call id,"open") &&

(file path(aciton.arg 1,"/bin")) && ((action.arg 2==O WRONLY) ||
(action.arg 2==O RDONLY)) )

signal(deny);
else

signal(allow);
The “action” structure contains information about the system call (name,

arguments, etc.) passed by the kernel module (shown by edge labeled “Allow?”
in fig. 3). Whether the system call should be allowed or not is decided by the
code fragment shown above and the reply is sent back to the kernel module via
signal() function (shown by edge labeled “Yes/No” in fig. 3).

In the monitoring architecture, kernel mode provides good insulation to the
in-kernel module that intercepts the system calls. The state variables could also
be maintained inside the kernel (and hence be safe from modification by user
space code). Since GCPSL captures the working of the monitor, it is easily
compiled into the user space module that takes decisions regarding actions. The
monitoring framework does not require major changes in the kernel code or a
reboot when the user policy changes. The drawback of the architecture is that
the decision is taken after execution enters kernel mode and the switch is very
time consuming. Care should be taken to ensure safety of the user space module
from interference by malicious code.

4 Enforcing Constraints on a Set of Processes

The monitoring architecture described in the previous section enforces run-time
constraints (specified in GCPSL) on individual processes. However, there are cer-
tain cases where restrictions have to be imposed collectively on a set of processes.
Here, we provide extension to GCPSL so that specification of such collective con-
straints becomes easy.

Consider a mobile phone game that can have multiple instances running on
the platform. The user interacts with other online players through messages.
However, since messages cannot be sent free of cost, user wants to limit the
number to MAX MESSAGES (some pre-defined constant). Once the limit is
reached, user should be asked each time before sending a message. To handle
such policies, we equip the GCPSL with extra constructs that allow us to handle
a set of processes. We partition the state variables into two sets namely, “global”
and “local”. For the example mentioned above, we could write a policy as follows:

state:
global:

int num msg=0;
local:

int asked=0;



On Run-Time Enforcement of Policies 275

command:
(send message(remote host)) ∧ (num msg<MAX MESSAGES) → num msg++;
(ask user(msg)) ∧ (num msg==MAX MESSAGES) → asked=1;
(send message(remote host)) ∧ (num msg==MAX MESSAGES)

∧(asked==1) → asked=0;
!(send message(remote host))→ skip;

default: terminate;

Thus, GCPSL can be easily adapted to enable a user to specify policies over
multiple processes. It is important to note that global state variables should be
locked before access to ensure that concurrent execution does not corrupt them.
Also, in some cases, like the example mentioned above, the global state of the mon-
itor may have to be persistent. In the example above, if 2 sessions of the game use
up the MAX MESSAGES limit set by the monitor, then any session that may be
invoked later should always have to ask before sending a message. Thus, for ex-
ample, a monthly limit on the number of messages that can be sent without per-
mission can be set. When the month is over, the global state of the monitor has
to be reset again. We do not include this in specification. The local state variables
pertaining to individual game sessions can be created when the process starts and
can be removed when the process terminates. Thus, the extension to the GCPSL
can be easily handled by the system call monitoring architecture described in the
previous section with minor changes to the kernel module.

4.1 Semantics

Let us assume that we are given a policy to enforce on a set of processes
P1, P2, · · · , Pp. Also, each process has its own copy of local state variables (we
tag local variables with the process name).

Suppose that the policy has state variable declaration as:
state:

global:
var type 1 g1 = c1;
...
var type n gn = cn;

local:
var type 1 l1 = c′1;
...
var type n ln′ = c′n′ ;

Then, the set of states is given by
Q = val(g1) × · · · × val(gn) × {val(l1) × · · · × val(ln′)}p.

Initial state is given by 〈c1, · · · , cn, {c′1, · · · , c′n′}p〉.
The alphabet is given by

Σ = {〈Pi, method call(v1, · · · , vk)〉| method call(x1, · · · , xk) is a call
with formal parameters x1, · · · , xk and for 1 ≤ i ≤ k. vi ∈ val(xi)
and Pi is the process which made the call}



276 H. Shah and R.K. Shyamasundar

Consider the command section of a policy as defined below:
command:

guard1 → statement1
...
guardm → statementm

Let G be a function that evaluates each guard on current state and current
input symbol and returns the index of the first guard that evaluates to true (or
returns 0 when none of the guards is true). G is defined as:

G: Q × Σ → {0, . . . , m}

Let Fi be the partial function associated with the statement part of guarded
command i. This function captures the way in which statement i updates the
state. We use function G to select appropriate function Fi on a given 〈input state,
symbol〉 pair. We then define the transition function in terms of Fi. Formally,
∀1 ≤ i ≤ m. Fi : Q × Σ → Q (and F0 is defined the same way as before).

The information about which process performed corresponding action is
needed to update the local state variables pertaining to that process. For up-
dation of global state variables, this information is discarded. The transition
function can therefore be written as:

∀q ∈ Q and ∀a ∈ Σ, δ(q, a) = FG(q,a)(q, a)

5 From Pure Past Temporal Logic to GCPSL

GCPSL policies describe the operation of the run-time monitor in terms of states
and allowed actions. Many policies enforce temporal restrictions on the actions
(e.g., library routines, system calls, etc.) of an untrusted program. These restric-
tions can sometimes be difficult to capture through such a detailed specification
of monitoring mechanism as GCPSL. Temporal logic is better suited for specifi-
cation of such policies. Temporal logic formulae are more convenient when com-
plex policies are composed by conjunction/disjunciton of several simple policies.
A composition of simple policies could lead to a huge number of guarded com-
mands in GCPSL. A separation of concerns can therefore be achieved if users
can specify such complex policies in temporal logic which could then be compiled
into GCPSL (which, as we have seen in section 3, can be easily compiled into
user space component).

Since the monitoring architecture presented in section 3 relies on GCPSL
policies to make run-time decisions (which are compiled into the user space
component of the architecture), we will see how conversion of pure past temporal
logic formulae into GCPSL policies can be done so that they can be incorporated
without any change in the architecture.

As we are concerned with security policies that can be monitored during
execution, we focus our attention on safety properties which stipulate that the
execution never enters a forbidden state. Every past formula is interpreted on
a finite sequence of states σ = s0, · · · , sn (where S is the set of states and
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each si ∈ S). The formula is built from a set of atomic propositions AP and
logical and temporal connectives. A labelling function l : S → 2AP tells which
propositions are true in a particular state. The syntax for pure past temporal
logic is as follows:

ϕ : = p | ¬ϕ | ϕ ∨ ϕ | ϕ S ϕ | Yϕ
Here, p ∈ AP is an atomic propostion, S is the “since” operator and Y is the

“yesterday” or the “previous step” operator. Other operators can be expressed
in terms of these as follows:

Oϕ ≡ T S ϕ (O - once in the past)
Hϕ ≡ ¬O¬ϕ (H - always in the past)
Let p ∈ AP be an atomic proposition and σ = s0, s1, . . . , sn (each si ∈ S) be

a finite sequence of states. Let σx denote the prefix sequence s0, s1, . . . , sx of σ.
The satisfaction relation is defined by:

σ |= p iff p ∈ l(sn)
σ |= ¬ϕ iff ¬(σ |= ϕ)
σ |= ϕ ∨ ψ iff (σ |= ϕ) ∨ (σ |= ψ)
σ |= ϕS ψ iff ∃ j, 0 ≤ j ≤ n . σj |= ψ and

∀ i, j < i ≤ n . σi |= ϕ
σ |= Y ϕ iff n > 0 and σn−1 |= ϕ
A sequence σ satisfying a formula is called the model of the formula. All safety

properties expressible in temporal logic can be represented as Hϕ where ϕ is a
past LTL formula [12]. The models of such a safety formula are infinite sequences
of states σ = s0, s1, . . . such that

∀ i ≥ 0. σi |= ϕ

send

!r /\ !s !s!r

r= read

s=

3

r= read

s= send

!r /\ !s

!r

!s

!r /\ !s

!r /\ !s

!s

!s

!r

!r0

1

2

(a) labels in states (b) labels on transitions

Fig. 4. Automaton for H(send → ¬O(read))

In [17], authors present an efficient approach for converting a formula in pure
past temporal logic into a finite state automaton. This paves the way for convert-
ing temporal restrictions on program actions into guarded command statements.
The simple idea is to have an enumerated state variable that can range from 1 to i
if there are i states (q1, · · · , qi) in the automaton. For each state and a transition
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going out of it, we take conjunction of index of the state and the label on outgo-
ing transition as the guard and update the state variable to the index of the state
reached via the transition. We set the “default: terminate” to indicate a violation.

For example, consider the policy that a message cannot be sent after a file has
been read. Let send and read be the propositions that correspond to send() and
read() method invocations. Then, the policy can be stated in pure past LTL as
H(send → ¬O(read)). The automaton produced for this formula is shown in
fig. 4(a). The same automaton with labels moved to transitions is shown in fig.
4(b). Thus, the state variable would be declared as:
state:

int q=0;
Consider state 0 in the automaton shown in figure 4(b). Since it has 3 outgoing

edges, we add a guarded command for each edge as follows:
(q==0)∧(!send())∧(!read())→ q=1;
(q==0)∧(!read())→ q=2;
(q==0)∧(!send())→ q=3;

Continuing this way, we add guarded commands for each outgoing transition
from each state and use the default condition to signal violation. Note that the
GCPSL policy obtained this way could be longer than what one would write
directly using GCPSL. But, complex policies are easer to specify in pure past
temporal logic and the translation can be made automatic. The most important
aspect of the conversion is mapping of the propositions in the formula to the
actions in the guards. To enforce restrictions on a set of processes, we would
require a larger set of atomic propositions to incorporate information about the
process that performs an action. But guarded command specification can handle
it better (as can be seen from the example stated in the previous section).

6 Implementation

We are working on implementation of the architecture described in section 3
with the extensions to GCPSL. We have built a parser for GCPSL policies and
implemented a prototype version of the in-kernel module that intercepts the
system calls. We are working on implementation of the user space module and
communication between user and kernel space components. We also intend to
enhance flexibility of the tool by incorporating pure past temporal logic formulae
into the tool (by using the translation procedure of the previous section).

7 Related Work

In [19], Uppuluri and Sekar propose a specification language called Behavioural
Monitoring Specification Language (BMSL) to specify constraints on program
behaviour. They also describe how abstraction can be used to specify policies by
grouping system calls into categories. This makes the task of policy specification
easier and the policies portable across platforms. The authors also show how
more involved policies can be obtained by refining generic policies. Policies in
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BMSL can be easily translated into guarded commands. Our approach allows
specification of constraints for a set of processes and can even take advantage of
the abstraction mechanisms mentioned in [19]. A similar approach for specifying
software wrappers for commercial off-the-shelf components was presented in [8].
The specification language proposed in [8] also uses abstraction but is much
more complex and often leads to lengthier policies. In addition, the approach
uses databases to store and share information among wrappers.

Substantial amount of research has been done on run-time enforcement of
security policies. In [9], authors provide a theoretical classification of security
policies that can be enforced by different mechanisms (e.g., static analysis, ex-
ecution monitoring and program re-writing). The authors show that the class
of properties that can be monitored at run-time is co-RE (i.e., a policy viola-
tion can be detected in finite amount of time but execution that conforms to
policy goes on forever). In [16], Schneider presents a theoretical study of ex-
ecution monitors (mechanisms that monitor program execution and terminate
the program before it can violate a security policy) and shows that they can
only enforce safety policies. Schneider also presents a security automata model
of an execution monitor (and also shows that the same can be coded in guarded
command language).

Many tools provide system call interception (e.g., [1] and [3]). In [15], author
proposes an interactive policy generation tool for monitoring system calls. The
specification language is very simple and not as expressive as the guarded com-
mand language. A policy in their framework just states whether a particular
system call (with specific arguments) should be allowed. The system allows for
interactive policy generation through training runs. If a particular system call is
not covered by the policy, then the tool asks the user to make a decision (which
can be added to the policy). The tool does not allow specification of policies
that restrict the order in which system calls are made. Also, the tool cannot
constrain the amount of resources used by a process as shown in example 1 in
section 2. Another tool called “syscalltrack”1 allows monitoring of system calls
through a simple specification language. On observing a monitored system call
(with appropriate arguments), it either allows the call (with logging) or returns
an error. Both the tools mentioned above cannot specify policies for a set of
processes.

In [13] different models of monitors were proposed which were more powerful
than execution monitor in that they could suppress or insert program actions
or could truncate execution. It was also shown that edit automata (which can
truncate, suppress and insert actions) could enforce any property on execution
(even if it were not a safety property). A specification language and a run-time
monitoring system called Polymer [2] was also provided for monitoring of Java
programs. In this framework, every policy extends an abstract policy class. One
has to define security relevant actions (method invocations) and then the policy
provides various suggestions (e.g., skip, insert actions, replace action, etc.) when
these actions are performed. Different mechanisms for composing policies are also

1 available at http://syscalltrack.sourceforge.net/index.html

http://syscalltrack.sourceforge.net/index.html


280 H. Shah and R.K. Shyamasundar

provided in [2]. Instead of writing complex policies directly in Java, one could
use GCPSL to specify an edit automaton and then compile it into a Polymer
policy. By including actions in the instruction part of the guarded commands,
one can easily specify an edit automata policy. For example, the specification
can be changed as follows:

(Guard)→ terminate;
OR
(Guard)→ {action}∗;

update state | skip;
Thus, whenever a guard is true, either the execution is terminated or sequence

of actions is performed and is followed by a possible change of state.
In [7], authors propose a model for run-time monitoring (called Shallow History

Automata) that tracks only the execution history and does not remember the order
of events. Although less powerful than security automata, SHA can enforce some
important security policies. In [5], security automata implementation of Software
based Fault Isolation (SFI) was discussed and prototypes for x86 and JVML were
provided in SAL (Security Automata Language). The language is just a text based
representation of security automata with macro definitions in the beginning. The
author also presents PSLang (Policy Specification Language) and PoET (Policy
Enforcement Toolkit) for in-line monitoring of Java code. In this approach, the
untrusted program is instrumented with proper checks so that the modified pro-
gram does not violate security policy. In [6], author presents Naccio framework for
policy enforcement through in-line monitoring. Naccio allows user to specify poli-
cies in a platform independent way by providing abstract system interface (the
interface, however, is not very easy to use).

All specification languages mentioned so far are platform specific (except Nac-
cio). GCPSL can be seen as a simple way for specifying monitoring algorithm
in a platform independent way. Other approaches for run-time monitoring of
Java code have been proposed in [11,10] (these approaches were mainly aimed
at checking program correctness). In [20], a tool for sand-boxing of untrusted
applications is presented.

8 Conclusion

We have described how GCPSL can be used for easy specification of policies.
Through a simple extension, GCPSL can enforce a policy collectively on a set of
processes. Validation of GCPSL policies is achieved through security automata
semantics. The most important objective was to provide a simple specification
language that allows a rich set of policies to be formulated and validated. A
separation of concerns can be achieved by specifying policy in terms of pure
past temporal logic and then automatically producing monitoring instructions
(guarded commands). A robust system call monitoring architecture for enforcing
GCPSL policies was described. GCPSL can be easily modified to incorporate
other models of enforcement like suppression, insertion or edit automata (by
allowing corresponding actions in the statement part of the guarded command).
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