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Abstract. We present a reduction semantics for the LYSA calculus ex-
tended with session information, for modelling cryptographic protocols,
and a static analysis for it. If a protocol passes the analysis then it is free
of replay attacks and thus preserves freshness. The analysis has been im-
plemented and applied to a number of protocols, including both original
and corrected version of Needham-Schroeder protocol. The experiment
results show that the analysis is able to capture potential replay attacks.

1 Introduction

Since the 80’s, formal analyses of cryptographic protocols have been widely stud-
ied. Many formal methods have been put forward. Particular significant is the
one built by Dolev and Yao. Indeed, most of the formal analysis tools were built
upon it, e.g. Meadows and Syverson NRL [18], Millen Interrogator [19], Paul-
son inductive method [23], based on Isabelle [24], Blanchet’s Prolog protocol
verifier[2] and BAN logic [7], a logic of authentication used to analyse protocols,
etc. Each tool is equipped to detect a certain amount of attacks, including replay
attacks.

Replay attacks are classified by Syverson in [25] at the highest level as run-
external and run-internal attacks, depending on the origin of messages. In this
paper, we restrict our attention to run-external attacks. This type of attacks
allows the attacker to achieve messages from one run of a protocol, often referred
to as a session, and to send them to a principal participating in another run of
the protocol. A fresh message means that it is not replayed from another session
(old session or parallel session). In BAN logic, reasoning about the freshness
of an entire message amounts to reasoning about the freshness of its fields, i.e.
“if one part of a formula is known to be fresh, then the entire formula must
also be fresh”. We take advantage of the fact that the attacker can manipulate
any message in clear, but it has no direct control on the encrypted messages.
Indeed, in out framework, after each successful decryption, we check whether the
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decrypted message is a replayed one from another session, which is a violation
of freshness property.

Here we extend the LYSA calculus [3,4] with annotations about sessions and
we extend the control flow analysis in [3,4] as well. As expected, the new control
flow analysis soundly over-approximates the behavior of protocols, by tracking
the set of messages that are communicated over the network, and recording the
potential values of variables. Since our analysis is sound, we capture malicious
activities, if any, expressed in terms of annotation violations. Our static analysis
is fully automatic and termination is always guaranteed. The proposed analysis
has been implemented. The resulting tool was applied to some cryptographic
protocols, such as Otway-Rees [22] and Needham-Schroeder [21].

As far as the security properties are concerned, replay attacks on security
protocols can cause authentication and/or confidentiality violations. Besides the
other security properties, e.g. authentication and confidentiality, checked with
the CFA in [3,4] we here are able to address an orthogonal property like fresh-
ness. We analyse the Wide Mouthed Frog protocol and the Needham-Schroeder
protocol, both of which do not achieve freshness property in the presence of a
replay attacker.

The paper is organized as follows. In Section 2, we present the LYSA calculus
annotated with session information. We introduce the control flow analysis in
Section 3. In Section 4 we describe a Dolev-Yao attacker extended to fit into
our particular setting. In section 5, we make some experiments in analysing two
versions of the Needham-Schoreder symmetric key protocol. Section 6 concludes
the paper.

2 A Reduction Semantics for the LYSA Calculus

LYSA [3,4] is a process algebra, in the tradition of the π- [20] and Spi- [1] calculi.
Among its peculiar features, there are: (1) the absence of channels: in LYSA all
processes have only access to a single global communication channel, the ether
and (2) tests associated with input and decryption are expressed using pattern
matching.

2.1 Syntax

LYSA consists of terms and processes. The syntax of terms E and processes P
is given below. Here N and X denote sets of names and variables, respectively.
For the sake of simplicity, we only consider here some basic terms and encryp-
tions. The name n is used to represent keys, challenges and names of principals.
Encryptions are tuples of terms E1, . . . , Ek encrypted under a shared key repre-
sented by the term E0. We assume perfect cryptography in this paper.

E ::= n | x | {E1, . . . , Ek}E0

P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ; xj+1, . . . , xk).P |
decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l

E0
in P |

(ν n)P | P1|P2 | !P | 0
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In addition to the classical constructs for composing processes, LYSA also
contains an input construct with matching and a decryption operation with
matching. The idea behind the matching is as follows: we allow a prefix of the
received tuple to match a selection of values. If the test is passed, the remaining
values are bound to the relevant variables. The label l in the decryption construct
uniquely identifies each decryption point, which is from a numerable set Lab
(l ∈ Lab), and is mechanically attached to processes.

Extended LYSA. We change the syntax of standard LYSA so that each term
and process now carries an identifier of the session it belongs to. In what follows,
we assume that SID is a fixed enumerable set of session identifiers s, and we
denote E1, E2, . . . the extended terms and P , Q, . . . the extended processes defined
below. Note that variables carry no annotation and therefore we shall consider
[x]s and x to be the same (see below). Furthermore, there is no need for the nil
process (0) to carry session information and hence [0]s and 0 are identical.

E ::= [n]s | x | [{E1, . . . , Ek}E0]s
P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ; xj+1, . . . , xk).P |

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l
E0

in P |
(ν [n]s)P | P1|P2 | [!P ]s | 0

We define a function F and a function T , in the style of [9], that map standard
terms and processes into the extended ones, by attaching the session identifiers
inductively. Note that F unwinds the syntactic structure of an extended term
until reaching a basic term (a name or a variable), while T unwinds the structure
of an extended process until reaching a nil (which is untagged) or a replication.

Definition 1. Distributing Session Identifiers

F : E × SID → E

−F(n, s) = [n]s −F(x, s) = x

−F({E1, . . . , Ek}E0 , s) = [{F(E1, s), . . . , F(Ek, s)}F(E0,s)]s

T : P × SID → P

−T (〈E1, . . . , Ek〉.P, s) = 〈F(E1, s), . . . , F(Ek, s)〉.T (P, s)

−T ((E1, . . . , Ej ; xj+1, . . . , xk).P, s) =
(F(E1, s), . . . , F(Ej , s); xj+1, . . . , xk).T (P, s)

−T (decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l
E0

in P, s) =
decrypt F(E, s) as {F(E1, s), . . . , F(Ej , s); xj+1, . . . , xk}l

F(E0,s) in T (P, s)

−T (P | Q, s) = T (P, s) | T (Q, s) −T ((ν n)P, s) = (ν [n]s)T (P, s)

−T (!P, s) = [!P ]s −T (0, s) = 0



A Formal Analysis for Capturing Replay Attacks 153

2.2 Operational Semantics

Below we assume the standard structural congruence ≡ on LYSA processes, as
the least congruence satisfying the following clauses (as usual fn(P ) is the set of
the free names of P ):

P | 0 ≡ P (νx)0 ≡ 0
P | Q ≡ Q | P (νx)(νy)P ≡ (νy)(νx)P
(P | Q) | R ≡ P | (Q | R) (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P )
P ≡ Q if P and Q are α-equivalent

Technically, the addition of session identifiers to the syntax of LYSA means
that it is necessary to carry on the session identifiers to the semantics of values,
i.e. terms without variables. The extended value domain will be referred to as
V al, ranged over by V built from the grammar V ::= [n]s | [{V1, . . . , Vk}V0 ]s
The equivalence relation V1

f
= V2 is defined to be the least equivalence over

V al that (inductively) ignores the session identifers. For example, [n]s
f
= [n]s′

for any s and s′ and [{[n1]s1 , [n2]s2}[n0]s0
]s

f
= [{[n1]s′

1
, [n2]s′

2
}[n0]s′

0
]s′ for any

s, s′, s1, s2, s
′
1 and s2. For the subsequent treatment, it is convenient introducing

an auxiliary operator, I, which extracts the (outermost) session identifier of an
extended value V .

Definition 2. Extracting Session Identifers I: V al → SID

– I([n]s) = s − I([{v1, . . . , vk}v0 ]s) = s

In BAN logic [7], the freshness property is described as “if one part of a formula
is known to be fresh, then the entire formula must also be fresh”, formally

P |≡ �(X)
P |≡ �(X, Y )

Because of the presence of the network attacker, who can manipulate any
message in clear, we shall here only focus on the encrypted messages, which
is not directly under the control of the attacker. Namely, after each successful
decryption, we check whether there is any field of the encrypted tuple such that
its session identifier is the same as expected. This point is made clearer in the
semantics shown below.

Following the tradition of the π-calculus, we shall give the extended LYSA a
reduction semantics. The reduction relation →R is the least relation on closed
processes that satisfies the rules in Table below and uses the standard notion of
substitution, P [V/x] and structural congruence, as defined above.

As far as the semantics is concerned, we consider two variants of reduction
relation →R, identified by a different instantiation of the relation R, which deco-
rates the transition relation. One variant (→RM) takes advantage of annotations,
the other one (→) discards them: essentially, the first semantics checks freshness
of messages, while the other one does not (see below):
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– the reference monitor semantics P →RM Q takes RM(s, s′) = (s = s′)
– the standard semantics P → Q takes, by construction, R to be universally

true.

More specifically, after each successful decryption the reference monitor checks
whether at least one field of the encrypted message is coming from the expected
session, i.e. it is fresh, which makes the entire encryption such.

(Com)
∧j

i=1Vi
f
= V ′

i

〈V1, . . . , Vk〉.P | (V ′
1 , . . . , V ′

j ; xj+1, . . . , xk).P ′

→R P | P ′[V ′
j+1/xj+1, . . . , V

′
k/xk]

(Dec)
∧j

i=0Vi
f
= V ′

i ∧ ∨j
i=1 R(I(Vi), I(V ′

i ))
decrypt {V1, . . . , Vk}V0 as {V ′

1 , . . . , V ′
j ; xj+1, . . . , xk}l

V ′
0

in P
→R P[V ′

j+1/xj+1, . . . , V
′
k/xk]

(Res)
P →R P ′

(ν [n]s)P →R (ν [n]s)P ′ (Repl) [!P ]s →R T (P, s) | [!P ]s′ (s′ is fresh)

(Par)
P1 →R P ′

1

P1 | P2 →R P ′
1 | P2

(Congr)
P ≡ P ′ ∧ T (P ′, s) →R T (P ′′, s)

T (P, s) →R T (P ′′, s)

The rule (Com) expresses that an output 〈V1, . . . , Vj , Vj+1, . . . , Vk〉.P matches
an input (V ′

1 , . . . , V ′
j ; xj+1, . . . , xk) in case the first j values are pairwise equal

(under the equivalence
f
=) when all the annotations are recursively removed.

When the matching is successful each Vi is bound to the corresponding xi. Note
that the equivalence relation

f
= is defined over the extended value domain V al.

Similarly, the rule (Dec) expresses the result of matching an encryption
[{V1, . . . , Vk}V0 ]s with decrypt V as {V ′

1 , . . . , V ′
j ; xj+1, . . . , xk}V ′

0
in P . As it was

the case for communication, the first j values Vi and V ′
i must be equal, and ad-

ditionally the keys must be equal, i.e. V0
f
= V ′

0 . When the matching is successful,
each Vi is bound to the corresponding xi. In the reference monitor semantics we
ensure that the decrypted message comes from the current session by checking
whether any of the first j values Vi and V ′

i have the same session identifiers.
In the standard semantics the disjunction ∨k

i=j+1R(I(Vi), I(V ′
i )) is universally

true and thus can be ignored.
In case of (Repl), the process is unfolded once. Note that the new session iden-

tifier, s′, in this case, has to be unique, i.e. not occurring anywhere else along the
evolution of the process P . This makes sure that each copy of a protocol process
has a unique session identifer such that different copies will not be mixed up.

The rule (Congr) makes use of the function T , which bridges the gap between
the semantics defined on the extended processes P and the structural congruence
defined on the standard processes P .

The rules (Res) and (Par) are standard.
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Following the line of BAN logic, the freshness of a LYSA process is defined as
follows:

Definition 3 (Freshness). A process P ensures freshness property if for all
the possible executions P →∗

R P ′ → P ′′ when P ′ → P ′′ is derived using (Dec)
on

decrypt [{V1, . . . , Vk}V0 ]s as {V ′
1 , . . . , V ′

j ; xj+1, . . . , xk}l
V0

in P
there exists at least one i (1 ≤ i ≤ j) such that I(Vi) = I(V ′

i )

It says that an extended process P ensures freshness property if there is no
violation of the annotations in any of its executions.

2.3 Example

We shall use the simplified version (without timestamps) of the Wide Mouthed
Frog protocol [7] (WMF) for illustrating how to encode protocols in our calculus.
WMF is a symmetric key management protocol aiming at establishing a secret
session key Kab between the two principals A and B sharing secret master keys
KA and KB, respectively, with a trusted server S. The protocol is specified by
the following informal narration:

1. A → S : {B, Kab}KA

2. S → B : {A, Kab}KB

3. B → A : {Msg}Kab

The extended LYSA specification of the WMF protocol is [!P ]0 where P =
(ν KA)(ν KB)(A|B|S) contains three processes A, B and S, running in parallel,
each of them models one principal’s activity, and is as follows:

1. A (ν Kab)
A → 〈A, S, {B, Kab}KA〉.

3′. → A (B, A; z).
3′′. A decrypt z as {; zm}l1

Kab
in 0

2′. → B | (S, B; y).
2′′. B decrypt y as {A; k}l2

KB
in

3. B (ν Msg)
B → 〈B, A, {Msg}k〉.0

1′. → S | (A, S; p).
1′′. S decrypt p as {B; k′}l3

KA
in

2. S → 〈S, B, {A, k′}KB 〉.0

3 Static Analysis

The LYSA calculus is especially designed to model security protocols involving
a number of principals, where each of them execute a sequence of actions, syn-
chronised by communications. Because of interactions, in most of the cases, it is
impossible to predict the exact behaviour of each principal. In this section, we
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present a control flow analysis aiming at collecting the central aspect of the in-
formation of a protocol of interest. This is done by over-approximating at static
time the protocol behaviour along all the execution paths.

3.1 Domain of the Analysis

The control flow analysis describes a protocol behaviour by collecting all the
communications that a process may participate in. This information, i.e. the
tuples of values that maybe communicated over the network, is recorded in an
analysis component κ, i.e. κ ⊆ ℘(V al∗) is the abstract network environment
that includes all the tuples forming a message that may flow on the network.
As said before, successful communications involve pattern matching and variable
binding, i.e. binding values to variables. To collect this information, we introduce
another analysis component ρ : X → ℘(V al) that maps the variables to the sets
of values that they may be bound to.

Name Space. Both the analysis components κ and ρ have to do with recording
values V ∈ V al in some format. However, a LYSA process may generate infinitely
many values during an execution because of the restriction and replication con-
structs, e.g. !(ν n)〈n〉, which means that the analysis components have to be
able to record infinitely many names.

For keeping the analysis component finite, we partition all the names used
by a process into finitely many equivalence classes and we use the names of the
equivalence classes instead of the actual names. This partition works in a way
that names from the same equivalence class are assigned a common canonical
name and consequently there are only finitely many canonical names in any
execution of a given process. This is enforced by assigning the same canonical
name to every name generated by the same restriction. The canonical name �n�
is for a name n; similarly �x� is for a variable x. For example, a process, that may
generate infinitely many names, is !(ν n)P , as shown in the following chain of
equivalences: !(ν n)P ≡ (ν n′)P ′ | !(ν n)P ≡ (ν n′)P ′ | (ν n′′)P ′′ | !(ν n)P ≡ . . .
Furthermore, the names n, n′ and n′′ are generated by the same restriction and
hence have the same canonical name, i.e. �n� = �n′� = �n′′�. Hereafter, when
unambiguous, we shall simply write n (resp. x) for �n� (resp. �x�).

3.2 Analysis of Terms and Processes

For each term E, the analysis will determine a superset of the possible values
it may evaluate to. The judgement for terms takes the form ρ |= E : ϑ where
ϑ ⊆ V al is an acceptable estimate (i.e. a sound over-approximation) of the set
of values that E may evaluate to in the environment ρ. The judgement is defined
by the axioms and rules in the upper part of Table below. Basically, the rules
demand that ϑ contains all the values associated with the components of a term.
In the sequel we shall use two kinds of membership tests: the usual V ∈ ϑ that
simply tests whether V is in the set ϑ and the faithful test V ∝ ϑ that holds
if there is a value V ′ in ϑ that equals V , when the annotations are inductively
ignored.
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The judgement for processes has the form: ρ, κ |=RM P : ψ expressing that
ρ, κ and ψ are valid analysis estimates of process P . The additional component
ψ ⊆ ℘(Lab) is the possibly empty set of error-component which collects an over-
approximation of the freshness violations: a label l ∈ ψ means that the value
binding after a successful decryption, marked with label l, violates the freshness
annotations and therefore is not allowed. We prove in Theorem 2 (in Section
3.1) that when ψ = ∅ we may do without the reference monitor. The judgement
is defined by the axioms and rules in the lower part of Table below (where
A ⇒ B means that B is analysed only when A is true) and are explained below.
Note that we only check whether a proposed triple, (ρ, κ, ψ), is indeed valid; the
algorithm to build solutions is sketched in Section 5.1.

(Name)
[n]s ∈ ϑ

ρ |= [n]s : ϑ
(Var)

ρ(x) ⊆ ϑ

ρ |= x : ϑ

(Enc)

∧k
i=0ρ |= Ei : ϑi ∧

∀V0, . . . , Vk : ∧k
i=0Vi ∈ ϑi ⇒ [{V1, . . . , Vk}V0 ]s ∈ ϑ

ρ |= [{E1, . . . , Ek}E0 ]s : ϑ

(Out)

∧k
i=1ρ |= Ei : ϑi ∧

∀V1, . . . , Vk ∧k
i=1 Vi ∈ ϑi ⇒

〈V1, . . . , Vk〉 ∈ κ ∧ ρ, κ |=RM P : ψ

ρ, κ |=RM 〈E1, . . . , Ek〉.P : ψ

(Inp)

∧j
i=1ρ |= Ei : ϑi ∧

∀〈V1, . . . , Vk〉 ∈ κ : ∧j
i=1Vi ∝ ϑi ⇒

∧k
i=j+1Vi ∈ ρ(xi) ∧ ρ, κ |=RM P : ψ

ρ, κ |=RM (E1, . . . , Ej ; xj+1, . . . , xk).P : ψ

(Dec)

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi∧

∀[{V1, . . . , Vk}V0 ]s ∈ ϑ : ∧j
i=0Vi ∝ ϑi ⇒

(∧k
i=j+1Vi ∈ ρ(xi) ∧ ρ, κ |=RM P : ψ ∧

(� ∃i : 1 ≤ i ≤ k : (I(Vi) = I(Ei)) ⇒ l ∈ ψ))
ρ, κ |=RM decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l

E0
in P : ψ

(Rep)
ρ, κ |=RM T ([P ]s) : ψ ∧ ρ, κ |=RM T ([P ]s′ ) : ψ

ρ, κ |=RM [!P ]s : ψ
(Nil) ρ, κ |=RM 0 : ψ

(Par)
ρ, κ |=RM P : ψ ∧ ρ, κ |=RM Q : ψ

ρ, κ |=RM P | Q : ψ
(Res)

ρ, κ |=RM P : ψ

ρ, κ |=RM (ν[n]s)P : ψ

The rule for output does two things: first, all the expressions are abstractly
evaluated and then it is required that all the combinations of the values found
by this evaluation are recorded in κ. Finally, the continuation process must be
analysed, which is also the case for input and decryption rules.
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The rule for input incorporates pattern matching, which is dealt with by first
abstractly evaluating all the of first j expressions in the input to be the sets ϑi

for i = 1, . . . , j. Next, if any of the sequences of length k in κ are such that the
first j values component-wise are included in ϑi then the match is considered to
be successful. In this case, the remaining values of the k-tuple must be recorded
in ρ as possible bindings of the variables.

The rule for decryption handles the matching similarly to the rule for input.
The only difference is that here the matching is performed also on the key. We
use the faithful test for matching because the semantics ignores the annotations.
After the successful matching, values are bound to the corresponding variables
and, more importantly, the session identifiers of the key and of the first j compo-
nents have to be checked equivalent. In case for some i, I(vi) �= I(Ei), meaning
that not all the values are from the current session, the label of the decryption
l is recorded in the error component ψ.

The rule for replication attaches two different session identifiers to two copies
of the process before analysing both of them. Again the newly generated ses-
sion identifier has to be unique in order not to mix processes up. We prove in
Theorem 2 that it is enough to only analyse two copies of the process. For an
informal argument: a replay attack is about replaying messages from a sessions
to a principal not participating in the session and the control flow analysis treats
sequential sessions and parallel session in the same way, analysing more than two
sessions are not giving more information about attacks.

The rules for the inactive process, parallel composition and restriction are
straightforward.

3.3 Semantic Properties

In this section, we shall show a list of lemmas and theorems concerning the
semantics correctness. The detail proofs are omitted due to space limitations.

Our analysis respects the operational semantics of extended LYSA. More pre-
cisely, we prove a subject reduction result for both the standard and the reference
monitor semantics: if ρ, κ |= P : ψ, then the same triple (ρ, κ, ψ) is a valid esti-
mate for all the states passed through in a computation of P . Additionally, we
show that when the ψ component is empty, then the reference monitor is useless.

It is convenient to prove the following lemmata. The first states that estimates
are resistant to substitution of closed terms for variables, and it holds for both
extended terms and processes. The second lemma says that an estimate for an
extended processes P is valid for every process congruent to P , as well.

Lemma 1. (Substitution)

1. ρ |= E : ϑ and E ′ ∈ ρ(x) imply ρ |= E [E ′/x] : ϑ
2. ρ, κ |= P : ψ and E ∈ ρ(x) imply ρ, κ |= P [E/x] : ψ

Proof. The proofs proceed by structural induction over terms.

Lemma 2. (Congruence)
If P ≡ Q and ρ, κ |= T ([P ]s) : ψ then ρ, κ |= T ([Q]s) : ψ
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Proof. By a straightforward inspection of each of the clauses defining P ≡ Q.

Subject reduction result holds for both the standard and the reference monitor
semantics: if ρ, κ |=RM P : ψ, then the same triple (ρ, κ, ψ) is a valid estimate
for all the derivatives of P .

Theorem 1. (Subject reduction)

1. If P →R Q and ρ, κ |= P : ψ then also ρ, κ |= Q : ψ;
2. Furthermore, if ψ = ∅ then P →RM Q

Proof. The proof is done by induction of the inference of P →R Q.

The next result shows that our analysis correctly predicts when we can safely
dispense with the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q, Q′ such that P →∗

R Q →RM Q′

and P →∗
RM Q �RM. As usual, * stands for the transitive and reflexive closure

of the relation in question, and Q �RM stands for � ∃Q′ : Q →RM Q′.

Theorem 2. (Static check for reference monitor)

If ρ, κ |= P : ∅ then RM cannot abort P.

Proof Suppose per absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P →∗ Q giving ρ, κ |=RM Q : ∅.
Theorem 1 part 2 of applied to Q → Q′ gives Q →RM Q′ which is a contradiction.

3.4 Example

The least solution of the analysis of the WMF protocol and has a non-empty
ψ-component, i.e.

ρ, κ |=RM WMF : ψ

where ρ, κ and ψ have the following entries

ρ : y �→ {{[A]0, [Kab]0}[KB]0 , {[A]1, [Kab]1}[KB]1}
z �→ {{[Msg]0}[Kab]0 , {[Msg]1}[Kab]1}
p �→ {{[B]0, [Kab]0}[KA]0 , {[B]1, [Kab]1}[KA]1}
k �→ {[Kab]0, [Kab]1}
k′ �→ {[Kab]0, [Kab]1}
zm �→ {[Msg]0, [Msg]1}

κ : {〈[A]0, [S]0, [{[B]0, [Kab]0}[KA]0 ]0〉, 〈[A]1, [S]1, [{[B]1, [Kab]1}[KA]1 ]1〉}∪
{〈[B]0, [A]0, [{[Msg]0}[Kab]0 ]0〉, 〈[B]1, [A]1, [{[Msg]1}[Kab]1 ]1〉}∪
{〈[S]0, [B]0, [{[A]0, [Kab]0}[KB]0 ]0〉, 〈[S]1, [B]1, [{[A]1, [Kab]1}[KB]1 ]1〉}

ψ : {l1, l2, l3}
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According the rule for [!P ]s in Table shown before, the analysis makes two
copies of P with different session identifiers (0 and 1 in our case), which models
two sessions running together.

The messages from both sessions are sent over the network, which the attacker
has the total control of. Therefore, the attacher can fool a principal to accept
a message actually coming from another session. This is suggested by the non-
empty ψ: the three variables in ψ indicate that messages in step 1′′, 2′′ and
3′′ may not be fresh. This is highly dangerous because the principal may be
forced to use an old session to encrypt the security data and in case of an old
session key is revealed, confidentiality is not preserved any longer. A possible
attack derivable from the solution above is shown below, where M represents
the attacker:

1. [A]1 → [S]1 : {[B]1, [Kab]1}[KA]1
2. [S]1 → M : {[A]1, [Kab]1}[KB]1

M → [B]1 : {[A]0, [Kab]0}[KB]0
3. [B]1 → [A]1 : {[Msg]1}[Kab]0

4 Modelling the Attackers

In a protocol execution, several principals exchange messages over an open net-
work, which is accessible to the attackers and therefore vulnerable to malicious
behaviour. We assume an active Dolev-Yao attacker [11]. It is active in the sense
that it is not only able to eavesdrop, but also to replay, encrypt, decrypt or gen-
erate messages providing that the necessary information is within his knowledge.

This scenario can be modelled in extended LYSA as an attacker process run-
ning in parallel with the protocol process. Formally, we shall have Psys | Q, where
Psys represents the protocol process and Q is some arbitrary attacker. The at-
tacker acquires its knowledge by interacting with Psys, starting from the public
knowledge. Note that the secret messages and keys, e.g. Kab, are restricted to
their scope in Psys and thus they are not immediately accessible to the attacker.

4.1 Constructing Attacker Process

Our aim consists in finding a general way of constructing the attacker process,
which is able to characterise all the attackers. The idea here is to define a formula,
inspired by the work [3,4], and then to prove its correctness.

In order for the attacker process to interact with the protocol process, some
basic information of the protocol process has to be known in advance. We shall
say that a process Psys has the type (Nf , Aκ, AEnc) whenever: (1) it is close,
(2) all the free names of Psys are in Nf , (3) all the arities used for sending or
receiving are in Aκ and (4) all the arities used for encryption or decryption
are in AEnc. Obviously, Nf , Aκ and AEnc are all finite and can be computed by
inspecting the process Psys.

One concern regarding the attacker process is about the names and variables
it uses, which have to be apart from the ones used by Psys. Let all the names
used by Psys to be in a finite set Nc, all the variables in a finite set Xc and all the
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session identifiers in a finite set Sc; we can then postulate a new extended name
[n•]s• , where n• is not in Nc, a new variable z• not in Xc, and a new session
identifier s• not in Sc.

In order to control the number of names and variables used by the attacker,
we construct a semantically equivalent process Q′, for a process Q of type
(Nf , Aκ, AEnc), as follows: 1) all restrictions (ν[n]s)P are α-converted into re-
strictions (ν[n′]s•)P where n′ has the canonical representative n•, 2) all the
occurrences of variables xi in (E1, . . . , Ej; xj+1, . . . , xk).P and of variables xi in
decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk} in P are α-converted to use variables x′

i

with canonical representative z•. Therefore Q′ only has finitely many canonical
names and variables.

(1) ∧k∈Aκ ∀ 〈v1, . . . , vk〉 ∈ κ : ∧k
i=1 vi ∈ ρ(z•)

the attacker may learn by eavesdropping

(2) ∧k∈AEnc ∀[{v1, . . . , vk}v0 ]s ∈ ρ(z•) :
v0 ∝ ρ(z•) ⇒ ∧k

i=1vi ∈ ρ(z•)
the attacker may learn by decrypting messages with keys already known

(3) ∧k∈AEnc ∀ v0, . . . , vk : ∧k
i=0vi ∈ ρ(z•) ⇒ [{v1, . . . , vk}v0 ]s• ∈ ρ(z•)

the attacker may construct new encryptions using the keys known

(4) ∧k∈Aκ ∀v1, . . . , vk : ∧k
i=1vi ∈ ρ(z•) ⇒ 〈v1, . . . , vk〉 ∈ κ

the attacker may actively forge new communications

(5) {[n•]s•} ∪ Nf ⊆ ρ(z•)
the attacker initially has some knowledge

We now have sufficient control over the capabilities of the attacker. Now, we
extend the standard Dolev-Yao threat model with session identifiers. We express
the extended Dolev-Yao condition for our LYSA calculus and define a formula
FDY

RM of type (Nf , Aκ, AEnc) as the conjunction of the five components in Table
shown above, where each line describes an ability of the attacker. Furthermore,
we claim that the formula FDY

RM is capable of characterising the potential effect
of all attackers Q of type (Nf , Aκ, AEnc).

The soundness of our Dolev-Yao condition is established by the following
Theorem.

Theorem 3. (Correctness of the extended Dolev-Yao condition)

If (ρ, κ) satisfies FDY
RM of type (Nf , Aκ, AEnc) then there exists ψ such that for

all attackers Q of type (Nf , Aκ, AEnc) ρ, κ |=RM Q : ψ

Proof. The proof is done by structural induction on Q.

5 Main Results

The session identifiers in the extended LYSA are designed to make the capture of
replay attacks easier, thus ensuring that the receiving messages are fresh. For the
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dynamic property, we say that Psys guarantees dynamic freshness with respect
to the annotations in Psys if the reference monitor RM cannot abort Psys | Q
regardless of the choice of the attacker Q.

Similarly, for static property we say that Psys guarantees static freshness with
respect to the annotations in Psys if there exists ρ and κ such that ρ, κ |=RM P : ∅
and (ρ, κ) satisfies FDY

RM.

Theorem 4. If P guarantees static freshness then P guarantees dynamic
freshness.

Proof. If ρ, κ |=RM Psys : ∅ and (ρ, κ) satisfies FDY
RM then, by Theorems 2 and 3,

RM does not abort Psys | Q regardless of the choice of attacker Q.

5.1 Implementation and Complexity

To obtain an implementation we transform the analysis into a logically equivalent
formation written in Alternation-free Least Fixed Point logic (ALFP) [12], and
use the Succinct Solver [12], which computes the least interpretation of the
predicate symbols in a given ALFP formula. The time complexity of solving a
formula in the Succinct Solver is polynomial in the size of the universe, over
which the formula is interpreted. For our implementation the universe is linear
in the size of the process and a simple worst-case estimate of the degree of
the complexity polynomial is given as one plus the maximal nesting depth of
quantifiers in the formula. For our current implementation the nesting depth is
governed by the maximal length of the sequences used in the communication
and encryption. In practice, the implementation runs in sub-cubic time and we
obtain running times well in few seconds for all of our experiments.

5.2 Validation of Needham-Schroeder Symmetric Key Protocol

Needham-Schroeder Symmetric Key Protocol is a classical protocol and has been
used widely as an example for protocol verification. The protocol has 6 steps: in
the first steps, a fresh session key K is generated by the trusted server S and sent
to both parties, A and B; in the following two steps, B sends out a challenge to
make sure A is in possession of the new session key. After a protocol run, A and
B share a secret session key for secure communication. The protocol narration
is listed below in the left,

1. A → S : A, B, Na

2. S → A : {Na, B, K, {K, A}Kb
}Ka

3. A → B : {A, K}Kb

4. B → A : {Nb}K

5. A → B : {Nb − 1}K

6. A → B : {Msg}K

the protocol narration

1. A → S : A, B, Na

2. S → A : {Na, B, K, {K, A}Kb
}Ka

3. M(A) → B : {A, K ′}Kb

4. B → M(A) : {Nb}K′

5. M(A) → B : {Nb − 1}K′

6. M(A) → B : {Msg}K′

a replay attack scenario

The analysis result of Needhan-Schroeder Symmetric Key Protocol shows a
violation, meaning that it is subject to a replay attack. This result corresponds
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to the replay attack reported by Denning & Sacco in [10]: the message in step 3
can be replayed with an old compromised session key by an active attacker and
consequently B is forced to use the old key K ′ for communication. An example
trace is shown above in the right.

To fix this problem, Denning & Sacco and Needham & Schroeder proposed
different solutions but both make use of new nonces. Needham & Schroeder’s
solution is: having A ask B for another random value N ′

a to be sent to the Server
for return in {A, N ′

a, K}Kb
. After the correction, the first three steps become the

followings and others keep unchanged.

1. A → S : A, B, Na, N ′
a

2. S → A : {Na, B, K, {A, N ′
a, K}Kb

}Ka

3. M(A) → B : {A, N ′
a, K}Kb

After applying the analysis to the above version, the result becomes: no vio-
lations possible, i.e. ψ = ∅, meaning that the attacker now cannot replay the
message from step 3 and therefore no replay attack is possible to this corrected
version.

6 Conclusion

In this paper we have introduced a sound way to detect replay attacks at static
time. To do that, we extended the standard LYSA calculus with session identifiers
and gave it a reduction semantics. The semantics ensures session identifiers are
properly treated along the evolution of a process. On the static side, we extended
the control flow analysis [3,4] to verify the freshness property of the extended
processes. The static property ensures that, if the secret information received by
a principal is in the right context, then a process is not subject to a run-external
attack at execution time. As far as the attacker is concerned, we adopted the no-
tion from Dolev-Yao threat model and extended it with session identifiers in or-
der to fit it into our setting. The extended Dolev-Yao attacker is able to monitor
the traffic over the network and actively generate messages within his knowledge.
We implemented the analysis and used our tool to check some significant proto-
cols, including classical protocols, e.g. Wide Mouthed Frog, Yahalom, Andrew
Secure RPC, Otway-Rees, Needham-Schroeder, Amended Needham-Schroeder.
Besides the classical protocols, at present, we are successfully applying our analy-
sis to other kinds of protocols, like the ones in the family of IEEE 802.16 [17].
The tool confirmed that we can successfully detect potential replay attacks on
the protocols.

The original LYSA calculus and the control flow analysis [3,4] are designed
to validate authentication property of security protocols. In this paper, they are
extended systematically such that we are able to address an orthogonal property,
freshness. The way we validate freshness is inspired by BAN logic [7], which is
actually a set of rules for defining and analysing security protocols, namely “if
one part of a formula is known to be fresh, then the entire formula must also be
fresh”. We also prove that analysing two copies of a process in our framework is
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sufficient for capturing run-external replay attacks. The experiments conducted
also confirmed this. The literature already has similar results, e.g. Comon &
Cortier [8] and Millen [19].

Several papers deal with replay attacks and freshness. Because of lack of
space, we only mention the closest to ours, i.e. [14,15,16] and [6], where the
approach is based on type (and effects) systems that statically guarantee entity
authentication of protocols. Gordon and Jeffrey [14,15,16] defined type (and
effects) systems that statically guarantee authentication of protocols specified in
a Spi-calculus enriched with assertions à la Woo-Lam. In [6], Bugliesi, Focardi,
Maffei still use a type and effect system, but use a different technique and a
different calculus (the ρ-spi calculus).

The analysis presented in this paper is part of a project, analysing various se-
curity properties of communication protocols using annotations. It can be easily
combined with other kinds of annotations from the same framework, e.g. the one
from [13] for confidentiality, and the one from [5] for simple type flaw attacks,
and hence gives a more comprehensive analysis result.
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