
A Static Birthmark of Binary Executables Based
on API Call Structure�

Seokwoo Choi, Heewan Park, Hyun-il Lim, and Taisook Han

Division of Computer Science and
Advanced Information Technology Research Center(AITrc).

Korea Advanced Institute of Science and Technology
{swchoi,hwpark,hilim}@pllab.kaist.ac.kr, han@cs.kaist.ac.kr

Abstract. A software birthmark is a unique characteristic of a pro-
gram that can be used as a software theft detection. In this paper we
suggest and empirically evaluate a static birthmark of binary executables
based on API call structure. The program properties employed in this
birthmark are functions and standard API calls when the functions are
executed. The API calls from a function includes the API calls explicitly
found from the function and its descendants within limited depth in the
call graph. To statically identify functions, call graphs and API calls, we
utilizes IDAPro disassembler and its plug-ins. We define the similarity
between two functions as the proportion of the number of all API calls
to the number of the common API calls. The similarity between two pro-
grams is obtained by the maximum weight bipartite matching between
two programs using the function similarity matrix. To show the cred-
ibility of the proposed techniques, we compare the same applications
with different versions and the various types of applications which in-
clude text editors, picture viewers, multimedia players, P2P applications
and ftp clients. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the
similarities obtained using our birthmark sufficiently indicates the func-
tional and structural similarities among programs.

Keyword: software piracy, software birthmark, binary analysis.

1 Introduction

Recently a large amount of software is developed in the form of open source
projects. Most open source projects contain software licenses. A widely used
software license for open source software is the GNU Public License(GPL). The
GPL allows developers to use software freely, but requires new projects using
the original work to be licensed under the GPL. There are also more permissive
software licenses like the MIT license and the BSD licenses which allow the origi-
nal source code to be combined in commercial software. The permissive licenses,
however, require the copyright notice of the original software to be included.
� This work was supported by the Korea Science and Engineering Foundation

(KOSEF) through the Advanced Information Technology Research Center(AITrc).

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Static Birthmark of Binary Executables 3

There have been reported that many companies use open source software for
commercial purpose without permission. To detect code theft when source code
is available, we can utilize well-known plagiarism detection tools like MOSS,
JPlag and YAP [1,2,3]. Suppose that source code under the GPL is contained in
commercial software, which is distributed in compiled binaries without indicat-
ing the copyright notice of the original software. In this case, we need to prove
whether the open source code is used or not in the binary executables. Software
birthmarking is one of the techniques to solve such software theft problems.

A software birthmark is unique characteristics of a program that can be used
to identify the program. If program p and q have the same or very similar birth-
mark, q is very likely to be a stolen copy of p (and vice versa). Comparing the
strings analyzed from binary executables can be a easy birthmarking technique.
In this case, a set of strings is a birthmark. Sometimes comparing the structures
of binaries can be a good birthmark technique. For example, SabreSecurity Bin-
Diff effectively found similarities between two MacOS emulators named Cher-
ryOS and PearPC[4,5]. Tamada et al. suggested a dynamic software birthmark
for Windows applications using Win32 API function call sequences [6,7]. Dy-
namic birthmarks extract program properties from a program execution trace
when a sequence of input is given, while static birthmarks extract properties
only from the program itself.

In this paper we propose a new static birthmarking technique that can help
to identify ownership and similarity of binary executables. Program properties
used as our birthmark are summaries extracted from each binary function in
a program. The summary of each function is a set of possible standard API
calls when the function is executed. We statically identify API function calls by
analyzing disassembled code which is generated by IDAPro disassembler[8]. A
similarity between two functions is calculated by comparing API call sets of two
functions. A similarity between two programs is obtained by matching problem.

We evaluate the proposed birthmark by comparing various categories of Win-
dows applications. To show the credibility, the same applications with different
versions are compared. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the similarities
obtained using our birthmark sufficiently indicate the functional and structural
similarities among programs.

2 Related Work

There are three major threats against the intellectual property contained in
software. Software piracy is the illegal use, duplication or reselling of legally
protected software. Software tampering is the illegal modification of software
to gain control over restricted code or digital media protected by the software.
Malicious reverse engineering is the extracting of a piece of a program in order
to reuse it in one’s own. To deal with these threats, several techniques have
been explored, for example, software watermarking to deal with piracy, code
obfuscation to deter reverse engineering, and software tamper-proofing [9].

4 S. Choi et al.

Software watermarking is a well-known technique used to provide a way to
prove ownership of stolen software. Software watermarking systems embed wa-
termarks in software and recognize the watermarks. Software watermark can
be either static or dynamic [10,11]. Unfortunately, watermarking is not always
feasible because it requires software developers to embed a watermark before
releasing the software.

Software birthmarking is a technique that identifies the inherent character-
istics occurring in a program by chance. Unlike software watermarks, software
birthmarks do not embed additional code or identifier. Instead a birthmark re-
lies on an inherent characteristic of the application to show that one program is
a copy of another. The result of comparing two programs with software birth-
marking is similarities between two programs. With the similarities, we are able
to say that one program is a copy of another, totally or in part.

Tamada et al. [12,13] suggested the first practical application of static soft-
ware birthmarks to identify the theft of programs. This technique is specific to
Java class files which is a combination of four individual birthmarks: constant
values in field variables(CVFV), sequence of method calls(SMC), inheritance
structure(IS), and used classes(UC). These four birthmarks could be used indi-
vidually but the combination makes this technique more reliable. Their experi-
ment with several sample programs shows that the proposed birthmarks identify
a class within a program with high precision, but can easily be confused by sev-
eral obfuscation techniques.

Tamada et al. [6,7] introduced dynamic birthmarks and proposed two birth-
marks based on the trace of system calls for Windows programs. The dynamic
birthmarks are the sequence and frequency of API function calls during ex-
ecution of software. They claim that these birthmarks are reasonably robust
against program transformations. The credibility of this birthmark highly relies
on user interactions, inputs and system environments. To avoid this weakness,
they highly restricted inputs and user interactions in the experiments.

Myles et al. proposed a k-gram based static birthmark [14]. They adopted k-
gram, which have been previously used to detect similarity between documents,
as their birthmark for Java applications. The k-gram birthmark is the set of
unique opcode sequence of length k. For each method in a module they com-
pute the set of unique k-grams by sliding a window of length k over the static
instruction sequence. k-gram based birthmark is precise, but highly susceptible
to program transformations. They evaluated this birthmarking techniques with
several tiny Java programs.

Myles et al. [15,16] proposed the concept of another dynamic birthmark
known as Whole Program Path(WPP) birthmark. A WPP is a directed acyclic
graph(DAG) representation of a context-free grammar that generates a pro-
gram’s acyclic path [17]. To get WPP, dynamic trace of a program is obtained
by instrumentation, and the trace is compressed into a DAG using SEQUITUR
algorithm. They used WPP as their birthmarks and computed similarity between
two birthmarks using a graph distance for maximal common subgraph [18]. They
experimented WPP birthmarking technique with a few tiny Java programs. The

A Static Birthmark of Binary Executables 5

result shows that the credibility and the resilience of the WPP birthmark is
between the static Java birthmark of Tamada et al. and k-gram birthmark.

Shuler and Dallmeier[19] presented a dynamic birthmarking technique based
on the API call sequence sets during program execution. The result of this birth-
mark, like Tamada’s, is also highly dependent on user interactions, inputs and
environments. They improved their reliability by limiting windows length to 5,
like k-gram. They evaluated this birthmark on image processing programs and
XML processors. This birthmarking technique can be applied to more realistic
applications compared to Myles’s birthmarking technique.

3 Static API Call Structure Birthmark

3.1 Software Birthmarks

Tamada et al.[13] and Myles et al.[14] formally defined a birthmark of a software
using copy relations. The followings are the definition of birthmark by Myles
et al.

Definition 1 (Birthmark). Let p, q be programs. Let f be a method for ex-
tracting a set of characteristics from a program. Then f(p) is called a birthmark
of p iff:
1. f(p)is obtained only from p itself (without any extra information), and
2. q is a copy of p ⇒ f(p) = f(q).

Condition 1 explains the main difference between watermarking and birthmark-
ing. A birthmark extracts characteristics only from the program itself, while a
watermark extracts extra copyright information which is previously embedded
by authors or program distributors. Condition 2 means that if p and q are in
copy relation, the birthmark of p and the birthmark of q is the same. In this
definition, the meaning of copy implies not only the exact duplication but also
the semantics preserving transformation. But when we say the semantics are pre-
served, we do not mean that the two implementations with the same specification
have the same birthmark. The terms are introduced to require the birthmark
to be resilient to the obfuscation transformation to avoid theft detection. Thus
a good birthmark value should not change after a slight semantics preserving
modification of the program.

The following properties are restatements of those of Tamada et al. [13] and
Myles[15]. These properties suggest two evaluation criteria which a birthmark
should meet.

Property 1 (Distinction). Let p and q be programs with the same functionality.
If p and q are implemented independently, then f(p) �= f(q).

Property 2 (Preservation). For p′ obtained from p by any program transforma-
tion, f(p) = f(p′) holds.

6 S. Choi et al.

Property 1 explains the distinction property. The distinction property com-
plements Condition 2 of the birthmark definition. It is a criteria related to the
possibility of false positives. It means that a good birthmark should catch copy
relations well, while it should not falsely say two independently implemented
programs with the same functionality are copy.

Property 2 is concerned with the resilience of a birthmark. If a copied code
is transformed by compilers, optimizers or obfuscators, the appearance of the
transformed code, which is in binary executables in this work, is different from
the original code. If a birthmark is resilient to program transformations, it should
only catch the inherent properties of the programs.

3.2 Proposed Birthmark

Microsoft Windows applications normally use the Windows API which offers
essential libraries for developing Windows applications. The Windows API con-
sists of functional categories which are system managements, diagnostics, graph-
ics, multimedia, networking, security, system services, and user interfaces. Since
Windows applications exploit Windows OS capabilities via the Windows API
calls, the API calls are hard to be replaced. The API calls reflect the function-
alities of a program, that is, the inherent characteristics of the program. If we
can analyze the API call patterns correctly, we can use the patterns as a good
birthmark of a program.

Previous birthmark research on Windows binaries [6,7] utilized dynamic API
call sequences by hooking the executable file. The dynamic API call sequence
only shows API call patterns for a given execution trace. The resulting birth-
marks are dependent on inputs, user interactions and system environments. Fur-
thermore it cannot cover whole program path. If given inputs do not lead the
execution to the theft codes, the dynamic birthmarking cannot give us a mean-
ingful answer. We here suggest a static birthmarking using Windows API calls.
The proposed birthmarking technique analyzes whole part of given programs.
Therefore it can catch the containment of the theft code. To compare two bina-
ries we use assembly codes generated by IDAPro disassembler. We can also get
function information, branch instructions and external calls from IDAPro.

Our birthmark is defined using API call set. We can also consider multisets
instead of API call set since we have call graphs. Multisets reflects API call
structure more precisely, while they are vulnerable to program transformation
like inlinng or wrapping of functions. Inlining occurs when compiler optimizes,
and wrapping often occurs when compiled with debug option. For this reason,
we currently considers only sets of API calls.

Definition 2 (API Call Set). API call set of a function is a collection of
possible standard API calls that the function can invoke when the function is
executed.

According to the definition of API call set, the API call set of the main function
covers all API calls that the program can reach. We simplify the API call set
using call depth.

A Static Birthmark of Binary Executables 7

Definition 3 (k-depth API Call Set). Let k be a integer (with k ≥ 0). The
k-depth API call set of a function is a collection of all possible standard API
calls gathered from functions having call depths within k.

A k-depth API call set of a function is a subset of API call set of the function.
By limiting call depths, though we lose a little precision, we can calculate API
call sets in reasonable time. Our experiment showed that the call depth as small
as 2 or 3 sufficiently estimates the properties of functions.

Our static API call structure birthmark for a program is defined as follows.

Definition 4 (Static API Call Structure Birthmark). Given API call sets
for each function of a program, a static API call structure birthmark of the
program is the collection of all API call sets.

3.3 Calculating Similarity

To calculate similarity by the proposed birthmark, we first calculate all similari-
ties between functions. A Similarity between two functions is defined as follows.

Definition 5 (Function Similarity). Let SA and SB be sets of standard API
call sets of function A and function B. Similarity between two functions is defined
as

simf (A, B) =
2 |SA ∩ SB|
|SA| + |SB|

where |SA| is the cardinality of SA, |SB| is the cardinality of SB, and |SA ∩ SB|
is the cardinality of common API calls of SA and SB.

The similarity function measures the fraction of common calls over all standard
API calls. If two functions are identical, the similarity between the functions be-
comes 1. If the two functions have no API calls in common, the similarity value
become 0. Figure 1 illustrates matching between functions. According to Defin-
ition 5, the similarity between foo and joo is 2/3, and the similarity between
goo and koo is 3/4.

We want to match functions between two programs such that the grand total
of the similarities has a maximum value. We compute similarities between all
possible pairs of functions between two programs. After the similarity calcula-
tion, we can get a |A| by |B| similarity matrix where A and B are the set of
functions in each program. With the similarity matrix, we compute the program
similarity. We define a program similarity as follows.

Definition 6 (Program Similarity). Let P1, P2 be programs, |P1| and |P2|
be numbers of functions in P1 and P2. We define the program similarity between
P1 and P2 as

simp(P1, P2) =
2

∑
(A,B)∈match(P1,P2) simf (A, B)

|P1| + |P2|
where match(P1, P2) is a set of matched functions between P1 and P2.

8 S. Choi et al.

CreateEllipticRgn
GetWindowsDirectory

MessageBox

CreateEllipticRgn
GetWindowsDirectory

MessageBox

CreateEllipticRgn
GetWindowsDirectory

WinExec

CreateEllipticRgn
GetSystemMetrics

GetWindowsDirectory
MessageBox
WinExec

foo

goo

joo

koo

Fig. 1. Matching functions to compute similarity

The program similarity we defined is the maximum value among all possible
function matching configurations. The problem maximizing the sum of similari-
ties between the functions from program P1 and the functions from program P2
is isomorphic to the weighted X −Y bipartite matching problem. Each function
corresponds to each node. The functions from P1 belong to the partition X of the
bipartite graph, and the functions from P2 belong to Y . Matching from a function
from P1 with a function from B corresponds to inserting an edge from a node in
X to a node in Y . Similarities between two functions correspond to weights of
edges. To find a maximum matching, we use the Hungarian algorithm[20] which
solve the problem in polynomial time. The time complexity of the Hungarian
algorithm is O(n3). Since the algorithm by default performs minimization, we
use the difference matrix of which each element has a difference value instead of
a similarity. A difference value is 1−similarity. The program similarity obtained
by the Hungarian algorithm is the maximal similarity between two programs.

4 Implementation

Figure 2 shows the structure of the static API Call birthmark system. This
system operates as follows.

Step1: Generating idb file

IDAPro generates the IDA database file(.idb) by disassembling and analyzing
the binary executable of sample program. We use IDAPro 5.1 for front-end.

Step2: Generating database file

Database file(.db) is generated from idb file using IDA2SQLite3 plug-in. This
plug-in stores initial analysis result from IDAPro in sqlite3 database format for
future use. Stored item includes program information such as function name,
start address of that function, call graphs, assembly codes, etc.

A Static Birthmark of Binary Executables 9

Fig. 2. The architecture of static API call structure birthmark system

Step3: Extracting function, API call, and Mapping table

Function table, API call table and function mapping table are obtained from
the sqlite3 database file. Function table contains information about the function
name, start address of the function, and library flag, etc. API call table con-
tains API call instructions used in each functions. Mapping table contains the
call relation between functions in the program. This program is developed with
python 2.5 and pysqlite 2.3.3.

Step4: Calculating program similarity

This routine calculates program similarities using the information of function
table, API call table, and function table. From the information of tables, function
call graph is generated and set of API calls which can be used in each function
is collected. As function call depth increases, each function collects API names
of functions that are reachable from the function in the call graph. In this way,
as function call depth increases, the number of APIs included in function is also
increased. After forwarding APIs by predefined call depth k, API differences
between every function in each program are calculated and API difference matrix
is constructed. The maximum similarity value is calculated from this matrix
using the Hungarian method. Similarity calculation program is implemented in
C++. To check function matching result, call graphs with matching information
is generated in DOT format. DOT file is translated into SVG(scalable vector
graphic) format. Resulting SVG file can be displayed using SVG Viewers.

10 S. Choi et al.

5 Evaluation

To evaluate the effectiveness of our static API Call birthmark, we conduct two
experiments here. The first experiment evaluates credibility of our proposed
birthmarks. The second experiment measures resilience of the birthmark against
different compilers. To evaluate credibility, we chose some programs in various
categories like text editors, FTP clients, Terminals, etc. Sample programs are
listed in Table 1.

Table 1. Sample programs

Category Program 1 Versions Program 2 Versions

Text Editors UltraEdit 7.0 / 7.2 Edit Plus 2.0 / 2.1
FTP clients FileZilla 2.2.14 / 2.2.26 CuteFTP32 3.5.4 / 4.0.19
Terminals Putty 0.56 / 0.58 SecureCRT 5.5.0 / 5.5.1
P2P clients Dongkeyhote 2.40 / 2.54 Emule 0.45b / 0.47c

Graphic Tools ACDSee 4.01 / 4.02 xnView 1.21 / 1.25a
MP3 Players Winamp 5.23 / 5.35 Foobar2000 0.9.1 / 0.9.4
Video Players GOM Player 2.0.0 / 2.1.6 Adrenalin 2.1 / 2.2
CD Burners CDRWin 3.8 / 3.9 DVDCopy 2.2.6 / 2.5.1

Download Managers Flashget 1.6.5 / 1.7.2 NetTransport 2.3.0 / 2.4.1
Disk Image Emulators Daemon 4.3.0 / 4.9.0 CD Space 5.0

To evaluate resilience, we chose open source hex editor frhed [21] and Microsoft
Visual C++ 6.0, .NET 2003 and .NET 2005 compilers.

To verify the effectiveness of our static API call structure birthmark, we ex-
amined API call distributions of sample programs. Figure 3 shows that more
than 100 functions have at least one API calls. z-axis represents each program.
This result shows that the API call structure reflects the unique characteristics
of programs.

Table 2 shows that the similarities of programs are changed by call depth. As
call depth increases, the similarity decreases in most cases while the accuracy
increases. We should limit call depth to compute API call set in reasonable time.
Given the call depth k and the number of nodes n, the time complexity to find
k-depth API call set for all functions is O(k n2). Our experiment showed that the
call depth as small as 2 or 3 will sufficiently estimates the properties of functions.
Hereafter our experiments are evaluated using 3-depth API call sets.

5.1 Credibility

Different Versions of Same Programs. To evaluate credibility of our birth-
mark, we compared different versions of same programs. Figure 5 shows that
similarities between the same programs with a little different versions are over
0.7. In general a minor upgraded version of software shares almost all code from
the previous version. This can be restated that the new version copied most

A Static Birthmark of Binary Executables 11

0

100

200

300

400

500

600

700

800

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31 33 48

ACDSee4.02

Adrenalin_2.2

cdrwin39

cutftp32_4.0.19

Donkeyhote_2.54

dvdcopy_2.5.1

Editplus_2.1

emule_0.47c

filezilla_2.2.26

flashget172

foobar2000_0.9.4.3

GOM_2.1.6

nettransport241

putty_0.58

SecureCRT_5.5.1

UlatraEdit_7.2

winamp_5.35

xnview_1.25a

of API Calls

of functions

Fig. 3. API call distributions of sample programs

Table 2. Similarities with various call depth

0 1 2 3 4 5

cutftp32 3.5.4 / cutftp32 4.0.19 0.9180 0.8993 0.8959 0.8948 0.8960 0.8969
filezilla 2.2.14 /filezilla 2.2.26 0.9058 0.8755 0.8522 0.8400 0.8340 0.8323
UltraEdit 7.0 / UltraEdit 7.2 0.9704 0.9151 0.8537 0.8464 0.8381 0.8278

filezilla 2.2.26 / cutftp32 4.0.19 0.4875 0.3865 0.3278 0.3186 0.3115 0.3091
filezilla 2.2.26 / UltraEdit 7.2 0.3574 0.3079 0.2773 0.2710 0.2702 0.2676

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cutftp32_3.5.4 * cutftp32_4.0.19

filezilla_2.2.14 * filezilla_2.2.26

putty0.56 * putty_0.58

SecureCRT_5.5.0.371 * SecureCRT_5.5.1

Donkeyhote_2.40 * Donkeyhote_2.54

emule_0.45b * emule_0.47c

ACDSee4.01 * ACDSee4.02

xnview_1.21 * xnview_1.25a

foobar2000_0.9.1 * foobar2000_0.9.4.3

winamp_5.23 * winamp_5.35

GOM_2.0.0 * GOM_2.1.6

Adrenalin_2.1 * Adrenalin_2.2

cdrwin38 * cdrwin39

dvdcopy_2.2.6 * dvdcopy_2.5.1

flashget165 * flashget172

nettransport230 * nettransport241

Editplus_2.0 * Editplus_2.1

UlatraEdit_7.0 * UlatraEdit_7.2

Fig. 4. Similarities between same programs with different versions

12 S. Choi et al.

part from the previous version. Then the similarity between the old version and
the new version is considered to be as large as the proportion of the common
code over the whole code. The result shows that our birthmark is sufficiently
reflecting the program functionalities.

Similar Category Programs. We compared programs in same categories to
prove the distinction property. Even if two programs are in similar category, the
similarity is not always high enough. The number of functions is different and
each program uses different API calls. Suppose that there are different programs
with the same functionalities. They may use almost same APIs because they
have the same functionalities. The distinction property says that the similarities
should be different when they are implemented independently.

Figure 5 supports that our birthmarking technique suffices distinction prop-
erty. For example, the multimedia players Gom and Adrenalin have very similar
functionalities, but the similarity is very low. And the text editors EditPlus
and UltraEdit have almost the same functionalities, similar file sizes and similar
numbers of functions extracted from the binaries. The similarity is near 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

filezilla_2.2.26 * cutftp32_4.0.19

putty_0.58 * SecureCRT_5.5.1

Donkeyhote_2.54 * emule_0.48a

ACDSee_4.0.2 * xnview_1.25a

winamp_5.35 * foobar2000_0.9.4.3

Gom_2.1.6 * Adrenalin_2.2

dvdcopy_2.5.1 * cdrwin39

flashget172 * nettransport241

Editplus_2.1 * UlatraEdit_7.2

Fig. 5. Similarities between programs with the same category

It is remarkable that the similarity between two P2P programs Dongkeyhote
and Emule is very high. In fact, the Dongkeyhote is a clone of Emule. It borrowed
the Emule’s source code and only modified GUIs.

Different Category Programs. We compared programs with different cate-
gories to show that the similarities between totally different programs are suffi-
ciently small.

Figure 6 shows that different category programs have similarities lower than
0.4. Since the programs belong to different category have considerably lower
similarities. We can observe that totally different programs have a small size of

A Static Birthmark of Binary Executables 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

filezilla_2.2.26 * daemon490

filezilla_2.2.26 * winamp_5.35

filezilla_2.2.26 * uedit_v72

daemon490 * uedit_v72

winamp_5.35 * daemon490

winamp_5.35 * uedit_v72

Fig. 6. Similarities between different category programs

similarity. The reason is that Windows applications should use common features
like GUI, file management and networks.

5.2 Resilience

To evaluate resilience of our birthmark, we compiled an open source free hex
editor, fr-hed with Microsoft Visual C++ 6.0 .NET 2003 and .NET 2005 com-
pilers. Table 3 explains that even if compiler changes or compile option changes,
used API calls are almost the same. The number of functions excluding library
is different but the number of functions with API calls is nearly equal.

Table 3. Binaries compiled with various versions of compilers

Number of Number of
Compilers and options File size (bytes) Functions Functions with

excluding Library API Calls

VC++ Debug 409,668 441 218
6.0 Release 317,952 479 221

VC++ Debug 446,464 432 215
.NET 2003 Release 331,776 440 212

VC++ Debug 716,800 534 218
.NET 2005 Release 377,344 453 215

Table 4 shows the similarity results of the resilience experiment using various
compilers. Similarity is always over 0.95 in each combination. So, we concluded
that our birthmark is very resilient to different compilers.

This is not enough to conclude that our birthmark is resilient to the program
transformation. As far as we know, there is one available commercial C/C++
obfuscator named CloakWare security suite[22]. The CloakWare security suite

14 S. Choi et al.

Table 4. Similarities between fr-hed binaries generated by various compilers

VC++ 6.0 VC++ .NET 2003 VC++ .NET 2005
Debug Release Debug Release Debug Release

VC++ Debug 1.0000 0.9823 0.9809 0.9767 0.9694 0.9797
6.0 Release - 1.0000 0.9751 0.9755 0.9590 0.9780

VC++ Debug - - 1.0000 0.9900 0.9793 0.9924
.NET 2003 Release - - - 1.0000 0.9857 0.9977
VC++ Debug - - - - 1.0000 0.9881
.NET 2005 Release - - - - - 1.0000

applies data transformations and control transformations to the original code.
The control transformation used by this tool is control-flow flattening[23] which
makes static analysis of the code almost impossible. But our birthmark is resilient
to the control-flow flattening, because control-flow flattening cannot remove the
API calls.

5.3 Limitations

Our birthmark relies on the API call set. The birthmark of applications which
rarely use the standard API calls like encoders, decoders, scientific application,
etc may be very inaccurate. Birthmarks of these applications should catch the
algorithmic structure of the program. If WPP birthmark [15] could be applied
to binary programs, it will be a good option.

The weak link of our birthmark system is the analysis phase of the binary
executables. We rely on IDAPro about function identification. Since IDAPro
cannot generate precise call graphs if the binary contains function pointers and
virtual calls. It is very hard to resolve virtual calls in binaries. If an unresolved
indirect call like virtual calls exists in a function, the function can point to all
possible functions. Then the API call set of a function may contain almost all
API calls. Virtual call resolution method for binary executables suggested by
Balakrishnan et al.[24] may help to improve the accuracy of our birthmark.

6 Conclusion

In this paper we proposed a novel static birthmarking technique that can help
to identify ownership and similarity of binary executables. We defined the static
API call birthmark of a program as the collection of the k-depth API call set.
The program similarity we defined is the maximum value among all possible
function matching configurations. The problem maximizing the sum of similari-
ties between the functions from program A and the functions from program B is
isomorphic to the weighted X-Y bipartite matching problem. Thus the similar-
ity between two programs was able to be obtained by applying the Hungarian
algorithm.

A Static Birthmark of Binary Executables 15

We evaluated the proposed birthmark by comparing various categories of Win-
dows applications. To show the credibility, the same applications with different
versions are compared. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the similarities
obtained using our birthmark sufficiently indicates the functional and structural
similarities among programs.

In the future, we are planning to extend our method by applying indirect call
resolution. The proposed method could be also applied to Java class files.

References

1. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: local algorithms for document
fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pp. 76–85. ACM Press, New York (2003)

2. Wise, M.: YAP3: improved detection of similarities in computer program and other
texts. In: Proceedings of the twenty-seventh SIGCSE technical symposium on Com-
puter science education, pp. 130–134 (1996)

3. Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of
programs with JPlag. Journal of Universal Computer Science 8(11), 1016–1038
(2002)

4. SABRE BinDiff, http://www.sabre-security.com/products/bindiff.html
5. Using BinDiff for Code theft detection, http://www.sabre-security.com/

products/CodeTheft.pdf
6. Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.: Dynamic

Software Birthmarks to Detect the Theft of Windows Applications. International
Symposium on Future Software Technology 20(22) (2004)

7. Okamoto, K., Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Dynamic
Software Birthmarks Based on API Calls. IEICE Transactions on Information and
Systems 89(8), 1751–1763 (2006)

8. The IDA Pro Disassembler and Debugger, http://www.datarescue.com/idabase
9. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation-

tools for software protection. Software Engineering, IEEE Transactions on 28(8),
735–746 (2002)

10. Collberg, C., Thomborson, C.: Software watermarking: models and dynamic em-
beddings. In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 311–324. ACM Press, New York (1999)

11. Collberg, C., Myles, G., Huntwork, A.: Sandmark-A tool for software protection
research. Security & Privacy Magazine, IEEE 1(4), 40–49 (2003)

12. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Design and evaluation
of birthmarks for detecting theft of java programs. In: Proc. IASTED International
Conference on Software Engineering (IASTED SE 2004), pp. 569–575 (2004)

13. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Java Birthmarks–
Detecting the Software Theft–. IEICE Transactions on Information and Sys-
tems 88(9), 2148–2158 (2005)

14. Myles, G., Collberg, C.: K-gram based software birthmarks. In: Proceedings of the
2005 ACM symposium on Applied computing, pp. 314–318. ACM Press, New York
(2005)

15. Myles, G., Collberg, C.: Detecting software theft via whole program path birth-
marks. Information Security Conference, 404–415 (2004)

http://www.sabre-security.com/products/bindiff.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OMX/cmex/m/n/5 {OT1/cmr/m/n/9 }OMX/cmex/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OMX/cmex/m/n/5 {OT1/cmr/m/n/9 }OMX/cmex/m/n/5 size@update enc@update http://www.sabre-security.com/products/CodeTheft.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.sabre-security.com/products/CodeTheft.pdf
http://www.datarescue.com/idabase

16 S. Choi et al.

16. Myles, G.M.: Software Theft Detection Through Program Identification. PhD the-
sis, Department of Computer Science, The University of Arizona (2006)

17. Larus, J.: Whole program paths. In: Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implementation, pp. 259–269.
ACM Press, New York (1999)

18. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

19. Schuler, D., Dallmeier, V., Lindig, C.: A Dynamic Birthmark for Java. In: Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering

20. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research
Logistics 52(1), 7–21 (2005)

21. Kibria, R.: frhed - free hex editor, http://www.codeproject.com/tools/frhed.asp
22. Cloakware security suite, http://www.cloakware.com/products services/

security suite
23. Wang, C.: A Security Architecture for Survivability Mechanisms. PhD thesis, Uni-

versity of Virginia
24. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. Static

Analysis Symp. (2006)

http://www.codeproject.com/tools/frhed.asp
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.cloakware.com/products_services/security_suite
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.cloakware.com/products_services/security_suite

	A Static Birthmark of Binary Executables Based on API Call Structure
	Introduction
	Related Work
	Static API Call Structure Birthmark
	Software Birthmarks
	Proposed Birthmark
	Calculating Similarity

	Implementation
	Evaluation
	Credibility
	Resilience
	Limitations

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

