
An Integrated Model for Access Control and
Information Flow Requirements

Samiha Ayed, Nora Cuppens-Boulahia, and Frédéric Cuppens

ENST-Bretagne, Cesson Sevigne 35576, France

Abstract. Current information systems are more and more complex.
They require more interactions between different components and users.
So, ensuring system security must not be limited to using an access con-
trol model but also, it is primordial to deal with information flows in
a system. Thus, an important function of a security policy is to enforce
access to different system elements and supervise information flows simul-
taneously. Several works have been undertaken to join together models of
access control and information flow. Unfortunately, beyond the fact that
the reference model they use is BLP which is quite rigid, these research
works suggest a non integrated models which do nothing but juxtapose
access control and information flow controls or are based on a misuse of
a mapping between MLS and RBAC models. In this paper, we suggest
to formalize DTE model in order to use it as a solution for a flexible
information flow control. Then, we integrate it into an unique access
control model expressive enough to handle access and flow control secu-
rity rules. The expressivity of the OrBAC model makes this integration
possible and quite natural.

Keywords: DTE, OrBAC, MLS, RBAC, Security Policy.

1 Introduction

With diversity of possible attacks on an information system and with the dif-
ferent security properties that we try to ensure, maintaining and guaranteing
system security is being more and more complex task. On the one hand, to pro-
tect a system, we must control all actions done from the beginning until the
end of a user’s sessions. So, a user must be authenticated and must be controlled
when accessing objects. All actions that this user performs in the system have to
be authorized. On the other hand, information systems present multiuser aspects
and they manage interactions between different system parts. These interactions
must be also supervised since they can lead to a misuse of system’s objects or to
a compromising of the system’s integrity. To address these different issues, many
models were proposed to satisfy different security requirements of a system [1].
Thus, there are models which are interested in integrity and confidentiality prop-
erties. Other models are interested in usage control and others in flow control. To
secure a system, more than one model must be used since security requirements
are as various as the diversity of these models. But there is no model that gath-
ers these different security concerns. Workflow Management Systems are a very

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 111–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

eloquent example of systems which need more than one security control model.
Indeed, they not only present a diversity of objects and users but also various
dependencies between different tasks and so between users. Access to the same
object can be needed simultaneously, also writing on documents and modifying
them must conform to the execution order. Moreover, the information flow has
to be checked. All these system constraints have to be managed with a global
security policy. This policy must deal with access and flow control requirements.
Many works were done in order to converge access and information flow control.
Several authors have discussed the relationship between RBAC and MLS lattice
based systems [2–8, 10–12]. All these works are treated in details later. The basic
idea that we retain is that the majority of them are founded on a mapping of
RBAC notions and MLS notions. In these models, subject clearances are used
as security levels to be assigned to roles in a role-based system. Beyond the
limitations of MLS models, we consider that a such correspondence is a misun-
derstanding of MLS notions. We go in further details in the following section.
Thus, the contribution of this paper is twofold. First, we go beyond MLS models
as an example of flow control models. For this purpose, we base our study of
flow control on a more flexible model which is able to permit us defining a flow
control policy far from MLS constraints, say DTE (Domain Type Enforcement)
model [15–17], we take close interest in this model, we explain our proper vision
of it and finally we formalize it in order to use the formalism in defining our
integrated model. Second, using DTE, we are leaded to the obligation of using
contextual rules to express a security policy which manages information flows
and object accesses. So, we propose to base our model on OrBAC model [18, 19]
In OrBAC model, security rules are contextual. This characteristic of OrBAC
security rules is necessary and sufficient to take into account information flows
control. Moreover, OrBAC is able to express confinement aspect, a key concept
in security management of complex systems. The entity organization defined in
OrBAC model allows us to handle this aspect. Combining OrBAC access rules
and a formally stated DTE, we present a different model to integrate access
control and information flow requirements.

The remainder of this paper is organized as follows. Section 2 details related
works. Section 3 provides different motivations of this work. Section 4 clarifies
DTE model and defines our formalism. Section 5 introduces an overview of
the OrBAC model and its components. Our integrated model for access and
information flow control is presented in section 6. Finally, section 7 concludes
the paper and outlines future work.

2 Related Works

Many works have addressed the issue of converging access control and informa-
tion flow requirements. Nyanchama and Osborn have initially addressed the issue
of combining RBAC and Bell-Lapadula (BLP) models in [2]. They examined the
application of information flow analysis to role-based systems. Thus, [2] defines
a flow policy which describes the authorized flows in the system. It classifies

An Integrated Model for Access Control and Information Flow Requirements 113

flows in different categories. Then, during process execution we must derive the
set of flows generated. The two sets are compared to deduce and ensure that a
given role-based scheme is consistent with the specified policy defined with basic
flow axioms. Also, to determine this consistency, [2] uses graph theory to deal
with the issue. It considers the set of roles and the role-based protection scheme
and it draws a graph G1 to represent actual potential flows. A second graph
G2 represents relations between flows defined in relation to the flow policy. It
defines categories as nodes and edges as permissible information flows between
categories. A role-based scheme is consistent with the system security policy if
and only if the former graph is a subgraph of the latter. After this first tentative,
Nyanchama and Osborn have tackled the issue with a different approach in [3].
In fact they introduced the notion of context. A context is viewed as the set
of information accessed via a role. Using this concept, [3] proposes a realization
of mandatory access control in role-based protection. In their formulation, role
contexts are treated as the equivalent of security levels. They consider two con-
cerns. The first is an acyclic information flow among role contexts. The second
is equivalent rules to the simple security property and *-property of traditional
multilevel security. [3] proposes a number of access constraints that would real-
ize the equivalent of BLP rules. Finally, it concludes that in MAC, information
flows must be acyclic. So the approach proposed ensures that information flows,
caused either by role execution or user-role assignment, will be acyclic. In [5]
Osborn was based on Nyanchama model described in [3]. She considers details
of a single role or node and a given edge. Then, the model determines under
what conditions such structures violate MAC constraints. [5] defines a more de-
tailed structure. The new graph contains assignable roles. So it is very restricted
compared to general role graphs. In other words, it is more interesting to analyze
every role and every edge in a general role graph to verify if roles are assignable,
and at what levels they are assignable. Sandhu was also interested in the issue
but he goes in the other direction [4]. His approach represents another vision
of simulating MAC controls in RBAC models. It is based on configuring RBAC
components. It considers similarities between MLS security levels and RBAC
roles. So a role is identified to a level of a login session. Its basic idea is to sup-
pose two hierarchies in RBAC model, one for read and another for write. Thus,
to each user we associate two roles, one for read (RR) and one for write (RW).
Consequently, permissions are divided into groups of read and write privileges
and so they must be assigned separately to RR and RW. [4] examines different
variations of lattice based access controls (LBAC) and translates each of them
into a role hierarchy. It defines a construction using a single pair of roles to ac-
commodate lattices with different variations of the *-property. An extension of
this work is presented in [7] and [10] considering different DAC variations. [7] fo-
cus on the importance of the administrative aspect. An implementation of these
ideas can be found in [8]. In [6], Kuhn uses a construction of a role hierarchy. He
defines an assignment of object categories to privilege sets and an assignment
of categories to roles. So, to each role it assigns the categories associated with
its privilege set and categories associated with privilege sets of its ancestors.

114 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

The first limitation of this work is related to category mapping which must be
regenerated if changes are made in the role structure. The second is that the hi-
erarchy created by the algorithm must be a tree, rather than a lattice hierarchy.
Atluri, huang and bertino have used a convergence between RBAC and MLS to
apply it to WorkFlow Management Systems. They define in [11] and [12] models
of WFMS based in petri nets and they define an RBAC security policy. They
associate levels to different objects used in the system and so to tasks using these
objects. Then, they apply the MLS approach to their model taking into account
different task dependencies. But their approach is localized into a workflow exe-
cution fully secure and partially correct. In other words, the approach does not
enforce all task dependencies. So it can affect functional workflow execution.

Most approaches aiming at integrating access control and information flow
requirements actually combines the RBAC and BLP models. The RBAC model
is used to specify access control requirements by assigning users to roles and
permissions to roles. A user is permitted to perform an access if he has activated
one role this user is assigned to and if this access is permitted by the role.
BLP is the first and mostly used information flow control model. It is based on
the Multilevel security (MLS) policy and is used to prevent a high malicious
subject from creating information flow to lower security levels. For this purpose,
BLP defines two requirements: the simple security property (a subject is only
permitted to read lower classified objects) and the *-property (a subject is only
permitted to modify higher classified objects).

3 Motivation

Various previous works are essentially based on the same idea. They defined
similarities between RBAC and MLS systems. The choice of RBAC is done to
handle access control. Then, an application of MLS levels is done on system roles.
They investigate clearance notion present in MLS systems and they apply it to
roles. Thus, using a mapping between RBAC roles and MLS clearances they as-
sociate a clearance to each role. There is actually nothing wrong with identifying
a role with a clearance level and assigning users to these roles. What is wrong in
these approaches is to apply the BLP principles to the role behavior, especially
the *-property. To illustrate our claim, let us consider an MLS application that
manages classified objects and provides means to declassify or encrypt these
objects. In the RBAC policy, one may consider that users assigned to the role
R secret (corresponding to the secret security level) are permitted to declassify
and encrypt secret objects. Now, let us consider three different scenarios:

1. A user logs in the application at the secret level and attempts to declassify
a secret object.

2. A user logs in the application at the secret level, creates a digest of a secret
object and attempts to declassify this digest.

3. A user logs in the application at the secret level, has an access to a secret
object using a browser and attemps to declassify this object through this
browser.

An Integrated Model for Access Control and Information Flow Requirements 115

We can consider that the first scenario is secure if both the login and declas-
sification functions are trusted (i.e. they do not contain a Trojan Horse) and
the secret object to be declassified has high integrity (i.e. this object has not
been previously manipulated by a malicious application which hid some secret
data the user did not want to declassify). This scenario actually corresponds to a
robust declassification as defined in [9]. Regarding the second scenario, it is also
secure if the application used to create the digest is a trusted function. Finally,
regarding the third scenario, it is not secure if we consider that a browser is
not a trusted application since this browser may call the declassification func-
tion to illegally declassify other objects. Notice that the conclusion would be the
same if we replace declassification by encryption in the third scenario because
a malicious browser could use the fact that an object is encrypted to create an
illegal covert channel. Now if we apply the BLP principles to the role R secret,
then these three scenarios will be considered insecure since they all violate the
*-property principle. This is clearly unsatisfactory. This is why we claim that it
is incorrect to identify roles with clearance levels and then apply the BLP prin-
ciples to these roles. Actually, the BLP principles apply to processes acting on
behalf of users to prevent these processes from creating illegal information flow
when they contain a Trojan Horse. By contrast, roles should define permissions
of user, not of processes. Therefore, all previous works are based on BLP model
to ensure flow control. This model present some weaknesses. Although it is able
to protect a system from trojan horse used to access a document, BLP is unable
to prevent a Trojan horse from altering or destroying data as it permits processes
to write into files they can not read. BLP can not detect covert channels and
remove them. As an MLS model, it is unable to be used to define policies outside
multilevel security, which is not very used in practise because of it restrictions.
To go away from these different constraints and drawbacks, we propose in this
paper to use another model more flexible to control information flows, say DTE.
DTE is presented in the following section. On another side, information flow
are generally conditioned by program executions or generated after a process
execution. For this reason, flow control must be contextual and not exclusively
role dependent. Thus, to specify our integrated model, we choose using OrBAC
model instead of RBAC model since it permits us defining contextual and dy-
namic rules. All the same, OrBAC allows us to express the confinement aspect
as it defines explicitly the authority (organization) who defines and manages
the security policy. So, our security policy is expressed using OrBAC contextual
security rules and integrated DTE concepts. In this way, with the integrated
model we propose, we ensure a fine grained access control and manage a more
flexible information flow which is constrained by strictness of security levels.

4 DTE: Domain Type Enforcement

4.1 DTE Principles

In a system execution, processes dependencies and users interactions include data
exchange. Information flows can be either explicit (as in assignment statements)

116 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

or implicit (as in conditional statements) [13]. It can be due to functional depen-
dency (e.g. x depends on y, hence there is a flow from y to x), or deductive (if
knowing the value of x implies knowing the value of y, hence there is a flow from
y to x) [14]. These data may have different sensitivity levels. So, if no security
mechanism is applied on such exchange, the data transfer between processes may
lead to a leak of confidential information and to a misuse of some documents
or information. To limit the damage that it can be caused, confinement mecha-
nisms have been developed [22, 23]. They are based on the idea of restraining the
privilege access of subjects on objects. So, confinement is to restrict actions of
programs in execution. BLP was the first model which was developed to address
this issue and to deal with flow control. But it has some weaknesses we had
already explained. Away from multilevel security domain, DTE model has been
developed to satisfy security requirements of a system. Since there is no works
which detail all DTE functionalities as they were specified, we propose in this
section to clarify this technique and give our proper vision concerning its con-
cepts. Domain and Type Enforcement (DTE) [15–17] is a technique originally
proposed to protect the integrity of military computer systems and was intended
to be used in conjunction with other access control techniques. As with many
access control schemes, DTE views a system as a collection of active entities
(subjects) and a collection of passive entities (objects) and groups them into
domains and types. This classification not only reduces the size of the access
control matrix but also simplifies the management. DTE defines two tables to
base its access control definition. The first table is a global table called Domain
Definition Table (DDT). It governs the access of domains to types (domain-type
controls). Each row of the DDT represents a domain and each column represents
a type. When a subject attempts to access an object, we must verify the entry
corresponding to the domain of the subject and the type of the object in the
DDT. If the access needed is defined in the matrix then the access is allowed,
if not, the access is denied. The second table is called Domain Interaction Ta-
ble (DIT). It governs the interaction between domains (Inter-domain controls).
Each row and each column of the DIT represents a domain. The intersection
cell denotes the access privilege that the domain corresponding to column pos-
sesses on the domain corresponding to row. To be stronger, DTE has defined
the manner to be used to pass from a domain to another. So, if a subject S
belongs to a domain D1 then it wants to pass to a domain D2, it must refer the
DIT. The intersection of D1 and D2 in DIT should contain an entry indicating
the activity or the program that S must perform to access to D2. This entry is
called the entry point. Thus, each domain has one or many entry points which
consist in programs or activities to invoke by a subject in order to enter this
domain. Any subject belonging to another domain must execute an entry point
of the destination domain to be able to access this domain. When passing from
a domain to another, a subject looses all its privileges of the source domain and
gets a privileges set of destination domain. This notion of entry point makes
the inter-domain communication more strict and precise. Although DTE model
seems simple and enough strong it was not very used as a flow control model.

An Integrated Model for Access Control and Information Flow Requirements 117

[16] presents a DTE integration into a μ-kernel. It suggests to centralize all ac-
cess control decisions in user mode. The μ-kernel uses just a domain abstraction.
Later, a work done in [17] extends the integration of DTE introducing both do-
mains and types into kernel. [24–26] are concerned in using DTE in Unix and
they present examples of DTE policies expressed in DTEL (DTE Language).

To more explain a DTE policy let us consider figure 1. It presents a DTE
policy defined for Unix system. In this specification, Types declares one or more
object types to be available to other parts of a DTEL specification. Domains
declares different domains. Then, a domain specification is expressed as a list of
tuples. It defines a restricted execution environment composed of four parts:

(1) ”entry point” programs, identified by pathname, that a process must ex-
ecute in order to enter the domain (e.g., (/bin/bash)), (2) access rights to types
of objects (e.g., (rwxcd → root t)), (3) access rights to subjects in other do-
mains (e.g., (exec → root d)). A DTEL domain controls a process’s access to
files, a process’s access via signals to processes running in other domains, and a
process’s ability to create processes in other domains by executing their entry
point programs. If a domain A has auto access rights to another domain B, a
subject in A automatically creates a subject in B when it executes, via exec(), an
entry point program of B, and (4) signals exchange between processes of source
and destination domains. Assign associates a type with one or more files.

Policy of figure 1 shows how to protect a system from the wu-ftpd vulnerability
to prevent an attacker from obtaining a root shell. This policy example will be
reused in section 6 to clarify our integrated model.

All Works done around DTE use DTEL to specify the security policy. No
reflection has been undertaken until now to formally define and use DTE model.
A such formalism can be powerful enough to provide expressive security policies.
In this paper, we propose to define a formalism allowing us to define merely a
security policy which takes into account the flow control between system entities.
Afterwards, this formalism must be blended with an access control model in order
to deal with flow and access control simultaneously. This twofold control could
make our security policy more useful and increases assurance that it is correctly
specified. The premise of this formalism is that access control is based on domains
and types. It provides facilities to express relationships between system entities.
Thus we do not define a new model but an integrated one.

4.2 Our DTE Formalism

DTE has not been very much used since it has just inspired the design of some OS
like SELinux. To use DTE as an approach to flow control, we propose to formalize
the model. For this purpose let us introduce the following formal definitions.
Definition 1: (domain) S is a set of all system subjects (active entities). S is
divided into equivalence classes. Each class represents a domain D including a
set of subjects having the same role in the system.
Definition 2: (type) O is a set of all system objects (passive entities). O is
divided into equivalence classes. Each class represents a type T including a set
of objects having the same integrity properties in the system.

118 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

Definition 3: (Entry Point) An entry point is a program or an activity which
must be executed to pass from a domain D1 to a domain D2, denoted EP(D1,
D2) or EP1,2. An entry point implies two rules:

– subjects passing from D1 to D2 obtain a set of privileges depending on the
entry point they execute,

– subjects passing from D1 to D2 loose all their D1 privileges.

The first rule means that the execution of an entry point defines the set of priv-
ileges that subjects will obtain when transiting from a domain D1 to a domain
D2. These privileges are included into or equal to the set of privileges that D2
subjects have. Each domain can have more than one entry point. The execution
of these different entry points implies different privilege sets. The second rule
means that if a subject leaves a domain it can not return to it only by executing
one of its entry points.

� ftpd protection policy1
types root t login t user t spool t binary t lib t passwd t shadow t dev t config t ftpd t ftpd xt w t2
domains root d login d user d ftpd d3
default d root d4
default et root t5
default ut root t6
default rt root t7
spec domain root d (/bin/bash sbin/init /bin/su) (rwxcd→root t rwxcd→spool t rwcdx→user t rwdc→ftpd t8
rxd→lib t rxd→binary t rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rwxcd→config t rwxcd→w t)
(auto→login d auto→ftpd d) (0→0)
spec domain login d (/bin/login /bin/login.dte) (rxd→root t rwxcd→spool t rxd→lib t rxd→binary t9
rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rxwd→config t rwxcd→w t) (exec→root d exec→user d)
(14→0 17→0)
spec domain user d (/bin/bash /bin/tcsh) (rwxcd→user t rwxd→root t rwxcd→spool t rxd→lib t10
rxd→binary t rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rxd→config t rwxcd→w t) (exec→root d)
(14→0 17→0)
spec domain ftpd d (/usr/sbin/in.ftpd) (rwcd→ftpd t rd→user t rd→root t rxd→lib t r→passwd t11
r→shadow t rwcd→dev t rd→config t rdx→ftpd xt rwcd→w t d→sppol t) () (14→root d 17→root d)
assign -u /home user t12
assign -u /tmp spool t13
assign -u /var spool t14
assign -u /dev dev t15
assign -u /scratch user t16
assign -r /usr/src/linux user t17
assign -u /usr/sbin binary t18
assign -e /usr/sbin/in.ftpd ftpd xt19
assign -r /home/ftp/bin ftpd xt20
assign -e /var/run/ftp.pids-all ftpd t21

Fig. 1. Sample DTE policy file

If we suppose the following DDT and DIT:

T1 T2 T3

D1 true false true
D2 false false true
D3 false true false

D1 D2 D3

D1 – EP1,2 –
D2 EP2,1 – EP2,3

D3 – – –

DDT entries, true and false, indicate if the domain has an access to different
types or not. DIT entries define the entry points must be executed to transit from
a domain to another. If we consider that a subject s belonging to the domain
D1 want to accede an object o belonging to T2, it will refer to the DDT. s has
no access to T2, but consulting DDT and DIT it can find a manner to accede

An Integrated Model for Access Control and Information Flow Requirements 119

T2. In fact, D3 has access to T2 and s has an entry point allowing it to accede
D2. Also, the DIT present an entry point from D2 to D3. So, to accede o, s must
execute EP1,2 to pass to D2 then it must execute EP2,3 to pass to D3. Being in
D3, s obtain privileges allowing it acceding o since DDT contains an entry from
D3 to T2. This path that s construct to accede o is called ”confidence path”.
The following definition gives a formal definition of ”confidence path”.

Definition 4: (confidence path) is a set of entry points < EPi,k, EPk,l, . . . ,
EPm,j> which must be executed by a subject s to pass from Di to Dj in order to
obtain access to object to which it has not initially the access. Privileges granted
through this confidence path are restricted to minimum privileges required to
perform the access needed.

The DTE formalism is based on two kinds of rules expressing and substituting
DDT and DIT. These two rules are formally defined in the following.

Definition 5: (SR DDT) is a security rule substituting a DDT entry. It is
defined as a 4-uplet : SR DDT = (rule type, domain, type, privilege) where
Rule type belongs to {permission, prohibition}.
An instance of this rule can be: SR DDT = (Permission, professor, exam, change)
meaning that only professors have privileges to change exams.

So, we express a DDT as a set of rules defined according to definition 5.

Definition 6:(SR DIT) is a security rule substituting a DIT entry. It is de-
fined as a 4-uplet: SR DIT = (rule type, domain1, domain2, entry point) where
Rule type belongs to {permission, prohibition}.
An instance of this rule can be: SR DIT = (Permission, engineering, http d,
/usr/bin/httpd) meaning that engineers have permission to pass from engineer-
ing domain to http d domain by executing the program /usr/bin/httpd. When
transiting to http d, engineers obtain a set of http d privileges defined by the
execution of the entry point and they loose all privileges of source domain.

D 1

D 2

D 3

T 1 : - R e a d
 - Wr i te

 - Execute

T 2 : - R e a d
 - Wr i te

T 3 : - R e a d

Type access

Domain interaction

E (2)

E (1)
2,1

2,1

E
3,2

E
2,3

Fig. 2. Sample of a graphic system topology

120 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

As an example of a DTE policy, let us consider the figure 2. It presents a sys-
tem consisting of three domains D1, D2 and D3. These domains have different
accesses to three object types T1, T2 and T3. Also, they have interactions be-
tween them defined through different entry points. We remark that D1 has two
entry points. In the system specification we can suppose that EP2,1(1) grants
read and execute privileges to D2 subjects and EP2,1(2) grants write privilege
to D2 subjects. Table 1 summarizes the DTE policy corresponding to figure 2.

Thus, we define our DTE control flow policy as a set of SR DDT and SR DIT
rules. Such policy satisfies information flow requirements. Our integrated model
uses this policy to deal with information flow control. We choose to base our
model on OrBAC model as it is enough expressive and it allows us to integrate
our flow control policy using access control rules. OrBAC offers context notion
which permits us to define dynamic rules and to express our control flow policy
using these rules. The sequel gives an overview of OrBAC and how we use it.

Table 1. DTE policy corresponding to figure 2

SR DDT SR DIT
(Permission, D1, T1, Read) (Permission, D2, D1, E2,1(1))
(Permission, D1, T1, Write) (Permission, D2, D1, E2,1(2))

(Permission, D1, T1, Execute) (Permission, D2, D3, E2,3)
(Permission, D1, T2, Read) (Permission, D3, D2, E3,2)
(Permission, D1, T2, Write)
(Permission, D2, T2, Read)
(Permission, D2, T2, Write)
(Permission, D3, T3, Read)

5 OrBAC in Brief

In order to specify a security policy, the OrBAC model [18, 19] defines sev-
eral entities and relations. It first introduces the concept of organization which
is central in OrBAC. An organization is any active entity that is responsible
for managing a security policy. Each organization can define its proper pol-
icy using OrBAC. Then, instead of modeling the policy by using the concrete
implementation-related concepts of subject, action and object, the OrBAC model
suggests reasoning with the roles that subjects, actions or objects are assigned to
in an organization. The role of a subject is simply called a role as in the RBAC
model. The role of an action is called activity and the role of an object is called
view. Each organization can then define security rules which specify that some
roles are permitted or prohibited to carry out some activities on some views.
Particularly, an organization can be structured in many sub organizations, each
one having its own policy. It is also possible to define a generic security policy
in the root organization. Its sub organizations will inherit from its security pol-
icy. Also, they can add or delete some rules and so, define their proper policy.

An Integrated Model for Access Control and Information Flow Requirements 121

The definition of an organization and the hierarchy of its sub organizations
facilitate the administration [20]. The security rules do not apply statically but
their activation may depend on contextual conditions [21]. For this purpose, the
concept of context is explicitly included in OrBAC. Contexts are used to express
different types of extra conditions or constraints that control activation of rules
expressed in the access control policy. So, using formalism based on first order
logic, security rules are modeled using a 6-places predicate.

Definition 7: an OrBAC security rule is defined as: security rule (type, or-
ganization, role, activity, view, context) where type ∈ {permission, prohibition,
obligation}. An example of this security rule can be: security rule (permission,
a hosp, nurse, consult, medical record, urgency) meaning that, in organization
a hosp, a nurse is permitted to consult a medical record in the context of urgency.

6 Access and Information Flow Control Convergence

In this section, we present our integrated model for access control and informa-
tion flow requirements. The model is based on OrBAC to express access control
and it is enriched with a DTE approach to express information flow control. This
convergence let us considering only one model (our proposed model) to specify
security policy of a system. Finally, we exemplify the model.

6.1 Access Control Policy

OrBAC defines contextual rules which can depend on different contexts. These
contexts can be related to conditions or circumstances under which a rule is valid
or an activity is performed. If we observe SR DDT and OrBAC rules we can
deduce that the former are expressed by the latter using a default context. The
default context is expressed in OrBAC as a context which is always true. So rules
with such context are always valid. In fact, role, activity and view significance in
OrBAC match respectively domain, privilege and type significance in DTE. So,
an SR DDT rule can be easily expressed using an OrBAC rule. This is a quite
natural result as SR DDT rules are specific access control rules. Further, OrBAC
gives the possibility to define more fine access control rules than DDT in DTE
can do since it presents different types of contexts. Indeed, with different OrBAC
contexts we can express diverse conditions and temporal constraints. Thus, we
can formulate dynamic and expressive rules which can not be expressed just by
using DTE. That is why we have not choose DTE formalism to express both
access an flow controls, otherwise we get a static integrated model with respect
to access control aspects.

6.2 Information Flow Control Policy

As we have presented, OrBAC is an efficient model to express access control rules.
So, it will be very useful if we succeed to express access and flow control using the
same model. Our DTE formalism offers SR DIT rules to define information flow

122 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

control policy. But as we aforementioned, DTE is not very efficient in expressing
access control, whereas OrBAC is. In the sequel, we present our approach to
define our integrated model based on OrBAC and using a DTE approach. We
suppose, due to space limitation, that this policy is closed meaning that all which
is not permitted is denied and we do not deal with obligations.

Based on an OrBAC rule, SR DIT [SR DIT = (rule type, domain1, domain2,
entry point)] can be seen as a particular OrBAC rule. This rule must express the
transition between different domains and must introduce entry point notion in
order to preserve a secure information flows and to keep DTE aspects. Therefore,
to consider this particular rule we suppose the following hypotheses: (1) the
source domain is considered as the role in the OrBAC rule (we have already said
that the two notions have equivalent significances), (2) the destination domain
is considered as the view in OrBAC rule, (3) the transition between two domains
can be expressed as an OrBAC activity since the basic role of this specific rule is
to handle interactions between domains. So, we define the OrBAC activity as an
Enter activity, (4) the entry point defines the manner to enter a domain. Thus,
we can consider it as a condition of rule validation. Therefore, an entry point
can be defined as a specific context in an OrBAC rule denoted through(Ei,j).
This context specifies that the rule is valid only through Ei,j execution.

Thus, such a rule is expressed, in a specific organization org and handling
transition between D1 and D2, as follows: SR (permission, org, D1, Enter, D2,
through(E1,2)). These flow control rules can be enriched with other OrBAC
contexts. Indeed, through(Ei,j) context can be used in conjunction with different
OrBAC contexts, for example temporal contexts, to express more restrictive or
conditioned flow control. Also, We recall that a transition from a domain D1 to
a domain D2 is possible only if there is the corresponding rule in the policy. In
other words, handling domains interactions does not contain prohibitions. This
interaction is allowed only if there is a corresponding permission. Such transitions
between domains correspond, in our integrated formalism ”access control/flow
control”, to a context change. Since transiting to another domain corresponds
to the activation of a new context, new rules will be activated. These rules are
those for which this context is valid. This dynamic management of the security
policy and the closed policy hypothesis guarantee the loose of source domain
privileges during transition. New granted privileges are defined according to the
entry point executed. The entity organization is useful to control the flow in the
inter-organizational environment. This will be developed in a forthcoming paper.

6.3 Example

To exemplify our proposed model, let us reconsider figure 1. Using our integrated
model, line 9 is expressed as the following rules set. We suppose that we are in
Unix system organization.

1. (permission, Unix, login d, rxd, root t ,default)
2. (permission, Unix, login d, rwxcd, spool t ,default)
3. (permission, Unix, login d, rxd, lib t ,default)

An Integrated Model for Access Control and Information Flow Requirements 123

4. (permission, Unix, login d, rxd, binary t ,default)
5. (permission, Unix, login d, rwxcd, passwd t ,default)
6. (permission, Unix, login d, rxwcd, shadow t ,default)
7. (permission, Unix, login d, rwxcd, dev t ,default)
8. (permission, Unix, login d, rxwd, config t ,default)
9. (permission, Unix, login d, rwxcd, w t ,default)

10. (permission, Unix, login d, Enter, root d, through(exec()))
11. (permission, Unix, login d, Enter, user d, through(exec()))

The rules 1-9 express the access control policy. Rules 10 and 11 handle inter-
actions between login d and root d, user d. The whole set of these rules presents
the security policy corresponding to line 9 of the first example in figure 1 of the
section 4.1. This policy is based on OrBAC rules enriched with DTE approach.
It is expressed using only one form of rules. If we consider for instance the first
rule, ”rxd” indicates the activity allowed by this rule. We use this notation just
to simplify and reduce the list of security rules. In fact, ”rxd” corresponds to
three privilege activities: read (r), execute (x) and destroy (d). Thus, this rule
corresponds to three rules in the policy. For the two last rules, the activity field
contains ”Enter” which specifies permitted transitions between domains since
they are flow control rules. In this example we use the ”default” context when
expressing access control rules. This context implies no conditions on the activ-
ity performance. Such choice is done to simplify the example. Other contexts,
such temporal contexts, can be used in conjunction to ”default” context or to
”through” context. ”through” context is used in flow control rules to express the
manner to enter corresponding domains. Transiting into root d and user d do-
mains is released when executing exec() which activates one of the entry points
defined for root d and user d respectively: (/bin/bash, /sbin/init, /bin/su) or
(/bin/bash, /bin/tcsh). These entry points define privileges granted to login d
subjects migrating to root d or user d. Different domains used here are specified
corresponding to our specification done in definition 1 of section 4.2. We remark
that in this example login d is used as a role in access control rules and root d
and user d are used as views in information flow control rules. But, they can be
used as domains in other access control rules. According to this policy, login d
has no access to the type user t. If a login d’s subject requires an access to ob-
jects of this type, he must transit to root d or user d which have access to this
type (see figure 1, lines 8 and 10). So, our integrated model ensure the aspect of
”confidence path” defined in DTE formalism (see definition 4 of section 4.2).

7 Conclusion

In this paper, we have presented an integrated security model that is capable
of taking into account information flow and access control. The security policy
is based on OrBAC rules which integrate flow control using a DTE approach.
OrBAC is an adequate choice since it permits us to define contextual and dy-
namic rules. Also, it is enough expressive to be able to integrate information

124 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

flow control. The organization notion present in OrBAC allows to express con-
finement. Our approach remedies to weaknesses present in previous approaches
based on MLS and RBAC models. In this paper, we have considered information
flow control into the same organization. As part of future work, we will consider
a more complex case where we supervise inter-organization flows. Indeed, orga-
nizations must exchange flows to have knowledge of what is happening globally
in the system. These flows have to be managed in order to keep a secure exe-
cution environment of processes. Also, we intend to apply our integrated model
to Workflow Management Systems (WFMS). This is a critical issue since such
systems present a very important need of security. In fact, they present multi
users aspects, inter-dependent execution and dynamic progression. The confine-
ment aspect that the organization entity express will be very useful to define the
inter-organization policy.

Acknowledgment

This work is partially supported by the RNRT project Polux.

References

1. Sandhu, R.S.: Lattice-Based Access Control Models. IEEE Computer 26(11), 9–19
(1993)

2. Nyanchama, M., Osborn, S.: Information Flow Analysis in Role-Based Security
Systems. In: Proc. ICCI 1994. International Conference on Computing and Infor-
mation, pp. 1368–1384 (1994)

3. Nyanchama, M., Osborn, S.: Modeling Mandatory Access Control in Role-Based
Security Systems. In: IFIP Workshop on Database Security (1996)

4. Sandhu, R.: Role Hierarchies and Constraints for Lattice-Based Access Controls.
In: Proc. Fourth European Symposium on Research in Computer Security, Rome,
Italy (1996)

5. Osborn, S.: Mandatory Access Control and Role-Based Access Control Revisited.
In: Proceedings of the second ACM workshop on Role-based access control, Fairfax,
Virginia, United States, pp. 31–40 (1997)

6. Kuhn, D.R.: Role Based Access control on MLS Systems without Kernel changes.
In: Proceedings of the third ACM Workshop on Role-Based Access Control, Fairfax,
Virginia, United States, pp. 25–32 (1998)

7. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access control Policies. ACM Transactions
on Information and System Security 3(2), 85–106 (2000)

8. Demurjian, S.: Implementation of Mandatory Access control in Role-Based Security
System. CSE367 Final Project report (2001)

9. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In:
Proc. IEEE Computer Security Foundations Workshop, pp. 172–186 (June 2004)

10. Sandhu, R., Munawer, Q.: How to do discretionary access control using roles. In:
Proc. of the 3rd ACM Workshop on Role Based Access Control (RBAC 1998),
Fairfax, VA, USA (1998)

An Integrated Model for Access Control and Information Flow Requirements 125

11. Atluri, V., Huang, W.-K.: Enforcing Mandatory and Discretionary security in
Workflow Management Systems. Journal of Computer Security 5(4), 303–339
(1997)

12. Atluri, V., Huang, W.-K., Bertino, E.: A semantic Based Execution Model for
Multilevel Secure Workflows. Journal of Computer Security 8(1) (2000)

13. Liu, L.: On secure Flow Analysis in Computer systems. In: Proc. IEEE Symposium
on Research in Security and Privacy, pp. 22–33 (1980)

14. Millen, J.K.: Information Flow Analysis of Formal Specifications. In: Proc. IEEE
Symposium on Research in Security and Privacy, pp. 3–8 (1981)

15. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical
Domain and Type Enforcement for Unix. In: IEEE Symposium on Security and
Privacy, Oakland, CA, USA (1995)

16. Tidswell, J., Potter, J.: Domain and Type Enforcement in a μ-Kemel. In: Proceed-
ings of the 20th Australasian Computer Science Conference, Sydney, Australia
(1997)

17. Kiszka, J., Wagner, B.: Domain and Type Enforcement for Real-Time Operating
Systems. In: Proceedings ETFA 2003, Emerging Technologies and Factory Au-
tomation (2003)

18. Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miége, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, Lake Come, Italy (2003)

19. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miége, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust (FAST), Toulouse, France (2004)

20. Cuppens, F., Cuppens-Boulahia, N., Miége, A.: Inheritance hierarchies in the Or-
BAC model and application in a network environment. In: Second Foundations of
Computer Security Workshop (FCS 2004), Turku, Finlande (2004)

21. Cuppens, F., Miége, A.: Modelling contexts in the Or-BAC model. In: 19th Annual
Computer Security Applications Conference, Las Vegas (2003)

22. Boebert, W.E., Kain, R.Y.: A further Note on the Confinment Problem. In: Pro-
ceedings of the IEEE 1996 International Carnahan Conference on Security Tech-
nology, IEEE Computer Society, New York (1996)

23. Boebert, W.E., Kain, R.Y., Young, W.D.: The extended Access Matrix Model of
Computer Security. ACM Sigsoft Software Engineering Notes 10(4) (1985)

24. Hallyn, S., Kearns, P.: Tools to Administer Domain and Type Enforcement. LISA
XV. San Diego, CA (2001)

25. Oostendorp, K.A., Badger, L., Vance, C.D., Morrison, W.G., Petkac, M.J., Sher-
man, D.L., Sterne, D.F.: Domain and Type Enforcement Firewalls. In: Proceedings
of the Thirteenth Annual Computer Security Applications Conference, San Diego,
California, pp. 122–132 (1997)

26. Walker, K.M., Sterne, D.F., Lee Badger, M., Petkac, M.J., Shermann, D.L., Oos-
tendorp, K.A.: Confining Root Programs with Domain and Type Enforcement
(DTE). In: Proceedings of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography, San Jose, California, vol. 6 (1996)

	An Integrated Model for Access Control and Information Flow Requirements
	Introduction
	Related Works
	Motivation
	DTE: Domain Type Enforcement
	DTE Principles
	Our DTE Formalism

	OrBAC in Brief
	Access and Information Flow Control Convergence
	Access Control Policy
	Information Flow Control Policy
	Example

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

