

Lecture Notes in Computer Science 4846
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Iliano Cervesato (Ed.)

Advances in
Computer Science –
ASIAN 2007

Computer and Network Security

12th Asian Computing Science Conference
Doha, Qatar, December 9-11, 2007
Proceedings

13

Volume Editor

Iliano Cervesato
Carnegie Mellon University
Doha, Qatar
E-mail: iliano@cmu.edu

Library of Congress Control Number: 2007939450

CR Subject Classification (1998): F.3, E.3, D.2.4, D.4.6-7, K.6.5, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-76927-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76927-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12195626 06/3180 5 4 3 2 1 0

Preface

The ASIAN conference series provides a forum for researchers throughout Asia to
present cutting-edge results in yearly-themed areas of computer science, to discuss
advances in these fields, and to promote interaction with researchers from other
continents. Accordingly, the conference moves every year to a different center of re-
search throughout Asia: previous editions were held in Tokyo, Kunming (China),
Bangkok, Mumbai, Hanoi, Penang (Malaysia), Phuket (Thailand), Manila,
Kathmandu, Singapore, and Pathumthani (Thailand) where ASIAN was initiated
by AIT, INRIA and UNU/IIST in 1995. The 12th edition took place in Doha,
Qatar, during December 9–11, 2007.

Each year, the conference focuses on a different theme at the cutting edge
of computer science research. The theme of ASIAN 2007 was “Computer and
Network Security”. It has been a tradition of ASIAN to invite three of the
most influential researchers in the focus area, one from Asia, one from Europe
and one from the Americas, to discuss their work and their vision for the field.
This year’s distinguished speakers were Andrei Sabelfeld (Chalmers University,
Sweden), Joshua Guttman (MITRE, USA) and Kazuhiko Kato (University of
Tsukuba, Japan).

Following the call for paper, ASIAN 2007 received 112 submissions, of which
65 were eventually reviewed. Of these, the Program Committee selected 15 regu-
lar papers and 10 short papers. This volume contains the abstracts of the invited
talks and the revised versions of the regular papers and the short papers. I wish
to thank the members of the Program Committee and the external reviewers
for doing an excellent job at selecting the contributed papers under severe time
pressure. EasyChair proved an egregious platform for smoothly carrying out all
aspects of the program selection and finalization.

The conference was held in Doha, Qatar, where Carnegie Mellon University
recently established a branch campus with the goal of promoting the same high
standards of research and education for which its original campus in
Pittsburgh, USA, is internationally recognized. Carnegie Mellon Qatar is lo-
cated in Education City, a 2,500-acre campus which provides state-of-the-art
research and teaching facilities to branches of five of the world’s leading uni-
versities. It is part of an unprecedented commitment of resources made by the
Qatari leadership to position Qatar as a world-class center of education and
research.

Many people were involved in the organization of this conference. In particu-
lar, I wish to thank the General Chair, Kazunori Ueda, for his support, and the
Steering Committee for endorsing the candidacy of Doha for this year’s edition
of ASIAN. This conference would not have been possible without the hard work
of the many people who relentlessly handled the local arrangements, especially
Thierry Sans and Kara Nesimiuk. We greatly appreciate the generous support

VI Preface

of our sponsors, Carnegie Mellon University in Qatar and QCERT. Finally we
are grateful to the authors, the invited speakers and the attendees who made
this conference an enjoyable and fruitful event.

September 2007 Iliano Cervesato

Conference Organization

Steering Committee

Philippe Codognet (French Embassy, Japan)
Joxan Jaffar (National University, Singapore)
Mitsu Okada (Keio Univerity, Japan)
R.K. Shyamasundar (Tata Institute of Fundamental Research, India)
Kazunori Ueda (Waseda University, Japan)

General Chair

Kazunori Ueda (Waseda University, Japan)

Program Chair

Iliano Cervesato (Carnegie Mellon University, Qatar)

Program Committee

Michael Backes (Saarland University, Germany)
Anupam Datta (Stanford University, USA)
Mourad Debbabi (Concordia University, Canada)
Sven Dietrich (CERT, USA)
Masami Hagiya (University of Tokyo, Japan)
Yassine Lakhnech (VERIMAG, France)
Ninghui Li (Purdue University, USA)
Catherine Meadows (Naval Research Lab, USA)
R. Ramanujam (Institute of Mathematical Sciences, India)
Takamichi Saito (Meiji University, Japan)
Dheeraj Sanghi (IIT Kanpur, India)
Thierry Sans (Carnegie Mellon University, Qatar)
Andre Scedrov (University of Pennsylvania, USA)
Vitaly Shmatikov (University of Texas-Austin, USA)
Duminda Wijesekera (George Mason University, USA)
Yuqing Zhang (Chinese Academy of Sciences, China)
Jianying Zhou (Institute for Infocomm Research, Singapore)

Local Organization

Thierry Sans (Carnegie Mellon University, Qatar)

VIII Organization

External Reviewers

Kumar Avijit
Vishwas B.C.
Adam Barth
A. Baskar
Justin Brickell
Judicaël Courant
Shruti Dubey
Markus Dürmuth
Jason Franklin
Yoshinobu Kawabe
Dilsun Kaynar
Ken Mano
Azzam Mourad
Hadi Otrok
Iosif Radu
Arun Raghavan
Arnab Roy
Hideki Sakurada
Mohamed Saleh
Satyam Sharma
S.P. Suresh
Yasuyuki Tsukada

Table of Contents

Invited Speaker: Andrei Sabelfeld

Dimensions of Declassification in Theory and Practice (Invited Talk) . . . 1
Andrei Sabelfeld

Session 1: Program Security

A Static Birthmark of Binary Executables Based on API
Call Structure . 2

Seokwoo Choi, Heewan Park, Hyun-il Lim, and Taisook Han

Compiling C Programs into a Strongly Typed Assembly Language 17
Takahiro Kosakai, Toshiyuki Maeda, and Akinori Yonezawa

Information Flow Testing: The Third Path Towards Confidentiality
Guarantee . 33

Gurvan Le Guernic

Session 2: Short Papers on Computer Security

Large Scale Simulation of Tor: Modelling a Global Passive Adversary . . . 48
Gavin O’Gorman and Stephen Blott

Privacy Enhancing Credentials . 55
Junji Nakazato, Lihua Wang, and Akihiro Yamamura

Browser Based Agile E-Voting System . 62
Sriperumbuduru Kandala Simhalu and Keiji Takeda

Risk Balance in Exchange Protocols . 70
Mohammad Torabi Dashti and Yanjing Wang

Scalable DRM System for Media Portability . 78
Hyoungshick Kim

Computational Semantics for Basic Protocol Logic – A Stochastic
Approach . 86

Gergei Bana, Koji Hasebe, and Mitsuhiro Okada

Session 3: Access Control

Management Advantages of Object Classification in Role-Based Access
Control (RBAC) . 95

Mohammad Jafari and Mohammad Fathian

X Table of Contents

An Integrated Model for Access Control and Information Flow
Requirements . 111

Samiha Ayed, Nora Cuppens-Boulahia, and Frédéric Cuppens

Digital Rights Management Using a Master Control Device 126
Imad M. Abbadi

Invited Speaker: Joshua Guttman

How to do Things with Cryptographic Protocols (Invited Talk) 142
Joshua D. Guttman

Session 4: Protocols

A Formal Analysis for Capturing Replay Attacks in Cryptographic
Protocols . 150

Han Gao, Chiara Bodei, Pierpaolo Degano, and Hanne Riis Nielson

An Abstraction and Refinement Framework for Verifying Security
Protocols Based on Logic Programming . 166

MengJun Li, Ti Zhou, ZhouJun Li, and HuoWang Chen

Secure Verification of Location Claims with Simultaneous Distance
Modification . 181

Vitaly Shmatikov and Ming-Hsiu Wang

Invited Speaker: Kazuhiko Kato

Modeling and Virtualization for Secure Computing Environments
(Invited Talk) . 196

Kazuhiko Kato

Session 5: Intrusion Detection

Empirical Study of the Impact of Metasploit-Related Attacks in 4
Years of Attack Traces . 198

E. Ramirez-Silva and M. Dacier

A Logical Framework for Evaluating Network Resilience Against Faults
and Attacks . 212

Elie Bursztein and Jean Goubault-Larrecq

Masquerade Detection Based Upon GUI User Profiling in
Linux Systems . 228

Wilson Naik Bhukya, Suneel Kumar Kommuru, and Atul Negi

Table of Contents XI

Session 6: Short Papers on Network Security

One-Time Receiver Address in IPv6 for Protecting Unlinkability 240
Atsushi Sakurai, Takashi Minohara, Ryota Sato, and
Keisuke Mizutani

A Comprehensive Approach to Detect Unknown Attacks Via Intrusion
Detection Alerts . 247

Jungsuk Song, Hayato Ohba, Hiroki Takakura, Yasuo Okabe,
Kenji Ohira, and Yongjin Kwon

Combining Heterogeneous Classifiers for Network Intrusion Detection . . . 254
Ali Borji

Managing Uncertainty in Access Control Decisions in Distributed
Autonomous Collaborative Environments . 261

Petros Belsis, Stefanos Gritzalis, Christos Skourlas, and
Vassilis Tsoukalas

Session 7: Safe Execution

On Run-Time Enforcement of Policies . 268
Harshit Shah and R.K. Shyamasundar

Static vs Dynamic Typing for Access Control in Pi-Calculus 282
Michele Bugliesi, Damiano Macedonio, and Sabina Rossi

A Sandbox with a Dynamic Policy Based on Execution Contexts of
Applications . 297

Tomohiro Shioya, Yoshihiro Oyama, and Hideya Iwasaki

Author Index . 313

Dimensions of Declassification in Theory and Practice

Andrei Sabelfeld

Dept. of Computer Science and Engineering, Chalmers University of Technology
412 96 Gothenburg, Sweden

Abstract. Computing systems often deliberately release (or declassify) sensi-
tive information. A principal security concern for systems permitting information
release is whether this release is safe: is it possible that the attacker compro-
mises the information release mechanism and extracts more secret information
than intended? While the security community has recognized the importance of
the problem, the state-of-the-art in information release is, unfortunately, a num-
ber of approaches with somewhat unconnected semantic goals. We provide a road
map of the main directions of current research, by classifying the basic goals ac-
cording to what information is released, who releases information, where in the
system information is released, and when information can be released. We apply
this classification in order to evaluate the security of a case study realized in a
security-typed language: an implementation of a non-trivial cryptographic proto-
col that allows playing online poker without a trusted third party. In addition, we
identify some prudent principles of declassification. These principles shed light
on existing definitions and may also serve as useful “sanity checks” for emerging
models.

The talk is based on joint work, in part, with David Sands, and, in part, with
Aslan Askarov.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Static Birthmark of Binary Executables Based

on API Call Structure�

Seokwoo Choi, Heewan Park, Hyun-il Lim, and Taisook Han

Division of Computer Science and
Advanced Information Technology Research Center(AITrc).

Korea Advanced Institute of Science and Technology
{swchoi,hwpark,hilim}@pllab.kaist.ac.kr, han@cs.kaist.ac.kr

Abstract. A software birthmark is a unique characteristic of a pro-
gram that can be used as a software theft detection. In this paper we
suggest and empirically evaluate a static birthmark of binary executables
based on API call structure. The program properties employed in this
birthmark are functions and standard API calls when the functions are
executed. The API calls from a function includes the API calls explicitly
found from the function and its descendants within limited depth in the
call graph. To statically identify functions, call graphs and API calls, we
utilizes IDAPro disassembler and its plug-ins. We define the similarity
between two functions as the proportion of the number of all API calls
to the number of the common API calls. The similarity between two pro-
grams is obtained by the maximum weight bipartite matching between
two programs using the function similarity matrix. To show the cred-
ibility of the proposed techniques, we compare the same applications
with different versions and the various types of applications which in-
clude text editors, picture viewers, multimedia players, P2P applications
and ftp clients. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the
similarities obtained using our birthmark sufficiently indicates the func-
tional and structural similarities among programs.

Keyword: software piracy, software birthmark, binary analysis.

1 Introduction

Recently a large amount of software is developed in the form of open source
projects. Most open source projects contain software licenses. A widely used
software license for open source software is the GNU Public License(GPL). The
GPL allows developers to use software freely, but requires new projects using
the original work to be licensed under the GPL. There are also more permissive
software licenses like the MIT license and the BSD licenses which allow the origi-
nal source code to be combined in commercial software. The permissive licenses,
however, require the copyright notice of the original software to be included.
� This work was supported by the Korea Science and Engineering Foundation

(KOSEF) through the Advanced Information Technology Research Center(AITrc).

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Static Birthmark of Binary Executables 3

There have been reported that many companies use open source software for
commercial purpose without permission. To detect code theft when source code
is available, we can utilize well-known plagiarism detection tools like MOSS,
JPlag and YAP [1,2,3]. Suppose that source code under the GPL is contained in
commercial software, which is distributed in compiled binaries without indicat-
ing the copyright notice of the original software. In this case, we need to prove
whether the open source code is used or not in the binary executables. Software
birthmarking is one of the techniques to solve such software theft problems.

A software birthmark is unique characteristics of a program that can be used
to identify the program. If program p and q have the same or very similar birth-
mark, q is very likely to be a stolen copy of p (and vice versa). Comparing the
strings analyzed from binary executables can be a easy birthmarking technique.
In this case, a set of strings is a birthmark. Sometimes comparing the structures
of binaries can be a good birthmark technique. For example, SabreSecurity Bin-
Diff effectively found similarities between two MacOS emulators named Cher-
ryOS and PearPC[4,5]. Tamada et al. suggested a dynamic software birthmark
for Windows applications using Win32 API function call sequences [6,7]. Dy-
namic birthmarks extract program properties from a program execution trace
when a sequence of input is given, while static birthmarks extract properties
only from the program itself.

In this paper we propose a new static birthmarking technique that can help
to identify ownership and similarity of binary executables. Program properties
used as our birthmark are summaries extracted from each binary function in
a program. The summary of each function is a set of possible standard API
calls when the function is executed. We statically identify API function calls by
analyzing disassembled code which is generated by IDAPro disassembler[8]. A
similarity between two functions is calculated by comparing API call sets of two
functions. A similarity between two programs is obtained by matching problem.

We evaluate the proposed birthmark by comparing various categories of Win-
dows applications. To show the credibility, the same applications with different
versions are compared. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the similarities
obtained using our birthmark sufficiently indicate the functional and structural
similarities among programs.

2 Related Work

There are three major threats against the intellectual property contained in
software. Software piracy is the illegal use, duplication or reselling of legally
protected software. Software tampering is the illegal modification of software
to gain control over restricted code or digital media protected by the software.
Malicious reverse engineering is the extracting of a piece of a program in order
to reuse it in one’s own. To deal with these threats, several techniques have
been explored, for example, software watermarking to deal with piracy, code
obfuscation to deter reverse engineering, and software tamper-proofing [9].

4 S. Choi et al.

Software watermarking is a well-known technique used to provide a way to
prove ownership of stolen software. Software watermarking systems embed wa-
termarks in software and recognize the watermarks. Software watermark can
be either static or dynamic [10,11]. Unfortunately, watermarking is not always
feasible because it requires software developers to embed a watermark before
releasing the software.

Software birthmarking is a technique that identifies the inherent character-
istics occurring in a program by chance. Unlike software watermarks, software
birthmarks do not embed additional code or identifier. Instead a birthmark re-
lies on an inherent characteristic of the application to show that one program is
a copy of another. The result of comparing two programs with software birth-
marking is similarities between two programs. With the similarities, we are able
to say that one program is a copy of another, totally or in part.

Tamada et al. [12,13] suggested the first practical application of static soft-
ware birthmarks to identify the theft of programs. This technique is specific to
Java class files which is a combination of four individual birthmarks: constant
values in field variables(CVFV), sequence of method calls(SMC), inheritance
structure(IS), and used classes(UC). These four birthmarks could be used indi-
vidually but the combination makes this technique more reliable. Their experi-
ment with several sample programs shows that the proposed birthmarks identify
a class within a program with high precision, but can easily be confused by sev-
eral obfuscation techniques.

Tamada et al. [6,7] introduced dynamic birthmarks and proposed two birth-
marks based on the trace of system calls for Windows programs. The dynamic
birthmarks are the sequence and frequency of API function calls during ex-
ecution of software. They claim that these birthmarks are reasonably robust
against program transformations. The credibility of this birthmark highly relies
on user interactions, inputs and system environments. To avoid this weakness,
they highly restricted inputs and user interactions in the experiments.

Myles et al. proposed a k-gram based static birthmark [14]. They adopted k-
gram, which have been previously used to detect similarity between documents,
as their birthmark for Java applications. The k-gram birthmark is the set of
unique opcode sequence of length k. For each method in a module they com-
pute the set of unique k-grams by sliding a window of length k over the static
instruction sequence. k-gram based birthmark is precise, but highly susceptible
to program transformations. They evaluated this birthmarking techniques with
several tiny Java programs.

Myles et al. [15,16] proposed the concept of another dynamic birthmark
known as Whole Program Path(WPP) birthmark. A WPP is a directed acyclic
graph(DAG) representation of a context-free grammar that generates a pro-
gram’s acyclic path [17]. To get WPP, dynamic trace of a program is obtained
by instrumentation, and the trace is compressed into a DAG using SEQUITUR
algorithm. They used WPP as their birthmarks and computed similarity between
two birthmarks using a graph distance for maximal common subgraph [18]. They
experimented WPP birthmarking technique with a few tiny Java programs. The

A Static Birthmark of Binary Executables 5

result shows that the credibility and the resilience of the WPP birthmark is
between the static Java birthmark of Tamada et al. and k-gram birthmark.

Shuler and Dallmeier[19] presented a dynamic birthmarking technique based
on the API call sequence sets during program execution. The result of this birth-
mark, like Tamada’s, is also highly dependent on user interactions, inputs and
environments. They improved their reliability by limiting windows length to 5,
like k-gram. They evaluated this birthmark on image processing programs and
XML processors. This birthmarking technique can be applied to more realistic
applications compared to Myles’s birthmarking technique.

3 Static API Call Structure Birthmark

3.1 Software Birthmarks

Tamada et al.[13] and Myles et al.[14] formally defined a birthmark of a software
using copy relations. The followings are the definition of birthmark by Myles
et al.

Definition 1 (Birthmark). Let p, q be programs. Let f be a method for ex-
tracting a set of characteristics from a program. Then f(p) is called a birthmark
of p iff:
1. f(p)is obtained only from p itself (without any extra information), and
2. q is a copy of p ⇒ f(p) = f(q).

Condition 1 explains the main difference between watermarking and birthmark-
ing. A birthmark extracts characteristics only from the program itself, while a
watermark extracts extra copyright information which is previously embedded
by authors or program distributors. Condition 2 means that if p and q are in
copy relation, the birthmark of p and the birthmark of q is the same. In this
definition, the meaning of copy implies not only the exact duplication but also
the semantics preserving transformation. But when we say the semantics are pre-
served, we do not mean that the two implementations with the same specification
have the same birthmark. The terms are introduced to require the birthmark
to be resilient to the obfuscation transformation to avoid theft detection. Thus
a good birthmark value should not change after a slight semantics preserving
modification of the program.

The following properties are restatements of those of Tamada et al. [13] and
Myles[15]. These properties suggest two evaluation criteria which a birthmark
should meet.

Property 1 (Distinction). Let p and q be programs with the same functionality.
If p and q are implemented independently, then f(p) �= f(q).

Property 2 (Preservation). For p′ obtained from p by any program transforma-
tion, f(p) = f(p′) holds.

6 S. Choi et al.

Property 1 explains the distinction property. The distinction property com-
plements Condition 2 of the birthmark definition. It is a criteria related to the
possibility of false positives. It means that a good birthmark should catch copy
relations well, while it should not falsely say two independently implemented
programs with the same functionality are copy.

Property 2 is concerned with the resilience of a birthmark. If a copied code
is transformed by compilers, optimizers or obfuscators, the appearance of the
transformed code, which is in binary executables in this work, is different from
the original code. If a birthmark is resilient to program transformations, it should
only catch the inherent properties of the programs.

3.2 Proposed Birthmark

Microsoft Windows applications normally use the Windows API which offers
essential libraries for developing Windows applications. The Windows API con-
sists of functional categories which are system managements, diagnostics, graph-
ics, multimedia, networking, security, system services, and user interfaces. Since
Windows applications exploit Windows OS capabilities via the Windows API
calls, the API calls are hard to be replaced. The API calls reflect the function-
alities of a program, that is, the inherent characteristics of the program. If we
can analyze the API call patterns correctly, we can use the patterns as a good
birthmark of a program.

Previous birthmark research on Windows binaries [6,7] utilized dynamic API
call sequences by hooking the executable file. The dynamic API call sequence
only shows API call patterns for a given execution trace. The resulting birth-
marks are dependent on inputs, user interactions and system environments. Fur-
thermore it cannot cover whole program path. If given inputs do not lead the
execution to the theft codes, the dynamic birthmarking cannot give us a mean-
ingful answer. We here suggest a static birthmarking using Windows API calls.
The proposed birthmarking technique analyzes whole part of given programs.
Therefore it can catch the containment of the theft code. To compare two bina-
ries we use assembly codes generated by IDAPro disassembler. We can also get
function information, branch instructions and external calls from IDAPro.

Our birthmark is defined using API call set. We can also consider multisets
instead of API call set since we have call graphs. Multisets reflects API call
structure more precisely, while they are vulnerable to program transformation
like inlinng or wrapping of functions. Inlining occurs when compiler optimizes,
and wrapping often occurs when compiled with debug option. For this reason,
we currently considers only sets of API calls.

Definition 2 (API Call Set). API call set of a function is a collection of
possible standard API calls that the function can invoke when the function is
executed.

According to the definition of API call set, the API call set of the main function
covers all API calls that the program can reach. We simplify the API call set
using call depth.

A Static Birthmark of Binary Executables 7

Definition 3 (k-depth API Call Set). Let k be a integer (with k ≥ 0). The
k-depth API call set of a function is a collection of all possible standard API
calls gathered from functions having call depths within k.

A k-depth API call set of a function is a subset of API call set of the function.
By limiting call depths, though we lose a little precision, we can calculate API
call sets in reasonable time. Our experiment showed that the call depth as small
as 2 or 3 sufficiently estimates the properties of functions.

Our static API call structure birthmark for a program is defined as follows.

Definition 4 (Static API Call Structure Birthmark). Given API call sets
for each function of a program, a static API call structure birthmark of the
program is the collection of all API call sets.

3.3 Calculating Similarity

To calculate similarity by the proposed birthmark, we first calculate all similari-
ties between functions. A Similarity between two functions is defined as follows.

Definition 5 (Function Similarity). Let SA and SB be sets of standard API
call sets of function A and function B. Similarity between two functions is defined
as

simf (A, B) =
2 |SA ∩ SB|
|SA| + |SB|

where |SA| is the cardinality of SA, |SB| is the cardinality of SB, and |SA ∩ SB|
is the cardinality of common API calls of SA and SB.

The similarity function measures the fraction of common calls over all standard
API calls. If two functions are identical, the similarity between the functions be-
comes 1. If the two functions have no API calls in common, the similarity value
become 0. Figure 1 illustrates matching between functions. According to Defin-
ition 5, the similarity between foo and joo is 2/3, and the similarity between
goo and koo is 3/4.

We want to match functions between two programs such that the grand total
of the similarities has a maximum value. We compute similarities between all
possible pairs of functions between two programs. After the similarity calcula-
tion, we can get a |A| by |B| similarity matrix where A and B are the set of
functions in each program. With the similarity matrix, we compute the program
similarity. We define a program similarity as follows.

Definition 6 (Program Similarity). Let P1, P2 be programs, |P1| and |P2|
be numbers of functions in P1 and P2. We define the program similarity between
P1 and P2 as

simp(P1, P2) =
2

∑
(A,B)∈match(P1,P2) simf (A, B)

|P1| + |P2|
where match(P1, P2) is a set of matched functions between P1 and P2.

8 S. Choi et al.

CreateEllipticRgn
GetWindowsDirectory

MessageBox

CreateEllipticRgn
GetWindowsDirectory

MessageBox

CreateEllipticRgn
GetWindowsDirectory

WinExec

CreateEllipticRgn
GetSystemMetrics

GetWindowsDirectory
MessageBox
WinExec

foo

goo

joo

koo

Fig. 1. Matching functions to compute similarity

The program similarity we defined is the maximum value among all possible
function matching configurations. The problem maximizing the sum of similari-
ties between the functions from program P1 and the functions from program P2
is isomorphic to the weighted X −Y bipartite matching problem. Each function
corresponds to each node. The functions from P1 belong to the partition X of the
bipartite graph, and the functions from P2 belong to Y . Matching from a function
from P1 with a function from B corresponds to inserting an edge from a node in
X to a node in Y . Similarities between two functions correspond to weights of
edges. To find a maximum matching, we use the Hungarian algorithm[20] which
solve the problem in polynomial time. The time complexity of the Hungarian
algorithm is O(n3). Since the algorithm by default performs minimization, we
use the difference matrix of which each element has a difference value instead of
a similarity. A difference value is 1−similarity. The program similarity obtained
by the Hungarian algorithm is the maximal similarity between two programs.

4 Implementation

Figure 2 shows the structure of the static API Call birthmark system. This
system operates as follows.

Step1: Generating idb file

IDAPro generates the IDA database file(.idb) by disassembling and analyzing
the binary executable of sample program. We use IDAPro 5.1 for front-end.

Step2: Generating database file

Database file(.db) is generated from idb file using IDA2SQLite3 plug-in. This
plug-in stores initial analysis result from IDAPro in sqlite3 database format for
future use. Stored item includes program information such as function name,
start address of that function, call graphs, assembly codes, etc.

A Static Birthmark of Binary Executables 9

Fig. 2. The architecture of static API call structure birthmark system

Step3: Extracting function, API call, and Mapping table

Function table, API call table and function mapping table are obtained from
the sqlite3 database file. Function table contains information about the function
name, start address of the function, and library flag, etc. API call table con-
tains API call instructions used in each functions. Mapping table contains the
call relation between functions in the program. This program is developed with
python 2.5 and pysqlite 2.3.3.

Step4: Calculating program similarity

This routine calculates program similarities using the information of function
table, API call table, and function table. From the information of tables, function
call graph is generated and set of API calls which can be used in each function
is collected. As function call depth increases, each function collects API names
of functions that are reachable from the function in the call graph. In this way,
as function call depth increases, the number of APIs included in function is also
increased. After forwarding APIs by predefined call depth k, API differences
between every function in each program are calculated and API difference matrix
is constructed. The maximum similarity value is calculated from this matrix
using the Hungarian method. Similarity calculation program is implemented in
C++. To check function matching result, call graphs with matching information
is generated in DOT format. DOT file is translated into SVG(scalable vector
graphic) format. Resulting SVG file can be displayed using SVG Viewers.

10 S. Choi et al.

5 Evaluation

To evaluate the effectiveness of our static API Call birthmark, we conduct two
experiments here. The first experiment evaluates credibility of our proposed
birthmarks. The second experiment measures resilience of the birthmark against
different compilers. To evaluate credibility, we chose some programs in various
categories like text editors, FTP clients, Terminals, etc. Sample programs are
listed in Table 1.

Table 1. Sample programs

Category Program 1 Versions Program 2 Versions

Text Editors UltraEdit 7.0 / 7.2 Edit Plus 2.0 / 2.1

FTP clients FileZilla 2.2.14 / 2.2.26 CuteFTP32 3.5.4 / 4.0.19

Terminals Putty 0.56 / 0.58 SecureCRT 5.5.0 / 5.5.1

P2P clients Dongkeyhote 2.40 / 2.54 Emule 0.45b / 0.47c

Graphic Tools ACDSee 4.01 / 4.02 xnView 1.21 / 1.25a

MP3 Players Winamp 5.23 / 5.35 Foobar2000 0.9.1 / 0.9.4

Video Players GOM Player 2.0.0 / 2.1.6 Adrenalin 2.1 / 2.2

CD Burners CDRWin 3.8 / 3.9 DVDCopy 2.2.6 / 2.5.1

Download Managers Flashget 1.6.5 / 1.7.2 NetTransport 2.3.0 / 2.4.1

Disk Image Emulators Daemon 4.3.0 / 4.9.0 CD Space 5.0

To evaluate resilience, we chose open source hex editor frhed [21] and Microsoft
Visual C++ 6.0, .NET 2003 and .NET 2005 compilers.

To verify the effectiveness of our static API call structure birthmark, we ex-
amined API call distributions of sample programs. Figure 3 shows that more
than 100 functions have at least one API calls. z-axis represents each program.
This result shows that the API call structure reflects the unique characteristics
of programs.

Table 2 shows that the similarities of programs are changed by call depth. As
call depth increases, the similarity decreases in most cases while the accuracy
increases. We should limit call depth to compute API call set in reasonable time.
Given the call depth k and the number of nodes n, the time complexity to find
k-depth API call set for all functions is O(k n2). Our experiment showed that the
call depth as small as 2 or 3 will sufficiently estimates the properties of functions.
Hereafter our experiments are evaluated using 3-depth API call sets.

5.1 Credibility

Different Versions of Same Programs. To evaluate credibility of our birth-
mark, we compared different versions of same programs. Figure 5 shows that
similarities between the same programs with a little different versions are over
0.7. In general a minor upgraded version of software shares almost all code from
the previous version. This can be restated that the new version copied most

A Static Birthmark of Binary Executables 11

0

100

200

300

400

500

600

700

800

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31 33 48

ACDSee4.02

Adrenalin_2.2

cdrwin39

cutftp32_4.0.19

Donkeyhote_2.54

dvdcopy_2.5.1

Editplus_2.1

emule_0.47c

filezilla_2.2.26

flashget172

foobar2000_0.9.4.3

GOM_2.1.6

nettransport241

putty_0.58

SecureCRT_5.5.1

UlatraEdit_7.2

winamp_5.35

xnview_1.25a

of API Calls

of functions

Fig. 3. API call distributions of sample programs

Table 2. Similarities with various call depth

0 1 2 3 4 5

cutftp32 3.5.4 / cutftp32 4.0.19 0.9180 0.8993 0.8959 0.8948 0.8960 0.8969

filezilla 2.2.14 /filezilla 2.2.26 0.9058 0.8755 0.8522 0.8400 0.8340 0.8323

UltraEdit 7.0 / UltraEdit 7.2 0.9704 0.9151 0.8537 0.8464 0.8381 0.8278

filezilla 2.2.26 / cutftp32 4.0.19 0.4875 0.3865 0.3278 0.3186 0.3115 0.3091

filezilla 2.2.26 / UltraEdit 7.2 0.3574 0.3079 0.2773 0.2710 0.2702 0.2676

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cutftp32_3.5.4 * cutftp32_4.0.19

filezilla_2.2.14 * filezilla_2.2.26

putty0.56 * putty_0.58

SecureCRT_5.5.0.371 * SecureCRT_5.5.1

Donkeyhote_2.40 * Donkeyhote_2.54

emule_0.45b * emule_0.47c

ACDSee4.01 * ACDSee4.02

xnview_1.21 * xnview_1.25a

foobar2000_0.9.1 * foobar2000_0.9.4.3

winamp_5.23 * winamp_5.35

GOM_2.0.0 * GOM_2.1.6

Adrenalin_2.1 * Adrenalin_2.2

cdrwin38 * cdrwin39

dvdcopy_2.2.6 * dvdcopy_2.5.1

flashget165 * flashget172

nettransport230 * nettransport241

Editplus_2.0 * Editplus_2.1

UlatraEdit_7.0 * UlatraEdit_7.2

Fig. 4. Similarities between same programs with different versions

12 S. Choi et al.

part from the previous version. Then the similarity between the old version and
the new version is considered to be as large as the proportion of the common
code over the whole code. The result shows that our birthmark is sufficiently
reflecting the program functionalities.

Similar Category Programs. We compared programs in same categories to
prove the distinction property. Even if two programs are in similar category, the
similarity is not always high enough. The number of functions is different and
each program uses different API calls. Suppose that there are different programs
with the same functionalities. They may use almost same APIs because they
have the same functionalities. The distinction property says that the similarities
should be different when they are implemented independently.

Figure 5 supports that our birthmarking technique suffices distinction prop-
erty. For example, the multimedia players Gom and Adrenalin have very similar
functionalities, but the similarity is very low. And the text editors EditPlus
and UltraEdit have almost the same functionalities, similar file sizes and similar
numbers of functions extracted from the binaries. The similarity is near 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

filezilla_2.2.26 * cutftp32_4.0.19

putty_0.58 * SecureCRT_5.5.1

Donkeyhote_2.54 * emule_0.48a

ACDSee_4.0.2 * xnview_1.25a

winamp_5.35 * foobar2000_0.9.4.3

Gom_2.1.6 * Adrenalin_2.2

dvdcopy_2.5.1 * cdrwin39

flashget172 * nettransport241

Editplus_2.1 * UlatraEdit_7.2

Fig. 5. Similarities between programs with the same category

It is remarkable that the similarity between two P2P programs Dongkeyhote
and Emule is very high. In fact, the Dongkeyhote is a clone of Emule. It borrowed
the Emule’s source code and only modified GUIs.

Different Category Programs. We compared programs with different cate-
gories to show that the similarities between totally different programs are suffi-
ciently small.

Figure 6 shows that different category programs have similarities lower than
0.4. Since the programs belong to different category have considerably lower
similarities. We can observe that totally different programs have a small size of

A Static Birthmark of Binary Executables 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

filezilla_2.2.26 * daemon490

filezilla_2.2.26 * winamp_5.35

filezilla_2.2.26 * uedit_v72

daemon490 * uedit_v72

winamp_5.35 * daemon490

winamp_5.35 * uedit_v72

Fig. 6. Similarities between different category programs

similarity. The reason is that Windows applications should use common features
like GUI, file management and networks.

5.2 Resilience

To evaluate resilience of our birthmark, we compiled an open source free hex
editor, fr-hed with Microsoft Visual C++ 6.0 .NET 2003 and .NET 2005 com-
pilers. Table 3 explains that even if compiler changes or compile option changes,
used API calls are almost the same. The number of functions excluding library
is different but the number of functions with API calls is nearly equal.

Table 3. Binaries compiled with various versions of compilers

Number of Number of
Compilers and options File size (bytes) Functions Functions with

excluding Library API Calls

VC++ Debug 409,668 441 218
6.0 Release 317,952 479 221

VC++ Debug 446,464 432 215
.NET 2003 Release 331,776 440 212

VC++ Debug 716,800 534 218
.NET 2005 Release 377,344 453 215

Table 4 shows the similarity results of the resilience experiment using various
compilers. Similarity is always over 0.95 in each combination. So, we concluded
that our birthmark is very resilient to different compilers.

This is not enough to conclude that our birthmark is resilient to the program
transformation. As far as we know, there is one available commercial C/C++
obfuscator named CloakWare security suite[22]. The CloakWare security suite

14 S. Choi et al.

Table 4. Similarities between fr-hed binaries generated by various compilers

VC++ 6.0 VC++ .NET 2003 VC++ .NET 2005
Debug Release Debug Release Debug Release

VC++ Debug 1.0000 0.9823 0.9809 0.9767 0.9694 0.9797
6.0 Release - 1.0000 0.9751 0.9755 0.9590 0.9780

VC++ Debug - - 1.0000 0.9900 0.9793 0.9924
.NET 2003 Release - - - 1.0000 0.9857 0.9977

VC++ Debug - - - - 1.0000 0.9881
.NET 2005 Release - - - - - 1.0000

applies data transformations and control transformations to the original code.
The control transformation used by this tool is control-flow flattening[23] which
makes static analysis of the code almost impossible. But our birthmark is resilient
to the control-flow flattening, because control-flow flattening cannot remove the
API calls.

5.3 Limitations

Our birthmark relies on the API call set. The birthmark of applications which
rarely use the standard API calls like encoders, decoders, scientific application,
etc may be very inaccurate. Birthmarks of these applications should catch the
algorithmic structure of the program. If WPP birthmark [15] could be applied
to binary programs, it will be a good option.

The weak link of our birthmark system is the analysis phase of the binary
executables. We rely on IDAPro about function identification. Since IDAPro
cannot generate precise call graphs if the binary contains function pointers and
virtual calls. It is very hard to resolve virtual calls in binaries. If an unresolved
indirect call like virtual calls exists in a function, the function can point to all
possible functions. Then the API call set of a function may contain almost all
API calls. Virtual call resolution method for binary executables suggested by
Balakrishnan et al.[24] may help to improve the accuracy of our birthmark.

6 Conclusion

In this paper we proposed a novel static birthmarking technique that can help
to identify ownership and similarity of binary executables. We defined the static
API call birthmark of a program as the collection of the k-depth API call set.
The program similarity we defined is the maximum value among all possible
function matching configurations. The problem maximizing the sum of similari-
ties between the functions from program A and the functions from program B is
isomorphic to the weighted X-Y bipartite matching problem. Thus the similar-
ity between two programs was able to be obtained by applying the Hungarian
algorithm.

A Static Birthmark of Binary Executables 15

We evaluated the proposed birthmark by comparing various categories of Win-
dows applications. To show the credibility, the same applications with different
versions are compared. To show the resilience, we compare binary executables
compiled from various compilers. The empirical result shows that the similarities
obtained using our birthmark sufficiently indicates the functional and structural
similarities among programs.

In the future, we are planning to extend our method by applying indirect call
resolution. The proposed method could be also applied to Java class files.

References

1. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: local algorithms for document
fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pp. 76–85. ACM Press, New York (2003)

2. Wise, M.: YAP3: improved detection of similarities in computer program and other
texts. In: Proceedings of the twenty-seventh SIGCSE technical symposium on Com-
puter science education, pp. 130–134 (1996)

3. Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of
programs with JPlag. Journal of Universal Computer Science 8(11), 1016–1038
(2002)

4. SABRE BinDiff, http://www.sabre-security.com/products/bindiff.html
5. Using BinDiff for Code theft detection, http://www.sabre-security.com/

products/CodeTheft.pdf
6. Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.: Dynamic

Software Birthmarks to Detect the Theft of Windows Applications. International
Symposium on Future Software Technology 20(22) (2004)

7. Okamoto, K., Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Dynamic
Software Birthmarks Based on API Calls. IEICE Transactions on Information and
Systems 89(8), 1751–1763 (2006)

8. The IDA Pro Disassembler and Debugger, http://www.datarescue.com/idabase
9. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation-

tools for software protection. Software Engineering, IEEE Transactions on 28(8),
735–746 (2002)

10. Collberg, C., Thomborson, C.: Software watermarking: models and dynamic em-
beddings. In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 311–324. ACM Press, New York (1999)

11. Collberg, C., Myles, G., Huntwork, A.: Sandmark-A tool for software protection
research. Security & Privacy Magazine, IEEE 1(4), 40–49 (2003)

12. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Design and evaluation
of birthmarks for detecting theft of java programs. In: Proc. IASTED International
Conference on Software Engineering (IASTED SE 2004), pp. 569–575 (2004)

13. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.: Java Birthmarks–
Detecting the Software Theft–. IEICE Transactions on Information and Sys-
tems 88(9), 2148–2158 (2005)

14. Myles, G., Collberg, C.: K-gram based software birthmarks. In: Proceedings of the
2005 ACM symposium on Applied computing, pp. 314–318. ACM Press, New York
(2005)

15. Myles, G., Collberg, C.: Detecting software theft via whole program path birth-
marks. Information Security Conference, 404–415 (2004)

http://www.sabre-security.com/products/bindiff.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OMX/cmex/m/n/5 {OT1/cmr/m/n/9 }OMX/cmex/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OMX/cmex/m/n/5 {OT1/cmr/m/n/9 }OMX/cmex/m/n/5 size@update enc@update http://www.sabre-security.com/products/CodeTheft.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.sabre-security.com/products/CodeTheft.pdf
http://www.datarescue.com/idabase

16 S. Choi et al.

16. Myles, G.M.: Software Theft Detection Through Program Identification. PhD the-
sis, Department of Computer Science, The University of Arizona (2006)

17. Larus, J.: Whole program paths. In: Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implementation, pp. 259–269.
ACM Press, New York (1999)

18. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

19. Schuler, D., Dallmeier, V., Lindig, C.: A Dynamic Birthmark for Java. In: Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering

20. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research
Logistics 52(1), 7–21 (2005)

21. Kibria, R.: frhed - free hex editor, http://www.codeproject.com/tools/frhed.asp
22. Cloakware security suite, http://www.cloakware.com/products services/

security suite
23. Wang, C.: A Security Architecture for Survivability Mechanisms. PhD thesis, Uni-

versity of Virginia
24. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. Static

Analysis Symp. (2006)

http://www.codeproject.com/tools/frhed.asp
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.cloakware.com/products_services/security_suite
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.cloakware.com/products_services/security_suite

Compiling C Programs into

a Strongly Typed Assembly Language

Takahiro Kosakai, Toshiyuki Maeda, and Akinori Yonezawa

Department of Computer Science,
Graduate School of Information Science and Technology,

The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

{tkosakai, tosh, yonezawa}@is.s.u-tokyo.ac.jp

Abstract. C is one of the most popular languages in system program-
ming, though its unsafe nature often causes security vulnerabilities. In
the face of this situation, many tools are developed to ensure safety prop-
erties of C programs. However, most of them work at the source code
level, and conventional compilers lose safety guarantee as they trans-
late source code into assembly code. In this paper, we present CTAL0, a
strongly typed assembly language that is aimed at certifying the memory
safety of assembly code compiled from C programs. CTAL0 is expres-
sive enough to implement potentially unsafe ANSI C features including
pointer arithmetics and casts. We have also implemented a type-checker
and an experimental C compiler that produces safe CTAL0 assembly
code by performing several transformations on given programs to avoid
dangerous operations.

Keywords: typed assembly language, memory safety, C.

1 Introduction

Although the C programming language [1] is a classical language developed in
1972, it is one of the most frequently used languages in the field of system pro-
gramming even today, thanks to its high flexibility and expressiveness. Unfortu-
nately, these desirable properties are realized at the cost of the safety, especially
the memory safety. Indeed, even a single mistake in handling a memory access
can completely destroy the consistency of a program. This often leads to severe
vulnerabilities that violate security; for example, about 40% of the security vul-
nerabilities of the Linux kernel reported in the first half of 2007 were caused by
memory-related bugs [2]. Therefore, in order to ensure the security of programs,
it is crucial to ensure their memory safety.

In the face of this situation, many instrumentation tools are developed which
slightly modify original programs and make them safer. For example, CCured [3]
and Fail-Safe C [4] can transform C programs into new C programs that have
almost the same functionality as the original ones but are certified to be memory
safe, i.e., not to perform any dangerous memory accesses.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 17–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 T. Kosakai, T. Maeda, and A. Yonezawa

One problem with the tools is that they are actually source-to-source trans-
lators, and after the transformed programs are compiled into assembly code by
conventional compilers, there is no way to check whether they are safe. We are
therefore required to trust that the compilers always work correctly.

A solution to this problem is to certify safety properties at the level of assembly
code. The main advantage of the assembly-level certification over the source-level
one is that we do not need to trust compilers, because even if they mistakenly
produced unsafe assembly code, the assembly-level certifier will point out that
unsafety. In addition, certification of assembly code does not require the source
code of the programs to be checked, thus it is applicable to closed-source product
software.

In order to realize the assembly-level certification, we selected Typed As-
sembly Language (TAL) [5] as our starting point. TAL is an assembly lan-
guage equipped with a firm static type system that enables us to prove sev-
eral safety properties of well-typed programs, including the memory safety. TAL
has been extended in various directions including the support of dependent types
(DTAL [6]) and stacks (STAL [7]). However, it is difficult to express within them
the features of the C language because C is essentially an “untyped” language
which allows arbitrary casts from one type to another.

In this paper, we present our extension of TAL, called CTAL0. Its main design
goal is to be a target language into which C programs can be compiled. In order to
achieve the goal, we incorporated into CTAL0 the notions of byte addressing and
simple dependent types. Furthermore, in order to fill the gap between essentially
untyped C and strongly typed CTAL0, the type system of CTAL0 allows several
fragments of data structures to be left untyped or weakly typed, by employing
untyped array types which represent completely untyped memory blocks, and
guarded types which represent values whose types can be determined only if
certain conditions provably hold.

We have implemented a type-checker for CTAL0 and an experimental compiler
that compiles C programs into CTAL0 assembly code. Our compiler supports
a lot of C language features including arbitrary casts from integers to pointers
and vice versa, arrays, structures, unions, and function pointers. In order to
compile possibly unsafe C programs into safe CTAL0 programs, the compiler
automatically performs several program transformations.

The remainder of this paper is organized as follows. In Sect. 2, we informally
explain the ideas of CTAL0, and in Sect. 3, we present CTAL0 in more detail. We
describe our implementations of a type-checker and a compiler in Sect. 4, and
an extension for supporting function pointers in Sect. 5. In Sect. 6, we discuss
existing related work. We conclude and mention our future work in Sect. 7.

2 Overview of CTAL0

In this section, we introduce the key ideas of our proposed language CTAL0. For
the sake of clarity, we use informal notations here; more formal arguments are
in Sect. 3. We use the C program shown in Fig. 1 as a motivating example.

Compiling C Programs into a Strongly Typed Assembly Language 19

1: void f(int *p) { /* argument p is a pointer to int */
2: char buf[5]; /* declare buf as a 5-element array of char */
3: *(int *)buf = *p; /* store integer pointed by p into head of buf */
4: /* · · · */
5: }

Fig. 1. A motivating example of C program

2.1 Untyped Array Types

The second line of the example program in Fig. 1 declares a variable buf as an
array of char. In order to compile this program into a strongly typed assembly
language, we must decide what assembly-level type the array buf should have.

If the target assembly language was TAL [5] or many of its variants, we would
have no choice but an array type Array(char, 5), which denotes an array of
length 5 whose elements have type char. This might be a good choice if C was a
type-safe language, but in fact its unsafe cast mechanism gives rise to a difficulty.
In the example program, the third line stores the value *p into the head of the
array buf via a cast. Since the stored value *p has type int, at the point of
this store operation buf should have type Array(int, 1) or such. It is however
impossible because we had chosen Array(char, 5) as buf’s type.

To solve the problem, CTAL0 provides new sort of array types: untyped array
types. An untyped array type Array(i) represents an array of i bytes, whose
contents are untyped (i.e., not tracked by the type system of CTAL0). Since the
type system allows any values of any types to be stored in untyped arrays, using
CTAL0 we can give a type Array(5) to the array buf and the store operation at
the third line will be accepted without difficulty.

2.2 Dependent Types

Next, let us examine what the assembly-level representation of p’s type should
be. Because p is declared as a pointer to int at the first line of Fig. 1, it might
seem that a pointer type like Ptr(int) is suitable. However, such type cannot
describe the relation between pointers and integers. Pointers are actually integer
addresses in most C implementations, and indeed several C programs rely on
the assumption that pointers can be converted to integers and vice versa.

In order to capture the relation, CTAL0 uses ordinary integer types for rep-
resenting pointers, by combining the notions of heap types [8] and dependent
integer types [6] (this approach was adopted from [9]). A heap type Ψ is a map
from integer addresses to types, describing the currently accessible values in the
heap. To establish the memory safety, the CTAL0 type system allows a memory
access only if the accessed address is known to be inside Ψ. For example, a heap
type {x �→ int, y �→ char} says that a value of type int is at address x and
another of char is at y, preventing memory accesses other than at x or y. At
this point, a pointer to the latter char value can be expressed by a dependent
integer type Int(y), which denotes an integer whose value is exactly y.

20 T. Kosakai, T. Maeda, and A. Yonezawa

Reasoning similarly, one might think that the pointer p can be represented
by, say, type Int(xp) while the heap type Ψ containing xp �→ int. Yet there are
two problems. First, adopting such representation requires every value pointed
by some pointers to be inside Ψ, which is clearly impossible. This problem can
be solved by packing the integer type, along with a part of Ψ, in an existential
type: ∃(xp | {xp �→ int}). Int(xp). This type not merely denotes an integer of
some abstract value xp, but also states that an int-type value is at that address.

The second problem with the representation arises when null pointers are
involved. The next section describes this further.

2.3 Guarded Types

The C language treats null pointers as normal pointers, thus the function f in the
example program (Fig. 1) could be given a null pointer as its argument p. In this
situation, the type for p mentioned above, namely ∃(xp | {xp �→ int}). Int(xp),
becomes problematic because xp �→ int is not really correct.

To solve this problem, CTAL0 provides guarded types, which is a mechanism
for specifying types conditionally. More concretely, a guarded type φ ? τ1 : τ2
denotes a value of type τ1 if the condition φ is true, or a value of type τ2 if φ is
false. Utilizing the guarded types, we can express the pointer p as ∃(xp | {xp �→
(xp �= 0) ? int : 〈〉}). Int(xp), where 〈〉 denotes a zero-length memory block.
This type reads: this is an integer of some value xp, and if xp is not zero then an
int-type value will be at address xp—in short, it is a “maybe-null” pointer to
int. Note that we assumed here null pointers are represented by integer zeroes,
but other representations could be adopted without problems.

After ensuring p is not null, we can promote it from a maybe-null pointer to
a definite pointer. This is done by executing a special pseudo-instruction named
unguard that extracts either τ1 or τ2 from guarded type φ ? τ1 : τ2, according to
the validity of φ. To illustrate, consider the following assembly program, where
the register r1 is assumed to have type Int(xp) and the heap type contains
xp �→ (xp �= 0) ? int : 〈〉. This would be a situation after the existential type of
p is opened.

beq r1, 0, abort # null-check: go to abort if xp = 0
unguard xp # unseal the guarded type at address xp

Since xp was checked to be non-zero by the first conditional branch instruction,
the second unguard instruction will produce xp �→ int into the heap type, which
enables p to be used as a definite pointer.

2.4 Byte Addressing

Memory operations in C are based on the byte addressing scheme; that is, the
minimum unit of memory accesses and allocations is a byte. Therefore, although
many strongly typed assembly languages including TAL employ word address-
ing, CTAL0 employs byte addressing. For example, an array type Array(int, 5)
represents a 5-byte (not 5-element) array of integers, and memory access instruc-
tions take an extra argument which specifies the number of bytes to access.

Compiling C Programs into a Strongly Typed Assembly Language 21

Program states P ::= (R, H, I)
Register files R ∈ Registers → Integers
Heaps H ∈ Integers ⇀ ByteV ectors
Instruction sequences I ::= halt | jmp v | ι; I
Instructions ι ::=

arithmetics add r, v | sub r, v | mul r, v | div r, v | mod r, v |
mov r, v |

memory access load<k> r, vo (vb) | store<k> v, vo (vb) |
branch beq v1, v2, vd | ble v1, v2, vd |
coercion packh i as τh using �i | unpackh i as �x |

packr r as τw using �i | unpackr r as �x |
rollh i as τh | unrollh i | rollr r as τw | unrollr r |
guardh i as τh | unguardh i | guardr r as τw | unguardr r |
apply i, θ

Registers r ∈ Registers = {r1, · · · , rN}
Operands v ∈ Integers ∪ Registers
Integers n, m, k ∈ Integers = {. . . , −2, −1, 0, 1, 2, . . .}
Substitutions θ : Partial function from type and index variables

to types and indices, respectively
Bytes b ∈ Bytes = {0, 1, 2, . . .}
Byte vectors �b ∈ ByteV ectors =

�
k≥0 Bytesk

Fig. 2. Program states of CTAL0

3 Proposed Language: CTAL0

In this section, we present the program states and a part of the typing rules of
CTAL0. The operational semantics is omitted for space reasons, but it follows
that of TAL [5] and mostly straightforward.

3.1 Program States

Figure 2 gives the definitions of program states of CTAL0, including the list of the
assembly instructions. We assume that there are N 4-byte registers (r1, · · · , rN).
We use the notation �a to denote an ordered sequence consisting of a.

A program state P is a triple consisting of the state of the registers (R) which
is a map from the register names to integers, the state of the heap (H) which
is a map from integer addresses to byte vectors of arbitrary length, and the
instruction sequence to be executed hereafter (I).

Instructions of CTAL0 are divided into two groups: ordinary instructions and
coercion instructions.

Ordinary instructions consist of arithmetic, memory access, and branch in-
structions. Arithmetic instructions are designed after the IA-32 architecture [10].
They take two operands and return the result in the first operand (for example,
sub r1, 3 decrements the value of register r1 by 3). The mov instruction simply
copies the value of the second operand into the first one. Memory load instruc-
tion load<k> r, vo (vb) fetches k bytes from address vb + vo (vb indicates the

22 T. Kosakai, T. Maeda, and A. Yonezawa

Basic types τ ::= τw | τh

Word-value types τw ::= αw | Int(i) |
∃(�x | Ψ;φ). τw | μ(αw). τw | φ ? τw

1 : τw
2

Heap-value types τh ::= αh | 〈A1, · · · , An〉 | ∀(�α; �x). code(Γ;Ψ; φ) |
∃(�x | Ψ;φ). τh | μ(αh). τh | φ ? τh

1 : τh
2

Array types A ::= Array(i) | Array(τw, i)
Register file types Γ ::= {r1 	→ τw

1 , · · · , rN 	→ τw
N }

Heap types Ψ ::= {i1 	→ τh
1 , · · · , in 	→ τh

n }
Indices i, j ::= n | x |

i1 + i2 | i1 − i2 | i1 × i2 | i1 ÷ i2 | i1 mod i2
Constraints φ ::=
 | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬ φ | i1 = i2 | i1 ≤ i2
Word-value type vars. αw

Heap-value type vars. αh

Index variables x, y
Typing contexts Δ : Set of type and index variables

Fig. 3. Types of CTAL0

base address and vo the offset) and puts the result into register r. The store
instruction, which stores a value into memory, is similar. Unconditional jumps
are performed by jmp, while conditional jumps are done by beq (which jumps if
its first operand v1 is equal to its second operand v2) and ble (which jumps if
v1 ≤ v2). A program will be terminated when it executes the halt instruction.

Coercion instructions manipulate the types of the heap or the registers. These
are pseudo-instructions: they have effects only at type-checking, not at run-
time. Instructions packh and packr create existential types, while unpackh and
unpackr destruct them, in a similar fashion to [5,9]. Here, the suffix h or r in-
dicates that the instruction operates on the type of a heap value or a register,
respectively. The roll and unroll families create and destruct recursive types.
The guard and unguard families manipulate guarded types, which were intro-
duced briefly in Sec. 2.3. Lastly, the apply instruction instantiates a polymorphic
type with concrete values according to the second operand θ.

3.2 Types

Figure 3 gives the syntax of types of CTAL0.
Basic types are classified into two kinds: word-value types (τw) which are

assigned to values that can be held in a register, and heap-value types (τh)
whose values are kept in the heap. A register file type Γ specifies the types of
values in the registers, while a heap type Ψ specifies the types of heap values.

Among others, the characteristic types of CTAL0 are the untyped array types
and the guarded types, as mentioned in Sect. 2. An untyped array type Array(i)
denotes an i-byte memory block whose contents are not tracked by the type
system of CTAL0, and a guarded type φ ? τ1 : τ2 denotes a value which can be
assumed to have type τ1 when φ is valid and τ2 when φ is not satisfiable. Here
i, an index, is a simple integer expression and φ, a constraint, is a simple logical
formula over integers, both defined in Fig. 3.

Compiling C Programs into a Strongly Typed Assembly Language 23

Other types are more or less standard. An integer type Int(i) denotes a one-
word integer whose value is exactly i. A typed array type Array(τ, i) denotes an i-
byte memory block filled with values of type τ . A tuple type 〈τ1, · · · , τn〉 denotes
a sequence of values of types τ1, · · · , τn. A code type ∀(�α; �x). code(Γ; Ψ; φ),
which is polymorphic in type variables �α and index variables �x, denotes an
instruction sequence that can be executed when the current state entails Γ, Ψ,
and φ. Roughly speaking, the entailment relation requires that Γ is exactly the
same as the current register type, that each value in Ψ exists in the current
heap type unless the value is zero-sized, and that φ is valid under the current
constraint. An existential type ∃(�x | Ψ; φ). τ means that there exist some indices
�x such that Ψ is a part of the current heap and φ is valid. Lastly, a recursive
type μ(α). τ binds the type variable α to the recursive type itself.

Although omitted for brevity in this paper, our implementation also supports
linear types [11,8] and dynamic memory allocation facilities. Linear types include
stack types that are used to deal with the stack in a similar manner to STAL [7],
and linear tuple types that are used for initializations of dynamically allocated
memory blocks.

3.3 Typing Rules

We have designed the type system of CTAL0 so that well-typed programs never
perform wrong memory accesses and jumps. This property is formalized as the
following theorem of type safety, where
 P means that the program state P is
well-typed and P � P ′ means that P ′ is the next state of P according to the
operational semantics (which is omitted in this paper).

Theorem. Let P be (R, H, I). If
 P and I ≡/ halt, then there exists
some P ′ such that P � P ′ and
 P ′.

The definition of
 P relies on several typing judgments. Among them, the
most important is the instruction typing judgment, written Δ; Γ; Ψ;φ
 I, which
states that the instruction sequence I is well-typed if the type and index variables
Δ are in scope, the registers have type Γ, the heap has type Ψ, and the constraint
φ is valid. Due to space limitations, we only describe the most interesting typing
rules for instructions.

Memory Access. The instruction load<k> r, vo (vb) requires a tuple is at the
base address vb, and loads k bytes from the offset vo of that tuple. As shown
below, there are two typing rules for load, one is for loading from a typed array
and the other is for loading from an untyped array. The former assigns the array’s
element type to the loaded value, while the latter always assigns an Int type.
The typing rules for store instruction are similar.

Γ
 vb : Int(ib) Γ
 vo : Int(io) Ψ; φ
 ib �→ 〈τ1, · · · , τn〉
for some 1 ≤ m ≤ n, τm ≡ Array(τe, i) φ
 sizeof(τe) = k
φ
 ValidAccess((τ1, · · · , τn), m, io, k) Δ; Γ[r �→ τe]; Ψ; φ
 I

Δ; Γ; Ψ; φ
 load<k> r, vo(vb); I

24 T. Kosakai, T. Maeda, and A. Yonezawa

Γ
 vb : Int(ib) Γ
 vo : Int(io) Ψ; φ
 ib �→ 〈τ1, · · · , τn〉
for some 1 ≤ m ≤ n, τm ≡ Array(i) 1 ≤ k ≤ 4 x /∈ Δ
φ
 ValidAccess((τ1, · · · , τn), m, io, k) Δ ∪ {x}; Γ[r �→ Int(x)]; Ψ; φ
 I

Δ; Γ; Ψ; φ
 load<k> r, vo(vb); I

Here, the judgment Γ
 v : τ indicates the operand v has type τ . Ψ; φ
 i �→ τ
indicates that Ψ contains a mapping i′ �→ τ and φ implies i = i′ (written
φ |= i = i′). φ
 sizeof(τ) = i states the size of type τ is determined to be i,
provided that φ is valid. ValidAccess expresses bounds and alignment checks:

φ
 sizeof(τ1) = i1 · · · φ
 sizeof(τm) = im
φ |= (i1 + · · · + im−1) ≤ i φ |= i ≤ (i1 + · · · + im) − k
φ |= (i − (i1 + · · · + im−1)) mod k = 0

φ
 ValidAccess((τ1, · · · , τn), m, i, k)

Branch. The following is the typing rule for the conditional branch instruction
beq. First, it ensures that all of its operands have Int types, and an instruction
sequence (which has code type ∀(∅; ∅). code(Γ′; Ψ′; φ′)) exists at the destination
address vd. Then, it checks the current state extended with “v1 = v2” entails
the requirement of the code type (expressed by the judgment at the third line);
this check is for those times when the branch is taken. Finally, the typing rule
checks the rest of the instruction sequence after extending the current state with
“v1 �= v2”; this is for times when the branch is not taken.

Γ
 v1 : Int(i1) Γ
 v2 : Int(i2) Γ
 vd : Int(id)
Ψ; φ
 id �→ ∀(∅; ∅). code(Γ′; Ψ′; φ′)
Γ; Ψ; φ ∧ (i1 = i2) |= Γ′; Ψ′; φ′

Δ; Γ; Ψ; φ ∧ ¬ (i1 = i2)
 I

Δ; Γ; Ψ; φ
 beq v1, v2, vd; I

Coercion. The instructions packh and packr create existential types. The suf-
fix h (or r) means that the instruction works on heap-value (or word-value)
types. Below is the typing rule for packr. Roughly speaking, it ensures that the
constructed existential type ∃(�x′ | Ψ′; φ′). τ ′ is indeed a proper abstraction which
hides concrete values �i in abstract variables �x′.

Γ
 r : τ τw ≡ ∃(�x′ | Ψ′; φ′). τ ′ |�i| = |�x′| FV(τw) ∪ FV(�i) ⊆ Δ
Ψ; φ |= Ψ′ [�i/�x′] φ |= φ′ [�i/�x′] φ
 τ = τ ′ [�i/�x′] Δ; Γ[r �→ τw]; Ψ; φ
 I

Δ; Γ; Ψ; φ
 packr r as τw using �i; I

Conversely, the instructions unpackh and unpackr destruct (or open) existential
types, introducing new variables �x into the scope. The following is the typing
rule for unpackr.

Γ
 r : ∃(�x′ | Ψ′; φ′). τ ′ |�x| = |�x′| �x ∩ Δ = ∅
Δ ∪ �x; Γ[r �→ τ ′ [�x/�x′]]; Ψ ∪ Ψ′ [�x/�x′]; φ ∧ (φ′ [�x/�x′])
 I

Δ; Γ; Ψ; φ
 unpackr r as �x; I

Compiling C Programs into a Strongly Typed Assembly Language 25

For guarded types φ′ ? τ ′
1 : τ ′

2, the typing rules involve checking the truth or
falsehood of the condition φ′ under the current constraint φ, that is, φ |= φ′ or
φ |= ¬φ′. The typing rules for guardr and unguardr are shown below.

Γ
 r : τ τw ≡ φ′ ? τ ′
1 : τ ′

2 FV(τw) ⊆ Δ(
φ |= φ′ and φ
 τ = τ ′

1
)

or
(
φ |= ¬φ′ and φ
 τ = τ ′

2
)

Δ; Γ[r �→ τw]; Ψ; φ
 I

Δ; Γ; Ψ; φ
 guardr r as τw; I

Γ
 r : φ′ ? τ ′
1 : τ ′

2(
φ |= φ′ and Δ; Γ[r �→ τ ′

1]; Ψ; φ
 I
)

or
(
φ |= ¬φ′ and Δ; Γ[r �→ τ ′

2]; Ψ; φ
 I
)

Δ; Γ; Ψ; φ
 unguardr r; I

4 Implementations

We have implemented a type-checker for CTAL0, a simple translator from CTAL0
to IA-32 [10] assembly, and an experimental C compiler that produces CTAL0 as-
sembly code. The implementations are available from our web site [12].

4.1 Type-Checker and Translator

Our implementation of the type-checker supports several additional features that
are not formalized, including a few IA-32 instructions (such as call and ret)
which are automatically replaced by certain combinations of CTAL0 instructions.
In order to check the validity of entailment relations φ |= φ′, our implementation
uses the CVC Lite theorem prover [13]. Currently we assume all arithmetic
operations are done in infinite precision, but arithmetic modulo 232 could also
be employed.

Additionally, we have implemented a translator that translates well-typed
CTAL0 assembly programs into IA-32 assembly programs, enabling us to run
them on real-world machines. As the instructions of CTAL0 resemble those of
IA-32, the translation is fairly straightforward.

4.2 Experimental C Compiler

Because C is not a safe language, it is impossible to directly translate C programs
into CTAL0 assembly code. Therefore, along with compilation, our compiler per-
forms several transformations on the source program and guarantees its safety.
The transformation strategy we adopted roughly follows that proposed by Fail-
Safe C [4]. The main key to the transformations is the fat representation of
integers and pointers, which we describe in the following.

Fat Integers. CTAL0 requires clear distinction between pointers and arbitrary
integers, though they are occasionally intermixed in C programs. To fill the gap,
our compiler regards all integers appearing in C as non-pointers and separately
manages meta-data which contain only definite pointers. More specifically, every

26 T. Kosakai, T. Maeda, and A. Yonezawa

Fig. 4. Structure of fat integers

integer or pointer is represented by two words, with one word containing a user-
value which is what programmers see and the other a base-pointer which is
automatically controlled by the compiler. We call integers and pointers in this
format fat integers, after Fail-Safe C [4].

If a fat integer represents a non-pointer integer, its base-pointer part will
contain a null pointer (i.e., zero). Otherwise it will contain a valid pointer to
a base-record which represents a memory block allocated by programmers. As
shown in Fig. 4, a base-record consists of three parts. The first part contains the
length of the whole record, and the last part, which is an array, stores the data
manipulated by programmers. Moreover, because all integers and pointers are
now represented by two words, in order to preserve the original semantics of C
programs we also have to double the size of all allocated memory blocks. This is
done by attaching to a base-record a new block, called a meta-record, consisting
of an array that is equal in length to the base-record’s array part. When a fat
integer is stored into the base-record, its user-value is written into the base-record
itself and its base-pointer is written into the attached meta-record.

The fat integer mechanism makes it possible to freely intermix integers and
pointers as they both have exactly the same representation, yet preserving the
memory safety. For instance, if a variable p of type int * possesses a valid pointer,
then (int *)(int)p can also be used as a valid pointer.

Figure 5 presents the CTAL0 type for base-records. Although it looks a bit
complicated, it indeed expresses the structure of base-records described so far.
Because the array part of a base-record is expressed by an untyped array type,
we can store any value into there; this means that, at the level of C, a pointer
to one type can be freely casted to a pointer to another type. Base-pointers can
be null if they are associated with non-pointer fat integers, thus τPtr, the type
for base-pointers, utilizes a guarded type to express a maybe-null pointer.

Example. Figure 6 shows a well-typed CTAL0 program corresponding to a
pointer dereference (i.e., memory load) operation “*p” in the C language, where p
is declared as int * (this program is essentially the same as the one our compiler

Compiling C Programs into a Strongly Typed Assembly Language 27

μ(α h
Rec). ∃(x�, xm | Ψm;
). 〈Array(Int(x�), 4), Array(Int(xm), 4), Array(x� − 8)〉

where
Ψm ≡ {xm 	→ 〈Array(τPtr, x� − 8)〉}
τPtr ≡ ∃(xp | {xp 	→ (xp = 0) ? 〈〉 : α h

Rec};
). Int(xp)

Fig. 5. CTAL0 type for base-records

emits for the expression *p). The pointer p is actually represented by a fat
integer, so let us denote its user-value by pu and its base-pointer by pb, and
assume that the registers r1 and r2 initially contain pu and pb respectively.
Then, the program in Fig. 6 could be summarized as the following 5 steps.

1. Perform a null check (at line 3 in the program), that is, ensure that pb is not
null.

2. Perform a bounds check in two steps. First, ensure that pu is not less than
pb + 8, which is the address of the array part of the base-record pointed by
pb (line 10). Next, ensure that pu + 4 is not greater than the address of the
end of the base-record (line 14). Here, 4 is the size of the value to be loaded.

3. Perform an alignment check (line 18), that is, ensure that the offset of pu

relative to the array part of the base-record is a multiple of 4.
4. Load the user-value of *p from the base-record (line 19).
5. Load the base-pointer of *p from the meta-record associated with the base-

record (line 22). Notice that, since the meta-record lacks the first two parts
of the base-record (see Fig. 4), the offset should be properly adjusted in
advance (line 21).

Supported Features. As described so far, our compiler supports arbitrary
casts between integers and pointers by employing the fat integer mechanism. It
also supports arrays, structures and unions by simply treating them as untyped
memory blocks, and variable argument functions by replacing the variable parts
of their arguments with arrays (for instance, void f(int x, ...) is transformed
into void f(int x, char *args)).

In our framework, the appropriate CTAL0 type for every variable and func-
tion can be determined by its C type. Therefore our compiler requires no type
annotations on source programs, while generating explicitly typed CTAL0 code.

5 Extension for Function Pointers

The structure of fat integers explained in Sect. 4 cannot hold function pointers,
i.e., pointers to instruction sequences which are not expressible by array types.

One approach to handle them is to enlarge each fat integer to three words,
and let the third word keep a maybe-null pointer to an instruction sequence.
This simple approach, however, would produce a lot of garbage words, because
few function pointers are used in practice. Therefore we have adopted another
approach, which is to keep function pointers in the second meta-pointer parts of

28 T. Kosakai, T. Maeda, and A. Yonezawa

r1 contains the user-value pu and r2 contains the base-pointer pb

1: unpackr r2 as xb # unpack pb so that it has type Int(xb)
2: apply abort , · · ·
3: beq r2, 0, abort # abort if pb is null

4: unguardh xb # obtain xb 	→ μ(α h
Rec). · · ·

5: unrollh xb # obtain xb 	→ ∃(x�, xm | Ψm;
). · · ·
6: unpackh xb as (x�, xm) # obtain xb 	→ 〈· · · 〉 and xm 	→ 〈· · · 〉
7: mov r4, r1 # set r4 to the offset pu − pb

8: sub r4, r2
9: apply abort , · · ·

10: blt r4, 8, abort # abort if the offset is below the array part
11: load<4> r3, 0 (r2) # set r3 to the length of the base-record minus 4
12: sub r3, 4
13: apply abort , · · ·
14: blt r3, r4, abort # abort if the offset exceeds the length
15: mov r3, r4 # set r3 to the offset mod 4
16: mod r3, 4
17: apply abort , · · ·
18: blt 0, r3, abort # abort if the offset is not divisible by 4
19: load<4> r3, r4 (r2) # set r3 to the user-value of the result (i.e., *p)
20: load<4> r5, 4 (r2) # set r5 point to the meta-record
21: sub r4, 8 # adjust the offset by subtracting 8
22: load<4> r4, r4 (r5) # set r4 to the base-pointer of the result

r3 and r4 now contain the user-value and the base-pointer of the result

Fig. 6. A CTAL0 program corresponding to a pointer dereference operation in C (the
second operands for apply instructions are omitted for brevity).

base-records (recall Fig. 4): a meta-pointer now points to either a meta-record
(as before), or an instruction sequence. In the latter case, we put up a flag by
setting the length field of the base-record to -1. This relation between the length
and the meta-pointer fields can be established by using a guarded type.

Here, one more problem has to be solved: in order to invoke the pointed
functions, we must know certain characteristics of them, in particular the num-
ber of arguments they take and the types of their return values. To solve this
problem, we assume that all functions pointed by function pointers take exactly
one pointer argument and return a pointer value. In other words, we assume the
functions uniformly have declarations like “char *f(char *arg);”. The compiler
automatically prepares for each function a wrapper function called a generic en-
try function which has the above form. When a generic entry function is called,
it extracts arguments from the array it received, calls the original function giving
those arguments, wraps the result value in an array, and returns it. For example,
the generic entry function corresponding to a function

int add(int x, int y) { /* ... */ }

will look like the following.

Compiling C Programs into a Strongly Typed Assembly Language 29

char *generic add(char *args) {
char *result = malloc(4);
*(int *)result = add(*(int *)args, *(int *)(args + 4));
return result;

}

6 Related Work

6.1 Source-Level Certification for C

For the certification of safety properties (particularly the memory safety) of C
programs, a number of source-level instrumentation tools have been proposed.
These tools produce C source code as their direct output, and then optionally
invoke conventional compilers such as GCC [14] in order to generate assem-
bly code. Compared to the tools, our approach of assembly-level certification
has two main advantages. First, it does not require the source code of the pro-
grams to be checked, enabling end users to check closed-source product software.
Second, it makes the trusted computing base much smaller, because we need
not trust compilers and other source-level tools, which tend to be rather big
systems.

Fail-Safe C [4] is a system which guarantees the memory safety of C pro-
grams by performing program transformations. Fail-Safe C provides the full fea-
ture of the ANSI C with its original semantics, except that erroneous programs
may abort. The transformation strategy used in our compiler implementation
is largely inspired by Fail-Safe C. In particular, we borrowed the notions of
fat integers and generic entry functions (originally called generic entry points).
Compared to ours, Fail-Safe C incorporates more complex and efficient transfor-
mations. However, they make the invariant managed by the system much bigger
and thus hardly expressible at the level of assembly languages.

CCured [3] is also a transformation system which can ensure primarily the
memory safety of C programs. CCured performs a sophisticated static analysis
on programs and classifies pointers into several kinds, including SAFE pointers
on which no unsafe cast operations are performed, and WILD pointers whose
properties cannot be predicted. Because SAFE pointers involve less run-time
checks than WILD ones, a lot of run-time overheads can be eliminated by
the analysis. However, pointers sometimes need to be classified manually. Our
compiler, on the other hand, accepts unmodified C programs, though it pro-
duces less efficient code. Since something like a SAFE pointer is expressible in
CTAL0, we expect similar static analyses could also be incorporated into our
compiler.

Deputy [15,16] enriches the type system of C by allowing several kinds of
annotations on types. For example, a pointer type can be annotated with the
length of the memory block it points. Annotations can depend on certain run-
time values such as the values of local variables, and Deputy will insert run-time
check code into the original program if it cannot statically determine the validity

30 T. Kosakai, T. Maeda, and A. Yonezawa

of annotations. Deputy employs an inference algorithm that can discover anno-
tations which are not explicitly written in the program. However, programmers
must supply more or less annotations in order to enable Deputy to work well.

Cyclone [17] is a memory-safe dialect of C. Cyclone does not modify data
representations by default, but programmers can instruct it to, for example, use
a fat representation for a pointer. In addition, Cyclone supports a limited form of
explicit memory deallocation. These features give programmers a finer control
over low-level data structures. However, they make Cyclone slightly different
from C, requiring more work in porting existing C programs to Cyclone. In
contrast, our approach is to deal with the C language itself, therefore no porting
task is imposed though advanced language features are not available.

6.2 Strongly Typed Assembly Languages

Typed Assembly Language (TAL) [5] is the basis of our language CTAL0. While
CTAL0 is aimed at C, an unsafe language, TAL is mainly intended to be used
with ML-like type-safe languages. Dependently Typed Assembly Language [6],
an extension of TAL for dependent types, is focusing on safe languages, too.

TALx86 [18] is also an extension of TAL which provides a fragment of the Intel
IA-32 architecture [10]. It targets programs written in an imperative language
called Popcorn. Although Popcorn programs look similar to those of C, Popcorn
and TALx86 do not support several unsafe features such as pointer arithmetics
and arbitrary casts, while our compiler utilizes the untyped fragment of CTAL0
to deal with such unsafe features of the C language.

Harren et al. [19] proposed an assembly-level framework to certify the safety
of C programs processed by CCured. Compared to CTAL0, their framework
includes richer dependent type mechanisms, in particular dependently typed
records in which the type of each field can depend on values of other fields.
Furthermore, it supports mutations of such record values. According to [19],
they had implemented a verifier that can handle several high-level features of
CCured including run-time type information. However, their framework heavily
relies on externally supplied components called Type Policies, which must be
trusted. For example, the examination of run-time type information is totally
dealt with by Type Policies in an undocumented manner. In contrast, our CTAL0
is closed in itself and requires no such external trusted components. In addition,
as with TAL, their framework seems not to be capable of handling data that are
not statically typable.

7 Conclusion

We have presented CTAL0, an extension of Typed Assembly Language. Its main
design goal is to be capable of expressing most features of the C language, and
in order to achieve the goal, its type system supports untyped array types and
guarded types. In addition, we have implemented a type-checker and an experi-
mental C compiler for CTAL0. By performing several program transformations,

Compiling C Programs into a Strongly Typed Assembly Language 31

our compiler supports free mixing of integers and pointers, structures, unions,
variable-argument functions and function pointers.

One direction of future work is to enrich the type system of CTAL0, possibly
including the support for stack pointers and linking of separately type-checked
object files. Another direction is to improve our compiler, in particular to pro-
vide currently missing features such as interoperability with existing libraries,
and to produce more efficient code by employing static analyses and optimiza-
tions. We also plan to conduct an experiment to measure the performance of the
compiler.

References

1. Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn.
Prentice-Hall, Englewood Cliffs (1988)

2. SecurityFocus: SecurityFocus vulnerability database,
http://www.securityfocus.com/vulnerabilities

3. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems 27(3), 477–526 (2005)

4. Oiwa, Y., Sekiguchi, T., Sumii, E., Yonezawa, A.: Fail-safe ANSI-C compiler: An
approach to making C programs secure (progress report). In: Okada, M., Pierce,
B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609,
pp. 133–153. Springer, Heidelberg (2002)

5. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. In: Proc. of POPL, pp. 85–97 (1998)

6. Xi, H., Harper, R.: A dependently typed assembly language. In: Proc. of ICFP, pp.
169–180 (2001)

7. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly lan-
guage. In: Leroy, X., Ohori, A. (eds.) TIC 1998. LNCS, vol. 1473, pp. 28–52.
Springer, Heidelberg (1998)

8. Walker, D., Morrisett, G.: Alias types for recursive data structures. In: Harper, R.
(ed.) TIC 2000. LNCS, vol. 2071, pp. 177–206. Springer, Heidelberg (2000)

9. Maeda, T., Yonezawa, A.: Writing practical memory management code with a
strictly typed assembly language. In: Proc. of SPACE (2006)

10. Intel Corporation: Intel 64 and IA-32 architectures software developer’s manual
(2006)

11. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proc. of FPCA, pp.
1–11 (1995)

12. Kosakai, T.: CTAL0 implementations distribution site,
http://www.yl.is.s.u-tokyo.ac.jp/∼kosakai/ctalz/

13. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating va-
lidity checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
515–518. Springer, Heidelberg (2004)

14. Free Software Foundation: The GNU compiler collection, http://gcc.gnu.org/
15. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula,

G., Brewer, E.: SafeDrive: Safe and recoverable extensions using language-based
techniques. In: Proc. of OSDI, pp. 45–60 (2006)

16. Condit, J., Harren, M., Anderson, Z., Gay, D., Necula, G.C.: Dependent types for
low-level programming. In: Proc. of ESOP (2007)

http://www.securityfocus.com/vulnerabilities
http://www.yl.is.s.u-tokyo.ac.jp/~kosakai/ctalz/
http://gcc.gnu.org/

32 T. Kosakai, T. Maeda, and A. Yonezawa

17. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A safe dialect of C. In: Proc. of USENIX ATC, pp. 275–288 (2002)

18. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: TALx86: A realistic typed assembly language. In:
Proc. of WCSSS, Atlanta, GA, USA, May 1999, pp. 25–35 (1999)

19. Harren, M., Necula, G.C.: Using dependent types to certify the safety of assembly
code. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 155–170.
Springer, Heidelberg (2005)

Information Flow Testing

The Third Path Towards Confidentiality Guarantee

Gurvan Le Guernic1,2,�

1 Kansas State University - Manhattan, KS 66506 - USA
2 IRISA - Campus universitaire de Beaulieu, 35042 Rennes - France

http://www.irisa.fr/lande/gleguern
Gurvan.Le Guernic@irisa.fr

Abstract. Noninterference, which is an information flow property, is
typically used as a baseline security policy to formalize confidentiality
of secret information manipulated by a program. Noninterference verifi-
cation mechanisms are usually based on static analyses and, to a lesser
extent, on dynamic analyses. In contrast to those works, this paper pro-
poses an information flow testing mechanism. This mechanism is sound
from the point of view of noninterference. It is based on standard testing
techniques and on a combination of dynamic and static analyses. Con-
cretely, a semantics integrating a dynamic information flow analysis is
proposed. This analysis makes use of static analyses results. This special
semantics is built such that, once a path coverage property has been
achieved on a program, a sound conclusion regarding the noninterfering
behavior of the program can be established.

1 Introduction

With the intensification of communication in information systems, interest in
security has increased. This paper deals with the problem of confidentiality,
more precisely with noninterference in sequential programs. This notion is based
on ideas from classical information theory [1] and has first been introduced by
Goguen and Meseguer [2] as the absence of strong dependency [3].

“information is transmitted from a source to a destination only when
variety in the source can be conveyed to the destination” Cohen [3,
Sect.1].

A sequential program, P, is said to be noninterfering if the values of its public
(or low) outputs do not depend on the values of its secret (or high) inputs.
Formally, noninterference is expressed as follows: a program P is noninterferent if
and only if, given any two initial input states σ1 and σ2 that are indistinguishable
with respect to low inputs, the executions of P started in states σ1 and σ2 are
low-indistinguishable. Low-indistinguishable means that there is no observable
� The author was partially supported by National Science Foundation grants CCR-

0296182, ITR-0326577 and CNS-0627748.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 33–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 G. Le Guernic

difference between the public outputs of both executions. In the simplest form of
the low-indistinguishable definition, public outputs include only the final values
of low variables. In a more general setting, the definition may additionally involve
intentional aspects such as power consumption, computation times, etc.

Static analyses for noninterference have been studied extensively and are well
surveyed by Sabelfeld and Myers [4]. Recently, and to a lesser extent, dynamic
analyses for noninterference have been proposed [5–7]. However, to be useful,
those dynamic analyses must be combined with an information flow correction
mechanism in order to enforce noninterference at run-time. As shown by Le
Guernic and Jensen [8], in order to prevent the correction mechanism to become
a new covert channel, additional constraints are put on the dynamic analysis.
Those constraints limit the precision achievable by a monitor enforcing nonin-
terference. A dynamic information flow analysis which is not used at run-time
to enforce noninterference could therefore be more precise than its equivalent
noninterference monitor.

This paper develops an information flow testing mechanism based on such a
dynamic information flow analysis which is not aimed at enforcing noninterfer-
ence at run-time. It is presented as a special semantics integrating a dynamic
information flow analysis combined with results of a static analysis. A distin-
guishing feature of the dynamic information flow analysis proposed, compared
to other standard run-time mechanisms, lies in the property overseen. Dynam-
ically analyzing information flow is more complicated than, e.g., monitoring
divisions by zero, since it must take into account not only the current state of
the program but also the execution paths not taken during execution. For exam-
ple, executions of the following programs (a) if h then x :=1 else skip and
(b) if h then skip else skip in an initial state where h is false are equiva-
lent concerning executed commands. In contrast, (b)’s executions are noninter-
fering, while (a)’s executions are not. Executions of (a), where x is not equal to
1, do not give the same final value to x if h is true or false.

The next section starts by giving an overview of the dynamic information flow
analysis at the basis of the approach. It then describes the testing technique used
and, finally, presents the language studied. Before characterizing in Sect. 3.2 and
3.3 the static analyses used by the dynamic analysis and stating some properties
of the proposed analysis, Section 3 presents the semantics which incorporates
this dynamic analysis. Finally, Sect. 4 concludes.

2 Presentation of the Approach

With regard to noninterference, a dynamic analysis suited only for the detection
of information flows, and not their correction, can be used only for noninterfer-
ence testing. The idea behind noninterference testing is to run enough executions
of a program in order to cover a “high enough percentage” of all possible exe-
cutions of the program. In cases where the dynamic analysis results enable to
conclude that all the executions evaluated are safe, users gain a confidence in the
“safe” behavior of the program which is proportional to the coverage percentage.

Information Flow Testing 35

When dealing with the confidentiality of secret data, a percentage lower than
100% does not seem acceptable. The aim of noninterference testing is then to
cover all possible executions. It is not possible to run an execution for every pos-
sible input set (as there are frequently infinitely many input values). However,
the results of a dynamic information flow analysis may be the same for many
executions with different inputs. Therefore, it may be possible to conclude about
the noninterference behavior of any execution of a program by testing a limited,
hopefully finite, number of executions. Before presenting the testing approach
proposed in this paper, this section introduces some terminology, formally de-
fines what is meant by “noninterfering execution” and gives an overview of the
dynamic information flow analysis proposed in Section 3.

2.1 Overview of the Noninterference Analysis

A direct flow is a flow from the right side of an assignment to the left side.
Executing “x := y” creates a direct flow from y to x. An explicit indirect flow
is a flow from the test of a conditional to the left side of an assignment in the
branch executed. Executing “if c then x := y else skip end” when c is true
creates an explicit indirect flow from y to x. An implicit indirect flow is a flow
from the test of a conditional to the left side of an assignment in the branch
which is not executed. Executing “if c then x := y else skip end” when c is
false creates an implicit indirect flow from y to x.

A “safe” execution is a noninterfering execution. In this article, as commonly
done, noninterference is defined as the absence of strong dependencies between
the secret inputs of an execution and the final values of some variables which
are considered to be publicly observable at the end of the execution.

For every program P, two sets of variable identifiers are defined. The set of
variables corresponding to the secret inputs of the program is designated by
S(P). The set of variables whose final value are publicly observable at the end of
the execution is designated by O(P). No requirements are put on S(P) and O(P)
other than requiring them to be subsets of X. A variable x is even allowed to
belong to both sets. In such a case, in order to be noninterfering, the program P
would be required to, at least, reset the value of x.

In the following definitions, we consider that a program state may contain
more than just a value store. This is the reason why a distinction is done between
program states (ζ) and value stores (σ). Following Definition 1, two program
states ζ1, respectively ζ2, containing the value stores σ1, respectively σ2, are
said to be low equivalent with regards to a set of variables V , written ζ1

V= ζ2, if
and only if the value of any variable belonging to V is the same in σ1 and σ2.

Definition 1 (Low Equivalent States).
Two states ζ1, respectively ζ2, containing the value stores σ1, respectively σ2, are
low equivalent with regards to a set of variables V , written ζ1

V= ζ2, if and only
if the value of any variable belonging to V is the same in σ1 and σ2:

ζ1
V= ζ2 ⇐⇒ ∀x ∈ V : σ1(x) = σ2(x)

36 G. Le Guernic

Definition 2 (Noninterfering Execution).
Let ⇓s denote a big-step semantics. Let S(P) be the complement of S(P) in the set
X. For all programs P, program states ζ1 and ζ′1, an execution with the semantics
⇓s of the program P in the initial state ζ1 and yielding the final state ζ′1 is
noninterfering, if and only if, for every program states ζ2 and ζ′2 such that the
execution with the semantics ⇓s of the program P in the initial state ζ2 yields the
final state ζ′2:

ζ1
S(P)
= ζ2 ⇒ ζ′1

O(P)
= ζ′2

The dynamic information flow analysis uses results of static analyses. The se-
mantics integrating the dynamic analysis, now on called analyzing semantics,
treats directly the direct and explicit indirect flows. For implicit indirect flows,
a static analysis is run on the unexecuted branch of every conditional whose test
carries variety — i.e. is influenced by the secret inputs of the program.

A program state for this semantics is composed of a value store, σ, mapping
variables to values, and a tag store, ρ, mapping variables to a tag. This tag reflects
the level of variety of a variable. At any point of the execution, a variable whose
tag is ⊥ would have the exact same value for any execution started with the
same public inputs. A variable whose tag is � may have a different value for an
execution started with the same public inputs. In other words, the variety in the
secret inputs may be carried to the variables which are tagged �, and only those
variables.

2.2 Noninterference Testing

The main idea behind noninterference testing has been exposed above. Figure 1
sketches this idea. Let P be a program whose secret inputs are represented by
h, public inputs by l, and public outputs by a color (or level of gray). P(li, hj),
where (li, hj) are input values, is the public output, represented by a color, of
the execution of P with the inputs (li, hj). In the representations of Fig. 1, public
input values are represented on the x-axis and secret input values are represented
on the y-axis. Each point of the different graphs corresponds to the execution of
P with, as inputs, the coordinates of this point. Whenever a point in the graph
is colored, the color corresponds to the public output value of the execution of
P with, as inputs, the coordinates of the colored point. Figure 1(a) represents
the execution of P with inputs (l0, h0). Its public output value is represented
by the color (or level of gray) displayed and its tag — result of the dynamic
information flow analysis — is ⊥ (the public output does not carry variety).
Figure 1(b) shows the meaning of this tag. As the public output tag of P(l0, h0)
is ⊥, it means that for any secret inputs hj the public output value of P(l0, hj)
is the same as for P(l0, h0). Even if there exist secret inputs h1 for which the
public output tag of P(l0, h1) is �, any execution of P with public inputs l0 is
noninterfering. It only means that the dynamic analysis is not precise enough
to directly detect that the execution of P with inputs (l0, h1) is noninterfering.
However, this result can be indirectly deduced from the result of the dynamic
analysis of the execution of P with inputs (l0, h0).

Information Flow Testing 37

The main challenge of noninterference testing is to develop a dynamic analysis
for which it is possible to characterize a set of executions which associate the
same tag to the public output as an execution which as already been tested.
For example, assume that it has been proved that all executions in the dashed
area in Fig. 1(c) associate the same tag to the public output as the execution
of P with inputs (l0, h0). As this tag is ⊥, it is possible to conclude from the
single execution of P with inputs (l0, h0) that all colored (or grayed) executions in
Fig. 1(d) are noninterfering. Therefore, with only a limited number of executions,
as in Fig. 1(e), it is possible to deduce that the program is noninterfering for a
wide range of inputs which can be characterized.

l

h

l0

h0

⊥

(a) Execution P(l0,h0)

l

h

l0

h0

h1

⊥

(b) Meaning of tags

l

h

l0

h0

(c) Public output tag’s
scope

l

h

l0

h0
⊥

(d) Meaning of a ⊥
area

l

h

(e) Noninterfering ex-
ecutions

Fig. 1. Sketch of the main idea of noninterference testing

Which executions need to be tested? As exposed above, in order to be able to
conclude on the interference behavior of a program by testing it, it is necessary
to be able to characterize a finite number of executions which are sufficient to
conclude about all executions of this program. It is then necessary to develop a
dynamic analysis which has the right balance between the number of executions
covered by one test and the precision of the analysis.

The solution approached here assumes there is no recursive calls and is based
on “acyclic Control Flow Graphs” (aCFG). As its name suggests an aCFG is
a Control Flow Graph (CFG) without cycles. In an aCFG, there is no edge
from the last nodes of the body of a loop statement to the node corresponding
to the test of this loop statement. Instead, there is an edge from every last

38 G. Le Guernic

node of the body of the loop to the node corresponding to the block following
the loop statement. Figure 2(a) shows the standard CFG of the following code:
“if c1 then while c2 do P1 done else P2 end”. Figure 2(b) shows its aCFG.
In an acyclic CFG, there is a finite number of paths. The maximum number of
paths is equal to 2b, where b is the number of branching statements (if and
while statements) in the program.

Begin

c1

c2

P2 End

false

true

P1

false

true

(a) Standard CFG

Begin

c1

c2

P2

true

End

true

P1

false

false

(b) Acyclic CFG

Fig. 2. CFG and aCFG of the same program

The approach to noninterference testing proposed in this section is based
on a dynamic information flow analysis which returns the same result for any
execution that follows the same path in the aCFG of the program analyzed.
Let the acyclic CFG trace of an execution be the list of nodes of the aCFG
encountered during the execution. Let τ [[σ 	 P]] be the acyclic CFG trace of the
execution of program P with initial value store σ. Let T[[ζ 	 P]] be the result of
the dynamic information flow analysis of the execution of P in the initial program
state ζ (its formal definition is given on page 40). The constraint imposed on
the dynamic information flow analysis for the noninterference testing approach
proposed is formalized in Hypothesis 1.

Hypothesis 1 (Usable for noninterference testing)
For all programs P, value stores σ1 and σ2, and tag stores ρ:

τ [[σ1 	 P]] = τ [[σ2 	 P]] ⇒ T[[(σ1, ρ) 	 P]] = T[[(σ2, ρ) 	 P]]

With such a dynamic analysis, the problem of verifying the noninterference be-
havior of any execution is reduced to the well known testing problem of achieving
100% feasible paths coverage [9–13]. For path whose branch conditions are linear
functions of inputs, Gupta et al. [14] propose a technique which finds a solution
in one iteration or guarantees that the path is infeasible.

Information Flow Testing 39

2.3 The Language: Syntax and Standard Semantics

The language used to describe programs studied in this article is an imperative
language for sequential programs. Expressions in this language are deterministic
— their evaluation in a given program state always results in the same value —
and are free of side effects — their evaluation has no influence on the program
state. The standard semantics of the language is given in Fig. 3. The evaluation
symbol (⇓) is given a subscript letter in order to distinguish between the standard
semantics (S) and the analyzing one (A). The standard semantics is based on
rules written in the format: σ 	 P ⇓S σ′. Those rules means that, with the
initial program state σ, the evaluation of the program P yields the final program
state σ′. Let X be the domain of variable identifiers and D be the semantics
domain of values. A program state is a value store σ (X → D) mapping variable
identifiers to their respective value. The definition of value stores is extended to
expressions, so that σ(e) is the value of the expression e in the program state σ.

σ � skip ⇓S σ

σ(e) = true σ � P l ; while e do P l done ⇓S σ′

σ � while e do P l done ⇓S σ′

σ � x := e ⇓S σ[x �→ σ(e)]

σ(e) = v σ � P v ⇓S σ′

σ � if e then P true else P false end ⇓S σ′

σ � P h ⇓S σh σh � P t ⇓S σt

σ � P h ; P t ⇓S σt
σ(e) = false

σ � while e do P l done ⇓S σ

Fig. 3. Rules of the standard semantics

3 The Analyzing Semantics

The dynamic information flow analysis and the analyzing semantics are defined
together in Fig. 4. Information flows are tracked using tags. At any execution
step, every variable has a tag which reflects the fact that this variable may carry
variety or not.

3.1 A Semantics Making Use of Static Analysis Results

Let X be the domain of variable identifiers, D be the semantics domain of values,
and T be the domain of tags. In the remainder of this article, T is equal to {�, ⊥}.
Those tags form a lattice such that ⊥ � �. � is the tag associated to variables
that may carry variety — i.e. whose value may be influenced by the secret inputs.

The analyzing semantics described in Fig. 4 is based on rules written in the
format:

ζ 	 P ⇓A ζ′ : X

This reads as follows: in the analyzing execution state ζ, program P yields the
analyzing execution state ζ′ and a set of variables X . An analyzing execution

40 G. Le Guernic

state ζ is a pair (σ, ρ) composed of a value store σ and a tag store ρ. A value store
(X → D) maps variable identifiers to values. A tag store (X → T) maps variable
identifiers to tags. The definitions of value store and tag store are extended to
expressions. σ(e) is the value of the expression e in a program state whose value
store is σ. Similarly, ρ(e) is the tag of the expression e in a program state whose
tag store is ρ. ρ(e) is formally defined as follows, with V(e) being the set of free
variables appearing in the expression e:

ρ(e) =
⊔

x∈V(e)

ρ(x)

Definition 3 (T[[ζ 	 P]]).
T[[ζ 	 P]] is defined to be the final tag store of the execution of P with the initial
state ζ. Therefore, for all programs P, value stores σ and tag stores ρ, if the
evaluation of P in the initial state (σ, ρ) terminates then there exists a value
stores σ′ and a set of variables X ′ such that:

ζ 	 P ⇓A (σ′, T[[ζ 	 P]]) : X ′

The set of variables X contains all the variables whose value may be modified
by an execution of P having the same trace than the current execution — i.e. all
executions whose trace is τ [[σ 	 P]].

The semantics rules make use of static analyses results. In Fig. 4, application
of a static information flow analysis to the piece of code P is written: [[ρ 	 P]]�G .
The analysis of a program P must return a pair (D, X). D, which is a subset
of (X × X), is an over-approximation of the dependencies between the initial
and final values of the variables created by any execution of P. D(x), which is
equal to {y | (x, y) ∈ D}, is the set of variables whose initial value may influence
the final value of x after an execution of P. X, which is a subset of X, is an
over-approximation of the set of variables which are potentially defined — i.e.
whose value may be modified — by an execution of P. This static analysis can
be any such analysis that satisfies a set of formal constraints which are stated
below.

The analyzing semantics rules are straightforward. As can be expected, the
execution of a skip statement with the semantics given in Fig. 4 yields a final
state equal to the initial state. The execution of the assignment of the value of
the expression e to the variable x yields an execution state (σ′, ρ′). The final
value store (σ′) is equal to the initial value store (σ) except for the variable
x. The final value store maps the variable x to the value of the expression e
evaluated with the initial value store (σ(e)). Similarly, the final tag store (ρ′) is
equal to the initial tag store (ρ) except for the variable x. The tag of x after the
execution of the assignment is equal to the tag of the expression computed using
the initial tag store (ρ(e)). ρ(e) represents the level of the information flowing
into x through direct flows.

For an if statement, the branch (P v) designated by the value of e is executed
and the other one (P¬v) is analyzed. The final value store is the one returned

Information Flow Testing 41

ζ � skip ⇓A ζ : ∅ (EA-SKIP)

(σ, ρ) � x := e ⇓A (σ[x �→ σ(e)], ρ[x �→ ρ(e)]) : {x} (EA-ASSIGN)

ζ � P h ⇓A ζh : Xh ζh � P t ⇓A ζt : Xt

ζ � P h ; P t ⇓A ζt : Xh ∪ Xt (EA-SEQUENCE)

σ(e) = v (σ, ρ) � P v ⇓A (σv, ρv) : Xv [[ρ � P ¬v]]�G = (D, X)

Xe = Xv ∪ X ρ′ = ρv 	
`
(Xe × {ρ(e)}) ∪ (Xe × {⊥})

´

(σ, ρ) � if e then P true else P false end ⇓A (σv, ρ′) : Xv

(EA-IF)

σ(e) = false [[ρ � P l ; while e do P l done]]�G = (D, X)

ρ′ = ρ 	
`
(X × {ρ(e)}) ∪ (X × {⊥})

´

(σ, ρ) � while e do P l done ⇓A (σ, ρ′) : ∅
(EA-WHILEfalse)

σ(e) = true σ � P l ; while e do P l done ⇓S σv

[[ρ � P l ; while e do P l done]]�G = (D, X)

ρD =
˘`

x ,
F

y∈D(x) ρ(y)
´

| x ∈ X
¯

ρR = ρD 	
`
(X × {ρ(e)}) ∪ (X × {⊥})

´

(σ, ρ) � while e do P l done ⇓A (σv, ρR) : X

(EA-WHILEtrue)

Fig. 4. Rules of the analyzing semantics

by the execution of P v. The final tag store (ρ′) is the least upper bound of
the tag store returned by the execution of P v and a tag store reflecting indi-
rect flows. This latter tag store associates the tag of the branching condition
to variables potentially defined by an execution having the same trace or an
execution of the other branch. If the tag of the branching condition is ⊥, the
final tag store is therefore equal to the tag store returned by the execution
of P v.

The execution of while statements is similar to the execution of if state-
ments. However, in order to be able to apply the testing technique exposed in
Section 2.2, it is required to have the same tag store for every execution following
the same path in the acyclic CFG. Therefore, the final tag store is computed
from the result of a static analysis of the branch executed (skip if the branching
condition is false) and not from the tag store obtained by the execution of the
branch designated by the branching condition. For the same reason, the set of
variables returned by the execution of a while statement is obtained by static
analysis of the branch executed.

42 G. Le Guernic

3.2 Hypotheses on the Static Analysis Used

The static analysis used on unexecuted branches is not formally defined. In
fact, the dynamic analysis can use any static analysis which complies with the
three following hypotheses and returns a pair, whose first element is a relation
between variables — i.e. a set of pairs of variables — and second element is a
set of variables.

The first two hypotheses require a sound static analysis. Hypothesis 2 simply
requires the static analysis used to be a sound analysis of defined variables.
More precisely, it requires that the second element of the static analysis result
(X) contains all the variables which may be defined by an execution of the
analyzed program. This is a straightforward requirement as the result of the
static analysis is used to take into account implicit indirect flows. Hypothesis 3
requires the static analysis used to be a sound analysis of dependencies between
the final values of variables and their initial values. The last hypothesis requires
only the static analysis to be deterministic.

Hypothesis 2 (Sound detection of modified variables.)
For all tag stores ρi, analysis results (D, X), testing execution states (σi, ρi) and
(σf , ρf), programs P and sets of variables X such that:

1. [[ρi 	 P]]�G = (D, X)
2. (σi, ρi) 	 P ⇓A (σf , ρf) : X ,

the following holds: ∀x /∈ X . σf (x) = σi(x).

Hypothesis 3 (Sound detection of dependencies.)
For all analysis results (D, X), tag stores ρ1, testing execution states (σ1, ρ1),
(σ′

1, ρ′1), (σ2, ρ2) and (σ′
2, ρ′2), programs P, and sets of variables X1 and X2

such that:

1. [[ρ1 	 P]]�G = (D, X)
2. (σ1, ρ1) 	 P ⇓A (σ′

1, ρ′1) : X1 ,
3. (σ2, ρ2) 	 P ⇓A (σ′

2, ρ′2) : X2 ,

for all x in X:
(
∀y ∈ D(x) . σ1(y) = σ2(y)

)
⇒ σ′

1(x) = σ′
2(x).

Hypothesis 4 (Deterministic static analysis)
The static analysis used is a deterministic analysis. For all tag stores ρ and
programs P, the following holds: | range([[ρ 	 P]]�G) | = 1.

What is the reason for having a tag store in parameter of the static analysis? In
fact, there is no need for the tag store which is given to the static analysis. This
additional parameter to the static analysis has been added in order to be able
to use existing noninterference type systems in a straightforward way.

Using this tag store, it is easy to construct an analysis satisfying the hypothe-
ses presented above from a type inference mechanism for a sound noninterference

Information Flow Testing 43

type system. Let X↑ρ be the set of variables whose tag in ρ is �. Let Γρ be a
typing environment in which variables belonging to X↑ρ are typed secret, other
variables can be typed secret or public. Let X↓Γ be the set of variables typed
public in Γ and X↑Γ the set of variables typed secret in Γ . Let DΓ be a relation
among variables which associates every variable of X↑Γ to every variable (X), and
associates every variable of X↓Γ to every variable of X↓Γ . If P is well-typed under
Γρ and the program “if h then P else skip end” is well-typed under Γ ′

ρ with h
typed secret in Γ ′

ρ, then (DΓ , X↑Γ ′
) is a result satisfying the Hypotheses 2 and 3

if any variable tagged ⊥ in ρ has the same value in σ1 and σ2.

3.3 Another Characterization of Usable Static Analyses

The above hypotheses define which static information flow analyses are usable,
i.e. which static analyses can be used with the special semantics given in Fig. 4.
However, Hypotheses 2 and 3 are stated using the special semantics itself. This
makes it more difficult to prove that a given static analysis satisfies those hy-
potheses.

Figure 5 defines a set of acceptability rules. The result (D, X) of a static
information flow analysis of a given program (P) is acceptable for the analyzing
semantics only if the result satisfies those rules. This is written: (D, X) |= P. In
the definitions of those rules, Id denotes the identity relation. ◦ is the operation
of composition of relations.

(S ◦ R) =
⋃

(a,b)∈R

{(a, c) | (b, c) ∈ S}

Using the acceptability rules of Fig. 5, it is possible to characterize some static
information flow analyses which are usable with the analyzing semantics without
referring to the analyzing semantics itself. It is also possible to generate a usable
static information flow analysis by fix-point computation on the acceptability
rules; in fact, only on the rule for loop statements. However, those acceptability
rules do not define a most precise usable static analysis.

As stated by Theorem 1, any acceptable static analysis result satisfies Hy-
pothesis 2. Theorem 2 states that any acceptable static analysis result satisfies
Hypothesis 3.

Theorem 1 (Acceptable imply sound detection of defined variables)
For all programs P, and analysis result (D, X) such that (D, X) |= P, the Hy-
pothesis 2 holds.

Proof As X contains an over-approximation of variables on the left side of every
assignments in P, a variable which is not in this set can not be assigned to. And
therefore, its value remains unchanged.

Theorem 2 (Acceptable imply sound detection of dependencies)
For all programs P, and analysis result (D, X) if (D, X) |= P then the Hypothe-
sis 3 holds.

44 G. Le Guernic

(D, X) |= skip iff D ⊇ Id

(D, X) |= x := e iff D ⊇ Id [x �→ V(e)] ∧ X ⊇ {x}

(D, X) |= Ph ; Pt

iff there exist (Dh, Xh) and (Dt, Xt) such that:

(Dh, Xh) |= Ph ∧ (Dt, Xt) |= Pt

D ⊇ (Dh ◦ Dt) ∧ X ⊇ (Xh ∪ Xt)

(D, X) |= if e then Ptrue else Pfalse end

iff there exist (Dtrue, Xtrue) and (Dfalse, Xfalse) such that:
(Dtrue, Xtrue) |= Ptrue ∧ (Dfalse, Xfalse) |= Pfalse

X ⊇ (Xtrue ∪ Xfalse) ∧ D ⊇
�
Dtrue ∪ Dfalse ∪ (X × V(e))

�

(D, X) |= while e do Pl done

iff there exists (Dl, Xl) such that:(Dl, Xl) |= Pl and

D ⊇
�
(Dl ◦ D) ∪ Id ∪ (X × V(e))

�
∧ X ⊇ Xl

Fig. 5. Acceptability rules for usable analysis results

Proof The proof follows directly from the acceptability rules. The value of every
assigned variables depends on the values of the variables appearing in the ex-
pression on the right side of the assignment. The rule for sequences links the
dependencies created by both statements. Variables whose value can be modified
in a conditional are accurately stated to depend on the values of variables ap-
pearing in the branching condition. And finally, in the rule for while statements,
Dl ◦ D ⊆ D ensures that the dependencies created by one or more iterations of
the loop are contained in D. While Id ⊆ D ensures that dependencies existing
in case of no iteration at all are also contained in D.

Therefore, a static information flow analysis, which satisfies Hypothesis 4
and whose results are acceptable ([[ρ 	 P]]�G |= P), is usable by the analyzing
semantics — i.e. it satisfies Hypotheses 2, 3 and 4.

3.4 Properties of the Analyzing Semantics

Section 3.1 formally defined the dynamic information flow analysis proposed in
this article. The soundness of this analysis with regard to the notion of nonin-
terfering execution (Definition 2) is proved by Theorem 3. This means that, at
the end of any two executions of a given program P started with the same public
inputs (variables which do not belong to S(P)), any variables whose final tag is ⊥

Information Flow Testing 45

has the same final value for both executions. Theorem 4 states that the dynamic
analysis results for two executions following the same path in the acyclic CFG
are identical. Therefore, the dynamic information flow analysis proposed can be
used with the testing technique presented in Section 2.2.

Theorem 3 (Sound Detection of Information flows)
Assume that the analyzing semantics ⇓A uses a static analysis ([[]]�G) for which
Hypotheses 2, 3 and 4 hold. For all programs P, sets of variables X1 and X2,
and execution states (σ1, ρ1), (σ′

1, ρ′1), (σ2, ρ2) and (σ′
2, ρ′2) such that:

1. ∀x ∈ S(P). ρ1(x) = �,
2. ∀x /∈ S(P). σ1(x) = σ2(x),
3. (σ1, ρ1) 	 P ⇓A (σ′

1, ρ′1) : X1 ,
4. (σ2, ρ2) 	 P ⇓A (σ′

2, ρ′2) : X2 ,

the following holds: ∀x ∈ X. (ρ′1(x) = ⊥) ⇒ (σ′
1(x) = σ′

2(x)).

Proof The proof goes by induction on the derivation tree of the third local hy-
pothesis and by cases on the last evaluation rule used. For inductions, the set
S(P) is replaced by the set of variables whose tag is �, and the second local hy-
pothesis (with S(P) replaced) is proved to be an invariant. The proof is straight-
forward for skip and assignments, and goes by simple induction for sequences.
For conditionals, if both executions execute the same branch then the conclusion
follows from a simple induction. Otherwise, it means that the expression tested
(e) does not have the same value for both execution; and therefore that ρ1(e) is
�. Hence, as any variables which are modified in the branch executed (X) or
potentially modified by an execution of the other branch (X) receive the tag of e
in the final tag store (ρ′1), the desired conclusion is vacuously true for variables
assigned by any of the two executions and follows directly from the second local
hypothesis for the other variables.

Theorem 4 (Identical Same Path Analysis Results)
If the analyzing semantics ⇓A uses a static analysis ([[]]�G) for which Hypothe-
ses 2, 3 and 4 hold then Hypothesis 1 holds.

Proof Once again, the proof goes by induction and cases on the derivation tree.
The proof is direct for skip, assignments and sequences. For if statements, as
the trace is the same then the branch executed is the same and the proof follows
by induction. For while statements, the final tag store is constructed from the
result of the static analysis of the statement. Therefore, the conclusion follows
directly from Hypothesis 4.

4 Conclusion

To the best of the author knowledge, this article proposes the first information
flow testing mechanism which enjoys the property of being sound with regard to
noninterference. It is based on a special semantics integrating a dynamic infor-
mation flow analysis which is sound from the point of view of noninterference for

46 G. Le Guernic

the tested execution, and returns the same sound result for any execution follow-
ing the same path in the acyclic Control Flow Graph (aCFG) of the program.
After testing once every path in the aCFG, a sound conclusion with regard to
noninterference can be stated for the program under test. The dynamic analysis
combines information obtained from executed statements with static analysis re-
sults of some unexecuted pieces of code. No particular static analysis is required
to be used. Instead, three hypotheses on the results of the static analysis used
are defined. It is proved that any static analysis respecting those hypotheses
can be soundly used. A construction mechanism to obtain such a static analy-
sis from existing noninterference type systems is given. Additionally, a set of
constraints relating statements and the result of their static analysis is defined
independently from anything else. This set of constraints is proved to subsume
the three hypotheses stated before.

Given test cases covering all the feasible paths in the aCFG, the testing mech-
anism proposed returns a conclusion as strong as the conclusion returned by the
static analysis used by the testing semantics. Moreover, this result is at least
as precise as the result returned by the static analysis alone. The increase in
precision is proportional to the number of if statements whose condition is not
influenced by a secret.

To the author knowledge, there is no similar work. The vast majority of re-
search on noninterference concerns static analyses and involves type systems
[4]. Some “real size” languages together with security type system have been
developed (for example, JFlow/JIF [15] and FlowCaml [16]). A few dynamic
information flow analyses have been proposed [5, 7, 17]. However, those analyses
are applied on final users executions and are therefore required to correct “bad”
flows. In order to prevent this correction mechanism to become a new covert
channel, additional constraints are applied on the dynamic analysis [8]. Those
additional constraints limit the precision achievable by such dynamic analyses.
While testing, there is no need for a correction mechanism and therefore a higher
precision can be achieved.

Noninterference testing is an interesting field of study having its own specific
challenges. It may be hard, so not impossible [14], to come out with a valid set
of executions in order to cover all feasible paths in the aCFG. However, in many
cases, the noninterference mechanism proposed in this article is more precise
than the static analyses which can be used by the testing technique proposed.
Thus, noninterference testing may allow to validate some specific programs whose
validation is out of reach of static analyses, or at least help find information flow
bugs.

References

1. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, Sydney, Australia
(1956)

2. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc. Symp.
on Security and Privacy, pp. 11–20. IEEE Computer Society Press, Los Alamitos
(1982)

Information Flow Testing 47

3. Cohen, E.S.: Information transmission in computational systems. ACM SIGOPS
Operating Systems Review 11(5), 133–139 (1977)

4. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on
Selected Areas in Communications 21(1), 5–19 (2003)

5. Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,
Reis, G.A., Vachharajani, M., August, D.I.: Rifle: An architectural framework for
user-centric information-flow security. In: Proceedings of the International Sympo-
sium on Microarchitecture (2004)

6. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.: Automata-based Con-
fidentiality Monitoring. In: Proc. Asian Computing Science Conference. LNCS,
Springer, Heidelberg (2006)

7. Shroff, P., Smith, S.F., Thober, M.: Dynamic dependency monitoring to secure in-
formation flow. In: Proc. Computer Security Foundations Symposium, IEEE Com-
puter Society, Los Alamitos (2007)

8. Le Guernic, G., Jensen, T.: Monitoring Information Flow. In: Proc. Workshop on
Foundations of Computer Security, DePaul University, pp. 19–30 (2005)

9. Ntafos, S.C.: A comparison of some structural testing strategies. IEEE Transactions
on Software Engineering 14(6), 868–874 (1988)

10. Beizer, B.: Software Testing Techniques. International Thomson Computer Press
(1990)

11. Williams, N., Marre, B., Mouy, P., Muriel, R.: Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

12. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proc. Programming Language Design and Implementation. ACM SIGPLAN
Notices, vol. 40, pp. 213–223 (2005)

13. Sen, K., Agha, G.: Cute and JCute: Concolic unit testing and explicit path model-
checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
419–423. Springer, Heidelberg (2006)

14. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated Test Data Generation Using
an Iterative Relaxation Method. In: Proc. Symposium on Foundations of Software
Engineering, pp. 231–244. ACM Press, New York (1998)

15. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proc.
Symp. on Principles of Programming Languages, pp. 228–241 (1999)

16. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. on Pro-
gramming Languages and Systems 25(1), 117–158 (2003)

17. Le Guernic, G.: Automaton-based Confidentiality Monitoring of Concurrent Pro-
grams. In: Proc. Computer Security Foundations Symposium (2007)

Large Scale Simulation of Tor:

Modelling a Global Passive Adversary

Gavin O’ Gorman and Stephen Blott

Dublin City University
Glasnevin, D9, Dublin, Ireland

{gogorman,sblott}@computing.dcu.ie

Abstract. Implementing global passive adversary attacks on currently
deployed low latency anonymous networks is not feasible. This paper
describes the implementation of a large scale, discrete event based sim-
ulation of Tor, using the SSFNet simulator. Several global passive ad-
versary attacks are implemented on a simulated Tor network comprised
of approximately 6000 nodes. The attacks prove to be highly accurate
(80 percent stream correlation rate) for low traffic conditions but sig-
nificantly less effective on denser, multiplexed links (18 percent success
rate).

1 Introduction

The Internet, specifically TCP/IP, was not designed to provide anonymity. One
solution to this problem is to create an overlay network, that is, a network which
runs on top of an existing TCP/IP network. By abstracting away from IP ad-
dresses of hosts, the overlay network allows for the explicit control of the routing
of its messages. This control enables the obfuscation of sender and receiver ad-
dresses, and thus offers a degree of anonymity.

An accurate, scalable testbed for implementing new features and measuring
anonymity is required to test theorized attacks against these overlay networks.
Establishing test networks in a lab is a limited option, such a test network could
not scale to current and future deployment sizes. Creating a comprehensive ana-
lytical model is difficult given the level of complexity in current overlay networks.

One solution is to use discrete event-based simulation. This is the approach
described in this paper.

– We describe a discrete event-based simulation of a popular low latency
anonymising network, Tor, using the SSFNet simulator. Our simulation mod-
els the Tor routing of HTTP data with circuits, stream multiplexing, proxies,
routers and exit routers.

– We have implemented several preliminary global passive adversary attacks
using approximately 4500 HTTP clients, 100 HTTP servers and over 950
Tor routers.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 48–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Large Scale Simulation of Tor 49

Tor. Several anonymous network designs have been developed which attempt
to apply mixes to low latency traffic. The most widely-used of these tools is
Tor [1], the second generation onion router. The current Tor network contains
approximately 900 router nodes with hundreds of thousands of streams transiting
the network [2].

The Tor network consists of proxies, onion routers and exit routers. A user
runs a Tor proxy on their local machine which offers a SOCKS interface to TCP
applications. This Tor proxy begins the process of establishing a circuit through
the Tor network of onion routers, to a suitable exit router and finally to the
target TCP server. Circuits are established in a telescoping manner. On circuit
establishment, the incoming TCP stream is routed over the circuit.

SSFNet. Discrete event-based simulation is used to create an abstract repre-
sentation of the important elements of a system. Event based simulation allows
one to build models of systems and investigate how the system might work under
different conditions.

The Scalable Simulation Framework (SSF) [3], has been designed to model
large scale simulations. The framework describes an interface for a simulation
kernel. This generic kernel can then be built upon to implement varying simu-
lators, of which network simulators are one type.

2 Our Implementation

Apart from some simulation specific techniques for ensuring a linear time ex-
ecution of events, the simulation code itself is very similar to that of a real
application. Three distinct network elements were created, on top of those al-
ready provided by the simulation libraries. These network elements are a proxy,
a router and an exit router.

2.1 Protocol

The circuit establishment protocol described in the Tor design document [1] is
simulated exactly. Encryption is not simulated; for our purposes, there is no
need.

Traffic routed through the modeled Tor network is provided by a HTTP traffic
generator, SSF.OS.WWW distributed with the SSFNet protocols. Further details
of the traffic generator can be found in the appendix of [4].

Data received from the HTTP client is broken into 512-byte cells, labelled
with the correct stream ID and sent to the router associated with that stream.
Each router passes the data on, until the exit router receives it, recreates the
original data, and sends this to the target server.

Several traffic streams may be multiplexed over circuit connections. For ex-
ample, if the proxy receives a new incoming client connection and chooses as
the first router on its path one to which a connection is already available, then
that socket is reused. A new stream ID is allocated to the stream, the circuit
establishment procedure is followed, and the stream is correctly routed.

50 G. O’ Gorman and S. Blott

2.2 Topology

The network topology used is taken from the SSFNet website. It is an simplifica-
tion of a US ISP. The topology consists of 24 interconnected autonomous systems
(AS), where each AS is composed of a number of sub networks. One proxy, two
onion routers and one exit router were added to each of the subnetworks, evenly
distributing the nodes throughout the network. This results in 325 proxies, 650
router nodes and 325 exit router nodes in the whole network, approximating the
number of onion routers in the currently deployed Tor network. The number of
clients per LAN was then set to 5, resulting in a total of 5760 clients.

3 Attacks and Results

We have implemented a number of attacks as discussed in detail below. The
results from these attacks allow us to demonstrate the correctness of the Tor
simulation, in that the results we observe are very similar to those previously
published.

The attacks are performed with an increasing number of clients to model an
increase in density of traffic across multiplexed connections. Also, with more
traffic, there will be greater delay across the network.

The simulation is run for 1120 seconds. The initial 1000 seconds is to allow
for the BGP and OSPF routing to settle. After this 1000 seconds, the HTTP
clients begin connecting to the Tor network and to their target server. After 60
seconds, at time 1060, tcpdump output is recorded for another 60 seconds until
time 1120, at which point the simulation terminates. The initial 60 seconds is to
allow the Tor routers to settle into equilibrium.

3.1 Connection Start Tracking Attack

Connection start tracking was described by Serjantov et. al[5]. It works by track-
ing the initialization time of a connection as it spans the network. If a stream
is seen to enter and then emerge from the network in a certain timeframe, it is
possible to associate the two events. As demonstrated by Serjantov et al., the at-
tack requires lone connections to successfully link streams. However, on a busy
multiplexed network, connection start and end tracking serves as an effective
filter to reduce the number of potential streams.

In our implementation of this attack, we take the time of the first HTTP
response packet, add a variable delay (d) to it and compare this time with all
recorded Tor streams. As the traffic is multiplexed, it is not possible to determine
exactly when traffic streams start and end. Also with the extra delay introduced
by more traffic, there is the need for a variable delay value. We perform the
attack using values of d ranging from .1 to 2 seconds, increasing in increments
of .1s, and with increasing numbers of clients as described above.

As seen in Fig. 1(a), the initial start and end tracking filter eliminates a high
percentage of streams, up to 98% on the sparse traffic network and 96% on the
densest network.

Large Scale Simulation of Tor 51

3.2 Packet Counting Attack

A packet counting attack introduced in [6] and further expounded in [5] consists
of counting the number of packets entering a node and subsequently leaving
a node for a given time interval. By comparing the number of packets for a
particular stream entering a node with the number of packets leaving the node
it can be possible to determine to which node/link the packets from that stream
are being sent.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

el
im

in
at

ed

delay(s)

Start and end stream filter

1 AS
8 ASs

16 ASs
24 ASs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

el
im

in
at

ed

delay(s)

Packet counting filter

1 AS
8 ASs

16 ASs
24 ASs

(a) (b)

Fig. 1. Start connection tracking and packet counting filters

The same method of varying the d value is used as above, but the streams
being analyzed are those that have previously been filtered by the start and end
time attack. Figure 1(b) shows that the 2% to 4% of streams left by the start
and end time attack are further reduced by approximately 5% to 15% with the
packet counting attack.

3.3 Stream Correlation Attack

Fixed Time Window. Traffic correlation attacks were proposed and imple-
mented in [7]. The technique is to set a windows size W and count the number
of packets received, beginning at time t, during that window size. This process is
repeated for the duration of the stream. The sequence of packet counts can then
be compared with the sequences from other streams in the network. The cross
correlation coefficient function used to compare these sequences is below [7]:

r(d) =
∑

i((xi − μ)(x′
i+d − μ′))

√∑
i(xi − μ)2

√∑
i(x

′
i+d − μ′)2

The two streams being compared are x and x′ with d being the delay value. xi

is the ith packet count of stream x and x′
i is the ith packet count of stream x′. μ

is the average of packet counts in stream x and μ′ is the average of packet counts
in stream x′. The more the result tends towards 1, the greater the similarity of

52 G. O’ Gorman and S. Blott

the streams. This same correlation function was also used in [8,9] for end to end
traffic confirmation.

Some minor modifications to the attack are needed. The first is that the Tor
protocol breaks the HTTP data into 512 byte cells. As such, the number of
packets being sent from the HTTP server is not the same as the number of
packets received at the Tor proxy. Allowing for this is straightforward.

For the fixed interval attack, a time window of 1s is used, as recommended by
Shmatikov & Wang [8]. The fixed time interval attack is highly effective, Fig, 2,
with approximately 80% of streams correctly identified on the low traffic network.
Most connections were lone and so easily correlated. On the denser networks, the
attack proved to be less effective with the extra noise of the multiplexed traffic. As
the delay was increased, the accuracy of the attack fell rapidly. With the denser
network, the most accurate attacks are still at .1s delay, demonstrating that net-
work congestion did not prove to be an issue as anticipated. This is most likely as
a result of high bandwidth of clients and servers. Realistic bandwidth values and
increased traffic should demonstrate the effect of congestion on the network.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

co
rr

ec
tly

 c
or

re
la

te
d

delay(s)

Fixed time window of 1s attack

1 AS
8 ASs

16 ASs
24 ASs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 s

tr
ea

m
s

co
rr

ec
tly

 c
or

re
la

te
d

delay(s)

HTTP Peak extraction attack

1 AS
8 ASs

16 ASs
24 ASs

(a) (b)

Fig. 2. Success rate of correlation attacks

Peak Extraction. An alternative to using a fixed time interval is to break each
stream into fixed fractions, count the number of packets observed in these frac-
tions and correlate them with the function above. The values for these fractions
can be determined by examining the HTTP stream. HTTP traffic is bursty. A
certain web page will contain a number of objects, each of which is downloaded
individually and can be observed as a burst of traffic, or a peak, across the con-
nection. We obtain ratios for each peak termination. These ratios can then be
applied to the Tor stream. Allowing for the delay d the corresponding packet
counts should be equal.

The results of the peak extraction attack are presented in Fig. 2(b). The
attack is not as effective as the fixed window of 1s attack, however it is slightly
more robust when inaccurate delay values are used. The percentage of streams
successfully identified decreases at a lower rate than the fixed interval attack.
The success rate surpasses the fixed interval attack for larger delay values.

Large Scale Simulation of Tor 53

4 Related Work

Initial analytical work [10], using traffic matrices, provided metrics for measuring
the effort required to thwart stream correlation attacks. This work was extended,
using entropy to measure anonymity [11]. Real traffic measurements are taken
from a campus network, however no attacks are described.

Later work by Levine et al. [7] describes global passive adversary attacks for
stream correlation. The technique used is described in the results section. The
Levine et al. attacks do not account for the multiplexing of traffic streams. The
cross correlation coefficient was later utilized by Bissias et al. [9] to correlate
encrypted HTTP streams.

Shmatikov & Wang [8] extend the original attack of Levine et al. by proposing
and testing a new defense. This defense, adaptive padding, involves applying
padding to ensure that streams are indistinguishable from each other. As with
Levine et al. the attacks are performed on links with non-multiplexed streams.
Also, as is pointed out in the paper, stream times are also not taken into account,
whereas in our attacks, we filter results by checking start and end time.

Zhu et al. [12] use mutual information and frequency analysis (wavelets/FFT)
to correlate TCP traffic streams. In ongoing experimental work, we have applied
frequency analysis to HTTP streams generated by the simulation. As yet, the
accuracy of the method appears quite low as the bursty nature of HTTP traffic
does not lend itself to frequency analysis.

In terms of scale, Bauer et al. [13] have implemented perhaps the most ambi-
tious attacks to date, using approximately 60 Tor nodes distributed across the
globe in a test network. Our simulation in contrast utilise approximately 6000
nodes.

5 Future Work

Our initial work on TCP stream analysis, using wavelets and Fourier transforms
shows promise. We intend developing these attacks in conjunction with more
realistic topologies. Additional work to verify the fidelity of the simulation to
the real Tor client will consist of packet count and timing analysis on small scale
networks.

Beyond that, we intend measuring the average delay for streams crossing the
network and introducing delay to the Tor nodes. We can measure the impact
this has on the network in terms of Quality of Service and effectiveness against
stream correlation. The overall goal is to determine the optimal compromise
between latency and anonymity for anonymous networks.

6 Conclusion

We have developed an initial Tor simulation. We have begun verification the sim-
ulation with the implementation of previously discussed attacks and obtained
expected results. The simulation needs to be extended to replicate the traffic

54 G. O’ Gorman and S. Blott

control techniques Tor utilises. Given that, we will be able to reliably measure
quality of service across the network. This, in combination with the attacks pre-
sented will allow us to quantify the compromise between latency and annonymity
for a given network configuration.

The ability to test and implement new features on the Tor simulation will, we
believe, prove to be invaluable for the Tor developers and future researchers.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

2. Developers, T.: Tor website (June 2007), http://tor.eff.org
3. Cowie, J., Liu, H.: Towards realistic million-node internet simulations. In: Proceed-

ings of the 1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (1999)

4. Feldmann, A., Gilbert, A., Huang, P., Willinger, W.: Dynamics of IP traffic: A
study of the role of variability and the impact of control. In: Proceedings of ACM
SIGCOMM 1999, pp. 301–313. ACM Press, New York (1999)

5. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
Springer, Heidelberg (2003)

6. Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity
providing systems. In: Moskowitz, I.S. (ed.) Proceedings of Information Hiding
Workshop (IH 2001). LNCS, vol. 2137, pp. 245–257. Springer, Heidelberg (2001)

7. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency
mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, Springer, Heidel-
berg (2004)

8. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, Springer, Heidelberg (2006)

9. Bissias, G.D., Liberatore, M., Levine, B.N.: Privacy vulnerabilities in encrypted
http streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856,
Springer, Heidelberg (2006)

10. Venkatraman, B., Newman-Wolfe, R.: Performance analysis of a method for high
level prevention of traffic analysis using measurements from a campus network.
Computer Security Applications Conference, Proceedings, 10th Annual (1994) 288–
297 (1994)

11. Newman, R.E., Moskowitz, I.S., Syverson, P., Serjantov, A.: Metrics for traffic
analysis prevention. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, Springer,
Heidelberg (2003)

12. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET
2004. LNCS, vol. 3424, Springer, Heidelberg (2005)

13. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-Resource Routing
Attacks Against Anonymous Systems. Technical Report CU-CS-1025-07, Univer-
sity of Colorado at Boulder (2007)

http://tor.eff.org

Privacy Enhancing Credentials

Junji Nakazato, Lihua Wang, and Akihiro Yamamura

National Institute of Information and Communications Technology
4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

{nakazato, wlh, aki}@nict.go.jp

Abstract. Using pairing techniques, we propose an anonymous authen-
ticated key exchange scheme based on credentials issued by a trusted
third party. The protocol satisfies several security properties related to
user privacy such as unforgeability, limitability, non-transferability, and
unlinkability.

1 Introduction

Privacy issues have arisen because many users are becoming increasingly more
concerned about how their sensitive information will be used. Current technology
in electronic services such as e-commerce, e-business, and e-government allows
service providers to easily track individual’s actions, behaviors, and habits. The
information (or data) obtained in the transactions may be sold for business
purposes even though the users may not want this to be done. Therefore, they
would like to conceal personal information related to their identity as much as
possible. In this paper, we propose a new technique to solve privacy issues arising
from open-network transactions. Such a scheme could have many applications.
For example, potential applications could be for users to secure video rentals on
demand or use single sign-on tickets. Video-on-demand systems allow them to
select and watch videos over a network possibly as part of an interactive television
system. For users to use such a systems, an access control should be implemented
by service providers to verify their eligibility to watch these videos or request
services. Thus, their identity may be exposed when a request reaches the service
provider. Also, videos that users choose reflect taste and characteristics, matters
that they want to keep confidential. Likewise, tickets to request service providers
to provide services using a single sign-on scheme could leak user histories of what
services they have requested. In either cases, users are exposed to threats where
their sensitive information may be disclosed to undesirable entities.

There are two possible solutions. The first is to use oblivious transfer or pri-
vate information retrieval to conceal which video a user has asked to watch.
He/She can covertly ask the service provider to provide his/her request; how-
ever, this method does not address privacy issues in single sign-on schemes. The
second is anonymize the request made by the user to the service provider. In
this scenario, as the request received by the service provider is anonymous, the
service provider may not necessarily have the means to determine whether the
request is valid because the user cannot be traced back using the transmitted

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 55–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 J. Nakazato, L. Wang, and A. Yamamura

Table 1. Functions and requirements

previous [4] proposed

Credential Systems Yes Yes
Functions Flexibility of content1 Yes No

Authenticated key exchange No Yes

Unforgeability Yes Yes
Limitability Yes Yes

Requirements Non-transferability2 No Yes
Anonymity No Yes

Unlinkability No Yes
1 Ng, Susilo, and Mu’s scheme [4] can include any data in the credential, but
our proposed protocol only contains data to share the key.
2 Non-transferability means no party can transfer valid data to another. Conse-
quently, it is different from Ng, Susilo, and Mu’s [4].

request. This can be accomplished if a trusted third party issues a valid creden-
tial that enables the user to obtain the service from the provider anonymously
without disclosing his/her identity. An anonymous credential system is an effec-
tive solution that can satisfy these properties. Organizations issue credentials to
users for different organizations. Each organization knows user only by different
pseudonyms respectively. Users can convince different organizations of only the
fact that they have such credentials without revealing any information of the
users (anonymity). Moreover, even if a user uses such a credential of multiple
times, it cannot be linked to each other (unlinkability).

We report our current study of a scheme where a user and a service provider
can establish an authenticated and secure channel after the protocol using a
privacy enhanced credential in such a way that the scheme attains anonymity,
unlinkability, unforgeability, limitability, and non-transferability.

The efficient anonymous credential proposed by J. Camenisch and A. Lysyan-
skaya is based on strong RSA assumption and Decision Diffie-Hellman (DDH)
assumptions [2]. Our proposed scheme is similar to the one introduced by Ng,
Susilo, and Mu [4]. Our proposed scheme achieves non-transferable anonymous
credentials using a pairing technique on the elliptic curves over finite fields. Table
1 compares the functionalities and the security properties of their scheme with
ours. We found that Ng, Susilo, and Mu’s scheme could be tailored to fit such
security requirements using different methods.

2 Proposed Scheme

2.1 Description of Proposed Scheme

We define participants in the proposed scheme as: an authority, a user, a server
(or a signer), and verifiers (or services) satisfying the following properties:

Authority (A): provides system parameters and public/private key pairs. It
distributes these securely to all participants in the protocol. After that, A
will not take part in the protocol.

Privacy Enhancing Credentials 57

User (U): wants to receive services from two or more specific Vj ’s. First, U
sends a request to S, and receives a credential through a secure channel.
When U wants to obtain a service, she/he sends a ticket that is generated
from the valid credential designated to Vj by S.

Server (S): issues a credential to U for her/him to use the service provided by
the designated Vj . S is a trusted third party.

Verifiers (Vj (j = 1, . . . , n)): check whether or not the ticket is valid. If so, Vj

performs the protocol to exchange keys with U to establish an authenticated
and secure channel, otherwise Vj does not.

We assumed the protocol flow between U and A would be carried out through
secure channels and no adversaries could obtain any information. However, the
protocol is carried out using an insecure channel when U sends a ticket to any
Vj because the user is anonymous to Vj and therefore an authenticated channel
cannot be employed for this purpose. Thus, any adversary can obtain information
at this stage of the protocol.

2.2 Security Requirements

A malicious user may try to access to Vj , i.e., gain access that is not allowed. Vj

should be able to detect these invalid attempts at access. At the same time, the
protocol must protect the privacy of the user, even if Vj colludes with other Vi’s.
Therefore, our proposed scheme must at least satisfy unforgeability, limitability,
non-transferability, and unlinkability.

Unforgeability: Nobody can forge a valid credential to generate a valid ticket
with Vj without collaboration with S.

Limitability: U who was issued a valid credential by S can generate a ticket to
Vj that is designated by S in the credential; U cannot forge a valid credential
to generate a ticket to Vi that is not designated by S, even if he/she has been
given some legitimate credential for Vj .

Non-transferability: There are two cases that should be considered:
1. Vj who received the ticket from U cannot forge it a ticket to a ticket to

any other Vi.
2. U who was issued a valid credential by S cannot transfer it to any other

U′ to generate a valid ticket without leaking U’s secret keys.
Unlinkability: U may use a credential issued by S to generate tickets to several

verifier Vj ’s. No one can determine whether two tickets σ1 and σ2 have been
generated by U. Even if V1 colludes with V2, no efficient algorithm exists to
find the correlation between tickets sent to V1 and V2.

2.3 Bilinear Pairings and Complexity Assumption

The proposed scheme is based on pairings. A pairing is derived from either a
modified Weil or Tate pairing on a supersingular elliptic curve or an abelian
variety over a finite field (see [1,3] for further details). Let us briefly review the
terminology and symbols that are used in the proposed scheme.

58 J. Nakazato, L. Wang, and A. Yamamura

Let G1 denote an additive group of some large prime order q and G2 denote
a multiplicative group also of order q. Let P denote a generator of G1. A map,
ê : G1 × G1 → G2, is said to be an admissible bilinear pairing if the following
properties hold:

1. Bilinear: Given any Q, R ∈ G1 and a, b ∈ Zq, we have ê(aQ, bR) = ê(Q, R)ab.
2. Non-degenerate: ê(P, P) �= 1G2 .
3. Computable: There is an efficient algorithm to compute ê(Q, R) for any

Q, R ∈ G1.

The following three problems have been assumed to be intractable for any
polynomial time algorithm.
Discrete Logarithm Problem: Given P, aP ∈ G1, find a ∈ Z

∗
q .

Computational Diffie-Hellman (CDH) Problem [1]: Given P, aP, bP ∈
G1, find abP ∈ G1.
Bilinear Diffie-Hellman (BDH) Problem [1]: Given P, aP, bP, cP ∈ G1,
find ê(P, P)abc ∈ G2.

2.4 Privacy Enhancing Designated Credentials

System parameters params = (G1, G2, q, ê, P, Q, F,H(·)). P , Q, and F are
non-trivial elements of G1 and let H(·) be a hash function of {0, 1}∗ → G1.

Key generation. The public/secret key pairs of S, U, and Vj are defined to
be (xS, RS), (xU, RU), and (xj , Rj) (j = 1, . . . , n), respectively, where RS =
xSP, RU = xUP, Rj = xjP. The secret keys xS, xU, and xj (j = 1, . . . , n) are
selected randomly from Z

∗
q , and the public keys are elements of group G1.

2.5 Basic Protocol

Verifiers in the basic protocol are designated by S. S knows all the verifier Vi’s
that U can access. In addition, the data have no time restrictions. They can be
used as many times as wishes. Because this paper reports work in progress, we
will only discuss the basic protocol. There are other schemes where U can specify
verifier Vi’s and schemes with time restrictions, i.e., the credential becomes in-
valid after a certain period. We should note that authentication between U and
S is done by some other means not provided by the proposed scheme.

Request credential: Assume that user U would like to access Vi (i ∈ I, where
I ⊆ {1, . . . , n}). User U computes X = xUQ and sends it together with U’s
identity as a request to S.

Receiving the request, S checks whether the secret information, xU, is included
in the request, ê(X, P) ?= ê(Q, RU). If no attempt at fraud is found, then S
proceeds to issue a credential. It chooses b uniformly and randomly from Z

∗
q ,

and computes Y1 = b−1xS(X + F) and Y2 = bP . Then, S designates verifier list
I ⊆ {1, . . . , n}, and computes Wi = bRi (i ∈ I). Finally, S sets S = (Y1, Y2, Wi)
and sends the credential (S, I) to U.

Privacy Enhancing Credentials 59

U

X = xUQ

ê(Y1, Y2)
?
= ê(X + F, RS)

ê(Wi, P)
?
= ê(Ri, Y2) (i ∈ I)

c1, c2 ∈R Z
∗
q

σi = ê(Y1, Wi)
c1c2

M = c1c2X
A1 = c1F
A2 = c2RS

B1 = c1H(seed)

B2 = c2H(seed)

ê(T1, T2 + Ri)
?
= ê(Q, P)

K′ = KDF (c1c2xUT1)

S

ê(X, P)
?
= ê(Q, RU)

I ⊆ {1, . . . , n}
b ∈R Z

∗
q

Y1 = b−1xS(X + F)

Y2 = bP, Wi = bRi (i ∈ I)

S = (Y1, Y2, Wi)

Vi

(ê(M, RS)ê(A1, A2))
xi

?
= σi

ê(A1, H(seed))
?
= ê(F, B1)

ê(A2, H(seed))
?
= ê(RS, B2)

d ∈R Z
∗
q

T1 = (xi + d)−1Q, T2 = dP

K = KDF ((xi + d)−1M)

(X, U)�

(S, I)�

(σi, M, A1, A2,

B1, B2, seed)
�

(T1, T2)�

Fig. 1. Proposed protocol

User U verifies the received credential as ê(Y1, Y2)
?= ê(X +F, RS), ê(Wi, P) ?=

ê(Ri, Y2).
Request for service: Assume that U would like to ask for service Vi, where i
belongs to I. Then U chooses c1, c2 uniformly and randomly from Z

∗
q , and com-

putes σi = ê(Y1, Wi)c1c2 , M = c1c2X , A1 = c1F , A2 = c2RS, B1 = c1H(seed),
and B2 = c2H(seed). Whenever asking for a service, H(seed) makes a fresh
generator from a random value to satisfy the non-transferability by U.

The validated ticket (σi, M, A1, A2, B1, B2, seed) is sent to verifier Vi which
checks whether the ticket has been correctly generated using a credential issued
by S.

(ê(M, RS)ê(A1, A2))xi
?= σi (2.1)

ê(A1, H(seed)) ?= ê(F, B1) (2.2)

ê(A2, H(seed)) ?= ê(RS, B2). (2.3)

60 J. Nakazato, L. Wang, and A. Yamamura

If no frauds are found, Vi then computes a session key.
Key exchange: Vi chooses d uniformly and randomly from Z

∗
q , and computes

T1 = (xi + d)−1Q, T2 = dP , and K = KDF ((xi + d)−1M), where KDF is a key
derivation function such as the KDF1 defined in IEEE Standard 1363-2000.

Then, data T1 and T2 are sent to U, and U checks the validity, ê(T1, T2 +
Ri)

?= ê(Q, P)). If no frauds are found, U then computes session key K ′ =
KDF (c1c2xUT1). If the protocol is carried out correctly, we have K = K ′ and
this will be used as the secret key between U and Vi. The flow for the protocol
is shown in Fig. 1.

3 Security

Unforgeability. Forging a valid ticket may be attempted by many entities other
than the targeted verifier (say V1). Here, we will discuss unforgeability of the
scheme by a legitimate user (say U).

If V1 accepts the data (σ1, M, A1, A2, B1, B2, seed) and U can generate the
same session key with V1, the forging attack succeeds. If there are no polynomial
time algorithms forging a valid ticket succeeding with non-negligible probability,
then the scheme is secure.

Clearly, under the CDH assumption, to obtain session key K ′ = K = (x1 +
d)−1M using the given T1 = (x1 + d)−1Q, data M must have the form M = yQ
for some known y ∈ Z

∗
q . However, note that to pass verification equations (2.2)

and (2.3), data (A1, A2) must have the form A1 = c1F and A2 = c2RS , for
some known c1, c2 ∈ Z

∗
q . Now substitute M = yQ, A1 = c1F , A2 = c2RS into

verification equation (2.1), then the left-hand side is (ê(M, RS)ê(A1, A2))xi =
(ê(yQ+c1c2F, Rs))xi . Note that yQ+c1c2F = zP for some z ∈ Z

∗
q because yQ+

c1c2F is an element of G1. However, finding parameter z is a discrete logarithm
problem to U. Accordingly, to forge a valid σ1, U has to solve the BDH problem,
i.e., given 〈P, zP, R1 = x1P, RS = xSP 〉, to compute ê(P, P)zxSx1 . According to
the complexity assumption, there are no polynomial time algorithms to solve
the BDH problem. Therefore our scheme satisfies the Unforgeability.
Limitability. User U may request and obtain a credential from S. Then, U may
want to forge the valid credential issued by S. Here, we are assuming that V1
has not been designated in the credential issued by S.
U has the information, RS, Rj(j ∈ {1, . . . , n}) ; xU ; Y1, Y2, Wi(i ∈ I, i �=
1), apart from public parameters P, Q, F ∈ G1. Then, U would like to forge
(σ1, M, A1, A2, B1, B2, seed). In detail, using the data 〈Y1, Wi(i ∈ I, i �= 1)〉 is-
sued by S, U can compute σ0

i = ê(Y1, Wi) = ê(xUQ, RS)xi ê(F, RS)xi .
Both ê(xUQ, RS)xi and ê(F, RS)xi are BDH problems for user U. Therefore,

σ0
i cannot be split. In fact, σ0

i = ê(xUQ + F, RS)xi = (ê(P, P)wxS)xi for some
unknown w ∈ Z

∗
q . Let g = ê(P, P)wxS = ê(X + F, RS) ∈ G2; this then implies

that U has found gx1 using the given gxi where i ∈ I, i �= 1, which is a dis-
crete logarithm problem in G2. Our scheme satisfies limitability according to
the complexity assumption described in Section 2.3.

Privacy Enhancing Credentials 61

Non-transferability. The proof has been omitted due to limited space. The
main point (e.g., case 2) is that, to successfully transfer the credential to another
party (say, Tom) the transferred data must have passed verification and Tom can
generate the same session key with Vi. According to the analysis of unforgeability,
as Tom must know the value of xUc1c2, where he has selected c1 and c2 himself,
U has to reveal his/her secret key xU to Tom.
Unlinkability. Unlinkability will be proved under the decisional bilinear Diffie-
Hellman (DBDH) assumption [5] in the full version of this paper. Note that un-
linkability implies anonymity. That is to say, our scheme also satisfies anonymity.

4 Discussion

The contribution of our anonymous authenticated key exchange scheme can be
summarized as follows. The basic protocol achieves anonymous authenticated
key exchange, i.e., S issues the credential for U to share the key with V anony-
mously, i.e., U can share a secret key with V anonymously and securely; U does
not necessarily leak any of her/his identity information to V but V can authen-
ticate U.

We did not discuss additional properties of hidden verifiers or time re-
strictions and these properties will be fully discussed in the full version of the
paper. The first implies that the proposed protocol can convert an open verifier
to a hidden verifier for S; when U requests a credential of V, U chooses some
services, and sends these to S with a random value to hide service. The second
implies that the proposed protocol can attach time restrictions function easily;
it only need changes generator F of the protocol into H(t), where t is the time
information.

References

1. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

2. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

3. Joux, A.: The Weil and Tate Pairings as Building Blocks for Public Key Cryp-
tosystems. In: Fieker, C., Kohel, D.R. (eds.) Algorithmic Number Theory. LNCS,
vol. 2369, pp. 20–32. Springer, Heidelberg (2002)

4. Ng, C.Y., Susilo, W., Mu, Y.: Designated Group Credentials. In: Proc. of ASIACCS
2006, pp. 59–65 (2006)

5. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 62 – 69, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Browser Based Agile E-Voting System

Sriperumbuduru Kandala Simhalu and Keiji Takeda

Carnegie Mellon Cylab, Japan
{eskay,tkeiji}@cmu.edu

Abstract. In the recent past, in spite of several real world implementations
available for Internet [browser-based] e-voting, there seems to be a pattern
emerging, one of apathy towards improving voter convenience / participation.
The goal of the proposed system evolves from the premise that, there should be
a priority shift towards addressing the needs of the Voter, hence, most of the
other requirements of this system, such as Security, Anonymity, Universal
Verifiability, Individual Verifiability, Receipt-Freeness and Fairness are a direct
by-product of this goal. In order to secure a higher voter participation, the
proposed system considers the trade-offs between strict adherence to essential
properties and practicality / user-convenience. To further secure the voter
confidence/trust, a practical approach to Individual Verifiability has been
implemented, without compromising the Receipt-Freeness property. So, with
such flexibility and consumer-oriented approach, it is but evident that Agility is
the hallmark of this project.

Keywords: E-Voting; Anonymity, Individual Verifiability, Agile Voting.

1 Introduction

Internet-based E-Voting has been a topic of intense discussion worldwide in the recent
past [1,2,3]. There have been efforts made, both in the academia and the industry to
research ways of implementing secure, practical and scalable e-voting systems.

This paper is yet another effort to provide a practical, voter-friendly e-voting system.
The motivation behind this paper is to provide self-organized groups, along the lines of
the Agile team model[5], with the ability to conduct frequent and practical
browser-based polling on myriad topics. In order to meet the requirements of such a
practical system, a browser-based system would seem appropriate, given the potential
of such an application, in terms of its reach and ubiquity. Practicality forms the
foundation stone for formulation of the requirements and subsequently the
implementation of this system. One of the reasons for taking up this approach is to
increase the voter participation. It has been found that the voter turnout over the last 40
years has been declining[6], which is definitely not desirable for the free world.

2 Browser-Based E-Voting System

There are currently a considerable number of implementations of Internet based
e-voting systems[2,3,4,7,8,9,10,11,12,15,16,17,18]. However, only browser based,

 Browser Based Agile E-Voting System 63

open-source e-voting systems would be considered in this paper. As this paper's
primary focus is voter convenience/participation, so, a browser-based system would be
appropriate, as it increases the reach. As for open-source systems, the voters can get
them evaluated by an expert. A comprehensive study on e-voting schemes is beyond
the scope of this paper, however one can find an informative study on electronic voting
schemes done by Poovendran et al.[13].

2.1 Existing Browser-Based Open-Source E-Voting Systems

This section deals with the existing browser-based open-source systems. The respective
systems are described briefly in terms of features they exhibit. The below mentioned
systems were the high-profile ones, as most of them are products coming out of
well-acclaimed universities or governments.

2.1.1 Adder
Adder is an homomorphic-based remote Internet voting system[4]. As per[4], it
adheres, “to the following design goals:Transparency, Universal Verifiability, Privacy,
Distributed Trust. Each procedure is “supervised” by multiple authorities, and the final
sum cannot be revealed without the cooperation of a given number of authorities. Any
attempt to undermine the procedure will require the corruption of a large number of
authorities. Authorities and voters may overlap arbitrarily. Thus, it is possible for the
voters themselves to ensure trustworthiness (or have an active role in it).”

2.1.2 Condorcet Internet Voting Service (CIVS)
As per [14], “CIVS is a web-based free Internet voting service that makes it easy to
conduct elections and polls on the Web. Each voter ranks a set of possible choices.
Combined, these rankings are used to construct an overall ranking that anonymously
summarizes the opinions of all voters. “

2.1.3 KOA
As per [8,19,20],”KOA stands for Kiezen Op Afstand and denotes an experiment in
voting over the Internet conducted by the Dutch government. The experiment was
specifically conducted for the European elections in June 2004.”

”The KOA system may well be the first Free Software Internet voting system
developed for, used by, and subsequently released by a government in the world.”

2.2 An Overview of the Proposed System

The system has two distinct roles, the Poll Initiator and the Poll Invitee. The Poll
Initiator is responsible for most of the administrative work that goes into the making of
a poll, such as creating groups, creating polls and sending ballots to Poll Invitees via
e-mail. The Poll Invitee has to click on the link provided to him/her through e-mail in
order to vote / authenticate and verify results. Figure(s) 1 and 2, depict the interactions
between the Poll Initiator/Poll Invitee and the various system components. The
proposed system has two major focus areas, voter participation and Individual
Verifiability. The previous related work [27,28,29] which involves the selection of

64 S.K. Simhalu and K. Takeda

Fig. 1. Poll Initiator Interactions

random numbers apart from the core candidate selection process, either do not provide
Individual Verifiability, or they do provide but without maintaining the
Receipt-Freeness property. Another related work at MIT[30], has been shown to have
serious privacy and security issues[31].

3 Agile E-Voting

Below are the properties of the proposed system, and the description of how each of
them satisfies the primary requirements of voter participation/convenience.

Security: There are several measures taken to ensure security of the proposed system.
First of all, the communication channel between the voter's browser and the server is
secured using Secure Socket Layer/Transport Layer Security(SSL/TLS)[21]. Hence,
the HTTP traffic from/to the voter to/from the server is now secured. This helps to gain
the voters' confidence in the system, as eavesdropping, and to an extent man-in-the
middle attack[22,23] can be ruled out. Secondly, the system uses a combination of
symmetric key[24] and public key infrastructure[25], to make sure that the vote cast,
cannot be tampered with, by adversaries. For each Poll created, an AES[26] key is
generated, and the votes cast for that poll are encrypted using the AES key and stored
against that poll. This AES key is itself encrypted using the application/owner's public
key, and again stored against the poll. So, the vote data stored is secured, as it is now in
encrypted form.

Anonymity: In order to overcome the privacy issues, the voter is provided with a
unique randomized token for a particular poll that s/he is part of. So, this offers a first
level of anonymity, as the voter now is not bound to his/her identity. So, his/her
eligibility to vote is only recognized by the random token provided to him/her.

 Browser Based Agile E-Voting System 65

Fig. 2. Poll Invitee Interactions

A Second level of Anonymity is created when the voter uses this token to vote. The
final vote is encrypted and stored against the poll, and not against the random token.
This provides another layer of anonymity, as now, the encrypted vote cannot be traced
back to any particular voter, even if the random token from the e-mail sent to the voter,
gets compromised. The design created to implement this requirement would not only
allow Anonymity as discussed above, but also would provide the voter with convenient
ways to help his/her participation. The token distribution is done using email. The Poll
Initiator would send a mail to the voter with a link that would have the token embedded
within that link. So, all that the voter has to do, is click that link in order to cast vote. As
the vote is cast, it is encrypted and stored against the Poll.

Universal Verifiability: As all of the voters have to check if only valid votes were cast,
and no invalid voters were counted, so, during the tally phase, the poll invitee list and
the votes cast have to be displayed for verification. Now, this needs to be done while
keeping the anonymity property intact. The system design separates the random
voter-token storage, and the storage of the vote cast by the voter. Additionally, during
the tally phase, the system displays all the encrypted votes, along with the AES
symmetric key for that particular Poll with which the votes were encrypted. Also, the
digital signature of the symmetric key, signed by the public key of the
application/owner is displayed along with the public key itself. Apart from this, the
random tokens eligible for the particular poll along with the vote cast status is also
displayed. So, this helps the voters to completely verify the polling process for that
particular poll.

Individual Verifiability: This property has been the most controversial and difficult
one to implement. None of the existing browser-based open-source systems implement
this property successfully. However, others such as, Sensus[18] provide Individual
Verifiability but at the cost of Receipt-Freeness. Compromising the property of
Receipt-freeness would lead to vote buying, as now the voter has a receipt that would
identify his/her vote. The proposed system is perhaps the only known browser-based
open-source system that provides Individual Verifiability without compromising any

66 S.K. Simhalu and K. Takeda

other e-voting property. This is achieved by the system using an additional(optional)
set of random numbers displayed alongside the candidates' selection area. The set of
random numbers are independent and unrelated to the candidate list. Here, we have two
approaches for Individual Verifiability depending on the scale of deployment.

The First approach is only applicable for small scale deployment, say with a
voter-to-poll ratio of maximum 20:1. In this approach, during the poll creation, (2 * N)
unique random numbers are generated and stored against the poll, where N is the
number of voters for that poll. Now, when each voter accesses the system using the
token, then along with the candidate list, N random numbers are chosen randomly from
the (2 * N) random number set, by the system, and are provided as a single selection
input set to the voter. The voter after selecting the candidate, can opt for choosing one
random number, out of the set of N. Once s/he submits his/her vote, the selected
random number is encrypted and stored alongside the encrypted vote, against that
particular poll. Also, the selected random number is deleted from the (2 * N) set, for
that particular poll. Hence, for the next voter to poll, the set of N random numbers
would come from[(2 * N) – 1], the subsequent voter would get his/her N random
numbers from [(2 * N) – 2], and the last voter, would get it from the set of [(2 * N) – N]
= N random numbers. This procedure ensures that each of the (2 * N) unique random
numbers would appear at least once on any of the voter's N random number list, during
the poll.

So, why are we taking such a lot of pain in innovating conditions in this procedure?
The reasons are obvious, first, to make sure it is Receipt-Free, so that the voter cannot
prove to a candidate at the tally stage, that the random number against the vote is what
s/he had chosen. Secondly, to be able to uniquely identify his/her vote during the tally
stage.

Now, as it is a remote Internet voting, so the voter has complete control over the
machine, hence, the voter has the option of taking a screen shot and using it as a
receipt/proof of his/her candidate selection. But, even if the voter selects a random
number and takes a screen shot before clicking the submit button, still s/he would not be
able to prove to others that the random number chosen was indeed his/her selection.

The reasons being:

1) The voter can change the selection value anytime before voting.
2) As for every voter, a new set of N random values show up on the screen, every

 time s/he accesses the voting link, before actually submitting the vote.
3) As there is a possibility of the same random number [which was not chosen by

 previous voters who had cast the vote] appearing on different voter screens, so
 the screen shot of the random selection loses its authenticity, as a proof of
 candidate selection.

Hence, the voter cannot prove to others convincingly, about his/her candidate
selection, but s/he is completely sure that the random number against the vote displayed
during the tally phase is what s/he selected, because, after his/her submission of the
vote, that particular random number gets deleted from the (2 * N) list, and would never
appear on any subsequent voter's N random number list.

So, now lets move on to the second approach of Individual Verifiability. This
approach is applicable for small as well as large scale deployment.

 Browser Based Agile E-Voting System 67

Here, instead of (2 * N) random numbers generated and N random number list
provided to the voter, which does not seem to be scalable, as well as user-friendly, now
we have N +(P -1) random numbers generated, where N is the number of voters
participating for a particular poll, and P is the size of the set of random numbers
provided to the voter. The rest of the procedures/reasons/benefits are the same as that of
the first approach. The value of N need not be equal to that of the number of voters, we
chose N+(P-1), just to make sure with a probability of 1, that any random number
shown once on the N-random number list of the voter [which was not selected by any
previous/current user], would at least appear once in the list of N-random numbers
displayed to the subsequent voters. One can always lower the probability value, and set
the value of N and P accordingly in order to make sure that there are not many similar
random numbers showing up at the same time on the screen of voters, who might
simultaneous access and vote. However, the system takes care of the issue of
simultaneous access by voters. First of all, the screen gets refreshed after a certain short
time interval, hence a new set of random numbers would get displayed after every
refresh. Any random numbers shown on the previous list, if used up by other voters
during this time interval, would never show up as part of the N-random number set for
this voter as well as subsequent voters.

Secondly, even if two or more users get the same random number and select it as part
of their Individual Verifiability, the system would only allow the first request of vote
submission to succeed, the subsequent request(s)/voter(s) would be appropriately
notified and a new set of random numbers would be displayed for re-submission. Thus,
Individual Verifiability with Receipt-Freeness would lead to increased voter
participation.

Receipt-Freeness: This property relieves the user from the burden of managing
obscure data, thus being more user-friendly. The Individual Verifiability property itself
would bring in the necessary confidence/trust needed from the user towards the
proposed system. Additionally, the possibility of vote buying is nullified, due to
receipt-freeness, as the candidates/adversaries would not be able to convincingly verify
the voters' selection. The implementation of this property perhaps needed the least
effort.

Fairness: As the poll is underway, no-one should be able to calculate the partial tally.
The voter gets to view/verify the result only after the poll is closed by the Poll Initiator.
The Poll Initiator never gets to view the results, unless s/he is part of the electorate
him/herself, and in the later case, s/he can only view the result after the poll is closed,
thus maintaining fairness.

4 Comparison Matrix

The previous section addressed the properties of the proposed system, and did an
evaluation of the system based on those properties. Below is a quick comparison
between the existing systems and the proposed agile e-voting system on various
properties.

68 S.K. Simhalu and K. Takeda

Fig. 3. Comparison Matrix - Between various browser-based open-source e-voting systems

5 Conclusion

An innovative voter-friendly browser-based agile system was proposed in this paper.
The e-voting properties such as, Security, Anonymity, Verifiability, Receipt-Freeness
and Fairness were implemented by the system. The essential value addition that the
proposed system brings to the industry, is the attempt to put the focus back onto the
voter, and derive/relate other requirements based on the voter convenience. It was
shown that the proposed Agile e-voting system addressed most of the issues in the
existing browser-based e-voting systems. Most importantly, a new approach to
Individual Verifiability was crafted, which would allow the voter to cross verify his/her
vote during the tally phase. The evaluation of the system as per the properties
mentioned earlier was detailed out. The tricky In-coercibility property implementation
would be the logical next first step towards future enhancements. Thus, with such
user-friendly features implemented, the agile e-voting system hopefully would aid in
increasing the voter participation.

References

1. Brace Kimball, W.: Overview of Voting Equipment Usage in United States, Direct
Recording Electronic(DRE) Voting. Kimball Brace’s Statement to United States Election
Assistance Commission (May 5, 2004)

2. Kevin, C.: CRS Report for Congress, Internet Voting. Order Code RS20639 (January 31,
2003)

3. California Internet Voting Task Force: A Report on the Feasibility of Internet Voting
(January 2000)

4. Kiayias, A., Michael, K., David, W.: An Internet Voting System Supporting User Privacy.
In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, Springer, Heidelberg
(2006)

5. Rising, L., Janoff, N.S.: (2000) The Scrum Software Development Process for Small Teams.
IEEE Software (July/August, 2000)

6. Niemi, R.G., Weisberg, H.F.: Controversies in Voting Behavior. CQ Press, Washington,
D.C (2001)

7. VoteHere VHTi: Frequently Asked Questions,
 http://www.votehere.com/faq_toc.php

8. Cochran, D.: Secure internet voting in Ireland using the Open Source: Kiezen op Afstand
(KOA) remote voting system. Master’s thesis, University College Dublin (2006)

9. Kim, K.: Killer Application of PKI to Internet Voting. In: IWAP 2002. LNCS, vol. 1233,
Springer, Heidelberg (2002)

 Browser Based Agile E-Voting System 69

10. GNU.FREE: Heavy-Duty Internet Voting,
 http://www.j-dom.org/users/re.html

11. An Untraceable, Universally Verifiable Voting Scheme, Professor Philip Klein, Seminar in
Cryptology (December 12, 1995)

12. http://www.e-poll-project.net/
13. Krishna, S., Sampigethaya, S.K., Poovendran, R.: A Framework and Taxonomy for

Comparison of Electronic Voting Schemes. Elsevier Journal of Computers and
Security 25(2), 137–153 (2006)

14. Condorcet Internet Voting Service,
 http://www.cs.cornell.edu/andru/civs.html

15. PollPub, http://www.pollpub.com/
16. BuzzVote, http://www.buzzvote.com/
17. VoteHereVHTi: Frequently Asked Questions,

 http://www.votehere.com/faq_toc.php
18. Sensus, http://lorrie.cranor.org/voting/sensus/
19. Kiniry, J., Morkan, A., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk, M., Hubbers, E.:

The KOA remote voting system: A summary of work to date. In: Proceedings of
Trustworthy Global Computing (2006)

20. Nijmeegs instituut voor informatica en informatiekunde. Security of Systems,
http://www.sos.cs.ru.nl/research/koa/ ; KiezenopAfstand 2004

21. IETF RFC 4346: The Transport Layer Security (TLS) Protocol, Version 1.1. URL,
http://www.ietf.org/rfc/rfc4346.txt

22. Alberto, O., Marco, V.: Man-In-The-Middle Attacks,
 http://www.blackhat.com/presentations/bh-usa-03/
 bh-us-03-ornaghi-valleri.pdf

23. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption Standard.
Computer 10(6), 74–84 (1977)

24. Menezes, A., van Oorschot, P., Van stone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton, USA

25. Hellman, M.E.: An Overview of Public Key Cryptography. IEEE Communications
Magazine, 42–49 (May 2002)

26. Advanced Encryption Standard(AES), Federal Information Processing Standards
Publication 197 (November 26, 2001)

27. Neff, C.A.: Practical high certainty intent verification for encrypted votes. Draft(2004),
http://www.votehere.net/vhti/documentation/vsv2.0.3638.pdf

28. Reynolds, D.J.: A method for electronic voting with coercionfree receipt. FEE 2005 (2005),
Presentation, http://www.win.tue.nl/ berry/fee2005/ presentations/reynolds.ppt

29. Moran, T., Naor, M.: Receipt Free Universally Verifiable Voting With Everlasting Privacy.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg
(2006)

30. Ronald, L.: Rivest.: The ThreeBallot Voting System (October 2006),
 http://theory.lcs.mit.edu/rivest/
 Rivest-TheThreeBallotVotingSystem.pdf

31. Jones, H., Juang, J., Belote, G.: ThreeBallot in the Field (December 2006),
 http://courses.csail.mit.edu/6.857/projects/
 threeBallotPaper.pdf

Risk Balance in Exchange Protocols

Mohammad Torabi Dashti and Yanjing Wang

CWI, Amsterdam
{dashti,y.wang}@cwi.nl

Abstract. We study the behaviour of rational agents in exchange protocols which
rely on trustees. We allow malicious parties to compromise the trustee by paying
a cost and, thereby, present a game analysis that advocates exchange protocols
which induce balanced risks on the participants. We also present a risk-balanced
protocol for fair confidential secret comparison.

1 Introduction

Exchange protocols aim to establish successful exchanges of electronic goods between
two parties who possibly have conflicting interests. Fairness, stipulating that either both
or none of the parties achieve their goals, is recognised as a crucial requirement for
exchange protocols (e.g. see [1]). Achieving fairness in deterministic asynchronous ex-
change protocols with no trusted parties is however impossible [6]. The existing meth-
ods, therefore, either are based on gradual release of information or gradual increase of
privilege to approximate fairness, or rely on trusted third parties (TTPs).

This paper focuses on exchange protocols which rely on a TTP, while malicious
participants are allowed to, by paying a cost, compromise the TTP.1 We thereby present
a game analysis that advocates protocols which induce (nearly) the same amount of
risk on the participants. Our main result states that in such risk-balanced protocols, the
difference between participants’ utilities is limited to a factor independent of the TTP’s
trustworthiness. Hence, none of the participants would hugely suffer compared to the
other one, in case the trustee is compromised by the opponent.

Existing game analyses of exchange protocol assume non-compromisable trustees,
e.g. [2,3,5,9]. This is in contrast to the premise of our analysis that TTPs, by paying
a cost, can be compromised. In a similar study, the authors of [10] assume that par-
ticipants may have limited trust in TTPs and propose algorithms to determine whether
a rational agent would engage in an exchange using cascades of TTPs or not. They
however do not consider that participants may have the choice to compromise TTPs.

Studying the ways a compromised TTP may affect fair exchange protocols and meth-
ods to limit its damages are not well studied. As a notable exception to this, Asokan
explores the concept of verifiable TTPs [1] in optimistic protocols, where the TTP’s
incentive for cheating is lowered, as its malicious behaviour can be detected.

As an example of a risk-balanced protocol, we present a fair protocol for confiden-
tially comparing secrets. Existing protocols for this purpose either do not aim at fair-
ness [7], or do not involve TTPs [13,14], thus only achieve probabilistic fairness, or are
universal multi-party computing protocols [4] that are not optimised for this task.

1 Note that a trusted entity, in general, may not be trustworthy, cf. [8].

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 70–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Risk Balance in Exchange Protocols 71

2 Game Abstraction of Exchange Protocols

From a game theoretical point of view, a two-party exchange protocol with a compro-
misable TTP can be seen as a two-party strategic game, in which the agents can either
follow the protocol faithfully or compromise the TTP. If both parties play faithfully,
then they normally “earn” the goods from the opponent and “lose” their own goods.
However, when engaging in the exchange, each agent has to take some risk due to the
fact that the opponent may manage to compromise the TTP. In such cases, the agent
who compromises the TTP can earn the amount that the other (honest) party risks, and
lose only the cost of compromising the TTP.

Formally, we have the following game abstraction 2:

Definition 1. (Protocol game) Given a two-party exchange protocol Prot with a TTP,
the strategic game G(Prot) is defined as follows:

A\B HB DHB

HA gA
B − gA

A , gB
A − gB

B −rA
A, rB

A − cB

DHA rA
B − cA, −rB

B rA
B − rA

A − cA, rB
A − rB

B − cB

where Hx is the strategy of x that is according to the protocol; DHx is the strategy
of x in which x compromises the TTP and may stop following the normal course of
the protocol when she has to release its goods; gy

x is y’s evaluation of the goods that x
wants to exchange; ry

x is y’s evaluation of the risk that x has, if the TTP is compromised
by the opponent of x; and cx is the cost x pays to compromise the TTP. 3

In the following we assume:

– Agents have incentives to exchange goods: gy
x > gx

x if x �= y. For simplicity, we
assume that there is a fixed exchange rate ρ > 1 such that gy

x = ρgx
x , x �= y.

– The risks of the agents comply with the same exchange rate: ry
x = ρrx

x , x �= y.
– The subjective values of the goods are the same: gA

A = gB
B = g > 0.

– The costs of compromising the TTP are the same for both agents: cA = cB = c.

With these assumptions, G(Prot) can be simplified to SG(Prot):

A\B HB DHB

HA (ρ − 1)g, (ρ − 1)g −a, ρa − c
DHA ρb − c, −b ρb − a − c, ρa − b − c

Where a = rA
A and b = rB

B .
To apply game theoretical analysis, we assume that the agents are rational utility-

maximisers. A strategy profile is a joint strategy that determines a unique utility pair; for
example (HA, HB) is a strategy profile while ((ρ − 1)g, (ρ − 1)g) is the corresponding
utility pair. A strategy profile (SA, SB) is called a Nash equilibrium if no agent gets
higher utility by switching to another strategy, given the strategy of the other agent

2 Due to space constraints we omit introducing basics of game theory, and instead refer to [11].
3 We assume that both parties can compromise the TTP at the same time. For example, they both

may exploit vulnerabilities in the TTP’s software to read certain information off its storage.

72 M. Torabi Dashti and Y. Wang

according to the profile. In this paper, we consider the Nash equilibria of a simplified
protocol game as the expected executions of the corresponding protocol by rational
agents. We write Utilityx(SA, SB) as the utility of x if the agents select the strategy
profile (SA, SB).

3 Risk Balance

We define a requirement on exchange protocols, which we call Δ-condition, that puts
an upper bound on the difference between the risks that a protocol induces on its par-
ticipants. We show that this condition in turn puts a limit on the difference between
participants’ expected utilities. The limit on utility differences turns out to be indepen-
dent of c. This is a desirable property since it ensures that no matter how trustworthy the
TTP might be in an execution, the difference between participants’ utilities is limited to
a value independent of c, hence none of the participants would hugely suffer (or benefit)
compared to the other one. This can be interpreted as fairness in a meta level.

In the following, when the context of the simplified protocol game is clear, let Δ =
|a − b| and ΔU (SA, SB) = |UtilityA(SA, SB) − UtilityB(SA, SB)|.

Definition 2. An exchange protocol Prot satisfies Δ-condition iff Δ < (1 − 1
ρ)g in

SG(Prot). Such a protocol Prot is called risk-balanced.

Now we are ready to state the main theoretical result of the paper:

Theorem 1. For any risk-balanced protocol Prot, there are Nash equilibria in
SG(Prot), and for each such Nash equilibrium (SA, SB) the following holds:

ΔU (SA, SB) < (ρ − 1
ρ
)g.

Proof. Suppose Prot satisfies Δ-condition, then we have:

ΔU (DHA, DHB) = |ρb − a − c − (ρa − b − c)| = (ρ + 1)Δ < (ρ − 1
ρ
)g

Now, since ΔU (HA, HB) = |(ρ − 1)g − (ρ − 1)g| = 0, we only need to prove the
following two claims to prove the theorem:

1. Under the Δ−condition, (HA, DHB) and (DHA, HB) are not the Nash equilibria
of SG(Prot).

2. Either (HA, HB) or (DHA, DHB) is a Nash equilibrium of SG(Prot).

Proof of (1): Suppose (HA, DHB) is a Nash equilibrium of SG(Prot), then according
to the definition of Nash equilibrium we have:

{
UtilityA(HA, DHB) ≥ UtilityA(DHA, DHB)
UtilityB(HA, DHB) ≥ UtilityB(HA, HB)

namely, ⎧
⎨

⎩

−a ≥ ρb − a − c
⇒ ρa − ρb ≥ (ρ − 1)g

ρa − c ≥ (ρ − 1)g

Risk Balance in Exchange Protocols 73

It follows that Δ ≥ (1− 1
ρ)g, contradicting the Δ-condition. For the case of (DHA, HB),

proof goes likewise.

Proof of (2): Suppose (HA, HB) is not a Nash equilibrium, then either A or B can
be better off by switching to a dishonest strategy, given that the opponent sticks to
the honest strategy. Without loss of generality, we assume A can get higher utility
by switching from HA to DHA, namely, ρb − c > (ρ − 1)g. Since (ρ − 1)g > 0
then ρb − c − a > −a. It follows that DHA is the strictly dominant strategy for
A. Given that A chooses DHA, we argue that B will also choose DHB as follows:
UtilityB(DHA, DHB) − UtilityB(DHA, HB) = ρa − b − c − (−b) = ρa − c ≥
ρ(b − Δ)− c = ρb − c − ρΔ > (ρ − 1)g − (ρ − 1)g = 0. It follows that (DHA, DHB)
is a Nash equilibrium.

Suppose (DHA, DHB) is not a Nash equilibrium, then either A or B can be better
off by switching to a honest strategy. Without loss of generality, we assume that A can
get higher utility by switching from DHA to HA. Therefore −a > ρb − a − c, namely
0 > ρb − c. It follows that HA is the strictly dominant strategy for A. Given that A
chooses HA, B will also choose HB since UtilityB(HA, HB)−UtilityB(HA, DHB) =
(ρ − 1)g − (ρa − c) ≥ (ρ − 1)g − (ρ(b + Δ) − c) = (ρ − 1)g − (ρb − c + ρΔ)
> (ρ − 1)g − (ρ − 1)g = 0. Therefore, (HA, HB) is a Nash equilibrium. ��

Remark 1. According to theorem 1, under the Δ−condition, ΔU is either 0 or (ρ+1)Δ.
A robust protocol would minimise ΔU independent of ρ and g, by guaranteeing Δ = 0,
namely a = b, which implies ΔU = 0.

4 A Fair Risk-Balanced Exchange Protocol

In this section, inspired by the confidential secret comparison protocol of [13], we de-
sign two exchange protocols that rely on TTPs. The first one, undesirably, violates
the Δ-condition, serving as a concrete example for motivating risk-balanced protocols.
Then, we propose a protocol which, under certain conditions, is risk-balanced.

Notations. We assume that each two parties X and Y share a secret symmetric key
K(XY). 4 We write [M]K for the encryption of M with key K. It is assumed that
the participants have access to a secure encryption algorithm, and a one-way collision-
resistant hash function h. Agents A and B are the players of our protocols, whom we
assume share a secret nonce ℵ. The TTP is named Γ .

A fair confidential secret comparison protocol. Let EP , for P ∈ {A, B}, denote P ’s
knowledge set. Suppose A wants to prove to B that she knows of a secret I (that is
I ∈ EA). However, if B does not already know of I (that is I �∈ EB), A does not want
to reveal I to him. Moreover, A and B wish to exchange this epistemic statement “I
know I.” mutually, and, in a fair manner.

The goal is thus to design a protocol that achieves the following (cf. [13]): (G1) Only
if both A and B know I, then A learns that B knows I, and likewise for B. (G2) By
means of the protocol, only A and B, and no one else, may learn that A or B know I.

4 We could as well construct our protocols based on asymmetric encryption techniques.

74 M. Torabi Dashti and Y. Wang

(G3) By means of the protocol, no one learns I. (G4) B learns that A knows I, iff A
learns that B knows I (which is fairness).

To achieve these goals, we follow the straightforward approach of using on-line
TTPs, e.g. see [15] (considering off-line TTPs being left as future work). Below, ⇒
denotes communicating over confidential authenticated channels, sending a message
over insecure channels is denoted by →, and FTP is a secure publicly accessible server
operated by Γ . We write Γ ↓ FTP : a when Γ makes a available on FTP.

1. A ⇒ Γ : (fprov, A, B, ω), where ω = h(I, ℵ, A, B)
2. B ⇒ Γ : (fverif , A, B, ΩB), where ΩB = {h(i, ℵ, A, B) | i ∈ EB}
3. Γ checks if ω ∈ ΩB. If yes, then Γ ↓ FTP : ω, else Γ ↓ FTP : ⊥.
4. A, B fetch the result from FTP.

Flags fprov and fverif merely indicate the purposes of the corresponding messages. It is
easy to check that goals G1, G2 and G3 are achieved. In particular, Γ does not learn the
content of the exchanged secret I. Besides, using confidential channels is only to protect
the content of A’s message from B, and vice versa. An outsider would not benefit from
observing these messages in plain, as she does not know ℵ. She may however observe
whether an exchange is a successful comparison of some secret or not (cf. § 5).

The protocol is fair (G4) as B learns that A possesses I iff A learns that I ∈ EB .
Using public announcements on FTP ensures that benign communication failures cannot
deprive the participants from achieving fairness. Using authenticated channels is needed
to ensure the freshness of the requests. Without these, A could, e.g., compose ω′ =
h(I ′, ℵ, A, B) with I ′ �= I and replay B’s old message to Γ , and learn whether I ′ ∈
EB or not, while B not even being aware that this new comparison takes place. 5

A severe defect of the protocol is nonetheless the uneven risk distribution that it
induces. The security of this protocol obviously relies on Γ being correct. If Γ is com-
promised by A in the course of the protocol, then B will be seriously harmed since
A (together with Γ), once getting access to ΩB , can later on check any piece of in-
formation against EB without contacting B. However, if B takes the control of Γ in
his hands, then he can only check one single I against EB . This infringes on the pro-
tocol’s fairness in a meta level: if A compromises Γ , the amount of harm to B is not
proportional to the harm caused to A when Γ is compromised by B. Therefore, when
engaging in the protocol, B takes more risk than A, hence causing b � a, if |EB| � 1
(see § 3).

A fair risk-balanced exchange protocol. Below, we propose an extension of the pre-
vious protocol that is risk-balanced. The idea is to force A to contact B for each I that
she wants to compare against EB . For this purpose, we use a scheme similar to RSA
encryption [12] and blind signatures. For each exchange, B randomly chooses two dis-
tinct large prime numbers p and q and computes n = p · q and φ = (p − 1) · (q − 1).
Then, B chooses a random number α, such that 1 < α < φ and gcd(α, φ) = 1, i.e. α
and φ are relatively prime. B then calculates ᾱ satisfying α.ᾱ ≡ 1 mod φ. Below, it is
assumed that EB is an ordered set, and, as before, I is the secret to be checked against

5 B could learn the results of such comparisons via FTP, if he knew that he should fetch these
results. Honest B must however not be forced to periodically poll the FTP server.

Risk Balance in Exchange Protocols 75

EB . We assume that I and elements of EB can be encoded as integers smaller than n.

1. B generates n and (α, ᾱ) as described above. B then computes π = h(ω1, · · · , ω�),
where ωj = h(iᾱj mod n), when EB = {i1, · · · , i�}.

2. B → A : α, n
3. A generates a random number λ < n such that gcd(λ, n) = 1.
4. A → B : (I · λα) mod n
5. B → A : (I · λα)ᾱ mod n, π
6. A computes ((I · λα)ᾱλ−1) mod n = Iᾱ mod n. Then A lets ω = h(Iᾱ mod n).
7. A → Γ : [fprov, A, B, ω, π]K(AΓ)
8. B → Γ : [fverif , A, B, ΩB]K(BΓ), where ΩB = {ω1, · · · , ω�}
9. Γ checks whether π corresponds to ΩB . If yes then

Γ checks whether ω ∈ ΩB. If yes, then
Γ ↓ FTP : ω, and A, B fetch the result from FTP.

else
Γ ↓ FTP : ⊥, and A, B fetch the result from FTP.

It can be checked that this protocol satisfies G1, G2, G3 and G4. Note that authenticated
channels are not used in this protocol. This is because, differently from the previous
protocol, the freshness of the messages need not be checked by the TTP, since to replay
A’s message, B would need to construct another set E ′

B with the same π value as of
EB , which is infeasible as h is collision-resistant. Similarly, to replay B’s message, A
would need to contact B to compute I ′ᾱ for a new I ′, hence giving B the choice to use
a new ᾱ or decline the exchange altogether.

Concerning risk balance, if A compromises Γ , then she can cheat on B with com-
puting ω ∈ ΩB without informing B of the result. However, to check another secret
I ′ �= I against ΩB she needs to contact B. Similarly, if B compromises Γ , he can only
cheat on A by computing ω ∈ ΩB without informing A of the result. The risks induced
on A and B are thus equal, given that losing one piece of information causes the same
harm from both A’s and B’s points of view. In this case, we have a = b (see § 3),
implying ΔU = 0, hence the protocol being risk-balanced.

To summarise, if Γ is not compromised, then the protocol satisfies G1, G2, G3 and
G4. In case Γ is compromised, the protocol may not achieve G4 anymore. Rational
agents will however end up with equal utilities even when Γ is compromised. In other
words, the amount of expected harm to a cheated B would be limited and proportional
to the damage that B could cause to A if Γ was compromised by B, and vice versa.

5 Discussions

We motivate why the values of Iᾱ and iᾱ, i ∈ EB need to be hashed in our risk-
balanced protocol. We assume that these values were not hashed and, thereby, demon-
strate an attack on the protocol which undermines its risk balance.

Let us assume that ω = Iᾱ and ωj = iᾱj , all computed modulo n, thus removing
the hash function from the protocol. The idea of the attack is that if A compromises
Γ , then she gets access to the members of EB . This is because A knows α (message
2 above) and with compromising Γ , she gets access to {iᾱj | ij ∈ EB}, from which

76 M. Torabi Dashti and Y. Wang

she would be able to compute {(iᾱj)α mod n | ij ∈ EB} = EB . We conclude that in
case hash functions were not used in the protocol, A, by compromising Γ , could cause
more damage to B, compared to the damage B could cause to A by compromising Γ
(compare with the first protocol of section 4). This can undermine the protocol’s risk
balance, and, thus has to be prevented.

Below, we mention two shortcomings of our risk-balanced protocol. Addressing
these issues constitute our future work. (1) We note that in the protocol, Γ would al-
ways learn whether the exchange was successful or not (outsider parties can easily be
prevented from seeing the result altogether, e.g. using encryption), although the shared
information I is not revealed to Γ . Leaking this little information can in principle be
harmful to the participants: An interrogator who knows that you share some secret with
a comrade would be hard to thwart before you both reveal that very secret. Hiding this
information from Γ remains to be studied. (2) A drawback of the protocol is its com-
munication costs and the computation burden it imposes on Γ . The computation cost on
B is also much heavier than A. Equivalent protocols with less, and evenly distributed,
computation and communication costs are thus desirable.

Acknowledgements. We are grateful to Wouter Teepe for many helpful discussions, and
to Srijith Nair for commenting on an earlier version of the paper.

References

1. Asokan, N.: Fairness in electronic commerce. PhD thesis, University of Waterloo (1998)
2. Buttyán, L., Hubaux, J.: Toward a formal model of fair exchange – a game theoretic approach.

Technical Report SSC/1999/39, EPFL, Lausanne (1999)
3. Buttyán, L., Hubaux, J., Capkun, S.: A formal model of rational exchange and its application

to the analysis of syverson’s protocol. J. Computer Security 12(3-4), 551–587 (2004)
4. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO

2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)
5. Chadha, R., Mitchell, J., Scedrov, A., Shmatikov, V.: Contract signing, optimism, and advan-

tage. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 366–382.
Springer, Heidelberg (2003)

6. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical Report 175,
Computer Science Dept., Technion, Haifa, March (1980)

7. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun.
ACM 39(5), 77–85 (1996)

8. Gollmann, D.: Why trust is bad for security. ENTCS 157(3), 3–9 (2006)
9. Imamoto, K., Zhou, J., Sakurai, K.: An evenhanded certified email system for contract sign-

ing. In: Qing, S., Mao, W., Lopez, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp.
1–13. Springer, Heidelberg (2005)

10. Ito, C., Iwaihara, M., Kambayashi, Y.: Fair exchange under limited trust. In: Buchmann,
A.P., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.) TES 2002. LNCS, vol. 2444, pp.
161–170. Springer, Heidelberg (2002)

11. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Redmond, Washington
(1999)

12. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120–126 (1978)

Risk Balance in Exchange Protocols 77

13. Teepe, W.: Reconciling Information Exchange and Confidentiality — A Formal Approach.
PhD thesis, Rijksuniversiteit Groningen (2006)

14. Traore, J., Boudot, F., Schoenmakers, B.: A fair and efficient solution to the socialist million-
aires’ problem. Discrete Applied Mathematics 111, 23–36 (2001)

15. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Security and Privacy 1996, pp.
55–61. IEEE Computer Society Press, Los Alamitos (1996)

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 78 – 85, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scalable DRM System for Media Portability

Hyoungshick Kim

Samsung Electronics, Software Laboratory, Home S/W Platform Team
416, Maetan-3Dong, Yeongtong-Gu,

Suwon, Gyeonggi-Do, Korea 443-742
hyungsik.kim@samsung.com

Abstract. We present a new digital rights management (DRM) system for
media portability using dynamic multimedia adaptation. For a user to share
multimedia resources over home network, several DRM technologies based on
the domain have been introduced. Domain-based approaches enable users to
access contents on multiple devices within the same domain. However, most of
current DRM systems were only designed for a homogeneous environment
where common AV profiles are supported. It is a challenge to share the domain
contents between domain members with diverse capabilities while ensuring the
protection of the intellectual property rights for the legally obtained contents. In
this paper, we propose an architecture that enables DRM contents to be securely
shared between various home devices in a seamless manner.

Keywords: DRM, Home Network, Media Portability, Transcoding, Scalability.

1 Introduction

In order to take advantage of the online distribution while at the same time preventing
illegal redistribution of the content, digital rights management (DRM) technologies
are recently employed for restricting the use of the contents within usages granted by
the content holder. Consumers, however, want to enjoy contents on any of their
devices without limitation. In particular, the emerging standards and technologies for
home entertainment networking are developed to enable all kinds of home devices to
access the multimedia resources between the devices [3].

In order to satisfy both of the contents holders and the users over home network,
the notion of authorized domain is introduced by identifying a set of devices which a
home user owns [4][22]. In a DRM system supporting the domain concept, a user
freely enjoys contents among devices within the authorized domain. Most commercial
DRM technologies have already defined the authorized domain [7][8][11] which aims
to meet the requirements for sharing between networked devices.

In order to share DRM contents effectively, however, the only domain
management is not enough. In practice, transcoding for media portability is
necessarily required to enable sharing contents among a multitude of playback
devices with different device capabilities and dynamic channel capacities [1]. For
example, a high-definition (HD) video content for home set-top box must be adapted
to target displays of other devices such as a mobile phone that may not even support

 Scalable DRM System for Media Portability 79

standard-definition (SD) resolution because of its limited processing capability or
small display. However, such content adaptation may introduce security implications.
First of all, translation of DRM protected contents may pose serious threats to the
security of the DRM system since the decrypted plaintext content is clearly revealed
to the transcoder. In addition, the creation of the associated license should be also
required when new DRM content has been created from the result of the translation.

For solving these problems, general DRM interoperability solutions may be
considered. Several approaches are previously introduced in this challenging area
[12][13][16][17][19]. In general, however, DRM interoperability solutions seem too
heavy and complex. Conventional interoperability approaches require common
trusted frameworks such as certificates management and keys management for secure
communication between participating entities. The common trusted frameworks incur
not only the cost of new mechanisms but also many business negotiations among
participants in DRM value chains [8]. Furthermore, in the connected interoperability
approach, the translation processes are handled by an online mediator on the outside
of the home network through re-acquisition methods [12][19]. In general, it is
difficult to guarantee continuous network connectivity to Internet.

In this paper, we focus on the challenges involved in scalability issues of both the
DRM contents and the associated licenses. In order to enhance scalability of the DRM
protected contents, we apply the scalable coding methods [20][21] directly to the
generation of the scalable DRM protected contents. Also, we propose a method for
compression of digital signatures which are appended to the license.

2 Problems

Our proposed system is intended for satisfying security requirements derived from
both DRM protected contents and the associated license within an authorized domain.
Both objects must be securely translated for one of supported AV profiles in a
playback client device. Before addressing the detailed description of our system, we
briefly review two main problems identified by previous approaches.

2.1 Secrecy of Protected Content

During a delivery of a DRM protected content from a media server to a playback
client through AV operations such as copy, move or streaming, intermediary devices
over home network may perform some transcoding operations such as bit rate
reduction, changing resolution, spatial down sampling, or frame rate reduction to
adapt to application capabilities. Transcoding often refers to the process of
transforming audio and video from the original format in which the multimedia was
encoded into a possibly different format or quality.

In the process of translation, the plaintext media stream of the protected content
may be insecure in the view of end-to-end security from the media server to the client
since decryption of the protected content is generally required at the transcoders. The
transcoders decrypt the DRM protected content before transcoding it. For doing this,
the transcoders must manage the content encryption key (CEK). In most DRM
systems, CEK can be extracted from a DRM license by the only authorized entities

80 H. Kim

(e.g. domain members). Consequently, we need to assume that the transcoder is also
an authorized participant and the transcoding operation is allowed under the terms
stated by the DRM system. It is shown in Figure 1.

Fig. 1. Conventional system for transferring of a DRM content between a media server and a
client

These approaches not only increase processing overhead for decryption and re-
encryption but also require a strong security assumption on the transcoder.
Transcoding method that requires the decryption of the protected content is not
desirable in environment that transcoders may be not trust since it violates the end-to-
end security guarantee of privacy [14].

2.2 Verifying License

Another important issue is to generate a valid license for a newly translated DRM
content. Before installing a DRM license to render the associated DRM protected
content, most DRM clients must check the validity of the license object for preventing
against the modification of a DRM license or rogue content holder attack. For this
purpose, the content holder’s own secret information is required since a valid license
can be generated by the only honest contents holder. The most intuitive solution is to
use the content holder’s signature or MAC (Message Authentication Code) [7].

Unlike conventional DRM systems, we cannot assume that the identical licenses
are shared between domain members. As a result of the transcoding of DRM
protected content, the creation of a new DRM license may be also required since hash
value or content identifier of the associated DRM protected content are modified. By
these modifications, new hash value or the changed content identifier must be
included into the DRM license object. Therefore, the transcoder must also hold the
content holder’s unique secret information such as his sign key for generating the
DRM license.

To exercise the localized licensing, the delegation of content holder’s authority to
transcoder using some advanced cryptographic primitives [15][18] such as proxy
signature are previously introduced [2][13][24]. However, previous approaches have
some limitations. First of all, assuming an authorized proxy of contents holder is not
acceptable in conventional DRM world yet. To accept these as industrial
technologies, contents holders need time to verify the security of the technologies
since many cryptographers are still skeptical about the proof of the security for proxy
signature or proxy re-encryption. Also, the existence of the delegated device may
cause the single server failure problem. To access an interoperable service, the home
devices must always contact the designated transcoder who holds the role of proxy. In

 Scalable DRM System for Media Portability 81

CE environment, it is difficult to assume that there is the specific device without cease
since a device may be commonly turned off or broken down.

3 DRM System for Multiple AV Profiles

In this section, we focus on the distribution of the DRM protected content and the
associated license. Our proposed system translates both objects in local home network
without breaking end-to-end security between a content holder and a media player. In
a practical environment, the content holder can be a combination of contents
providers and service providers.

The multimedia adaptation problem for DRM contents deals with a media server, S
and a media player, P. In general, given a DRM content cn and a license ln for an AV
profile pn, our goal is to translate them into the new DRM content cm and the
associated license lm for the specific AV profile pm in a secure and seamless manner.
In general DRM systems, cn consists the metadata of the content and the encrypted
plaintext media stream sn with a CEK, denoted as ECEK{sn}. At this time, we assume
that the plaintext media stream sn is encoded using a scalable video coding and a
media stream si can be transcoded from sn using dropping some enhancement layers if
i is less than n. A scalable video coding provides a unique representation of one video
signal allowing simultaneous access to the scene at different scales: spatial, temporal
and quality.

Not all video coding technologies are suitable for scalability. AVC is expected to
be basis of interoperability for home network. To guarantee interoperability and take
advantage of these devices in home network technologies, scalable video coding shall
support base layer compatibility with AVC standard. Recently, the Joint Video Team
(JVT) is finalizing the standardization of MPEG-4 SVC: the scalable video coding
extension of MPEG-4 AVC [6][9]. In this paper, we assume that home network and
the related DRM standard technologies support AV profile which can be encoded by
scalable coding such as MPEG-4 SVC.

Our proposed system consists of two parallel steps, ‘content translation’, and
‘license translation’ which are processed on the media server S and the media player
P. Upon completing protocols successfully for content purchase, the media server S
stores the purchased content. The media server S translates the encrypted media
stream sn and the digitally signed ln with the contents holder’s sign key then delivers
them to the media player P when the player P requests to share the content. Upon
successful receiving the translated DRM content and the associated license, the player
P passes them to the DRM agent.

3.1 Content Translation

The contents holder H passes raw audio and video input through the specific encoder
to produce scalable encoded streams. The content is encoded into multiple layers
consisting of one base layer and multiple enhancement layers using layered coding.
The base layer is encoded at the minimum rate necessary to decode the content
stream, and its decoding results in the lowest quality version of the content. Each
enhancement layer provides progressive refinement of the encoded content [10].

82 H. Kim

For protecting the secrecy of the plaintext media stream, the encoded streams must
be encrypted with the CEK. The encrypted streams can be generated from scalable
compressed bitstreams. The server S parses the scalable bitstreams, and groups the
data into n layers g1, g2, … , gn. After grouping the scalable coded data into layers,
the contents holder H sequentially encrypts them using CEK. After completing the
purchase, the encrypted group data ECEK{gi} for 1 ≤ j ≤ n and additional metadata M
as the DRM Protected content are stored to a media server S. Not only general DRM
information such as content identifier but also the location information for
transcoding must be included into metadata M. In general, these data can be directly
represented common DRM file formats in Conventional DRM systems.

In the step of playback, a media player P can download only a difference between
quality levels rather than downloading the entire multimedia stream for minimizing
communication cost. When the media player P requests the media server S to
download a DRM content cm for a AV profile pm where 1 ≤ m ≤ n, the media server S
transfers the data ECEK{gi} for 1 ≤ i ≤ m and the metadata M to the player P. The
server S achieves secure transcoding without operations such as decryption and re-
encryption. The server S simply reads the metadata of the DRM protected content and
then truncates a set of group data at the appropriate locations. It is not required that
the specific compression, decoding, or encryption algorithms are implemented in the
media server S. Therefore, we do not assume that the server S should implement
DRM clients or be one of the authorized domain members.

For access the content, the media player P starts to decrypt the encrypted group
data ECEK{gi} for 1 ≤ i ≤ m using the content encryption key CEK if the player P
already holds the key CEK. In general, the CEK is included to the associated license
as encrypted form with the domain key. Therefore, the CEK can be obtained if the
media player P is a member of the authorized domain. After successfully decrypting
data, the resulting plain multimedia stream is passed to the DRM client.

3.2 License Translation

When the media server S translates the protected DRM content and then distributes on
the fly them to the media player P, the associated DRM license may be also delivered
to the player P. The associated DRM license must be newly generated due to the
changed values such as the hash value of the translated DRM protected content or the
associated content identifier.

The simplest solution is to download all associated licenses l1, l2, … , ln from the
content holder H and to deliver one of them according to the requested AV profile pm.
However, downloading all associated license is not efficient solution since the
associated licenses l1, l2, … , ln generally include redundant information.

Clearly, the most efficient method is to aggregate possible licenses into one which
consists of common factors and uncommon factors.

In uncommon parts, the main overhead is to append the content holder H’s
signature and MAC value of the DRM license itself for all profiles. The number of the
appended signatures and MAC values are linear in the number of AV profiles in
home.

For minimizing the size of these data, one solution is to generate the associated
license lm in local network without regard to the contents holder H. In our system, we

 Scalable DRM System for Media Portability 83

propose the following technique using a variant of aggregate signature schemes [5].
An aggregate signature scheme is useful for compressing the list of signatures on
distinct messages. Our proposed scheme can be efficiently implemented compared
with the general aggregate signature schemes since we only consider that the DRM
licenses are issued by a unique content holder H.

Given a permutation description d, a permutation family is one-way if it is
infeasible to invert the corresponding permutation. A permutation family is trapdoor
if each description d has some corresponding trapdoor t ∈ T such that it is easy to
invert the permutation corresponding to s using t, but infeasible without t.

Our scheme generates the compressed signature using a trapdoor permutation π: D
→ D and a random oracle h: {0, 1}* → D where D is a group with operation ·. The
scheme comprises the following three algorithms:

 Key Generation: For the contents holder H, the trapdoor permutation π and the
trapdoor information t are randomly selected. The selected values t and π are used
as the signing key and verification key, respectively.

 Signing: Given the possible licenses l1, l2, … , ln, the compressed signature is
computed by the contents holder H as the follows:
The contents holder H then sequentially computes σi repeatedly applying the
inverse of the permutation π-1 and the random oracle h where σ0 is the unit
element in the group D as the follows:

σi = π-1(h(li)·σi-1), for 1 ≤ i ≤ n. (1)

Each intermediate value σi means the signature of the DRM license li.

 Verification: For verifying the validity of the signature σk, the media player P
computes the verification value vk as follows:

vk = h(lk)
-1
·π (σk). (2)

It is clearly true that there is a h(lk)
-1 since D is a group. The media player P

sequentially computes the verification values vi repeatedly until computing v1 as
follows:

vi = h(li)
-1
·π (vi+1). (3)

We can verify the validity of the signature by checking whether v1 is the same as
the unit element in the group D.

The advantage of the proposed scheme is to generate the valid signatures of the
associated licenses without the key management or too heavy cryptographic
operations. The media server S locally generates the signature σm of the license lm
from the stored σn without regard to the trust relationship with the contents holder H.
In addition, for computing MAC value of the DRM license lm, the media server needs
to hold the MAC key of the DRM protected content. It can be solved by delivering the
signed MAC key MK instead of MAC value of the DRM content. The media server S
computes the MAC value of the license lm using the signed MAC key. Figure 2 shows
the protocol of the overall system.

84 H. Kim

Fig. 2. The overview of the proposed system

In general, the delivered values can be easily adapted to the conventional file
formats such as a license object or a DRM protected content without modifying them.
Therefore, our approach does not require new standardized DRM file formats.

4 Conclusion

In this paper, we have presented a new DRM system for multiple AV profiles.
To share DRM contents between diverse home devices, the proposed system

provides scalable DRM contents and the compression of the associated license. The
proposed system which is based on a scalable coding and the aggregate signature
scheme, encodes a content sequence such as audio/video frames into protected data
that can be streamed or copied to heterogeneous clients.

It would be interesting to analysis the performance of the proposed system. In the
future, we plan to investigate how our system can be efficiently implemented using a
specific DRM technology such as OMA DRM. We will also investigate a formal
security proof of the system.

References

1. Eskicioglu, A.M., Delp, E.J.: An integrated approach to encrypting scalable video. In:
IEEE ICME, pp. 573–576. IEEE Computer Society Press, Los Alamitos (2002)

2. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable DRM
architecture. In: Proceedings of the 6th ACM Workshop on Digital Rights Management,
pp. 69–78 (2006)

3. DLNA. DLNA Overview and Vision,
 http://www.dlna.org/en/industry/about/dlna_white_paper_2006.pdf.

4. van den Heuval, S.A.F.A., Jonker, W., Kamperman, F.L.A.J., Lenoir, P.J.: Secure Content
Management in Authorized Domains. In: Proceedings of IBC 2002, pp. 467–474 (2002)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: A survey of two signature aggregation
techniques. RSA’s CryptoBytes 6(2) (2003)

6. Reichel, J., Schwarz, H., Wien, M.: Joint Scalable Video Model JSVM-6, Doc. JVT-S202
(2006)

 Scalable DRM System for Media Portability 85

7. Open Mobile Alliance. DRM Specification 2.0, http://www.openmobilealliance.org/
8. Popescu, B.C., Crispo, B., Tanenbaum, A., Kamperman, F.: A DRM Security Architecture

for Home Networks. In: Proceedings of the 4th ACM Workshop on Digital Rights
Management, pp. 1–10 (2004)

9. Wiegand, T., Sullivan, G., Reichel, J., Schwarz, H., Wien, M.: Scalable Video Coding-
Joint Draft 6, Doc. JVT-S201 (2006)

10. McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven layered multicast. In:
Proceedings of ACM SIGCOMM, pp. 117–130 (1996)

11. Kamperman, F., Szostek, L., Wouter, B.: Marlin common domain: authorized domains in
marlin technology. In: 4th IEEE Consumer Communications and Networking Conference,
pp. 935–939 (2007)

12. Koenen, R.H., Lacy, J., Mackey, M., Mitchell, S.: The long march to interoperable digital
rights management. Proceedings of the IEEE 92(6) (2004)

13. Kravitz, D.W., Messerges, T.S.: Achieving media portability through local content
translation and end-to-end rights management. In: Proceedings of the Fifth ACM
Workshop on Digital Rights Management (2005)

14. Wee, S.J., Apostolopoulos, J.G.: Secure Scalable streaming and secure transcoding with
JPEG-2000, IEEE ICIP (2003)

15. Ateniese, G., Hohenberger, S.: Proxy Re-Signatures: New Definitions, Algorithms, and
Applications. In: Proceedings of the ACM Conference on Computer and Communication
Security (CCS), pp. 310–319 (2005)

16. Safavi-Niani, R., Sheppard, N., Uehara, T.: Import/Export in digital rights management.
In: Proceedings of the 4th ACM Workshop on Digital Rights Management, pp. 99–110
(2004)

17. Senoh, T., Ueno, T., Kogure, T.: DRM renewability & interoperability. In: 1st IEEE
Consumer Communications and Networking Conference, pp. 424–429. IEEE Computer
Society Press, Los Alamitos (2004)

18. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In: Proceedings of the 12th
Annual Network and Distributed System Security Symposium. Internet Society, pp. 29–44
(2005)

19. Kalker, T., Carey, K., Lacy, J., Rosner, M.: The Coral DRM interoperability framework.
In: 4th IEEE Consumer Communications and Networking Conference, pp. 930–934 (2007)

20. Radha, H., Chen, M.: A framework for efficient progressive fine granularity scalablevideo
coding. IEEE Transactions on Circuits and Systems for Video Technology 2(3), 332–344
(2001)

21. Radha, H., Chen, M.: The MPEG-4 fine-grained scalable video coding method for
multimediastreaming over IP. IEEE Transactions on Multimedia 3(1), 53–68 (2001)

22. Sovio, S., Asokan, N., Nyberg, K.: Defining Authorization Domains Using Virtual
Devices. In: SAINT Workshops 2003, pp. 331–336 (2003)

23. Kim, H., Lee, Y., Chung, B., Yoon, H., Lee, J., Jung, K.: Digital Rights Management with
Right Delegation for Home Networks. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS,
vol. 4296, pp. 233–245. Springer, Heidelberg (2006)

Computational Semantics for Basic Protocol Logic –
A Stochastic Approach

Gergei Bana, Koji Hasebe, and Mitsuhiro Okada

1 Dept of Mathematics, Tulane University, New Orleans, LA, USA
gbana@tulane.edu

2 Research Center for Verification and Semantics, AIST, Osaka, Japan
k-hasebe@aist.go.jp

3 Department of Philosophy, Keio University, Tokyo, Japan
mitsu@abelard.flet.keio.ac.jp

Abstract. This paper relates formal and computational models of cryptography
in case of active adversaries when formal security analysis is done with first order
logic. Instead of the way Datta et al. defined computational semantics to their
Protocol Composition Logic, we introduce a new, fully probabilistic method to
assign computational semantics to the syntax. We present this via considering a
simple example of such a formal model, the Basic Protocol Logic by K. Hasebe
and M. Okada [7] , but the technique is suitable for extensions to more complex
situations such as PCL. We make use of the usual mathematical treatment of
stochastic processes, hence are able to treat arbitrary probability distributions,
non-negligible probability of collision, causal dependence or independence.

Keywords: cryptographic protocols, formal methods, first order logic, computa-
tional semantics.

1 Introduction

Linking the formal and computational models of cryptography has become of central
interest. In this paper we consider the relationship of the two models when formal se-
curity analysis is done with first order logic, and a computational semantics (instead
of formal) is assigned to the syntax. Proving that the axioms and inference rules of the
syntax hold in the semantics implies that a property provable in the syntax must be true
in the computational model.

Recently, Datta et al. in [5] gave a computational semantics to the syntax of their
Protocol Composition Logic of [4]. In their treatment, every action by the honest par-
ticipants is recorded on each execution trace (of identical probabilities), and bit strings
emerging later are checked whether they were recorded earlier and to what action they
corresponded (of the adversary, only send and receive actions are recorded). This way,
they first define when a property is satisfied on a particular trace, and they say the
property is satisfied in the model if it is satisfied on an overwhelming number of traces.
As the comparisons are done on each trace separately it is not possible to track corre-
lations, and problems arise from the possibility of wrongly identifying bit-strings, even
when the probabilities of coincidences are negligible.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 86–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computational Semantics for Basic Protocol Logic 87

Our approach puts more emphasis on probabilities. Instead of defining what is satis-
fied on each trace, we say that a property is satisfied in the model if a “cross-section”
of traces provides the right probabilities for computational realizations of the property
in question. An underlying stochastic structure ensures that we can detect if something
depends on the past or does not. It is not coincidences on traces that we look for, but
correlations of probability distributions. We introduce our method on a rather simple
syntax, namely, a somewhat modified version of Basic Protocol Logic (or BPL, for
short) by K. Hasebe and M. Okada [7] and leave extensions to more complex situations
such as the PCL to future work. The reason for this is partly the limited space, partly
to avoid distraction by an elaborate formal model from the main ideas, but also that a
complete axiomatization of the syntax used by Datta et al. for their computational PCL
has not yet been published anywhere, only fragments are available. We would like to
emphasize though that our point is not to give a computational semantics to BPL but to
provide a technique that works well in much more general situations as well.

There is an on-going debate about how the this approach is related to that of Datta
et al., and our opinion about specific problems of their approach and why we think our
approach solves those problems is in the long version of our paper [3].

Formal methods emerged from the seminal work of Dolev and Yao [6]. The first to
link it to computational methods were Abadi and Rogaway in [1] “soundness” for pas-
sive adversaries. Active adversaries are considered by, among others, Backes et al. in
[2] and Micciancio and Warinschi [8]. Using first order logic as opposed to other for-
mal approaches has multiple advantages. The language of Backes et al. is complicated,
includes probabilities, making it harder to work with. The soundness of Micciancio and
Warinschi includes a very limiting condition, namely, that the computational interpre-
tation of any secure formal trace must be computationally secure.

2 Basic Protocol Logic

In this section, we briefly describe the syntax of Basic Protocol Logic modified to be
suitable for computational interpretation. For the original BPL, please consult [7].

Sorts and Terms. Our language is order-sorted:

– Cname, Cnonce : finite sets of constants of sort name and of constants of sort nonce;
– terms of sorts name and nonce are also terms of sort message;
– CcoinA

: finite set of constants of sort coinA;
– Ccoin :=

⋃
A∈Cname

CcoinA
; terms of sort coinA are also of sort coin

Compound terms of sort message are built by the grammar: t ::= M | m | 〈t, t〉 | {t}ρ
P ,

where M ∈ Cname∪Cnonce, m is free variable of sort message, P is constant or free vari-
able of sort name, and ρ is constant or free variable of sort coin. We write {n, A2}rA

Q

instead of {〈n, A2〉}rA

Q . We use the following notations:

– A, B, A1, A2, ... (Q, Q′, Q1, Q2, ... resp.): constants (variables, resp.) of sort name;
– N, N ′, N1, N2, ... (n, n′, n1, n2, ... resp.): constants (variables, resp.) of sort nonce;
– rA, rA

1 , rA
2 , ... (sA, sA

1 , sA
2 , ..., or s, s′, s1, s2, ..., resp.): constants of sort coinA

(variables of sort coinA, or variables of sort coin, resp.)
– M, M ′, M1, M2, ... (m, m′, m1, m2, ...): constants (variables) of sort message

88 G. Bana, K. Hasebe, and M. Okada

Let P, P ′, P1, P2, ... denote any term of sort name, and let ρ, ρ′, ρ1, ρ2, ... denote any-
thing of sort coin. t, t′, t1, t2, ... denote terms, and ν, ν′, ... denote terms of sort nonce.

Formulas. We use five binary predicate symbols: t = t′, t � t′, P generates ν,
P receives t, and P sends t. The meta expression acts is used to denote one of the ac-
tion predicates: generates, receives and sends. Atomic formulas are either of the form
P1 acts1 t1; P2 acts2 t2; · · · ; Pk actsk tk, or t = t′, or t � t′. The first one is called
trace formula. A trace formula is used to represent a sequence of the principals’ actions.
We also use α1; · · · ; αk (or α, for short) to denote P1 acts1 t1; · · · ; Pk actsk tk. For α
(≡ α1; · · · ; αm) and β (≡ β1; · · · ; βn), we say β includes α (denoted by α ⊆ β),
if there is a one-to-one, increasing function j : {1, ..., m} → {1, ..., n} such that
αi ≡ βj(i). Formulas are defined by

ϕ ::= α | t1 = t2 | t1 � t2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ∀mϕ′ | ∃mϕ′

where m is some bound variable, and ϕ′ is obtained from ϕ by substituting m for every
occurrence in ϕ of a free variable m′ of the same sort as m.

Roles. A protocol is a set of roles, and each role for a principal (say, Q) is described as
a trace formula of the form αQ ≡ Q acts1 t1; · · · ; Q actsk tk.

The Axioms of Basic Protocol Logic. For the lack of space, we just indicate the na-
ture of the axioms. A complete description of them is in [3]. They have three groups:
(I): term axioms list a set of axioms for equality and subterm relations that we can
prove they are sound and that were sufficient to prove correctness of actual protocols
we checked. Examples of such axioms are ∀m(t1 = t2 ∧ t2 = t3 → t1 = t3), or
∀mQssB({t1}sB

A ={t2}s
Q → t1 = t2 ∧ Q=A ∧ s=sB). Some of the original term ax-

ioms of BPL turned out not to be computationally sound, we therefore restricted them
to a smaller set that was still enough to prove correctness for a number of protocols.
(II): straightforward axioms for trace formulas, such as β → α when α ⊆ β. (III):
this group is about relationships between properties, including an ordering axiom as
∀Q1Q2nm(n � m → ¬(Q2 sends/receives/generates m; Q1 generates n)), and
two nonce verification axioms expressed by formulas with meanings such as: if A and
B are constant names, and if A sent out a nonce n1 encrypted with the public key of B
that was not sent in any other way, and name Q received this nonce in some other form,
then the encrypted nonce had to go through B.

3 Computational Semantics

Computational Asymmetric Encryption Schemes. The fundamental objects of the
computational world are strings, strings = {0, 1}∗, and families of probability dis-
tributions over strings. These families are indexed by a security parameter η ∈ N

(which can be roughly understood as key-lengths). Pairing is an injective pairing func-
tion [·, ·] : strings × strings → strings. We assume that changing a bit string in any of
the argument to another bit string of the same length does not influence the length of the
output of the pairing. Let plaintexts, ciphertexts, publickey and secretkey be nonempty
subsets of strings. The set coins is some probability field that stands for coin-tossing, i.e.,
randomness. A computational asymmetric encryption scheme is a triple Π = (K, E , D)

Computational Semantics for Basic Protocol Logic 89

where: K : param × coins → publickey × secretkey is a key-generation algorithm with
param = N, E : publickey× plaintexts× coins → ciphertexts is an encryption function,
and D : secretkey × strings → plaintexts is such that for all (e, d) output of K(η, ·)
and c ∈ coins, D(d, E(e, m, c)) = m for all m ∈ plaintexts. All these algorithms are
computable in polynomial time with respect to the security parameter. We assume that
the length of the output of the encryption depends only on the length of the plaintext.

Stochastic Model for the Computational Execution of BPL. We define a computa-
tional semantics, mention that the syntactic axioms hold if the encryption scheme is
CCA-2 secure, and so, if a formula is provable in the syntax, it must be true in any
computational model.

First, since probabilities and complexity are involved, we need a probability space for
each value of the security parameter. Since time plays an important role in the execution,
what we need is the probability space for a stochastic process. We assume that for each
security parameter, there is a polynomially bounded maximum number of execution
steps nη. We will denote the finite probability space for an execution of a protocol
with security parameter η by Ωη , subsets of which are called events. Let Fη denote
the set of all subsets of Ωη (including the empty set). A subset containing only one
element is called an elementary event. The set Ωη is meant to include all randomness
of an execution of the protocol. A probability measure pη assigns a probability to each
subset such that it is additive with respect to disjoint unions of sets (so it is enough to
assign a probability to each element of Ωη, then the probability of any subset can be
computed). When it is clear which probability space we are talking about, we will just
use the notation Pr.

In order to describe what randomness was carried out until step i ∈ {0, 1, ..., nη}, we
assign a subset Fη

i ⊆ Fη to each i, such that Fη
i is closed under union and intersection,

and includes ∅ and Ωη , and Fη
i ⊆ Fη

i+1. The set {Fη
i }nη

i=1 is called filtration. Since
everything is finite, Fη

i is atomistic, that is, each element of it can be obtained as a
union of disjoint, minimal (with respect to inclusion) nonempty elements. The minimal
nonempty elements are called atoms. We introduce the notation

Pr = {(Ωη, {Fη
i }nη

i=0, p
η)}η∈param.

We included Fη
0 to allow some initial randomness such as key generation. A discrete ran-

dom variable on Ωη is a function on Ωη taking some discrete value. Since Fη
i contains

the events determined until step i, a random variable gη depends only on the randomness
until i exactly if g is constant on the atoms of Fη

i ; this is the same as saying that for any
possible value c, the set [gη = c] := {ω | gη(ω) = c} is an element of Fη

i . In this case,
we say that gη is measurable with respect to Fη

i . We will, however need a somewhat
more complex dependence-notion. We will need to consider random variables that are
determined by the randomness until step i1 on certain random paths, but until step i2
on other paths, and possibly something else on further paths. For this, we have to first
consider a function Jη : Ωη → {0, 1, ..., nη} that tells us which time step to consider
on each ω. This function should only depend on the past, so for each i ∈ {0, 1, ..., nη},
we require that the set [Jη = i] ∈ Fη

i . We will call this function a stopping time. The
events that have occurred until the stopping time Jη are contained in

Fη
J := {S | S ⊆ Ωη , and for all i = 0, 1, ..., nη, S ∩ [Jη = i] ∈ Fη

i }.

90 G. Bana, K. Hasebe, and M. Okada

Then, a random variable fη depends only on the events until the stopping time Jη iff
for each c in its range, [fη = c] ∈ Fη

J . Furthermore, a random variable hη on Ωη is
said to be independent of what happened until Jη iff for any S ∈ Fη

J and a c possible
value of hη, Pr([hη = c] ∩ S) = Pr([hη = c]) Pr(S). Finally, it is easy to see that for
each random variable fη, there is a stopping time Jη

f such that fη is measurable with
respect to Fη

Jf
, and Jη

f is minimal in the sense that fη is not measurable with respect to
any other Fη

J if there is an ω such that Jη(ω) < Jη
f (ω).

Example 1. Suppose coins are tossed three times. Then Ω = {(a, b, c) | a, b, c = 0, 1}.
Let (1, ·, ·) := {(1, b, c) | b, c = 0, 1}. (0, ·, ·), etc. are defined analogously. At step i =
1, the outcome of the first coin-tossing becomes known, F1 = {∅, (0, ·, ·), (1, ·, ·), Ω}.
At step i = 2, the outcome of the second coin becomes known too, therefore F2, besides
∅ and Ω, contains (0, 0, ·), (0, 1, ·), (1, 0, ·) and (1, 1, ·) as atoms, and all possible unions
of these. F3 is all subsets. A function g that is measurable with respect to F1, is constant
on (0, ·, ·) and on (1, ·, ·), that is, g only depends on the outcome of the first coin tossing,
but not the rest. Similarly, an f measurable on F2, is constant on (0, 0, ·), on (0, 1, ·), on
(1, 0, ·) and on (1, 1, ·). A stopping time is for example the J that equals the position of
the first 1, or 3 if there is never 1: J((a1, a2, a3)) = i if ai = 1 and ak = 0 for k < i,
and J((a1, a2, a3)) = 3 if ak = 0 for all k = 1, 2, 3. The atoms of FJ are (1, ·, ·),
(0, 1, ·), {(0, 0, 1)} and {(0, 0, 0)}.

Principals, Nonces, Random Seeds. Let Pr = {(Ωη, {Fη
i }nη

i=0, p
η)}η∈param be the

stochastic space of the execution of the protocol. Below, we define how principals,
nonces and random seeds for the encryptions are represented on this space.

Principals are essentially bit strings describing their names, along with their pub-
lic and secret keys. So let P = Pη be a set of (polynomially bounded number of)
elements of the form (Aη, (eη

A, dη
A)) where Aη ∈ {0, 1}nη

, and (eη
A, dη

A) is a pair
of probability distributions on Ωη measurable with respect to Fη

0 such that Pr[ω :
(eη

A(ω), dη
A(ω)) �∈ Range(K(η, ·))] is a negligible function of η. We assume that if

A = B, then (eη
A, dη

A) = (eη
B, dη

B).
Nonces are bit-strings, for each security parameter, uniformly distributed over the

bit-strings of some fixed length. Let N be a set of elements of the form {Nη}η∈param

where Nη : Ωη → {0, 1}mη ∪ {⊥} (⊥ means Nη has no bit-string value on that
particular execution), such that over {0, 1}mη

, Nη is uniformly distributed. This set
describes the nonces that were generated with overwhelming probability during the
execution of the protocol. The nonces also have to be independent of what happened
earlier when they are being generated, but we will require this later.

For the random seeds of encryptions, let R be a set of elements of the form R =
{Rη}η∈param where Rη : Ωη → coins ∪ {⊥}. Let Rg be the subset of R which are
properly randomized, that is, for which the values in coins have the distribution re-
quired for the encryption scheme (on the condition that the value is not ⊥). Dishonest
participants may encrypt with improperly randomization.

Messages. Messages are simply randomly distributed bit-strings. So let the set of mes-
sages be M elements of the form M = {Mη}η∈param, where Mη : Ωη → {0, 1}nη ∪
{⊥}. We render two messages equivalent if they only differ on sets of negligible

Computational Semantics for Basic Protocol Logic 91

probability: for M1, M2, we write M1 ≈ M2 iff pη[ω : M1(ω) �= M2(ω)] is a negligi-
ble function of η.

We factor everything out with respect to the above equivalence, as those distributions
that are equivalent, cannot be computationally distinguished. Therefore, DM := M/≈,
let DN := N/≈ ⊂ DM , and let

DP := {A ∈ M : (Aη, (eη
A, dη

A)) ∈ P for some (eη
A, dη

A)}/≈ ⊂ DM

Pairing, Encryption, and Subterm Relation of Computational Messages. We first
define what we mean by pairing and encryption of messages on our stochastic field.
They are defined in the most straightforward way, by fixing the randomness ω for rep-
resentatives of the equivalence-classes with respect to ≈: For any X, X1, X2 ∈ DM , we
write that X =C 〈X1, X2〉, if for some (hence for all) M1 = {Mη

1 }η∈param ∈ X1 and
M2 = {Mη

2 }η∈param ∈ X2 (i.e. M1 and M2 are arbitrary elements of the equivalence-
classes X1 and X2), the ensemble of random variables {ω �→ [Mη

1 (ω), Mη
2 (ω)]}η∈param

is an element of X .
For encryption of messages, if A ∈ P , and R ∈ R, then we will write that X =C

{X1}R
A if for any (hence for all) M1 = {Mη

1 }η∈param ∈ X1, the ensemble of random
variables {ω �→ E(eη

A(ω), Mη
1 (ω), R(ω))}η∈param is an element of X . If the value of

any of the input distributions is ⊥ then we take the output to be ⊥ as well.
Now we can define subterm relation: With the previous definition of pairing and

encryption, we can consider an element of the free term algebra T (DM) over DM as
an element of DM . Let �T (DM) denote the subterm relation on T (DM). This generates
a subterm relation �C on DM by defining X1 �C X2 to be true iff there is an element
X ∈ T (DM) such that X1 �T (DM) X and X2 =C X .

Execution Trace. Execution trace is defined as Tr = {Trη}η∈param, Trη : ω �→ Trη(ω)
with either Trη(ω) = P η

1 (ω) actsη
1(ω) sη

1(ω); ...; P η
nη(ω)(ω) actsη

nη(ω)(ω) sη
nη(ω)(ω)

where for each η security parameter, ω ∈ Ωη , nη(ω) is a natural number less than nη,
P η

i (ω) ∈ DP , actsη
i (ω) is one of generates, sends, receives and sη

i (ω) ∈ {0, 1}∗;
or Trη(ω) = ⊥ with nη(ω) = 0. For each η, ω, and i ∈ {1, ..., nη}, let Trη

i (ω) =
P η

i (ω) actsη
i (ω) sη

i (ω) if i ∈ {1, ..., nη(ω)} and otherwise let Trη
i (ω) = ⊥. We require

that Trη
i be measurable with respect to Fη

i for all i. We require that any of Tr is PPT
computable from the earlier ones.

Domain of Interest. In our computational semantics, we want the syntactic formulas
to have meanings such that if something happens on a certain subset of randomness
(but not a single fixed randomness), then something else must also happen on that same
set. But, as the security parameter is present, we can only claim such things about a
sequence of sets that have non-negligile probability. So consider any set of subsets Dη ∈
Fη, D = {Dη}η∈param with non-negligible pη(Dη). We say that for X1, X2 ∈ DM ,
X1 = X2 on D if there are M1 = {Mη

1 }η∈param ∈ X1 and M2 = {Mη
2 }η∈param ∈ X2

with Mη
1 (ω) = Mη

2 (ω) for all ω ∈ Dη. We say that X1 �C X2 on D iff there is an
element X ∈ T (DM) such that X1 �T (DM) X and X2 =C X on D.

Computational Semantics. For a given security parameter, an execution is played by
a number of participants. We assume that the principals corresponding to names in the

92 G. Bana, K. Hasebe, and M. Okada

syntax (that is, they correspond to elements in Cname) are regular (non-corrupted). We
assume that these participants generate their keys and encrypt correctly with a CCA-2
encryption scheme, and never use their private keys in any computation except for de-
cryption. For other participants (possibly corrupted), we do not assume this. We further
assume that pairing of any two messages differs from any nonce and from any princi-
pal name on sets of non-negligible probability. The network is completely controlled
by an adversary. The sent and received bit strings are recorded in a trace in the order
they happen. Freshly generated bit-strings produced by the regular participants are also
recorded. The combined algorithms of the participants and the adversary are assumed
to be probabilistic polynomial time. Such a situation produces a computational trace
structure associated to the execution of the form

M = (Π, [·, ·],Pr, P , N , Rg, Tr, ΦC , D),

where ΦC gives the computational interpretation of constants of the syntax, that is, ΦC is
a one-to-one function on Cname∪Cnonce∪Ccoin such that (i) ΦC(A)∈DP for any A∈Cname
such that (eη

ΦC(A), d
η
ΦC(A)) is measurable with respect to F0 and has the correct key

distribution, and for different constants are independent of each other; (ii) ΦC(N) ∈ DN

for any N ∈ Cnonce; (iii) ΦC(r) ∈ Rg for any r ∈ Ccoin; and D = {Dη}η∈η, Dη ∈ Fη

a sequence of subsets where we focus our attention with pη(Dη) non-negligible.
An extension of ΦC to evaluation of free variables is a function Φ that is the same

on constants as ΦC , and for variables Q, n, m, sA, s of sort name, nonce, message,
coinA and coin respectively, Φ(Q) ∈ DP , Φ(n) ∈ DN , Φ(m) ∈ DM , Φ(sA) ∈ Rg

and Φ(s) ∈ R hold. Then, for any t term, Φ(t) ∈ DM is defined on terms as (i)
Φ(〈t1, t2〉) = 〈Φ(t1), Φ(t2)〉 ; (ii) Φ({t}r

P) = {Φ(t)}Φ(r)
Φ(P); where, as we mentioned

earlier, elements of T (DM) are considered as elements of DM .
Observe, that the interpretation of a symbolic object is an equivalence class of en-

sembles of random variables that are defined everywhere, not the ensembles them-
selves and not on a limited domain. Therefore, we say that an ensemble of random
variables M = {Mη}η∈param such that Mη is defined on Dη is a realization of the
term t through Φ on D, which we denote M ≪Φ,D t, if there is an M1 ∈ Φ(t) with

Mη
1 (ω) = Mη(ω) �= ⊥ for all ω ∈ Dη; and if also t = {t′}ρA

P , then we further require
that there is an M ′ ∈ Φ(t′) such that M ′ ≪Φ,D t′ and Φ(ρA)η on {0, 1}mη

is inde-
pendent of Fη

JM′ on the condition that Φ(ρA)η �= ⊥ (where for Jη
M ′ see the paragraph

before Example 1). We now define when a formula ϕ is satisfied by Φ:

– For any terms t1, t2, ϕ ≡ t1 = t2 is satisfied by Φ, iff Φ(t1) = Φ(t2) on D, and
ϕ ≡ t1 � t2 is satisfied by Φ iff Φ(t1) �C Φ(t2) on D.

– For any term u and acts=sends/receives, ϕ ≡ P acts u is satisfied by Φ iff there
are stopping times Jη such that apart from sets of negligible probability, Trη

Jη(ω)(ω)
is of the form Aη acts Mη(ω) for ω ∈ Dη where M := {Mη}η∈param ≪Φ,D u
and A := {Aη}η∈param ≪Φ,D P . We will denote this as TrJ ≪Φ,D P acts u.

– If acts=generates then the u above is a nonce ν, and so M:={Mη}η∈param≪Φ,D
u means there is an N ∈Φ(ν) such that Mη|Dη =Nη|Dη in this case, and we further
require that there is an N ′ ≈ N such that N ′η is independent of Fη

J−1 on [N ′ �= ⊥].

Computational Semantics for Basic Protocol Logic 93

– ϕ ≡ β1; ..., ; βn is satisfied by Φ if each of βk is satisfied by Φ, and if Jk is the
stopping time belonging to βk, then for each η ∈ param and ω ∈ Dη , Jη

k (ω) <
Jη

l (ω) whenever k < l.
– Satisfaction of ϕ, ¬ϕ, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ,∃mϕ, ∀mϕ are defined the usual way.

A formula ϕ is true in the structure M, iff ϕ is satisfied by every Φ extension of ΦC .

Soundness. Since we can prove that the axioms are true in the structure M, by a stan-
dard argument of first order logic, the following theorem is true:

Theorem 1. With our assumptions on the execution of the protocol, if the associated
computational trace structure is M = (Π, [·, ·],Pr, P , N , Rg, Tr, ΦC , D), then, a for-
mula that is provable in BPL, is true in M.

The proof goes by showing the soundness of the BPL axioms as the axioms of first order
logic are trivially satisfied. For proving soundness of group (I) of the axioms, we use
our conditions on computational pairing, CCA-2 security (e.g. for ∀mQssB({t1}sB

A =
{t2}s

Q → t1 = t2 ∧Q=A∧s=sB)), and that equal formulas have equal interpretations
(for ∀m(t1 = t2 ∧ t2 = t3 → t1 = t3)). Soundness of group (II) is trivial as the notion
of subtrace is preserved by interpretation. In (III), the ordering axiom is sound as for
the interpretation of a trace formula we required that the order is preserved and because
generated nonces have to be independent of the past. Nonce-verification axioms are
true, because if they were not, then an algorithm could be constructed that breaks CCA-
2 security. For more details we refer to [3] and they will published in a full version.

As a collorary, if an agreement property in the form of the query-form given in [7]
is provable in BPL proof system, then the agreement property is true for any computa-
tional realization of the protocol where honest participants follow CCA-2 encryption.

4 Conclusions

We have given a computational semantics to Basic Protocol Logic that uses stochastic
structures, and stated a soundness theorem. Next, we would like to apply our methods
to the much more complex formal syntax of PCL.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. Journal of Cryptol-
ogy 15(2), 103–127 (2002)

2. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested
operations. In: Proceedings of CCS 2003, pp. 220–230. ACM Press, New York (2003)

3. Bana, G., Hasebe, K., Okada, M.: Computational semantics for bpl - a stochastic approach.
Available at IACR ePrint Archive, Report 2007/156

4. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compositional
logic for security protocols. Journal of Computer Security 13, 423–482 (2005)

5. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic polynomial-
time semantics for a protocol security logic. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 16–29. Springer, Hei-
delberg (2005)

94 G. Bana, K. Hasebe, and M. Okada

6. Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory, 29(2), 198–208, March, Preliminary version presented at FOCS 1981 (1983)

7. Hasebe, K., Okada, M.: Completeness and counter-example generations of a basic protocol
logic. In: Proceedings of RULE 2005, vol. 147(1), pp. 73–92. Elsevier, Amsterdam (2005),
Available also at: http://dx.doi.org/10.1016/j.entcs.2005.06.038

8. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active ad-
versaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg
(2004)

http://dx.doi.org/10.1016/j.entcs.2005.06.038

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 95 – 110, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Management Advantages of Object Classification in
Role-Based Access Control (RBAC)

Mohammad Jafari and Mohammad Fathian

Department of Information Technology, Faculty of Industrial Engineering, University of
Science and Technology (IUST), Narmak, Tehran, Iran

{m_jafari, fathian}@iust.ac.ir

Abstract. This paper investigates the advantages of enabling object classification
in role-based access control (RBAC). First, it is shown how the merits of the
RBAC models can be ascribed to its using of abstraction and state of
dependencies. Following same arguments, it is shown how inclusion of object
classification will ameliorate dependencies and abstractions in the model. The
discussion contains examining seven criteria to compare object-classification-
enabled RBAC with plain RBAC and trivial-permission-assignment models, in
order to show the advantages of object classification in a more formal manner.
The criteria are: number and complexity of decisions, change management cost,
risk of errors, policy portability and reuse, enforcement and compliance, support
for traditional information classification policies, and object grouping and
management support.

Keywords: Access Control, Role-Based Access Control (RBAC), Object
Classification.

1 Introduction

The family of RBAC models is very well studied in the literature; borders have been
clarified by introducing reference models [20], and finally, it has been codified in
form of a standard [1]. Many extensions have been proposed to RBAC in order to
increase its power and expressiveness. This paper will focus on object classification
as one of such extensions and argue how it can improve its management efficiency.

Many contributors have glimpsed the idea of object classification during their
discussion of RBAC. Sandhu mentions the concept of "object attributes" as a means of
grouping objects, the same way as roles categorize subjects; though he doubts whether
this idea fits in the scope of RBAC [19]. Later, he hints at the idea of "generic
permission" as a special form of permission applied only to one group of objects;
nonetheless, he neglects the concept as being a matter of implementation [20]. "Team-
based access control" is another scheme which limits access rights of users to their
team's resources [22]. It can be viewed as an effort for object classification. In this
model, objects are grouped into generic entities named "object types" and the
permissions of each role are expressed in form of rights to access these "object types"
rather than objects themselves. The notion of "role templates" proposed in [11] is an
effort to restrict the privileges of a role to certain kind of objects in order to make

96 M. Jafari and M. Fathian

content-based access control possible. Roles templates, special "parameterized roles",
are actually a means to classifying objects. Objects are classified into categories, which
are then used as parameters to role templates, in order to limit the authority of the role to
a single category of objects. This notion is used in [12] as a basis to introduce the
concept of "object-specific role", a special kind of role the capabilities of which is
restricted to a certain group of objects. In other words, this work suggests manipulating
the meaning of role, in order to make object classification possible.

The most significant work on object classification however, seems to be done by
Covington et al. in [3]. The notion of "object roles" in their "generalized RBAC" is
the most evident effort to empower RBAC with object classification, and is similar to
the approach of this paper from a conceptual point of view. Recently, Junghwa in [24]
proposed a formalization of object classification together with support of object
hierarchies and provided some reason in favor of adding this concept to RBAC.

Although rarely noticed in the mainstream of RBAC-related literature, many
implementers of RBAC have realized the importance of object classification and
include mechanisms to support it. Hence, the notion of object classification is no new
idea in the world of implementation. There are often a large number of objects in real
systems and defining access rights regarding every single object is impractical [16].
Classification of files in form of directories and applying access rights to the whole
directory is one typical example. Using DTD schema as a categorizing mechanism for
XML documents in [4, 5] can serve as another instance.

This paper starts with establishing a conceptual basis for measuring the
management efficiency of an access control model by focusing on the notion of
"dependencies". Three typical models are then considered as the center of discussions:
"TPA model", "Plain RBAC", and "object-classification-enabled RBAC", coded as
TPA, P-RBAC, and OC-RBAC respectively. On the basis of dependencies and
abstractions, it is shown how object classification can bring about many management
advantages compared with P-RBAC and TPA models. These insights are then
formulated in form of Omicron notation (O(n)). Taken together, the main contribution
of this paper is to provide arguments in favor of enabling object classification in
RBAC and formulating them.

The remainder of this work proceeds as follows: In section 1.1 an overview of
RBAC model is presented in which particular attentions is paid to the state of
"dependencies" between the entities of the model. On this ground, some shortcomings
believed to exist in the P-RBAC are discussed in section1.2. Section 2 outlines object
classification in its simplest form which is then formalized in 2.1 by emulating the
definitions of RBAC. Section 3 dwells upon the advantages of OC-RBAC through
examination of the seven criteria. Section 4 is where the paper concludes with a
summary and probable future works.

1.1 RBAC Review

From a managerial point of view, one of the main points underlying RBAC is
separating subjects from their access permission, using an extra layer of abstraction,
named "role". The keyword here is "abstraction" which is a well-known concept in

 Management Advantages of Object Classification in Role-Based Access Control 97

Fig. 1. Dependencies of the access control policy in TPA

system design. From this point of view, RBAC model contrasts TPA models (such as
access matrix), in which subjects' permissions are directly assigned to them.

In TPA models, access control policy is stated in form of (subject, permission)
pairs, and hence, each of its entries contains a reference to a subject and a permission.
This dependency is the root of many problems, as will be discussed later. Access
control lists are one of the most well-known examples of using such a model that
suffer from many managerial deficiencies. One of the most important contributions of
RBAC is believed to be improvement of their manageability [8].

RBAC eliminates the direct relationship between subjects and permissions by setting
up the "role" entity which mediates between the two and removes the coupling of policy
to permissions. In this model, access control policy can be divided into two components:
one component decides the roles of each subject and the other component specifies the
access rights of each role. The two components can be expressed in form of subject-role
and role-permission pairs respectively. These two components are henceforth called
"major" and "minor" components of the RBAC policy to accentuate their cost and
importance which will be discussed in section 3.1. (figure 2.a).

(a) (b)

Fig. 2. a. Major and minor access control policies with their dependencies. b. Detailed
dependencies of the major access control policy in RBAC model. The permission entity is
replaced by its constituents, namely objects and operations. The shading denotes less-frequently
changing entities.

1.2 Absence of Object Classification in P-RBAC

The "permission" entity deserves more elaboration as it is a key entity in any access
control model. Permission is a general term that refers to the right of doing some unit
of work in a system [10]. For the sake of simplicity, we will skip complex forms of

Major Policy

Op. R. Ob.

Major Policy

Perm. R.

Minor Policy

R. Sub.

Op. Ob.

Policy

Subject Permission

98 M. Jafari and M. Fathian

permissions and assume that permission is composed of an operation exercised on an
object. Therefore permissions embody the relation between the objects and operations
(figure 2.a). This reveals the dependency of permissions to operations as well as
objects, and consequently, the dependency of major access control policy to objects
and operations in P-RBAC-based systems (figure 2.b).

Normally, the set of operations is constant across all similar systems, because the
set of possible operations is related to the essence of a system [1]. A similar argument
holds about roles. Roles are the same across similar systems, because they correspond
to the nature of the system. It has also been argued that roles must be engineered in
such a manner that they remain stable even against business restructuring [18]. For
example, the set of operations (credit, debit, etc.) and roles (clerk, accountant,
manager, etc.) are similar among all banking systems; contrary to the set of objects
which is dependant to a particular instance of a system. Any banking system has its
own set of objects (particular accounts, bills, etc.), even in different departments of a
same company. This persistent nature of roles and operations is depicted by the
shading in figure 2.b.

The dependency of major access control policy to objects implies that the role-
permission decision is utterly an organization-dependent practice. Despite the abstract
and system-independent nature of roles, permissions, and hence the whole policy, are
dependent to objects. This means that the major access control policy is dependent to
one particular system, and implies that the same process of role-permission
assignment must be reiterated even for most similar organizations.

Moreover, in the implementation level, the major access control policy will
experience a tough coupling to object names (as it is apparent in functional
specifications of RBAC models in [9] and [1]). Therefore, any changes in the set of
objects of the system, such as adding or renaming objects, will obligate an update to
the major access control policy. This is not suitable, as the major access control policy
is a very sensitive piece of information, and it might be desirable to store it as read-
only.

Lack of management facilities for objects at the model level is another fact that
highlights absence of object classification in P-RBAC. One of the most important
advantages of RBAC is its administrative power of managing users in form of roles
[6, 7, 9]. However, such a power is missing for objects, at least in the model level. In
systems based on P-RBAC, objects, even if they are quite similar, are treated
separately, and there is no abstraction support in the model for grouping them.
Proposing concepts such as "object attributes" in [19], or "generic permissions" in
[20] are efforts to solve this problem.

These problems can be traced back to the imbalanced state of the dependencies in
the RBAC model. The following section will try to show how object classification
can solve these problems, by enhancing the state of dependencies in the model.

2 Proposed Object Classification Scheme

Object classification is realized by declaring a new entity named "category". Other
names such as "object role" or "object class" have been proposed for similar concepts
elsewhere in the literature [3, 16]. The abstraction of "category" serves the same

 Management Advantages of Object Classification in Role-Based Access Control 99

functionality to objects as the abstraction of "role" does to subjects. A many-to-many
relation is defined between objects and categories by which objects can be grouped
and classified from several different points of views. Access rights are granted to
roles in by using categories in the major access control policy. A subject is authorized
to access an object iff at least one of its roles is allowed to access one of the
categories assigned to that object.

In this scheme, major access control policy would no more depend on the objects
themselves, but rather on object categories. Permissions will now stay on a higher
level and involve operations on categories rather than system-specific objects.
Consequently, the dependencies of the major access control policy will be refined as
shown in figure 3.b. As depicted in figure 3.b, major policy is no more depending
upon any frequently-changing entities. Since the category of each object should be
determined, an extra component will appear in the minor part of access control policy
in order to decide categories of objects (figure 3.a).

(a) (b)

Fig. 3. a. Minor access control policies and their dependencies when object classification is
involved. b. Major access control policy dependencies when object classification is involved.

From a managerial point of view, three steps are needed to be taken in order to
establish the major access control policy in OC-RBAC: Role engineering, category
engineering and policy decision. The role engineering and policy establishment
processes are similar to P-RBAC. The category engineering may be associated with
the process of "asset classification" which is a major domain in information security
management standards [14, 15]. Actually the asset classification practice can be
realized in form of category engineering.

2.1 Formal Definition

Here, a formal definition of OC-RBAC is presented. This definition obviously
resembles the definitions of RBAC. Some details of the original RBAC model (e.g.
role activation) are intentionally eliminated for the sake of brevity. Bringing those
concepts back to the model is straightforward. SUBS, ROLES, OPS, CATS, and OBS
are the sets of subjects, roles, operations, categories and objects respectively.

Major Policy

R.

Op. Cat.

Perm.

Minor Policy 1

R. S.

Minor Policy 2

Cat.Ob.

100 M. Jafari and M. Fathian

PRMS = (OPS×CATS) which denotes the set of all permissions. It is noteworthy
that not all pairs in this set are semantically meaningful because not every operation is
valid for all categories. Some operations might be meaningful only for some
particular categories of objects. For example, in a file system, "read" and "write"
operations are applicable to all kinds of files while the "execute" operation is
applicable only to a specific file category, called executables. This observation opens
the way to defining integrity constraints on the set of permissions.

SRA ⊆ SUBS × ROLES, a many-to-many mapping between subjects and roles
which denotes the assigned roles of each subject.

OCA ⊆ OBS × CATS, a many-to-many mapping between objects and categories
which denotes the assigned categories of each object.

PRA ⊆ PRMS × ROLES, a many-to-many mapping between permissions and roles
which denotes the assigned permissions of each role.

asnd_roles: (s:SUBS)→ ROLES the mapping of subject s onto a set of roles which
denotes assigned roles of a subject. Formally:

asnd_roles (s) = {r∈ROLES|(s,r) ∈SRA}
asnd_cats: (o:OBS)→ CATS the mapping of object o onto a set of categories

which denotes assigned categories of an object. Formally:
asnd_cats (o) = {c∈CATS|(o,c) ∈OCA}
asnd_prms: (r:ROLES)→ PRMS the mapping of role r onto a set of permissions

which denotes the permissions of a role. Formally:
asnd_prms (r) = {p∈PRMS|(p,r) ∈PRA}
acc: SUBS×OPS×OBS→Boolean, which denotes whether a subject is authorized

to perform an operation on an object. acc(s,op,o)=TRUE if the subject s is allowed to
perform operation op on object o and FALSE otherwise.

Modified object access authorization property: A subject s can perform an operation
op on object o only if there exists a role r that is included in the subject's roles set and
there exists a permission in r's assigned permissions set that authorizes performing
operation op on one of the categories containing object o. Namely:

access (s,op,o) ⇒
∃r∈ROLES, ∃c∈CATS, ∃p∈PRMS

r ∈ asnd_roles (s) ∧ p ∈ asnd_perms (r) ∧ (op,c)∈ p ∧ c∈ asnd_cats (o)

3 Discussion

Object classification is very similar to roles-subjects assignment and hence its
advantages can be intuitively sensed through comparison. The concept of category
improves the state of dependencies in the P-RBAC model, the same way the concept
of role did to TPA model. This section will enumerate the advantages of OC-RBAC
over the P-RBAC and TPA. Seven criteria are considered for the comparison of
models and the results are summarized in Table 1. The criteria are: number and
complexity of decisions, change management costs, policy portability and reuse, risk
of errors, ease of enforcement and compliance, ease of applying information
classification policies, and support from model for object grouping and management.

 Management Advantages of Object Classification in Role-Based Access Control 101

Table 1. Comparing management features of the three models for access control. M/m: manager-
level/operator-level complexity; I/i: high/low impact (manager/operator); P/p: higher/lower
probability.

 TPA P-RBAC OC-RBAC
Number and
Complexity of
Decisions

M.O(n2) M.O(n) + m.O(n) M.O(1) +
m.O(n)

Change Management
Cost
(Detailed in table 2)

very poor good better

Risk of Errors
(Error Likelihood ×
Impact)

I.p.O(n2) I.p.O(n) +
i.P.O(n)

i.P.O(n) +
I.p.O(1)

Policy Portability and
Reuse

None M.O(n) + m.O(n) m.O(n)

Enforcement and
Compliance

None Manual Automated

Support for
Traditional
Information
Classification Policies

None Complex Trivial

Object Grouping and
Management Support

Implementation-
level

Implementation-
level

Direct Support
from Model

3.1 Number and Complexity of Decisions

Management complexity is an important criterion for evaluating the models in question.
More complex models need more management resources and therefore lead to more
management costs. Moreover, complexity is the root cause of many management errors
and also complicates evaluation. Thus, reducing management complexity can be
considered as an advantage. We will assume two indicators for the complexity of an
access control model: the number of decisions to be made in order to establish the
access control policy, and the complexity of each decision. The number of decisions to
be made in the process of policy establishment is a good indicator of the management
complexity of an access control system because larger number of decisions means
utilizing more management resources and higher probability of unintentional mistakes
[8]. But counting the number of decisions is not sufficient as different decisions involve
different costs. Decisions may be so simple that can be made by an operator or so
complicated that require involvement of the board of directors. Noticing the difference
between major and minor components of the access control policy, it can be observed
that different costs are burdened for decisions in each of the two components. The major
access control policy wich involves role-permission decisions needs far more
elaboration than the subject-role decisions of minor access control policy. Since roles
are often correspond to organizational positions, deciding the role of a subject is a daily
task that can be done by an ordinary operator. Even, there have been some efforts to
automate such task by using rule-based mechanisms [23]. For instance, it is trivial to
realize who the secretary or server administrator is, and therefore, assigning these roles
to the corresponding subjects is straightforward. On the contrary, deciding about the

102 M. Jafari and M. Fathian

access rights of a role in an organization is a complex job usually done by managers and
security engineers, and may also need to be examined against higher-level security
policies of a system. For instance, when a new employee enters in a company, say in
clerk in a bank office, his/her organizational position is usually straightforward and an
ordinary operator can enter this information in the system. But when a new position
appears in the organization, such as a new "IT manager" position in a bank office,
careful study should be undertaken to detail the permissions of this new role. Besides,
new positions usually appear as a consequence of some organizational change which is
supposed to happen very rarely; while leaving or joining an organization, or changes in
organizational positions are regular events which may occur even daily in large systems.
This distinction will play a major role in estimating management cost of the decisions in
each of these two types of policies. Thus, different costs must be assumed for the sorts
of decisions in the two components of the access control policy. We will use m for the
cost of a minor policy decisions and M for a decision in major access control policy.

Multiplying total number of decisions of each type by their cost, the total cost
imposed by each model can be calculated as an indicator of its complexity. The sets S,
Op, O, R and C which are the set of all subjects, operations, objects, roles and
categories respectively are important parameters in this calculation. Ti and di are the
total cost and the total number of decisions of the each model respectively.

In the TPA model depicted in figure 1, the policy is determined by deciding
whether to permit each of the triplets of the form (s, op, o) in which s∈S, op∈Op and
o∈O. So, the total number of decisions can be calculated as d1=|S|.|Op|.|O| in which
|S|, |Op| and |O| are the number of elements in the corresponding sets. As discussed
in section 1.1, normally there are constant number of operations in a system. This
claim is trivial and also confirmed by practical case studies [22]. So, d1=|S|.|O|.const.
If n is assumed to be the maximum of |S| and |O|, the total number of decisions in the
TPA model follows:

d1= O(n).O(n).O(1) = O(n2).
All of the decisions in TPA are major because they involve deciding the access

rights of a subject. Therefore the total cost for the TPA is figured out as:

T1 = M.O(n2). (1)

In the P-RBAC model there are two policy components. The minor policy is
determined by deciding the roles of each subject. There are |R| roles in the system and
|S| subjects, and it should be determined whether each subject is the member of each
role. Therefore, for each pair (s,r) in which s∈S and r∈R, there is a binary decision to
determine whether the subject s is a member of role r. Thus, d2 (Minor)=|S|.|R|.

The major policy is determined by deciding whether to permit each of the triplets
(r, op, o) in which r∈R, op∈Op and o∈O. Consequently, d2 (Major) = |R|.|Op|.|O| and the
total number of decisions can be summed up as follows:

d2 = d2 (Major)+ d2 (Minor) = |S|.|R| + |R|.|Op|.|O|.
The number of operations is constant as discussed before. The number of roles in

the system can also be assumed as constant because it is insignificant compared to the
number of subjects and objects and it does not grow significantly as the system gets
larger. This was discussed in section 1.1 and is also shown to be true in practical case
studies as in [22] and [6]. Thus, d2 =|S|.const + |O|.const. Multiplying each term by

 Management Advantages of Object Classification in Role-Based Access Control 103

its cost, the total management cost of the P-RBAC model can be figured out as
follows. Again n is assumed to be the maximum of |S| and |O|:

T2 = M.O(n) + m.O(n). (2)

The access control policy in OC-RBAC model is composed of one major and two
minor components. The first minor component of the policy pertains to determining
each subject's roles and is similar to the one in the P-RBAC model; therefore d3 (Minor 1)

=|S|.|R|. Likewise, the other minor component of the policy involves assigning
appropriate categories to each object; thus d3 (Minor 2) =|O|.|C|.

The major policy is similar to that of P-RBAC with the set of objects replaced by
the set of categories; therefore d3 (Major) =|R|.|Op|.|C|. As argued before, the number of
operations in a system is constant. The number of categories is also constant with
similar reasons as given for roles. Accordingly, the total number of decisions is
summed up as follows:

d3 = d3 (Major) + d3 (Minor 1) + d3 (Minor 2) =|S|.|R| + |O|.|C| + |R|.|Op|.|C|
=|S|.const + |O|.const + const.
By assuming n=max (|S|,|O|), and multiplying costs total cost of OC-RBAC is:

T3 = m.O(n) + m.O(n) + M .const =m.O(n) + M.O(1) (3)

Considering equations 1 through 3, one can vividly observe an improvement in the
complexity of models. As the system grows, more objects and subjects enter the
system and the value of n increases. The growth of complexity in the TPA model is of
quadratic order while the complexity of P-RBAC grows linearly. In P-RBAC models,
the growth function is composed of a term with the factor of M (administrative cost)
as well as a term with factor of m (operator cost). This implies that the growth of
complexity is endured by both managers and operators. However, when object
classification is involved, the growth function has only a term with the factor of m
(operator costs) and the complexity is shouldered only by operators. Accordingly,
object classification can lead to significant reduction in the management complexity
of the access control system.

3.2 Change Management Cost

Change can occur in many forms to an access control policy and ease of managing
change is a major criterion for evaluating access control models. Here, some typical
forms of change are discussed and the capabilities of each model in managing them
are compared. A summary of this comparison is depicted in Table 2.

Table 2. Cost of managing five typical sorts of change in the models under discussion. (M:
manager-level complexity; m: operator-level complexity).

Change Type TPA P-RBAC OC-RBAC
subject access rights M.O(n) m.O(1) m.O(1)
role access rights M.O(n2) M.O(n) M.O(1)
object access
permissions

M.O(n) M.O(1) m.O(1)

category
permissions

M.O(n2) M.O(n) M.O(1)

total change M.O(n2) m.O(n)+ M.O(n) m.O(n) + M.O(1)

104 M. Jafari and M. Fathian

Subject Access Rights: In the TPA model, changing the access rights of a subject
usually involves reviewing all of its rights to access every single object in the system.
Given that the number of objects is n, this involves O(n) operations. All of these
operations are administrative since they involve a decision in major access control
policy; thus they are weighted with M and the total cost is M.O(n).

In both plain and OC-RBAC, normal changes in a subject's access right mean a
change in that subject's role and random changes in subjects' rights are not supposed
to happen on a regular basis. Actually, if changes to subject's rights cannot be
interpreted into changes in its role, then the role engineering in the system is flawed
and "new" or "modified" roles need to be introduced. Consequently, we can safely
presume that any changes to subject's access rights is in form of changes in its role
which involve only O(1) operation. These operations are related to the minor access
control policy and cost m, thereby leading to the total cost of m.O(1).

Role Access Rights: A major change in the access rights of a group of subjects may
imply a change in the access rights of a role. In the TPA model, there is no support for
roles; consequently this kind of change will lead to reviewing access rights of a
number of subjects. As explained before, the cost of changing the access rights of a
single subject is M.O(n). Accordingly, changing the access rights of a group of
subjects is M.O(n2), because this groups may contain as many as O(n) subjects.

In P-RBAC, this kind of change can be handled by reviewing a role's rights to
access each object in the system which takes O(n) operations, since the number of
objects is O(n). Since these operations belong to major access control policy, they
cost M and thus, the total cost is M.O(n).

 In the OC-RBAC model such changes can be handled by reviewing the particular
role's rights to access each category of objects. As the number of categories is
constant, this involves only O(1) major operations which leads to a cost of M.O(1) in
total.

Object Access Permissions: This occurs when an object is at the focus of the change.
For example, when the security label of a document is changed from "top secret" to
"secret", an object-centric change takes place. In TPA model, handling such a change
involves reviewing every subject's rights to access the object in question. This takes
O(n) operations as total number of subjects is O(n). All of these operations are
administrative the cost of which is M, thereby leading to total cost of M.O(n).

In P-RBAC, there is no need to examine the access rights of every single subject
since roles can be examined instead. Hence, this kind of change takes only O(1)
operations as the number of roles in the system is limited. However, these operations
are all administrative and cost M because they involve a decision about the access
rights of roles and belong to the major access control policy. This leads to total cost of
M.O(1).

If object classification is available, there are well-engineered categories that group
objects together in a logical manner. For this reason, it can be assumed that
permissions relating to an object do not change arbitrarily, but rather in form of a
change in its set of assigned categories. Changing the categories of an object involves
a single decision in the minor component of the access control policy, and hence costs
m, which leads to total cost of m.O(1).

 Management Advantages of Object Classification in Role-Based Access Control 105

Category Access Permission: Although rarely, there are times when altering access
rights of a whole category of objects is necessary. An example of such change is
when the roles that can access a confidential document need to be changed. In TPA
model, this case resembles the case of changing a subject's access rights, which
involves examining all subjects' rights to access each object in the system, leading to a
cost of M.O(n2).

In P-RBAC model there is no support for categories; therefore in such a case, each
role's rights to access corresponding objects must be reexamined. This involves O(n)
decisions for each of the roles in the system which leads to a total of O(n).O(1)
operations. Since these operations are administrative and cost M, the total cost of this
kind of change for this model is M.O(n).

If object classification is enabled, changing the permissions of a category involves
reinspection of the each role's rights to access that particular category. This takes only
O(1) administrative operations leading to M.O(1) total cost.

Total Change in Some Area: There may be times when a major revision of the access
control policy is required which involves a number of object and subjects from
different roles and categories. This kind of change is so severe that no role or
categories can be preserved and a complete reengineering in needed in that area of the
system. In such cases, that particular subset of the system can be assumed as a single
system which needs policy establishment from scratch. The cost of this total
reengineering is similar to the cost of complete policy establishment process that was
calculated in section 3.1.

3.3 Risk of Errors

The total risk of errors involved in the management process is another criterion for
comparing the three models under discussion. The risk of error is the product of error
probability and error impact. Since major management decisions are made through
more elaboration and by allocating more resources (such as committees, double
checking, formal acceptance, etc.) the probability of making an error can be assumed
to be lower than operator decisions; therefore different probabilities are assumed for
administrative and operator errors which are denoted by p and P respectively. On the
other hand, error in a management decision has a more profound impact than an error
made by an operator; thus, different impact factors are assumed for these two kinds of
decisions which are denoted by I and i respectively. Accordingly, each management
decision involves a risk of I.p (low-probability, but high-impact) while operator
decisions have a risk of i.P (low-impact, but high probability).

In the TPA model, there are O(n2) management decisions each of which incurs a
risk of I.p, therefore the total risk of errors in this model is I.p.O(n2). In P-RBAC
however, there are O(n) management decisions as well as O(n) operator decisions,
leading to a total risk of I.p.O(n) + i.P.O(n). In the OC-RBAC model, there are O(n)
operator decisions and O(1) management decisions; therefore the total risk is i.P.O(n)
+ I.p.O(1). Comparing the three figures, the advantage of P-RBAC over TPA, and
similarly, the advantage of OC-RBAC over P-RBAC is obvious.

106 M. Jafari and M. Fathian

3.4 Policy Portability

Policy portability can be of value to many organizations. Porting the access control
policy to branch offices and subsidiaries brings about management and financial
advantages as well as policy consistency. Moreover, similar organizations that share
same sets of roles, categories and operations can benefit from this capability by
collaborating to develop a shared access control policy and thus economize in security
costs.

The TPA model has no provisions for such a notion as the access control policy is
tightly system-dependent. P-RBAC however, has facilitated policy portability to some
extent by abstracting subjects in form of more general entities namely roles. Similar
organization sharing a same set of roles can use the same major access control policy
if they modify the permissions to include their own objects. Therefore policy
portability is possible provided that some manual modifications are applied. These
modifications comprise revising the major access control policy to take objects of the
new system into account. There are O(1) roles and O(n) objects in the new system,
and revising the major access control policy requires deciding the rights of each of the
roles to access each object, which needs a sum of O(n) management decisions costing
M. In order to have a complete access control policy, the minor component must also
be established. This requires O(n) operator decisions for determining the members of
each role. The total cost of porting a P-RBAC policy to a new system is thereby
M.O(n) + m.O(n).

When object classification is available, since the major access control policy does
not rely on any system-specific entities (objects or subjects), it is general enough to be
ported to similar systems automatically and without manual modifications. Roles,
operations and categories stay nearly the same across all organizations of the same
type because they are related to the essence of a system rather than a particular
instance. Results from case studies do not oppose this presumption [21, 6].
Accordingly, since the major policy needs no change, it can be ported without
modification and the adopting system only needs to develop its own minor access
control policies in order to assign local subject and objects to existing roles and
categories respectively. As discussed before, this incurs O(n) decision of operator
cost, leading to the total cost of m.O(n).

As a very simplified example, a software development environment can be
assumed in which there are some software managers (SM), a number of developers
(D) and several quality managers (QM). Objects in this environment can be grouped
into source code (SC), test case (TC), management document (MD), and developer
documents (DD). Typical operations can be recounted as create, read, modify, and
execute the latter of which is only applicable to "source code" and "test case". Setting
all forms of inheritance aside, a very simple major access control policy can look like
as shown in table 3.

The access control policy depicted in the foregoing example is general enough to
be adopted by several software projects and can serve as a standard policy of a
company. Each project only needs to specify the members of roles and categories
(minor components of the policy) trivially in order to have a complete access control
policy. In this manner, the major access control policy can be ported and reused many
times across similar systems.

 Management Advantages of Object Classification in Role-Based Access Control 107

Table 3. A simplified instance of major access control policy for a software project; the policy
is general enough to be adopted by several projects. (R:read; M:modify; C:create; E:execute).

 Source
Code

Test
Case

Management
Documents

Developers
Document

Project Manager R E C/R/M R
Quality Manager R C/E R/M R/M
Developer C/R/M/E E - C/R/M

3.5 Enforcement and Compliance

System-independence has a very significant advantage for policy establishment
authorities like government agencies and national or international standard bodies. In
the medical arena as an example, there can be a unified set of roles, operations and
categories that holds for any health care organization. Therefore a regulatory body can
establish a general policy for all of the similar organizations in one field and enforce
it. Consequently, national or international access control policies serving as unifying
standards are possible. Enforcement of such policies can be easily automated by
requiring use of a particular major access control policy. The subordinate systems
would be required to use a standard major access control policy and hence, make sure
they comply with the standard. Automated policy enforcement and compliance
checking result from the abstract nature of the major access control policy which is
the direct outcome of using object classification. Such facility is neither present in the
TPA model nor in P-RBAC. However, as P-RBAC policies contain some level of
abstraction, enforcing an RBAC policy is possible in a manual manner and by human
intervention. The policy portability and the ability to express global policies can be
considered as being among the most important advantages of equipping RBAC with
object classification. These features can be seen as a further realization of the original
goals of RBAC for elevating the access control policy from a matter of
implementation to a high-level organizational and even inter-organizational issue as
noted in [19].

3.6 Support for Traditional Information Classification Policies

Information classification is one of the traditional origins of access control and is still
needed by current security applications. This can be in form of vertical information

Table 4. Expressing Bell-LaPadula security policy by using object classification

Category

Role

Top-Secret Secret Confidential Unclassified …

Top-Secret read/write read read read
Secret write read/write read read
Confidential write write read/write read
Unclassified write write write read/write
…

108 M. Jafari and M. Fathian

classification of military systems or horizontal classification which is more commonly
used by civilian organizations. These kinds of policies cannot be expressed in TPA
model in a systematic manner due to lack of abstraction. In P-RBAC, expressing such
policies is a complex job which involves complicated schemes [17]. However, using
object classification, expressing such policies is straightforward. Table 4 depicts a
simple major policy similar to the well-known Bell-LaPadula [2] policy.

3.7 Object Management and Grouping Support

One of the obvious advantages of categorizing objects is the ability to manage them
more systematically through grouping. Beyond trivial management advantages that
result from hierarchical grouping of objects, this can prevent inconsistency in access
control policies caused by unintentional mistakes. Furthermore, it can be helpful in
eliminating redundancy at the implementation level. These benefits have encouraged
RBAC implementers to include some form of object classification in their product,
although there is no direct support for such concepts in the model. Enabling object
classification in the model-level acts as a unifying mechanism for all object
classification implementations.

4 Conclusion

This paper showed how the merits of role-based access control model can be traced
back to its state of dependencies and abstractions and by following this interpretation
it formalized the benefits of object classification from a management point of view.
The preliminary topics for future works will be straightforward if attention paid to the
duality of role and category abstractions. Following this duality, the model can be
further extended to include concepts such as "category hierarchies" (as in [24]) and
"separation of categories" as emulations of "role hierarchies" and "separation of
duties". Automated enforcement of major access control policies is another area
which is worth further studies. Especially, methods for combining different policies in
systems adopting more than one major access control policy, such as a military
hospital that must comply with both health-care and military standards. This can be a
ground for combining policies designed from different points of view which is
believed to be one of the limitations of current RBAC [13] and can open the way for a
divide-and-conquer approach in policy design.

References

1. American National Standards Institute: American National Standard for Information
Technology, Role Based Access Control, ANSI/INCITS 359 (2004)

2. Bell, D.E., Lapadula, L.J.: Secure Computer Systems: Mathematical Foundations, Mitre
Corp., Bedford, MA, Technical Report ESD-TR-73-278 (1973)

3. Covington, M.J., Moyer, M.J., Ahamad, M.: Generalized Role-Based Access Control for
Securing Future Applications. In: Proceedings of 23rd National Information Systems
Security Conference, Baltimore, MD, October 2000 (2000)

 Management Advantages of Object Classification in Role-Based Access Control 109

4. Damiani, Ernesto, Vimercati, De Capitani Di, S., Paraboschi, Stefano, Samarati,
Pierangela.: Design and Implementation of an Access Control Processor for XML
Documents. In: Proceedings of the 9th International World Wide Web Conference on
Computer Networks: the International Journal of Computer and Telecommunications
Networking, pp. 59–75 (2000)

5. Damiani, Ernesto, Vimercati, De Capitani Di, S., Paraboschi, Stefano, Samarati,
Pierangela.: A Fine-Grained Access Control System For XML Documents. ACM
Transactions on Information and System Security 5(2), 169–202 (2002)

6. Ferraiolo, D.F., Kuhn, R.: Role-Based Access Control. In: Proceedings of the 15th NIST-
NSA National Computer Security Conference, Baltimore, Maryland, October 1992, pp.
554–563 (1992)

7. Ferraiolo, D.F., Cugini, J.A., Kuhn, D.R.: Role-Based Access Control: Features and
Motivations. In: Proceedings of the 11th Annual Computer Security Applications, New
Orleans, LA, December 1995, pp. 241–248 (1995)

8. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A Role-Based Access Control Model and
Reference Implementation within a Corporate Intranet. ACM Transactions on Information
and System Security 2(1), 34–64 (1999)

9. Ferraiolo, D.F., Sandhu, Ravi, Gavrila, Serban, Kuhn, D.R., Chandrmouli, Ramaswamy.:
Proposed NIST Standard for Role-Based Access Control. ACM Transactions on
Information and System Security 4(3), 224–274 (2001)

10. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, Ramaswamy.: Role-Based Access Control,
Artech House London (2003)

11. Giuri, Luigi, Iglio, Pietro.: Role Templates For Content-Based Access Control. In:
Proceedings of the Second ACM Workshop on Role-Based Access Control, pp. 153–159
(1997)

12. Goh, Cheh, Baldwin, Adrian.: Towards a More Complete Model of Role. In: Proceedings
of the Third ACM Workshop on Role-Based Access Control, pp. 55–62 (1998)

13. Hu, Ferraiolo, V.C., Kuhn, D.F., Rick, D.: Assessment of Access Control Systems,
National Institute of Standard Technology, Interagency Report 7316 (2006)

14. International Standard Organization: Information Technology-Security Techniques-Code
of Practice for Information Security Management, ISO/IEC 17799:2005 (2005)

15. International Standard Organization: Information Technology-Security Techniques-
Information Security Management Systems Requirements, ISO/IEC 27001:2005 (2005)

16. Kumar, Arun, Karnik, Neeran, Chafle, Girish.: Context Sensitivity in Role-Based Access
Control. ACM SIGOPS Operating Systems Review 36(3), 53–66 (2002)

17. Osborn, Sylvia, Sandhu, Ravi, Munawer, Qamar.: Configuring Role-Based Access Control
to Enforce Mandatory and Discretionary Access Control Policies. ACM Transactions on
Information and System Security 3(2), 85–106 (2000)

18. Roeckle, Haio, Schimpf, Gerhard, Weidinger, Rupert.: Process-Oriented Approach for
Role-Finding to Implement Role-Based Security Administration in a Large Industrial
Organization. In: Proceedings of the Fifth ACM Workshop on Role-based Access Control,
pp. 103-110 (2000)

19. Sandhu, Ravi, Coyne, Edward. J., Feinstein, Hal, L., Youman, Charles, E.: Role-Based
Access Control: A Multi-Dimensional View. In: Proceedings of 10th Annual Computer
Security Applications Conference, December 1994, Orlando, Florida, pp. 54–62 (1994)

20. Sandhu, Ravi, Coynek, Edward, J., Feinsteink, Hal, L., Youmank, C.E.: Role-Based
Access Control Models. IEEE Computer 29(2), 38–47 (1996)

110 M. Jafari and M. Fathian

21. Schaad, Andreas, Moffett, Jonathan, Jacob, Jeremy.: The Role-Based Access Control
System of a European Bank: a Case Study and Discussion. In: Proceedings of the Sixth
ACM Symposium on Access Control Models and Technologies, pp. 3–9 (2001)

22. Thomas, R.K.: Team-Based Access Control (TMAC): A Primitive for Applying Role-
Based Access Controls in Collaborative Environments. In: Proceedings of the Second
ACM Workshop on Role-Based Access Control, pp. 13–19 (1997)

23. Al-Kahtani, M.A., Sandhu, R.: Induced Role Hierarchies with Attribute-Based RBAC. In:
Proceedings of the Eighth ACM Symposium on Access Control Models and Technologies,
pp. 142–148 (2003)

24. Chae, J.: Towards Modal Logic Formalization of the Role-based Access Control with
Object Classes. In: FORTE 2007. LNCS, vol. 4574, pp. 97–111. Springer, Heidelberg
(2007)

An Integrated Model for Access Control and

Information Flow Requirements

Samiha Ayed, Nora Cuppens-Boulahia, and Frédéric Cuppens

ENST-Bretagne, Cesson Sevigne 35576, France

Abstract. Current information systems are more and more complex.
They require more interactions between different components and users.
So, ensuring system security must not be limited to using an access con-
trol model but also, it is primordial to deal with information flows in
a system. Thus, an important function of a security policy is to enforce
access to different system elements and supervise information flows simul-
taneously. Several works have been undertaken to join together models of
access control and information flow. Unfortunately, beyond the fact that
the reference model they use is BLP which is quite rigid, these research
works suggest a non integrated models which do nothing but juxtapose
access control and information flow controls or are based on a misuse of
a mapping between MLS and RBAC models. In this paper, we suggest
to formalize DTE model in order to use it as a solution for a flexible
information flow control. Then, we integrate it into an unique access
control model expressive enough to handle access and flow control secu-
rity rules. The expressivity of the OrBAC model makes this integration
possible and quite natural.

Keywords: DTE, OrBAC, MLS, RBAC, Security Policy.

1 Introduction

With diversity of possible attacks on an information system and with the dif-
ferent security properties that we try to ensure, maintaining and guaranteing
system security is being more and more complex task. On the one hand, to pro-
tect a system, we must control all actions done from the beginning until the
end of a user’s sessions. So, a user must be authenticated and must be controlled
when accessing objects. All actions that this user performs in the system have to
be authorized. On the other hand, information systems present multiuser aspects
and they manage interactions between different system parts. These interactions
must be also supervised since they can lead to a misuse of system’s objects or to
a compromising of the system’s integrity. To address these different issues, many
models were proposed to satisfy different security requirements of a system [1].
Thus, there are models which are interested in integrity and confidentiality prop-
erties. Other models are interested in usage control and others in flow control. To
secure a system, more than one model must be used since security requirements
are as various as the diversity of these models. But there is no model that gath-
ers these different security concerns. Workflow Management Systems are a very

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 111–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

eloquent example of systems which need more than one security control model.
Indeed, they not only present a diversity of objects and users but also various
dependencies between different tasks and so between users. Access to the same
object can be needed simultaneously, also writing on documents and modifying
them must conform to the execution order. Moreover, the information flow has
to be checked. All these system constraints have to be managed with a global
security policy. This policy must deal with access and flow control requirements.
Many works were done in order to converge access and information flow control.
Several authors have discussed the relationship between RBAC and MLS lattice
based systems [2–8, 10–12]. All these works are treated in details later. The basic
idea that we retain is that the majority of them are founded on a mapping of
RBAC notions and MLS notions. In these models, subject clearances are used
as security levels to be assigned to roles in a role-based system. Beyond the
limitations of MLS models, we consider that a such correspondence is a misun-
derstanding of MLS notions. We go in further details in the following section.
Thus, the contribution of this paper is twofold. First, we go beyond MLS models
as an example of flow control models. For this purpose, we base our study of
flow control on a more flexible model which is able to permit us defining a flow
control policy far from MLS constraints, say DTE (Domain Type Enforcement)
model [15–17], we take close interest in this model, we explain our proper vision
of it and finally we formalize it in order to use the formalism in defining our
integrated model. Second, using DTE, we are leaded to the obligation of using
contextual rules to express a security policy which manages information flows
and object accesses. So, we propose to base our model on OrBAC model [18, 19]
In OrBAC model, security rules are contextual. This characteristic of OrBAC
security rules is necessary and sufficient to take into account information flows
control. Moreover, OrBAC is able to express confinement aspect, a key concept
in security management of complex systems. The entity organization defined in
OrBAC model allows us to handle this aspect. Combining OrBAC access rules
and a formally stated DTE, we present a different model to integrate access
control and information flow requirements.

The remainder of this paper is organized as follows. Section 2 details related
works. Section 3 provides different motivations of this work. Section 4 clarifies
DTE model and defines our formalism. Section 5 introduces an overview of
the OrBAC model and its components. Our integrated model for access and
information flow control is presented in section 6. Finally, section 7 concludes
the paper and outlines future work.

2 Related Works

Many works have addressed the issue of converging access control and informa-
tion flow requirements. Nyanchama and Osborn have initially addressed the issue
of combining RBAC and Bell-Lapadula (BLP) models in [2]. They examined the
application of information flow analysis to role-based systems. Thus, [2] defines
a flow policy which describes the authorized flows in the system. It classifies

An Integrated Model for Access Control and Information Flow Requirements 113

flows in different categories. Then, during process execution we must derive the
set of flows generated. The two sets are compared to deduce and ensure that a
given role-based scheme is consistent with the specified policy defined with basic
flow axioms. Also, to determine this consistency, [2] uses graph theory to deal
with the issue. It considers the set of roles and the role-based protection scheme
and it draws a graph G1 to represent actual potential flows. A second graph
G2 represents relations between flows defined in relation to the flow policy. It
defines categories as nodes and edges as permissible information flows between
categories. A role-based scheme is consistent with the system security policy if
and only if the former graph is a subgraph of the latter. After this first tentative,
Nyanchama and Osborn have tackled the issue with a different approach in [3].
In fact they introduced the notion of context. A context is viewed as the set
of information accessed via a role. Using this concept, [3] proposes a realization
of mandatory access control in role-based protection. In their formulation, role
contexts are treated as the equivalent of security levels. They consider two con-
cerns. The first is an acyclic information flow among role contexts. The second
is equivalent rules to the simple security property and *-property of traditional
multilevel security. [3] proposes a number of access constraints that would real-
ize the equivalent of BLP rules. Finally, it concludes that in MAC, information
flows must be acyclic. So the approach proposed ensures that information flows,
caused either by role execution or user-role assignment, will be acyclic. In [5]
Osborn was based on Nyanchama model described in [3]. She considers details
of a single role or node and a given edge. Then, the model determines under
what conditions such structures violate MAC constraints. [5] defines a more de-
tailed structure. The new graph contains assignable roles. So it is very restricted
compared to general role graphs. In other words, it is more interesting to analyze
every role and every edge in a general role graph to verify if roles are assignable,
and at what levels they are assignable. Sandhu was also interested in the issue
but he goes in the other direction [4]. His approach represents another vision
of simulating MAC controls in RBAC models. It is based on configuring RBAC
components. It considers similarities between MLS security levels and RBAC
roles. So a role is identified to a level of a login session. Its basic idea is to sup-
pose two hierarchies in RBAC model, one for read and another for write. Thus,
to each user we associate two roles, one for read (RR) and one for write (RW).
Consequently, permissions are divided into groups of read and write privileges
and so they must be assigned separately to RR and RW. [4] examines different
variations of lattice based access controls (LBAC) and translates each of them
into a role hierarchy. It defines a construction using a single pair of roles to ac-
commodate lattices with different variations of the *-property. An extension of
this work is presented in [7] and [10] considering different DAC variations. [7] fo-
cus on the importance of the administrative aspect. An implementation of these
ideas can be found in [8]. In [6], Kuhn uses a construction of a role hierarchy. He
defines an assignment of object categories to privilege sets and an assignment
of categories to roles. So, to each role it assigns the categories associated with
its privilege set and categories associated with privilege sets of its ancestors.

114 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

The first limitation of this work is related to category mapping which must be
regenerated if changes are made in the role structure. The second is that the hi-
erarchy created by the algorithm must be a tree, rather than a lattice hierarchy.
Atluri, huang and bertino have used a convergence between RBAC and MLS to
apply it to WorkFlow Management Systems. They define in [11] and [12] models
of WFMS based in petri nets and they define an RBAC security policy. They
associate levels to different objects used in the system and so to tasks using these
objects. Then, they apply the MLS approach to their model taking into account
different task dependencies. But their approach is localized into a workflow exe-
cution fully secure and partially correct. In other words, the approach does not
enforce all task dependencies. So it can affect functional workflow execution.

Most approaches aiming at integrating access control and information flow
requirements actually combines the RBAC and BLP models. The RBAC model
is used to specify access control requirements by assigning users to roles and
permissions to roles. A user is permitted to perform an access if he has activated
one role this user is assigned to and if this access is permitted by the role.
BLP is the first and mostly used information flow control model. It is based on
the Multilevel security (MLS) policy and is used to prevent a high malicious
subject from creating information flow to lower security levels. For this purpose,
BLP defines two requirements: the simple security property (a subject is only
permitted to read lower classified objects) and the *-property (a subject is only
permitted to modify higher classified objects).

3 Motivation

Various previous works are essentially based on the same idea. They defined
similarities between RBAC and MLS systems. The choice of RBAC is done to
handle access control. Then, an application of MLS levels is done on system roles.
They investigate clearance notion present in MLS systems and they apply it to
roles. Thus, using a mapping between RBAC roles and MLS clearances they as-
sociate a clearance to each role. There is actually nothing wrong with identifying
a role with a clearance level and assigning users to these roles. What is wrong in
these approaches is to apply the BLP principles to the role behavior, especially
the *-property. To illustrate our claim, let us consider an MLS application that
manages classified objects and provides means to declassify or encrypt these
objects. In the RBAC policy, one may consider that users assigned to the role
R secret (corresponding to the secret security level) are permitted to declassify
and encrypt secret objects. Now, let us consider three different scenarios:

1. A user logs in the application at the secret level and attempts to declassify
a secret object.

2. A user logs in the application at the secret level, creates a digest of a secret
object and attempts to declassify this digest.

3. A user logs in the application at the secret level, has an access to a secret
object using a browser and attemps to declassify this object through this
browser.

An Integrated Model for Access Control and Information Flow Requirements 115

We can consider that the first scenario is secure if both the login and declas-
sification functions are trusted (i.e. they do not contain a Trojan Horse) and
the secret object to be declassified has high integrity (i.e. this object has not
been previously manipulated by a malicious application which hid some secret
data the user did not want to declassify). This scenario actually corresponds to a
robust declassification as defined in [9]. Regarding the second scenario, it is also
secure if the application used to create the digest is a trusted function. Finally,
regarding the third scenario, it is not secure if we consider that a browser is
not a trusted application since this browser may call the declassification func-
tion to illegally declassify other objects. Notice that the conclusion would be the
same if we replace declassification by encryption in the third scenario because
a malicious browser could use the fact that an object is encrypted to create an
illegal covert channel. Now if we apply the BLP principles to the role R secret,
then these three scenarios will be considered insecure since they all violate the
*-property principle. This is clearly unsatisfactory. This is why we claim that it
is incorrect to identify roles with clearance levels and then apply the BLP prin-
ciples to these roles. Actually, the BLP principles apply to processes acting on
behalf of users to prevent these processes from creating illegal information flow
when they contain a Trojan Horse. By contrast, roles should define permissions
of user, not of processes. Therefore, all previous works are based on BLP model
to ensure flow control. This model present some weaknesses. Although it is able
to protect a system from trojan horse used to access a document, BLP is unable
to prevent a Trojan horse from altering or destroying data as it permits processes
to write into files they can not read. BLP can not detect covert channels and
remove them. As an MLS model, it is unable to be used to define policies outside
multilevel security, which is not very used in practise because of it restrictions.
To go away from these different constraints and drawbacks, we propose in this
paper to use another model more flexible to control information flows, say DTE.
DTE is presented in the following section. On another side, information flow
are generally conditioned by program executions or generated after a process
execution. For this reason, flow control must be contextual and not exclusively
role dependent. Thus, to specify our integrated model, we choose using OrBAC
model instead of RBAC model since it permits us defining contextual and dy-
namic rules. All the same, OrBAC allows us to express the confinement aspect
as it defines explicitly the authority (organization) who defines and manages
the security policy. So, our security policy is expressed using OrBAC contextual
security rules and integrated DTE concepts. In this way, with the integrated
model we propose, we ensure a fine grained access control and manage a more
flexible information flow which is constrained by strictness of security levels.

4 DTE: Domain Type Enforcement

4.1 DTE Principles

In a system execution, processes dependencies and users interactions include data
exchange. Information flows can be either explicit (as in assignment statements)

116 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

or implicit (as in conditional statements) [13]. It can be due to functional depen-
dency (e.g. x depends on y, hence there is a flow from y to x), or deductive (if
knowing the value of x implies knowing the value of y, hence there is a flow from
y to x) [14]. These data may have different sensitivity levels. So, if no security
mechanism is applied on such exchange, the data transfer between processes may
lead to a leak of confidential information and to a misuse of some documents
or information. To limit the damage that it can be caused, confinement mecha-
nisms have been developed [22, 23]. They are based on the idea of restraining the
privilege access of subjects on objects. So, confinement is to restrict actions of
programs in execution. BLP was the first model which was developed to address
this issue and to deal with flow control. But it has some weaknesses we had
already explained. Away from multilevel security domain, DTE model has been
developed to satisfy security requirements of a system. Since there is no works
which detail all DTE functionalities as they were specified, we propose in this
section to clarify this technique and give our proper vision concerning its con-
cepts. Domain and Type Enforcement (DTE) [15–17] is a technique originally
proposed to protect the integrity of military computer systems and was intended
to be used in conjunction with other access control techniques. As with many
access control schemes, DTE views a system as a collection of active entities
(subjects) and a collection of passive entities (objects) and groups them into
domains and types. This classification not only reduces the size of the access
control matrix but also simplifies the management. DTE defines two tables to
base its access control definition. The first table is a global table called Domain
Definition Table (DDT). It governs the access of domains to types (domain-type
controls). Each row of the DDT represents a domain and each column represents
a type. When a subject attempts to access an object, we must verify the entry
corresponding to the domain of the subject and the type of the object in the
DDT. If the access needed is defined in the matrix then the access is allowed,
if not, the access is denied. The second table is called Domain Interaction Ta-
ble (DIT). It governs the interaction between domains (Inter-domain controls).
Each row and each column of the DIT represents a domain. The intersection
cell denotes the access privilege that the domain corresponding to column pos-
sesses on the domain corresponding to row. To be stronger, DTE has defined
the manner to be used to pass from a domain to another. So, if a subject S
belongs to a domain D1 then it wants to pass to a domain D2, it must refer the
DIT. The intersection of D1 and D2 in DIT should contain an entry indicating
the activity or the program that S must perform to access to D2. This entry is
called the entry point. Thus, each domain has one or many entry points which
consist in programs or activities to invoke by a subject in order to enter this
domain. Any subject belonging to another domain must execute an entry point
of the destination domain to be able to access this domain. When passing from
a domain to another, a subject looses all its privileges of the source domain and
gets a privileges set of destination domain. This notion of entry point makes
the inter-domain communication more strict and precise. Although DTE model
seems simple and enough strong it was not very used as a flow control model.

An Integrated Model for Access Control and Information Flow Requirements 117

[16] presents a DTE integration into a μ-kernel. It suggests to centralize all ac-
cess control decisions in user mode. The μ-kernel uses just a domain abstraction.
Later, a work done in [17] extends the integration of DTE introducing both do-
mains and types into kernel. [24–26] are concerned in using DTE in Unix and
they present examples of DTE policies expressed in DTEL (DTE Language).

To more explain a DTE policy let us consider figure 1. It presents a DTE
policy defined for Unix system. In this specification, Types declares one or more
object types to be available to other parts of a DTEL specification. Domains
declares different domains. Then, a domain specification is expressed as a list of
tuples. It defines a restricted execution environment composed of four parts:

(1) ”entry point” programs, identified by pathname, that a process must ex-
ecute in order to enter the domain (e.g., (/bin/bash)), (2) access rights to types
of objects (e.g., (rwxcd → root t)), (3) access rights to subjects in other do-
mains (e.g., (exec → root d)). A DTEL domain controls a process’s access to
files, a process’s access via signals to processes running in other domains, and a
process’s ability to create processes in other domains by executing their entry
point programs. If a domain A has auto access rights to another domain B, a
subject in A automatically creates a subject in B when it executes, via exec(), an
entry point program of B, and (4) signals exchange between processes of source
and destination domains. Assign associates a type with one or more files.

Policy of figure 1 shows how to protect a system from the wu-ftpd vulnerability
to prevent an attacker from obtaining a root shell. This policy example will be
reused in section 6 to clarify our integrated model.

All Works done around DTE use DTEL to specify the security policy. No
reflection has been undertaken until now to formally define and use DTE model.
A such formalism can be powerful enough to provide expressive security policies.
In this paper, we propose to define a formalism allowing us to define merely a
security policy which takes into account the flow control between system entities.
Afterwards, this formalism must be blended with an access control model in order
to deal with flow and access control simultaneously. This twofold control could
make our security policy more useful and increases assurance that it is correctly
specified. The premise of this formalism is that access control is based on domains
and types. It provides facilities to express relationships between system entities.
Thus we do not define a new model but an integrated one.

4.2 Our DTE Formalism

DTE has not been very much used since it has just inspired the design of some OS
like SELinux. To use DTE as an approach to flow control, we propose to formalize
the model. For this purpose let us introduce the following formal definitions.
Definition 1: (domain) S is a set of all system subjects (active entities). S is
divided into equivalence classes. Each class represents a domain D including a
set of subjects having the same role in the system.
Definition 2: (type) O is a set of all system objects (passive entities). O is
divided into equivalence classes. Each class represents a type T including a set
of objects having the same integrity properties in the system.

118 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

Definition 3: (Entry Point) An entry point is a program or an activity which
must be executed to pass from a domain D1 to a domain D2, denoted EP(D1,
D2) or EP1,2. An entry point implies two rules:

– subjects passing from D1 to D2 obtain a set of privileges depending on the
entry point they execute,

– subjects passing from D1 to D2 loose all their D1 privileges.

The first rule means that the execution of an entry point defines the set of priv-
ileges that subjects will obtain when transiting from a domain D1 to a domain
D2. These privileges are included into or equal to the set of privileges that D2
subjects have. Each domain can have more than one entry point. The execution
of these different entry points implies different privilege sets. The second rule
means that if a subject leaves a domain it can not return to it only by executing
one of its entry points.

� ftpd protection policy1
types root t login t user t spool t binary t lib t passwd t shadow t dev t config t ftpd t ftpd xt w t2
domains root d login d user d ftpd d3
default d root d4
default et root t5
default ut root t6
default rt root t7
spec domain root d (/bin/bash sbin/init /bin/su) (rwxcd→root t rwxcd→spool t rwcdx→user t rwdc→ftpd t8
rxd→lib t rxd→binary t rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rwxcd→config t rwxcd→w t)
(auto→login d auto→ftpd d) (0→0)
spec domain login d (/bin/login /bin/login.dte) (rxd→root t rwxcd→spool t rxd→lib t rxd→binary t9
rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rxwd→config t rwxcd→w t) (exec→root d exec→user d)
(14→0 17→0)
spec domain user d (/bin/bash /bin/tcsh) (rwxcd→user t rwxd→root t rwxcd→spool t rxd→lib t10
rxd→binary t rwxcd→passwd t rxwcd→shadow t rwxcd→dev t rxd→config t rwxcd→w t) (exec→root d)
(14→0 17→0)
spec domain ftpd d (/usr/sbin/in.ftpd) (rwcd→ftpd t rd→user t rd→root t rxd→lib t r→passwd t11
r→shadow t rwcd→dev t rd→config t rdx→ftpd xt rwcd→w t d→sppol t) () (14→root d 17→root d)
assign -u /home user t12
assign -u /tmp spool t13
assign -u /var spool t14
assign -u /dev dev t15
assign -u /scratch user t16
assign -r /usr/src/linux user t17
assign -u /usr/sbin binary t18
assign -e /usr/sbin/in.ftpd ftpd xt19
assign -r /home/ftp/bin ftpd xt20
assign -e /var/run/ftp.pids-all ftpd t21

Fig. 1. Sample DTE policy file

If we suppose the following DDT and DIT:

T1 T2 T3

D1 true false true
D2 false false true
D3 false true false

D1 D2 D3

D1 – EP1,2 –
D2 EP2,1 – EP2,3

D3 – – –

DDT entries, true and false, indicate if the domain has an access to different
types or not. DIT entries define the entry points must be executed to transit from
a domain to another. If we consider that a subject s belonging to the domain
D1 want to accede an object o belonging to T2, it will refer to the DDT. s has
no access to T2, but consulting DDT and DIT it can find a manner to accede

An Integrated Model for Access Control and Information Flow Requirements 119

T2. In fact, D3 has access to T2 and s has an entry point allowing it to accede
D2. Also, the DIT present an entry point from D2 to D3. So, to accede o, s must
execute EP1,2 to pass to D2 then it must execute EP2,3 to pass to D3. Being in
D3, s obtain privileges allowing it acceding o since DDT contains an entry from
D3 to T2. This path that s construct to accede o is called ”confidence path”.
The following definition gives a formal definition of ”confidence path”.

Definition 4: (confidence path) is a set of entry points < EPi,k, EPk,l, . . . ,
EPm,j> which must be executed by a subject s to pass from Di to Dj in order to
obtain access to object to which it has not initially the access. Privileges granted
through this confidence path are restricted to minimum privileges required to
perform the access needed.

The DTE formalism is based on two kinds of rules expressing and substituting
DDT and DIT. These two rules are formally defined in the following.

Definition 5: (SR DDT) is a security rule substituting a DDT entry. It is
defined as a 4-uplet : SR DDT = (rule type, domain, type, privilege) where
Rule type belongs to {permission, prohibition}.
An instance of this rule can be: SR DDT = (Permission, professor, exam, change)
meaning that only professors have privileges to change exams.

So, we express a DDT as a set of rules defined according to definition 5.

Definition 6:(SR DIT) is a security rule substituting a DIT entry. It is de-
fined as a 4-uplet: SR DIT = (rule type, domain1, domain2, entry point) where
Rule type belongs to {permission, prohibition}.
An instance of this rule can be: SR DIT = (Permission, engineering, http d,
/usr/bin/httpd) meaning that engineers have permission to pass from engineer-
ing domain to http d domain by executing the program /usr/bin/httpd. When
transiting to http d, engineers obtain a set of http d privileges defined by the
execution of the entry point and they loose all privileges of source domain.

D 1

D 2

D 3

T 1 : - R e a d
 - Wr i te

 - Execute

T 2 : - R e a d
 - Wr i te

T 3 : - R e a d

Type access

Domain interaction

E (2)

E (1)
2,1

2,1

E
3,2

E
2,3

Fig. 2. Sample of a graphic system topology

120 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

As an example of a DTE policy, let us consider the figure 2. It presents a sys-
tem consisting of three domains D1, D2 and D3. These domains have different
accesses to three object types T1, T2 and T3. Also, they have interactions be-
tween them defined through different entry points. We remark that D1 has two
entry points. In the system specification we can suppose that EP2,1(1) grants
read and execute privileges to D2 subjects and EP2,1(2) grants write privilege
to D2 subjects. Table 1 summarizes the DTE policy corresponding to figure 2.

Thus, we define our DTE control flow policy as a set of SR DDT and SR DIT
rules. Such policy satisfies information flow requirements. Our integrated model
uses this policy to deal with information flow control. We choose to base our
model on OrBAC model as it is enough expressive and it allows us to integrate
our flow control policy using access control rules. OrBAC offers context notion
which permits us to define dynamic rules and to express our control flow policy
using these rules. The sequel gives an overview of OrBAC and how we use it.

Table 1. DTE policy corresponding to figure 2

SR DDT SR DIT

(Permission, D1, T1, Read) (Permission, D2, D1, E2,1(1))

(Permission, D1, T1, Write) (Permission, D2, D1, E2,1(2))

(Permission, D1, T1, Execute) (Permission, D2, D3, E2,3)

(Permission, D1, T2, Read) (Permission, D3, D2, E3,2)

(Permission, D1, T2, Write)

(Permission, D2, T2, Read)

(Permission, D2, T2, Write)

(Permission, D3, T3, Read)

5 OrBAC in Brief

In order to specify a security policy, the OrBAC model [18, 19] defines sev-
eral entities and relations. It first introduces the concept of organization which
is central in OrBAC. An organization is any active entity that is responsible
for managing a security policy. Each organization can define its proper pol-
icy using OrBAC. Then, instead of modeling the policy by using the concrete
implementation-related concepts of subject, action and object, the OrBAC model
suggests reasoning with the roles that subjects, actions or objects are assigned to
in an organization. The role of a subject is simply called a role as in the RBAC
model. The role of an action is called activity and the role of an object is called
view. Each organization can then define security rules which specify that some
roles are permitted or prohibited to carry out some activities on some views.
Particularly, an organization can be structured in many sub organizations, each
one having its own policy. It is also possible to define a generic security policy
in the root organization. Its sub organizations will inherit from its security pol-
icy. Also, they can add or delete some rules and so, define their proper policy.

An Integrated Model for Access Control and Information Flow Requirements 121

The definition of an organization and the hierarchy of its sub organizations
facilitate the administration [20]. The security rules do not apply statically but
their activation may depend on contextual conditions [21]. For this purpose, the
concept of context is explicitly included in OrBAC. Contexts are used to express
different types of extra conditions or constraints that control activation of rules
expressed in the access control policy. So, using formalism based on first order
logic, security rules are modeled using a 6-places predicate.

Definition 7: an OrBAC security rule is defined as: security rule (type, or-
ganization, role, activity, view, context) where type ∈ {permission, prohibition,
obligation}. An example of this security rule can be: security rule (permission,
a hosp, nurse, consult, medical record, urgency) meaning that, in organization
a hosp, a nurse is permitted to consult a medical record in the context of urgency.

6 Access and Information Flow Control Convergence

In this section, we present our integrated model for access control and informa-
tion flow requirements. The model is based on OrBAC to express access control
and it is enriched with a DTE approach to express information flow control. This
convergence let us considering only one model (our proposed model) to specify
security policy of a system. Finally, we exemplify the model.

6.1 Access Control Policy

OrBAC defines contextual rules which can depend on different contexts. These
contexts can be related to conditions or circumstances under which a rule is valid
or an activity is performed. If we observe SR DDT and OrBAC rules we can
deduce that the former are expressed by the latter using a default context. The
default context is expressed in OrBAC as a context which is always true. So rules
with such context are always valid. In fact, role, activity and view significance in
OrBAC match respectively domain, privilege and type significance in DTE. So,
an SR DDT rule can be easily expressed using an OrBAC rule. This is a quite
natural result as SR DDT rules are specific access control rules. Further, OrBAC
gives the possibility to define more fine access control rules than DDT in DTE
can do since it presents different types of contexts. Indeed, with different OrBAC
contexts we can express diverse conditions and temporal constraints. Thus, we
can formulate dynamic and expressive rules which can not be expressed just by
using DTE. That is why we have not choose DTE formalism to express both
access an flow controls, otherwise we get a static integrated model with respect
to access control aspects.

6.2 Information Flow Control Policy

As we have presented, OrBAC is an efficient model to express access control rules.
So, it will be very useful if we succeed to express access and flow control using the
same model. Our DTE formalism offers SR DIT rules to define information flow

122 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

control policy. But as we aforementioned, DTE is not very efficient in expressing
access control, whereas OrBAC is. In the sequel, we present our approach to
define our integrated model based on OrBAC and using a DTE approach. We
suppose, due to space limitation, that this policy is closed meaning that all which
is not permitted is denied and we do not deal with obligations.

Based on an OrBAC rule, SR DIT [SR DIT = (rule type, domain1, domain2,
entry point)] can be seen as a particular OrBAC rule. This rule must express the
transition between different domains and must introduce entry point notion in
order to preserve a secure information flows and to keep DTE aspects. Therefore,
to consider this particular rule we suppose the following hypotheses: (1) the
source domain is considered as the role in the OrBAC rule (we have already said
that the two notions have equivalent significances), (2) the destination domain
is considered as the view in OrBAC rule, (3) the transition between two domains
can be expressed as an OrBAC activity since the basic role of this specific rule is
to handle interactions between domains. So, we define the OrBAC activity as an
Enter activity, (4) the entry point defines the manner to enter a domain. Thus,
we can consider it as a condition of rule validation. Therefore, an entry point
can be defined as a specific context in an OrBAC rule denoted through(Ei,j).
This context specifies that the rule is valid only through Ei,j execution.

Thus, such a rule is expressed, in a specific organization org and handling
transition between D1 and D2, as follows: SR (permission, org, D1, Enter, D2,
through(E1,2)). These flow control rules can be enriched with other OrBAC
contexts. Indeed, through(Ei,j) context can be used in conjunction with different
OrBAC contexts, for example temporal contexts, to express more restrictive or
conditioned flow control. Also, We recall that a transition from a domain D1 to
a domain D2 is possible only if there is the corresponding rule in the policy. In
other words, handling domains interactions does not contain prohibitions. This
interaction is allowed only if there is a corresponding permission. Such transitions
between domains correspond, in our integrated formalism ”access control/flow
control”, to a context change. Since transiting to another domain corresponds
to the activation of a new context, new rules will be activated. These rules are
those for which this context is valid. This dynamic management of the security
policy and the closed policy hypothesis guarantee the loose of source domain
privileges during transition. New granted privileges are defined according to the
entry point executed. The entity organization is useful to control the flow in the
inter-organizational environment. This will be developed in a forthcoming paper.

6.3 Example

To exemplify our proposed model, let us reconsider figure 1. Using our integrated
model, line 9 is expressed as the following rules set. We suppose that we are in
Unix system organization.

1. (permission, Unix, login d, rxd, root t ,default)
2. (permission, Unix, login d, rwxcd, spool t ,default)
3. (permission, Unix, login d, rxd, lib t ,default)

An Integrated Model for Access Control and Information Flow Requirements 123

4. (permission, Unix, login d, rxd, binary t ,default)
5. (permission, Unix, login d, rwxcd, passwd t ,default)
6. (permission, Unix, login d, rxwcd, shadow t ,default)
7. (permission, Unix, login d, rwxcd, dev t ,default)
8. (permission, Unix, login d, rxwd, config t ,default)
9. (permission, Unix, login d, rwxcd, w t ,default)

10. (permission, Unix, login d, Enter, root d, through(exec()))
11. (permission, Unix, login d, Enter, user d, through(exec()))

The rules 1-9 express the access control policy. Rules 10 and 11 handle inter-
actions between login d and root d, user d. The whole set of these rules presents
the security policy corresponding to line 9 of the first example in figure 1 of the
section 4.1. This policy is based on OrBAC rules enriched with DTE approach.
It is expressed using only one form of rules. If we consider for instance the first
rule, ”rxd” indicates the activity allowed by this rule. We use this notation just
to simplify and reduce the list of security rules. In fact, ”rxd” corresponds to
three privilege activities: read (r), execute (x) and destroy (d). Thus, this rule
corresponds to three rules in the policy. For the two last rules, the activity field
contains ”Enter” which specifies permitted transitions between domains since
they are flow control rules. In this example we use the ”default” context when
expressing access control rules. This context implies no conditions on the activ-
ity performance. Such choice is done to simplify the example. Other contexts,
such temporal contexts, can be used in conjunction to ”default” context or to
”through” context. ”through” context is used in flow control rules to express the
manner to enter corresponding domains. Transiting into root d and user d do-
mains is released when executing exec() which activates one of the entry points
defined for root d and user d respectively: (/bin/bash, /sbin/init, /bin/su) or
(/bin/bash, /bin/tcsh). These entry points define privileges granted to login d
subjects migrating to root d or user d. Different domains used here are specified
corresponding to our specification done in definition 1 of section 4.2. We remark
that in this example login d is used as a role in access control rules and root d
and user d are used as views in information flow control rules. But, they can be
used as domains in other access control rules. According to this policy, login d
has no access to the type user t. If a login d’s subject requires an access to ob-
jects of this type, he must transit to root d or user d which have access to this
type (see figure 1, lines 8 and 10). So, our integrated model ensure the aspect of
”confidence path” defined in DTE formalism (see definition 4 of section 4.2).

7 Conclusion

In this paper, we have presented an integrated security model that is capable
of taking into account information flow and access control. The security policy
is based on OrBAC rules which integrate flow control using a DTE approach.
OrBAC is an adequate choice since it permits us to define contextual and dy-
namic rules. Also, it is enough expressive to be able to integrate information

124 S. Ayed, N. Cuppens-Boulahia, and F. Cuppens

flow control. The organization notion present in OrBAC allows to express con-
finement. Our approach remedies to weaknesses present in previous approaches
based on MLS and RBAC models. In this paper, we have considered information
flow control into the same organization. As part of future work, we will consider
a more complex case where we supervise inter-organization flows. Indeed, orga-
nizations must exchange flows to have knowledge of what is happening globally
in the system. These flows have to be managed in order to keep a secure exe-
cution environment of processes. Also, we intend to apply our integrated model
to Workflow Management Systems (WFMS). This is a critical issue since such
systems present a very important need of security. In fact, they present multi
users aspects, inter-dependent execution and dynamic progression. The confine-
ment aspect that the organization entity express will be very useful to define the
inter-organization policy.

Acknowledgment

This work is partially supported by the RNRT project Polux.

References

1. Sandhu, R.S.: Lattice-Based Access Control Models. IEEE Computer 26(11), 9–19
(1993)

2. Nyanchama, M., Osborn, S.: Information Flow Analysis in Role-Based Security
Systems. In: Proc. ICCI 1994. International Conference on Computing and Infor-
mation, pp. 1368–1384 (1994)

3. Nyanchama, M., Osborn, S.: Modeling Mandatory Access Control in Role-Based
Security Systems. In: IFIP Workshop on Database Security (1996)

4. Sandhu, R.: Role Hierarchies and Constraints for Lattice-Based Access Controls.
In: Proc. Fourth European Symposium on Research in Computer Security, Rome,
Italy (1996)

5. Osborn, S.: Mandatory Access Control and Role-Based Access Control Revisited.
In: Proceedings of the second ACM workshop on Role-based access control, Fairfax,
Virginia, United States, pp. 31–40 (1997)

6. Kuhn, D.R.: Role Based Access control on MLS Systems without Kernel changes.
In: Proceedings of the third ACM Workshop on Role-Based Access Control, Fairfax,
Virginia, United States, pp. 25–32 (1998)

7. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access control Policies. ACM Transactions
on Information and System Security 3(2), 85–106 (2000)

8. Demurjian, S.: Implementation of Mandatory Access control in Role-Based Security
System. CSE367 Final Project report (2001)

9. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In:
Proc. IEEE Computer Security Foundations Workshop, pp. 172–186 (June 2004)

10. Sandhu, R., Munawer, Q.: How to do discretionary access control using roles. In:
Proc. of the 3rd ACM Workshop on Role Based Access Control (RBAC 1998),
Fairfax, VA, USA (1998)

An Integrated Model for Access Control and Information Flow Requirements 125

11. Atluri, V., Huang, W.-K.: Enforcing Mandatory and Discretionary security in
Workflow Management Systems. Journal of Computer Security 5(4), 303–339
(1997)

12. Atluri, V., Huang, W.-K., Bertino, E.: A semantic Based Execution Model for
Multilevel Secure Workflows. Journal of Computer Security 8(1) (2000)

13. Liu, L.: On secure Flow Analysis in Computer systems. In: Proc. IEEE Symposium
on Research in Security and Privacy, pp. 22–33 (1980)

14. Millen, J.K.: Information Flow Analysis of Formal Specifications. In: Proc. IEEE
Symposium on Research in Security and Privacy, pp. 3–8 (1981)

15. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical
Domain and Type Enforcement for Unix. In: IEEE Symposium on Security and
Privacy, Oakland, CA, USA (1995)

16. Tidswell, J., Potter, J.: Domain and Type Enforcement in a μ-Kemel. In: Proceed-
ings of the 20th Australasian Computer Science Conference, Sydney, Australia
(1997)

17. Kiszka, J., Wagner, B.: Domain and Type Enforcement for Real-Time Operating
Systems. In: Proceedings ETFA 2003, Emerging Technologies and Factory Au-
tomation (2003)

18. Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miége, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, Lake Come, Italy (2003)

19. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miége, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust (FAST), Toulouse, France (2004)

20. Cuppens, F., Cuppens-Boulahia, N., Miége, A.: Inheritance hierarchies in the Or-
BAC model and application in a network environment. In: Second Foundations of
Computer Security Workshop (FCS 2004), Turku, Finlande (2004)

21. Cuppens, F., Miége, A.: Modelling contexts in the Or-BAC model. In: 19th Annual
Computer Security Applications Conference, Las Vegas (2003)

22. Boebert, W.E., Kain, R.Y.: A further Note on the Confinment Problem. In: Pro-
ceedings of the IEEE 1996 International Carnahan Conference on Security Tech-
nology, IEEE Computer Society, New York (1996)

23. Boebert, W.E., Kain, R.Y., Young, W.D.: The extended Access Matrix Model of
Computer Security. ACM Sigsoft Software Engineering Notes 10(4) (1985)

24. Hallyn, S., Kearns, P.: Tools to Administer Domain and Type Enforcement. LISA
XV. San Diego, CA (2001)

25. Oostendorp, K.A., Badger, L., Vance, C.D., Morrison, W.G., Petkac, M.J., Sher-
man, D.L., Sterne, D.F.: Domain and Type Enforcement Firewalls. In: Proceedings
of the Thirteenth Annual Computer Security Applications Conference, San Diego,
California, pp. 122–132 (1997)

26. Walker, K.M., Sterne, D.F., Lee Badger, M., Petkac, M.J., Shermann, D.L., Oos-
tendorp, K.A.: Confining Root Programs with Domain and Type Enforcement
(DTE). In: Proceedings of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography, San Jose, California, vol. 6 (1996)

Digital Rights Management Using a Master

Control Device

Imad M. Abbadi

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

I.Abbadi@rhul.ac.uk

Abstract. This paper focuses on the problem of preventing the illegal
copying of digital content whilst allowing content mobility within a single
user domain. This paper proposes a novel solution for binding a domain
to a single owner. Domain owners are authenticated using two-factor au-
thentication, which involves “something the domain owner has”, i.e. a
Master Control device that controls and manages consumers domains,
and binds devices joining a domain to itself, and “something the domain
owner is or knows”, i.e. a biometric or password/PIN authentication
mechanism that is implemented by the Master Control device. These
measures establish a one-to-many relationship between the Master Con-
trol device and domain devices, and a one-to-one relationship between
domain owners and their Master Control Devices, ensuring that a sin-
gle consumer owns each domain. This stops illicit content proliferation.
Finally, the pros and cons of two possible approaches to user authen-
tication, i.e. the use of a password/PIN and biometric authentication
mechanisms, and possible countermeasures to the identified vulnerabili-
ties are discussed.

1 Introduction

Unauthorised reproduction of digital assets is not a new issue. Concerns about
protecting digital assets are raised every time reproduction tools such as tape
recorders or photocopiers become available to consumers. In the past, however,
content piracy was limited to distribution via physical media. The recent digiti-
sation of information, the development of telecommunication technologies such
as broadband and mobile networks, and the spread of the Internet have led to
a huge rise in digital content piracy, as content can be shared and transferred
instantly with no loss of quality.

1.1 Authorised Domain

Most current DRM systems recognise that consumers have more than one device,
which they would like to use to access their content without requiring multiple
licences. Many DRM system providers (see, for example, section 1.3) have in-
corporated the concept of an authorised domain into their content protection

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 126–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Digital Rights Management Using a Master Control Device 127

solutions. Such a domain is a collection of devices belonging to a single owner,
within which digital assets can be freely moved.

Devices in a domain can be divided into two categories as proposed in [1]: roots
and leaves. The domain root (unique per domain) represents a licensed content
holder. The leaves in a domain receive content (and means to access the content)
from the domain root. The content piracy problem can then be divided into two
sub-problems. The first is Root Distribution, where the root of the domain ille-
gally distributes content and any associated passwords to an unlimited number
of users. For example, the content holder could illegally distribute content and
its associated password to devices outside the domain, i.e. devices which are not
leaves in this domain. The second is Leaf Distribution, where an individual leaf
in a domain illegally redistributes content to devices outside the domain, as if
it is the licensed content holder. For example, after receiving content and any
associated passwords/keys, a leaf device could illegally re-distribute the content
and passwords/keys to user1, which in turn re-distributes them to user2, and so
on (where user1 and user2 are not leaves in this domain).

A fundamental authorised domain requirement for DRM is to restrict Root
Distribution to legitimate devices owned by the domain owner, and to completely
prevent Leaf Distribution. In addition, an authorised domain system for DRM
should satisfy other requirements as discussed in [1], such as: Ease of Use, Con-
tent Mobility, Performance, Content Backup and Recovery, Privacy and Robust
Content Protection. As discussed below, the proposed scheme satisfies all these
requirements.

Other Authorised Domains management solutions (see, for example, section
1.3) typically attempt to address these problems by using a counter to control
the number of devices that can simultaneously access domain content. However
such counter-based mechanisms have significant security and usability limita-
tions. For example, in many schemes (see, for example, section 1.3) devices can
abuse the system by joining and then leaving multiple domains to illegally use
their content. Moreover, in many schemes, increasing the domain size limit re-
quires re-initialising and reconfiguring the domain, and, in some schemes, do-
mains cannot be expanded. In addition, there is no binding between the domain
key (content protection key) and the domain owner; i.e. the Leaf Distribution
problem arises. Also, all these solutions have additional problems in addressing
other fundamental authorised domain requirements for DRM, such as: content
backup and recovery, ease of use, performance, etc. These issues are discussed
in section 1.3. The proposed scheme addresses all these points, as discussed in
system analysis (see section 4).

1.2 The Novel Solution

Our system works by binding all devices in a domain to a single Master Control
device (MC), which is bound to a single owner. Each domain has a unique key
that is securely generated and stored inside the Master Control device. This key
is not available in the clear even to the domain owner, is shared by all devices in
the domain, cannot be copied between devices, and is used to encrypt content

128 I.M. Abbadi

encryption keys. The domain key is transferred from the Master Control device
to a device joining a domain after the Master Control device has authenticated
the domain owner using either biometric or password/PIN authentication tech-
niques. The domain key is then securely stored by the joining device. Only the
domain-specific Master Control device can release the domain key to other de-
vices after authenticating the domain owner. This binds the domain key, which
protects domain content, to the domain owner, i.e. this binds all devices in the
domain to the domain owner. The proposed scheme does not stop legitimate
controlled content sharing or the downloading of digital content from a remote
location, as outlined in section 4.1.

In addition, each domain has two associated limits, one to control the num-
ber of devices that can simultaneously access domain content, and the other to
control the total number of devices that can join a domain. The latter limit is
designed to stop domain owners abusing the system by allowing multiple devices
to join and then leave their domains.

The Root Distribution problem is addressed by using the two counters as
described above (increasing the counters is controlled by a third party trusted
authority, and does not require re-initialising and reconfiguring the domain).
The Leaf Distribution problem is addressed by binding the domain key to the
domain owner as described above. In addition, our solution can be implemented
irrespective of device type. The scheme only requires that user platforms on
which content is to be stored and used have functionality that can be trusted to
perform the proposed DRM scheme correctly.

1.3 Related Work

We now briefly review some of the more widely discussed schemes for managing
an authorised domain for DRM (note that in the analyses below we mainly
focus on the authorised domain implementation proposed by each scheme). More
detailed analysis of these schemes can be found in [1]. There are other DRM
schemes; however, many such schemes do not address the authorised domain
concept, and only focus on binding a licence to a single device. Such schemes
are not considered here, as they do not address the core theme of this paper.
Nevertheless, such schemes (including some of the schemes discussed in this
section, e.g. OMA1 DRM [16]) could be integrated with the proposed scheme
for downloading content from content distributors to an authorised domain, as
outlined in section 3.4.

In the OMA DRM system [16], each device can join more than one domain,
each of which is controlled by a Rights Issuer. Also, each device must securely
store the domain keys, domain identifiers, and domain expiry times, provided by
each Rights Issuer. Devices require secure storage to store these keys. In addition,
each Rights Issuer must create and manage all domains for consumers who have
bought content from this Rights Issuer, and control which and how many devices
are included or excluded from each domain. In order for a device to use the
1 http://www.openmobilealliance.org

Digital Rights Management Using a Master Control Device 129

content in a domain, it must set up an association with all the Rights Issuers
from which the domain owner has downloaded content. This is because, as above,
each Rights Issuer protects its content within a domain using a domain-specific
protection key provided by the Rights Issuer. This is not user friendly, as it
imposes a significant administrative overhead. Moreover, there is no mechanism
to control whose device is assigned to a domain (there is no binding between
the domain key and the domain owner). For example, a set of devices belonging
to different users might join domain A, and the same devices could also join
domain B. This means a device can access copyrighted content illegally by joining
domains owned by different owners.

Apple Fairplay2 protects and plays only digital music and video files. Con-
tent must be bought from Apple’s iTunes music store, and only iPod devices and
platforms running Mac OS X and Microsoft Windows can access such content,
limiting interoperability. As stated by Rowell [19], “Apple Fairplay is allowing
Apple to lock iPod owners into its proprietary store”. In addition, the domain
size is restricted to five computers and unlimited number of iPods; it is poten-
tially very inconvenient for a consumer who already has the maximum number
of devices in his/her domain, if he/she is required to remove a device from the
domain before a new device can be added. A user is authenticated using a user-
name and password that can be shared with others (there is no binding between
the domain key and the domain owner). Moreover, devices can abuse the system
by joining and then leaving multiple domains. The domain key is protected using
only software techniques, unlike the other discussed schemes that use hardware
measures, and the software protection has been hacked many times; see, for ex-
ample, the Hymn project3. Moreover, content can be backed up to a standard
CD in unencrypted format, or transported elsewhere via email or FTP, enabling
content proliferation, as described by Carden [2].

The Digital Rights Management in a 3G Mobile Phone and Beyond
scheme [4], has the following main problems. The domain key is an asymmetric
key pair that changes every time a device joins or leaves the domain, or when
a device is revoked; this step requires the domain owner to connect all devices
to the Internet to retrieve the new key. In addition, each time the domain key
is changed it requires all licence files to be re-encrypted, each of which holds
a content encryption key. Each domain device must therefore keep track of all
these licence files. This requires extra administration, in addition to requiring
greater storage and processing costs. This could result in a significant overhead
if the number of items of content is large. There is also no binding between the
domain asymmetric key and the domain owner.

The DRM Security Architecture for Home Networks [18] uses secret
keys shared between pairs of devices for authentication, and a master key shared
between each device and the domain manager. Each device is required to store
the list of shared secret keys and the device master key, which increases the
hardware costs. Extending the domain depends on the ability of all domain

2 http://www.apple.com/lu/support/itunes/authorization.html
3 http://hymn-project.org

130 I.M. Abbadi

devices to increase their storage; it also requires the domain to be re-initialised
and all domain content to be re-encrypted. In addition, the system requires
each downloaded digital asset to be associated with a global device revocation
list. This list will grow with time, and potentially results in a large increase in
download time and size. Moreover, this scheme does not address content and
domain key backup and recovery.

The xCP Cluster Protocol [9] encrypts content encryption keys using a
master key, which is changed every time a device joins or leaves the home net-
work. This step requires all devices to be online, which is inconvenient for some
devices such as car CD players, MP3 players, etc. In addition, every time a
device is hacked, a new media key block is released. This is a large data struc-
ture that imposes a significant overhead when moving it between devices and
generating the master key, especially on devices that have limited capabilities.
Moreover, every time the domain membership changes the domain master key
must be changed. Consequently, the content encryption key, which is encrypted
with the domain master key, will need to be re-encrypted with the new mas-
ter key. This means that all content and its associated encryption keys must
be tracked. This requires extra administration, in addition to requiring greater
storage and processing costs. This could result in a significant overhead if the
number of items of content is large. There is also no binding between the domain
master key and the domain owner. Finally, this scheme does not address content
and domain key backup and recovery.

The SmartRight system [20] requires the presence of smart card readers on
all devices, and at least two smart cards per device: one for content access and
the other for presentation functionality. This increases the total cost, especially
for smart card maintenance. In addition, in order to increase the domain size, the
system has to be re-initialised with a new domain key. Moreover, if all Terminal
cards are lost or fail, then all existing content will be unusable, and if the Ter-
minal card that most recently joined the domain is lost or stolen, then no other
devices can be added. Also, if the end user forgets which Terminal card most
recently joined the domain, then he/she must try all Terminal cards. This would
pose a serious usability issue in networks with a large number of Terminal cards.
This scheme does not address content and domain key backup and recovery. In
addition, there is no binding between the network key and the domain owner.

1.4 Organisation of the Paper

This paper is organised as follows. Sections 2 and 3 describe the proposed solution
and the process workflow. Section 4 discusses and analyses how the proposed
approach controls content sharing, how it binds devices to a single owner, and
how domain membership is managed. Section 5 discusses user authentication
methods, and section 6 provides conclusions.

2 Proposed Model

In this section we describe the main entities constituting the proposed model.

Digital Rights Management Using a Master Control Device 131

2.1 Domain Devices

Software-only techniques cannot provide a high degree of protection for secret
keys stored in a device; for example, Apple FairPlay, which uses software-only
techniques, has been hacked multiple times, as discussed in section 1.3. This and
other problems raise the need for a trusted computing technology that can en-
force policy-neutral access control mechanisms. This is not a new requirement for
DRM schemes; for example, other schemes discussed in section 1.3, apart from
Apple Fairplay, require hardware components trusted to securely store domain
credentials and/or to enforce content usage rules; e.g. OMA-DRM [16] requires
each device to possess a trusted secure storage to store domain credentials, a
public/private key pair certified by a certification authority (CA), and requires
devices to be trusted to enforce content usage rules. So it is clear that cur-
rent hardware designs do not satisfy DRM main requirements and any solution
would need to propose updating hardware components. However, a DRM sys-
tem must be designed in such a way that it imposes minimum costs. In addition,
hardware components should be easy and convenient to integrate in consumer
devices without resulting in increasing consumer device size, and they should
not introduce new vulnerabilities into end user computing equipment.

Therefore, we require that domain devices, including the Master Control De-
vice (MC), are trusted platforms (TPs). These are computing platforms with
the property that their state can be remotely tested, and which can be trusted
to store security-sensitive data in ways testable by a remote party. A domain
device could be a PC, laptop, PDA, mobile device, etc. We assume that each
domain device possesses a DRM agent, which must be trusted to perform the
DRM scheme correctly. In addition, each TP can verify that the DRM agent is
running correctly in another device. Each domain device is assumed to possess
an asymmetric encryption key pair. The corresponding private decryption key
is bound to a particular environment configuration state. We assume that the
DRM software agents that are authorised to read data encrypted using this key
will not release the data outside the TP; even the domain owner should not be
able to retrieve these data in clear. The TP must provide a protected execution
environment, in which applications run in isolation, free from being observed or
compromised by other processes running in the same protected partition, or by
software running in any insecure partition [5].

A TCG compliant platform meets all the requirements of this scheme; see,
for example, [5]. TCG compliant platforms are not expensive, and are currently
available from a range of PC manufacturers, including Dell, Fujitsu, HP, Intel
and Toshiba [6]. In addition, since early 2006, all Intel-based Apple computers
are TCG compliant [26].

2.2 Master Control Device

The MC is responsible for: securely storing a domain owner Authentication Cre-
dential (a password/PIN or a biometric reference template) that is used to au-
thenticate the domain owner before a device joins the domain (see section 5);

132 I.M. Abbadi

securely generating and protecting a secret domain key (KD) that is used to
encrypt content encryption keys; and authorising devices to join its domain by
ensuring their processing environment is trusted. Only the MC has the privilege
to transfer the domain key KD to other devices joining its domain, and this
key cannot be copied between domain devices. The MC is not required to be a
dedicated device; it could, for example, be part of a domain device.

Each MC securely stores the Authentication Credential (the exact nature of
which could vary — see section 5) alongside KD and two sequentially incre-
mented numbers initialised to zero, referred to as the Total Counter (cT) and
Current Counter (cC). cT represents the total number of devices that have joined
the domain, while cC represents the number of devices currently present within
the domain. The main role of the MC and both counters is to control domain
membership, as described in section 4.2. In addition, each MC is assumed to
have an asymmetric signing key pair, certified by the CA. The private part of
the key is held inside the MC trusted storage, and is used for entity authentica-
tion. This certificate is called a domain certificate, and such a certificate needs
to include the following information: the fact that it is a domain certificate, a
general description of the MC and its security properties, the maximum number
of devices that can be in the domain at any one time (i.e. the maximum permit-
ted value of cC), the maximum number of devices that can join the domain (i.e.
the maximum permitted value of cT).

3 Process Workflow

The workflow of the proposed system is divided into five main phases: the first
involves the MC and the domain owner; the second involves the MC and a
joining device; the third involves the MC and a leaving device; the fourth involves
exchanging content between domain devices and Content Distributors/Rights
Issuers, between devices in the same domain, and between devices in different
domains; and the last involves content backup and recovery.

3.1 Domain Establishment

This phase covers the communication process between the domain owner and
the MC. The first time a consumer uses the MC, or on resetting the MC, the
following initialisation procedure must be performed. The DRM agent in the
MC executes, and instructs the domain owner to provide his/her Authentica-
tion Credential (a password/PIN or a biometric reference template — see section
5). The domain owner then provides the requested Authentication Credential.
The DRM agent securely generates a secret key KD, and binds it to the Au-
thentication Credential. The DRM agent securely associates two counters, i.e.
cT and cC , initialised to zero, with the stored Authentication Credential and the
key KD.

The domain key KD is generated inside the secure environment of the MC,
and is then securely stored by the MC. Given the assumptions in section 2.1,

Digital Rights Management Using a Master Control Device 133

this means that it is not available in the clear even to the domain owner, and it
cannot be copied between domain devices. In addition, it is unique per-domain,
shared amongst all domain devices, and does not change during the life of the
domain.

3.2 Adding a Device to a Domain

This phase covers the case when a device joins a domain. Adding a new device J
to a user domain involves the following steps. J first sends a Join Domain request
to the MC. The request includes the execution status of the DRM agent on J (SJ ,
its exact nature is implementation dependent, see, for example, [22,23,24,25]),
the public encryption key of J , and J ’s certificate.

Next, the MC checks that J is in physical proximity to itself, e.g. by using the
Near Field Communication (NFC) protocol or measuring the Round-Trip Time
(RTT) between the MC and J , see, for example, [7,8,10]. The MC verifies the
certificate of J , extracts the signature verification key of J from the certificate,
and checks that it has not been revoked, e.g. by querying an Online Certificate
Status Protocol (OCSP) service, [15]. The MC then verifies that the DRM agent
is running correctly in J by checking the value of SJ . How this verification
occurs is implementation-dependent; see, for example, [22,23,24,25]). The MC
then authenticates the domain owner using the stored Authentication Credential.

If authentication succeeds, the MC checks whether the public key of J is
already a member of the domain (a device might need to rejoin a domain, for
example, in case of hardware/software failure, as discussed in section 3.5). If
the public key of J is not in the domain, the MC temporarily increments the
values of both cT and cC (it does not store the incremented values at this stage).
If the new value of cT or cC is greater than the maximum permitted value
given in the domain certificate held by the MC, then the agent running on the
MC exits with an appropriate error message. The maximum cT and cC values
can be increased by updating the domain certificate, which requires an explicit
authorisation from the CA; specifically, the CA must provide the MC with an
appropriate new domain certificate. Domain owners could be charged more for
higher maximum cT and cC values.

Next, the MC sends its certificate and the execution status of its DRM agent
SMC to J . J then verifies the certificate, extracts the signature verification key
of the MC from the certificate, verifies that it has not been revoked, e.g. by
querying an OCSP service, and then checks that this certificate was issued for
an MC device, as discussed in section 2.2. J then verifies that the DRM agent is
running correctly in the MC by checking the value of SMC . As above, how this
verification occurs is implementation-dependent.

The MC securely stores the public key of J , the updated cT and cC values.
Subsequently, the MC encrypts KD using J public encryption key, signs the
encrypted message using the MCs signature key, and then releases the domain
credentials to J . When J receives this message, it verifies the MCs signature and
then decrypts the message. The key KD is securely stored by J , as described in
section 3.1.

134 I.M. Abbadi

3.3 Removing a Device from a Domain

This phase covers the case where a domain owner wishes to remove a device
from the domain. In order for an existing domain device J to leave a domain,
the domain owner follows a similar process described in section 3.2, except that
the cT value does not change, and the cC value is decremented and the public
key of leaving device is removed from the MC’s trusted storage. Before a domain
device leaves a domain, the MC authenticates and attests to the state of the
leaving domain device in the same way as described in section 3.2. This is to
ensure that the leaving domain device can be trusted to delete both KD and
its protection key from its protected storage. If a domain device is hacked, the
domain owner must inform the CA, which will then include the hacked domain
device public key in its revocation list. The MC checks whether the domain
device public key has been revoked, e.g. by querying an OCSP service, before
decrementing cC and removing the public key of this device from the MC’s
trusted storage.

As described in the next section, hacked devices cannot receive new content,
and cT value does not decrement with leaving or hacked devices. These ensure
that the domain owner cannot abuse the system by adding devices and then
claiming they are hacked.

3.4 Exchanging Content

A variety of methods could be integrated into the proposed scheme for down-
loading digital content and associated Rights Objects from a Content Distrib-
utor/Right Issuer to an existing domain device J ; see, for example, [16]. This
typically involves the following. J downloading content C and an associated
Rights Object R from a remote Content Distributor (or Rights Issuer), where C
is encrypted using a content-specific secret key KT (as EKT (C)). The key KT

is generated by the Content Distributor, encrypted using J public encryption
key, and is stored inside R, which is signed by the Rights Issuer. Once content
has been downloaded to J , the content encryption key KT is decrypted by J
using its private key, and then re-encrypted using the domain-specific key KD

(as EKD (KT)).
Encrypted content EKT (C) can be freely exchanged between devices. How-

ever, before transferring R between devices in the same domain the source device
must ensure that the destination device public key has not been revoked, and
then R and the encrypted KT (i.e. EKD (KT)) are encrypted using the desti-
nation device public encryption key. The encrypted value are then decrypted
on the destination device and stored in the same way as described above. Thus
only devices which hold KD can decrypt EKD (KT) to obtain KT , and thereby
decrypt EKT (C) to access C. The domain device that renders protected digital
content enforces the rules inside R. This scheme does not require a real-time com-
munications link between devices; messages can be exchanged using a portable
storage medium, e.g. a USB memory stick. The proposed scheme does not stop

Digital Rights Management Using a Master Control Device 135

legitimate controlled content sharing or the downloading of digital content from
a remote location, as outlined in section 4.1.

3.5 Backup and Recovery Procedure

A DRM solution must be capable of recovering digital content in the event of
system failure. For backup purposes, digital content encrypted using KD can be
stored in an offline medium, for example, a tape or CD-ROM. If the domain key
KD is lost and cannot be recovered, it follows that the domain content on the
backup cannot be decrypted. Thus, backup provisions for KD are needed.

Our backup strategy is based on the assumption that the MC has a trusted
backup agent, and that a domain device has a trusted restore agent that can
backup and recover KD, Authentication Credential, the current values of both cT

and cC , and the public key of each device member of the domain. We also assume
that only a single domain device is used for Backup. The first device joins the
domain is considered as the default backup device. However, the domain owner
could assign a different backup device that must be a member of the domain. In
this case, the MC authenticates and attests to the state of the leaving backup
device in the same way as described in section 3.2. This is to ensure that the
leaving backup device can be trusted to delete the existing backup from its
protected storage.

A backup agent for an MC M1 should validate the domain device public key
and associated software execution environment before accepting it for backup.
If it has been accepted, M1 securely stores the domain device public key in its
trusted storage, and then the backup agent produces a backup copy encrypted
using the domain device public key, which should be bound to a trusted execution
environment. The backup copy also includes the public key certificate for M1.
Every time a device joins or leaves a domain a successful backup needs to be
produced, otherwise the join/leave request should fail.

The procedure for recovering a copy of KD to a new MC M2 is as follows.
If M1 has had a hardware failure and cannot be recovered, the trusted device
restore agent first checks that the public key certificate for M1 has been revoked,
e.g. by querying an OCSP service. The trusted device restore agent then checks
that the public key certificate for M2 has not been revoked, e.g. by querying an
OCSP service, and checks whether M2 is authorised to hold KD. As described
in section 2.2, we assume that M2’s certificate contains a field to show that it
corresponds to an MC device that is trusted to hold KD. If M2 is trusted and
the certificate type is a domain certificate, then the trusted device releases to
M2 the string (Authentication Credential||KD||cT ||cC) and the public keys of
all devices member of the domain, encrypted with M2’s public key. The domain
owner must then use M2 to rejoin domain devices that have failed to recover KD

(before M2 increments the values of both counters it checks whether the joining
device public key is already a member of the domain; if so it does not increment
the domain counters). In this scenario, the MC acts as a central point in backup
and recovery; the MC decides whether or not to accept a particular device for

136 I.M. Abbadi

backup purposes. Moreover, restoration of the key KD can only be implemented
via an MC-certified device.

4 Discussion and Analysis

In this section we discusses and analyses how the proposed approach controls
content sharing and binds devices to a single owner, and how domain membership
is managed.

4.1 Controlling Content Sharing

The main goal of our scheme is to stop content decryption keys that are stored
inside Rights Objects from being transferred unprotected to devices in differ-
ent domains. This is achieved, as described earlier, by encrypting each content-
specific key KT with the domain-specific key KD that is only available inside
domain devices, and which is transferred to a device after authenticating the
domain owner, and after incrementing and verifying the values of the domain
counters, and verifying the device is trusted and is in physical proximity to the
MC. Therefor only devices that possess the domain-specific KD, i.e. devices in
the same domain, could use domain protected content. This is how we achieve
binding domain owners to devices in their domains.

As explained in section 3.3, KD and its protection key are removed from a
device when it leaves a domain, which prevents protected Rights Objects from
being used by devices in multiple domains. However, this does not stop legitimate
controlled content sharing; protected content can move between devices belong-
ing to different domains. A consumer could, for example, obtain a protected
content from anywhere; however, he/she can only use protected content by con-
tacting the corresponding Rights Issuer, and downloading a trial Rights Object
enabling him/her to temporarily use the protected content. If the consumer is
interested, he/she could then buy a full usage licence, as explained in section 3.4.
This concept is known as super-distribution , and has been proposed by OMA
[16] as a means of allowing consumers to obtain digitally protected content from
anywhere, and to use a restricted licence. This allows consumers to use content
for a limited period, with lower quality, and/or limited features. When the con-
sumer is happy with the protected content and decides to get a full licence, only
then will he/she need to download the Rights Object, which is much smaller
than the encrypted content.

4.2 Controlling Domain Membership

The proposed scheme enables the binding of a consumer domain to a single owner,
helping to solve the two sub-problems of content piracy:RootDistribution andLeaf
Distribution. The MC controls domain membership in the following ways.
1. It limits the number of devices that can be in a domain, hence limiting the

number of devices that can simultaneously access domain content.

Digital Rights Management Using a Master Control Device 137

2. It limits the total number of devices that can join a domain, which stops
domain owners abusing the system by allowing multiple devices to join and
then leave a domain.

3. It stops piracy using digital media such as the Internet, because, as described
in section 2.2, the content protection key KD is securely stored inside the
MC, is not available in the clear, and can only be transferred from the MC
to other devices after their physical proximity has been checked; i.e. the
physical location check, in conjunction with the use of counters, addresses
the Root Distribution problem.

4. It imposes stringent restrictions on piracy using physical media. As the con-
tent protection key KD is not available in the clear even to the domain
owner, this prevents the domain owner from transferring this key to other
users. In addition, as described earlier, the MC must be used to transfer this
key to other devices, which can only occur after the MC’s domain owner has
been authenticated; i.e. the scheme prevents Leaf Distribution.

Most other schemes focus primarily on point (1). Our solution stops illicit
content proliferation; the only way a domain owner could transfer the content
protection key to another user’s device is by transferring the domain content, the
domain-specific MC, and the domain owner Authentication Credential. Whilst
possible in principle, such a procedure is unlikely to be attractive to the domain
owner, as it means that the other user’s device would become part of the domain
controlled by the MC, which would mean that fewer of the domain owner’s
devices could be added to the domain. Most importantly, devices which have
joined the domain would not be able to re-transfer the domain key, as only
the MC can re-transfer the domain key after authenticating the domain owner.
Section 5 describes possible options for the means to be used to authenticate the
domain owner, some of which could increase the restrictions on content piracy.

Most authorised domain implementation for DRM require the existence of a
trusted hardware to protect domain credentials and to enforce content associated
usage rules (see, for example, section 1.3). Our proposed scheme is designed in
such a way that it imposes minimum costs; all requirements of this scheme are
met using TCG compliant platforms (as discussed in section 2.1), which are not
expensive, and currently available from a range of PC manufacturers, includ-
ing Dell, Fujitsu, HP, Intel and Toshiba [6]. In addition, the Trusted Platform
Module (TPM), which is the core component for TCG compliant platform, is
currently produced by a range of microelectronics manufacturers, including At-
mel4, ST-Microelectronics5 and Winbond6. Moreover, the TPM is convenient to
integrate in consumer devices as it is not expensive, does not result in increasing
consumer device size, and does not introduce new vulnerabilities into end user
computing equipment [23,24,25]. The extra costs in implementing the solution
could be covered from the expected reduction in piracy.

4 www.atmel.com/dyn/resources/prod documents/doc5010.pdf
5 www.st.com/stonline/products/literature/bd/10926.pdf
6 www.winbondusa.com/

138 I.M. Abbadi

5 Methods of Authentication and Possible
Countermeasures

Users are subject to two-factor authentication that involves “Something the
user has”, i.e. the MC, that binds devices joining the domain to itself using the
domain key KD, as described in section 2.2, and either “something the user is”,
i.e. biometric verification, or “something the user knows”, i.e. a password or
PIN. The Authentication Credential, which is kept in the protected storage of
the MC and is associated with the domain key, will thus be either a biometric
reference template or a password/PIN. The Authentication Credential binds
the MC and its domain to a single owner. In the remainder of this section we
present the pros and cons of the two approaches to user authentication, and
possible countermeasures.

Using biometric authentication ensures that joining a device to a domain re-
quires the physical presence of the domain owner, which imposes more stringent
restrictions on content piracy than use of a password/PIN. Using biometric au-
thentication has the following advantages: biometric features are bound to a
person, they cannot be shared, and there is no password to lose or forget. How-
ever, the following possible problems (and possible countermeasures specific to
the proposed scheme) are associated with biometric technology.

– Biometric authentication requires biometric samples captured from a live user
to be matched against a stored biometric reference template. The processing
required to perform thismatchingmight slowdown the authenticationprocess;
however, in the proposed scheme, biometric authentication is required only
when creating a domain and when a device joins or leaves the domain. These
are likely to be relatively infrequent events, and hence the use of biometrics
will not affect the overall system performance.

– Biometric characteristics are not secret, and can be copied and used to cre-
ate fake artifacts to gain access to the system. Biometric characteristics can
be copied from a variety of sources, such as detached real fingers, collecting
fingerprints from surfaces, iris pictures, face pictures, masks, videos, voice
recorders, etc. In addition, biometric samples could be copied whilst being
transferred from a biometric sensor to a processing device [14,21]. Two mea-
sures need to be implemented to reduce the effect of these problems:
1. Biometric liveness detection, which cannot be achieved using crypto-

graphic mechanisms, can be achieved using one of the following three
techniques: the intrinsic properties of a living body, e.g. physical prop-
erties, electrical properties, visual properties, etc; involuntary signs of a
living body, e.g. blood pressure, perspiration, brain wave signals, etc; and
bodily responses to external stimuli, e.g. blinking, smiling, pupil dilation,
etc. For more information about these techniques, see, for example, [21].

2. Protecting captured biometric samples whilst being transferred from the
biometric sensor to the signal processing subsystem (in the proposed
scheme the latter is part of the MC). This can be implemented using
cryptographic techniques; see, for example, [3].

Digital Rights Management Using a Master Control Device 139

– The extracted biometric samples will vary, even for the same user, so an exact
match between extracted features and a stored biometric template cannot be
expected. This means that a feature-matching algorithm has associated tol-
erance settings, so that a sample is considered valid if the difference between
the sample and the template is within the tolerance bounds. More relaxed
tolerance settings will result in a higher False Acceptance Rate (FAR), and
a lower False Rejection Rate (FRR), while stricter tolerance settings will
result in a lower FAR and a higher FRR. Moreover, some biometric schemes
possess a degree of uncertainty. For example, fingerprint biometric accuracy
depends on the position of the finger on the reader, changes in external
finger conditions, etc. Very high accuracy in biometric identification typi-
cally requires expensive biometric readers such as retina or iris biometric
measurement systems; more information can be found in [12,13].

In our scheme, having more relaxed tolerance settings reduces the effect
of FRR problems without raising serious problems because of the higher
FAR. This is because the MC is associated with a single owner and a single
domain, and the domain key cannot be replicated on multiple MCs. These
factors reduce the risk that an MC will be exposed to multiple users, and
hence reduce the risks associated with a relatively high FAR.

Using a password/PIN as a method of authentication has the following ad-
vantages: it is used directly for user authentication, its verification is a simple
process, it does not require excessive storage, and it is the most widely used user
authentication method. However, the following possible problems (and possible
countermeasures specific to the proposed scheme) are associated with the use of
passwords/PINs.

– It can be shared with others. This does not affect our scheme because each
password/PIN is bound to a single MC, within which the domain key is
stored. Consequently, sharing the password/PIN is not useful without also
sharing the associated MC. This is relatively hard to accomplish, and an MC
owner is not likely to wish to hand over his/her MC.

– It is not bound to a person. In our scheme, the password/PIN is bound to a
single MC that reduces the effect of this problem.

– It can be forgotten. A password needs to be long and complex to protect
against dictionary analysis or brute force attacks, which makes it hard to
remember [27]. There are approaches that help to solve this problem, such
as implementing a password reminder, implementing a graphical password
system [27,28], implementing a challenge-response scheme, etc. In addition,
a challenge-response scheme can be used to help protect against the shoulder
surfing problem [28].

– It is subject to both offline and online attacks, as described by Pinkas and
Sander [17]. These can be counteracted by: preventing access to the pass-
word file, implementing delayed responses, and account locking that locks a
user account for a fixed period after a limited number of unsuccessful login
attempts. These measures prevent an attacker from checking a large number
of passwords in a reasonable time.

140 I.M. Abbadi

6 Conclusion

This paper proposes a solution for the protection of proprietary digital content
against illegitimate use. The basis of the solution is a means for identifying the
ownership of domain devices. In addition, the general approach could also be
useful in various other applications requiring strong authentication, because it
strongly binds a domain to its owner. Moreover, the pros and cons of two possible
approaches to user authentication, i.e. the use of a password/PIN and biomet-
ric authentication mechanisms, and possible countermeasures to the identified
vulnerabilities are discussed.

Acknowledgment

The author would like to thank Chris Mitchell for his help and support, which
have improved the paper.

References

1. Abbadi, I.: Digital asset protection in personal private networks. In: 8th Interna-
tional Symposium on Systems and Information Security (SSI 2006), Sao Jose dos
Campos, Sao Paulo, Brazil (November 2006)

2. Carden, N.: iTunes and iPod in the enterprise. The Journal of the International
Systems Security Association, 22–25 (May 2007)

3. Chen, L., Pearson, S., Vamvakas, A.: On enhancing biometric authentication
with data protection. In: Proceedings of the Fourth International Conference on
Knowledge-Based Intelligent Engineering Systems and Allied Technologies, vol. 1,
pp. 249–252. IEEE, Los Alamitos (2000)

4. Dabbish, E.A., Messerges, T.S.: Digital rights management in a 3G mobile phone
and beyond. In: Feigenbaum, J., Sander, T., Yung, M. (eds.) Proceedings of the
3rd ACM workshop on Digital Rights Management, pp. 27–38. ACM Press, New
York (2003)

5. Gallery, E., Tomlinson, A.: Secure delivery of conditional access applications to
mobile receivers. In: Mitchell, C.J. (ed.) Trusted Computing, ch. 7, pp. 195–237.
IEEE, Los Alamitos (2005)

6. Trusted Computing Group.: Trusted platform module FAQ
7. Günther, A., Hoene, C.: Measuring round trip times to determine the distance

between WLAN nodes. In: Boutaba, R., Almeroth, K.C., Puigjaner, R., Shen, S.,
Black, J.P. (eds.) NETWORKING 2005. LNCS, vol. 3462, pp. 768–779. Springer,
Heidelberg (2005)

8. Huffaker, B., Fomenkov, M., Plummer, D.J., Moore, D., Claffy, K.: Distance metrics
in the Internet. In: IEEE International Telecommunications Symposium (2002),
http://www.caida.org/publications/papers/2002/Distance/distance.pdf

9. IBM Research Division Almaden Research Center.: xCP cluster protocol (2003),
http://www-03.ibm.com/solutions/digitalmedia/doc/content/bin/
xCPWhitepaper final 1.pdf

10. International Organization for Standardization.: ISO/IEC 21481: Information tech-
nology — Telecommunications and information exchange between systems — Near
Field Communication Interface and Protocol -2 (NFCIP-2) (2005)

http://www.caida.org/publications/papers/2002/ Distance/distance.pdf
http://www-03.ibm.com/solutions/digitalmedia/doc/content/bin/xCPWhitepaper_final_1.pdf
http://www-03.ibm.com/solutions/digitalmedia/doc/content/bin/xCPWhitepaper_final_1.pdf

Digital Rights Management Using a Master Control Device 141

11. International Organization for Standardization.: ISO/IEC 18033-2, Information
technology — Security techniques — Encryption algorithms — Part 2: Asymmetric
ciphers (2006)

12. Liu, S., Silverman, M.: A practical guide to biometric security technology. IT Pro-
fessional 3(1), 27–32 (2001)

13. Maltoni, D., Maio, D., Jain, A.K., Prabahakar, S.: Handbook of Fingerprint Recog-
nition. Springer, Berlin (2003)

14. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial
‘gummy’ fingers on fingerprint systems. In: Proceedings of SPIE, vol. 4677, pp.
275–289 (2002)

15. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol — OCSP. RFC 2560,
Internet Engineering Task Force (June 1999)

16. Open Mobile Alliance.: DRM Specification — Version 2.0 (2006)
17. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. In: Proceed-

ings of the 9th ACM conference on Computer and communications security, pp.
161–170. ACM Press, New York (2002)

18. Popescu, B.C., Kamperman, F.L.A.J., Crispo, B., Tanenbaum, A.S.: A DRM se-
curity architecture for home networks. In: Feigenbaum, J., Sander, T., Yung, M.
(eds.) Proceedings of the 4th ACM workshop on Digital Rights Management, pp.
1–10. ACM Press, New York (2004)

19. Rowell, L.F.: The ballad of DVD JON. netWorker 10(4), 28–34 (2006)
20. Thomson.: SmartRight technical white paper (2003), http://www.smartright.

org/images/SMR/content/SmartRight tech whitepaper jan28.pdf
21. Toth, B.: Biometric liveness detection. The International Journal For Information

Assurance Professionals 10(8), 291–298 (2005)
22. Trusted Computing Group.: Infrastructure Working Group Architecture, Part II,

Integrity Management. Specification version 1.0 Revision 1.0 (2006)
23. Trusted Computing Group.: TPM Main, Part 1, Design Principles. Specification

version 1.2 Revision 94 (2006)
24. Trusted Computing Group.: TPM Main, Part 2, TPM Structures. Specification

version 1.2 Revision 94 (2006)
25. Trusted Computing Group.: TPM Main, Part 3, Design Principles. Specification

version 1.2 Revision 94 (2006)
26. Weiss, A.: Will the open, unrestricted PC soon become a thing of the past? Journal

of Trusted Computing 10(3), 18–25 (2006)
27. Wiedenbeck, S., Birget, J.-C., Brodskiy, A., Waters, J., Memon, N.: Authentication

using graphical passwords: Effects of tolerance and image choice. In: Proceedings
of the 2005 symposium on Usable privacy and security, pp. 1–12. ACM Press, New
York (2005)

28. Wiedenbeck, S., Waters, J., Sobrado, L., Birget, J.-C.: Design and evaluation of a
shoulder-surfing resistant graphical password scheme. In: Proceedings of the work-
ing conference on Advanced visual interfaces, pp. 177–184. ACM Press, New York
(2006)

http://www.smartright.org/images/SMR/content/SmartRight_tech_whitepaper_jan28.pdf
http://www.smartright.org/images/SMR/content/SmartRight_tech_whitepaper_jan28.pdf

How to do Things

with Cryptographic Protocols�

Joshua D. Guttman

The MITRE Corporation

When a distributed system may need to operate in the presence of an adversary,
when it must support the activities of parties that do not trust one another
fully, then cryptographic protocols will play a fundamental role in its design.
One example of their importance is their ability to allow principals to agree
on keys that will be shared for a session with an authenticated peer. But more
fundamentally, a cryptographic protocol is a mechanism to achieve agreement
among specific sets of peers, whether on keys or other values. Thus, they can
play a fundamental role in organizing transactions in distributed systems, and
coordinating interactions among principals.

1 Goal of This Talk

There are three essential layers of coordination that protocols allow, and the
goal of this talk is to explain them and their relationships. Two of these layers
were considered in [6]. The third is new in this talk.

The Layer of Protocol Mechanics. First, each protocol uses cryptography to en-
sure that the actions of the participants mesh together in specific ways. When
the secrets of a principals are uncompromised, its cryptographic use of these
secrets demonstrates to its peers that it is participating in a transaction, and
that it has completed certain steps. This layer explains the mechanics of pro-
tocols, the operational patterns of interaction that are possible for a number
of participants. Strand spaces is one theory that allows us to understand the
mechanics of protocols [5,2,1]. Several other approaches can also be used at this
layer, e.g. [12,7,3]

The Trust Management Layer. The second layer concerns the decision-making
process in which each participant engages during a protocol session. Sending
a message in a session may commit the participant to certain consequences.
For instance, in a contract signing protocol, a participant will be committed
to the content of the contract after sending the last message. If the proposed
contract was received previously in the same session, then the decision whether
to make this commitment must be made as a part of executing the protocol. A
protocol must provide a definition of the commitment each principal undertakes
by sending each message, as a function of the values it has received earlier in
the session. When a participant receives a message the protocol must provide a
� Supported by the MITRE-Sponsored Research Program.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 142–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

How to do Things with Cryptographic Protocols 143

definition of what is learnt by receiving it. What is learnt is normally the fact
that other participants have made commitments before sending this message (or
previous ones). What a recipient learns is a function of the values in the message,
and other values in the same session. A principal’s decision whether to transmit
a particular message will typically depend on what it has learnt from messages
received earlier in the session.

Although the protocol defines what one has committed oneself to by sending
a message and what is learnt when receiving it, only the principal itself—not the
protocol designer—can choose a policy on when to commit itself. We regard this
policy as a theory T , e.g. in Datalog or some stronger logic. The idea of repre-
senting these policies in logical theories, and of using the commitments of other
participants as additional premises, is frequently called trust management [8,9].

In our variant of trust management, a participant makes a commitment γ only
when it follows from T together with the formulas ρ1, . . . , ρi learnt previously in
the current session. This same notion makes an appealing control structure for
branching protocols: One a protocol allows the participant to send one of several
alternative messages in the next step, the designer can guard each of them with
a suitable commitment. A participant who can discharge some of these guards
may choose non-deterministically among the corresponding messages to send. A
participant who can discharge none of them must halt the session.

The State Layer. The third layer concerns the effects of executing a session of a
protocol. These are changes to the states of the participants. For instance, after
an electronic purchase protocol, a bank may have transferred money from the
account of the purchaser to the account of the merchant, while the merchant has
executed a transaction to ship the item from the warehouse. The new content
of the current talk—beyond the ideas described in [6]—is to provide an account
of how these changes of state of the principals may be isolated from the logical
reasoning needed in protocol runs.

2 An Example: EPMO

In this talk, we will illustrate this claim using a single protocol and its variants,
the protocol [6] for Electronic Purchase using a Money Order (EPMO).

This protocol allows principals in three roles—representing a client, a mer-
chant, and a bank—to agree on a transaction. As a consequence of a successful
transaction, the merchant incurs an obligation to ship some goods to the client,
while the bank incurs an obligation to transfer the agreed purchase price from
the client’s account to the merchant’s account.

The protocol EPMO (Figure 1) borrows ideas from Needham, Schroeder, and
Lowe [11,10], using the authentication tests as a design principle [4]. Variables
Np range over nonces; [[t]]P is the message t signed by P ; {|t|}P is t encrypted
using P ’s public key; and hash(t) is a cryptographic hash of t.

A customer and a merchant want to agree on a purchase, transferring payment
with the aid of a bank. Here goods is a description of the items requested; price is
the proposed price. Nm serves as a transaction number. After obtaining a quote

144 J.D. Guttman

B C M

nc,1
{|C, Nc, goods, price|}M� nm,1

nc,2

�
�

� {|Nc, Nm, M |}C
nm,2

�
�

nb,1 �{|C, Nc, Nm, price|}B
nc,3

�
�

nb,2

�
�

mo, {|Nc, Nb|}C � nc,4

�
�

nc,5

�
�

mo, Nb � nm,3

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

nb,3

�

�
�
�
�
�
�
�

� [[hash(B, Nb, Nm)]]M
nm,4

�
�

Fig. 1. EPMO with Money Order mo = [[hash(C, Nc, Nb, Nm, price)]]B

from the merchant, the customer obtains a “money order” containing Nb from
the bank to cover the purchase, and delivers it to the merchant. The merchant
“endorses” it by combining Nb with Nm, and delivers the endorsement to the
bank. At the end of the protocol, the bank transfers the funds, and the merchant
ships the goods.

B does not learn goods, and learns M only if the transaction completes.
Although B does not transfer funds until M cashes the money order, B may
put a “hold” on money in C’s account. If the money order is not redeemed
within an implementation-defined timeout period, then it expires and B releases
the hold on C’s account. EPMO is designed not to disclose which principals are
interacting, nor the goods or price.

It does not protect against denial of service. An adversary can encrypt mes-
sages, using B’s public key, to cause holds on all the money in C’s account. Al-
though a more complex protocol would prevent this attack, EPMO illustrates an
interesting interplay between protocols and trust. Some resilient channel—such
as the postal service—will periodically be used to issue a statement, allowing a
reconciliation protocol to be run.

3 Protocol Mechanics of EPMO

The mechanics of EPMO are determined by the authentication tests [2,1], which
are patterns for appraising what is achieved by protocol challenges and responses.
For instance, C issues a challenge containing the nonce Nc in the first message,
and receives Nc back in the next message; this effectively ensures that M (if M ’s
private key is uncompromised) has received C’s first message and has responded
affirmatively to it. C reuses the same nonce in an authentication test with the
bank; reception of mo, {|Nc, Nb|}C ensures that B has received C’s request for
funds and accepted it.

How to do Things with Cryptographic Protocols 145

Likewise, M and B use their nonces for authentication test interactions with
their peers; each is transformed twice before being received back, thus authenti-
cating the participation of each of the peers.

By contrast, a weakened version of EPMO is akin to the original Needham-
Schroeder protocol. It omits M ’s identity from the second message, yielding
{|Nc, Nm|}C . The weakened protocol (see Figure 2) would have fundamentally

B C P M

nc,1
{|C, Nc, g, price|}P� •

•
�
�

{|C, Nc, g′, price|}M� nm,1

nc,2

�

�
�
�
�
�
�
�

� {|Nc, Nm|}C
nm,2

�
�

nb,1 �{|C, Nc, Nm, price|}B
nc,3

�
�

nb,2

�
�

mo, {|Nc, Nb|}C � nc,4

�
�

nc,5

�
�

mo, Nb � nm,3

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

nb,3

�

�
�
�
�
�
�
�

� [[hash(B, Nb, Nm)]]M
nm,4

�
�

Fig. 2. EPMO Weakened as in Needham-Schroeder, with an attack

different mechanics: The merchant M would be unable to authenticate that C
had intended to initiate a transaction with M , rather than with some dishonest
merchant P . P could abuse the weakened protocol as a vehicle for money laun-
dering, offsetting an unauditable transaction with M by causing a transaction
between C and P to appear to be a transaction between C and M . Auditing—
presumably done at the bank B—discloses no involvement of P .

4 Trust Management in EPMO

The participants in an electronic commerce protocol are certainly making com-
mitments, such as to ship some goods, to transfer funds into an account, and to
authorize funds to be transferred out of one’s own account. Moreover, a partici-
pant’s willingness to make these commitments depends on its understanding of
the commitments that other participants have made. For instance, the client’s
willingness to authorize the transfer probably depends on his understanding that
the merchant has committed itself to shipping the goods if paid. It also depends
on the client’s appraisal of whether the merchant will honor this commitment.
Typically, this requires the client to believe that the merchant depends on its
reputation, and that the business strategy of the merchant is to preserve this

146 J.D. Guttman

reputation so that the public will continue to do business with it. A swindler
would instead have a different business strategy. A client believing that M is a
swindler would have no reason to infer “M will ship goods” from the assertion
“M says M will ship goods”.

In fact, in our framework, this is the primary sense of trust. A princi-
pal A trusts B on subject matter φ means that in A’s theory TA, we have
T1 |− (A says φ) ⊃ φ.

We thus equip each protocol with a set of commitments to be made on the
various nodes. We use the symbol γ to associate transmission nodes with com-
mitment a principal undertakes by sending the message. Thus, for instance, the
client in EPMO makes its commitment to allowing the transfer of funds on its last
node, nc,4, so that γ(nc,4) is the assertion that “price is authorized for transfer
from C’s account to M ’s account.” The bank will accept this assertion if stated
by the owner himself, i.e. the bank’s theory derives “C says price is authorized
for transfer from C’s account to M ’s account implies that price is authorized for
transfer from C’s account to M ’s account.”

The bank makes an assertion when it prepares the money order, on node
nb,4. It asserts that it will transfer price from C’s account to the account of
any principal A such that price is authorized for transfer from C’s account to
A’s account. An essential ingredient is that the parameters to the assertion get
their values from the protocol run within which they occur. Thus, B has not yet
acquired information about which merchant C is interacting with. Thus, it must
prepare a money order with the force of a bearer instrument. C may endorse it
for any recipient A.

Indeed, we may connect the mechanics of the protocol with its trust interpre-
tation at this point. In the weakened form of the EPMO protocol, C authorizes
payment, but in the run shown in Fig. 2, something has gone wrong with this
authorization. Namely, C has in fact authorized payment to P , since P is the
merchant parameter of C’s local run. The bank, however, delivers payment to
M . A protocol is strong enough to bear its trust interpretation when this can
never happen.

5 State: Effects of EPMO

The framework we have described so far raises a puzzle. The participants use a
standard, monotonic logic to reason from their theories and from the assertions
of others, as recorded in the rely formulas ρ(n). These assertions are made by
others on the basis of their mutable state. For instance, the bank issues the
money order because the client’s account has sufficient funds, and the state of
the account will change over time. How can it be logically consistent to reason
using these state-dependent assertions, without some mechanism to remove rely
formulas when they may have become stale? The bank’s assertion that it will
pay price to the bearer of the money order would mislead a later receiver of
the money order. The assertions contain no timestamps or other references to a
period of validity. How can we prevent this?

How to do Things with Cryptographic Protocols 147

On the other hand, there are also assertions that have an unlimited extent
into the future, and these are associated with digital signatures.

Our answer, essentially, is that whenever an assertion is of limited extent,
then protocols must prevent its escape from the session in which it was created.

In the strand space theory, we regard the history of a distributed system as
a partially ordered structure. One event precedes another if there is a sequence
of arrows leading from the former to the latter. The arrows in the sequence may
include message transmission arrows → and strand succession arrows ⇒. Thus,
we may borrow some terms from special relativity. Given an event n, we regard
its forward light cone as the set of events accessible from n using arrows, and its
backward light cone as the set of events from which it is accessible. The forward
and backward light cones define those events that n can causally affect, and
those events that can have causally affected n, respectively. We write n0 ≺ n1
to mean that n0 strictly precedes n1 in this causal ordering.

A simultaneity set or a space-like plane is a set of events no two of which are
comparable in the causal ordering. Two events may be regarded as occurring at
the same time if they both belong to one simultaneity set S. A time is a maximal
simultaneity set S, i.e. one such that every n �∈ S, there exists an n′ ∈ S such
that either n0 ≺ n1 or n1 ≺ n0. Any family of disjoint times is linearly ordered
by ≺. We also write n ≺ S0 if n ≺ n0 for some n0 ∈ S0; n � S0 means either
n ≺ S0 or n ∈ S0.

Two times S0, S1 (i.e. two maximal simultaneity sets) may be regarded as
defining an interval [S0, S1], namely that containing all n such that there exist
n0 ∈ S0 and n1 ∈ S1 such that n0 � n � n1.

One can also distinguish long intervals from short intervals, in a loose way.
This depends on the fact that all regular strands are relatively short, because
cryptographic protocol implementors cause sessions to time out after a limited
period. Clearly, the adversary is under no obligation to time out, and thus only
the regular, protocol-abiding strands can serve to measure the passage of time.
Indeed, we can use regular strands as yardsticks to bound the length of some
intervals.

Let us say that an interval [S0, S1] is of length ≤ 1 if there is a regular strand
m0 ⇒+ mj such that m0 � S0 and S1 � mj . In this case, one regular strand
measures the whole interval. [S0, S1] is of length ≤ k + 1 if there is a sequence
of strands 〈m0,0 ⇒+ m0,j, m0,0 ⇒+ mk,j′ 〉 where m0,0 � S0, S1 � mk,j′ , and
mi+1,0 ≺ mi,j for each i from 0 to k. In this case, the sequence of k + 1 strands
form overlapping yardsticks that stretch from time S0 to time S1.

An interval [S0, S1] may not be of any finite length, since there may be no
sequence of regular strands that span it. Even if it is connected, it may be
connected only using adversary strands. If [S0, S1] is not of finite length, we call
it non-archimedean.

The mechanics of protocols give designers a tool to use to control the lengths of
protocol executions. For instance, the use of the merchant’s nonce Nb in EPMO
ensures that the interval [S0, S1] is of length ≤ 2 if for some run of EPMO,

148 J.D. Guttman

nc,1 ∈ S0 and nm,4 ∈ S1. This property is still true of the weakened EPMO of
Fig. 2. Similarly, if nc,1 ∈ S0 and nm,4 ∈ S1, then the interval is of length ≤ 1.

In this way, the protocol designer can arrange that a volatile assertion, such
as B’s assertion that C’s account has sufficient funds, cannot escape any interval
bounding the current run. Thus, so long as a state change cannot take effect until
a later interval, these state changes are necessarily invisible to the participants in
the protocol. All of their logical reasoning will be based on compatible mutable
facts.

Conclusion. In this talk, we have tried to explain how to do things with protocols
at three layers. The layer of protocol mechanics determines what agreement par-
ticipants must have achieved by the end of a protocol: Agreement on parameters
to the session, agreement on who is excluded from sharing certain parameters
(confidentiality), and agreement on the order in which events occurred (loose
synchronization). The layer of trust management concerns the decision making
of the participants: The commitments they must make to proceed in a session,
their reliance on the commitments others have made in making their own de-
cisions, and the theory or “business logic” that controls their run-time choices.
The layer of state concerns persistent mutable resources—such as money in ac-
counts and data in repositories—that is consumed or produced by transactions.
In particular, we have emphasized the constraint that change of state should
never invalidate the logical premises used in the trust management layer, and
indicated how the causal structure of protocols can prevent mutable state from
undermining logical trust management.

References

1. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Completeness of the authentication
tests. In: Biskup, J., Lopez, J. (eds.) ESORICS. European Symposium on Research
in Computer Security. LNCS, vol. 4734, pp. 106–121. Springer, Heidelberg (2007)

2. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in crypto-
graphic protocols. In: Tools and Algorithms for Construction and Analysis of
Systems (TACAS). LNCS, vol. 4424, pp. 523–538. Springer, Heidelberg (2007),
http://eprint.iacr.org/2006/435

3. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security 12(3/4), 435–484 (2003)

4. Guttman, J.D.: Authentication tests and disjoint encryption: a design method for
security protocols. Journal of Computer Security 12(3/4), 409–433 (2004)

5. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theoretical Computer Science. Conference version appeared in IEEE Symposium
on Security and Privacy, June 2002, 283(2), pp. 333–380 (May 2002)

6. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,
B.T.: Trust management in strand spaces: A rely-guarantee method. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004)

7. Heather, J., Schneider, S.: Toward automatic verification of authentication proto-
cols on an unbounded network. In: Proceedings, 13th Computer Security Founda-
tions Workshop, IEEE Computer Society Press, Los Alamitos (2000)

http://eprint.iacr.org/2006/435

How to do Things with Cryptographic Protocols 149

8. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

9. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: Proceedings, 2002 IEEE Symposium on Security and Privacy,
pp. 114–130. IEEE Computer Society Press, Los Alamitos (2002)

10. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

11. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21(12) (1978)

12. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. In:
Journal of Computer Security (1998) (Also Report 443, Cambridge University
Computer Lab)

A Formal Analysis for Capturing Replay Attacks

in Cryptographic Protocols�

Han Gao1, Chiara Bodei2, Pierpaolo Degano2, and Hanne Riis Nielson1

1 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads bldg 322, DK-2800 Kongens Lyngby, Denmark

{hg,riis}@imm.dtu.dk
2 Dipartimento di Informatica, Università di Pisa,

Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
{chiara,degano}@di.unipi.it

Abstract. We present a reduction semantics for the LYSA calculus ex-
tended with session information, for modelling cryptographic protocols,
and a static analysis for it. If a protocol passes the analysis then it is free
of replay attacks and thus preserves freshness. The analysis has been im-
plemented and applied to a number of protocols, including both original
and corrected version of Needham-Schroeder protocol. The experiment
results show that the analysis is able to capture potential replay attacks.

1 Introduction

Since the 80’s, formal analyses of cryptographic protocols have been widely stud-
ied. Many formal methods have been put forward. Particular significant is the
one built by Dolev and Yao. Indeed, most of the formal analysis tools were built
upon it, e.g. Meadows and Syverson NRL [18], Millen Interrogator [19], Paul-
son inductive method [23], based on Isabelle [24], Blanchet’s Prolog protocol
verifier[2] and BAN logic [7], a logic of authentication used to analyse protocols,
etc. Each tool is equipped to detect a certain amount of attacks, including replay
attacks.

Replay attacks are classified by Syverson in [25] at the highest level as run-
external and run-internal attacks, depending on the origin of messages. In this
paper, we restrict our attention to run-external attacks. This type of attacks
allows the attacker to achieve messages from one run of a protocol, often referred
to as a session, and to send them to a principal participating in another run of
the protocol. A fresh message means that it is not replayed from another session
(old session or parallel session). In BAN logic, reasoning about the freshness
of an entire message amounts to reasoning about the freshness of its fields, i.e.
“if one part of a formula is known to be fresh, then the entire formula must
also be fresh”. We take advantage of the fact that the attacker can manipulate
any message in clear, but it has no direct control on the encrypted messages.
Indeed, in out framework, after each successful decryption, we check whether the
� This work has been partially supported by the project SENSORIA.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 150–165, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Formal Analysis for Capturing Replay Attacks 151

decrypted message is a replayed one from another session, which is a violation
of freshness property.

Here we extend the LYSA calculus [3,4] with annotations about sessions and
we extend the control flow analysis in [3,4] as well. As expected, the new control
flow analysis soundly over-approximates the behavior of protocols, by tracking
the set of messages that are communicated over the network, and recording the
potential values of variables. Since our analysis is sound, we capture malicious
activities, if any, expressed in terms of annotation violations. Our static analysis
is fully automatic and termination is always guaranteed. The proposed analysis
has been implemented. The resulting tool was applied to some cryptographic
protocols, such as Otway-Rees [22] and Needham-Schroeder [21].

As far as the security properties are concerned, replay attacks on security
protocols can cause authentication and/or confidentiality violations. Besides the
other security properties, e.g. authentication and confidentiality, checked with
the CFA in [3,4] we here are able to address an orthogonal property like fresh-
ness. We analyse the Wide Mouthed Frog protocol and the Needham-Schroeder
protocol, both of which do not achieve freshness property in the presence of a
replay attacker.

The paper is organized as follows. In Section 2, we present the LYSA calculus
annotated with session information. We introduce the control flow analysis in
Section 3. In Section 4 we describe a Dolev-Yao attacker extended to fit into
our particular setting. In section 5, we make some experiments in analysing two
versions of the Needham-Schoreder symmetric key protocol. Section 6 concludes
the paper.

2 A Reduction Semantics for the LYSA Calculus

LYSA [3,4] is a process algebra, in the tradition of the π- [20] and Spi- [1] calculi.
Among its peculiar features, there are: (1) the absence of channels: in LYSA all
processes have only access to a single global communication channel, the ether
and (2) tests associated with input and decryption are expressed using pattern
matching.

2.1 Syntax

LYSA consists of terms and processes. The syntax of terms E and processes P
is given below. Here N and X denote sets of names and variables, respectively.
For the sake of simplicity, we only consider here some basic terms and encryp-
tions. The name n is used to represent keys, challenges and names of principals.
Encryptions are tuples of terms E1, . . . , Ek encrypted under a shared key repre-
sented by the term E0. We assume perfect cryptography in this paper.

E ::= n | x | {E1, . . . , Ek}E0

P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ; xj+1, . . . , xk).P |
decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l

E0
in P |

(ν n)P | P1|P2 | !P | 0

152 H. Gao et al.

In addition to the classical constructs for composing processes, LYSA also
contains an input construct with matching and a decryption operation with
matching. The idea behind the matching is as follows: we allow a prefix of the
received tuple to match a selection of values. If the test is passed, the remaining
values are bound to the relevant variables. The label l in the decryption construct
uniquely identifies each decryption point, which is from a numerable set Lab
(l ∈ Lab), and is mechanically attached to processes.

Extended LYSA. We change the syntax of standard LYSA so that each term
and process now carries an identifier of the session it belongs to. In what follows,
we assume that SID is a fixed enumerable set of session identifiers s, and we
denote E1, E2, . . . the extended terms and P , Q, . . . the extended processes defined
below. Note that variables carry no annotation and therefore we shall consider
[x]s and x to be the same (see below). Furthermore, there is no need for the nil
process (0) to carry session information and hence [0]s and 0 are identical.

E ::= [n]s | x | [{E1, . . . , Ek}E0]s
P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ; xj+1, . . . , xk).P |

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l
E0

in P |
(ν [n]s)P | P1|P2 | [!P]s | 0

We define a function F and a function T , in the style of [9], that map standard
terms and processes into the extended ones, by attaching the session identifiers
inductively. Note that F unwinds the syntactic structure of an extended term
until reaching a basic term (a name or a variable), while T unwinds the structure
of an extended process until reaching a nil (which is untagged) or a replication.

Definition 1. Distributing Session Identifiers

F : E × SID → E

−F(n, s) = [n]s −F(x, s) = x

−F({E1, . . . , Ek}E0 , s) = [{F(E1, s), . . . , F(Ek, s)}F(E0,s)]s

T : P × SID → P

−T (〈E1, . . . , Ek〉.P, s) = 〈F(E1, s), . . . , F(Ek, s)〉.T (P, s)

−T ((E1, . . . , Ej ; xj+1, . . . , xk).P, s) =
(F(E1, s), . . . , F(Ej , s); xj+1, . . . , xk).T (P, s)

−T (decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l
E0

in P, s) =
decrypt F(E, s) as {F(E1, s), . . . , F(Ej , s); xj+1, . . . , xk}l

F(E0,s) in T (P, s)

−T (P | Q, s) = T (P, s) | T (Q, s) −T ((ν n)P, s) = (ν [n]s)T (P, s)

−T (!P, s) = [!P]s −T (0, s) = 0

A Formal Analysis for Capturing Replay Attacks 153

2.2 Operational Semantics

Below we assume the standard structural congruence ≡ on LYSA processes, as
the least congruence satisfying the following clauses (as usual fn(P) is the set of
the free names of P):

P | 0 ≡ P (νx)0 ≡ 0
P | Q ≡ Q | P (νx)(νy)P ≡ (νy)(νx)P
(P | Q) | R ≡ P | (Q | R) (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P)
P ≡ Q if P and Q are α-equivalent

Technically, the addition of session identifiers to the syntax of LYSA means
that it is necessary to carry on the session identifiers to the semantics of values,
i.e. terms without variables. The extended value domain will be referred to as
V al, ranged over by V built from the grammar V ::= [n]s | [{V1, . . . , Vk}V0]s
The equivalence relation V1

f
= V2 is defined to be the least equivalence over

V al that (inductively) ignores the session identifers. For example, [n]s
f
= [n]s′

for any s and s′ and [{[n1]s1 , [n2]s2}[n0]s0
]s

f
= [{[n1]s′

1
, [n2]s′

2
}[n0]s′

0
]s′ for any

s, s′, s1, s2, s
′
1 and s2. For the subsequent treatment, it is convenient introducing

an auxiliary operator, I, which extracts the (outermost) session identifier of an
extended value V .

Definition 2. Extracting Session Identifers I: V al → SID

– I([n]s) = s − I([{v1, . . . , vk}v0]s) = s

In BAN logic [7], the freshness property is described as “if one part of a formula
is known to be fresh, then the entire formula must also be fresh”, formally

P |≡ �(X)
P |≡ �(X, Y)

Because of the presence of the network attacker, who can manipulate any
message in clear, we shall here only focus on the encrypted messages, which
is not directly under the control of the attacker. Namely, after each successful
decryption, we check whether there is any field of the encrypted tuple such that
its session identifier is the same as expected. This point is made clearer in the
semantics shown below.

Following the tradition of the π-calculus, we shall give the extended LYSA a
reduction semantics. The reduction relation →R is the least relation on closed
processes that satisfies the rules in Table below and uses the standard notion of
substitution, P [V/x] and structural congruence, as defined above.

As far as the semantics is concerned, we consider two variants of reduction
relation →R, identified by a different instantiation of the relation R, which deco-
rates the transition relation. One variant (→RM) takes advantage of annotations,
the other one (→) discards them: essentially, the first semantics checks freshness
of messages, while the other one does not (see below):

154 H. Gao et al.

– the reference monitor semantics P →RM Q takes RM(s, s′) = (s = s′)
– the standard semantics P → Q takes, by construction, R to be universally

true.

More specifically, after each successful decryption the reference monitor checks
whether at least one field of the encrypted message is coming from the expected
session, i.e. it is fresh, which makes the entire encryption such.

(Com)
∧j

i=1Vi
f
= V ′

i

〈V1, . . . , Vk〉.P | (V ′
1 , . . . , V ′

j ; xj+1, . . . , xk).P ′

→R P | P ′[V ′
j+1/xj+1, . . . , V

′
k/xk]

(Dec)
∧j

i=0Vi
f
= V ′

i ∧ ∨j
i=1 R(I(Vi), I(V ′

i))
decrypt {V1, . . . , Vk}V0 as {V ′

1 , . . . , V ′
j ; xj+1, . . . , xk}l

V ′
0

in P
→R P[V ′

j+1/xj+1, . . . , V
′
k/xk]

(Res)
P →R P ′

(ν [n]s)P →R (ν [n]s)P ′ (Repl) [!P]s →R T (P, s) | [!P]s′ (s′ is fresh)

(Par)
P1 →R P ′

1

P1 | P2 →R P ′
1 | P2

(Congr)
P ≡ P ′ ∧ T (P ′, s) →R T (P ′′, s)

T (P, s) →R T (P ′′, s)

The rule (Com) expresses that an output 〈V1, . . . , Vj , Vj+1, . . . , Vk〉.P matches
an input (V ′

1 , . . . , V ′
j ; xj+1, . . . , xk) in case the first j values are pairwise equal

(under the equivalence
f
=) when all the annotations are recursively removed.

When the matching is successful each Vi is bound to the corresponding xi. Note
that the equivalence relation

f
= is defined over the extended value domain V al.

Similarly, the rule (Dec) expresses the result of matching an encryption
[{V1, . . . , Vk}V0]s with decrypt V as {V ′

1 , . . . , V ′
j ; xj+1, . . . , xk}V ′

0
in P . As it was

the case for communication, the first j values Vi and V ′
i must be equal, and ad-

ditionally the keys must be equal, i.e. V0
f
= V ′

0 . When the matching is successful,
each Vi is bound to the corresponding xi. In the reference monitor semantics we
ensure that the decrypted message comes from the current session by checking
whether any of the first j values Vi and V ′

i have the same session identifiers.
In the standard semantics the disjunction ∨k

i=j+1R(I(Vi), I(V ′
i)) is universally

true and thus can be ignored.
In case of (Repl), the process is unfolded once. Note that the new session iden-

tifier, s′, in this case, has to be unique, i.e. not occurring anywhere else along the
evolution of the process P . This makes sure that each copy of a protocol process
has a unique session identifer such that different copies will not be mixed up.

The rule (Congr) makes use of the function T , which bridges the gap between
the semantics defined on the extended processes P and the structural congruence
defined on the standard processes P .

The rules (Res) and (Par) are standard.

A Formal Analysis for Capturing Replay Attacks 155

Following the line of BAN logic, the freshness of a LYSA process is defined as
follows:

Definition 3 (Freshness). A process P ensures freshness property if for all
the possible executions P →∗

R P ′ → P ′′ when P ′ → P ′′ is derived using (Dec)
on

decrypt [{V1, . . . , Vk}V0]s as {V ′
1 , . . . , V ′

j ; xj+1, . . . , xk}l
V0

in P
there exists at least one i (1 ≤ i ≤ j) such that I(Vi) = I(V ′

i)

It says that an extended process P ensures freshness property if there is no
violation of the annotations in any of its executions.

2.3 Example

We shall use the simplified version (without timestamps) of the Wide Mouthed
Frog protocol [7] (WMF) for illustrating how to encode protocols in our calculus.
WMF is a symmetric key management protocol aiming at establishing a secret
session key Kab between the two principals A and B sharing secret master keys
KA and KB, respectively, with a trusted server S. The protocol is specified by
the following informal narration:

1. A → S : {B, Kab}KA

2. S → B : {A, Kab}KB

3. B → A : {Msg}Kab

The extended LYSA specification of the WMF protocol is [!P]0 where P =
(ν KA)(ν KB)(A|B|S) contains three processes A, B and S, running in parallel,
each of them models one principal’s activity, and is as follows:

1. A (ν Kab)
A → 〈A, S, {B, Kab}KA〉.

3′. → A (B, A; z).
3′′. A decrypt z as {; zm}l1

Kab
in 0

2′. → B | (S, B; y).
2′′. B decrypt y as {A; k}l2

KB
in

3. B (ν Msg)
B → 〈B, A, {Msg}k〉.0

1′. → S | (A, S; p).
1′′. S decrypt p as {B; k′}l3

KA
in

2. S → 〈S, B, {A, k′}KB 〉.0

3 Static Analysis

The LYSA calculus is especially designed to model security protocols involving
a number of principals, where each of them execute a sequence of actions, syn-
chronised by communications. Because of interactions, in most of the cases, it is
impossible to predict the exact behaviour of each principal. In this section, we

156 H. Gao et al.

present a control flow analysis aiming at collecting the central aspect of the in-
formation of a protocol of interest. This is done by over-approximating at static
time the protocol behaviour along all the execution paths.

3.1 Domain of the Analysis

The control flow analysis describes a protocol behaviour by collecting all the
communications that a process may participate in. This information, i.e. the
tuples of values that maybe communicated over the network, is recorded in an
analysis component κ, i.e. κ ⊆ ℘(V al∗) is the abstract network environment
that includes all the tuples forming a message that may flow on the network.
As said before, successful communications involve pattern matching and variable
binding, i.e. binding values to variables. To collect this information, we introduce
another analysis component ρ : X → ℘(V al) that maps the variables to the sets
of values that they may be bound to.

Name Space. Both the analysis components κ and ρ have to do with recording
values V ∈ V al in some format. However, a LYSA process may generate infinitely
many values during an execution because of the restriction and replication con-
structs, e.g. !(ν n)〈n〉, which means that the analysis components have to be
able to record infinitely many names.

For keeping the analysis component finite, we partition all the names used
by a process into finitely many equivalence classes and we use the names of the
equivalence classes instead of the actual names. This partition works in a way
that names from the same equivalence class are assigned a common canonical
name and consequently there are only finitely many canonical names in any
execution of a given process. This is enforced by assigning the same canonical
name to every name generated by the same restriction. The canonical name �n�
is for a name n; similarly �x� is for a variable x. For example, a process, that may
generate infinitely many names, is !(ν n)P , as shown in the following chain of
equivalences: !(ν n)P ≡ (ν n′)P ′ | !(ν n)P ≡ (ν n′)P ′ | (ν n′′)P ′′ | !(ν n)P ≡ . . .
Furthermore, the names n, n′ and n′′ are generated by the same restriction and
hence have the same canonical name, i.e. �n� = �n′� = �n′′�. Hereafter, when
unambiguous, we shall simply write n (resp. x) for �n� (resp. �x�).

3.2 Analysis of Terms and Processes

For each term E, the analysis will determine a superset of the possible values
it may evaluate to. The judgement for terms takes the form ρ |= E : ϑ where
ϑ ⊆ V al is an acceptable estimate (i.e. a sound over-approximation) of the set
of values that E may evaluate to in the environment ρ. The judgement is defined
by the axioms and rules in the upper part of Table below. Basically, the rules
demand that ϑ contains all the values associated with the components of a term.
In the sequel we shall use two kinds of membership tests: the usual V ∈ ϑ that
simply tests whether V is in the set ϑ and the faithful test V ∝ ϑ that holds
if there is a value V ′ in ϑ that equals V , when the annotations are inductively
ignored.

A Formal Analysis for Capturing Replay Attacks 157

The judgement for processes has the form: ρ, κ |=RM P : ψ expressing that
ρ, κ and ψ are valid analysis estimates of process P . The additional component
ψ ⊆ ℘(Lab) is the possibly empty set of error-component which collects an over-
approximation of the freshness violations: a label l ∈ ψ means that the value
binding after a successful decryption, marked with label l, violates the freshness
annotations and therefore is not allowed. We prove in Theorem 2 (in Section
3.1) that when ψ = ∅ we may do without the reference monitor. The judgement
is defined by the axioms and rules in the lower part of Table below (where
A ⇒ B means that B is analysed only when A is true) and are explained below.
Note that we only check whether a proposed triple, (ρ, κ, ψ), is indeed valid; the
algorithm to build solutions is sketched in Section 5.1.

(Name)
[n]s ∈ ϑ

ρ |= [n]s : ϑ
(Var)

ρ(x) ⊆ ϑ

ρ |= x : ϑ

(Enc)

∧k
i=0ρ |= Ei : ϑi ∧

∀V0, . . . , Vk : ∧k
i=0Vi ∈ ϑi ⇒ [{V1, . . . , Vk}V0]s ∈ ϑ

ρ |= [{E1, . . . , Ek}E0]s : ϑ

(Out)

∧k
i=1ρ |= Ei : ϑi ∧

∀V1, . . . , Vk ∧k
i=1 Vi ∈ ϑi ⇒

〈V1, . . . , Vk〉 ∈ κ ∧ ρ, κ |=RM P : ψ

ρ, κ |=RM 〈E1, . . . , Ek〉.P : ψ

(Inp)

∧j
i=1ρ |= Ei : ϑi ∧

∀〈V1, . . . , Vk〉 ∈ κ : ∧j
i=1Vi ∝ ϑi ⇒

∧k
i=j+1Vi ∈ ρ(xi) ∧ ρ, κ |=RM P : ψ

ρ, κ |=RM (E1, . . . , Ej ; xj+1, . . . , xk).P : ψ

(Dec)

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi∧

∀[{V1, . . . , Vk}V0]s ∈ ϑ : ∧j
i=0Vi ∝ ϑi ⇒

(∧k
i=j+1Vi ∈ ρ(xi) ∧ ρ, κ |=RM P : ψ ∧

(� ∃i : 1 ≤ i ≤ k : (I(Vi) = I(Ei)) ⇒ l ∈ ψ))
ρ, κ |=RM decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}l

E0
in P : ψ

(Rep)
ρ, κ |=RM T ([P]s) : ψ ∧ ρ, κ |=RM T ([P]s′) : ψ

ρ, κ |=RM [!P]s : ψ
(Nil) ρ, κ |=RM 0 : ψ

(Par)
ρ, κ |=RM P : ψ ∧ ρ, κ |=RM Q : ψ

ρ, κ |=RM P | Q : ψ
(Res)

ρ, κ |=RM P : ψ

ρ, κ |=RM (ν[n]s)P : ψ

The rule for output does two things: first, all the expressions are abstractly
evaluated and then it is required that all the combinations of the values found
by this evaluation are recorded in κ. Finally, the continuation process must be
analysed, which is also the case for input and decryption rules.

158 H. Gao et al.

The rule for input incorporates pattern matching, which is dealt with by first
abstractly evaluating all the of first j expressions in the input to be the sets ϑi

for i = 1, . . . , j. Next, if any of the sequences of length k in κ are such that the
first j values component-wise are included in ϑi then the match is considered to
be successful. In this case, the remaining values of the k-tuple must be recorded
in ρ as possible bindings of the variables.

The rule for decryption handles the matching similarly to the rule for input.
The only difference is that here the matching is performed also on the key. We
use the faithful test for matching because the semantics ignores the annotations.
After the successful matching, values are bound to the corresponding variables
and, more importantly, the session identifiers of the key and of the first j compo-
nents have to be checked equivalent. In case for some i, I(vi) �= I(Ei), meaning
that not all the values are from the current session, the label of the decryption
l is recorded in the error component ψ.

The rule for replication attaches two different session identifiers to two copies
of the process before analysing both of them. Again the newly generated ses-
sion identifier has to be unique in order not to mix processes up. We prove in
Theorem 2 that it is enough to only analyse two copies of the process. For an
informal argument: a replay attack is about replaying messages from a sessions
to a principal not participating in the session and the control flow analysis treats
sequential sessions and parallel session in the same way, analysing more than two
sessions are not giving more information about attacks.

The rules for the inactive process, parallel composition and restriction are
straightforward.

3.3 Semantic Properties

In this section, we shall show a list of lemmas and theorems concerning the
semantics correctness. The detail proofs are omitted due to space limitations.

Our analysis respects the operational semantics of extended LYSA. More pre-
cisely, we prove a subject reduction result for both the standard and the reference
monitor semantics: if ρ, κ |= P : ψ, then the same triple (ρ, κ, ψ) is a valid esti-
mate for all the states passed through in a computation of P . Additionally, we
show that when the ψ component is empty, then the reference monitor is useless.

It is convenient to prove the following lemmata. The first states that estimates
are resistant to substitution of closed terms for variables, and it holds for both
extended terms and processes. The second lemma says that an estimate for an
extended processes P is valid for every process congruent to P , as well.

Lemma 1. (Substitution)

1. ρ |= E : ϑ and E ′ ∈ ρ(x) imply ρ |= E [E ′/x] : ϑ
2. ρ, κ |= P : ψ and E ∈ ρ(x) imply ρ, κ |= P [E/x] : ψ

Proof. The proofs proceed by structural induction over terms.

Lemma 2. (Congruence)
If P ≡ Q and ρ, κ |= T ([P]s) : ψ then ρ, κ |= T ([Q]s) : ψ

A Formal Analysis for Capturing Replay Attacks 159

Proof. By a straightforward inspection of each of the clauses defining P ≡ Q.

Subject reduction result holds for both the standard and the reference monitor
semantics: if ρ, κ |=RM P : ψ, then the same triple (ρ, κ, ψ) is a valid estimate
for all the derivatives of P .

Theorem 1. (Subject reduction)

1. If P →R Q and ρ, κ |= P : ψ then also ρ, κ |= Q : ψ;
2. Furthermore, if ψ = ∅ then P →RM Q

Proof. The proof is done by induction of the inference of P →R Q.

The next result shows that our analysis correctly predicts when we can safely
dispense with the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q, Q′ such that P →∗

R Q →RM Q′

and P →∗
RM Q �RM. As usual, * stands for the transitive and reflexive closure

of the relation in question, and Q �RM stands for � ∃Q′ : Q →RM Q′.

Theorem 2. (Static check for reference monitor)

If ρ, κ |= P : ∅ then RM cannot abort P.

Proof Suppose per absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P →∗ Q giving ρ, κ |=RM Q : ∅.
Theorem 1 part 2 of applied to Q → Q′ gives Q →RM Q′ which is a contradiction.

3.4 Example

The least solution of the analysis of the WMF protocol and has a non-empty
ψ-component, i.e.

ρ, κ |=RM WMF : ψ

where ρ, κ and ψ have the following entries

ρ : y �→ {{[A]0, [Kab]0}[KB]0 , {[A]1, [Kab]1}[KB]1}
z �→ {{[Msg]0}[Kab]0 , {[Msg]1}[Kab]1}
p �→ {{[B]0, [Kab]0}[KA]0 , {[B]1, [Kab]1}[KA]1}
k �→ {[Kab]0, [Kab]1}
k′ �→ {[Kab]0, [Kab]1}
zm �→ {[Msg]0, [Msg]1}

κ : {〈[A]0, [S]0, [{[B]0, [Kab]0}[KA]0]0〉, 〈[A]1, [S]1, [{[B]1, [Kab]1}[KA]1]1〉}∪
{〈[B]0, [A]0, [{[Msg]0}[Kab]0]0〉, 〈[B]1, [A]1, [{[Msg]1}[Kab]1]1〉}∪
{〈[S]0, [B]0, [{[A]0, [Kab]0}[KB]0]0〉, 〈[S]1, [B]1, [{[A]1, [Kab]1}[KB]1]1〉}

ψ : {l1, l2, l3}

160 H. Gao et al.

According the rule for [!P]s in Table shown before, the analysis makes two
copies of P with different session identifiers (0 and 1 in our case), which models
two sessions running together.

The messages from both sessions are sent over the network, which the attacker
has the total control of. Therefore, the attacher can fool a principal to accept
a message actually coming from another session. This is suggested by the non-
empty ψ: the three variables in ψ indicate that messages in step 1′′, 2′′ and
3′′ may not be fresh. This is highly dangerous because the principal may be
forced to use an old session to encrypt the security data and in case of an old
session key is revealed, confidentiality is not preserved any longer. A possible
attack derivable from the solution above is shown below, where M represents
the attacker:

1. [A]1 → [S]1 : {[B]1, [Kab]1}[KA]1
2. [S]1 → M : {[A]1, [Kab]1}[KB]1

M → [B]1 : {[A]0, [Kab]0}[KB]0
3. [B]1 → [A]1 : {[Msg]1}[Kab]0

4 Modelling the Attackers

In a protocol execution, several principals exchange messages over an open net-
work, which is accessible to the attackers and therefore vulnerable to malicious
behaviour. We assume an active Dolev-Yao attacker [11]. It is active in the sense
that it is not only able to eavesdrop, but also to replay, encrypt, decrypt or gen-
erate messages providing that the necessary information is within his knowledge.

This scenario can be modelled in extended LYSA as an attacker process run-
ning in parallel with the protocol process. Formally, we shall have Psys | Q, where
Psys represents the protocol process and Q is some arbitrary attacker. The at-
tacker acquires its knowledge by interacting with Psys, starting from the public
knowledge. Note that the secret messages and keys, e.g. Kab, are restricted to
their scope in Psys and thus they are not immediately accessible to the attacker.

4.1 Constructing Attacker Process

Our aim consists in finding a general way of constructing the attacker process,
which is able to characterise all the attackers. The idea here is to define a formula,
inspired by the work [3,4], and then to prove its correctness.

In order for the attacker process to interact with the protocol process, some
basic information of the protocol process has to be known in advance. We shall
say that a process Psys has the type (Nf , Aκ, AEnc) whenever: (1) it is close,
(2) all the free names of Psys are in Nf , (3) all the arities used for sending or
receiving are in Aκ and (4) all the arities used for encryption or decryption
are in AEnc. Obviously, Nf , Aκ and AEnc are all finite and can be computed by
inspecting the process Psys.

One concern regarding the attacker process is about the names and variables
it uses, which have to be apart from the ones used by Psys. Let all the names
used by Psys to be in a finite set Nc, all the variables in a finite set Xc and all the

A Formal Analysis for Capturing Replay Attacks 161

session identifiers in a finite set Sc; we can then postulate a new extended name
[n•]s• , where n• is not in Nc, a new variable z• not in Xc, and a new session
identifier s• not in Sc.

In order to control the number of names and variables used by the attacker,
we construct a semantically equivalent process Q′, for a process Q of type
(Nf , Aκ, AEnc), as follows: 1) all restrictions (ν[n]s)P are α-converted into re-
strictions (ν[n′]s•)P where n′ has the canonical representative n•, 2) all the
occurrences of variables xi in (E1, . . . , Ej; xj+1, . . . , xk).P and of variables xi in
decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk} in P are α-converted to use variables x′

i

with canonical representative z•. Therefore Q′ only has finitely many canonical
names and variables.

(1) ∧k∈Aκ ∀ 〈v1, . . . , vk〉 ∈ κ : ∧k
i=1 vi ∈ ρ(z•)

the attacker may learn by eavesdropping

(2) ∧k∈AEnc ∀[{v1, . . . , vk}v0]s ∈ ρ(z•) :
v0 ∝ ρ(z•) ⇒ ∧k

i=1vi ∈ ρ(z•)
the attacker may learn by decrypting messages with keys already known

(3) ∧k∈AEnc ∀ v0, . . . , vk : ∧k
i=0vi ∈ ρ(z•) ⇒ [{v1, . . . , vk}v0]s• ∈ ρ(z•)

the attacker may construct new encryptions using the keys known

(4) ∧k∈Aκ ∀v1, . . . , vk : ∧k
i=1vi ∈ ρ(z•) ⇒ 〈v1, . . . , vk〉 ∈ κ

the attacker may actively forge new communications

(5) {[n•]s•} ∪ Nf ⊆ ρ(z•)
the attacker initially has some knowledge

We now have sufficient control over the capabilities of the attacker. Now, we
extend the standard Dolev-Yao threat model with session identifiers. We express
the extended Dolev-Yao condition for our LYSA calculus and define a formula
FDY

RM of type (Nf , Aκ, AEnc) as the conjunction of the five components in Table
shown above, where each line describes an ability of the attacker. Furthermore,
we claim that the formula FDY

RM is capable of characterising the potential effect
of all attackers Q of type (Nf , Aκ, AEnc).

The soundness of our Dolev-Yao condition is established by the following
Theorem.

Theorem 3. (Correctness of the extended Dolev-Yao condition)

If (ρ, κ) satisfies FDY
RM of type (Nf , Aκ, AEnc) then there exists ψ such that for

all attackers Q of type (Nf , Aκ, AEnc) ρ, κ |=RM Q : ψ

Proof. The proof is done by structural induction on Q.

5 Main Results

The session identifiers in the extended LYSA are designed to make the capture of
replay attacks easier, thus ensuring that the receiving messages are fresh. For the

162 H. Gao et al.

dynamic property, we say that Psys guarantees dynamic freshness with respect
to the annotations in Psys if the reference monitor RM cannot abort Psys | Q
regardless of the choice of the attacker Q.

Similarly, for static property we say that Psys guarantees static freshness with
respect to the annotations in Psys if there exists ρ and κ such that ρ, κ |=RM P : ∅
and (ρ, κ) satisfies FDY

RM.

Theorem 4. If P guarantees static freshness then P guarantees dynamic
freshness.

Proof. If ρ, κ |=RM Psys : ∅ and (ρ, κ) satisfies FDY
RM then, by Theorems 2 and 3,

RM does not abort Psys | Q regardless of the choice of attacker Q.

5.1 Implementation and Complexity

To obtain an implementation we transform the analysis into a logically equivalent
formation written in Alternation-free Least Fixed Point logic (ALFP) [12], and
use the Succinct Solver [12], which computes the least interpretation of the
predicate symbols in a given ALFP formula. The time complexity of solving a
formula in the Succinct Solver is polynomial in the size of the universe, over
which the formula is interpreted. For our implementation the universe is linear
in the size of the process and a simple worst-case estimate of the degree of
the complexity polynomial is given as one plus the maximal nesting depth of
quantifiers in the formula. For our current implementation the nesting depth is
governed by the maximal length of the sequences used in the communication
and encryption. In practice, the implementation runs in sub-cubic time and we
obtain running times well in few seconds for all of our experiments.

5.2 Validation of Needham-Schroeder Symmetric Key Protocol

Needham-Schroeder Symmetric Key Protocol is a classical protocol and has been
used widely as an example for protocol verification. The protocol has 6 steps: in
the first steps, a fresh session key K is generated by the trusted server S and sent
to both parties, A and B; in the following two steps, B sends out a challenge to
make sure A is in possession of the new session key. After a protocol run, A and
B share a secret session key for secure communication. The protocol narration
is listed below in the left,

1. A → S : A, B, Na

2. S → A : {Na, B, K, {K, A}Kb
}Ka

3. A → B : {A, K}Kb

4. B → A : {Nb}K

5. A → B : {Nb − 1}K

6. A → B : {Msg}K

the protocol narration

1. A → S : A, B, Na

2. S → A : {Na, B, K, {K, A}Kb
}Ka

3. M(A) → B : {A, K ′}Kb

4. B → M(A) : {Nb}K′

5. M(A) → B : {Nb − 1}K′

6. M(A) → B : {Msg}K′

a replay attack scenario

The analysis result of Needhan-Schroeder Symmetric Key Protocol shows a
violation, meaning that it is subject to a replay attack. This result corresponds

A Formal Analysis for Capturing Replay Attacks 163

to the replay attack reported by Denning & Sacco in [10]: the message in step 3
can be replayed with an old compromised session key by an active attacker and
consequently B is forced to use the old key K ′ for communication. An example
trace is shown above in the right.

To fix this problem, Denning & Sacco and Needham & Schroeder proposed
different solutions but both make use of new nonces. Needham & Schroeder’s
solution is: having A ask B for another random value N ′

a to be sent to the Server
for return in {A, N ′

a, K}Kb
. After the correction, the first three steps become the

followings and others keep unchanged.

1. A → S : A, B, Na, N ′
a

2. S → A : {Na, B, K, {A, N ′
a, K}Kb

}Ka

3. M(A) → B : {A, N ′
a, K}Kb

After applying the analysis to the above version, the result becomes: no vio-
lations possible, i.e. ψ = ∅, meaning that the attacker now cannot replay the
message from step 3 and therefore no replay attack is possible to this corrected
version.

6 Conclusion

In this paper we have introduced a sound way to detect replay attacks at static
time. To do that, we extended the standard LYSA calculus with session identifiers
and gave it a reduction semantics. The semantics ensures session identifiers are
properly treated along the evolution of a process. On the static side, we extended
the control flow analysis [3,4] to verify the freshness property of the extended
processes. The static property ensures that, if the secret information received by
a principal is in the right context, then a process is not subject to a run-external
attack at execution time. As far as the attacker is concerned, we adopted the no-
tion from Dolev-Yao threat model and extended it with session identifiers in or-
der to fit it into our setting. The extended Dolev-Yao attacker is able to monitor
the traffic over the network and actively generate messages within his knowledge.
We implemented the analysis and used our tool to check some significant proto-
cols, including classical protocols, e.g. Wide Mouthed Frog, Yahalom, Andrew
Secure RPC, Otway-Rees, Needham-Schroeder, Amended Needham-Schroeder.
Besides the classical protocols, at present, we are successfully applying our analy-
sis to other kinds of protocols, like the ones in the family of IEEE 802.16 [17].
The tool confirmed that we can successfully detect potential replay attacks on
the protocols.

The original LYSA calculus and the control flow analysis [3,4] are designed
to validate authentication property of security protocols. In this paper, they are
extended systematically such that we are able to address an orthogonal property,
freshness. The way we validate freshness is inspired by BAN logic [7], which is
actually a set of rules for defining and analysing security protocols, namely “if
one part of a formula is known to be fresh, then the entire formula must also be
fresh”. We also prove that analysing two copies of a process in our framework is

164 H. Gao et al.

sufficient for capturing run-external replay attacks. The experiments conducted
also confirmed this. The literature already has similar results, e.g. Comon &
Cortier [8] and Millen [19].

Several papers deal with replay attacks and freshness. Because of lack of
space, we only mention the closest to ours, i.e. [14,15,16] and [6], where the
approach is based on type (and effects) systems that statically guarantee entity
authentication of protocols. Gordon and Jeffrey [14,15,16] defined type (and
effects) systems that statically guarantee authentication of protocols specified in
a Spi-calculus enriched with assertions à la Woo-Lam. In [6], Bugliesi, Focardi,
Maffei still use a type and effect system, but use a different technique and a
different calculus (the ρ-spi calculus).

The analysis presented in this paper is part of a project, analysing various se-
curity properties of communication protocols using annotations. It can be easily
combined with other kinds of annotations from the same framework, e.g. the one
from [13] for confidentiality, and the one from [5] for simple type flaw attacks,
and hence gives a more comprehensive analysis result.

References

1. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation 148(1), 1–70 (1999)

2. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
IEEE Computer Society Press, Los Alamitos (2001)

3. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Automatic
Valication of Protocol Narration. In: Proceeding of Computer Security Foundations
Workshop, pp. 126–140. IEEE Press, Los Alamitos (2003)

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Static Valida-
tion of Security Protocols. Journal of Computer Security 13(3), 347–390 (2005)

5. Bodei, C., Degano, P., Gao, H., Brodo, L.: Detecting and Preventing Type flaws:
a Contro Flow Analysis with tags. In: Proceeding of 5th International Workshop
on Security Issues in Concurrency. ENTCS (to appear)

6. Bugliesi, M., Focardi, R., Maffei, M.: Authenticity by Tagging and Typing. In:
Proceeding of 2nd ACM Workshop on Formal Methods in Security Engineering,
ACM Press, New York (2004)

7. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transac-
tions in Computer Systems 8(1), 18–36 (1990)

8. Comon-Lundh, H., Cortier, V.: Tree automata with one memory set constraints
and cryptographic protocols. Theoretical Computer Science 331(1), 143–214 (2005)

9. Curti, M., Degano, P., Tatiana Baldari, C.: Causal π-Calculus for Biochemical
Modelling. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 21–33. Springer,
Heidelberg (2003)

10. Denning, D.E., Maria Sacco, G.: Timestamps in Key Distribution Protocols. Com-
munications of the ACM 24(8), 533–536 (1981)

11. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE TIT,
IT 29(12), 198–208 (1983)

12. Nielson, F., Seidl, H., Riis Nielson, H.: A Succinct Solver for ALFP. Nordic Journal
of Computing 9, 335–372 (2002)

A Formal Analysis for Capturing Replay Attacks 165

13. Gao, H., Riis Nielson, H.: Analysis of LYSA-calculus with explicit confidentiality
annotations. In: Proceeding of Advanced Information Networking and Applica-
tions, IEEE Computer Society, Los Alamitos (2006)

14. Gordon, A.D., Jeffrey, A.: Authenticity by Typing for Security Protocols. In: Pro-
ceeding of Computer Security Foundations Symposium, IEEE, Los Alamitos (2001)

15. Gordon, A.D.: Typing Correspondence Assertions for Communication Protocols.
In: Proceeding of Mathematical Foundations of Programming Semantics (2001)

16. Gordon, A.D., Jeffrey, A.: Types and Effects for Asymmetric Cryptographic Pro-
tocols. In: Proceeding of Computer Security Foundations Symposium, IEEE, Los
Alamitos (2002)

17. IEEE Std 802.16e-2005, Standard for Local and metropolitan area networks Part
16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amend-
ment 2: Physical and Medium Access Control Layers for Combined Fixed and
Mobile Operation in Licensed Bands and Corrigendum 1, IEEE, New York, USA
(2006)

18. Meadows, C., Syverson, P., Cervesato, I.: Formal Specification and Analysis of the
Group Domain of Interpretation Protocol Using NPATRL and the NRL Protocol
Analyzer. Journal of Computer Security 12(6), 893–931 (2004)

19. Millen, J.K.: Term Replacement Algebra for the Interrogator. The MITRE Corpo-
ration, MP 97B65 (1997)

20. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

21. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21(12) (December 1978)

22. Otway, D., Rees, O.: Efficient and Timely Mutual Authentication. Operating Sys-
tems Review 21(1), 8–10 (1987)

23. Paulson, L.C.: Inductive Analysis of the Internet Protocol TLS. ACM Transactions
on Computer and System Security 2(3), 332–351 (1999)

24. Paulson, L.C.: The foundation of a generic theorem prover. Automated Reason-
ing 5, 363–397 (1989)

25. Syverson, P.: A Taxonomy of Replay attacks. In: Proceeding of Computer Security
Foundations Symposium, IEEE Computer Society Press, Los Alamitos (1994)

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 166 – 180, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Abstraction and Refinement Framework for
Verifying Security Protocols Based on Logic

Programming

MengJun Li1,*, Ti Zhou1, ZhouJun Li2,*, and HuoWang Chen1,*

1 School of Computer Science, National University of Defense Technology,
ChangSha, 410073, China

2 School of Computer Science & Engineering, Beihang University, BeiJing 100083, China
mengjun_li1975@yahoo.com.cn

Abstract. Using depth(k) abstract domain, we present an abstraction and re-
finement framework for verifying security protocols based on logic program-
ming. The solved-form fixpoint of the logic program model is abstracted by
depth(k) abstract domain, which guarantees termination of the verification algo-
rithm; If the result of the verification algorithm with the abstract solved-form
fixpoint shows there exists counterexamples, but the result of the verification
algorithm with the logic rules in abstract solved-form fixpoint which are not ab-
stracted shows there exists no counterexamples, then the abstracted solved-form
fixpoint is refined by increasing the value of term depth bound k. With this
framework, all of the verification, constructing counterexamples and refinement
can be implemented in a mechanized way.

Keywords: abstraction and refinement; security protocol.

1 Introduction

The verification of security protocols is an active research area. Bruno Blanchet and
Martin abadi present the verification technique based on logic program model and
resolution[1-5]. The verification technique consists of translating security protocol
into logic program model, followed by a resolution-based verification algorithm. It
has the following characteristics:

• It can verify protocols with an unbounded number of sessions.
• It can easily handle a variety of cryptographic primitives, including shared key and

public-key cryptography, hash functions, message authentication codes, etc.
• It is efficient in practice.

However, the resolution-based verification algorithm does not terminate in general. In
fact, the algorithm did not terminate (went into an infinite loop) when it was applied
to the Needham-Schroeder shared-key protocol and several versions of the Woo-Lam
shared-key one-way authentication protocol[5].

* Supported by the National Natural Science Foundation of China under Grant Nos.

60473057,90604007,60703075.

 An Abstraction and Refinement Framework for Verifying Security Protocols 167

This paper presents an abstraction and refinement framework for verifying security
protocol based on abstraction of fixpoint of its logic program model. The solved-form
fixpoint of the logic program model is abstracted by depth(k) abstract domain[6], it is
abstracted into finite solved-form logic rules, which would guarantee termination of
the resolution-based verification algorithm. If the verification algorithm with the ab-
stract solved-form fixpoint shows there exists counterexamples, but the verification
algorithm with logic rules in abstract solved-form fixpoint which are not abstracted
shows there exists no counterexamples, then the abstracted solved-form fixpoint is
refined by increasing the value of term depth bound k. With this abstraction and re-
finement framework, security protocols can be verified iteratively: if the resolution-
based verification algorithm with abstract fixpoint shows protocol satisfies the secu-
rity properties, then the protocol satisfies the security properties since the abstraction
is a safe approximation; Otherwise, if the counterexamples can be constructed using
those logic rules which are not abstracted, then the constructed counterexamples are
actually attacks against protocol. If the counterexamples can not be constructed using
those logic rules which are not abstracted, then the abstraction of fixpoint should be
refined. With this abstraction and refinement framework, all of the verification, con-
structing counterexample and refinement can be implemented in a mechanized way.

Related Work. Although the problem of deciding correctness of security protocol is
undecidable[7], verifying it based on abstract interpretation[8] is a feasible and effec-
tive approach. L. Bozga, Y. Lakhnech and M. Perin present a pattern-based abstrac-
tion method for verifying secrecy property[9], they use the sets of pattern-terms as
abstract domain, and they implement a verification tool HERMES[10].Given a proto-
col and a secret property, HERMES computes conditions on the initial intruder
knowledge that guarantee the secret is never going to be revealed. Frédéric Oehl,
Gérard Cécé, Olga Kouchnarenko and David Sinclair present an approximation func-
tion developed for the verification of security protocols. The approximation function
can be build automatically and its computation is guaranteed to terminate. Given an
initial tree automaton A (recognizing the initial configuration of the network where
everybody wants to communicate with everybody), a term rewriting system
R(modeling the protocol steps and the intruder abilities), by the approximation func-

tion, an tree automaton TR↑(A) recognizing an approximation of the possible configu-

rations of the network reachable by R from A is built, moreover R*(L(A))⊆

L(TR↑(A)), where L(A) is the language accepted by A and * be the closure operator.
Recently, Michael Backes, Matteo Maffei, and Agostino Cortesi present a novel tech-
nique for analyzing security protocols based on an abstraction of the program seman-
tics[12], the technique is based on a novel structure called causal graph which cap-
tures the causality among program events within a finite graph. A core property of
causal graphs is that they abstract away from the multiplicity of protocol sessions,
hence constituting a concise tool for reasoning about an even infinite number of con-
current protocol sessions, and deciding security only requires a traversal of the causal
graph.

Comparing with their work, our approach supports the abstraction and refinement
iteration verification framework. There exists no explicit refinement ways for pattern-
terms abstract domain[9],, tree automaton[11], and causal graphs abstract domain[12],

168 M. Li et al.

whereas the depth(k) abstract domain is prone to be refined by only increasing the
value of term depth bound k. And abstracting fixpoint by depth(k) abstract domain is
also fit for the verification technique[1-5], many optimization techniques still can be
used to improve computation efficiency.

The paper is organized as follows: in section 2, the logic program model of secu-
rity protocol is presented; And in section 3, the resolution-based verification algo-
rithm is presented; Both the extended model and the verification algorithm presented
in [13][14] are variants corresponding to the model and the resolution-based verifica-
tion algorithm in [1][2]; In section 4, the abstraction and refinement framework of the
solved-form fixpoint is presented; In section 5, we demonstrate the effectiveness of

the abstraction and refinement framework by the version ∏3 of the Woo-Lam Shared-
key one way authentication protocol[16]. In section 6, we conclude this paper.

2 Security Protocols’ Logic Program Model

A protocol is represented by a set of logic rules, whose syntax is given in Table1.

Table 1. Syntax of the Logic Program Model

tag::= Tag
true, false Bool

M,N,U,V,S,T::= Terms
x, y, z Variable
a[M1,…, Mn] Name
f(M1,…, Mn) Function

F,C,A::= Atom, Fact
attacker(role(<M,N,tag>,M')) Attacker predicate
begin(M,M') begin predicate
end(M,M') end predicate

R,R'::= Rules

F1∧…∧Fn→F Logic rules

The atoms attacker(role(<M,N,tag>),M'), begin(M,M') and end(M,M') are called

closed atoms if M' does not contain any variables.

2.1 The Honest Roles’ Model

The model of honest roles in security protocol is a group of logic rules. For each role
A, a logic rule is generated when he sends a message M, the head of the rule is at-
tacker(role(<A,N,true>,M)) if he believes N is the receiver(ideal receiver) of M; The
body of the rule is attacker(role(<M1,A, true>,M1'))∧…∧attacker(role
(<Mn,A,true>,Mn')), where M1',…, Mn' are messages that A have received before he
sends M, and he believes that Mi is the sender(ideal sender) of the message

 An Abstraction and Refinement Framework for Verifying Security Protocols 169

Mi'(i=1,…,n). For example, the logic rules are the representation of the honest role A
in the simplified Needham-Schroeder public-key authentication protocol are de-
scribed as follows:

→attacker(role(<host(kA[]),host(v1),true>,encrypt(2tuple(NA[iA
1],host(kA[])),

pub(v1))));
attacker(role(<host(v4),host(kA[]),true>,encrypt(2tuple(v5,NA[iA

2])),pub(kA[]))))
→attacker(role(<host(kA[]),host(v4), true>, encrypt(v5, pub(v4)))) ;

In the above logic rules, kA[] is the private-key of A, pub(kA[]) is the public-key of
A, host(kA[]) denotes A, the fresh nonce NA is Skolemized to NA[iA

1], iA
1 is a session

identifier variable, ntuple(M1,…, Mn) is the composition message obtained from
M1,…, Mn, and encrypt(M,k) is the ciphertext constructed from the plaintext M and
the key k. Generally speaking, similar to Bruno Blanchet’s security protocol model,
the fresh nonces and the fresh encryption keys in security protocols are all Skolem-
ized: the parameters of the Skolem functions consist of a session identifier variable
and the messages received before the fresh nonces or encryption keys are generated.
In the honest roles’ model, the value of tag in atoms attacker(role (<M,N,tag>, M')) is
true.

2.2 The Intruder’s Model

The intruder’s Dolev-Yao model is characterized by the following logic rules:

(1)For each M∈S, where S is the public knowledge set of security protocol, the rule
→attacker(role(<host(kI[]), host(v), false>,M)) is generated;
(2)For each n-ary constructor f in security protocol , the rule attacker(role (<host(v1),

host(kI[]),false>,x1))∧…∧attacker(role(<host(vn),host(kI[]),false>,xn))→attacker(role
(<host(kI[]), host(v), false>, f(x1,…,xn))) is generated;
(3)For every n-ary destructor g in security protocol and for each reduction

g(M1,…,Mn)=M of g, the rule attacker(role(<host(v1),host(kI[]),false>, M1))∧…∧
attacker(role(<host(vn),host(kI[]),false>,Mn))→ attacker (role (<host(kI[]),host(v),false>,
M)) is generated.
In the above model, host(kI[]) denotes the intruder, and in all atoms attacker(role
(<M,N,tag>,M')) of the Dolev-Yao model, the value of tag is false.

2.3 Security Property

Def1(Rule Implication). Let R1=H1
1∧…∧Hm

1→C1 and R2=H1
2∧…∧Hn

2→C2 be two
logic rules, if C1=attacker(role(<M1,N1,tag1>, M1)), C2=attacker(role(<M2, N2,tag2>,

M2)), or C1=end(M,M1) and C2=end(M,M2), define rule implication R1⇒R2 if and
only if there exists a substitution θ such that: M1θ=M2, and for each Hi

1=attacker

(role(<Mi
1,Ni

1,tagi
1>,Mi'))∈{H1

1,…,Hm
1}, there exists Hj

2= attacker(role(<Mj
2,Nj

2,
tagj

2>,Mj'')) ∈{H1
2,…,Hn

2}, and for each Hi
1=begin(M,Mi')∈{H1

1,…,Hm
1}, there ex-

ists Hj
2=begin (M,Mj'')∈{H1

2,…,Hn
2},such that Mi'θ=Mj''. The substitution θ is called

the implication substitution of R1⇒R2.

170 M. Li et al.

Def2(Derivability). Let F be a closed atom, let B be a logic rule set, F is derivable
from B if and only if there exists a finite tree defined as follows:

(1)Its nodes(except the root node) are labeled by rules R∈B, and its edges are labeled
by closed atoms.
(2)If the tree contains a node labeled by R with an incoming edge labeled by F0 and n

outgoing edges labeled by F1,…,Fn , then R⇒F1∧…∧Fn→F0.
(3)The root node has only one outgoing edge labeled by F.

such a tree is called a derivation tree of F from B.

Def3(Secrecy). Let P be the logic program model of security protocol, F=attacker(role
(<M, N,tag>,M')) be a closed atom, if F can not be derivable from P, then we say the
security protocol satisfies the secrecy property with respect to M'.

The authentication property is characterized by the correspondence assertions be-
gin(M,M') and end(M,M'), let Bb={→begin(M1,M1'), …, →begin(Mn, Mn')}.

Def4(Authentication). Let P be the logic program model of security protocol, be-
gin(M, M'),end(M,M') be correspondence assertions, and end(M,M') be a closed atom,

if end(M,M') is derivable from P∪Bb, then →begin (M, M')∈Bb, we say the security
protocol satisfies the authentication property with respect to begin(M,M') and
end(M,M').

3 Verification Approach

Def5(Resolution) Let R=H→F and R'=H'→F' be two logic rules, F=attacker(role
(<M1, N1, tag1>, M1')), let F0=attacker(role(<M2,N2,tag2>,M2')) be an atom in H ' such
that M1' can be unified with M2', then the resolution R'·R between R and R' is (H∧(H'-
F0))θ→F'θ, θ=mgu(M1',M2') is the most general unifier of M1' and M2', F0= selectedA-
tom(R') is called the selected atom of R', θ=sub(R,R') is called the substitution of the
resolution R'·R.

In fact, the resolution R'·R between R and R' describes a message exchange proce-
dure: the exchanged message is M1'θ(=M2'θ), the sender is M1θ and M1θ believes that
the receiver(ideal receiver) of M1'θ is N1θ, the receiver is N2θ and N2θ believes that
the sender(ideal sender) of M1'θ is M2θ.

Def6(Goal). Atoms in the body of a logic rule which is in the form attacker(role
(<M,N,tag>,x)(x is arbitrary a variable) and begin(M,M') are called false goals, atoms
in the form attacker(role(<M,N,tag>,M')(M' is not a variable) and end(M,M') are
called goals.

Def7 (Solved Form). Let H→C be a logic rule, if the atoms in H are all false goals,
then we say H→C is in solved form.

Let SolvedForm denotes the set of logic rules those are in solved form, and Un-
SolvedForm denotes the set of logic rules those are not in solved form.

Def8(X-resolution). Let R=H→F and R'=H'→F' be two logic rules, R∈SolvedForm,
R'∈UnSolvedForm,F=attacker(role(<M1,N1,tag1>,M1')),let F0=attacker(role(<M2, N2,
tag2>, M2')) be a goal in H ' such that M1' can be unified with M2', then the X-

 An Abstraction and Refinement Framework for Verifying Security Protocols 171

resolution R'◦R between R and R' is (H∧(H'-F0))θ→F'θ, θ=mgu(M1', M2') is the most
general unifier of M1' and M2', F0=selectedGoal(R') is called the selected goal of R',
θ=sub(R,R') is called the substitution of the X-resolution R'◦R.

Let R be a logic rule and B be a logic rule set, define addRule(R, B) as:
If ∃R'∈B, R'⇒R, then addRule(R,B)=B;
else addRule(R,B)={R}∪{R'| R'∈B ,R⇏R'}∪{marked(R'')| R''∈B,R⇒R''}

where marked(R'') denotes that R'' will not be used to compute X-resolutions. Let
Marked denote the set of logic rules those will not be used to compute X-resolutions,
and UnMarked denote the set of logic rules those are not in Marked.

Let R=F1∧…∧Fn→C be a logic rule, Fi=attacker(role(<Mi,Ni,tagi>,Mi'))(i= 1…,n),
the unary function elimdup(R) returns a rule R' such that: (1)In {F1,…,Fn}, only those
atoms that satisfies the following conditions will occurs in the body of R': if j<i, then
Mi'≠Mj' ; (2) C is the head of the rule R' ;

Let B be a logic rule set, define addRule({R1,…,Rm},B)=addRule({R2,…,Rm}, ad-
dRule (R1, B)).Let P be the logic program model of security protocol, define:

Rule(0) (P)={elimdup(R)|R∈P}
T(0)(P)=Rule(0) (P)∩SolvedForm C(0)(P)= Rule(0) (P)∩UnSolvedForm

X_Resolution(1)(P)={elimdup(R)|R=R'◦R'',R'∈T(0) (P),R''∈C(0)(P)}
Rule(n+1)(P)=addRule(X-Resolution(n+1)(P),Rule(n) (P))
T(n+1)(P)=Rule(n+1) (P)∩SolvedForm
C(n+1)(P)=Rule(n+1) (P)∩UnSolvedForm

X_Resolution(n+1) (P)={elimdup(R)|R=R'◦R'',R'∈T(n) (P),R''∈C(n)(P)}

Def9(solved-form fixpoint). Let P be the logic program model of security protocol,
define fixpoint(P)={T(n)(P)|n≥0}∩UnMarked,fixpoint(P) is called the solved-form
fixpoint of P.

Let R be a logic rule and B be a logic rule set, for the secrecy property, define de-
rivablerec(R,B,P) as:

if ∃R'∈B, R'⇒R, then derivablerec(R,B,P)= ɸ
else if R=→C, then derivablerec(R,B,P)={→C}

else derivablerec(R,B,P)={derivablerec(elimdup(R'·R),{R}∪B,P)| R'∈fixpoint(P)}
For the authentication property, define derivablerec(R,B,P) as:

 if ∃R'∈B, R'⇒R, then derivablerec(R,B,P)=ɸ

 else if R= begin(M1,M1')∧…∧begin(Mn,Mn')→end(M,M'),
then derivablerec(R,B,P) ={R}

else derivablerec(R,B,P)={derivablerec(elimdup(R'·R),{R}∪B,P)|
R'∈ fixpoint(P)}

And define derivable(F, P)=derivablerec(F→F, ɸ,P).

Theorem1. If R·R' is defined, R1⇒R and R1'⇒R', then either R1·R1' is defined and

R1·R1'⇒R·R', or R1'⇒R·R'.

Theorem2. Let P be the logic program model of security protocol and F be a closed
atom, then derivable(F, P) terminates.

172 M. Li et al.

Theorem3. Let P be the logic program model of security protocol and F be a closed
atom, then F is derivable from P if and only if F is derivable from fixpoint(P).

Theorem4. Let P be the logic program model of security protocol,
1.(Secrecy Property) let F be a closed atom like attacker (role(<M,N, tag>, M')), then

F is derivable from fixpoint(P) if and only if →F∈derivable(F,P).
2.(Authentication Property) Let F be a closed atom like end(M,M'),then F is derivable

from fixpoint(P)∪Bb and begin(M,M')∈Bb if and only if: there exists H1∧... ∧Hn→F

∈derivable(F, P) and begin(M,M')∈Bb, where Hi is in the form of begin(Mi,Mi') and
Hi∈Bb.

The above four theorems[13][14] are variants of the corresponding theorems in
[1][2].

4 Fixpoint Abstraction and Refinement

4.1 Fixpoint Abstraction

The abstraction of solved-form fixpoint is based on two abstraction functions: the
abstraction function βk over terms and the abstraction function αk over logic rules in
SolvedForm.

The abstraction function βk over terms are defined inductively as follows:

if k=0, define βk(t)=z for each term t, where z is a new fresh variable;
if k>0, define:

 βk(a[M1,…, Mn])= a[M1,…, Mn], if a[M1,…, Mn] is a name;
 βk(x)=x, if x is a variable;
 βk(f(t1, …,tn))=f(βk-1(t1) , …, βk-1(tn)), if f is a function symbol.

The abstraction function βk abstracts terms using new fresh variables into terms
whose depth is less than or equal to k+1, limits the unbounded increase of depths of
terms, where k is called the term depth bound. In this paper, we assume that the se-
lected value of term depth bound k is larger or equal to the largest term depth of the
terms in logic program model of protocol. The abstraction function αk over logic rules
in solved form is defined using βk. Let R=H→attacker(role(<M,N,tag>,M')) be
arbitrary a logic rule in SolvedForm, αk is defined as follows:

if βk(M')=M', then αk(R)= R;

if βk(M')≠M', then αk(R)= →attacker(role(<M,N,tag>,βk(M'))).

The function αk maintains R if the depth of M' is less than or equal to k, deletes the

body of R and abstract the term M' using βk if βk(M')≠M'. For each logic rule R in
SolvedForm, by the definition of rule implication, αk(R)⇒R always holds.

Let P be the logic program model of security protocol, define:

αkT(0)(P)={αk(elimdup(R))|R∈P∩SolvedForm}
αkT(0)(P)={αk(elimdup(R))|R∈P∩SolvedForm}

αkRule(0) (P)= αkT(0)(P)∪αkC(0)(P)

 An Abstraction and Refinement Framework for Verifying Security Protocols 173

αkX_Resolution(1)(P)={elimdup(R)|R=R'◦R'', R'∈αkT(0) (P), R''∈αkC(0)(P)}

αkT(n+1)(P)={αk(R')|R'∈addRule(αkX_Resolution(n+1)(P),αkRule(n)(P))∩SolvedForm}
αkC(n+1)(P)={R'|R'∈addRule(αkX_Resolution(n+1)(P),αkRule(n)(P))∩UnSolvedForm}
αkRule(n+1)(P)= αkT(n+1)(P)∪αkC(n+1)(P)
αkX_Resolution(n+1)(P)={elimdup(R)|R= R'◦R'',R'∈αkT(n)(P),R''∈αkC(n)(P)}

Def10(abstract solved-form fixpoint). Let P be the logic program model of security
protocol, define αkfixpoint(P)={αkT(n)(P)|n≥0}∩UnMarked, αkfixpoint(P) is called the
abstract solved-form fixpoint of P.

By the definition of αk ,all rules R=H→attacker(role(<M, N, tag>,M')) in fix-
point(P) are maintained in αkfixpoint(P) if the depth of M' is less than or equal to k,
which are very fit for constructing attacks since many attacks are the interleaving of
finite protocol sessions.

Theorem7. Let P be the logic program model of security protocol, then αkfixpoint(P)
terminates.
Proof: The function symbols and the names occurring in P are finite, if those terms
with variable renaming are considered identical, then the terms constructed from the
function symbols, the names occurring in P and variables whose depth is less than or
equal to k+1 are finite. Let M be a term whose depth is less than or equal to k+1, let
Var(M) denote the set of variables occurring in M, if the appendices Mi,Ni,tagi in all

atoms attacker(role(<Mi,Ni,tagi>,M)) are ignored, then αkfixpoint(P)⊆∪
depth(M)≤k+1∪i=1

|var(M)|{attacker(role(<M1,N1,tag1>,x1))∧…∧attacker(role(<Mi,Ni,tagi>,xi

))→attacker(role (<Mi',Ni',tagi'>,M))}∪{→attacker(role(<Mi', Ni',tagi'>,M))}, where
xj∈Var(M). Since the terms whose depth is less than or equal to k+1 are finite and the
variables occur in these terms are finite, then αkfixpoint(P) is a set whose elements are
finite, thus αkfixpoint(P) terminates.

Lemma8. Let P be the logic program model of security protocol, for each
R∈Rule(n)(P), there exists R'∈αkRule(n)(P) such that R'⇒R.

Proof: (1)if n=0, αkRule(0)(P)=αkT(0)(P)∪αkC(0)(P), since ⇒ is reflexive and αk(R)⇒R,
then the conclusion holds;

(2) Assume that the conclusion holds when n=m≥0, in the case of n=m+1, for each
R∈Rule(m+1)(P), since Rule(m+1)(P)=addRule(X-Resolution(m+1)(P),Rule(m)(P)), if R∈
Rule(m)(P),then the conclusion holds by the induction assumption; if R∈X-

Resolution(m+1)(P), then there exists R1∈T(m)(P)⊆Rule(m)(P) and R2∈C(m)(P) ⊆Rule(m)(P)
such that R=elimdup(R1◦R2), by the induction assumption, there exist R1',
R2'∈αkRule(m)(P) such that R1'⇒R1, R2'⇒R2, since R1'⇒R1 and R1 is in SolvedForm, then
R1'∈αkRule(m)(P)∩SolvedForm, by theorem 1, then R1'⇒ R1◦R2 or R1'◦R2'⇒ R1◦R2, since
αk(R1')⇒R1', then αk(R1')⇒ R1◦R2 or αk(R1')◦R2'⇒R1◦R2, and αk(R1')⇒elimdup(R1◦R2) or

elimdup(αk(R1')◦R2') ⇒elimdup(R1◦R2). If there exists R''∈αkX_Resolution(m+1)(P) such

that R''⇒ R1', then αk(R'')⇒ R1'⇒ elimdup(R1◦R2) and αk(R'')∈αkT(m+1)(P)⊆αkRule(m+1)(P);
If there exists no R''∈αkX_Resolution(m+1)(P) such that R''⇒R1', then

174 M. Li et al.

αk(R1')∈αkT(m+1)(P)⊆αkRule(m+1)(P). Since elimdup(αk(R1')◦R2') ∈αkX_Resolution(m+1)(P),
if there exists no R''∈αkRule(m)(P) such that R''⇒ elimdup(αk(R1')◦R2'), then elim-

dup(αk(R1')◦R2')⊆αkT(n+1)(P)∪αkC(n+1)(P)=αkRule (m+1)(P);if there exists R''∈αkRule(m)(P)
such that R''⇒elimdup(αk(R1')◦R2'), then R''⇒elimdup(αk(R1')◦R2')⇒elimdup(R1◦R2) and

R''∈αkRule(m)(P) ⊆αkRule(m+1)(P). Thus the conclusion holds for n=m+1.

Theorem9 Let P be the logic program model of security protocol and F be a closed
atom, if F is derivable from fixpoint(P), then F is also derivable from αkfixpoint(P).
Proof: F is derivable from fixpoint(P), then there exists a derivable tree T of F from

fixpoint(P). For each node m in T, assume the node m is labeled by R∈fixpoint(P)
with an incoming edge labeled by F0 and n outgoing edges labeled by F1,…,Fn , then

R⇒F1∧…∧Fn→F0, since R∈fixpoint(P)= {T(n)(P)|n≥0}∩UnMarked, by lemma8,
there exists R'∈{αkRule(n)(P)|n≥0} such that R'⇒R⇒ F1∧…∧Fn→F0, since R'⇒R and
R∈SolvedForm, then R'∈SolvedForm and R'∈{αkT(n)(P)|n≥0}, if R'∈αkfixpoint(P),

then replace R by R' in T, if R'∉αkfixpoint(P), by the definition αkfixpoint(P)
={αkT(n)(P)|n≥0}∩UnMarked, then there exists R''∈αkfixpoint(P) such that R''⇒R',
replace R by R'' in T, repeat this procedure until all the rules in fixpoint(P) are re-
placed by rules in αkfixpoint(P), then the derivation tree of F from αkfixpoint(P) is
constructed, thus F is derivable from αkfixpoint(P).

Theorem9 shows that αkfixpoint(P) is a safe approximation of fixpoint(P). Thus
fixpoint(P) can be replaced by αkfixpoint(P) in the resolution-based verification algo-
rithm as follows:

for the secrecy property, define derivablerec(R,B,P) as:

if ∃R'∈B, R'⇒R, then derivablerec(R,B,P)=ɸ
else if R=→C, then derivablerec(R,B,P)={→C}

else derivablerec(R,B)={derivablerec(elimdup(R'·R),{R}∪B,P)| R'∈ αkfixpoint(P)}
for the authentication property, define derivablerec(R,B,P) as:

if ∃R'∈B, R'⇒R, then derivablerec(R,B,P)=ɸ
else if R= begin(M1,M1')∧…∧begin(Mn,Mn')→end(M,M'),
then derivablerec(R,B,P)={R}

else derivablerec(R,B)={derivablerec(elimdup(R'·R),{R}∪B,P)| R'∈ αkfixpoint(P)}

4.2 Fixpoint Refinement

If the result of the resolution-based verification algorithm with αkfixpoint(P) shows
protocol satisfies the security properties, then the protocol satisfies the security prop-
erties since αkfixpoint(P) is a safe approximation of fixpoint(P). If the result of the
resolution-based verification algorithm with αkfixpoint(P) shows protocol does not
satisfy the security properties, according to the counterexample-driven abstract re-
finement iteration verification framework, the counterexample would be constructed
and decided whether it is a false-counterexample or not, if it is, then αkfixpoint(P)
should be refined and the resolution-based verification algorithm should be run again,
otherwise, the counterexample is actually an attack against the protocol.

 An Abstraction and Refinement Framework for Verifying Security Protocols 175

In this subsection, we describe the refinement approach for αkfixpoint(P): if the
resolution-based verification algorithm with αkfixpoint(P) shows protocol does not
satisfy the security properties, then we run the resolution-based verification algorithm
with those logic rules in αkfixpoint(P) which are not abstracted by the abstraction
function αk, if the result shows that protocol does not satisfy security properties, then
we construct the counterexamples from the verification procedure, which are actually
attacks against the protocol since the derivations of all the logic rules are not ab-
stracted by αk. If the result shows that protocol satisfies security properties, then αk-

fixpoint(P) should be refined by increasing the value of the term depth bound k.
Let P be the logic program model of security protocol and αkfixpoint(P) be the ab-

stract solved-form fixpoint, the set of logic rules which are not abstracted by αk, de-
noted by UnAbstract, is defined inductively as follows:

(1)Let R=H→attacker(role(<M,N,tag>,M'))∈P∩SolvedForm, if βk(M')=M', then
αk(elimdup(R))∈UnAbstract;
(2)If R∈αkC(0)(P), then R∈UnAbstract;
(3)If there exists R'∈αkT(n)(P)∩UnAbstract and R''∈αkC(n)(P)∩UnAbstract such that
R=elimdup(R'◦R''), then R∈UnAbstract;

Def11(partial solved-form fixpoint). Let P be the logic program model of security
protocol, define αkpartialfixpoint(P)={αkT(n)(P)|n≥0}∩UnAbstract, αkpartialfix-
point(P) is called the partial solved-form fixpoint of P.

The partial solved-form fixpoint αkpartialfixpoint(P) of P consists of all the logic
rules in SolvedForm whose derivations are all not be abstracted by the abstract func-
tion αk.

If the resolution-based verification algorithm with αkfixpoint(P) shows protocol
does not satisfy the security properties, we run the resolution-based verification algo-
rithm with αkpartialfixpoint(P) as follows:

For the secrecy property, define derivablerec1(R,B,P) as:
if ∃R'∈B, R'⇒R, then derivablerec1 (R,B,P)= ɸ
else if R=→C, then derivablerec1(R,B,P)={→C}

else derivablerec(R,B,P)={derivablerec1(elimdup(R'·R),{R}∪B,P)|

 R'∈αkpartialfixpoint(P)}
For the authentication property, define derivablerec1 (R,B,P) as:

if ∃R'∈B, R'⇒R, then derivablerec1(R,B,P)=ɸ

else if R= begin(M1,M1')∧…∧begin(Mn,Mn')→end(M,M'),
then derivablerec1(R,B,P)={R}

 else derivablerec1(R,B)={derivablerec1(elimdup(R'·R),{R}∪B,P)|
R'∈ αkpartialfixpoint(P)}

And define derivable1(F, P)=derivablerec1(F→F, ɸ, P).
By the theorem4, if the result shows that protocol does not satisfy security proper-

ties, the counterexamples can be constructed from αkpartialfixpoint(P) by the ap-
proach presented in [15],which is similar to the approach presented in [4], since the
logic rules in αkpartialfixpoint(P) whose derivations are all not abstracted by αk, the
constructed counterexamples are attacks against the protocol.

176 M. Li et al.

If the result of the resolution-based verification algorithm with αkfixpoint(P) shows
protocol does not satisfy the security properties, but the result of the resolution-based
verification algorithm with αkpartialfixpoint(P) shows protocol satisfies the security
properties, we increase the value of the term depth bound k, compute the abstract
solved-form fixpoint αk+1fixpoint(P), and run the resolution-based verification algo-
rithm with αk+1fixpoint(P) again.

Theorem10. Let P be the logic program model of security protocol, then for each

s≥0, αkpartialfixpoint(P)⊆αk+spartialfixpoint(P).

Proof: For each n≥0, we prove that αkT(n)(P)∩UnAbstract⊆αk+sT(n)(P)∩UnAbstract

and αkC(n)(P)∩UnAbstract⊆αk+sC(n)(P)∩UnAbstract. If n=0, by the definition of αk,
αkT(0)(P)∩UnAbstract =αk+sT(0)(P)∩UnAbstract, αkC(0)(P)∩UnAbstract=αk+sC(0)(P)∩
UnAbstract, the conclusion holds. Assume that the conclusion holds when n=m≥0, in

the case of n=m+1, let R∈αkT(m+1)(P) ∩UnAbstract, then R∈αkT(m)(P)∩UnAbstract
or R∈αkX_Resolution(m+1)(P)∩UnAbstract. If R∈ αkT(m)(P)∩UnAbstract, by the in-
duction assumption, R∈αk+sT(m)(P)∩UnAbstract. If R∈αkX_Resolution(m+1)(P)∩
UnAbstract, then R=elimdup(R'◦R''), where R'∈αkT(m)(P)∩UnAbstract, R''∈αkC(m)(P)

∩UnAbstract, by the induction assumption, R'∈αk+sT(m)(P)∩UnAbstract, R''∈
αk+sC(m)(P)∩ UnAbstract, thus R∈αk+sX_Resolution(m+1)(P)∩UnAbstract. By the fact
R∈αk+sT(m)(P)∩UnAbstract or R∈αk+sX_Resolution(m+1)(P)∩UnAbstract, then
R∈αk+sT(m+1)(P)∩UnAbstract. The fact that αkC(n)(P)∩UnAbstract⊆αk+sC(n)(P)∩
UnAbstract can be proved in the similar way.

Theorem10 shows that αk+spartialfixpoint(P)(s≥0) is actually a refinement of αkpar-

tialfixpoint(P). Since fixpoint(P)⊆∪k≥0{αkT(n)(P)} and fixpoint(P)⊆UnAbstract, it is

easy to see that fixpoint(P) ⊆∪k≥0{αkpartialfixpoint(P)}, which means that the attacks
against protocol can also be constructed from αkpartialfixpoint(P) if the value of k is
large enough.

Comparing with the refinement approach obeying the counterexample-driven ab-
straction refinement iteration verification framework, our framework needn’t decide
whether the constructed counterexample is a false-counterexample or not, all of the
verification, constructing counterexamples and refinement of the abstracted solved-
form fixpoint can be implemented in a mechanized way.

5 Example

We demonstrate the effectiveness of the presented abstraction and refinement frame-

work for verifying security protocols with the version ∏3 of the Woo-Lam Shared-key
one way authentication protocol[16]. ∏3 is described as follows:

 A→B: A
 B→A: N

 A→B: {N}kAS

 B→S: { A,{N}kAS}kBS

 S→B: {A,N}kBS

 An Abstraction and Refinement Framework for Verifying Security Protocols 177

Its logic program model P is described as follows:

(1)→attacker(role(<host(kIS[]),host(kIS[]),false>,kIS[]));

(2)→attacker(role(<host(kIS[]),-,false>,host(kIS[])));

(3)→attacker(role(<host(kIS[]),-,false>,host(kAS[])));

(4)→attacker(role(<host(kIS[]),-,false>,host(kBS[])));

(5)attacker(role(<-,host(kIS[]),false>,M)) ∧attacker(role(<-,host(kIS[]),false >,k))

→attacker(role(<host(kIS[]),-,false>,encrypt(M,k)));

(6)attacker(role(<-,host(kIS[]),false>,encrypt(M,k))) ∧attacker(role(<-,host(kIS[]),

false>,k)) →attacker(role(<host(kIS[]),-,false>,M)) ;

(7)attacker(role(<-,host(kIS[]),false>,x1))∧…∧attacker(role(<-,host(kIS[]),false>,

xn))→attacker(role(<host(kIS[]),-,false>,ntuple(x1,…,xn))) ;

(8)attacker(role(<-,host(kIS[]),false>,ntuple(x1,…,xn)))→attacker(role(<-,host

(kIS[]),false>,xi)),i=1,…,n;
(9)begin(host(kAS[]),host(v1))→attacker(role(<host(kAS[]),host(v1), true >,

host(kAS[])));

(10)attacker(role(<host(v2),host(kBS[]),true>,host(v2)))→

attacker(role(<host(kBS[]),host(v2), true>,N[iB
1,host(v2)])) ;

(11)begin(host(kAS[]),host(v3))∧attacker(role(<host(v3),host(kAS[]),true>,v4))→

attacker(role(<host(kAS[]),host(v3), true >,encrypt(v4,kAS[])));

(12)attacker(role(<host(v5),host(kBS[]),true>,host(v5)))∧attacker(role(<host(v5),

host(kBS[]),true>,v6)→attacker(role(<host(kBS[]),host(kSS[]),true>, encrypt
(2tuple(host(v5), v6),kBS[])));

(13)attacker(role(<host(v8),host(kSS[]),true >,encrypt(2tuple(host(v7),encrypt

(v9,v7)), v8)))→attacker(role(<host(kSS[]),host(v8), true >,encrypt(2tuple
(host(v7) , v9), v8))) ;

(14)attacker(role(<host(v10),host(kBS[]),true>,host(v10))) ∧attacker(role

(<host(v10),host(kBS[]),true>,v11))∧attacker(role(<host(kSS[]),host(kBS[]),

true>,encrypt(2tuple(host(v10),N[iB
2,host(v10)]),kBS[])))→end(host(v10),

host(kBS[]));
In the above model, the logic rules from (1) to (8) are the intruder’s model, and the
logic rules from (9) to (14) are the honest roles’ model. The assertion be-
gin(host(kAS[]),host(v1)) asserts that the honest role A initiates a protocol session with
the role host(v1), the assertion end(host(v10),host(kBS[])) asserts that the honest role B
ends up a protocol session with the role host(v10).

The solved-form fixpoint of ∏3 does not terminate. In fact, compute the X-
resolution between the 3th rule and the 13th rule, we get the 15th rule:

(15)attacker(role(<host(kAS[]),host(kBS[]),true>,v6)→attacker (role(<host(kBS[]),
host (kSS[]), true>,encrypt (2tuple(host(kAS[]),v6),kBS[])));

178 M. Li et al.

Computing the X-resolution between the 15th rule and the 13th rule, we get the 16th
rule:

(16)attacker(role(<host(kAS[]),host(kBS[]),true>,encrypt(v9,v7)))→attacker(role

(<host(kSS[]),host(kBS[]),true >,encrypt(2tuple(host(kAS[]),v9),kBS[])));
Computing the X-resolution between the 15th rule and the 16th rule, we get the 17th

rule:

(17)attacker(role(<host(kAS[]),host(kBS[]),true>,v6))→attacker(role(<host(kSS[]),

host(kBS[]),true>,encrypt(2tuple(host(kAS []),2tuple(host(kAS[]),v6)),kBS[])));
Computing the X-resolution between the 17th rule and the 16th rule, we get the 18th

rule:

(18)attacker(role(<host(kAS[]),host(kBS[]),true>,v6))→attacker(role(<host(kSS[]),

host(kBS[]),true>, encrypt(2tuple(host(kAS []),2tuple(host(kAS[]),v6)),kBS[])));

We can also compute the X-resolution between the 18th rule and the 16th rule. By
repeating this procedure, we get an infinite sequence of logic rules in SolvedForm,

this infinite sequence shows the solved-form fixpoint of ∏3 does not terminate.
Now we choose k=4 as the term depth bound, then by theorem 7, α4fixpoint(P) ter-

minates. Computing the X-resolution between the 3th rule and the 14th rule, we get the
19th rule:

(19)attacker(role(<host(kAS[]),host(kBS[]),true>,v11))∧attacker(role(<host(kSS[]),

host(kBS[]),true>,encrypt(2tuple(host(kAS[]),N[iB
2,host(kAS[])]),kBS[])))→

end(host(kAS[]),host(kBS[]));
Computing the X-resolution between the 3th rule and the 12th rule, we get the 20th

rule:

(20)attacker(role(<host(kAS[]),host(kBS[]),true>,v6)→attacker(role(<host(kBS[]),

host(kSS[]),true>,encrypt(2tuple(host(kAS[]),v6),kBS[])));
Computing the X-resolution between the 20th rule and the 19th rule, we get the 21th

rule:

(21)attacker(role(<host(kAS[]),host(kBS[]),true>,v11))∧attacker(role(<host(kAS[]),

host(kBS[]),true>, N[iB
2,host(kAS[])])→end(host(kAS[]),host(kBS[]));

Computing the X-resolution between the 3th rule and the 10th rule, we get the 22th
rule:

(22)→Attacker(role(<host(kBS[]),host(kAS[]), true>,N[iB
1,host(kAS[])])) ;

Computing the X-resolution between the 22th rule and the 21th rule, we get the 23th
rule:

(23)attacker(role(<host(kAS[]),host(kBS[]),true>,v11)) →end(host(kAS[]),
host(kBS[]));

Let F=end(host(kAS[]),host(kBS[])), since the 23th rule is in α4fixpoint(P), then the
logic rule →end(host(kAS[]),host(kBS[]))∈derivable(F,P), which means the honest role B
ends up a protocol session with the honest role A, but A does not initiate a protocol
session with B, thus there exists a counterexample against the protocol ∏3 on the
authentication property characterized by the correspondence assertations begin(host

 An Abstraction and Refinement Framework for Verifying Security Protocols 179

(kAS[]),host(kBS[])) and end(host(kAS[]), host(kBS[])).Since all the logic rules from (19)

to (23) are in UnAbstract, we have →end(host(kAS[]), host(kBS[]))∈ derivable1(F, P).
Using the approach presented in [15], we can construct the counterexample against

the protocol ∏3 from α4partialfixpoint(P) as follows:

host(kIS[]) (host(k AS[]))→host(k BS[]):host(k AS[]);
host(k BS[])→host(kIS[]) (host(k AS[])):N[iB

1,host(k AS[])];
host(kIS[]) (host(k AS[]))→host(k BS[]):N[iB

1,host(k AS[])];
host(kBS[])→host(kIS[])(host(kSS[])):encrypt(2tuple(host(kAS[]),N[iB

1,host(kAS[])]),
kBS[]);

host(kIS[])(host(kSS[]))→host(kBS[]):encrypt(2tuple(host(kAS[]),N[iB
1,host(kAS[])]),

kBS[]);

The above counterexample is the attack of ∏3 described in [16].

6 Conclusions

In this paper we present a an abstraction and refinement framework for verifying
security protocols based on logic programming, with this framework all of the verifi-
cation, constructing counterexample and refinement can be implemented in a mecha-
nized way. We believe that our approach is more practical for verifying security
protocols since the problem of deciding correctness of security protocol is undecid-
able and our approach supports the abstraction and refinement iteration verification
framework.

Directions for further work include implementing the verifier Spvt[13] with the ab-
straction and refinement framework presented in this paper and using it to verify more
security protocols.

References

1. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In:
14th IEEE Computer Security Foundations Workshop, pp. 82–96. IEEE Press, Cape
Breton, Nova Scotia (2001)

2. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 242–259. Springer, Heidelberg (2002)

3. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic pro-
grams. In: 29th ACM Symposium on Principles of Programming Languages, pp. 33–44.
ACM Press, Portland (2002)

4. Allamigeon, X., Blanchet, B.: Reconstruction of Attacks against Cryptography Protocols.
In: 18th IEEE Computer Security Foundations Workshop, pp. 140–154. IEEE Press, Aix-
en-Provence (2005)

5. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: tagging enforces ter-
mination. Theor. Comput. Sci. 333(1-2), 67–90 (2005)

6. Gori, R., Lastres, E., Moreno, R., Spot, F.: Approximation of the Well-Founded Semantics
for Normal Logic Programs using Abstract Interpretation. In: Freire-Nistal, J.L., Falaschi,
M., Villares-Ferro, M. (eds.) Proceedings of the APPIA-GULP-PRODE 1998 Conference,
A Coruña, Spain, pp. 433–441 (1998)

180 M. Li et al.

7. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded security pro-
tocols. In: Heintze, N., Clarke, E. (eds.) Proceedings of the Workshop on Formal Methods
and Security Protocols, Trento (1999)

8. Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: 4th ACM Symposium on
Principles of Programing Languages, pp. 238–252. ACM Press, Los Angeles (1977)

9. Bozga, L., Lakhnech, Y., Périn, M.: Pattern-Based Abstraction for Verifying Secrecy in
Protocols. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS,
vol. 2619, pp. 299–314. Springer, Heidelberg (2003)

10. Bozga, L., Lakhnech, Y., Périn, M.: HERMES: An Automatic Tool for Verification of Se-
crecy in Security Protocols. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 219–222. Springer, Heidelberg (2003)

11. Oehl, F., Cécé, G., Kouchnarenko, O., Sinclair, D.: Automatic Approximation for the Veri-
fication of Cryptographic Protocols. In: Pezzé, M. (ed.) ETAPS 2003 and FASE 2003.
LNCS, vol. 2621, pp. 34–48. Springer, Heidelberg (2003)

12. Backes, M., Maffei, M., Cortesi, A.: Causality-based Abstraction of Multiplicity in Secu-
rity Protocols. In: 20th IEEE Computer Security Foundation Symposium, pp. 355–369.
IEEE Press, Venice (2007)

13. Li, M., Li, Z., Chen, H.W.: Spvt: An efficient verification tool for security protocol. Chi-
nese Journal of Software 17(4), 898–906 (2006)

14. Li, M., Li, Z., Chen, H.W.: Security protocol’s extended horn logic model and its verifica-
tion method. Chinese Journal of Computers 29(9), 1667–1678 (2006)

15. Zhou, T., Li, M., Li, Z., Chen, H.W.: Automatically Constructing Counter- examples of
Security Protocols based on the extended Horn Logic Model. Chinese Journal of computer
research and development 44(9), 1518–1531 (2007)

16. Clark, J., Joacob, J.: A survey on authentification protocol (1997),
 http://www.cs.york.ac.uk/jac/papers/drareviewps.ps

Secure Verification of Location Claims
with Simultaneous Distance Modification

Vitaly Shmatikov and Ming-Hsiu Wang

The University of Texas at Austin

Abstract. We investigate the problem of verifying location claims of mobile
devices, and propose a new property called simultaneous distance modification
(SDM). In localization protocols satisfying the SDM property, a malicious device
can lie about its distance from the verifiers, but all distances can only be altered
by the same amount. We demonstrate that the SDM property guarantees secure
verification of location claims with a small number of verifiers even if some of
them maliciously collude with the device. We also present several lightweight
localization protocols that satisfy the SDM property.

1 Introduction

In wireless networks, the physical location of a mobile device such as a sensor, a mobile
phone, or a small computer often has implications for location-based access control and
security of the nearby devices. A malicious device may lie about its location in an at-
tempt to appear either farther away than its true location (e.g., in order to intercept other
devices’ communications), or closer than it really is (e.g., to subvert a location-based
access control mechanism). In this paper, we study the problem of verifying location
claims of potentially malicious mobile devices in an environment where some parts of
the localization infrastructure may have been compromised.

To verify location claims of mobile devices, most existing protocols employ distance
bounding [BC93]. A verifying “beacon” challenges the device and measures the time
elapsed until the receipt of its response. This gives a lower bound on the distance to the
device, which therefore cannot claim to be closer than it really is. Measurements from
multiple beacons can then be combined to estimate the device’s location.

Our contributions. We define a new property called simultaneous distance modifica-
tion (SDM). In distance estimation protocols with the SDM property, a malicious device
being interrogated by multiple verifiers can increase its claimed distance from the ver-
ifiers, but all distances can only be altered by the same amount. The SDM property
enables secure verification of location claims with a small number of verifiers. In con-
trast to previously proposed protocols, the device’s location can be verified anywhere
on the two-dimensional plane and not just in the area enclosed by the verifiers.

In addition to the generic security argument for protocols with the SDM property,
we present two practical protocols satisfying this property: (1) a challenge-response
protocol based on hash chains and time-of-flight estimation, and (2) a hyperbolic local-
ization protocol based on time difference of arrival. In contrast to the previous work,
we analyze security of both protocols in the presence of malicious verifiers.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 181–195, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 V. Shmatikov and M.-H. Wang

Model. We use the standard model for location verification [WF03, SSW03, ČH05].
The goal of a malicious device is to be localized in a place other than its true location.
Therefore, it participates in the protocol, but tries to mislead the verifiers. This model
matches practical wireless security scenarios such as location-based access control, in
which a device that refuses to respond to distance estimation requests is simply denied
access. Our desired security property is as follows: if the protocol produces a location
for the device, then this location must be correct.

The device is located on a two-dimensional coordinate grid. We will sometimes refer
to the device’s location as a point, even though in reality it is a small region rather than
a point due to imprecision of distance measurements.

Several verifying beacons are located on the grid and exchange messages with the
device. We assume that signals can be linked to the device that emitted them, i.e., de-
vices have “identities.” This does not imply strong authentication; the device may have a
unique code or dedicated frequency. The signal recognition assumption is essential, and
is made by all localization protocols in the literature. In section 6, we discuss possible
attacks if a signal cannot be linked to a particular device.

All beacons are connected to a trusted central processor, or the base station, which
computes the location of the mobile device from the beacons’ reports. We assume that
the only way for the base station to communicate with the device is via the beacons, i.e.,
localization must rely entirely on the information supplied by the (potentially malicious)
beacons. By default, we assume that if the protocol detects an inconsistency in the
device’s responses to different beacons, it will not produce a location. Denial of service
attacks are beyond the scope of this paper.

We abstract from the details of physical communication between the beacons and
the device. It can be based on radio [BC93, WF03], ultrasound [SSW03], or any other
suitable technology. An honest beacon’s correct location is known to the base station
via either static pre-configuration, or an on-board GPS, or from a previous instance of
localization where the beacon itself acted as the device.

We will consider both honest and malicious beacons, but assume that there is a secure
communication channel (e.g., a secure wire) between each beacon and the base station.
In particular, we assume that a malicious device cannot interfere with the information
sent by an honest beacon to the base station. This is a realistic assumption for many sen-
sor and mobile networks, where devices are low-powered and have no physical access
to the communication network between the beacons and the base station.

Related work. Distance and angle estimation techniques include Time Difference of
Arrival (TDoA) [PCB00, SHS01, LOR06], Time of Arrival [HWLC97, SHS01], Re-
ceived Signal Strength [BP00], and Angle of Arrival [NN03a]. These methods are not
designed to be secure in the presence of malicious devices and beacons. Range-free
protocols [BHE00, NN03b, HHB+03] do not require distance or angle measurements,
but are also insecure in adversarial environments.

In radio-based secure distance bounding by Brands and Chaum [BC93], the prover
cannot pretend to be closer to the verifier than it really is. Similar protocols based on
ultrasound and ultra-wideband appear in, respectively, [SSW03] and [HK05]. Variations
include authenticated challenge-response [MSC06]. Distance bounding, however, does

Secure Verification of Location Claims 183

not prevent a device from enlarging the distance, i.e., claiming to be farther away than
it really is, because a malicious device can delay its responses. Furthermore, standard
distance bounding can be subverted by guessing attacks or by exploiting the relatively
high latency of communication channels [CHKM06].

Verification of location claims typically involves combining distance bounds from
multiple verifiers. In previously proposed protocols [WF03, SSW03, ČH05], a mali-
cious device can easily enlarge the distance in each instance of the distance-bounding
protocol, and pretend to be outside the area enclosed by the verifiers. This is a serious
security risk. For example, an untrusted device may claim to be far away from a wireless
network, while locating itself in the middle in order to eavesdrop on messages.

All existing location verification protocols also assume that the verifiers are trusted.
For example, the TDoA-based protocol of [ČČS06], which is superficially similar to
one of our protocols, is insecure when some of the beacons (called “base stations”
in [ČČS06]) are malicious. By contrast, we explicitly analyze the case when some of the
beacons maliciously collude with the device whose location claims are being verified.

A complementary problem to location verification is location discovery: how to en-
able an honest device to determine its own location in the presence of malicious bea-
cons [LP05, LND05a, LND05b, DFN06]. None of these protocols consider a malicious
device colluding with malicious beacons to lie about its location. The only exception is
the claim verification protocol of [LPČ05], which does not prevent a malicious device
from pretending to be farther away than it really is.

Organization of the paper. We define the simultaneous distance modification (SDM)
property and show how it guarantees secure localization in section 2. In section 3, we
investigate which geometry of verifier placement prevents false location claims. In sec-
tion 4, we present our protocols with the SDM property, and analyze their security in
the presence of malicious beacons in section 5. In section 6, we survey attacks on the
SDM property. Conclusions are in section 7.

2 Simultaneous Distance Modification (SDM)

Range measurement involves estimating the distance between a beacon and the mobile
device from measurements of time, angle, or signal strength, then combining measure-
ments from multiple beacons to localize the device. Intuitively, a range measurement
protocol satisfies the simultaneous distance modification (SDM) property if a malicious
device, by giving false responses to multiple beacons, can change each beacon’s dis-
tance estimate, but all estimates can only be changed by the same amount.

Let s be the mobile device, and let b0, . . . , bn be the beacons within its broadcast
range. Let di be the actual distance between s and bi, and d′i be the distance (possibly
incorrect, due to malicious responses by s) as reported by the range measurement pro-
tocol. The di −d′i value is the reported distance error for beacon bi. The SDM property
states that, regardless of what s does, there is some constant k such that d′i − di = k for
every honest beacon bi. In other words, if the adversary changes the reported distance
between s and some beacon by k, then he must also change the reported distance be-
tween s and every other beacon by k, or else the measurements will be inconsistent and
the attack will be detected.

184 V. Shmatikov and M.-H. Wang

b1

b0

b2

device beacon

δ

Fig. 1. Localization with three beacons

P

P’

l1

l2

bi
di

di’

Fig. 2. Distance modification

For the rest of this section, assume that all beacons are honest (we consider the case
of malicious beacons in section 5). Recall that the goal of the malicious device is to
convince the base station of a false location, i.e., the reports of all beacons should be
consistent, yet the resulting location should not be the device’s true location.

The following lemma gives the sufficient and necessary conditions under which a
false location claim by a malicious device may successfully pass verification.

Lemma 1 (Security of SDM). Consider an honest-beacon localization protocol based
on range measurement which satisfies the SDM property. A malicious device located
at position p can cause the localization protocol to compute its location as p′, where
p′ �= p, if and only if all of the following conditions hold:

1. All beacons within the device’s range lie on the same lobe l of some hyperbola h.

2. Positions p and p′ are the foci of the hyperbola h.

3. If distance bounding is used, l must be the lobe closest to p.

Proof sketch: Localization with three honest beacons is shown in fig. 1. Each circle
represents a distance between the beacon and the device, as reported by the range mea-
surement protocol. The three circles corresponding to the actual distances intersect in
the device’s true location. Due to imprecise measurements, the intersection is a small re-
gion rather than a single point (this does not affect our analysis). We say that two curves
“intersect” if they pass within the measurement error of each other (see section 5.1).
The simplest protocol is to take the intersection of the three circles corresponding to
the reported distances as the device’s location. If the circles don’t intersect in a single
location, report an inconsistency.

If the protocol for measuring the distances between the individual beacons and the
device satisfies the SDM property, the device can alter each reported distance by |d′i −
di| = δ. Intuitively, the radiuses of all three circles must expand or contract by the same
δ. The protocol produces a false location if and only if the new circles “intersect” in a
region other than the device’s true location.

Fig. 2 shows a malicious device in position p. Let di be the true distance between
p and beacon bi. For the device to be localized in some p′ �= p, it is necessary (but
not sufficient) to modify the distance reported by bi so that d′i is equal to the distance
between bi and p′. This must hold for every beacon bi. Therefore, all beacons must lie

Secure Verification of Location Claims 185

on the same lobe of a hyperbola whose foci are p and p′. (A hyperbola is the set of
all locations x on a plane such that the absolute value of the difference between the
distances from x to the two foci is a constant.) In fig. 2, the l1 lobe is the set of all
locations for which this difference is negative, the l2 lobe is the set of all locations
for which the difference is positive. With distance bounding (see section 1), a malicious
device can pretend to be farther away, but not closer than it really is. Therefore, d′i > di.
In this case, the only situation in which a device located at p can successfully pretend
to be located at p′ is if all beacons lie on l1, i.e., the lobe of the hyperbola closest to p.

Lemma 1 says that a malicious device cannot choose an arbitrary false location. Its
false location claim will pass verification only in the following case: if all beacons lie on
a hyperbola and the device happens to be located in its focus, then it can successfully
pretend to be located in the other focus. If any of the three conditions of lemma 1 is
violated, the reported distances will be inconsistent, and the attack will be detected.

3 Preventing False Location Claims

We now investigate how many beacons and which placement geometry are sufficient
to ensure that the conditions of lemma 1 can never be satisfied and, therefore, a false
location claim by a malicious device can never pass verification.

Random beacon placement and pre-measurement selection. This is the most general
scenario. Beacons are randomly scattered on the localization plane, and a subset of bea-
cons must be chosen before the device’s location claims are known. Beacon placement
must be such that the chosen beacons cannot all lie on the same lobe of some hyperbola.
Then, by the contrapositive of lemma 1, a false location claim cannot pass verification.

The straightforward approach is to start with the minimum number of beacons which
uniquely identify a hyperbola lobe, then select one more beacon which does not lie on
this lobe. In our setting, the lobe can lie at an arbitrary angle to the coordinate grid. To
capture all possible rotations of the hyperbola, we resort to the general conic section
equation, where A, B, C, D, E, F are constants:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Since the base station knows the coordinates of all beacons, six randomly selected
beacons uniquely determine some conic section. The base station solves the system of
six equations and checks whether B2 − 4AC > 0, i.e., whether the resulting section is
a hyperbola. If not, the selected set is sufficient for secure localization.

If the chosen beacons do lie on a hyperbola, the base station randomly selects the 7th
beacon. With high probability, it will not lie on the same lobe, or else the base station
chooses a different beacon. The minimal set for preventing false location claims thus
consists of seven beacons. If the size of the beacon set must be minimized, the base
station can re-sample the six beacons until they do not form a hyperbola.

Random beacon placement with post-measurement selection. In this scenario, each
beacon reports its distance from the device, and the base station selects a subset of
the beacons after receiving all distance reports. A different set of beacons can thus be

186 V. Shmatikov and M.-H. Wang

bul bur

bll blr

bul

bur

bll

blr

bul

bur

bll

blr

a0 a1 a2

(a) (b) (c)

Fig. 3. Rectangular arrangement of beacons

used for each device. For each set, the base station computes the device position p′ as
the “intersection” of the circles whose centers are the beacons and the radiuses are the
reported distances. Three beacons are sufficient.

If the beacons’ reported distances are inconsistent, i.e., the circles do not intersect in
a single location, then the base station aborts the protocol. Otherwise, the base station
assumes that p′ is a false location and attempts to derive a contradiction. If the latter
succeeds, it concludes that p′ is the device’s true location.

The polar-coordinate equation for a hyperbola with a focus at the origin is:

r =
a(e2 − 1)

1 − e ∗ cos(θ + φ)

By setting p′ as the origin and using the beacons’ polar coordinates with respect to
that origin, this system can be solved for a, e, φ, uniquely identifying some hyperbola
h. As before, the base station checks whether the three beacons all lie on the same lobe
of h, and, if distance bounding is used, that this is not the lobe closest to p′. If either
condition fails, p′ cannot be a false location, and the device is securely localized.

If the three beacons all lie on the same hyperbola lobe, then the base station randomly
selects a 4th beacon which does not lie on the lobe, and checks whether its distance
report is consistent with those of the three original beacons. If it is, then p′ cannot be a
false location, and the device’s location claim is securely verified.

Controlled beacon placement. If placement of beacons on the localization grid is not
random, but controlled by some trusted entity, then the same set of four beacons can
be used to securely verify the claims of any device. It is sufficient to find a placement
topology such that the beacons cannot all lie on the same hyperbola lobe. Consider a
rectangle. Observe that for every hyperbola lobe, there exists some Cartesian coordinate
system such that (1) the hyperbola lobe is a function in this coordinate system, and
(2) the derivative of this function changes sign only once. In any Cartesian coordinate
system, a curve that passes through the four points forming the corners of a rectangle is
either not a function, or requires more than one sign change in the derivative. Therefore,
four beacons placed in a rectangle cannot lie on the same hyperbola lobe.

Lemma 2 (Rectangular topology prevents false localization). If the localization pro-
tocol satisfies the SDM property, and four verifying beacons are placed in a rectangular
grid, then a false location claim can never pass verification.

Proof sketch: Denote the four beacons as bll (lower left), blr (lower right), bul (upper
left), and bup (upper right) and let bi.x and bi.y be, respectively, the x and y coordinates

Secure Verification of Location Claims 187

Base
station DeviceRelay

beacon

Beacon

Beacon

Beacon

Beacon

(1) s, j, hj(m) (2) j, hj(m)

(3) Broadcast {ts, j,hj(m)}

Beacon

Beacon

(4) {distance to sensor}

Fig. 4. SDM protocol based on hash chains

of beacon bi. Consider the family of Cartesian coordinate systems with the origin at bll.
Fig. 3 shows some of the rotations (technically, we are rotating the coordinate system,
but it is easier to visualize the rotations of the beacon rectangle around the bll origin).
Denote these rotations as a0, a1, a2, respectively. In all of them, two of the beacons lie
on the y-axis. Therefore, no curve that goes through all four beacons can be a function.

Now consider all coordinate systems where the (rotated) principal axis lies between
that of a0 and that of a1. In all of these systems, bul.x < bll.x < bur.x < blr.x.
Similarly, bul.y > bll.y and bll < bur, implying one sign change in the derivative. And
bll.y < bur.y and bur > blr, implying another sign change in the derivative. Therefore,
no hyperbola lobe can pass through all four beacons in this coordinate system.

A similar argument applies to all coordinate systems where the rotated principal axis
lies between a1 and a2. Therefore, no hyperbola can pass through all four beacons
in any coordinate system rotated between 0 and 90 degrees. The proof for rotations
between 90 and 360 degrees is similar. Since any Cartesian coordinate system can be
x- and y-translated into a system in the above family, this completes the proof.

4 Protocols with the SDM Property

4.1 Challenge-Response with Hash Chains

We present a localization protocol based on hash chains, in which the SDM property is
achieved by a simple challenge-response mechanism. The protocol can be ultrasound-
based as in [SSW03] or radio-based as in [BC93, ČH05] (the latter requires extremely
precise clocks in order to measure propagation time of speed-of-light signals, and can-
not be used in many practical scenarios).

The base station sets up a hash chain hk(m), where m is a secret, k is a parameter
(how many localizations can be performed before a new chain must be created), and h
is a cryptographic hash function. The hk(m) value is distributed to all beacons. Each
beacon must maintain the current chain counter c (initialized to k) and hc(m) value.

The protocol is shown in fig. 4. To localize a device, the base station sends the mes-
sage 〈j, hj(m)〉 to a randomly chosen relay beacon, along with a future time t0. The
only requirement on j is that it has to decrease from one instance of the protocol to the
next (i.e., the hash chain should be monotonically unrolled).

188 V. Shmatikov and M.-H. Wang

At time t0, the relay beacon challenges the device with 〈j, hj(m)〉. The device re-
sponds by broadcasting the message 〈td, j, hj(m)〉 where td is its current timestamp.
Each beacon within the broadcast range, upon receiving this message, records the cur-
rent time ti and verifies the 〈j, hj(m)〉 value by applying hash function h to hj(m)
c − j times and comparing the result to hc(m). If verification succeeds, the beacon sets
c = j, hc(m) = hj(m), and sends the timestamp pair 〈td, ti〉 to the base station.

The base station computes the reported distance from each beacon to the device as
d′i = ti−td

v , where v is the speed of signal propagation. The base station constructs a
circle for each beacon, with the beacon in the center and d′i radius. If the circles do not
“intersect” (i.e., pass within the measurement error of each other) in a single location,
the protocol is aborted, and the location claim does not pass verification. Otherwise, the
device is considered localized in the small region where all circles intersect. The case
of malicious beacons is discussed in section 5.

An important property of this protocol is that the device cannot broadcast a valid re-
sponse before receiving the challenge, since this requires finding a pre-image of hc(m).
Instead of 〈td, j, hj(m)〉, the device can broadcast, for example, 〈td, j+i, hj+i(m)〉 for
some i such that j+i < c, but this can only happen after the device has received hj(m).
Therefore, elapsed time can be artificially increased by delaying the response, but not
shortened. Furthermore, because localization is based on a single message emitted by
the device, the reported distances will change by the same amount for each beacon (un-
der the assumption that distance is linear in time). Therefore, the protocol satisfies the
SDM property. Its security then follows directly from lemmas 1 and 2.

This protocol assumes that the clocks of the beacons and the device are synchro-
nized. (Changing the timestamp cannot help a false location claim to pass verification,
but clock skew can prevent an honest claim from being verified.) To remove this re-
quirement, the protocol can be slightly modified so that both challenge and response
include t0. The base station can then compute td as tr−t0

2v , where tr is the time the
device’s response was received at the relay beacon.

4.2 Time Difference of Arrival

Time difference of arrival (TDoA) inherently possesses the SDM property. The device
broadcasts an identifying signal. All beacons within range record the time of signal ar-
rival and relay it to the base station. For each pair of beacons, the base station computes
the hyperbola corresponding to the difference between their timestamps (for any two
beacons A and B, all locations whose distances from A and B differ by a constant form
a hyperbola). The “intersection” of all hyperbolas is the location of the device.

This assumes that a constant difference in time (of signal arrival) implies a constant
difference in distance (to the location from which the signal was emitted). The signal
must travel at a constant speed v, as is the case for radio or ultrasound signals. Distance
di between the device and a beacon is v multiplied by the time difference between the
(unknown) time t0 when the signal was sent and the time it was received.

Let tbi be the time when beacon bi received the signal. Then v · (tbi − t0) = di. Even
though t0 is not known, given two timestamps tbi and tbj from different beacons, the

Secure Verification of Location Claims 189

Fig. 5. Family of hyperbolas between two
beacons

Fig. 6. Intersection of three hyperbolas

base station can subtract it out to obtain the equation v · (tbi − tbj) = di − dj . This
equation defines a hyperbola on which the signal-emitting device must be located, as
shown in figure 5. Given multiple hyperbolas (one per each pair of beacons), they must
“intersect” in the device’s true location (see fig. 6).

TDoA-based localization satisfies the SDM property because all beacons’ measure-
ments are based on a single signal broadcast by the device. Observe that the time of
signal emission does not enter into the TDoA calculation. Therefore, unlike distance
bounding protocols, TDoA localization is not vulnerable to the distance enlargement
attack, in which the device delays its response to a challenge in order to pretend that it
is located farther than it really is.

4.3 Signal Strength

Signal strength drops off as the inverse square of the distance [SHS01, Rap96]. A con-
stant difference between the relative strengths of received signals does not imply that
the device lies on a certain hyperbola, and the protocol of section 4.2 does not work.

The protocol based on hash chains from section 4.1 can still be used. All that is
needed is some way of converting the received signal into distance. Suppose that the
malicious device artificially modifies its response, e.g., emits at a lower than normal
signal strength in order to pretend that it is located farther away than it really is. As
long as the modification is the same for all receiving beacons, as will be the case when
localization is based on a single broadcast response, the protocol works.

Technically, this is not the same property as SDM, as the error in reported distances is
not constant across all beacons (a constant difference in signal strength does not imply
a constant difference in distance). Nevertheless, the same general principle applies. For
all beacons which receive the same signal, the reported distance will differ from the
true distance by a fixed amount, which depends on the true distance. Therefore, the
adversary cannot pass verification for an arbitrary false location claim.

All of the above protocols assume that the signal sent by the device which is being
localized cannot be modified or delayed before reaching the beacons. For example, if
signal strength is artificially boosted in transit by some colluding device, localization
will be incorrect. Similarly, if a non-radio signal is used, it can be artificially “speeded
up” by one or more colluding devices who talk to each other by radio. Finding effective
defenses against these attacks is an interesting topic for future research.

190 V. Shmatikov and M.-H. Wang

5 Preventing False Location Claims When Beacons Can Be
Malicious

We now consider verification of location claims of a potentially malicious device in
the scenario where some of the beacons may collude with it. The SDM property im-
proves security of localization in this case, too. We emphasize that none of the existing
protocols for verifying location claims provide any security guarantees in this scenario.

Naturally, even with the SDM property, secure verification of location claims is not
guaranteed unless there is a bound on the number of malicious beacons. Let n be the
number of beacons within the range of the device being localized, b the maximum
number of malicious beacons, g = n − b the minimum number of honest beacons.

We deliberately consider an extremely strong attack model. All malicious beacons
collude and choose a false location for the device which is the worst possible location
from the viewpoint of the localization protocol. In other words, the attack succeeds if
malicious beacons can convince the base station that the device is located in any position
other than its true location. In reality, a malicious device may wish to be localized in a
specific false location, so “insecurity” in our model does not always imply insecurity in
practice. Vice versa, if the protocol is secure in our model, then it is also secure in any
realistic deployment scenario.

Depending on the beacon placement procedure, malicious beacons may not freely
choose their own locations on the grid (e.g., if the beacons’ layout is configured by
the base station). With static beacons, the topology may enable malicious beacons to
produce false locations for some devices, but not others. It is much more difficult for a
coalition of malicious beacons to convince the base station of false locations for mul-
tiple devices. We will further strengthen the attack model by assuming that the base
station does not notice inconsistencies between multiple runs of the localization proto-
col. Finally, we will assume that malicious beacons can eavesdrop on all distance and
time measurements reported by the honest beacons. This is too strong in many scenar-
ios, e.g., when each beacon is connected to the base station by a dedicated wire.

5.1 Challenge-Response

As before, we require that if the protocol produces a location, then the location must
be correct. If the device is malicious, the protocol may fail to provide an answer. This
is not a significant limitation, because in the standard location claim verification sce-
nario [WF03, SSW03, ČH05], the objective of a malicious device is to convince the
base station of a false location.

We add the following voting scheme to the protocol of section 4.1.

1. Let t be a threshold value, which is a parameter of the protocol. It is equal to the
fraction of reported distances that must be consistent before the base station decides
that the device has been localized.

2. For each beacon that reported distance d′i to the device, the base station computes
a circle of radius d′i centered at that beacon.

3. Let P be the set of locations in which at least t · n distance circles “intersect” (i.e.,
pass within the measurement error of each other).

4. If set P is empty, return a special symbol, indicating that the answer is inconclusive.

Secure Verification of Location Claims 191

5. For each location xi ∈ P , define c(xi) to be the number of distance circles “inter-
secting” in that location. Note that c(xi) ≥ t · n.
Let X = {xi ∈ P s.t. ∀j �= i c(xj) ≤ c(xi)} be the set of locations where most
circles “intersect.”

6. If |X | > 1, the answer is inconclusive; else let p be the single location contained in
X .

7. Return p as the device’s location.

Security analysis (honest device, malicious beacons). If the device is honest, the base
station will receive at least g correct distances from the good beacons. All corresponding
circles intersect in the true location.

Can colluding malicious beacons produce a false location in which the number of
intersecting circles exceeds the threshold as well? First, the malicious beacons have
to find the region p′ in which the second highest number of honest beacons’ circles
pass within the measurement error of each other (the region with the highest number
of intersections is the true location). Note that (a) such a region may not exist, and
(b) malicious beacons cannot freely choose an arbitrary point as the false location. Let
m be the number of honest beacons’ circles intersecting in p′. Each malicious beacon
modifies its distance report so that the resulting circle passes through p′.

The number of votes for the false location p′ is b + m, where b is the number of
bad beacons. The number of votes for the correct location is at least g (some of the
malicious beacons’ circles may pass through the correct location in addition to the false
location). Correct localization is only guaranteed if g > b + m.

Deriving a theoretical upper bound on m is difficult, as it depends on the layout of
the beacons, device location, and precision of distance measurement. We use simulation
instead. Our setup consists of a square grid, with the device being localized positioned
in its center, and n beacons randomly scattered within the device’s broadcast range.
The hyperbolas or distance circles (depending on the localization protocol) are com-
puted for each beacon and overlaid on the grid. Two curves are considered to intersect
at position p if both pass within the distance measurement error of p. Our simulation
parameters are consistent with the specification of PAL650 UWB Precision Asset Lo-
cation system [FRB03]: the communication range between a device and a beacon is 200
feet (indoor) or 600 feet (outdoor), measured with 1-foot precision. By default, the de-
vice is falsely localized if the location produced by our protocol differs from the correct
location by more than 20 feet.

Fig. 7 shows the number of circles intersecting in the false location p′ with the second
highest number of intersections, averaged across 5000 simulations, assuming a 200-feet
communication range. It is much smaller than the number of intersections in the correct
location, which is equal to the number of beacons.

Security analysis (malicious device, malicious beacons). This case is difficult because
all reported distances, including those reported by the honest beacons, may be incorrect.
The SDM property ensures, however, that the distances reported by the honest beacons
are changed by the same amount viz. correct distances. Therefore, if the device attempts
to alter its reported distance to one of the honest beacons, it has no control over the
distances reported by the other honest beacons.

192 V. Shmatikov and M.-H. Wang

0

1

2

3

4

5

6

7

8

3 5 10 20 40 60 80 100

Num of Beacons Within Range

S
ec

o
n

d
 H

ig
h

es
t

N
u

m
 o

f
C

ir
cl

e
In

te
rs

ec
ti

o
n

s

Fig. 7. Number of circles intersecting in the
false location

0

1

2

3

4

5

6

7

8

3 5 10 20 40 60 80 100

Num of Beacons Within Range

S
ec

o
n

d
 H

ig
h

es
t

N
u

m
 o

f
H

yp
er

b
o

la
 In

te
rs

ec
ti

o
n

s

Fig. 8. Number of hyperbolas intersecting
in the false location

As explained in section 2, the number q of honest beacons’ circles that will intersect
in the false location is equal to the number of honest beacons that happen to lie on the
same lobe of a hyperbola whose focus is the true location of the device, and whose
other focus is the false location. This number is very small relative to the total number
of beacons (see fig. 9 for beacons with 200-feet communication range).

The total number of circles that intersect in the false location is b + q. The protocol
will output the false location if b+q

n ≥ t. Therefore, our protocol guarantees secure
localization of a malicious device even in the presence of malicious beacons as long as
g ≥ b + max(m, q) + 1.

5.2 Time Difference of Arrival

An important advantage of TDoA localization (see section 4.2) is that it doesn’t matter
whether the device is malicious or honest. We adopt the following voting protocol.

1. For each beacon bi, the base station constructs n − 1 hyperbolas as described in
section 4.2), one per each beacon bj where j �= i.

2. Let P be the set of locations in which at least two of the constructed hyperbolas
“intersect,” i.e., pass within the measurement error of each other.

3. For each location xl ∈ P , define h(xl) to be the number of hyperbolas “intersect-
ing” in that location. Let X = {xm ∈ P s.t. ∀l �= m h(xl) ≤ h(xm)} be the set of
locations where most hyperbolas “intersect.”

4. If |X | > 1, the beacon abstains. Otherwise, its vote is the single location contained
in X .

5. The location with the most beacon votes is determined to be the device’s location.

Security analysis. For each beacon pair when both beacons are honest, the hyperbola
passes through the true location p. Therefore, for each honest beacon, at least g − 1
hyperbolas will intersect in the true location.

As in the challenge-response protocol, the worst possible false location p′ is the
region where the second highest number of hyperbolas intersect. Let m be this number.
The only situation in which an honest beacon will abstain or vote for a false location is
when g − 1 ≤ b + m. The probability of this happening is very small when beacons are
scattered randomly on the localization grid (see fig. 8). Therefore, as long as there are

Secure Verification of Location Claims 193

0

1

2

3

4

5

6

7

8

9

10

3 5 10 20 40 60 80 100

Num of Beacons Within Range

N
u

m
 o

f
B

ea
co

n
s

o
n

 H
yp

er
b

o
la

Fig. 9. Number of beacons lying on a hyper-
bola

0

10

20

30

40

50

60

70

80

90

100

10:10 11:9 12:8 13:7 14:6 15:5 16:4 17:3 18:2 19:1 20:0

(Num of Honest Beacons):(Num of Malicious Beacons)

P
er

ce
n

t
o

f
S

im
u

la
ti

o
n

s

Possible False Localization Inconclusive (tie vote) Correct Localization

Fig. 10. TDoA localization with malicious
beacons (numbers for false localization are
a conservative upper bound)

slightly more honest beacons than malicious beacons, each honest beacon will vote for
the correct location.

The b+m upper bound on the number of hyperbolas intersecting in the false location
is very conservative. To achieve it, every malicious beacon must report the signal-receipt
timestamp such that all of the resulting TDoA hyperbolas pass through p′. This can only
happen if all honest beacons lie on the same lobe of a hyperbola whose foci are p and
p′. The probability of this is very small (see fig. 9).

As long as g > b, and the vote of each honest beacon is correct, the protocol will
produce the correct location. Even if some of the honest beacons’ votes are incorrect,
the protocol produces the correct location as long as fewer than m

2 of the honest beacons
lie on a hyperbola whose foci are the true and false locations. Finally, the attack will
fail completely if the false location is anything other than a focus of this hyperbola.

Simulation results with 200-feet communication range are shown in fig. 10. As men-
tioned above, these numbers are a very conservative upper bound on the attackers’ abil-
ity to have a false location claim successfully pass verification.

Existence of more than one location with a non-trivial number of votes should be
treated as an anomalous event. In particular, if location p received the highest number
of votes v, location p′ has the second-highest number of votes v′, and v′ is close to v,
the base station should suspect that an attack is in progress and verify whether a large
number of reporting beacons happen to lie on a hyperbola whose foci are p and p′. Once
the attack is confirmed, all subsequent reports from these beacons should be ignored.

6 Attacks on the SDM Property

SDM property fundamentally relies on the assumption that all beacons’ reports are
based on a single signal sent by the device. To break the SDM property, a malicious
device must be able to send different signals to different beacons. This requires the de-
vice to carry directional antennas, or else this can be achieved by device cloning, where
multiple physical devices pretend to be the same device for the purposes of localization.
Note that direct attacks on distance bounding, such as those described in [CHKM06],
do not violate the SDM property.

One simple attack is to send multiple signals at different strength so that far-away
beacons do not receive the weaker signals. This naive attack is easily detected by the
honest beacons located close to the device because they will receive multiple signals.

194 V. Shmatikov and M.-H. Wang

A more sophisticated attack involves beam forming. While broadcast is usually omni-
directional, beam forming allows the signal to be sent directionally. To succeed, the
malicious device must form a separate beam for each honest beacon. The device must
not only have the physical capacity for beam forming (not feasible for many mobile
devices), but also to know the locations of all honest beacons within range. Moreover,
if localization is based on time-of-flight measurements, all targeted signals must be sent
within a relatively short interval.

Another attack involves colluding devices who jam and/or replay each other’s sig-
nals. This requires a large number of malicious devices, and is not realistic in many
practical scenarios. If multiple devices at different locations share the same identity,
they can each send a different message to a subset of the honest beacons.

Defending against cloning and directional signals is a difficult challenge, and an in-
teresting topic for future research. Proposed defenses include hiding locations of the
beacons [ČČS06]. Our protocols are compatible with this defense, and the generic se-
curity argument given in sections 2 and 3 holds when the beacons’ locations are hidden.
The analysis in [ČČS06], however, does not consider the case of malicious beacons
colluding with the device.

In this paper, we focused on verifying location claims of a single device. When mul-
tiple devices are being localized, interference and missed signals are possible. Because
our protocols require that a sufficient number of honest beacons receive the device’s
signal, the protocol may need to be repeated several times. Each protocol session must
include a unique session id so that different sessions can be distinguished.

We assumed that communication between the beacons and the base station is secure.
If the adversary has the ability to block the reports of honest beacons, verification of
location claims does not appear feasible since the base station will be computing the
location solely from the reports of malicious beacons.

7 Conclusions

We proposed a new simultaneous distance modification property for distance estima-
tion protocols, and demonstrated that this property enables secure verification of loca-
tion claims of mobile devices with a small number of verifiers, and regardless of the
device’s position relative to the verifiers. We also presented two lightweight localiza-
tion protocols based on, respectively, challenge-response and time difference of arrival.
These protocols prevent false location claims even if some of the verifiers are malicious.

References

[BC93] Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helle-
seth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, Springer, Heidelberg (1994)

[BHE00] Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for
very small devices. Technical Report 00-729, Computer Science Department, Uni-
versity of Southern California (April 2000)

[BP00] Bahl, P., Padmanabhan, V.: RADAR: An in-building RF-based user location and
tracking system. In: INFOCOM (2) (2000)

Secure Verification of Location Claims 195

[ČČS06] Čapkun, S., Čagalj, M., Srivastava, M.: Secure localization with hidden and mobile
base stations. In: INFOCOM (2006)

[ČH05] Čapkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application
to sensor networks. In: INFOCOM (2005)

[CHKM06] Clulow, J., Hancke, G., Kuhn, M., Moore, T.: So near and yet so far: distance-
bounding attacks in wireless networks. In: Buttyán, L., Gligor, V., Westhoff, D.
(eds.) ESAS 2006. LNCS, vol. 4357, Springer, Heidelberg (2006)

[DFN06] Du, W., Fang, L., Ning, P.: LAD: localization anomaly detection for wireless sensor
networks. J. Parallel Distrib. Comput. 66(7), 874–886 (2006)

[FRB03] Fontana, R., Richley, E., Barney, J.: Commercialization of an ultra wideband preci-
sion asset location system. In: IEEE Conf. on Ultra Wideband Systems and Tech-
nologies (2003)

[HHB+03] He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.: Range-free localization
schemes for large scale sensor networks. In: MOBICOM (2003)

[HK05] Hancke, G., Kuhn, M.: An RFID distance bounding protocol. In: SecureComm
(2005)

[HWLC97] Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System:
Theory and Practice. Springer, Heidelberg (1997)

[LND05a] Liu, D., Ning, P., Du, W.: Attack-resistant location estimation in sensor networks.
In: IPSN (2005)

[LND05b] Liu, D., Ning, P., Du, W.: Detecting malicious beacon nodes for secure location
discovery in wireless sensor networks. In: ICDCS (2005)

[LOR06] LORAN. LORAN-C general information (2006),
http://www.navcen.uscg.gov/loran/

[LP05] Lazos, L., Poovendran, R.: SeRLoc: Robust localization for wireless sensor net-
works. ACM Trans. Sensor Networks 1(1), 73–100 (2005)

[LPČ05] Lazos, L., Poovendran, R., Čapkun, S.: ROPE: Robust position estimation in wire-
less sensor networks. In: IPSN (2005)

[MSC06] Meadows, C., Syverson, P., Chang, L.: Towards more efficient distance bounding
protocols for use in sensor networks. In: SecureComm (2006)

[NN03a] Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AoA. In: INFO-
COM (2003)

[NN03b] Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. J. Telecommu-
nication Systems (2003)

[PCB00] Priyantha, N., Chakraborty, A., Balakrishnan, H.: The Cricket location-support sys-
tem. In: MOBICOM (2000)

[Rap96] Rappaport, T.: Wireless Communications: Principle and Practice. Prentice-Hall,
Englewood Cliffs (1996)

[SHS01] Savvides, A., Han, C.-C., Srivastava, M.: Dynamic fine-grained localization in ad-
hoc networks of sensors. In: Mobile Computing and Networking, pp. 166–179
(2001)

[SSW03] Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
WiSe (2003)

[WF03] Waters, B., Felten, E.: Secure, private proofs of location. Technical Report 667-03,
Department of Computer Science, Princeton University (January 2003)

http://www.navcen.uscg.gov/loran/

Modeling and Virtualization for Secure

Computing Environments

Kazuhiko Kato

Department of Computer Science
University of Tsukuba

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
kato@cs.tsukuba.ac.jp

http://www.osss.cs.tsukuba.ac.jp/kato/

Modeling and virtualization are typical methodologies used to develop efficient
security enhancement techniques. Modeling approximates complex human or
software behaviors with limited resources and enables effective analysis of usage
patterns. Virtualization allows simulating existing computing resources, adding
some capabilities such as access control and/or modifying semantics. Thus enti-
ties accessing computer resources are handled by modeling, whereas the resources
themselves can be managed through virtualization. This invited talk describes
our approaches and experiences that takes advantage of both methodologies.

By modeling software or user behavior, the system can make approximations
that capture the “normal” behaviors with limited resources. Once we obtain an
approximation, it can be utilized to detect anomalies that an intruder would
likely perform. Conventional modeling approaches for anomaly-based intrusion
detection can be classified as either vector space-based methods or network-based
methods. The advantages of these two types of methods are complementary
to each other. The vector space-based methods can automatically generate a
model from an event sequence, but the relations between the events cannot
be represented, whereas the network-based methods can represent the relations
between the events, but a domain specific knowledge is often required to define
the topology of the network. We show that it is possible to develop a method that
combines the advantages of the two types [3]. The idea behind this method is to
regard an event sequence as a serialized sequence that originally had structural
relations and to extract the embedded dependencies of the events.

Most modeling methods of anomaly-based intrusion detection requires a
“learning” phase of normal behavior, including the above-mentioned technique.
Determining what data should be used for the learning stage is a nontrivial is-
sue and careful selection is required. David Wagner and Drew Dean proposed
an interesting approach that directly extracts a model by statically analyzing
program codes [5]. Unfortunately, the proposed method inherently incorporates
nondeterministic search at runtime, so it suffers significant runtime overhead.
We found that the overhead can be drastically reduced by combining two tech-
niques [1]. One technique is to examine calling sequences stored in the execution
stack and the other is to reuse searching results stored in a caching table.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 196–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.osss.cs.tsukuba.ac.jp/kato/

Modeling and Virtualization for Secure Computing Environments 197

Virtualization, on the other hand, abstracts computing resources and enables
one to control access to resources and/or to modify the semantics of the re-
sources. Such capabilities are useful to protect the system’s resources even when
an intrusion detection system cannot recognize malicious programs or masquer-
aders. Our research group has two approaches to utilize such virtualization tech-
niques: operating-system-level virtualization and processor-level virtualization.

The SofwarePot system [2,4] adopts operating-system-level virtualization. It
provides an interface similar to existing Unix system-call interfaces, but its access
is controlled by a specified security policy. Furthermore, semantics of system-calls
are flexibly changed according to the policy.

In regards to a processor-level virtual machine system, we are currently de-
veloping a government-sponsored Secure Virtual Machine system. Transparent
to commodity guest operating systems such as Windows and Linux, it provides
virtualized devices including network, storage, and IC cards. The virtualization
includes an encryption technology so that a certain level of security specified
by security polices are guaranteed regardless of the guest operating system’s
settings.

References

1. Abe, H., Oyama, Y., Oka, M., Kato, K.: Optimization of intrusion detection system
based on static analyses. IPSJ Transactions on Advanced Computing Systems(In
Japanese) 45(SIG 3(ACS 5)), 11–20 (March 2004)

2. Kato, K., Oyama, Y.: Softwarepot: An encapsulated transferable file system for
secure software circulation. In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H.,
Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 112–132. Springer, Heidelberg
(2003)

3. Oka, M., Oyama, Y., Abe, H., Kato, K.: Anomaly detection using layered networks
based on eigen co-occurrence matrix. In: Jonsson, E., Valdes, A., Almgren, M. (eds.)
RAID 2004. LNCS, vol. 3224, pp. 223–237. Springer, Heidelberg (2004)

4. Oyama, Y., Kanda, K., Kato, K.: Design and implementation of secure software
execution system softwarepot. Computer Software(In Japanese) 19(6), 2–12 (2002)

5. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proc. IEEE Sym-
posium on Security and Privacy, pp. 156–168 (May 2001)

Empirical Study of the Impact of

Metasploit-Related Attacks in 4 Years of Attack
Traces

E. Ramirez-Silva and M. Dacier

Eurecom Institute
Sophia Antipolis, France

{ramirez, dacier}@eurecom.fr

Abstract. For several years, various projects have collected traces of
malicious activities thanks to honeypots, darknets and other Internet
Telescopes. In this paper, we use the accumulated four years of data of
one such system, the Leurré.com project, to assess quantitatively the
influence, in these traces, of a very popular attack tool, the Metasploit
Framework. We identify activities clearly related to the aforementioned
exploitation tool and show the fraction of attacks this tool accounts for
with respect to all other ones. Despite our initial thinking, the findings
do not seem to support the assumption that such tool is only used by,
so called, script kiddies. As described below, this analysis highlights the
fact that a limited, yet determined, number of people are trying new
exploits almost immediately when they are released. More importantly,
such activity does not last for more than one or two days, as if it was all
the time required to take advantage of these new exploits in a systematic
way. It is worth noting that this observation is made on a worldwide scale
and that the origins of the attacks are also very diverse. Intuitively, one
would expect to see a kind of a Gaussian curve in the representation of
the usage of these attacks by script kiddies over time, with a peak after
one or two days when word of mouth has spread the rumor about the
existence of a new exploit. The striking difference between this idea and
the curves we obtain is an element to take into account when thinking
about responsible publication of information about new exploits over the
Internet.

1 Introduction

In this paper, we present a thorough analysis of 4 years of data collected by
a number of honeypots distributed all over the world. The initial goal of this
effort was to see i) if script kiddies activities were captured by honeypots and,
if yes, ii) what relative importance such traffic had in the bulk of the collected
dataset. Since, a priori, nothing distinguishes the attack traffic generated by a
script kiddie from the one due to a botnet or an organized crime organization,
our first task was to formulate the problem in a tractable way. Therefore, we have
reduced the problem to the identification and quantification of the traces due to

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 198–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Empirical Study of the Impact of Metasploit-Related Attacks 199

a specific tool that most script kiddies, without any expertise at all, could use
to run attacks. There is a consensus in the security community to say that the
Metasploit Framework is probably “the” tool that matches this criteria. Thus,
the analysis presented here after focuses on the identification of attack traces
due to that specific tool.

Much to our surprise not only did this attack tool left clear traces on our
honeypots, a little bit all over the world but, more importantly, the discussion
presented at the end of this paper seems to indicate that this tool is used in a
very systematic way by well organized people who use the very latest exploit
within the 24 first hours of their release. Such activity profile does not really
match the expected behavior of script kiddies and this finding should be taken
into serious consideration by the security community at large and by those who
produce and publish such exploit code in particular.

The structure of the paper is as follows. In Section 2, we present the Leurré.com
environment and the data set used in this experiment. We introduce the key no-
tion of clusters, as defined within the Leurré.com project and we offer a brief
presentation of the Metasploit Framework. We invite the reader who would al-
ready be familiar with these notions to skip this Section and immediately con-
tinue with the next one. Section 3 describes the experimental setup we have
built to systematically identify all traces of potential interest in our database.
We conclude that Section by explaining why the identified traces are likely to
contain traffic not related to the Metasploit attacks. Section 4 proposes vari-
ous strategies to filter out this noise and discuss the results obtained with this
cleaned dataset. Section 5 concludes the paper with some discussion on the most
surprising results.

2 Data Collection Environment

2.1 The Leurré.com Project

For almost 4 years, the people coordinating the Leurré.com project [4] have de-
ployed and maintained a distributed system of identical honeypots all over the
world. As of today, the system is made of approximately 50 platforms located
in 30 different countries. Each platform monitors 3 distinct IP addresses, using
the honeyd application developed by Niels Provos [13]. Each platform captures,
by means of a tcpdump file, all packets sent to and from these three virtual
machines. All captured tcpdump files are parsed and stored in an SQL data-
base, enriched with data such as the geographical location of each attacking IP,
the identification of its operating system (obtained thanks to p0f and disco, two
passive OS fingerprinting techniques [14],[15]), etc. The interested reader is in-
vited to look at [12],[7],[8],[9],[11] for more information on the various findings
obtained thanks to this infrastructure.

2.2 The Leurré.com Notion of “Cluster”

The notion of “cluster of traces”, as defined within the Leurré.com project
[9],[10],[12], is a key concept used throughout the rest of this paper. To make a

200 E. Ramirez-Silva and M. Dacier

long story short, one can say that a “cluster” is nothing else but a group of IP
addresses that have interacted with the virtual machines of a given platform in
a very similar way. Therefore, one can imagine that all these traces are likely
to be due to the execution of the same attack tool on each of these attacking
IPs. In other words, that the same tool has been launched from all IPs found
in a cluster, or, similarly, that all IPs found in a given cluster are likely com-
promised by the same tool. It is clear that the semantic attached to the notion
of cluster is, by far, not an exact one. The same tool can leave different traces
[10], leading to the creation of several clusters that, actually, relate to a single
tool. Similarly, distinct tools may leave the same fingerprint against a platform
resulting in impure clusters where IPs corresponding to machines infected by
different tools are grouped together. Nevertheless, introduced in [9], this notion
has been validated and used in several publications, highlighting the fact that,
in many cases, it was a meaningful way to group traces together.

We invite the interested reader to refer to [9] for the details of the algorithm
used to build the clusters.

2.3 Metasploit Framework

Metasploit [5], according to the latest survey conducted by Fyodor [2], is the
most popular vulnerability exploitation tool [3] and comes at the fifth position
for the most popular security tool, according to the same study. Quoting that
study: “Metasploit took the security world by storm when it was released in 2004.
No other new tool even broke into the top 15 of this list, yet Metasploit comes
in at #5, ahead of many well-loved tools that have been developed for more than
a decade. It is an advanced open-source platform for developing, testing, and
using exploit code. The extensible model through which payloads, encoders, no-
op generators, and exploits can be integrated has made it possible to use the
Metasploit Framework as an outlet for cutting-edge exploitation research. It ships
with hundreds of exploits, as you can see in their online exploit building demo.
This makes writing your own exploits easier, and it certainly beats scouring the
darkest corners of the Internet for illicit shellcode of dubious quality. Similar
professional exploitation tools, such as Core Impact and Canvas already existed
for wealthy users on all sides of the ethical spectrum. Metasploit simply brought
this capability to the masses.” [3].

The Metasploit Framework can be invoked in different ways to launch attacks
(msfconsole, msfcli interface or the msfweb interface). When using the graphical
interface, the user can not easily launch attacks against a large number of hosts
but, by using the msfcli command, one obtains a command line interface which
is well suited to automatize campaigns of attacks against large numbers of hosts
using so called Metasploit plugins, ie vulnerability exploitation tool. This com-
mand is simply invoked as follows: “msfcli match string options(VAR=VAL)
action code” where match string is the plugin (exploit) name to be launched.
The action code is a single letter used to specify what should be done; S for
summary, O for options, A for advanced options, P for payloads, T for targets,
C to try a vulnerability check, and E to exploit [6].

Empirical Study of the Impact of Metasploit-Related Attacks 201

For instance, to launch the execution of the so called “backupexec dump” plu-
gin against the host 192.168.1.11, one would issue the following command:

“./msfcli backupexec dump PAYLOAD=win32 exec RHOST=192.168.1.11
TARGET=0 E”

Released at the end of 2003, the framework has evolved over the years in-
crementally. In early 2007, version 3.0 has been produced which is a complete
rewrite of the whole framework using the Ruby language with new features and
interfaces that distinguishes it completely from the previous releases. Version 2.x,
written in Perl, was also different from 1.0 and has been through 8 releases; each
release came with new plugins (exploit modules). For the sake of consistency
and also for practical reasons, we restrict ourselves to these 8 versions (version
2.0 to 2.7), out of 10, of the Metasploit Framework to analyze its impact on our
dataset.

3 Experimental Setup

3.1 Introduction

The analysis we have carried out is made of two distinct steps. In the first step, we
have experimentally produced the partial definition of clusters that a Metasploit
attack against our platforms would have left. Then, in a second phase, we have
identified in our database all clusters whose definition was matching the one
of any of those produced in the first step. Last but not least, we have applied
various filters to ensure that the found clusters were, with a very high probably,
linked to a real Metasploit attack and not to another attack which would have
left the same fingerprint on the attacked platform. In this section, we present,
step by step, the process followed to create the various partial definitions of
“Metasploit” clusters. Section 4 presents the various filtering strategies applied
on them.

Fig. 1 gives a high level description of the process that leads to the creation
of potential candidate definitions of Metasploit-related clusters. Two distinct
functional modules appear. The one on the left is responsible for launching all
possible attacks against one of our platforms, in a laboratory. Traces of the
attacks are saved, labeled and provided to the second module, on the right,
which extracts, for each attack, the characteristics common to all clusters that
would contain the same kind of traces. It also searches the database for all
matching clusters, if any, and produces, as an output, a list of clusters found in
the database that matches the signature of a Metasploit-related attack.

These two modules are described in more detail here below.

3.2 Launching All Possible Attacks

We wrote a perl script that iterates through all attacks available in the Metas-
ploit Framework and that targets the virtual machines on the platform using

202 E. Ramirez-Silva and M. Dacier

Fig. 1. High level presentation of the signatures generation process

all possible combinations, ie targeting Machine 1 only (resp 2, or 3 only), Ma-
chines 1 and 2 (resp. 1 and 3, 2 and 3), machines 1, 2 and 3. The order of the
attack, 1-2-3 or 1-3-2 or ..., is one of the seven attributes that defines a cluster,
as described in Section 2. We have not taken this element into consideration
in our experiment as it would have dramatically increased the number of traces
produced without adding any discriminant information, since all sequences must
be seen as valid.

Our script invokes the msfcli command to launch the Metasploit attacks on
the three honeypot IPs. It consists of iterative loops that start by querying
Metasploit for all available attacks and then runs each attack, with all possible
payloads, against the various combinations of the three available honeypots. This
script also starts and stops the honeyd service and generates a tcpdump in order
to be able to generate a tcpdump file for each attack.

The different steps the script goes through are:

1. Query Metasploit for all available attacks
2. For each attack, query Metasploit for all available payloads
3. For each honeypot IP and combination of IPs, launch the attack and the

specific payload as follows:
(a) Start the honeyd service.
(b) Start the tcpdump monitor.
(c) Launch the attack using the msfcli shell command with specific attack

and payload and default options.
(d) When the attack is over, stop the honeyd service and stop tcpdump.

Empirical Study of the Impact of Metasploit-Related Attacks 203

(e) Rename the generated log file.
(f) Go to step (a) until all attacks are carried out.

3.3 Data Processing: Labeling Clusters with Attack Signatures

The role of the second functional module is to search for all clusters in the data-
base that contain traces similar to the ones generated in the first phase of the
experiment. To do this, we extract from each tcpdump file generated in the first
phase, the values of the four first attributes used to define a cluster. As explained
before, we ignore the order in which the virtual machines have been hit. We also
ignore the total duration of the attack as well the average inter arrival time of the
packets as these two factors could vary depending on the way the attacker has
automatized the launching of the Metasploit plugin. Indeed, suppose that two
attackers are scanning, e.g., the class C where one of our platforms is located.
The first one does the scan randomly whereas the other does it sequentially. Both
traces will end in clusters that will vary only on the basis of the last 3 attributes.
As we are interested in finding these clusters, as well as all the others, we simply
ignore the last 3 attributes when generating the signatures of our traces. To do
this, we have a script that converts each attack dump file, obtained in 3.1, into
an attack signature which has the following format:

Attack=<attack name> ports=<ports sequence> T=<No. targeted virtual
machines> N=<Total No. packets sent> n1=<packets sent to machine1>
n2=<packets sent to machine2> n3=<packets sent to machine3>

Last but not least, we extract from the Leurré.com database all the cluster
identifiers the four first attributes of which match one of the attack signatures
generated before. More precisely:

– Compare each attack signature to all the cluster signatures and declare a
match if all of the following are true:
1. n1(min)Cluster ≤ n1Attack ≤ n1(max)Cluster1

2. n2(min)Cluster ≤ n2Attack ≤ n2(max)Cluster
3. n3(min)Cluster ≤ n3Attack ≤ n3(max)Cluster
4. Ports sequence Cluster = Ports sequence Attack
5. number of targeted IPs Cluster = number of targeted IPs Attack
6. N(min)Cluster ≤ NAttack ≤ N(max)Cluster

3.4 Preliminary Results

When we ran the attack script with all the exploit modules found in release 2.7,
we obtained approximately 4000 distinct tcpdump files. It should be noted that
certain Metasploit attacks require a connection from the target (to download a
1 In the definition of a cluster, the number of packets sent against a given machine is

not an absolute value but a range of values -to take into account duplicates and lost
packets, among other things.

204 E. Ramirez-Silva and M. Dacier

 0

 5

 10

 15

 20

 25

 1 10 100 1000 10000

N
o.

 o
f e

xp
lo

its

No. of clusters

No. of exploits per cluster

Fig. 2. Distribution of the number of exploits wrt number of clusters

file for example), whereas others wait for a connection from a user (SSL attack).
These exploits have therefore been omitted from the analysis since they do not
generate any traffic at all.

At the time of the experiment, the Leurré.com database did contain approxi-
mately 150.000 distinct clusters.

When we matched the derived 4000 signatures with each of these 150.000
cluster definitions, we end up with around 19’000 distinct cluster IDs. In other
words there are 19’000 groups of traces in the database that are similar to traces
generated artificially in the laboratory by running Metasploit plugins against a
similar platform. Fig. 2 shows the distribution of the amount of exploits “per
cluster”. The figure shows that among the 132 exploits, there are 9 exploits that
have matching characteristics in a single cluster, 17 for which 2 clusters where
identified for each, 23 with three clusters, etc. In other words, almost half of the
exploits are mapped with a single or a couple of clusters in the DB. We also see
that a few exploits are mapped to a very large number of clusters (up to 3287
distinct ones !). It is quite likely that, among these clusters, many are not related
at all to the Metasploit attack but simply target the same port in a similar way
(e.g., port 445 or 139 or ...). We can, therefore, not rely on this first extraction
method to look at the observed activities. In the next Section, we explain how
we can filter out all the clusters that are likely due to other phenomena.

4 Analysis Results

4.1 Logic of the Experiment

From the previous Section, it is quite clear that the procedure we have followed
may have helped identifying traces in our database that are linked to the man-
ifestation of Metasploit related attacks but it is also clear that these traces are

Empirical Study of the Impact of Metasploit-Related Attacks 205

mixed with a large number of traces that have nothing to do with the phenomena
we are interested in.

To isolate the interesting traces, we are going to follow a three stage process.
In the first phase, Section 4.2, we filter out a very large number of traces to
keep only those for which we are almost certain that they correspond to the
phenomena we are interested in. This first result ensures us that there is, indeed,
something to be found in the dataset. In the second phase, Section 4.3, we relax
some of the constraints used in the first filtering process and we verify that
the characteristics of this second result are consistent with the first one. This
suggests that we have captured again, in this second filtering, traces related to
the Metasploit related phenomena. Last but not least, in the third phase, Section
4.4, we apply some heuristics that we believe could also capture other interesting
traces and, hereto, we verify that the characteristics of this new experiment are
consistent with those corresponding to well identified Metasploit traces.

4.2 Selection on the Basis of the Original Date

In order to define the traces we are interested in, we impose some reasonable
constraints on them and we select only those clusters that fulfill all criteria.
The basic underlying idea is that a cluster contains traces related to a given
Metasploit plugin if the number of attacks observed for that cluster around the
date of the release of the plugin is significantly different than before or after. To
select clusters that satisfy this property, we apply the following algorithm:

1. For each of the 19000 selected clusters in the previous phase do:
– Obtain the original plugin release date corresponding to the cluster under

consideration.
– Compute the number of attacks, per day, observed for that cluster in the

period going from -30 days until +30 days after the found release date.
– If this cluster had never been observed before the release day minus 3

day, select the cluster and go to step 2.
– Compute the average number of attacks for that cluster for the period

[release date - 30 days, release date + 30 days]. Compute the standard
deviation for the same period.

– Select the cluster and go to step 2 if, within the period [release date - 5
days, release date + 5 days], we observe days where the number of attacks
is greater than the average value + 2 times the standard deviation.

– If no such point exists, discard the cluster and move to step 1 with the
next cluster in the list.

2. Search for the maximal value of attacks per day observed for the selected
cluster over the whole lifetime of the cluster.

3. If the found maximal value does not appear within the period [release date
- 5 days, release date + 5 days], discard the cluster as we are interested in
clusters that should normally be more active around the period of the plugin
release. Continue to step 1 with a new cluster.

4. If the maximal value is within the expect boundaries, mark this cluster as
being a good candidate.

206 E. Ramirez-Silva and M. Dacier

 0

 50

 100

 150

 200

 250

-30 -20 -10 0 10 20 30 40 50 60

N
o.

 o
f a

tta
ck

in
g

so
ur

ce
s

Day

Clusters activity around the original release date

Fig. 3. First phase, number of attacks observed around day 0

The information concerning the original release date we have used is the one
published officially in the Metasploit website, and is the date of the first appear-
ance of the exploit module in the Framework. The execution of this algorithm
against the 19000 selected lectures leads to the selection of only 700 of them! By
having been very selective, we are quite confident that these clusters do indeed
correspond to activities linked to the Metasploit Framework.

Fig. 3 represents the number of attacks observed for these 700 clusters where
the X axis represents the number of day before and after the original plugin
release. It highlights the fact that the peak activity occurs between -1 day and
up to 2 days after the exploit release date with a maximal value in day 1. Two
conclusions can be derived from this picture:

1. some exploits are tried out in the wild a few days before being officially
published

2. the new plugins are very rapidly tried out and abandoned, as highlighted by
the burst of attacks observed on day +1.

It is interesting to note that these attacks have been observed against plat-
forms located all over the world and that they did originate from machines
found in many different countries as well. This is a general phenomenon, not re-
stricted to some countries or some platforms. This is represented in Fig. 4 and 5.
Fig. 4 shows the geographical location of the attack sources. In Fig. 5, the hor-
izontal axis presents the top 10 countries where attackers are coming from, for
the selected clusters. The vertical axis gives the number of associated attacking
sources. The other countries are grouped in the ‘others’ category (62 countries).

Fig. 6 shows the distribution of the attacks per environment2. We can observe
that the attacks are not limited to a particular environment, at the contrary, they

2 All Leurré.com partners are bound by an NDA that forbids them from communi-
cating to the outside neither the IPs of the attackers or the IPs of the attacked
platforms. This is why we anonymize the names of the platforms by replacing them
by the name of the country where they are located.

Empirical Study of the Impact of Metasploit-Related Attacks 207

US
21%

CN
8%

FR
7%

TW
5% DE

4% KR
4%

ES
3%

GB
3%

IT
3%

CS
3%

Others
39%

US
CN
FR
TW
DE
KR
ES
GB
IT
CS
Others

Distribution of the attacks per country

Fig. 4.

US CN FR TW DE KR ES GB IT CS Others
0

50

100

150

200

250

300

350
Attacking countries

Countries

N
o.

 o
f a

tta
ck

in
g

so
ur

ce
s

Fig. 5.

Italy1
14%

France1
8%

Germany
8%

France2
7%

Belgium
6% Swiss

5%
Italy2
5%

Canada
5%

Finland
4%

Taiwan
4%

Others
34%

Italy1
France1
Germany
France2
Belgium
Swiss
Italy2
Canada
Finland
Taiwan
Others

Distribution of the attacks per environment

Fig. 6.

Italy1

France1

Germany

France2

Belgium

Swiss

Italy2

Canada

Finland

Taiwan

Others

0 50 100 150 200 250 300 350

Distribution of the attacks per environment

E
nv

iro
nm

en
t

No. of attacking sources

Fig. 7.

are well distributed. We only present the 10 most frequently attacked environ-
ments. The data series labelled others correspond to all other Metasploit related
attacks observed on the remaining 38 environments.

4.3 Selection on the Basis of All Release Dates

So far, the algorithm described before has been applied for each cluster for a
single date, the date of the original release of the plugin linked to the cluster
under consideration. However, it is reasonable to expect that an “old” plugin
published, e.g., in 2005, would suddenly be reused intensively simply because,
e.g., a new releases of the framework is published. This could be a side effect
of the publicity surrounding the publication of the new release. To take this
element into account, we rerun the algorithm on the 19000 clusters, minus the
700 found before, by taking into account not only the original release date of the
plugin but all other dates of plugin releases coming after that. In other words,

208 E. Ramirez-Silva and M. Dacier

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

-30 -20 -10 0 10 20 30 40 50 60

N
o.

 o
f a

tta
ck

in
g

so
ur

ce
s

Day

Clusters activity around each MSF release date

Fig. 8.

if a cluster matches the criteria of the previous algorithm for any of the release
date that follows the original release3, we select that cluster and sum all its
activities around the range [release date - 30 days, release date + 30 days] for
all periods following the original release date.

Fig. 8 shows the number of attacks corresponding to the ≈ 1300 matched
clusters identified with this new method. The shape of this curve shows a striking
similarity with the one shown in Fig. 3. There are two major differences though.
First, the peak value of the curve appears at day -1 instead of +1, in the previous
case. Second, we observe a very high number of hits at day -2. A deeper analysis
reveals the explanation of these phenomena:

– A single exploit module appears to be responsible for the burst at day -1:
msasn1 ms04 007 killbill exploit module from release 2.5. The most signif-
icant clusters that matched that specific attack signature have almost 230
attacking sources on that day. The attack has been observed only on two
environments: one in Luxembourg and the other one in France. Most of the
attacks came from 2 countries: Germany (DE) and Spain (ES).

– A single exploit module appears to be responsible for the burst at day -
2: mssql2000 preauthentication exploit module from release 2.6. The most
significant clusters that matched that specific attack signature have almost
100 attacking sources on that day. The attack has been observed a little bit
all over the world and most of the attacks came from 1 country: China (CN).

So, in this case, the filtering has identified new traces that are, quite likely,
linked to the Metasploit Framework and that also revealed some specific behavior
on behalf of the attackers.

4.4 Clusters Without Activity Before Day -2 Filter

The two preceding filters are very good to select clusters that are, with a very high
probability, linked to Metasploit related activities. However, they are probably
3 Dates of releases 2.1 to 2.7.

Empirical Study of the Impact of Metasploit-Related Attacks 209

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 0 10 20 30 40 50 60

N
o.

 o
f a

tta
ck

in
g

so
ur

ce
s

Day

Clusters without activity before day -2

Fig. 9.

too restrictive and may have discarded clusters that could have been of interest.
As a sanity check, we have decided to select all clusters for which the very first
manifestation had been observed in a window of -2 to +2 days around any of the
8 possible release dates. In this last filtering approach, we do not discard clusters
fulfilling this property if their maximal value appears in a period of time unrelated
to any important Metasploit dates. Our hope is to identify, by doing so, clusters
that are linked to the Metasploit exploit around one or several release dates but
that got mixed with another, more important activity, later on.

The application of this algorithm to the remaining clusters not yet selected,
we obtain 80 new clusters. Fig. 9, represents the number of attacks per day,
reported relatively to any release date. Here to, we obtain a very bursty curve,
just after the release which seems to indicate that the clusters we have selected
are behaving similarly than the other ones and, therefore are also due to the
Metasploit plugin releases.

4.5 Discussion

Fig. 10 offers the sum of all activities linked to the clusters identified in the three
previous methods. The refined approach confirmed the first observations made:

1. the exploits are used extremely rapidly once they have been released.
2. some exploits are used in the wild before being made public.

It is also worth noting that the amount of attacks observed is actually fairly
small. This, of course, has to be put in relation with the very limited number
of addresses we are observing and, furthermore, the fact that these honeypots
are low interaction ones. One can assume that we only see attacks that do par-
ticipate to a very large, potentially worldwide, scan of the internet for specific
exploit. Therefore, the hits we see do simply represent the tip of the iceberg
and it means that there are people in the world who, as soon as plugins are
released, immediately launch a worldwide scale attack against all possible plat-
forms thanks to the new plugin, or new release. It is also important to notice

210 E. Ramirez-Silva and M. Dacier

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

-30 -20 -10 0 10 20 30 40 50 60

N
o.

 o
f a

tta
ck

in
g

so
ur

ce
s

Day

Sum of all clusters activity

Fig. 10.

that these phenomena last for a very limited amount of time, one or two days.
This is not at all what one would expect from a large population of script kid-
dies, scattered all over the world, with different skills and equipments at their
disposal. As for every activity involving a large number of participants, it should
rather be represented by a Gaussian curve highlighting the fact that a few ones
see the new release immediately, spread the news, more script kiddies try it out
as well, reaching a peak and, then, the number of attacks slowly decreases over
the course of several days or weeks. The fact that none of our curves matches
this description is a strong indication that new Metasploit releases are used by
a very different population of users. These ones keep a close eye on new releases
and have, probably, bots at their disposals to try them out on a very large scale
immediately. Security administrators should be aware of that fact and, similarly,
keep the publication of new exploits within Metasploit under close scrutiny as
they can represent significant threats for their systems.

Whereas we are certainly not advocating that “security by obscurity” is a
paradigm that should be promoted, at the same time we consider that those
who publish new exploit plugins for the Metasploit Framework should be made
aware of the fact that they help well organized entities who are not maneuvering
for the good of the humanity.

5 Conclusion

In this paper, we have proposed a method to systematically identify in a very
large dataset all the traces that were likely due to the Metasploit Framework
(releases 2.0 to 2.7). We have shown that new plugins and new releases, are used
by an important population, all over the world, that seems eager to run these
exploits against as many machines as fast as possible. Quantitative examples are
given throughout the text that show the validity of the approach as well as the
impact of that tool on the community at large.

Empirical Study of the Impact of Metasploit-Related Attacks 211

References

1. Arbaugh, W.A., Fithen, W.L., McHugh, J.: Windows of Vulnerability: A Case
Study Analysis. IEEE Computer 33, 52–59 (2000)

2. Fyodor.: Top 100 Network Security Tools (last visited, July 25, 2007), available on
line on http://sectools.org

3. Fyodor.: Top 3 Vulnerability Exploitation Tools (last visited, July 25, 2007), avail-
able on line on http://sectools.org/sploits.html

4. Leurré.com Project web page (last visited, July 25, 2007),
http://www.leurrecom.org

5. Metasploit Project web page (last visited, July 25, 2007),
http://www.metasploit.com

6. Metasploit Framework User Guide. Version 2.5., http://metasploit.com/
projects/Framework/docs/userguide.pdf

7. Pouget, F., Dacier, M., Debar, H., Pham, V.H.: Honeynets: foundations for the
development of early warning information systems. In: The Cyberspace Security
and Defense: Research Issues - NATO Advanced Research Workshop, Gdansk,
Poland (September 6-9, 2004)

8. Pouget, F., Dacier, M., Debar, H.: Honeypots, a practical mean to validate ma-
licious fault assumptions. In: PRDC 2004. 10th International symposium Pacific
Rim dependable computing Conference, Tahiti, French Polynesia (March 3-5, 2004)

9. Pouget, F., Dacier, M.: Honeypot-based Forensics. In: Proc. AusCERT Asia Pacific
Information Technology Security Conference, Brisbane (2004)

10. Pouget, F., Dacier, M.: Honeypot Platform: Analyses and Results. Rapport de
recherche RR-04-104 (October 30, 2004)

11. Pouget, F., Dacier, M., H., Pham, V.H.: Leurre.com: on the advantages of de-
ploying a large scale distributed honeypot platform. In: ECCE 2005. E-Crime and
Computer Conference, Monaco (March 29-30, 2005)

12. Pouget, F.: Distributed System of Honeypots Sensors: Discrimination and Correl-
ative Analysis of Attack Processes. PhD thesis, Institut Eurecom (2006)

13. Provos, N.: A virtual honeypot framework. In Proceedings of the 12th USENIX
Security Symposium, pp. 1-14 (August 2004)

14. Disco tool web page, http://www.altmode.com/disco/
15. p0f passive fingerprinting tool web page,

http://lcamtuf.coredump.cx/p0f-beta.tgz

http://sectools.org
http://sectools.org/sploits.html
http://www.leurrecom.org
http://www.metasploit.com
http://metasploit.com/projects/Framework/docs/userguide.pdf
http://metasploit.com/projects/Framework/docs/userguide.pdf
http://www.altmode.com/disco/
http://lcamtuf.coredump.cx/p0f-beta.tgz

A Logical Framework for Evaluating Network
Resilience Against Faults and Attacks

Elie Bursztein� and Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA
{eb,goubault}@lsv.ens-cachan.fr

Abstract. We present a logic-based framework to evaluate the resilience of com-
puter networks in the face of incidents, i.e., attacks from malicious intruders as
well as random faults. Our model uses a two-layered presentation of dependen-
cies between files and services, and of timed games to represent not just incidents,
but also the dynamic responses from administrators and their respective delays.
We demonstrate that a variant TATL♦ of timed alternating-time temporal logic
is a convenient language to express several desirable properties of networks, in-
cluding several forms of survivability. We illustrate this on a simple redundant
Web service architecture, and show that checking such timed games against the
so-called TATL♦ variant of the timed alternating time temporal logic TATL is
EXPTIME-complete.

1 Introduction

Computer networks are subject to random faults, i.e., a server may fail because of a
bug or due to preventive maintenance. They are also subject to attacks by malicious
adversaries. Both are growing concerns. We propose a logic and a simple model to
evaluate the resilience of networks to such faults. While this model is still far from
being a complete one—it does not include probabilistic transitions, does not take into
account the financial and human cost of patching, and ignores some other intricacies of
the real world—it has the nice feature of taking into account the time needed to mount
attacks, to crash, or to patch systems.

Incidents may have dramatic consequences: on Nov. 04, 2004, the 7 million sub-
scribers to French mobile phone (GSM) network operator Bouygues remained unable
to make a call for several hours [8]. This incident made the headlines of national news-
papers and news reports on television and radio, and was felt as outrageous by many.
(Financial loss by Bouygues was not documented.) It was later discovered that this in-
cident was caused by the simultaneous failure of two redundant central servers. That
this could happen, and would cause a disaster, had remained unforeseen by software
architects and security experts.

The Bouygues incident does not imply any malicious activity. Nonetheless, it is
equally important to predict the impact of malicious attacks, too, on computer net-
works. Real-world attacks are often a combination of successful exploitation of several
vulnerabilities, used as stepping stones.

� PhD student at LSV, supported by a DGA grant.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 212–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Logical Framework for Evaluating Network Resilience 213

Contribution. We are interested in evaluating the resilience of networks in the face
of both intended and unintended incidents, i.e., whether the network is able to survive
attacks and faults, and to recover from them. This implies new aspects that are not
covered by previous models.

First, our level of abstraction of the network is that of dependencies between files
and services. In the Bouygues example, the important point is that each mobile phone
on the network depends on the user database served by the two redundant servers, in the
sense that if the latter fail, then each mobile phone fails, too. But the actual topology of
the network is unimportant. Another benefit of considering dependencies is that we can
anticipate collateral damage. E.g., while the Bouygues incident targets the servers, the
mobile phones were affected as a consequence.

Second, it is futile to evaluate resilience by modeling incidents only. We also need
to model responses, typically by administrators. E.g., it is important to know whether
administrators will be able to patch system services before they fail (or are attacked), or
shortly after they fail. Accordingly, we shall examine properties of the network modeled
in a game logic, where the players are I (incident) and A (administrator). At this point
we must say that our approach is inspired from biological models, and in particular from
the SIR (Susceptible-Infected-Recovered) model [6]. The I player conducts actions so
as to infect susceptible nodes, and A plays so as to heal infected nodes.

Third, time plays a key role in modeling network evolution. I and A will indeed
compete in pursuing their goals, and the faster will usually gain a decisive advantage.
E.g., patching a service is usually slower than launching an exploit against it. Windows
of vulnerability are another case in point [14]: a vulnerable service actually cannot be
patched until an official patch is released. Our model will deliberately include delays.

Accordingly, our game logic TATL♦ will be an extension of timed alternating-time
temporal logic (TATL) [9]. We shall see (Theorem 1) that, despite the fact that our
anticipation games are exponentially more succinct than the timed automaton games
they represent, and despite the fact that the natural translation from TATL♦ formulae
to TATL formulae suffers an exponential size blowup, the model-checking problem for
TATL♦ has the same complexity as that of TATL, i.e., is EXPTIME-complete.

An unusual feature of our model is that it consists of two layers. The lower layer—
dependency graphs—models the dependencies, vulnerabilities, availability, etc., of files
and services at a given time. The upper layer models the evolution over time of depen-
dency graphs, through a set of timed rules. The semantics of timed rules is given as a
timed automaton game [4], on which we can then define properties through a variant of
TATL [9]. Timed automaton games are also interesting because they include a so-called
element of surprise: the administrator A must react while not knowing what the other
player I’s next move is (and conversely); see Section 5 for an illustration of this. The
properties we can describe are also far more general than simple reachability properties:
see the example of the service level agreement property in Section 4.

Outline. After reviewing related work, we describe an example of a redundant Web ser-
vice in Section 2, inspired from [17], and which we shall use for illustration purposes in
the rest of the paper. We then describe the lower layer of our model, dependency graphs,

214 E. Bursztein and J. Goubault-Larrecq

in Section 3, as well as some base rules governing their evolution. Our framework is
extensible: other, context-specific rules can always be added, and we shall illustrate this
on our example. We then proceed to the upper layer in Section 4, where the semantics of
dependency graphs over time is given as timed automaton games (of exponential size),
which we dub anticipation games. This allows us to define a variant of the TATL logic
on such games, TATL♦, to give a sampler of properties that can be expressed in this
logic (including service level agreement, as mentioned above), and prove that model-
checking properties in this logic is EXPTIME-complete. We illustrate some fine points
of our model in Section 5, and conclude in Section 6.

Related Work. A successful model of malicious activity is given by attack graphs
[12], modeling the actions of an intruder on a given network. Edges in attack graphs are
actions (mostly exploits) that the intruder may undertake, and vertices are states of the
network. It is then possible to detect, using reachability analyses, whether a state where
a target host is compromised is reachable from an initial state. These were pioneered
by Schneier [19,20] under the form of so-called tree graphs, are the closest model to
our dependency graph. Ammann and Ritchey [17] considered model checking attack
graphs to analyze network security [2,11]. There is an abundant literature on these,
which we shall omit. Attack graphs represent states of the network and possible attacks
explicitly, while dependency graphs represent the logical dependencies between files
and services on a network, which may or may not be represented in the graph. The
automatic discovery of such dependencies will be dealt with elsewhere.

We have briefly mentioned the SIR model in the study of propagation of epidemics
in biology. This has a long history [6]. Biological models for computer security were
proposed recently [18]. As in computer virus propagation research [3,21], biological
models are an inspiration to us. The antibody (A) fights the disease (I) to maintain the
body alive (the network). Following this intuition, using games to capture this fight
interaction appears natural.

Games have become a central modeling paradigm in computer science. In synthesis
and control, it is natural to view a system and its environment as players of a game
that pursue different objectives [5,16]. In our model, I attempts at causing the great-
est impact on the network whereas A tries to reduce it. Such a game proceeds for an
infinite sequence of rounds. At each round, the players choose actions to play, e.g.,
patching a service, and the chosen actions determine the successor state. For our an-
ticipation games we need, as in any real-time system, to use games where time elapses
between actions [15]. This is the basis of the work on timed automata, timed games, and
timed alternating-time temporal logic (TATL) [9], a timed extension to alternating-time
Kripke structures and temporal logic (ATL) [1]. The TATL framework was specifically
introduced in [7]. Timed games differs from their untimed counterpart in two essen-
tial ways. First, players have to be prevented from winning by stopping time. More
important to us is that players can take each other by surprise: imagine A attempts
to patch a vulnerable service, and this will take 5 minutes, it may happen that I is in
fact currently conducting an attack, which will succeed in 5 seconds, nullifying A’s
action.

A Logical Framework for Evaluating Network Resilience 215

2 Example: A Simple Redundant Web Server

To illustrate our model, we choose to present a simplified redundant Web service (Fig-
ure 1). This is typical of Web services such as Amazon’s, Google’s, MSN’s. The ob-
jective is to provide clients with a reliable and responsive service, in particular to limit
service downtime.

The two HTTP nodes HTTP[1]:1,

Fig. 1. Dependency Graph Exemple

HTTP[1]:2 serve the Web pages in-
dex.php[1]:1, and index.php[1]:2 re-
spectively. Node names are not really
important for our approach, however we
have chosen the following naming con-
vention for clarity: each node name is
composed of the the service or file name
first (e.g., HTTP), then an equivalence
class number between square brackets,
finally an optional unique identifier af-
ter the semicolon. Two node names with the same name and the same equivalence class
number are meant to be equivalent, i.e., to provide the same service, and to be freely
interchangeable. For example, HTTP[1]:1 and HTTP[1]:2 both have equivalence class
number 1, and indeed serve the same files — or rather, files which are again equivalent,
in the sense that they have the same contents. We shall use a more abstract equivalence
relation ≡ and modal operator ♦≡ later for the same purpose.

Edges are used to represent dependencies. The index.php[1]:1 file depends of the
FTP[1] service for being updated. The HTTP[1]:1 service depends on index.php[1]:1,
as (according to a deliberately simplified server policy) the service will fail if the
file index.php to be served does not exist. We take index.php[1]:2 to depend on in-
dex.php[1]:1, for updating purposes: index.php[1]:2 is copied from index.php[1]:1. We
assume the copy is performed by using some secure replication software using SSH,
e.g., rsync, unison, svn, or cvs, so that index.php[1]:2 also depends on SSH[1].

We shall represent dependencies as edges in a graph, modeling the one-step impact
of an incident. For example, reading Figure 1, if the SSH[1] service is offline due to
a failure, then the contents of index.php[1]:2 will sooner or later be inconsistent with
that of index.php[1]:1, and consequently the page served by HTTP[1]:2 will also be
inconsistent with the one served by HTTP[1]:1. Note how time is important here—until
the contents of index.php[1]:1 is updated, the impact of the failure of SSH[1] is limited.
We assume that index.php[1]:1 is updated every 5 minutes, so that the administrator has
a window of 5 minutes to bring SSH[1] online before the impact of the failure expands.

3 Lower Layer: Dependency Graphs

Definition. Dependency graphs (e.g., Figure 1) are tuples G = (V, →, ≡) where V is
a finite set of so-called vertices, → is a binary relation on V (the dependency relation),
≡ is an equivalence relation on V . For example, the HTTP[1]:1 server depends on
index.php[1]:1, whence there is an edge HTTP[1]:1 → index.php[1]:1.

216 E. Bursztein and J. Goubault-Larrecq

The role of ≡ is to equate two services that play the same role in the actual net-
work whose dependencies we are trying to capture. In the example of Section 2, two
nodes are equivalent if and only if they have the same name and the same equiva-
lence class number, between square brackets. That is, HTTP[1]:1≡HTTP[1]:2, and
index.php[1]:1≡index.php[1]:2, but HTTP[1]:1 �≡FTP[1] for example.

In general, ≡ is used to specify such configurations as n servers that serve the same
data for efficiency (load balancing) or fault-tolerance (failover) reasons. Redundancy is
a common recipe for implementing network resilience: provided not too many servers
fail, clients should be able to obtain the intended service. Several protocols, such as
the Simple Mail Transfert Protocol (SMTP) [13] protocol, are designed to work with
multiple delivery servers for failover and balancing purpose.

States. Dependency graphs are meant to remain fixed over time. We use states to model
information that does evolve over time. Intuitively the state describes which services
and files are currently available, compromised, defunct, and so on. For example, a ser-
vice may be public or not—a service is typically not public when behind a firewall that
prevents access to the server from the outside.

Formally, let A be a finite set of so-called atomic propositions A1, . . . , An, . . . , de-
noting each base property. Each atomic proposition is true or false at each vertex. E.g.,
Avail is true at each vertex that is available, File is true of those vertices that are files,
Service is true of vertices that are services, Compr denotes compromised vertices, Vuln
denotes remotely exploitable services, VulnLocal locally exploitable services (e.g., we
assume that the HTTP servers of Figure 1 are locally exploitable), Patch denotes patch-
able services [14], Pub public services (i.e., possible starting points from an outside
attack; in our example, only SSH is not assumed to be public; services behind firewalls
would also typically assumed not to be public), MayDefunct identifies those vertices
that can become unavailable (for whatever reason, including bugs), Crypt holds of en-
crypted files (e.g., encrypted password files; one may estimate that attackers will need a
long time to access and exploit encrypted files, and a short time for others). This list can
be extended at will. In the example of Section 2, Synced denotes files that are produced
as the result of a replication process—namely, index.php[1]:2.

States on G are then simply functions ρ : A → P(V) mapping each atomic proposi-
tion to the set of vertices that satisfies it. We describe ρ in a finite way, as a table of all
pairs (A, v) ∈ A × P(V) such that v ∈ ρ(A); hence there are finitely many states.

Modeling the Evolution of Dependency Graphs. We now need to model actions that
modify the state. These can be the result of faults (disk crashes, power failures), mali-
cious attacks, or corrective actions by an administrator. This is done through rules of
the form Pre F −→Δ,p,a P where F is the precondition, stating when the rule ap-
plies, Δ is the least amount of time needed to fire the rule, p is the name of the player
that originates the rule, a is an action name, and P is a command, stating the effects
of the rule. The latter sentence contains an ambiguity: we require the precondition F
to hold not just at the beginning of the rule, but during the whole time it takes the rule
to actually complete (at least Δ time units). For example, a patching rule can only be
triggered on a patchable vertex in the dependency graph, and we consider that it has to
remain patchable for the whole duration of the patching action.

A Logical Framework for Evaluating Network Resilience 217

It is convenient to use a simple modal
logic to specify preconditions F . The ♦
modality embodies the concept of depen-
dency, while ♦≡ models the equivalence of
services. Other connectives are defined as
usual: F ∨ F ′ is ¬(¬F ∧ ¬F ′), F ⇒ F ′ is
¬(F ∧¬F ′), and �F is ¬♦¬F for example.

F ::= A atomic propositions, in A
| 	 true
| ¬F negation
| F ∧ F conjunction
| ♦F
| ♦≡F

The semantics is a Kripke semantics for mixed K (♦) and S5 (♦≡) operators. We define
a predicate G, ρ, v |= F by induction on F : G, ρ, v |= ♦F iff there is a vertex w in G
such that v → w and G, ρ, w |= F ; G, ρ, v |= ♦≡F iff there is a vertex w in G such
that v ≡ w and G, ρ, w |= F . The semantics of the other connectives is standard, e.g.,
G, ρ, v |= F1 ∧F2 iff G, ρ, v |= F1 and G, ρ, v |= F2. In the example of Figure 1, if the
file index[1]:1 becomes unavailable then HTTP[1]:1 will become defunct after some
time. This effect is expressed by the rule : “If there is a successor of HTTP[1]:1 that is
not available, then HTTP[1]:1 becomes defunct after a delay of at least Δ2 time units”.
The precondition is therefore ♦¬Avail, interpreted at vertex HTTP[1]:1.

On the other hand, commands P are finite lists of assignments A ← 	 or A ← ⊥,
where A is an atomic proposition. This is interpreted at each vertex v. Formally, write
ρ[A �→ S] the state mapping A to set S, while mapping every other atomic proposition
A′ to ρ(A′). Let ρ[A@v �→] be ρ[A �→ ρ(A) ∪ {v}], ρ[A@v �→ ⊥] be ρ[A �→
ρ(A) \ {v}]. Then we let ρ |=v P ⇒ ρ′ be defined by: ρ |=v ε ⇒ ρ (where ε is the
empty command), and ρ |=v A ← b, P ⇒ ρ′ provided that ρ[A@v �→ b] |=v P ⇒ ρ′.

Let us give a few examples of rules of common use. We use two sets of rules: one to
model the incident/intruder actions and the other to model administrator actions. Rules
are prefixed with their names. We start with the incident/intruder rules:

Defunct : Pre Avail ∧ MayDefunct −→ Avail ← ⊥
DefunctProp : Pre ♦¬♦≡Avail ∧ Avail −→ Avail ← ⊥
Comp1 : Pre Avail ∧ Pub ∧ Vuln −→ Compr ← �
Comp2 : Pre Avail ∧ Pub ∧ Vuln −→ Avail ← ⊥
CServProp1 : Pre ♦Compr ∧ VulnLocal ∧ Avail ∧ Service −→ Compr ← �
CServProp2 : Pre ♦Compr ∧ VulnLocal ∧ Avail ∧ Service −→ Avail ← ⊥
CFileProp1 : Pre ♦Compr ∧ Avail ∧ File ∧ ¬Crypt −→ Compr ← �
CFileProp2 : Pre ♦Compr ∧ Avail ∧ File ∧ Crypt ∧ VulnLocal −→ Compr ← �

We have omitted the subscript on arrows, which should be of the form Δ, I, a for some
delay Δ and some action name depending on the rule. Defunct is a typical accidental
fault: any file or service that is subject to faults (e.g., bugs) and is available can become
unavailable. We may naturally vary the set of vertices that make MayDefunct to study
the impact of buggy software of the health of the network. DefunctProp states that a
vertex may crash when all vertices it depends on crashed, taking into account equiva-
lent vertices. For example, most Internet connections depend on DNS root servers to
perform address lookup. While there remain available DNS root servers, Internet con-
nections are not or at least only partially affected by the failure of some of them. E.g.,
this is is why the attack of February 6, 2007, against 6 of the 13 root DNS servers
remained mostly unnoticed by Internet users [10].

218 E. Bursztein and J. Goubault-Larrecq

On the other hand, rules Comp1 and Comp2 model remote attacks on vulnerable, pub-
lic services or files. While Comp1 models the case where the attack is completely suc-
cessful, and the target vertex is compromised, Comp2 models a typical case where, e.g.,
the attack is by code injection, but the attack fails and instead the target service crashes
(e.g., because of address space randomization).

The remaining rules represent incident propagation. CServProp1 states how locally
vulnerable services depending on compromised files (e.g., password files or route ta-
bles) can themselves become compromised, and CServProp2 is the case where the
service crashed instead (as above). CFileProp1 states that non-encrypted files depend-
ing on (e.g., served by) compromised vertices may get compromised. This is a typical
rule with a small delay Δ. The CFileProp2 rule here would have a larger delay, and
represents compromission of encrypted (Crypt) files with a weak key (VulnLocal).

Let’s get on to administrator rules, with implicit superscripts of the form Δ, A, a:

Patch : Pre Avail ∧ (Vuln ∨ VulnLocal) ∧ Patch −→ Vuln ← ⊥, VulnLocal ← ⊥, Patch ← ⊥
Deny : Pre Pub ∧ Service −→ Pub ← ⊥
Allow : Pre ¬Pub ∧ Service −→ Pub ← �
ORest : Pre ¬Avail −→ Avail ← �
OReco : Pre Compr −→ Compr ← ⊥
PReco : Pre Compr ∧ ♦≡(Avail ∧ ¬Compr) −→ Compr ← ⊥
PRest1 : Pre ¬Avail ∧ ♦≡(Avail ∧ ¬Compr) −→ Avail ← �, Compr ← ⊥
PRest2 : Pre ¬Avail ∧ ♦≡(Avail ∧ Compr) −→ Avail ← �, Compr ← �

The rules shown are meant to illustrate that A may update services (rule Patch),
configure network devices so as to make a service unreachable (Deny) or reachable
(Allow), or directly repair incidents. The optimistic repair rule ORest states that A
can always repair the damage. We may think of using variants of this rule with vary-
ing delays, representing how easy it is to make the vertex available again. Similarly,
OReco is an optimistic vertex recovery rule. More pessimistic recovery rules are given
as PReco (where a compromised vertex is recovered thanks to an available, uncompro-
mised equivalent vertex), PRest1 (where the vertex is also made available), and PRest2
(where the vertex is unfortunately recovered from another compromised vertex).

4 Upper Layer: Anticipation Games

The rules of the last section give rise to a semantics in terms of timed automaton games
[4], which we now make explicit. This can also be seen as a translation to such games,
although the resulting games will have exponential size in general. We shall call these
games anticipation games.

We assume that the rules of an anticipation graph are finitely many, and are given
names that identify them in a unique way, as in Section 3. Moreover, we assume given a
table Trig such that for each rule name R (for a rule Pre F −→〈Δ,p,a〉 P), Trig[R] = Δ
returns the least time needed to actually trigger the effect of rule R, a table Act such
that Act[R] = a, a table Prog such that Prog[R] = P , and a table Pre such that
Pre[R] = F .

For any set S, write S⊥ the set S with a fresh element ⊥ added. E.g., letting R be
the (finite) set of all rule names of a given anticipation graph, (R × V)⊥ denotes either

A Logical Framework for Evaluating Network Resilience 219

the absence of a rule name (⊥), or some specific pair (R, v), typically denoting a rule
named R that we try to apply to vertex v. Such pairs (R, v) are called targeted rules,
and elements of (R × V)⊥ are optional targeted rules.

A timed automaton game is a tuple T = (L, Σ, σ, C, AI, AA, E, γ) satisfying some
conditions [4, Section 2.2]. We recapitulate these conditions while showing how we
define the timed automaton game associated with an anticipation graph, explaining the
semantics intuitively along the way. • L is a finite set of locations. We take L to be
(A → P(V)) × V × (R × V)⊥ × (R × V)⊥ consisting of tuples (ρ, v, trgI, trgA) of
a state ρ, a vertex v ∈ V , and two optional targeted rules trgI, trgA stating which rule
is currently executed, if any, and targeting which vertex, by the intruder (launching an
attack or causing some failure), resp. the administrator (doing a corrective action). The
vertex v plays no role in the semantics of the anticipation graph per se, but will be useful
in the semantics of the TATL logic we shall define next; v is the vertex under focus of
an observer external to the anticipation graph.

• Σ is a finite set of propositions. We take Σ to be A.
• σ : L → P(Σ) assigns to each location the set of propositions true at this location.

We define naturally σ(ρ, v, trgI, trgA) = {A ∈ A|v ∈ ρ(A)}.
• C is a finite set of so-called clocks (a.k.a., clock variables). There should be a

distinguished clock z, which is used to measure global time. We define C = {z, zI, zA}.
The clock zI measures the time elapsed since the start of the last attack launched by the
intruder (or the last event that will eventually cause a failure, more generally), if any,
that if, if trgI �= ⊥. Similarly, zA measures the time elapsed since the start of the last
(hopefully) corrective action by the administrator, if any. We allow I and A to launch
concurrent actions, with possible different starting dates, and delays.

• AI and AA are two disjoint sets of events for the intruder I and the administrator A
respectively. (Such events are usually called actions, but this would be in conflict with
our own so-called actions.) We take the elements of Ap to be the pairs 〈p,Launch a〉
and 〈p,Complete a〉, where a is any action name, for any p ∈ {I, A}. An event
〈I,Launch a〉 means that the intruder has just launched an attack with action name a.
This attack will succeed, possibly, but no earlier than some delay. When it succeeds,
this will be made explicit by an action 〈I,Complete a〉.

• E ⊆ L × (AI ∪ AA) × Constr(C) × L × P(C \ {z}) is the edge relation, and
embodies the actual semantics of the timed automaton game. Constr(C) is the set of
all clock constraints, generated by the grammar θ ::= x ≤ d|d ≤ x|¬θ|θ1 ∧ θ2|TRUE

where x ranges over clocks in C, and d over N. The idea is that, if (l, α, c, l′, λ) ∈ E,
then the timed automaton game may go from location l ∈ L to location l′ by doing
action α, provided all the clocks are set in a way that c is true; then all the clocks in
λ are reset to zero. (Additionally, a timed automaton game may decide to remain idle
for some time, i.e., not to follow any edge, provided the invariant γ(l) remains satisfied
throughout; see below.)

In our case, E is the set of all tuples (i.e., edges) of one of the following forms:

– ((ρ, v, trgI, trgA), 〈I,Launch a〉, TRUE, (ρ, v, (R, v′), trgA), {zI}), where v′ is
any vertex of G, and R is the name of a rule Pre F −→〈Δ,I,a〉 P with G, ρ, v′ |=
F . (And v is arbitrary.) In other words, the intruder may decide to launch the rule
named R on any vertex v′ at any time, provided its precondition F holds in the

220 E. Bursztein and J. Goubault-Larrecq

current state ρ at v′. Launching it does not modify the ρ part, which will only
change when the rule is complete. This can only happen after at least Δ time units.
Note that once a new rule is launched, the clock zI is reset. This restarts this clock,
so that the next rule knows when it is allowable to complete the rule

– ((ρ, v, (R, v′), trgA), 〈I,Complete a〉, zI ≥ d, (ρ′, v, ⊥, trg′A), ∅), where a =
Act[R] and d = Trig[R], and ρ′ is given by ρ |=v′ Prog[R] ⇒ ρ′. Then, trg′A =
trgA if trgA = ⊥, or if trgA is of the form (RA, vA) where G, ρ′, vA |= Pre[RA];
otherwise trg′A = ⊥.
In other words, the rule named R at vertex v′ completes at any time provided at
least d units of times have elapsed since the attack was launched (the constraint
zI ≥ d). Then the state ρ is changed to ρ′, that is, the result of executing program
P = Prog[R] from state ρ at state v′. The fact that trgA may change to trg′A reflects
the fact that as a result of an action by I, the precondition Pre[RA] of the rule that
was in the process of being launched by A may suddenly become false, foiling A’s
action.

– and similar rules obtained by exchanging the roles of I and A.

• γ : L → Constr(C) is a function mapping each location l to an invariant γ(l).
When at location l, each player (I or A) must propose a move out of l before the invariant
γ(l) expires. We take γ(l) = TRUE for each l, i.e., we have no urgent transition: attacks,
failures and repairs can always take longer than expected.

Informally [4], the game proceeds by jumping from configurations to configurations.
A configuration is a pair (l, κ), where l is a location and κ is a clock valuation, that is,
a function mapping each clock (here z, zI, zA) to a non-negative real. Timed automaton
games may proceed by triggering an actual edge in zero time. They may also proceed
by letting time pass, i.e., by remaining in the same location l while incrementing each
clock by the same amount. Importantly, in any given configuration, there may be several
options for the game to evolve, and in particular it may be the case that two edges have
the same starting location. The semantics of timed automaton games states that only
the one with the shortest completion time can be triggered (or one of the shortest ones,
non-deterministically, if there are several shortest edges, with the same duration). This
how the element of surprise that we have discussed before is implemented in the model.

It is convenient to define a logic that includes both TATL operators [9] and the oper-
ators of the modal logic of Section 3.
Let x, y, z, . . . be taken from a count-
ably infinite set of clock variables, dis-
tinct from the clocks z, zI, zA. We reserve
the notation d, d′, d1, d2, . . . , for non-
negative integer constants. We let P range
over subsets of {A, I}. The syntax of our
TATL-like logic TATL♦ is shown on the
right, where in clock constraints x+d1 ≤
y + d2, x and y can be clock variables
or zero. We abbreviate 〈〈P〉〉TRUE U ϕ as
〈〈P〉〉�ϕ.

ϕ ::= A atomic prop., in A
| ¬ϕ
| ϕ ∧ ϕ
| ♦ϕ
| ♦≡ϕ
| x + d1 ≤ y + d2 clock constraints
| x · ϕ freeze
| 〈〈P〉〉�ϕ invariant
| 〈〈P〉〉ϕ1 U ϕ2 eventually

The semantics is again given as on any timed automaton game, by specifying when
l, t, κ |= ϕ holds for any configuration (l, κ) and time t. Recall that l is of the form

A Logical Framework for Evaluating Network Resilience 221

(ρ, v, trgI, trgA). We let (ρ, v, trgI, trgA), t, κ |= A if and only if ρ(A) is true. As in
the modal logic of Section 3, we define (ρ, v, trgI, trgA), t, κ |= ♦ϕ if and only if there
is a vertex w in G such that v → w and (ρ, w, trgI, trgA), t, κ |= ϕ, and similarly for
♦≡, ¬, ∧. As in TATL, l, t, κ |= x + d1 ≤ y + d2 if and only if κ(x) + d1 ≤ κ(y)+ d2,
l, t, κ |= x · ϕ if and only if l, κ[x �→ t] |= ϕ. 〈〈P〉〉�ϕ holds whenever the players in P
have a strategy so as to ensure that ϕ will hold at every instant in the future whatever
the other players do. 〈〈P〉〉ϕ1 U ϕ2 holds whenever the players in P have a strategy to
ensure that ϕ2 will eventually holds, and that ϕ1 will hold at each time before that,
whatever the other players do again. Moreover, a technical condition ensures that time
diverges, so as to prevent a player from winning by stopping time for infinitely many
(instantaneous) actions: see [9, Section 3.1] for details; we shall need to introduce it
briefly as the winning condition WCP in the proof of Theorem 1 below.

TATL model-checking is decidable [9, Theorem 1], and EXPTIME-complete. It
follows that model-checking anticipation games against TATL♦ formulae is also de-
cidable. The short argument is by noticing that any formula ϕ in our logic can be
translated to an ordinary TATL formula ϕ∗

v such that l, t, κ |= ϕ if and only if
l∗, t, κ |= ϕ∗

v, where l = (ρ, v, trgI, trgA), and l∗ = (ρ, trgI, trgA) is a location
on a modified timed automaton game. The timed automaton game is given by a set
of edges E∗, consisting of edges of the form ((ρ, trgI, trgA), α, c, (ρ′, trg′I , trg

′
A), λ),

where ((ρ, v, trgI, trgA), α, c, (ρ′, v, trg′I , trg
′
A), λ) is an edge in E (for some v—we

use the fact that the semantics actually does not depend on v). Translation ϕ to ϕv is
essentially clear, e.g., (ϕ1 ∧ ϕ2)

∗
v = ϕ∗

1 v ∧ϕ∗
2 v , and similarly for all cases except when

ϕ is of the form ♦ϕ′ or ♦≡ϕ′. We then define (♦ϕ′)∗v as the disjunction over all w’s
such that v → w of ϕ′∗

w, and (♦≡ϕ′)∗v as the disjunction over all w’s such that v ≡ w
of ϕ′∗

w. We can refine this as follows.

Theorem 1. Model-checking anticipation games against TATL♦ formulae is
EXPTIME-complete.

Proof. Space does not permit us to include the algorithm in full. This is a combination
of the above translation from TATL♦ to TATL, and the TATL model-checking algo-
rithm, whose details are sprinkled across [9,7,1]. Write 〈〈P〉〉, � and � the standard
ATL∗ modalities. The latter two are usually written � and ♦, but the latter should not
be confused with our ♦, while the former is really the same as our �.

Using [9, Lemma 1, 2], [7, Theorem 5], and [1, Section 3.2], we see that model-
checking a TATL formula φ against a timed automaton game T , i.e., checking whether
s |=td φ, for some state s in T , can be done in time T = O((|Q| · m! · 2m · (2c +
1)m · h · h∗)h∗+1), where Q is the set of locations in T , m is the number of clock
variables in T plus the number of freeze quantifiers in φ, c is the largest delay in T
and in φ; finally, h is the number of states, and h∗ is the order (i.e., half the number of
possible priorities assigned to states) of a deterministic and total parity automaton HφΛ

computed from φΛ, where φΛ is itself obtained from φ by replacing each constraint α
of the form x + d1 ≤ y + d2 by a fresh atomic proposition pα. By [7, Lemma 1], the
values of h and h∗ are polynomial in the size of φ. The (modified) timed automaton
game T underlying a given anticipation game G has exactly as many clocks and the
same upper bound c on clock values, but its number of locations is exponential, namely
|Q| = O(2|V |·n ·(r·|V |)2), where |V | is the number of vertices in the dependency graph

222 E. Bursztein and J. Goubault-Larrecq

G, n is the number of atomic propositions in A, and r is the number of rule names. This
still makes the time T given above a single exponential expression. However, the trans-
lation from TATL♦ to TATL above builds a TATL formula φ = ϕ∗

v of size exponential in
that of ϕ: this makes h an exponential of the size of ϕ. On the other hand, h∗ essentially
counts the number of nested uses of a winning condition called WC1 in [7], or in gen-
eral WCP, for P ⊆ {I, A}: fix three distinct new atomic propositions tick, blI and blA,
let bl{I} = blI, bl{A} = blA, bl∅ be false and bl{I,A} be true, then for every ATL∗ formula
ψ, WCP(ψ) = (��tick ⇒ ψ)∧(��¬tick ⇒ ��¬blP) states (informally) that either
time diverges (we get infinitely many ticks) and ψ holds, or time is bounded (we only
get finitely many ticks) and somebody from P can be blamed for blocking time by trig-
gering infinitely many (zero delay) actions. By [7, Lemma 1], the h∗ value of a formula
of the form WCP(ψ) is one plus that of ψ. The h∗ value of a clock variable free TATL
formula φΛ (gotten from a TATL formula φ in [9, Lemma 2]) is given through that of
the ATL∗ formula ψ = atlstar(φ) described in [9, Lemma 1]. It turns out that the crucial
cases of the atlstar translation are atlstar(〈〈P〉〉�φ1) = 〈〈P〉〉(WCP(�atlstar(φ1))) and
〈〈P〉〉φ1 U φ2 = 〈〈P〉〉WCP(atlstar(φ1) U atlstar(φ2)), and no other case introduces a
� or � modality. So the h∗ value of φΛ, or of φ for that matter, is exactly the nesting
depth of game quantifiers in φ. In our translation φ = ϕ∗

v , and although φ is exponen-
tially larger than ϕ, the nesting depth of game quantifiers remains the same. So the time
T is an exponential of the size of ϕ and the size of the given anticipation game.

EXPTIME-hardness does not follow from the EXPTIME-hardness of TATL model-
checking, contrarily to e.g., [9, Theorem 1]: in this work, it is crucial to be able impose
guards of the form x = d in the automaton (where x is a clock), while we only have
guards of the form x ≥ d. EXPTIME-hardness will follow from the fact that the modal
formulae can represent sets of environments in a concise way instead. To show this,
we directly encore the reachability problem for alternating polynomial space Turing
machines M. Without loss of generality, we shall assume that M strictly alternates
between ∀ and ∃ states, where ∃ states lead to acceptance if and only if some succes-
sor leads to acceptance, and ∀ states are those that lead to acceptance iff all of their
successors lead to acceptance.

Let n be the size of the input, p(n) the (polynomial) space available to M. We repre-
sent IDs of M (tape contents, control state, head position) using O(p(n)) many atomic
propositions Ai, one for each bit of the ID. We assume the head position is represented
by O(p(n)) propositions of which exactly one will be true. We also assume a proposi-
tion accept that is true in exactly the accepting states. Build the (trivial) dependency
graph G with exactly one vertex and no transition: on G, each variable is either true or
false (at the unique vertex). For each transition (q, α, q′, α′, dir) of M (from state q
reading letter α, go to state q′ while writing α′ under the head and move the head in
direction dir ∈ {−1, 0, 1}), write O(p(n)) rules, one for each possible position k of
the head. If q is an ∃ state, the rules are of the form Pre Fk,q,α −→1,I,a Pk,q′,α′,dir

where Fk,q,α is a formula built on the Ai’s that tests whether the head is at position
exactly k, whether the state is exactly q, and whether the letter under the head is exactly
α; and where Pk,q′,α′,dir sets and resets bits so as to write α′ under the head, change
the control state to q′, and change the position of the head. If q is a ∀ state, the rules

A Logical Framework for Evaluating Network Resilience 223

are of a similar form Pre Fk,q,α −→1,A,a Pk,q′,α′,dir (this time with A playing), and
we require an additional rush rule Pre Fk,q,α −→2,I,a accept ← 	 (played by I,
but requiring 2 time units instead of 1). We then model-check this against the formula
F = 〈〈I〉〉�accept, starting from the initial location that codes the input to M.

If M accepts, then there is an (untimed) strategy that chooses transitions from ∃
states such that whatever transition is picked from ∀ states, some accepting state is
eventually reached. This transfers directly to a strategy for I against A in the anticipation
game—in the case of ∃ states. For ∀ states q, the argument is slightly more subtle:
without rhe rush rule, A may simulate taking any of the transitions from q, but may
also decide to wait and never take any transition. Instead, we insist that I’s strategy be
to launch the rush rule, so that if A waits for more than 2 times units, then the rush
rule completes and a location is reached where accept is true. (A is in a rush to take a
transition.) In any case, F holds.

Conversely, if F holds, then there is a strategy for I that eventually will set accept
to true, whathever A does. In ∀ states, note that A can always complete one of the non-
rush rules in 1 time unit (which is less than the time needed by I to complete a rush
rule), so that rush rules play no role. Note in particular that, because ∃ and ∀ states
alternate in M, and because our rules always check for being in the right state q in their
precondition, no rush rule can have remained dangling, waiting since a previous ∀ state
was reached: once a non-rush rule is taken, the precondition for the rush rule if any
becomes false, and the trgI field in the corresponding timed automaton game is reset to
⊥. Clearly, this strategy of I leads to a strategy for picking transitions from ∃ states in
M that will lead to acceptance whichever transitions are picked from ∀ states. ��

We finish this section by giving a few examples of properties that can be expressed in
TATL♦. Call intrusion survivability the property 〈〈A〉〉�♦≡¬Compr, stating that there
is a way for the administrator to make sure that any vertex is always backed up by an
equivalent one, whatever the malevolent I does. Similarly, the n-survivability property
〈〈A〉〉�♦≡Avail states that each vertex is backed up by at least one available equivalent
vertex. This is typically the property we would have desired of the Bouygues servers
mentioned in the introduction. The following SLA property:

〈〈A〉〉�x · ¬♦≡Avail ⇒ [〈〈A〉〉�y · y ≤ x + d ∧ 〈〈A〉〉�z · z ≤ y + d′ ⇒ ♦≡Avail]

is one way to model the so-called Service Level Agreement property, which in a sense
bounds service downtime. This is usually described informally by requiring the system,
e.g., “not to suffer more than 5 min. of downtime per year”. Formally, we cannot express
this in TATL♦, but this would also be meaningless: suffering from 1 ms. of downtime
every minute would in principle account for 8.76 minutes of downtime a year, thus
violating the specification, but would hardly be noticed. Instead, SLA specifies that
whenever a service fails and has no equivalent backup, then the administrator should
have a way to get one of the backups up again in time at most d (where d is typically
small), so that it or an equivalent vertex remains up for at least d′ time units (where d′

is usually large).

224 E. Bursztein and J. Goubault-Larrecq

5 An Anticipation Game for the Redundant Server Example

Let us illustrate anticipation games on the example of Section 2. This will have the
virtue of illustrating what the element of surprise is all about in our context.

To model the fact that index.php[1]:2 is synced with index.php[1]:2, we add a
Synced variable which is true of just index.php[1]:2 (and will never be modified). We
model the system using rules Comp1 (with delay Δ = 5—delays are given for indica-
tion purposes only), CServProp1 (delay 5), Deny (delay 20), Allow (delay 20), OReco
(delay 30), Patch (delay 300), plus the following rules:

CFilePropNS : Pre ♦Compr ∧ Avail ∧ File ∧ ¬Sync ∧ ¬Crypt −→5,I,a Compr ← �
CFileSynProp : Pre ♦Compr ∧ Avail ∧ File ∧ Sync ∧ ¬Crypt −→300,I,a Compr ← �

CFilePropNS is a variant on CFileProp1, which only fires on non-synced files. The
CFileSynProp rule states that the replication of index.php[1]:1 to index.php[1]:2 is
done on a regular basis, and we assume that this implies that compromising the first
makes the second compromised only 300 time units later.

One Player Intrusion Scenario. We first examine the case where no administrator rule
is present, i.e., we don’t consider rules Deny, Allow, OReco, or Patch. Accordingly,
I plays alone, and it is then not surprising that intrusion survivability fails at vertex
HTTP[1]. The necessary intrusion steps are summarized in Figure 2.

In Step 1, the intruder I exploits the
Step z Rule Node

1 5 Comp1 FTP[1]
2 5 CFilePropNS index.php[1]:1
3 5 CServProp1 HTTP[1]:1
4 300 CFileSynProp index.php[1]:2
5 5 CServProp1 HTTP[1]:2

Fig. 2. Intrusion Single Player Example

vulnerability present in the FTP server
which is publicly available. Exploiting
the vulnerability takes 5 seconds. Once
I gets a remote shell, he alters the in-
dex.php[1]:1 file, in Step 2, to add a code
that will be used to exploit the remote
vulnerability present in the HTTP[1]:1
server. This action requires 5 seconds.

This is accomplished in Step 3 in 5 seconds. Then in Step 4, I waits 300 seconds until the
changes done on index.php[1]:1 are replicated to index.php[1]:2. Finally in Step 5 the
second HTTP server HTTP[1]:2 is compromised, violating survivability for HTTP[1].

Two Player Intrusion Scenario. In the general case, where both I and A play, adminis-
trator intervention can counter the above intrusion. This example displays the race that
takes place between the incident player I and the administrator A. Figure 3 summarizes
the actions taken by I (columns 3–5) and by A (columns 6–8). We indicate by an ⇒
sign which action is chosen; remember that this is how the element of surprise is imple-
mented in anticipation games: the fastest player wins. The zI column gives the value of
I’s clock at the end of the considered action, zA is A’s clock, and z is the global clock.
The format of the zI and zA columns is given as t/Δ, where t is the value of the clock
at the end of the turn, and Δ is the least execution time of the action.

At each turn, if player p loses (no ⇒ sign in the corresponding row), this does not
mean that the action a that p was currently trying to do is stopped. Instead, the action
continues to progress, because the precondition for a remains true despite changes done

A Logical Framework for Evaluating Network Resilience 225

Step z rule node zI zA rule node
1 5 ⇒ Comp1 FTP[1] 5/5 5/20 Deny FTP[1]
2 10 ⇒ CFilePropNS index.php[1]:1 5/5 10/20 Deny FTP[1]
3 15 ⇒ CServProp1 HTTP[1]:1 5/5 15/20 Deny FTP[1]
4 20 CFileSynProp index.php[1]:2 5/300 20/20 ⇒ Deny FTP[1]
5 40 CFileSynProp index.php[1]:2 25/300 20/20 ⇒ Deny HTTP[1]:1
6 70 CFileSynProp index.php[1]:2 55/300 30/30 ⇒ OReco FTP[1]
7 100 CFileSynProp index.php[1]:2 85/300 30/30 ⇒ OReco index.php[1]:1
8 130 (∗)CFileSynProp index.php[1]:2 115/300 30/30 ⇒ OReco HTTP[1]:1
9 315 (∗)CFileSynProp index.php[1]:2 300/300 185/300 ⇒ Patch FTP[1]
10 430 ⊥ - - 300/300 ⇒ Patch FTP[1]
11 730 ⊥ - - 300/300 ⇒ Patch HTTP[1]:1
12 750 ⊥ - - 20/20 ⇒ Allow HTTP[1]:1
13 780 ⊥ - - 20/20 ⇒ Allow FTP[1]

Fig. 3. Intrusion Two Player Example

by the other player. For example, in steps 1, 2, 3, 4, A is attempting to deny access to
the FTP server by triggering rule Deny on FTP[1]. This takes 20 seconds, so this is too
slow to complete at the end of steps 1, 2, or 3. At each of these first three steps, I wins
the turn, but the Deny action by A remains current.

The first three steps are identical to the one-player case, as I was faster. But at step
4, A is finally able to deny access to the FTP server, since the intruder must wait until
the index.php[1]:1 file is replicated to index.php[1]:2. This requires 300 seconds. Now
A is faster, since she only needs 5 (remaining) seconds to complete the Deny action.
During the 300 seconds required by replication, A performs steps 4 through 8. At step
5, she denies access to HTTP[1]:1. At step 6, she recovers FTP[1]. At step 7, she
recovers index[1]:1, and finally at step 8, she recovers HTTP[1]:1. At this point (step
9), the file index.php[1]:2 could have been compromised because the time required
for file replication is shorter than the one needed to patch FTP[1]. However, since the
administrator was able to recover index.php[1]:1, before the replication occurs (step 6),
the precondition of the CFileSynProp rule is false, so I’s CFileSynProp rule cannot
fire—which we materialize in the table by a (∗) sign. Again, this is the element of
surprise that allows us to model such a crucial behaviour.

From this point on, I can only let time pass. A safely finishes to secure her network
from step 9 to step 13. Note that if the administrator had chosen to patch before denying
access to servers, she would have lost.

6 Conclusion

We have presented a framework to evaluate the resilience of computer networks in the
face of incidents, i.e., attacks from malicious intruders as well as random faults. Our
model uses a two-layered presentation of dependencies between files and services, and
of timed games to represent not just incidents, but also the dynamic responses from
administrators and their respective delays. We have introduced a variant TATL♦ of

226 E. Bursztein and J. Goubault-Larrecq

timed alternating-time temporal logic, as a convenient language to express several de-
sirable properties of networks, including survivability and service level agreement. We
have illustrated this on a simple redundant Web service architecture. Despite the fact
that dependency graphs are exponentially more succinct than timed automaton games
and TATL♦ expand to TATL formulae of exponential size, we have shown that model-
checking dependency graphs against TATL♦ formulae is no more complex that model-
checking timed automaton games against TATL formulae, i.e., EXPTIME-complete.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5),
672–713 (2002)

2. Artz, M.: NetSPA : a Network Security Planning Architecture. PhD thesis, Massachusetts
Institute of Technology. Dept. of Electrical Engineering and Computer Science (2002)

3. Balthrop, J., Forrest, S., Newman, M.E.J., Williamson, M.M.: Technological networks and
the spread of computer viruses. science 304(23) (2004)

4. Brihaye, T., Henzinger, T.A., Raskin, J., Prabhu, V.: Minimum-time reachability in timed
games. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, Springer, Hei-
delberg (2006)

5. Church, A.: logic, arithmetics and automata. In: Congress of Mathematician, Institut Mittag-
Leffler, pp. 23–35 (1962)

6. Colizza, V., Barrat, A., Barthelemy, M., Vespignani, A.: The modeling of global epidemics:
stochastic dynamics and predictability. Bulletin of Mathematical Biology 68, 1893–1921
(2006)

7. de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: The element of surprise
in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761,
Springer, Heidelberg (2003)

8. du net, J.: Bouygues telecom privé de réseau (2004)
9. Henzinger, T., Prabhu, V.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P.

(eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–18. Springer, Heidelberg (2006)
10. ICANN. Dns attack factsheet. Technical report, ICANN (March 2007)
11. Jajodia, S.: Topological analysis of network attack vulnerability. In: ASIACCS 2007. Pro-

ceedings of the 2nd ACM symposium on Information, computer and communications secu-
rity, Singapore, p. 2. ACM Press, New York (2007)

12. Jha, S., Sheyner, O., Wing, J.: Two formal analysis of attack graphs. In: CSFW 2002. Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop, Washington, DC,
USA, p. 49. IEEE Computer Society Press, Los Alamitos (2002)

13. Klensin, J.: Rfc 2821 - simple mail transfer protocol. Technical report, IETF Network Work-
ing Group (2001)

14. Lippmann, R., Webster, S., Stetson, D.: The effect of identifying vulnerabilities and patching
software on the utility of network intrusion detection. In: Wespi, A., Vigna, G., Deri, L. (eds.)
RAID 2002. LNCS, vol. 2516, Springer, Heidelberg (2002)

15. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems
(extended abstract). In: STACS 1995, pp. 229–242 (1995)

16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989. Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
Austin, Texas, United States, pp. 179–190. ACM Press, New York (1989)

A Logical Framework for Evaluating Network Resilience 227

17. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabilities. In:
SP 2000. Proceedings of the 2000 IEEE Symposium on Security and Privacy, Washington,
DC, USA, p. 156. IEEE Computer Society Press, Los Alamitos (2000)

18. Saffre, F., Halloy, J., Deneubourg, J.L.: The ecology of the grid. In: ICAC 2005. Proceedings
of the Second International Conference on Automatic Computing, Washington, DC, USA,
pp. 378–379. IEEE Computer Society Press, Los Alamitos (2005)

19. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb?s journal (December 1999)
20. Schneier, B.: Secrets & Lies: Digital Security in a Networked World. Wiley, Chichester

(2000)
21. Williamson, M.M.: Throttling viruses: Restricting propagation to defeat malicious mobile

code. acsac 00: 61 (2002)

Masquerade Detection Based Upon GUI User

Profiling in Linux Systems

Wilson Naik Bhukya, Suneel Kumar Kommuru, and Atul Negi

Department of Computer & Information Sciences,
University of Hyderabad, Hyderabad, India

naikcs@uohyd.ernet.in, suneel.kommuru@gmail.com,
atulcs@uohyd.ernet.in

http://dcis.uohyd.ernet.in

Abstract. Masquerading or impersonation attack refers to the act of
gaining access to confidential data or greater access privileges, while pre-
tending to be legitimate users. Detection of masquerade attacks is of
great importance and is a non-trivial task of system security. Detection
of these attacks is done by monitoring significant changes in user’s behav-
ior based on his/her computer usage. Traditional detection mechanisms
are based on command line system events collected using log files. In a
GUI based system, most of the user activities are performed using either
mouse movements and clicks or a combination of mouse movements and
keystrokes. The command line data cannot capture the complete GUI
event behavior of the users hence it is insufficient to detect attacks in
GUI based systems. Presently, there is no frame work available to capture
the GUI based user behavior in Linux systems. We are proposing a novel
approach to capture the GUI based user behavior for Linux systems us-
ing our event logging tool. Our experimentation results shows that, the
GUI based user behavior can be efficiently used for masquerade attack
detection to achieve high detection rates with less false positives. We
have applied One-class SVM on the collected data, which requires only
training the user’s own legitimate sessions to build up the user’s profile.
Our results on GUI data using One-class SVM gives higher detection
rates with less false positives compared to a Two-class SVM approach.

Keywords: GUI based Profiling, Mouse events, Masquerade detection,
Intrusion detection, Anomaly detection, One-class SVM, KDE, Linux
Profiling.

1 Introduction

Masquerade attacks are among the most dangerous attacks posed to information
systems today, not merely because they are so difficult to detect, but also because
they have the ability to undermine some of the most advanced information secu-
rity technologies available. In traditional masquerade attack, an attacker takes
over the account of legitimate user to utilize the privileges and rights to carry out
the malicious agenda. In a slight variant of masquerade attack known as insider

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 228–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://dcis.uohyd.ernet.in

Masquerade Detection Based Upon GUI User Profiling 229

attack, a legitimate user chooses to use legitimate user privileges for malicious
or unauthorized purposes [5].

When an insider masquerades another person inside the organization most of
his actions may be technically legal for the system and hence it is more difficult
to detect such violations. Also, insider has enough knowledge about the system
as well as the behavior of the victims so that he can escape detection for a longer
period of time. The only information, which can be used to detect masquerade
attacks is contained in the actions a masquerader performs. This set of actions is
known as behavioral profile. Masquerade detection techniques are based on the
premise that when a masquerader attacks the system, he will sufficiently deviate
from the users behavior and thus be caught [1].

To be able to make a distinction between normal and malicious behavior,
these detection systems collect and utilize data form user sessions to build user
profiles. The user profiles can be build using command line sequences or GUI
events captured for the particular user or by using both. This data is initially
used to train the detection systems about what is normal, and later for detecting
malicious activity. There have been several attempts by Schonalu [10] and other
researchers to tackle the problem of detecting masqueraders using several tech-
niques on same data set (SEA) [25][6][11][12] [27][29] that was created using Unix
acct utility, which records users commands. These command sequences are then
used to build the user profiles and detect their normal and abnormal behavior.
There have been attempts to capture the user profiles using process table details
and GUI event details for Windows Operating Systems [3][1][7]. However, little
work has been done so far for capturing GUI user profile of Linux and other
Unix variants, although these are widely used. Moreover, there are no data sets
available for GUI events for these Operating Systems. This motivated us to work
in this direction. In this paper, we have developed a Linux GUI event logger and
used it for masquerade detection. Our main aim was to detect user abnormal
deviation from users normal profile, rather than to know how user tried to de-
viate from his normal profile, therefore only binary classifier has been used to
check the normal and abnormal user activities . We have used One-class SVM
to build self profile with users legitimate sessions and detect masquerader when
significant deviation occurs. Though One-Class SVM has been proven [2][13]
best for binary classification, for comparison purpose we have also experimented
with Two-class SVM, which is similar to the signature based detection system.

This paper is organized as follows: In section 2, we have discussed background
and related work. In section 3, we described event logging and feature extraction.
Section 4 describes our experimental setup. Results are presented in section 5.
Finally, section 6 outlines conclusions and future work.

2 Background and Related Work

2.1 Detection Mechanisms Based on Command Line Data

There has been many techniques to tackle the problem of anomaly detection
[28][16][18] [8][9][5] and masquerade detection using Unix commands collected

230 W.N. Bhukya, S.K. Kommuru, and A. Negi

at command line. Schonlau et al. [25] collected Unix command line data of
50 users for testing and comparing masquerade attack detection mechanisms
[25][6][11][12][27][29]. In another work, Schonlau et al. [10] utilized various sta-
tistical techniques (”Uniqueness”, ”Bayes onestep Markov”, ”Hybrid multi-step
Markov”, ”Compression”, ”IPAM” and ”Sequence Match”) and for evaluating
their effectiveness in masquerade detection using above data. Naive Bayes Classi-
fier was used by Maxion et al. [11] on a truncated user command dataset. They
provide results to prove that their technique improves detection significantly
giving very low false positives. In a later work [12] they claim that enriched
command dataset results in a better detection accuracy. The disadvantage of
above methods is that, they are not able to capture the user interactions, which
could be the main discriminating factor for masquerade detection.

Li and Manikopoulos [3] investigated on Windows system users, utilizing real
network data. This work primarily focuses on One-class support vector ma-
chine(SVM) masquerade detection. Their capturing procedure depends mainly
on windows opened by the user and different process information and not on the
user interactions.

However, these detection mechanisms are not able to accurately represent the
behavioral profiles of users working on modern graphical user interface (GUI)
systems such as Microsoft Windows and Linux. This is due to fact that in GUI
based systems most of the actions are carried out by using either mouse move-
ment and clicks or combination of mouse movements and key strokes. The com-
mand line data can not capture the complete GUI event behavior of the users.
Hence command line data is insufficient to detect attacks in GUI based systems.

2.2 Masquerade Detection Based on GUI Data

Pausra and Brodley [7] focused on use of mouse while browsing the web pages
in a browser, considering only mouse movements. This approach can be disad-
vantageous if a user uses an application other than the browser. The GUI based
user behavior includes number of mouse clicks, mouse movements, mouse speed,
keys pressed etc. This GUI behavior can be used for masquerade attack detec-
tion. For this purpose, Garg and Kwait [1] developed an active system logger
using Microsoft .NET framework and C# language on Windows XP System.
GUI event data is captured from users and useful parameters are extracted to
construct the feature vectors. This profiling method was good to capture the user
behavioral data. The disadvantage of this approach is that, they implemented
it only for Microsoft GUI systems with much focus only on mouse usage. Their
methodology is not scalable to Unix variants like(Linux, Sun and MacOS) GUI
systems. Moreover, their detection rate was not impressive, since they used Two-
class SVM approach with 16 features, which requires more training time, as they
need to train both the positive and negative(illegitimate sessions).

2.3 Masquerade Detection Based on GUI Usage Analysis

The work of Imsand and John [4] is based on the notion of how the current user
interacts with the graphical user interface. This method does not use mouse

Masquerade Detection Based Upon GUI User Profiling 231

movements or keystroke dynamics, rather profiles how the user manipulates the
windows, icons, menus, and pointers that comprise a graphical user interface.

This method has a number of disadvantages. Most of the user profiling seems
to be manual then an automated process. This methodology is application spe-
cific rather than capturing overall system events and is not generalized for all
users. The method of training the system is biased and it is much like a manual
survey of the different users, which is very difficult in real world scenario. The
use of time factor is not stated clearly in their work. The authors do not appear
to consider time as a factor, which is crucial for intrusion analysis.

3 Proposed Method

We have proposed a novel approach to capture the GUI based user behavior
for Linux Systems. This behavior includes amount of mouse clicks, different at-
tributes of clicks like, which button was pressed, co-ordinates of mouse, different
mouse movements, wheel rotations (horizontal or vertical), and keys pressed
during a user session. As there are no publicly available GUI data sets, we have
developed a logging tool to collect the GUI event details of KDE (K Desktop
Environment). We have collected data from 8 different users in our lab using
this tool. Our experimentation results shows that the GUI based behavior can
be efficiently used for masquerade attack detection to achieve high detection
rates with less false positives.

3.1 KDE Application Structure and Event Capturing

KDE or the K Desktop Environment, is a network transparent contemporary
desktop environment for UNIX workstations. KDE seeks to fulfill the need for
an easy to use desktop for UNIX workstations, similar to desktop environ-
ments found on Macintosh and Microsoft Windows operating systems. Figure
1 shows the architecture of a typical KDE application. KApplication is a class
that provides low-level KDE application services, and KTMainWindow serves
as a programmer-friendly base class for our main application window, KMy-
MainWindow. The classes KMenuBar, KToolBar, and KStatusBar are created,
positioned, and resized by KTMainWindow, but we can customize them from
within KMyMainWindow [26].

Widgets are graphical user-interface elements. Simple widgets can be con-
trols or indicators such as a push button or a text label. In KDE, widgets are
implemented using C++ classes. Usually there is a One-to-one widget-to-class
correspondence. For example, a pushbutton is implemented by QPushButton. All
widgets are ultimately derived from the QWidget base class. All these widgets
ultimately interact with the user through the class KApplication. KApplication
dispatches event messages that signal, for example, keypresses or mouse clicks to
all the widgets used by an application. KApplication receives messages from X,
the underlying windowing system, and distributes them to the widgets in your
application.

232 W.N. Bhukya, S.K. Kommuru, and A. Negi

Fig. 1. KDE Application Structure

Fig. 2. Event capturing

System Events. Window system events tell the widget when it needs to re-
paint, reposition, or resize itself, when mouse clicks or keystrokes have been
directed toward that widget, when the widget receives or loses the focus, and so
on. QWidget handles the events by calling a virtual method for each event. Each
method get passed, as an argument, a class containing information about the
event. To handle the event, the corresponding method must be reimplemented
in the subclass of QWidget. Figure 2 shows the event capturing procedure.

3.2 Experimental Setup

Data Collection. We have collected real user behavior data for multiple users
and extracted unique parameters to be able to construct the feature vectors.
For this purpose, we have developed an active event logger for KDE (K Desk-
top Environment) in Linux. KDE is one of most powerful desktop environments
for Linux. This logger is designed such that it is able to collect system events
due to all possible user activities on the system. The logger collects events such

Masquerade Detection Based Upon GUI User Profiling 233

as keyboard activity, mouse movement coordinates and mouse clicks, keyboard
shortcuts, and wheel rotations.

All the GUI event details were logged to log file. Event details include name
of the event, time of event occurrence, and different attributes of the event. The
following are the some of the event details from the log file:
User Session Started
Event Occurred at:Fri Apr 6 23:34:49 2007
Event :: Mouse Cursor entered the Window
Event Occurred at:Fri Apr 6 23:34:53 2007
Event :: Mouse clicked
Window Coordinates:27 39
Global Coordinates:132 163
Button Pressed : Left
Key Board Shortcut : Alt+c

Feature Extraction. After collecting the real user data, we have extracted
useful and unique parameters of the user behavior to be able to construct unique
feature vectors for training and testing with SVM [1]. We have developed our
own feature extraction engine to parse the logged data. We have extracted the
following unique features from that of [1]
:
Mouse Clicks (lc, rc, dc): the average number of left, right, and double mouse
clicks per user session as well as activity for each 10 minute window during the
session.
Mouse Enter and Exit (en,ex): the average number of mouse entrance and exits
in to the window per user session.
Wheel Rotations (wh, wv): the average number of horizontal and vertical wheel
rotations per user session.
Key Pressed (kp): the average number of keys pressed per user session.
Keyboard shortcuts used (ks): the average number of keyboard shortcuts per user
session.
Taking above features we have constructed the feature vectors for all the users.

Calculation of Features. Moreover, we have constructed 18 features for every
user after extracting parameters as described in previous section. They are :
Mouse Clicks: (lc,rc,dc) = 3
Mouse Enter and Exit : (en,ex) = 2
Wheel Rotations : (wh,wv) = 2
Key Pressed : (kp) = 1
Keyboard shortcuts used: (ks)=1
The total of these raw features is 9. Additionally, we calculated the mean ’m’
and standard deviation ’sd’ for all the raw features above. This gives a total of
18 unique features represented as:
(lc,rc,dc,en,ex,wh,wv,kp,ks) * (m,sd)

234 W.N. Bhukya, S.K. Kommuru, and A. Negi

we have applied sliding window technique on these features to generate the
tuples. These tuples are given as input to the SVM [1], as SVMs have been
known to be highly effective in text classification [21],[22].

4 Applying One-Class Masquerade Detection

In the previous section, we have used a Two-class SVM for which both the
positive and negative training is required. To improve the detection rates, we
have also applied One-class Masquerade Detection. One-class SVM requires only
the user’s legitimate sessions training to build up the user’s profile and not the
illegitimate sessions [2][13]. Therefore, when only user’s legitimate sessions are
available, one class training is the only viable approach.

4.1 Experimental Setup

Our main aim is to detect masquerades and for that we have checked that new
sessions does or doesn’t belongs to the real user (a ”Positive” or ”Negative”). We
have used one target user’s some sessions as ”positive data” to train a One-class
SVM without any negative training data. We have used remaining sessions of
that user for testing purpose. For each target user (User A, User B, User C, User
D, ...), a set of the sessions from the target user are trained as positive with out
any negative training. Then the remaining sessions from the target user are used
for testing with each other user’s sessions as negative.

We have used the data set from 8 user’s for this One-class SVM approach. User
A (10 sessions), User B (8 Sessions), User C (9 sessions), User D (8 sessions),
User E (6 sessions), User F (7 sessions), User G (6 sessions), User H (8 sessions)

5 Results and Discussion

We have collected data from 8 different users in our lab using the logging tool.
This data was fed to the parsing engine, as described to obtain 18 features.
These features were used to create tuples for providing input to the SVMs. The
methodology to train and test the system was as follows:

– Data sets were obtained for four distinct users A(10 sessions), B(8 sessions),
C(9 sessions), and D(8 sessions).

– The obtained data was split for training and testing as follows:
– Used the sliding window technique to generate feature vectors
– Used training and testing sets for SVM as described in previous section and

calculated detection rates and false positives
– We have used SVM lite software, which implements Vapiniks Support vector

machine[22].

We have calculated classification results and detection rates for four users. The
results from this test are shown below.

Masquerade Detection Based Upon GUI User Profiling 235

Table 1. Training and Testing sessions

User Training sessions Testing sessions

A 5 5

B 4 4

C 5 4

D 4 4

Table 2. Result for Two Users

No.of Features DR FPR

8 85.57% 2.93%

9 85.57% 2.93%

10 85.57% 2.93%

16 85.09% 3.42%

We have compared our results with the previous work done in Microsoft Win-
dows environment [3]. For 3 users and 8 features, their detection rate is 73.85%
and false positive rate is 26.15% . For the same number of users(3) and fea-
tures(8) lc,rc,dc,en,ex,wh,wv,kp we obtained 86% detection rate and 2.23% false
positive rate and 11.77% false negative rate. We have achieved comparatively,
higher detection rates with a very low false positive rate for less number of
features(8).

5.1 One-Class SVM Results

We have used the data set from 8 user’s for this One-class SVM approach. User
A (10 sessions), User B (8 Sessions), User C (9 sessions), User D (8 sessions),
User E (6 sessions), User F (7 sessions), User G (6 sessions), User H (8 sessions).

For each target user, we have trained the SVM using only the legitimate
training sessions. Note that when only the user’s own legitimate sessions are
available, One-class training is the only viable approach [2][13].

For example, consider the training and testing strategy for User D. The User
D is trained as positive. 4 positive sessions from User D are used for training
and the remaining 4 positive sessions are tested with each other user’s sessions
as negative.

The average hit rate is 94.88% for User D using One-class SVM approach.

5.2 Comparing with Two-Class SVM Approach

The same data set (8 users) is tested with the Two-class SVM. In this approach,
we have trained both the positive and negative samples and the results are
compared with the One-class SVM approach.

The average hit rate is only 53.08%, compared to 94.88% of one-class ap-
proach. We observed that, we can obtain higher detection rates using One-class
SVM approach compared to Two-class approach. Moreover, One-class approach

236 W.N. Bhukya, S.K. Kommuru, and A. Negi

Table 3. Result for three Users

No.of Features Users DR FPR

A-B,C 85.6% 7.09%
A-C,B 86% 2.23%
B-C,A 80.32% 17.64%

8 A-B,C 85.6% 7.09%
A,(B-C) 80.32% 7.09%
B,(A-C) 86% 11.76%
C,(A-B) 85.6% 7.3%

A-B,C 84.79% 8.31%
16 A-C,B 84.99% 3.04%

B-C,A 78.3% 17.64%

Table 4. Result of One-class SVM for User-D

User Hits(%) FPR

User E 97.24% 2.75%

User F 95.00% 5.00%

User G 94.87% 5.12%

User H 92.42% 7.8%

Average 94.88% 5.16%

Table 5. Result of Two-class SVM for User-D

User Hits(%) FPR
User E 56.86% 8.49%

User F 52.48% 0.00%

User G 60.38% 0.00%

User H 42.61% 28.87%

Average 53.08% 9.34%

requires less training data because there is no need of training the masquerade
sessions (illegitimate sessions).

5.3 ROC Scores for Different Users

To compare the performance of detection for different users, we have computed
the ROC score for each user. The ROC score is the fraction of area under ROC
curves. The larger the score, the better. An ROC score of 1 means perfect de-
tection without any false positives.

The figure 3 shows the ROC curve for User B using Two-class SVM to detect
User C as Masquerader.

The following table 6 shows the ROC scores for different targets and
masqueraders.

Masquerade Detection Based Upon GUI User Profiling 237

Table 6. ROC scores for different targets

User User A User B User C User D Average

A - 0.7190 0.4890 0.5010 0.5696

B 0.7192 - 0.9051 0.8642 0.8295

C 0.4890 0.9051 - 0.2665 0.5535

D 0.5010 0.8643 0.2665 - 0.5439

Fig. 3. ROC Score for User B(score=0.9051)

From the table 6, the ROC scores are in range from 0.2665 to 0.9051 when
detecting different masqueraders from different targets. For example, ROC score
for User B for identifying User C as masquerader is 0.9051.

6 Conclusions

We have designed and developed a new framework for capturing GUI based user
behavior for Linux Systems. We have collected data from a Linux system using
a logger developed for KDE(KDesktop Environment). After sanitizing this data
to remove unnecessary or redundant information, we have used a parsing engine
to extract parameters from this data. We have constructed feature vectors from
these parameters and used support vector machine algorithms to first train and
then classify the users using both One-class as well as Two-class SVMs. Our
results demonstrate that One-class SVM is far better than Two-class SVM for

238 W.N. Bhukya, S.K. Kommuru, and A. Negi

this problem not only in terms of detection rates but also in terms of training
and testing times.We have also computed ROC scores for different users from
different targets. We have found that user behavior features based on mouse and
keyboard activities on a GUI based system can be effectively used to uniquely
identify users and thus provide better masquerade detection capability.

As part of our future work, we plan to generalize the event capturing for all
the GUI applications. We would also like to test our system with more users
and more features as the data becomes available. We have also observed that
different events across the system can be arranged in various layers . There for
we intend to develop a layered approach for this problem.

References

1. Garg, A., Rahalkar, R., Upadhyaya, S.: Kevin Kwait Profiling Users in GUI Based
Systems for Masquerade Detection. In: Proceedings of 7th Annual IEEE Infor-
mation Assurance Workshop (IAW 2006), United States Military Academy, West
Point, New York (June 21-23, 2006)

2. Heller, K.A., Svore, K.M., Keromytis, A.D., Stolfo, S.J.: One Class Vector Ma-
chines for Detecting Anomalous Windows Registry Accesses. In: Proceedings of
2003 International conference on Data Mining- (ICDM 2003) (November19, 2003)

3. Li, L., Manikopoulos.: Windows NT One-class Masquerade Detection. In: Proceed-
ings of 2004 IEEE,Information Assurance Workshop (IAW 2004), United States
Military Academy, West Point, New York (June 2004)

4. Imsand, E.S., Hamilton Jr., J.A.: GUI Usage Analysis for Masquerade Detec-
tion. In: Proceedings of 2007 IEEE, Information Assurance Workshop (IAW 2007),
United States Military Academy, West Point, New York (June 21-23, 2007)

5. Coull, S.E., Branch, J.W., Szymanski, B.K., Breimer, E.A.: Sequence Alignment
for Masquerade Detection (2006)

6. Coull, S., Branch, J., Szymanski, B., Breimer, E.: Intrusion detection: A bioinfor-
matics approach. In: 19th Annual Computer Security Applications Conferences,
Las Vegas, Nevada (December 8-12, 2003)

7. Pusara, M., Brodley, C.: User Re-authentication via mouse movements. In: Pro-
ceedings of the 2004 ACM workshop on visualization and data mining for computer
security, Washington D.C., USA (October 29, 2004)

8. Lane, T., Brodley, C.E.: An Application of Machine Learning to Anomaly Detec-
tion. In: Proceedings of Twentieth National Information Systems Security Confer-
ence, vol. 1, (Gaithersburgh, MD), pp. 366–380. The National Institute of Stan-
dards and Technology and the National Computer Security Center (1997)

9. Lane, T., Brodley, C.: Sequence Matching and Learning in Anomaly Detection for
Computer Security. In: Proceedings of AAAI-97 Workshop on AI Approaches to
Fraud Detection and Risk Management, pp. 43–49 (1997)

10. Schonlau, M., DuMouchel, W., Ju, W.-H., Karr, A.F., M.T., Vardi, Y.: Computer
Intrusion: Detecting Masquerades. Statistical Science 16, 58–74 (2001)

11. Maxion, R.A., Townsend, T.N.: Masquerade Detection Using Truncated Command
Lines. In: Proceedings of International Conference on Dependable Systems and
Networks (DSN 2002), pp. 219–228 (2002)

12. Maxion, R.A.: Masquerade Detection Using Enriched Command Lines. In: Pro-
ceedings of International Conference on Dependable Systems and Networks (DSN
2003), San Francisco, CA (June 2003)

Masquerade Detection Based Upon GUI User Profiling 239

13. Wang, K., Stolfo, S.J.: One Class Training for Masquerade Detection. In: ICDM
Workshop on Data Mining for Computer Security (DMSEC 2003) (2003)

14. Monrose, F., Rubin, A.: Authentication via Keystroke Dynamics. In: ACM Con-
ference on Computer and Communications Security, pp. 48–56 (1997)

15. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In:
VizSEC/DMSEC 2004: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, Washington DC, USA, pp. 1–8 (2004)

16. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion Detection Using Sequences of
System Calls. Journal of Computer Security 6(3), 151–180 (1998)

17. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer Immunology. Communications
of the ACM 40(10), 88–96 (1997)

18. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions using System
Calls: Alternative Data Models. In: IEEE Symposium on Security and Privacy,
Oakland, CA, pp. 133–145 (1999)

19. Wespi, A., Dacier, M., Debar, H.: Intrusion Detection Using Variable-Length Audit
Trail Patterns, In Recent Advances in Intrusion Detection. In: Debar, H., Mé, L.,
Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 110–129. Springer, Heidelberg
(2000)

20. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection us-
ing Call Stack Information. In: Proceedings of IEEE Symposium on Security and
Privacy, Oakland, California (May 2003)

21. Joachims, T.: Text Categorization with Support Vector Machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Machine Learning:
ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

22. Joachims, T.: SVM light:Support Vector Machine (2004),
http://www.cs.cornell.edu/People/tj/svmlight/index.html

23. Ghosh, A., Schwartzbard, A., Schatz, M.: Learning Program Behavior Profiles
for Intrusion Detection. In: First USENIX Workshop on Intrusion Detection and
Network Monitoring, pp. 51–62 (1999)

24. Levitt, K., Ko, C., Fink, G.: Automated Detection of Vulnerabilities in Privileged
Programs by Execution Monitoring. In: Computer Security Application Conference
(1994)

25. Schonlau, M.: Masquerading User Data (1998),
http://www.schonlau.net/intrusion.html

26. http://developer.kde.org/documentation/books/kde-2.0-development
27. Dash, S.K., Reddy, K.S., Pujari, A.K.: Episode Based Masquerade Detection.

In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2005. LNCS, vol. 3803, pp. 251–262.
Springer, Heidelberg (2005)

28. Kim, H.-s., Cha, S.-D.: Empherical evaluation of SVM-based masquerade detection
using UNIX commands. Computers and Security 24, 160–168 (2005)

29. Bhukya, W.N., Kumar, S., Negi, A.: A study of effectiveness in masquerade detec-
tion IEEE TEN CON 2006 14-17, pp. 1–4 Digital Object Identifier 10.1109/TEN-
CON.2006.344199 (November 2006)

http://www.cs.cornell.edu/People/tj/svm light/index.html
http://www.schonlau.net/intrusion.html
http://developer.kde.org/documentation/books/kde-2.0-development

One-Time Receiver Address in IPv6

for Protecting Unlinkability

Atsushi Sakurai, Takashi Minohara, Ryota Sato, and Keisuke Mizutani

Department of Computer Science, Takushoku University
815-1 Tatemachi, Hachioji, Tokyo 193-0985 Japan
{y6m314@st,minohara@cs}.takushoku-u.ac.jp

Abstract. Privacy is one of the most desirable properties in modern
communication systems like the Internet. There are many techniques
proposed to protect message contents, but it is difficult to protect mes-
sage addresses because they should be clear to message router. In this
paper we propose a mechanism of one-time receiver address in IPv6 for
providing unlinkability against eavesdroppers. In our system, a pair of
sender and receiver independently generate an identical sequence of ad-
dresses by using a secret key exchanged in advance. The sender changes
the destination address every time when it initiates a transaction, and
only the corresponding receiver can follow the change of the address. We
have implemented the proposed mechanism on Linux systems. The pro-
totype system hides relation between transactions with small overhead.

1 Introduction

Privacy is one of the most important properties in present-day life. It is desir-
able to protect privacy in modern communication systems like the Internet[1].
Many methods, for example IPsec[2], TSL[3], PGP[4], etc., are proposed for pro-
tecting privacy of message contents. However it is difficult to protect message
addresses, since the information of the addresses is necessary to deliver the mes-
sages. One of the most important privacy issues concerning message addresses
is the unlinkability[5]. Unlinkability is the property that messages cannot be
linked together to assemble a profile of the sender or receiver of the messages.
To keep message addresses away from being used for making relation, senders
and receivers should change their address frequently.

One way to avoid continuous use of identical address is to use DHCP[6]. With
DHCP, addresses are assigned dynamically from DHCP servers. Although servers
often hand out the same address to the same client in current implementation,
they could arrange to lease addresses that change over time. In IPv6, another
method to realize temporarily changing addresses is defined in RFC 3041[7] as
an extension to the stateless address autoconfiguration[8]. With stateless address
autoconfiguration, IPv6 addresses are generated from a routing prefix portion
and a interface identifier. RFC 3041 provides a method to randomize the interface
identifier. Changing addresses with DHCP or RFC 3041 makes it more difficult to
identify which packets in independent transactions correspond to the same node.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 240–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

One-Time Receiver Address in IPv6 241

Unfortunately such difficulty torments not only wiretapping but also proper
communication. For initiating a communication, a sender node must know one
of the valid addresses of a receiver node. It is required that the receiver node
can change its address with preserving accessibility from proper senders.

Unlinkability differs from anonymity, since anonymity may provide relations
between different actions, but some methods for anonymity also provide un-
linkability. The onion routing[9] hides the receiver address by using numbers of
relays. A message is multiply enclosed in addressed envelopes and each envelope
is encrypted so that only the proper relay can open it. This method provides
both anonymity and unlinkability, but it is required significant overhead. Heavy
decrypting processes are imposed on relays, and length of initial packet rises in
proportion to the number of relays.

Waters, et al. proposed an addressing method for receivers’ anonymity us-
ing a special cryptographic primitive called Incomparable Public Key[10]. In
their system, each message is sent to a multicast group, and all members of the
group try to decrypt the message. Their cryptographic system is designed so
that only one of members can succeed to decrypt the message, and the other
members ignore it after failing in the decryption. Their system can preserve re-
ceiver anonymity even to the message sender itself, however all but one of the
multicasted messages will be waisted. The overhead for delivering and decrypt-
ing useless messages is not negligible, since the considerable number of receivers
is required for providing anonymity.

We consider that unlinkability about receiver addresses are required for a kind
of closed community like a friend-to-friend (F2F) network[11,12], and we propose
a mechanism for using one-time receiver address in IPv6 in this paper. In our sys-
tem, a receiver maintains multiple addresses corresponded to registered sender.
Each address is not used repeatedly over different transaction. The sender uses
novel address when it initiates a transaction, and the receiver follows the change.
Our method is targeted for unlinkability in the IP layer, and the relationship in
the lower layer (ex. Ethernet address) or the upper layer is not concerned.

2 One-Time Receiver Address in IPv6

2.1 Secret Address Sequence for a Pair of Sender and Receiver

In order to change receiver address for every transaction, the sender and receiver
must agree on a sequence of addresses used for transactions, and the sequence
must be hidden from outsiders to provide unlinkability.

In our system, both sender and receiver generate a common sequence of ad-
dresses independently. Each receiver prepares individual address sequences for
every potential senders. The sender draws a new address from the sequence when
it initiates a transaction, and the receiver accept the transaction destined to an
address in the sequence.

The sequence of addresses is genereted by using the secret encryption key
exchanged between sender and receiver in advance. Even if an eavesdropper
succeeded in wiretapping, it cannot guess future addresses from former addresses,

242 A. Sakurai et al.

and cannot judge whether two or more addresses are corresponded to the same
receiver. An encryption key can be shared by the Diffie-Hellman algorithm[13].
Sender and receiver exchange their public key each other on a key server, and a
common encryption key can be generated by the partner’s public key and one’s
own secret key.

2.2 Generation of Address Sequence

Since IPv6 address is composed of a routing prefix and a interface identifier, a
sequence of addresses can be generated from a sequence of interface identifiers.
The algorithm described in RFC 3041 generates a random sequence of interface
identifiers so that it is hard to predict past and future identifiers based on a
current one. We modified the algorithm in order to generate identical sequences
independently at sender and receiver under the condition that they share a
secret key K. The following algorithm assumes that both sender and receiver
have the same information about the routing prefix P of receiver and an initial
interface identifier I0, and provide the method for generating address sequence
Ai = < P : Ii(P, K, I0) > (i = 1, 2, · · ·).

The receiver obtains the routing prefix from router advertisement(RA) in
IPv6, and it is possible to generate random initial interface identifier. Those
values are handed to the sender via the key exchange server.

1. Take the history value Ji−1 from the previous iteration (the initial value J0
is set to interface identifier I0), and append the routing prefix P to it.

2. Encrypt the quantity created in step 1 with using the secret encryption key
K, and compute the MD5 message digest over the encrypted value.

3. Take the left-most 64 bits of the MD5 digest and set bit 6 (the left-most
bit is numbered 0) to zero. Save the generated value as next entry of the
sequence of interface identifiers Ii.

4. Take the right-most 64 bits of the MD5 digest computed in step 2 and save
them in stable storage as the history value Ji to be used in the next iteration
of the algorithm.

Figure 1 illustrates the flow of information for generating a sequence of ad-
dresses. The length of encryption key should be selected long enough so that it
cannot be disclosed by the brute force attacks.

3 Implementation of One-Time Receiver Address

We have implemented the mechanism of one-time receiver address described in
previous section into the Linux system which support IPv6 protocol stacks with
extensions developed by USAGI project[14].

3.1 Implementation of One-Time Addresses on Receiver Side

It is not efficient to assign a lot of addresses to a network interface, but a receiver
may be accessed from more than one sender, and it needs to manage sequences of

One-Time Receiver Address in IPv6 243

Fig. 1. Generation of a sequence of interface identifiers

addresses for all potential sender. We have implemented the following 3 features
for the address sequence management.

1. Initial Address Generation:
When a request of key exchange is sent to a receiver from a sender via a key
server, the receiver exchanges the secret encryption key K with the Diffie
Helman algorithm and starts generation of address sequence with the key K,
a random initial interface identifier I0 and routing prefix P obtained from a
router advertisement(RA). Then, the receiver tests duplication of the initial
address A1 on its local network. If any collision detected with other nodes,
the initial address is discarded, and new address sequence is generated by
alternating the initial interface identifier I0. Unless the duplication detected,
the initial address A1 is assigned to the network I/F, and the dummy address
< P : I0 > is sent to the sender.

2. Alternation of Addresses
In order to avoid the linkage by the attacker, a sender uses different ad-
dresses of receiver for every transaction. The receiver generates a range of
addresses Ai · · ·Ai+r−1 (r: length of range) as described in 2.2, and assigns
it to the network interface for accepting the transactions. Assigned addresses
are managed with a manner similar to the sliding window algorithm in TCP,
i.e. the next address Ai+r is drawn from the sequence when the transaction,
which uses the address Ai, is finished. The used address Ai is removed from
the interface, but generally it is not easy to detect the end of transaction. In

244 A. Sakurai et al.

our current implementation, only the end of TCP session is detected by
receiving a FIN flagged packet. The address used for the other type of sessions
are removed when the unused time exceeds a limit.

3. Duplicated Address Detection
Although 128bits’ address space in IPv6 is extremely large, the same address
may be generated coincidentally. The receiver can detect the duplication of
its address but the sender has no way to detect the duplication unless it is
informed from the receiver. We have integrated the collision avoidance into
the address management so that the sender is told the duplicate address
before it use the one.

The receiver examines the next address Ai+r before it is attached to the
network I/F. If the duplicate address is detected, it is not used and the ICMP
information message is sent for stopping the sender from using it, and the
address is stepped to the next Ai+r+1.

3.2 Implementation of One-Time Addresses on Sender Side

A sender also needs individual sequences of one-time addresses for each receiver,
but those addresses aren’t assigned to the network interface of the sender. They
are used for destination address with which transactions are established. There-
fore it is important to select different addresses for each transactions in order
to avoid continuous use of the same address. Transactions may be established
by many different applications, and it is not acceptable to change application
programs. The address selection mechanism must be transparent to application
programs. If human friendly identifiers, DNS names for example, were used in
stead of direct network layer addresses, such mechanism could be implemented
as a name resolver. We have developed an one-time address resolver, and in-
tegrated into address resolver library. Address sequences are maintained by a
daemon program, and a service library communicates with the daemon pro-
gram. The standard library(glibc-2.4) used for name resolution in Linux system
is designed so that it can extend easily. More than one services can be specified
in the configuration file(/etc/nsswitch.conf), and used in turn. The daemon pro-
gram resolves a name as follows, and even if it failed, ordinary services like NIS,
DNS, etc. are used as usual.

– When an address of a receiver is requested, the daemon program checks
whether the address sequence, which corresponds to the receiver, has already
been generated or not. If the sequence exists, the next address is drawn from
the sequence and passed to the service library. If it doesn’t exist, the daemon
starts to generate a sequence of address. At first, the daemon requests the
public key, which is used for the secret encryption key K, and the receiver’s
dummy address < P : I0 >. Then it generates a sequence of addresses as
described in 2.2, Finally it returns the initial address A1 from the address
sequence to the service library.

– If a duplicate address is detected on the receiver, it is told by the ICMP
message from the receiver. The daemon, which is informed the duplication,
deletes the address from the sequence.

One-Time Receiver Address in IPv6 245

– In the sender side, it is not required to detect the end of transaction. The
daemon passes one after another the addresses from the sequence to the
service library when they are requested.

4 Experimental Evaluations

We have configured an experimental network which is connected to the real IPv6
networks by using an IPv6 over IPv4 tunnel. The proposed one-time address
works well and co-exists with normal addressing mechanisms. When we use a
name registered for one-time address, the value of destination address changes
for each sessions, while normal IPv6 site can be accessed with its DNS name
simultaneously.

Because the overhead of our one-time address is loaded on the end points, we
have measured it by the nodes connected to the same segment. Table 1 shows
the RTT between sender(Pentium D 2.8GHz, 2GB memory) and receiver(AMD
Athlon 64 1GHz, 2GB memory) using ping6. The difference between the normal
address on the original kernel and the proposed one-time address on the modified
kernel is at most hundreds micro seconds, and it is negligible compared to typical
Internet transfer delay time.

Table 1. Difference of RTT of Between Original Kernel and Extension Kernel

Sequence Number 1 2 3 4

Normal address on original kernel(ms) 1.115 0.151 0.149 0.150
standard deviation 0.414 0.007 0.009 0.009

One-time address on modified kernel(ms) 1.291 0.190 0.191 0.192
standard deviation 0.310 0.011 0.015 0.009

5 Conclusion

In this paper we propose a mechanism for using one-time receiver address in IPv6
for providing unlinkability against eavesdroppers. In our system, the sender and
receiver generate identical sequence of addresses independently by using a secret
encryption key exchanged in advance. The sender uses novel address from the
sequence when it initiates a transaction, and the only receiver can follows the
change. We have implemented the proposed mechanism on the Linux system. The
prototype system can hide relation between transactions with small overhead.

References

1. Goldberg, I.: Privacy-enhancing technologies for the internet, II, five years later. In:
Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009,
pp. 1–12. Springer, Heidelberg (2001)

2. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301 (De-
cember 2005)

246 A. Sakurai et al.

3. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol. RFC 4346
(April 2006)

4. Atkins, D., Stallings, W., Zimmermann, P.: PGP message exchange formats. RFC
1991 (August 1996)

5. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management – a consolidated proposal for ter-
minology (July 2007), http://dud.inf.tu-dresden.de/Anon Terminology.shtml

6. Droms, R.: Dynamic host configuration protocol. RFC 2131 (March 1997)
7. Narten, T., Draves, R.: Privacy extensions for stateless address autoconfiguration

in IPv6. RFC 3041 (January 2001)
8. Thomson, S., Narten, T.: Ipv6 stateless address autoconfiguration. RFC 2462 (De-

cember 1998)
9. Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of The

ACM 42(2), 31–41 (1999)
10. Waters, B.R., Felten, E.W., Sahai, A.: Receiver anonymity via incomparable public

keys. In: CCS 2003. Proceedings of the 10th ACM conference on Computer and
Communications Security, Washington D.C., USA, pp. 112–121 (2003)

11. Bricklin, D.: Friend-to-friend networks (August 2000), http://www.bricklin.com/
f2f.htm

12. Chothia, T., Chatzikokolakis, K.: A survey of anonymous peer-to-peer file-sharing.
In: Enokido, T., Yan, L., Xiao, B., Kim, D., Dai, Y., Yang, L.T. (eds.) Embedded
and Ubiquitous Computing – EUC 2005 Workshops. LNCS, vol. 3823, pp. 744–755.
Springer, Heidelberg (2005)

13. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. of Infor-
mation Theory 22(6), 644–654 (1976)

14. WIDE Project: USAGI project – linux IPv6 development project,
http://www.linux-ipv6.org/

http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://www.bricklin.com/f2f.htm
http://www.bricklin.com/f2f.htm
http://www.linux-ipv6.org/

A Comprehensive Approach to Detect Unknown

Attacks Via Intrusion Detection Alerts

Jungsuk Song1, Hayato Ohba1, Hiroki Takakura2, Yasuo Okabe2,
Kenji Ohira1, and Yongjin Kwon3

1 Graduate School of Informatics, Kyoto University
oaktree@net.ist.i.kyoto-u.ac.jp, hayato@net.ist.i.kyoto-u.ac.jp,

ohira@net.ist.i.kyoto-u.ac.jp
2 Academic Center for Computing and Media Studies, Kyoto University

takakura@media.kyoto-u.ac.jp, okabe@i.kyoto-u.ac.jp
3 Information and Telecom. Eng., Korea Aerospace University

yjkwon@tikwon.hangkong.ac.kr

Abstract. Intrusion detection system(IDS) has played an important
role as a device to defend our networks from cyber attacks. However,
since it still suffers from detecting an unknown attack, i.e., 0-day attack,
the ultimate challenge in intrusion detection field is how we can exactly
identify such an attack. This paper presents a novel approach that is
quite different from the traditional detection models based on raw traf-
fic data. The proposed method can extract unknown activities from IDS
alerts by applying data mining technique. We evaluated our method over
the log data of IDS that is deployed in Kyoto University, and our experi-
mental results show that it can extract unknown(or under development)
attacks from IDS alerts by assigning a score to them that reflects how
anomalous they are, and visualizing the scored alerts.

1 Introduction

Due to the popularization of the Internet and local networks, security and pri-
vacy threats to the computer systems and networks are growing. In order to
fight against these cyber attacks, many security techniques have been studied
in the last decade, which include cryptography, firewalls and intrusion detection
systems(IDSs), etc. Among these techniques, IDS[1] is becoming increasingly
important in maintaining proper network security.

Although the existing IDSs that investigate raw traffic data have contributed
to the construction of a higher-level security architecture, they still have weak-
ness in detection of an unknown attack, i.e., 0-day attack. In addition, since
they trigger too many false positive alerts, it is very difficult that IDS operators
discover such an attack from the usual false positive alerts. Because of this, the
ultimate challenge in intrusion detection field is how we can exactly identify such
an attack.

On the other hand, skillful attackers devise diverse artifice to hide their ac-
tivities because recent progress of security devices, including IDS, makes the at-
tackers difficult to evade such security devices. In addition, the situation where

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 247–253, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

248 J. Song et al.

anyone can easily acquire many IDS products and free software, e.g., snort[2],
enables attackers to examine their behavior easily. Because they can control re-
sponse of IDS by carefully analyzing its detection mechanism, and thus they can
write attack codes to induce misjudgment of IDS operators or to evade security
devices without difficulty. In many cases, however, they cannot hide their ac-
tivities completely, so that IDS raises false positive alerts. Different from usual
false positive ones, various types of alerts which have no relevancy among them
appear simultaneously and frequently. Therefore, it is possible to identify some-
thing new activities from these usual false positive alerts. This paper presents
a novel approach that is quite different from the traditional detection models
based on raw traffic data. The proposed method can extract unknown activities
from IDS alerts by applying data mining technique.

We evaluated our method over the log data of IDS that is deployed in Kyoto
University. Our experimental results show that it can extract unknown(or under
development) attacks from IDS alerts by assigning a score to them that reflects
how anomalous they are, and visualizing the scored alerts.

The rest of the paper is organized as follows. In section 2, we give a general
survey of the intrusion detection field. In section 3 we present our approach, and
experimental results and their analysis are given in section 4. Finally, we present
concluding remarks.

2 Related Work

As IDS has played a central role as an appliance to effectively defend our crucial
computer systems or networks, large organization and companies have deployed
different models of IDS from different vendors. Nevertheless, there is a fatal
weakness that they trigger an unmanageable amount of alerts. Inspecting thou-
sands of alerts per day and sensor[3] is not feasible, specially if 99% of them are
false positives[4]. Due to this impracticability, during the last few years a lot of
researches have been proposed to reduce the amount of false alerts, by studying
the cause of these false positives, creating a higher level view or scenario of the
attacks, and so on[5].

T. Bass firstly introduced data fusion techniques in military applications for
improving performance of next-generation IDS[6]. Giacinto, et al. performed
alert clustering which produces unified description of attacks from multiple alerts
to attain a high-level description of threats[7]. In [8] Treinen, et al. used meta-
alarms to identify known attack patterns in alarm streams, and used association
rule mining to shorten the training time.

3 Extraction of Unknown Activities

In this section we present our method to extract unknown activities from IDS
alerts, and to assign a score that reflects how anomalous they are. Our extrac-
tion process consists of four major parts; Data Preparation, Feature Extraction,
Extracting Representative Points, and Scoring.

A Comprehensive Approach to Detect Unknown Attacks 249

3.1 Data Preparation

In many researches based on data mining and machine learning techniques, they
have usually used insufficient training data(with raw traffic data) to construct
intrusion detection models. In other words, they have collected data instances
within a certain period of time and generated the attack signatures or the nor-
mal patterns by calculating relationships among the instances. However, there
are several problems that are unacceptable for actual network management. For
example, they cannot represent current situation of the network and such in-
sufficiency may trigger too many alerts to be inspected by IDS operators. Since
new types of attack and normal activities are emerging everyday, it is difficult
to accurately detect them by using only certain days’ training data. In addition,
most of the alerts are not attacks(i.e. false positive)[4]. As a result, IDS operators
may not realize presence of an unknown attack by auditing such false positives.

In order to cope with these problems, we consider the multiple training data,
in which each training data consists of IDS alerts of a day and any sets of the
data are used to calculate the relationship, and the following feature extraction
and normalization processes are applied to each training data. In addition, we
regard all the training data as normal data because our ultimate purpose is
to detect completely unknown attacks that are different from the well-known
attacks, and never observed previously. After all, it means that we can obtain
our training data easily without any preprocessing for generating good training
data(i.e. correctly labeled training data) like traditional approaches.

3.2 Feature Extraction

In order to compute similarity between alerts, we need to define features like
those of KDD Cup 99 data. In the existing researches they have used only the
basic features that are recorded by IDS. However, the basic features can not con-
tain enough information to extract attacker’s ingenious conduct. Furthermore,
there are two many redundant features such as protocol type, detection time
and so on.

Therefore, in this study we consider the features as follows. First, only the
following information is used as the basic features that are given in IDS alerts.

– source address, source port, destination address, destination port

Second, we calculate the following additional features that are extracted based
on “incident ID” of IDS alerts. The “incident” indicates a group of the alerts that
are considered as correlated attacks by IDS. Thus, if two instances(i.e. alerts)
have the same incident ID, they become members of the same incident group.

– num same incident: the number of alerts with the same incident ID as
the current alert.

– num alert : the number of different kinds of alerts within an incident group
where the current alert belongs.

– kind sequent alert : kinds of the alerts that appear after the current alert.

250 J. Song et al.

In case of “num same incident” feature, it is effective in detection of the at-
tacks that consist of a large number of simultaneous connections such as DDoS
attack and Probing attack. In case of a heavy DDoS attack(or Probing attack),
they make the tremendous number of the same pattern alerts that is different
from that of normal traffic. On the other hand, the rest two features are de-
signed from empirical result that normal traffic or already-known attack often
forms a constant patterns of alert combination. When new combination of alerts
appeared or excessive combination occurred at the same time, it can be regarded
as a high risk attack or new attack(or attack under development).

3.3 Extracting Representative Points

Our approach assigns a score to each alert of the testing data in order to repre-
sent degree of its abnormality. However, since this assignment process requires
comparing the alerts of the training data with those of the testing data, uti-
lization of all alerts within the training data causes very high time complexity.
Therefore, in order to reduce the time complexity of the proposed method, we
extract the representative points from the training data. In extraction of the rep-
resentative points, we use LBG algorithm[14]. Its extracting process is described
as follows. The Euclidean distance is used for the distance calculation in it.

– Initialization: Regard all the points in the training data as members of an
initial cluster.

– The following steps are repeated l times.
• Selection: Select two points from each cluster at random, and regard

them as new representative point.
• Assignment: Assign each point to the closest representative point

(generation of cluster).
• Updating: Replace every cluster’s representative point with the average

of its members.
• Iteration: Repeat Selection and Updating until there is no change for

each cluster.

As a result, 2l representative points are obtained.

3.4 Scoring

In this procedure we assign a score to each alert in order to reflect how anomalous
it is. To this end, we first measure the distance between the representative points
and the alerts of the testing data. We find out the closest representative point
from each alert, and then regard the distance between the point and the alert as
its score. Note that we regard all alerts of training data as normal event if some
of them represent actual attacks. As a result, the alerts that have higher scores
are mostly likely to be unknown attacks and those with lower scores are most
likely to be normal traffic or already-known attacks. After the scoring process is
finished, security analyst investigates what malicious activities happened on his
networks based on the scores.

A Comprehensive Approach to Detect Unknown Attacks 251

4,000 7,000 10,000 15,000

ScoreLow HighLow High Low High Low HighScore Score

(a) (b) (c) (d)

Fig. 1. Variation of the scored alerts according to the number of the representative
points

4 Experimental Results and Their Analysis

We evaluated our system under the following conditions. First of all, to obtain
IDS alerts, we used SNS7160 IDS system[9] that is actually deployed at the
boundary of Kyoto University. We then prepared IDS alerts of a month(August,
2006)1 as the training data, and regarded all of them as the normal data. Note
that there are 30 different sets of the training data that consist of IDS alerts of
a day. The total number of alerts in the training data was about 6,400,000, and
there were 500 types of alerts based on signature ID. The total number of the
representative points extracted in the training phase was about 15,000. As the
testing data, we used IDS alerts collected on November, 20062.

We first investigated how well our scheme can extract unknown activities from
IDS alerts. To this end, we visualized a score of each alert as shown in Figure 1.
In Figure 1, the vertical axis indicates signature IDs. The horizontal axis means
the score of the alerts, and it increases according to the right side. The different
colors mean the number of the alerts that have the corresponding score(blue:
100, green: 102.5, red: 105). The bar chart(the right side of each Figure) means
the total number of the alerts that have the same signature ID. Second, we
need to investigate whether our approach is sensitive or not with respect to the
number of the representative points extracted from the multiple training data.
For this experiment, we changed the number of the representative points; 4,000,
7,000, 10,000 and 15,000. As the results of Figure 1, the score of the alerts is
almost unchanged; especially at the points that have higher score. Therefore,
it can be concluded that our approach is not sensitive to the number of the
representative points. In addition, we could identify that its the most right side
points(i.e. the points that have the highest score) correspond to the unknown
activities as described below.

Figure 2 shows that IDS detected 5 different exploit codes. Parenthesized num-
bers represent how many times the same exploit code or shellcode were observed,
and thus the first 4 exploit codes were observed for the first time. In addition,
we can observe that the first 4 codes adopt 2 shellcodes, and each session trig-

1 Many exploit codes have been developed aiming MS06-040.
2 New malware “Allaple[13]” was released.

252 J. Song et al.

Fig. 2. Example of unknown activities

August 23rd - 29th August 16th – 22nd August 9th - 15th August 2nd - 8th

Fig. 3. Variation of the scored alerts according to 4 different training data

gered 3 or 4 different alerts at the same time. For example, the first session was
detected as the latest attack “MSRPC SrvSvc NetApi Buffer Overflow (2)” to
MS06-040[10] while old attack “SMB Large Return Field” to MS05-027[11] and
“IDS Evasion”[12] were also included. However, these combinations of the alerts
are unnatural because in case of an usual attack IDS reports only one alert with
respect to it. This means, therefore, that attackers are developing their exploit
codes that are combined by the existing exploit codes, so that the multiple alerts
were recorded by IDS because different shellcodes raise different alerts. Later, it
was identified that these activities were caused by Allaple worms[13].

In general, attackers carefully examine their well-crafted attack codes through
a long period when they attack the victim host(s). Thus, the training data with
short period of time is insufficient to extract their malicious activities from the
testing data because their activities are also included in the training data; that
is, there are few differences between the training data and the testing data. For
demonstration, we prepared 4 different training data that consist of IDS alerts
of a week; August 23rd-29th, 16th-22nd, 9th-15th, and 2nd-8th, and the testing
data of a day; August 30th. The experimental results are shown in Figure 3. From
Figure 3, we can observe that in case of the latest training data(i.e. August 23rd-
29th) there are few alerts of a high score. While as we search retroactively, the
number of the alerts that have higher scores gradually increases. This means that
if we used only the latest training data to extract something new malicious attacks,
we overlook presence of them. We should, therefore, use long enough interval of

A Comprehensive Approach to Detect Unknown Attacks 253

training data in order to identify something new malicious activities. In fact, we
observed development of new attacks to MS06-040 since August 11st to 30th.

5 Conclusion

In this paper, we have focused on extracting unknown malicious activities from
IDS alerts. In order to extract such activities effectively, we have proposed a novel
approach that is based on data mining technique. Unlike the traditional methods
that try to detect new attacks from only one training data with raw traffic data,
the proposed method detects unknown attacks by applying the multiple training
data that consist of IDS alerts. We have evaluated the proposed method over
the log data of IDS that is deployed in Kyoto University, and showed that it has
capability to extract unknown(or under development) attacks from IDS alerts.
Furthermore, the stability of the proposed method with respect to the number
of the representative points makes our approach more promising.

References

1. Denning, D.E.: An intrusion detection model. IEEE Transactions on Software En-
gineering, SE 13, 222–232 (1987)

2. http://www.snort.org/
3. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A Data Mining Analysis

of RTID Alarms. Computer Networks 34(4), 571–577 (2000)
4. Julisch, K.: Clustering Intrusion Detection Alarms to Support Root Cause Analy-

sis. ACM Transactions on Information and System Security 6(4), 443–471 (2003)
5. Zurutuza, U., Uribeetxeberria, R.: Intrusion Detection Alarm Correlation: A Sur-

vey. In: Proceedings of the IADAT International Conference on Telecommunica-
tions and Computer Networks (December 1-3, 2004)

6. Bass, T.: Intrusion detection systems and multisensor data fusion. In: Communi-
cations of the ACM, pp. 99–105. ACM Press, New York (2000)

7. Giacinto, G., Perdisci, R., Roli, F.: Alarm Clustering for Intrusion Detection Sys-
tems in Computer Networks. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS
(LNAI), vol. 3587, pp. 184–193. Springer, Heidelberg (2005)

8. Treinen, J.J., Thurimella, R.: A Framework for the Application of Association Rule
Mining in Large Intrusion Detection Infrastructures. In: Zamboni, D., Kruegel, C.
(eds.) RAID 2006. LNCS, vol. 4219, pp. 1–18. Springer, Heidelberg (2006)

9. Symantec Network Security 7100 Series
10. http://www.support.microsoft.com/kb/921883
11. http://www.microsoft.com/technet/security/bulletin/MS05-027.mspx
12. http://www.sans.org/resources/idfaq/rpc evas.php
13. http://www.sophos.com/security/analyses/w32allapleb.html
14. Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE

Trans. on communications 28(1), 84–95 (1980)

http://www.snort.org/
http://www.support.microsoft.com/kb/921883
http://www.microsoft.com/technet/security/bulletin/MS05-027.mspx
http://www.sans.org/resources/idfaq/rpc_evas.php
http://www.sophos.com/security/analyses/w32allapleb.html

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 254 – 260, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Combining Heterogeneous Classifiers for Network
Intrusion Detection

Ali Borji

School of Cognitive Sciences,
Institute for Studies in Theoretical Physics and Mathematics,

Niavaran Bldg. P.O.Box 19395-5746, Tehran, IRAN
borji@ipm.ir

Abstract. Extensive use of computer networks and online electronic data and
high demand for security has called for reliable intrusion detection systems. A
repertoire of different classifiers has been proposed for this problem over last
decade. In this paper we propose a combining classification approach for intru-
sion detection. Outputs of four base classifiers ANN, SVM, kNN and decision
trees are fused using three combination strategies: majority voting, Bayesian
averaging and a belief measure. Our results support the superiority of the pro-
posed approach compared with single classifiers for the problem of intrusion
detection.

Keywords: Intrusion Detection, Combined Classifiers, PCA, Misuse Detection,
Anomaly Detection.

1 Introduction

With the rapid development in the technology based on Internet, new application
domains in computer network have emerged. As networks grow in both importance
and size, there is an increasing need for effective security monitors such as network
intrusion detection systems to prevent illicit accesses. Intrusion detection systems
provide a layer of defense which oversees network traffic to identify suspicious activ-
ity or patterns that may suggest potentially hostile traffics.

One promise for network intrusion detection is the abnormal access pattern that is
generated by scans. Sources that attempt to access an unusual number of uncommon
or non-existent destinations, or propagate an irregular number of failed connections
are often deemed suspicious [1].

An intrusion detection system (IDS) attempts to detect attacks by monitoring and
controlling the network behavior. While many existing IDSs require manual defini-
tions of normal and abnormal behavior (intrusion signatures), recent work has shown
that it is possible to identify abnormalities automatically using machine learning or
data mining techniques. These works analyze network or system activity logs to gen-
erate models or rules, which the IDS can use to detect intrusions that can potentially
compromise the system reliability.

Numerous approaches based on soft computing techniques such as artificial neural
networks and fuzzy inference systems are proposed in the literature for the purpose of

 Combining Heterogeneous Classifiers for Network Intrusion Detection 255

intrusion detection. In [2] two hierarchical neural network frameworks, serial hierar-
chical IDS (SHIDS) and parallel hierarchical IDS (PHIDS), are proposed. BPL and
RBF are two important learning algorithms used in these neural networks. Authors
have shown that BPL has a slightly better performance than RBF in the case of mis-
use detection, while the RBF takes less training time. On the other hand RBF shows a
better performance in the case of anomaly detection. In [3], authors proposed ANNs
and support vector machine (SVM) algorithms for ID with frequency-based encoding
method. In the chosen DARPA data set, they used 250 attacks and 41,426 normal
sessions. The percentage of detection rate (%DR) they archived were between 43.6%
and 100% while percentage of false positive rate (%FPR) varied from 0.27% to
8.53% using different thresholds. An in depth review of several anomaly detection
techniques for identification of different network intrusions are brought in [4].

In [5], authors have proposed an experimental framework for comparative analysis
of both supervised and unsupervised learning techniques including C.45, multi-layer
perceptron (MLP), K-nearest neighbor (KNN), etc. The best result they attained was
95% DR and 1% FPR using C.45 algorithm.

In [6] a set of fuzzy rules are generated that can distinguish anomalous connections
using only normal samples. Their approach uses genetic algorithms to evolve a set of
rules. In [7], SVM was used as an analysis engine which does some preprocessing on
the input data. Fuzzy logic is then used as a decision making engine.

It is well known that principal component analysis (PCA) is the most popular fea-
ture reduction and data compression method. It has also been applied to the domain of
ID [8]. In [9], neural network principal component analysis (NNPCA) and nonlinear
component analysis (NLCA) are proposed to reduce the dimension of network traffic
patterns. Their approach is based on comparing information of the compressed data
with that of the original data. In [10], PCA was used to detect selected denial-of-
service and network probe attacks. The authors analyzed the loading values of the
various feature vector components with respect to the principal components.

In [11], an ensemble method for intrusion detection is used. They have considered
two types of classifiers; ANN and SVM. Another ensemble method is proposed in
[12]. In their method, each member of the ensemble is trained on a distinct feature
representation of patterns and then the results of the ensemble members are combined.
In this paper we propose a new combining classifier approach to intrusion detection
by considering a set of heterogeneous classifiers. Four different base classifiers per-
form classification over an input pattern. Results are then combined using three comb-
ing methodologies.

The reminder of this paper is organized as follows. Problem of intrusion detection
is defined in more detail in section 2. Section 3 explains the datasets and brings the
results of single classifiers. Our proposed method for classifier combination and its
results are shown in section four. Finally section five, draws conclusions and summa-
rizes the paper.

2 Intrusion Detection

Intrusion detection process is a software or hardware product that detects illicit
activities, which are defined as attempts to compromise the confidentiality,

256 A. Borji

integrity, availability, or to bypass the security mechanisms of a host or network.
There exist mainly two categories of intrusion detection techniques: anomaly detec-
tion and signature recognition (misuse detection). Signature recognition techniques
store patterns of intrusion signatures and compare those signatures with the ob-
served activities for a match to detect an intrusion. The misuse detection, first at-
tempts to model specific patterns of intrusions to a system, then systematically
scans the system for their occurrences. Since the knowledge of the intrusions has to
be known before the modeling, this method is mostly used to detect well-known
intrusions. Although many existing intrusion detection systems are based on signa-
ture recognition techniques, anomaly detection techniques are better to detect novel
intrusions or new variants of known intrusions. Anomaly detection creates a profile
of typical normal traffic activities or user behaviors, then it compares the deviation
between the profile and the input activity with a preset threshold to decide whether
the input instance is normal or not. The preset threshold can be adjusted to meet
desired performance. Signature recognition techniques may be more accurate in
detecting known intrusions. Also many known attacks can be easily modified to
present many different signatures. Hence, signature recognition techniques and
anomaly detection techniques can be used together to complement each other by
monitoring the same activities and generating their own results regarding the intru-
siveness of the activities. Anomaly detection addresses the problem of detecting
novel intrusions. Usually, it cannot provide detailed information about the attacks.
A well designed intrusion detection system should have the ability to detect both
misuse and anomaly attacks.

It is important to establish the key differences between anomaly detection and
misuse detection approaches. The most significant advantage of misuse detection
approaches is that known attacks can be detected fairly reliably and with a low false
positive rate. Since specific attack sequences are encoded into misuse detection
systems, it is very easy to determine exactly which attacks, or possible attacks, the
system is currently experiencing. If the log data does not contain the attack signa-
ture, no alarm is raised. As a result, the false positive rate can be reduced very close
to zero.

However, the key drawback of misuse detection approaches is that they cannot
detect novel attacks against systems that leave different signatures behind. Anomaly
detection techniques, on the other hand, directly address the problem of detecting
novel attacks against systems. This is possible because anomaly detection tech-
niques do not scan for specific patterns, but instead compare current activities
against statistical models of past behavior. Any activity sufficiently deviant from
the model will be flagged as anomalous, and hence considered as a possible attack.
Furthermore, anomaly detection schemes are based on actual user histories and
system data to create its internal models rather than predefined patterns. Though
anomaly detection approaches are powerful in that they can detect novel attacks,
they have their drawbacks as well. For instance, one clear drawback of anomaly
detection is its inability to identify the specific type of attack that is occurring.
However, probably the most significant disadvantage of anomaly detection
approaches is the high rates of false alarm.

 Combining Heterogeneous Classifiers for Network Intrusion Detection 257

3 Intrusion Detection Using Single Classifiers

3.1 Dataset

In the 1998 DARPA intrusion detection evaluation program, an environment was set
up to acquire raw TCP/IP dump data for a network by simulating a typical U.S. Air
Force LAN. The LAN was operated like a real environment, but being blasted with
multiple attacks. For each TCP/IP connection, 41 various quantitative and qualitative
features were extracted. Of this database a subset of 494021 data were used, of which
20% represent normal patterns. The four different categories of attack patterns are:

a. Denial of Service (DOS) Attacks: A denial of service attack is a class of attacks in
which an attacker makes some computing or memory resource too busy or too full to
handle legitimate requests, or denies legitimate users access to a machine. Examples
are Apache2, Back, Land, Mail bomb, SYN Flood, Ping of death, Process table,
Smurf, Syslogd, Teardrop, Udpstorm.

 b. User to Superuser or Root Attacks (U2Su): User to root exploits are a class of
attacks in which an attacker starts out with access to a normal user account on the
system and is able to exploit vulnerability to gain root access to the system. Examples
are Eject, Ffbconfig, Fdformat, Loadmodule, Perl, Ps, Xterm.

c. Remote to User Attacks (R2L): A remote to user attack is a class of attacks in
which an attacker sends packets to a machine over a network−but who does not have
an account on that machine; exploits some vulnerability to gain local access as a user
of that machine. Examples are Dictionary, Ftp_write, Guest, Imap, Named, Phf,
Sendmail, Xlock, Xsnoop.

d. Probing (Probe): Probing is a class of attacks in which an attacker scans a network
of computers to gather information or find known vulnerabilities. An attacker with a
map of machines and services that are available on a network can use this information
to look for exploits. Examples are Ipsweep, Mscan, Nmap, Saint, Satan.

3.2 Single Classifier Recognition

In our experiments, we performed 5-class classification. The (training and testing)
data set contains 11982 randomly generated points from the five classes, with the
number of data from each class proportional to its size, except that the smallest class
is completely included. The normal data belongs to class 1, probe belongs to class 2,
denial of service belongs to class 3, user to super user belongs to class 4, remote to
local belongs to class 5. A number of 6890 points of the total data set (11982) was
randomly selected for testing and the rest for the train. Smaller number of training
patterns than test patterns is because the intrusion detection method must learn from
few learning samples the characteristics of the intrusions.

3.2.1 ANN
The set of 5092 training data is divided into five classes: normal, probe, denial of
service attacks, user to super user and remote to local attacks, where the attack is a

258 A. Borji

collection of 22 different types of instances that belong to the four classes described
in section 2, and the other is the normal data. In our study we used two hidden layers
with 20 and 30 neurons respectively and the networks were trained using standard
back propagation algorithm.

3.2.2 SVM
The same training test (5092) used for training the neural networks and the same
testing test (6890) used for testing the neural networks were used to validate the per-
formance of SVM. Because SVMs are only capable of binary classifications, we will
need to employ five SVMs, for the 5-clas classification problem in intrusion detec-
tion, respectively. We partition the data into the two classes of “Normal” and “Rest”
(Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes of
attack instances in the data set. The objective is to separate normal and attack pat-
terns. We repeat this process for all classes. Training is done using the RBF (radial
bias function) kernel option.

3.2.3 Decision Trees
The decision tree is constructed during the learning phase, it is then used to predict
the classes of new instances. Most of the decision trees algorithms use a top down
strategy, i.e from the root to the leaves. Two main processes are necessary to use the
decision tree: the building process and the classification process. The same dataset as
ANN and SVM were used for building and verifying decision trees. C4.5 algorithm with
normalized information gain was used in tree building.

3.2.4 kNN
In kNN, an input pattern is classified by a majority vote of its neighbors, with the
pattern being assigned the class most common amongst its k nearest neighbors. Train-
ing patterns are saved in memory. Then in classification a majority vote determines
the class label of a test pattern. In our experiments we used Euclidean distance to find
the nearest neighbors. Using a cross-validation experiment we found k=3 the most
sailable value for k. Results showing the performances of four single classifiers dis-
cussed above is summarized in table one.

Table 1. Intrusion detction performacne using four heterogenius classifiers

 Classification
 Method

Performance

ANN SVM Decision
Tree

kNN
(k=3)

Detection Rate (DR) 98.45% 99.5% 95.5% 88.9%
False Positive Rate (FPR) 3.57% 2.9% 1.2% 4.1%

4 Combing Classifiers for Intrusion Detection

The ensemble method proposed for solving the Intrusion Detection problem can be
illustrated as follows. First each trained classifiers over the same training set is used
independently to perform attack detection. Then the evidences are combined in order

 Combining Heterogeneous Classifiers for Network Intrusion Detection 259

to produce the final decision. The approach based on classifier combination may also
attain effective attack detection as the combination of multiple evidences usually
exhibits higher accuracies, i.e. lower false positives, than individual decisions. In
addition, the generalization capabilities of pattern recognition algorithms allow for the
detection of novel attacks that is not provided by rule-based signatures.

In order to illustrate combination approach, we used three simple fusion techniques:
the majority voting rule, the average rule and the “belief” function. These fusion tech-
niques compute the final decision from the set of decisions of an ensemble made up of
K classifiers. The “majority voting rule “assigns a given input pattern to the majority
class among the K outputs of the classifiers combined. The “average rule” assigns a
given input pattern to the class with the maximum average posterior probability, the
average being computed among the K classifiers (this rule can be applied if classifiers
provide estimates of posterior probabilities, like multi-layer perceptron neural net-
works). The third fusion rule is based on the computation of a "belief" value for each
data class given the set of outputs of the K classifiers. Belief values are based on esti-
mates of the probabilities that a pattern assigned to a given data class actually belongs
to that class or to other classes. These probabilities can be easily computed from the
confusion matrix on the training set. The classification is then performed by assigning
the input pattern to the data class with the maximum “belief” value. For more details
about the above combination methods the reader is referred to [13].

Results of combining classifiers to recognize intrusions using three combination
approaches are shown in table 2.

Table 2. Intrusion detection performance using combination of four disticnt classifiers

 Combination Method

Performance

Majority Bayesian
 Average

Belief

Detection Rate (DR) 99.18% 99.33% 99.68%
False Positive Rate (FPR) 1.20% 1.03% 0.87%

5 Conclusions

Our results show the effectiveness of classifier combination in providing more reli-
able results, as the final decision depends on the agreement among distinct classifiers.
In particular better results have been obtained by the fusion rule based on the “belief”
function paradigm because it takes into account the different discriminative power
provided by the considered feature sets. Other combination schemes should be de-
vised to further improve the presented figures. In addition, more extensive testing is
required to compare IDSs based on pattern recognition tools with traditional IDSs.
With respect to the capability of ensemble learning approaches of providing a better
trade-off between generalization capabilities and false alarm rate, it can be concluded
that combination reduces the overall error rate, but may also reduce the generalization
capabilities. This aspect should be further investigated in order to deploy effective
IDSs based on pattern recognition.

260 A. Borji

References

1. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of the
13th Conference on Systems Administration (LISA 1999), pp. 229–238 (1999)

2. Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural networks.
Pattern Analysis and Machine Intelligence Research Group, Department of Electrical and
Computer Engineering, University of Waterloo, Canada (2004)

3. Wun-Hua, C., Sheng-Hsun, H., Hwang-Pin, S.: Application of SVM and ANN for intru-
sion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)

4. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of
anomaly detection schemes in network intrusion detection. In: Proceedings of the Third
SIAM Conference on Data Mining (2003)

5. Pavel, L., Patrick, D., Christin, S., Rieck, K.: Learning Intrusion Detection: Supervised or
Unsupervised. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57.
Springer, Heidelberg (2005)

6. Gómez, J., González, F., Dasgupta, D.: An immuno-fuzzy approach to anomaly detection.
Fuzzy Systems. In: FUZZ 2003. 12th IEEE International Conference on Fuzzy Systems,
vol. 2, pp. 1219–1224 (2003)

7. Yao, J., Zhao, S., Saxton, L.: A study on fuzzy intrusion detection. Data Mining, Intrusion
Detection, Information Assurance, and Data Networks Security 2005. In: Dasarathy,
B.V.(ed.) Proceedings of the SPIE, vol. 5812, pp.23–30 (2005)

8. Oja.: Principal components, minor components, and linear neural networks. Neural Net-
works 5(6), 927–935 (1972)

9. Kuchimanchi, G.K., Phoha, V.V., Balagami, K.S., Gaddam, S.R.: Dimension reduction us-
ing feature extraction methods for Real-time misuse detection systems. In: Proceedings of
the 2004 IEEE Workshop on Information Assurance and Security, West Point, NY, pp.
195–202 (2004)

10. Labib, K., Vemuri, V.R.: Detecting and visualizing denial-of-service and network probe
attacks using principal component analysis. In: Third Conference on Security and Network
Architectures, La Londe, France (2004)

11. Mukkamala, S., Sung, A.H., Abraham, A.: Intrusion Detection Using Ensemble of Soft
Computing Paradigms. Journal of Network and Computer Applications 28, 167–182
(2005)

12. Didaci, L., Giacinto, G., Roli, F.: Ensemble Learning for Intrusion Detection in Computer
Networks. In: Workshop su apprendimento automatico: metodi ed applicazioni (2006)

13. Xu, L., Krzyzak, A., Suen, C.Y.: Methods for combining multiple classifiers and their ap-
plications to handwriting recognition. IEEE Trans. Systems, Man and Cybernetics 22,
418–435 (1992)

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 261 – 267, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Managing Uncertainty in Access Control Decisions in
Distributed Autonomous Collaborative Environments

Petros Belsis1, Stefanos Gritzalis1, Christos Skourlas2, and Vassilis Tsoukalas3

1 Department of Information and Communication Systems Engineering,
University of the Aegean, Karlovassi, Samos, Greece

2 Department of Informatics, Technological Education Institute, Athens, Greece
3 Department of Industrial Informatics, Technological Education Institute, Kavala, Greece

{pbelsis, sgritz}@aegean.gr, cskourlas@teiath.gr,
vtsouk@teikav.edu.gr

Abstract. Coalitions of autonomous domains gain constantly interest during the
last years due to the various fields of their potential application. A lot of chal-
lenges of both academic as well as of practical nature are related with their de-
ployment. Among else, the distributed nature of a coalition demands special fo-
cus in respect to security management. In this paper we argue about the neces-
sity for adjustable security mechanisms towards the security management of
multi-domain environments; we describe an approach that allows determination
of preferences when defining access control permissions over the shared ob-
jects. We handle such preferences by encoding access control constraints using
fuzzy relations and we describe a prototype security architecture that imple-
ments the basic principles of our approach.

1 Introduction

In various collaborative environments (such as ministries in e-government environ-
ments, interconnected medical domains etc), there is a need for joint access over
shared resource among different organizations. The aim of these collaborative envi-
ronments is to increase the capability of the participating domains to respond in
various challenges without demanding excessive times. Achieving interoperability,
retrieving efficiently knowledge assets in the distributed environment and managing
security are among the main research challenges when building similar infrastruc-
tures; still the developed security mechanisms lack when it comes to their capability
to be adaptive.

We present a method that incorporates extensions to multi-domain security models
and allows determination of preferences in handling access control decisions over the
shared resources for the participating domains. We describe in the framework of on-
going research work the modular components of our prototype architecture that im-
plements policy based access control enforcement; another feature is that it allows
reasoning over access requests by incorporating in the calculations fuzzy constraints.
The rest of the paper is organized as follows: section 2 presents related work in con-
text, outlining in brief differentiations from our approach; section 3 discusses some
basic principles for access control enforcement in multi-domain environments.

262 P. Belsis et al.

Section 4 presents our approach that allows determination of preferences in access
control decisions for shared objects in the federated domain, using fuzzy constraints.
Section 5 presents the prototype architecture that enables access control enforcement
in collaborative environments. Section 6 concludes the paper, evaluating the imple-
mentation status of our approach and providing directions for further work.

2 Related Work

Barker and Stuckey [1] use constraint logic programming to express multiple access
control policies; in their work they do not provide support for multiple access control
restrictions, such as limitations to access objects at certain locations. In addition there
is no support for determination of preferences over the access constraints.

Bonatti et al [5], propose an algebra for the creation of an access control policy out
of simpler policies. In their model their language’s expressiveness is analysed with
respect to first order logic. They show that their language’s formal semantics are
equivalent to first order logic formulations. A global policy is composed out of sim-
pler ones; in our approach instead we enable a policy bridging mechanism enabling
interoperation between the constituent policies. We also define a novel technique that
allows determination of preferences over specific requests or actions over the shared
workspace.

In [6] a scalable solution to enable formation of coalitions over ad-hoc environ-
ments is proposed. A distributed service registry is utilized to enable interoperation
between different autonomous wirelessly interconnected domains. In this approach,
the management of the coalition is performed using information codified in the regis-
try, which plays similar role as in our approach; still the proposed approach does not
allow the flexibility to manage access requests that are not explicitly defined in
advance.

3 Access Control Solutions for Multi-domain Environments

The Role Based Access Control (RBAC) model [2] has proved so far to be the most
prominent security model; RBAC parameters can be encoded as policy expressions
and can be codified in policy languages. The recorded policies are further loaded and
interpreted dynamically; accordingly the policy enforcement modules reason over
specific access requests. Thus, we have also adopted a policy driven approach in order
to simplify and automate security management.

Considering permissions as a set of Boolean constraints associated with a given
role, we can represent the security policy using constraints, each one consisting of a
triplet of the following variables: the role variable, the permissions and the assets (ob-
jects) which the role is allowed to access. In a multi-domain environment where dif-
ferent domains share their assets, the problem of assigning privileges to roles can be
cast to specifying generalised constraints (that contain tuples with RBAC variables
from different domains) which have to be jointly satisfied. Typically an access control
decision is defined by a tuple (Role, Object, Permission) where R is one of the avail-
able roles in the system, O is the requested object and P is an access permission (in

 Managing Uncertainty in Access Control Decisions 263

the UNIX© system for instance access permissions can be represented as w, r, x for
write, read and execute permissions respectively). The evaluation of allowed requests
- and therefore the system’s access control operation - may rely on decomposition of
RBAC related tasks which can furthermore be evaluated on the basis of appropriate
logic expressions. Thus, in order to evaluate a state <authorised(john, write, o)|true> a
number of sub-goals may be evaluated, such as: <ura(john,R1, date)>, active(john,
R1), senior_to(R1, R2), pra(write,o, R2, date)> where ura, pra, senior_to, correspond to
typical RBAC expressions (user-to-role assignment, permission–to-role assignment
etc)[1].

In a multi-domain environment we can consider that security tuples may be ex-
panded so as to contain the role which originated the request, the corresponding role
to the target domain, the requested object and the permission under request. Consider-
ing that all the tuples cannot be defined always in advance as new organizations join
or leave, an alternative approach may rely on defining a way to express preferences
over the shared objects, which define the criticality of the object and thus the willing-
ness of a domain to share or not the resource.

4 Determining Fuzzy Relations for the Access Control Model

Access control problem formulations can be easily encoded by means of appropriate
constraint representations; this is mainly due to the constraint nature of the RBAC
model. Therefore allowed accesses can be represented as tuples of RBAC variables.
In multi-domain environments it is not easy to describe all the possible access combi-
nations in advance, since due to the dynamic nature of the environment new systems
join and new roles and shared assets are continuously contributed to the shared envi-
ronment. Security management -in contrast to the single domain paradigm- within the
federated framework is much more complicated, since it is not feasible to always de-
termine in advance all the allowed accesses. The inherent uncertainty in managing
access control in these environments [11] may be treated using fuzzy relations which
allow determination of the degree of satisfaction of a specific statement.

Since all the possible access combinations in multi-domain environments cannot be
defined in advance and access constraints may not be evaluated on basis of Boolean
expressions, fuzzy constraints may be used instead; thus, we may extend the notion of
access constraints and associate them with a degree of satisfaction, expressed on a
[0, 1] scale. By utilizing soft constraints it is possible to treat access control problems
by encountering preferences expressed as values (k-tuples) that can be assigned to a
set of variables. Therefore we can assign to each tuple a level of preference μe(u1,

…..,uk) which assigns a value in a totally ordered set [0,1] [4]. Instead of an ordinary
Constraint Satisfaction Problem (CSP) we can incorporate in our calculations fuzzy
metrics, transforming the problem to fuzzy CSP’s. More specifically, as a fuzzy CSP
we can consider a list of variables (x1, …..xk), a list of finite domains of values
(D1,….,Dk) and a list of fuzzy constraints (c1,…….,ck). An instantiation v* ∈D is con-
sidered as a perfect solution if all individual constraints are satisfied. An instantiation
v* ∈D is a best solution if the degree of joint satisfaction of all the constraints is
maximal possible C ((c1,c2,..,ck)v

*). We consider that these preferences are encoded in
a fuzzy relation R that associates each k-tuple (u1, …..,uk) with a level of preference

264 P. Belsis et al.

P(u1, …..,uk). PR(u1, …..,uk), >PR(u’
1, …..,u

’
k) means that (u1, …..,uk) is preferable (u’

1, …..,u
’
k).

PR(u1, …..,uk)=0 means that tuple (u1, …..,uk) fully violates the constraint while PR(u1,

…..,uk)=1 means the constraint is fully satisfied.
We will show the applicability of our approach with an example. Considering that

we want to express preferences for two available roles, R1 and R2 and two shared as-
sets A and B and with ‘w’ and ‘r’ we define the two allowed permissions for these
assets, we can model the problem as a fuzzy CSP (FCSP) with variables R (role), O
(object) P (permission) with value-domains {R1, R2}, {A, B}, and {w,r} respectively.

We consider different combinations of domain variables encoded in a matrix as
constraint representations (Table 1). In our case we consider two constraints that de-
fine the degree of preference for a combination of values for two (or more in a general
case) problem variables. The first constraint associates roles with a preference to ac-
cess the shared objects, the second associates the given objects with different types of
permissions. Combinations which are totally unacceptable are not presented in Table
1 still they are encountered as not acceptable combinations during the computation of
preferences.

Table 1. Encoding domain preferences by means of fuzzy constraints

Constraint Satisfaction R (role) P (permi-
ssion)

O (Object)

0.8 R1 A

0.2 R2 A
0.7 R1 B

C1

0.1 R2 B
0.3 W B
0.1 W A
0.4 R B

C2

0.3 R A

The legitimacy of an access request may be calculated using the preference con-

straints and by calculating a degree of total satisfaction for the possible combinations
of values for all the problem variables. We can introduce at this point two useful met-
rics in order to estimate the most appropriate combinations: the appropriateness
ai(v)of a value v∈Di for a variable xi is evaluated on the basis of the degree of the best
possible joint satisfaction of the constraints referring to xi and is defined as

ai(v)=max{C((ci1,..,cih),v) | v ∈Di1,×…×Dik-1 ×{v}×Dik+1 .. ×Dih} (1)

and the difficulty of a variable, which can be computed according to the following
formula [3]:

di = ()
i

i
v D

a v
∈
∑ (2)

The difficulty metric can be used as an estimation of the most critical parameter,
which should be instantiated first. While seeking for combinations that satisfy most
the defined preferences, we utilize as a tool the aforementioned metrics. Therefore,
we calculate first the difficulty of the variables under examination and accordingly we

 Managing Uncertainty in Access Control Decisions 265

instantiate the one which achieves the higher degree, which means that is the most
critical and should be instantiated first. For this value according to equation (1) we
choose the most appropriate value which maximizes the degree of satisfaction.

As an application scenario, we can consider the case where we have two domains
that cooperate and want to share resources. In order the coalition to enable access to
the shared resources, we need to establish a remote privilege management mecha-
nism. We establish a role mapping approach which allows –under certain circum-
stances – access over shared resources [9][10]). The main idea behind this approach is
that roles with many privileges and a high position in the role hierarchy are more
likely to be granted access permissions over shared objects, even if these permissions
have not been explicitly defined. We first calculate the difficulty for the variables R,
O, P that participate in the two defined constraints by identifying the domain values
and their degree of preference. For the role R variable as it can be seen from table 1
we have two possible instantiations and the maximal values for each instantiation,
according to equation (1) are: 1 for R1 and 0.2 for R2, achieving thus a value of d=1.2.
For variable O (object) we have as maximal values from Table 1, 0.8 for object A and
0.7 for B giving thus a value d=1.5 (for the difficulty). Similarly for the P variable
(permission) we achieve for the possible values a difficulty of d=0.7. Therefore we
instantiate first the Object variable assigning the value with higher preference: A. Ac-
cordingly, from the remaining variables according to equation we proceed by consid-
ering only the remaining combinations that contain this selected value A for the in-
stantiated variable. The next variable to be instantiated is Role and as most appropri-
ate value is R1 which satisfies better the constraint. In a similar manner we conclude
that the most preferred access action is read over the shared object. Therefore the
most preferable allowed tuple is <R1, DB1, r>. We have in brief thus showed that by
encoding preferences we can define which accesses are most preferred over which
objects and for specific roles with higher privileges and a position higher than others
in the role hierarchy.

5 Access Control Enforcement Architecture

We have proceeded in implementing a prototype that implements the basic opera-
tional principles of our model. The policy management architecture consists of the
following modules (Fig. 1):

• The authentication module which evaluates the user credentials and provides
through a single-sign-in procedure a SAML [8] assertion that allows interac-
tion with all the modules within the coalition framework.

• The Policy Decision Point (PDP) that evaluates the requests according to the
given policy.

• The Policy Enforcement Point (PEP) that actually implements access control
enforcement.

• The policy mapping repository that stores all the necessary information to al-
low policy interoperation.

• The constraint solving module that loads the constraints and calculates the
degree of satisfaction for a given constraint and facilitates the policy decision
for requests that their legitimacy is not defined in advance.

266 P. Belsis et al.

Fig. 1. Generic access control enforcement system architecture

An example usage scenario operates as follows: A user (originating in domain B)
logs in the system and acquires an authentication credential which is issued as a
SAML compliant assertion and which is recognizable by all the domains and allows
interaction within the coalition framework; thus the operation of the framework is
based on a single sign-on process which simplifies the authentication procedures for
all the participating domains. In order to acquire access to shared resources, the re-
quest is formulated through the PEP interface which is implemented entirely in Java.
The PEP operates using software modules that are partially provided by the XACML
framework [7] and other modules that we developed for use in our multi-domain
framework; accordingly, the PEP creates a XACML request (encoded in XML form).
The request is sent to the PDP for further evaluation. The PDP software module is
also built in Java. It primarily invokes a XACML compatible parser and isolates the
access request message payload. Next it checks the request against the local policy
(stored in the policy repository) to determine if the request should be authorized. In
case the request comes from a role that originates in a remote domain, the PDP que-
ries the coalition management registry and identifies whether the remote role is in-
voked in the coalition. This is done by sending a request to the cooperating PDP’s
using the Java RMI protocol. Last, the PEP receives a XACML reply message from
the PDP’s and enforces the decision.

6 Conclusions

Policy management in distributed collaborating environments is a challenging task,
confronting with various research and technical challenges. We have presented a
method that allows determination of preferences over access constraints for coalitions

 Managing Uncertainty in Access Control Decisions 267

of autonomous systems and have tested the validity of our approach through a proto-
type implementation. Specific attention has been given to the design principles of our
prototype architecture so as to retain an interoperable and scalable character.

We have tested the validity of the approach by directing requests from three differ-
ent domains (subnets) where each domain comprised of a three level hierarchy, with
three roles for each domain. The initial performance results of the prototype were
very promising. We are currently working on expanding the functionality of our pro-
totype architecture, especially by integrating different commercial constraint solvers.

References

1. Barker, S., Stuckey, P.: Flexible Access Control Policy Specification with Constraint logic
programming. ACM Trans. Inf. Syst. Secur. 6(4), 501–546 (2003)

2. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control: to-
wards a unified standard. In: RBAC 2000. Proceedings of the Fifth ACM Workshop on
Role-Based Access Control, pp. 47–63. ACM press, New York (2000)

3. Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proc. 3rd IEEE International Conference on
Fuzzy Systems, pp. 1263–1268 (1994)

4. Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction. In: Proc. IEEE International Conference on Fuzzy Systems, pp.
1131–1136. IEEE Computer Society, Los Alamitos (1993)

5. Bonatti, P., di Vimercati, D.C.S., Samarati, P.: An algebra for composing access control
policies. ACM Trans. Inf. Syst. Secur (TISSEC) 5(1), 1–35 (2002)

6. Mukkamala, R., Atluri, V., Warner, J.: A Distributed Service Registry for Resource Shar-
ing among Ad-hoc Dynamic Coalitions. In: Proc. of IFIP Joint Working Conference on
Security Management, Integrity, and Internal Control in Information systems. LNCS,
Springer, Heidelberg (2005)

7. XACML Extensible access control markup language specification 2.0, OASIS Standard
(March 2004), available at http://www.oasis-open.org

8. Hughes, et al.: Technical Overview of the OASIS Security Assertion Markup Language
(SAML) V1.1.OASIS, http://xml.coverpages.org/saml.html

9. Joshi, J.B.D., Bhatti, R., Bertino, E., Ghafoor, A.: Access Control Language for Multi-
Domain Environments. IEEE Internet Computing 8(6), 40–50 (2004)

10. Belokolsztolszki, A., Eyers, D., Moody, K.: Policy Contexts: Controlling Information
Flow in Parameterised RBAC. In: POLICY 2003. Proc. of the 4th Int. Workshop on Poli-
cies for Distributed Systems and Networks, pp. 99–110. IEEE Press, Los Alamitos

11. Hosmer, H.: Security is fuzzy!: applying the fuzzy logic paradigm to the multipolicy para-
digm. In: Proceedings on the 1992-1993 Workshop on New Security Paradigms (Little
Compton, Rhode Island, United States), pp. 175–184. ACM Press, New York

On Run-Time Enforcement of Policies

Harshit Shah1 and R.K. Shyamasundar2

1 Dep. Informatica & TLC, Univ. of Trento, Italy
shah@dit.unitn.it

2 School of Tech. & Comp. Science, TIFR, Mumbai, India
shyam@tcs.tifr.res.in

Abstract. Monitoring untrusted code for harmful behaviour is an im-
portant security issue. Many approaches have been proposed for restrict-
ing activities and the range of untrusted code. Among these, run-time
monitoring is a promising approach for constricting run-time behaviour
of programs. In this paper we describe a method of containing the effects
of untrusted code with respect to a specified policy. We use a guarded
command like language for specifying policies that could monitor system
calls, APIs or library routines of the underlying system. We also discuss a
system call monitoring architecture for an operating system like Linux.
We provide semantics of the language in terms of Security Automata
and also discuss how pure past temporal properties can be automatically
compiled into policies in guarded command language. This allows users
to specify policies in terms of logical formulae and automatically gener-
ate monitoring algorithm for the same in terms of guarded commands.
We show how simple modifications allow us to specify constraints on the
overall behaviour of a group of processes.

1 Introduction

Software is a very important and very complex component of computer systems.
A user does not have a thorough understanding of most of the code running
on his machine. In such a scenario, code containing malicious payload becomes
a serious threat [14]. Such a piece of code tricks the unsuspecting user into
believing that it adds functionality to the device. In [18], Ken Thomson showed
how a seemingly harmless compiler could be loaded with harmful content that
would open a backdoor to the system.

The amount of damage that can be incurred by malicious code can be huge.
It can perform a range of nasty activities from corrupting a system to obtaining
complete control over it. The situation becomes worse when one considers mobile
platforms that have limited capabilities (which also come at a price). It therefore
becomes important to make sure that these capabilities are not abused and to
also provide mechanisms that ensure that untrusted code does not breach user’s
expectations. Achieving this objective is not easy. It is difficult to check code for
malicious content. Code writers use a high level of sophistication to make sure
that the unwanted behaviour goes undetected. It is impractical to expect the end

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 268–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Run-Time Enforcement of Policies 269

user to carefully examine and execute untrusted code so as not to compromise
system security.

Run-time monitoring of code comes across as a promising approach to con-
strain activities of a running program. In such scenarios, a user typically writes
a policy which is then used to instrument code (to insert checks at appropri-
ate places) or which is compiled into a separate monitor. Many specification
languages and monitoring mechanisms have been proposed. Some of the specifi-
cation languages are platform specific (e.g., for Linux) while some are specific to
a programming language (e.g., Java). In order to achieve platform independence,
it has been proposed to abstract the underlying system. The policy specification
can then be provided in terms of the abstraction [19]. Often, policy specifica-
tion becomes difficult and user requires good amount of knowledge about the
specification language to ensure that he has written the correct policy.

In order to make specification easier, we use a simple Guarded Command
Policy Specification Language (GCPSL) to specify security policies that have
to be enforced on untrusted code. GCPSL has the advantage that it describes
the actions that monitor has to perform and the state information it has to
maintain to enforce the policy. When untrusted code is executed, the actions
performed by the code are monitored. At any point of time, if the code is about
to violate a security policy, then the execution is terminated. We show the con-
nection between pure past temporal specification and GCPSL. This helps us to
automatically generate monitoring algorithm for a policy specified as a temporal
logic formula (with past temporal operators). We discuss a sample monitoring
architecture for system calls and extend the specification language to allow for-
mulation of policies constraining the behaviour of a set of processes. The rest of
the paper is organized as follows: section 2 provides the syntax and semantics of
the (GCPSL), section 3 describes a system call monitoring architecture, in sec-
tion 4 we outline the extension to GCPSL to handle a set of processes, in section
5 we show how temporal constraints can be compiled into monitor specification
in GCPSL, in section 6 we discuss the state of the implementation, section 7
describes related work and section 8 presents the conclusion.

2 Guarded Command Policy Specification Language

Guarded command language [4] is a well founded and structured formulation
widely used for a variety of specification and applications. A guarded command
is of the form G → S where G is a proposition and S is a statement. When
G evaluates to true, S is executed. Guarded command language also contains
conditional and repetitive structures as shown below:

if do
G0 → S0 G0 → S0
G1 → S1 G1 → S1
.
Gn → Sn Gn → Sn

fi od

270 H. Shah and R.K. Shyamasundar

In each case, more than one guard could evaluate to true at a time. In this case,
one of the statements is chosen non-deterministically. Thus, non-determinism is
an intrinsic property of guarded command language. When none of the guards
evaluate to true, execution is aborted.

GCPSL, like guarded command language, is a list of guarded commands.
To ensure determinacy, the guards must be mutually exclusive (i.e., at most
one guard can evaluate to true at a given time). However, to allow for easier
specification of policies, we do not require that the guards be mutually exclusive.
Whenever more than one guard evaluates to true, we execute the instructions
following the first true guard. Here, we assume that the policies are written at the
level of system calls, library routines or APIs i.e., a policy imposes constraints
on how these calls can be used by untrusted code. State variables keep track
of current state of execution of code and are updated upon witnessing relevant
actions (in this case, method calls with actual arguments).

2.1 Syntax of GCPSL

A policy in the language consists of two sections; first part (which is optional)
is used to declare state variables and the second part is a list of guarded com-
mands. The syntax is shown below.

state:
var type1 state var1= initial value1;
...

command:
(method call1(x,y,z)) ∧ (condition1 ∨ condition2) → statement1; . . . ;
(method call2(w)) ∧ (condition3) → terminate;
...

default: skip | terminate;

State variable declaration consists of the keyword “state” followed by a series
of variable declarations. The state variables have to be initialized to some value
so that a unique start state can be determined. Guarded command list consists
of the keyword “command” followed by at least one guarded command and the
“default” action is either skip or terminate. Each guarded command consists of
a guard followed by one or more statements. A guard can be a boolean com-
bination of conditions: it could be an event denoting method call/s (with the
name of the call and a list of arguments) or a comparison of expressions (involv-
ing only constants, state variables and formal arguments to the current method
call). Statements can either update the state variables and allow the action or
terminate the program under supervision or skip updation and allow the aciton.
State variables are updated after the actual method call returns. Statements
can use the return value of the call through the keyword “result”. The “default”
declaration tells what should be done when none of the guards evaluate to true.

On Run-Time Enforcement of Policies 271

Example 1. Consider a policy which states that processes cannot write more
than 80KB (total) into files. This policy could be specified as:
state:

int written=0;
command:

(write(fd, buff, num bytes)) ∧ (written < 80000) ∧
(written + num bytes ≤ 80000) → written= written + result;

!(write(fd, buff, num bytes)) → skip;
default: terminate;

2.2 Semantics of GCPSL

We provide semantics using security automata as defined in [16]. The security
automaton is a 4-tuple 〈Q, Σ, δ, Q〉. The set of states Q is the set of values that
the state variables can take. Suppose that the state variable declaration is as
shown below:
state:

var type 1 s1 = c1;
...
var type n sn = cn;

Let val be a function that takes as input a variable and returns the set of
values (of appropriate type) that it can take. Then the set of states Q can be
defined as:

Q = val(s1) × · · · × val(sn).
The initial state is the set of initial values that are assigned to state variables

(i.e., 〈c1, · · · , cn〉). The alphabet Σ is the set of monitored method call events.
It is defined as:
Σ = {method call(v1, · · · , vn) | method call(x1, · · · , xn) is a method call with

formal arguments x1, · · · , xn and ∀1 ≤ i ≤ n. vi ∈ val(xi)}
We now define the transition function. Consider the command section of a

policy as defined below:
command:

guard1 → statement1
...
guardm → statementm

Let G be a function that evaluates each guard on current state and current
input symbol and returns the index of the first guard that evaluates to true (if
none of the guards evaluates to true, it returns 0). G is defined as:

G: Q × Σ → {0, · · · , m}
Let Fi be the partial function associated with the statement part of guarded

command i. This function captures the way in which statement i updates the
state. We use function G to select appropriate function Fi on a given 〈input
state, symbol〉 pair. We then define the transition function in terms of Fi.
Formally,

∀1 ≤ i ≤ m. Fi : Q × Σ → Q and

272 H. Shah and R.K. Shyamasundar

!write(fd, buff, num_bytes)

write(fd, buff, num_bytes) /\

write(fd, buff, num_bytes) /\

written+num_bytes<=80K

written<=80K

written+num_bytes>80K

written>80K

!write(fd, buff, num_bytes)

Fig. 1. Automaton for example 1

∀q ∈ Q and ∀a ∈ Σ, F0(q, a) = q
(if specification has “default: skip”) and

∀q ∈ Q and ∀a ∈ Σ, F0(q, a) is not defined
(if specification has “default: terminate”)

Thus, ∀q ∈ Q and ∀a ∈ Σ, δ(q, a) = FG(q,a)(q, a).
Figure 1 shows the security automaton (reduced to 2 states) for policy shown

in example 1.

3 A Sample Monitoring Architecture: Monitoring System
Calls Without Program Instrumentation

System calls constitute an important programming aid. They abstract away low
level hardware details from the programmer. All access to underlying hardware
is made through these system calls (which are provided by the operating system
through libraries). Thus, system calls form an important boundary at which we
can monitor program actions.

Monitoring system calls at run-time can be done without modifying un-
trusted code. System calls are made by generating an interrupt (e.g., int 80x
on Linux/i86). This transfers the control to kernel mode. The service for this
interrupt uses a system call table (set by the operating system) that is looked
up (using the value in register eax as index) and control is transferred to code
for the appropriate system call in kernel space. The process is shown in fig. 2.

Since all the necessary information is already maintained by the operating sys-
tem, we only have to intercept system calls inside the kernel and check whether
they should be allowed. To make this decision, the kernel module consults a user
space monitoring module. The user space module allows user to specify policies,
compiles them and then takes a decision based on information provided by the
kernel module (figure 3).

For example, consider a policy that no file in “/bin” can be written into. To
enforce this policy, we write the following specification:

On Run-Time Enforcement of Policies 273

routine

Application

Interrupt
Vector Table

int 0x80
(system call)

kernel space

system call
actual

_system_call_table

user space

return edge

eax

forward control flow

Service

Fig. 2. System call architecture in Linux

Service

Application

Interrupt
Vector Table

int 0x80
(system call)

actual

_system_call_table

eax

OK

Monitoring
code

forward control flow
return edge

kernel space

user space

system call

User space
monitoring

module

error

Allow?
Yes/No

routine

Fig. 3. System call monitoring architecture in Linux

commands:
(open(file name, access mode)) ∧ (file path(file name)==“/bin”) ∧

((access mode==O WRONLY) ∨ (access mode==O RDWR))
→terminate;

default: skip;
The “file path()” function takes a file name and returns the absolute path

of the file. This function is not a system call or a library routine but such
functions can be used to make specification easier. Based on the target platform,
the run-time enforcement mechanism implements the necessary functionality.
The policy can be easily compiled into user space module of the monitor. The
kernel module signals the user space module when relevant system calls are
made (along with state information and arguments). Shown below is a part of
C code (for user space component) compiled from the GCPSL policy shown
above:

274 H. Shah and R.K. Shyamasundar

action = get event();
if ((strcmp(action.call id,"open") &&

(file path(aciton.arg 1,"/bin")) && ((action.arg 2==O WRONLY) ||
(action.arg 2==O RDONLY)))

signal(deny);
else

signal(allow);
The “action” structure contains information about the system call (name,

arguments, etc.) passed by the kernel module (shown by edge labeled “Allow?”
in fig. 3). Whether the system call should be allowed or not is decided by the
code fragment shown above and the reply is sent back to the kernel module via
signal() function (shown by edge labeled “Yes/No” in fig. 3).

In the monitoring architecture, kernel mode provides good insulation to the
in-kernel module that intercepts the system calls. The state variables could also
be maintained inside the kernel (and hence be safe from modification by user
space code). Since GCPSL captures the working of the monitor, it is easily
compiled into the user space module that takes decisions regarding actions. The
monitoring framework does not require major changes in the kernel code or a
reboot when the user policy changes. The drawback of the architecture is that
the decision is taken after execution enters kernel mode and the switch is very
time consuming. Care should be taken to ensure safety of the user space module
from interference by malicious code.

4 Enforcing Constraints on a Set of Processes

The monitoring architecture described in the previous section enforces run-time
constraints (specified in GCPSL) on individual processes. However, there are cer-
tain cases where restrictions have to be imposed collectively on a set of processes.
Here, we provide extension to GCPSL so that specification of such collective con-
straints becomes easy.

Consider a mobile phone game that can have multiple instances running on
the platform. The user interacts with other online players through messages.
However, since messages cannot be sent free of cost, user wants to limit the
number to MAX MESSAGES (some pre-defined constant). Once the limit is
reached, user should be asked each time before sending a message. To handle
such policies, we equip the GCPSL with extra constructs that allow us to handle
a set of processes. We partition the state variables into two sets namely, “global”
and “local”. For the example mentioned above, we could write a policy as follows:

state:
global:

int num msg=0;
local:

int asked=0;

On Run-Time Enforcement of Policies 275

command:
(send message(remote host)) ∧ (num msg<MAX MESSAGES) → num msg++;

(ask user(msg)) ∧ (num msg==MAX MESSAGES) → asked=1;

(send message(remote host)) ∧ (num msg==MAX MESSAGES)

∧(asked==1) → asked=0;

!(send message(remote host))→ skip;

default: terminate;

Thus, GCPSL can be easily adapted to enable a user to specify policies over
multiple processes. It is important to note that global state variables should be
locked before access to ensure that concurrent execution does not corrupt them.
Also, in some cases, like the example mentioned above, the global state of the mon-
itor may have to be persistent. In the example above, if 2 sessions of the game use
up the MAX MESSAGES limit set by the monitor, then any session that may be
invoked later should always have to ask before sending a message. Thus, for ex-
ample, a monthly limit on the number of messages that can be sent without per-
mission can be set. When the month is over, the global state of the monitor has
to be reset again. We do not include this in specification. The local state variables
pertaining to individual game sessions can be created when the process starts and
can be removed when the process terminates. Thus, the extension to the GCPSL
can be easily handled by the system call monitoring architecture described in the
previous section with minor changes to the kernel module.

4.1 Semantics

Let us assume that we are given a policy to enforce on a set of processes
P1, P2, · · · , Pp. Also, each process has its own copy of local state variables (we
tag local variables with the process name).

Suppose that the policy has state variable declaration as:
state:

global:
var type 1 g1 = c1;
...
var type n gn = cn;

local:
var type 1 l1 = c′1;
...
var type n ln′ = c′n′ ;

Then, the set of states is given by
Q = val(g1) × · · · × val(gn) × {val(l1) × · · · × val(ln′)}p.

Initial state is given by 〈c1, · · · , cn, {c′1, · · · , c′n′}p〉.
The alphabet is given by

Σ = {〈Pi, method call(v1, · · · , vk)〉| method call(x1, · · · , xk) is a call
with formal parameters x1, · · · , xk and for 1 ≤ i ≤ k. vi ∈ val(xi)
and Pi is the process which made the call}

276 H. Shah and R.K. Shyamasundar

Consider the command section of a policy as defined below:
command:

guard1 → statement1
...
guardm → statementm

Let G be a function that evaluates each guard on current state and current
input symbol and returns the index of the first guard that evaluates to true (or
returns 0 when none of the guards is true). G is defined as:

G: Q × Σ → {0, . . . , m}

Let Fi be the partial function associated with the statement part of guarded
command i. This function captures the way in which statement i updates the
state. We use function G to select appropriate function Fi on a given 〈input state,
symbol〉 pair. We then define the transition function in terms of Fi. Formally,
∀1 ≤ i ≤ m. Fi : Q × Σ → Q (and F0 is defined the same way as before).

The information about which process performed corresponding action is
needed to update the local state variables pertaining to that process. For up-
dation of global state variables, this information is discarded. The transition
function can therefore be written as:

∀q ∈ Q and ∀a ∈ Σ, δ(q, a) = FG(q,a)(q, a)

5 From Pure Past Temporal Logic to GCPSL

GCPSL policies describe the operation of the run-time monitor in terms of states
and allowed actions. Many policies enforce temporal restrictions on the actions
(e.g., library routines, system calls, etc.) of an untrusted program. These restric-
tions can sometimes be difficult to capture through such a detailed specification
of monitoring mechanism as GCPSL. Temporal logic is better suited for specifi-
cation of such policies. Temporal logic formulae are more convenient when com-
plex policies are composed by conjunction/disjunciton of several simple policies.
A composition of simple policies could lead to a huge number of guarded com-
mands in GCPSL. A separation of concerns can therefore be achieved if users
can specify such complex policies in temporal logic which could then be compiled
into GCPSL (which, as we have seen in section 3, can be easily compiled into
user space component).

Since the monitoring architecture presented in section 3 relies on GCPSL
policies to make run-time decisions (which are compiled into the user space
component of the architecture), we will see how conversion of pure past temporal
logic formulae into GCPSL policies can be done so that they can be incorporated
without any change in the architecture.

As we are concerned with security policies that can be monitored during
execution, we focus our attention on safety properties which stipulate that the
execution never enters a forbidden state. Every past formula is interpreted on
a finite sequence of states σ = s0, · · · , sn (where S is the set of states and

On Run-Time Enforcement of Policies 277

each si ∈ S). The formula is built from a set of atomic propositions AP and
logical and temporal connectives. A labelling function l : S → 2AP tells which
propositions are true in a particular state. The syntax for pure past temporal
logic is as follows:

ϕ : = p | ¬ϕ | ϕ ∨ ϕ | ϕ S ϕ | Yϕ
Here, p ∈ AP is an atomic propostion, S is the “since” operator and Y is the

“yesterday” or the “previous step” operator. Other operators can be expressed
in terms of these as follows:

Oϕ ≡ T S ϕ (O - once in the past)
Hϕ ≡ ¬O¬ϕ (H - always in the past)
Let p ∈ AP be an atomic proposition and σ = s0, s1, . . . , sn (each si ∈ S) be

a finite sequence of states. Let σx denote the prefix sequence s0, s1, . . . , sx of σ.
The satisfaction relation is defined by:

σ |= p iff p ∈ l(sn)
σ |= ¬ϕ iff ¬(σ |= ϕ)
σ |= ϕ ∨ ψ iff (σ |= ϕ) ∨ (σ |= ψ)
σ |= ϕS ψ iff ∃ j, 0 ≤ j ≤ n . σj |= ψ and

∀ i, j < i ≤ n . σi |= ϕ
σ |= Y ϕ iff n > 0 and σn−1 |= ϕ
A sequence σ satisfying a formula is called the model of the formula. All safety

properties expressible in temporal logic can be represented as Hϕ where ϕ is a
past LTL formula [12]. The models of such a safety formula are infinite sequences
of states σ = s0, s1, . . . such that

∀ i ≥ 0. σi |= ϕ

send

!r /\ !s !s!r

r= read

s=

3

r= read

s= send

!r /\ !s

!r

!s

!r /\ !s

!r /\ !s

!s

!s

!r

!r0

1

2

(a) labels in states (b) labels on transitions

Fig. 4. Automaton for H(send → ¬O(read))

In [17], authors present an efficient approach for converting a formula in pure
past temporal logic into a finite state automaton. This paves the way for convert-
ing temporal restrictions on program actions into guarded command statements.
The simple idea is to have an enumerated state variable that can range from 1 to i
if there are i states (q1, · · · , qi) in the automaton. For each state and a transition

278 H. Shah and R.K. Shyamasundar

going out of it, we take conjunction of index of the state and the label on outgo-
ing transition as the guard and update the state variable to the index of the state
reached via the transition. We set the “default: terminate” to indicate a violation.

For example, consider the policy that a message cannot be sent after a file has
been read. Let send and read be the propositions that correspond to send() and
read() method invocations. Then, the policy can be stated in pure past LTL as
H(send → ¬O(read)). The automaton produced for this formula is shown in
fig. 4(a). The same automaton with labels moved to transitions is shown in fig.
4(b). Thus, the state variable would be declared as:
state:

int q=0;
Consider state 0 in the automaton shown in figure 4(b). Since it has 3 outgoing

edges, we add a guarded command for each edge as follows:
(q==0)∧(!send())∧(!read())→ q=1;
(q==0)∧(!read())→ q=2;
(q==0)∧(!send())→ q=3;

Continuing this way, we add guarded commands for each outgoing transition
from each state and use the default condition to signal violation. Note that the
GCPSL policy obtained this way could be longer than what one would write
directly using GCPSL. But, complex policies are easer to specify in pure past
temporal logic and the translation can be made automatic. The most important
aspect of the conversion is mapping of the propositions in the formula to the
actions in the guards. To enforce restrictions on a set of processes, we would
require a larger set of atomic propositions to incorporate information about the
process that performs an action. But guarded command specification can handle
it better (as can be seen from the example stated in the previous section).

6 Implementation

We are working on implementation of the architecture described in section 3
with the extensions to GCPSL. We have built a parser for GCPSL policies and
implemented a prototype version of the in-kernel module that intercepts the
system calls. We are working on implementation of the user space module and
communication between user and kernel space components. We also intend to
enhance flexibility of the tool by incorporating pure past temporal logic formulae
into the tool (by using the translation procedure of the previous section).

7 Related Work

In [19], Uppuluri and Sekar propose a specification language called Behavioural
Monitoring Specification Language (BMSL) to specify constraints on program
behaviour. They also describe how abstraction can be used to specify policies by
grouping system calls into categories. This makes the task of policy specification
easier and the policies portable across platforms. The authors also show how
more involved policies can be obtained by refining generic policies. Policies in

On Run-Time Enforcement of Policies 279

BMSL can be easily translated into guarded commands. Our approach allows
specification of constraints for a set of processes and can even take advantage of
the abstraction mechanisms mentioned in [19]. A similar approach for specifying
software wrappers for commercial off-the-shelf components was presented in [8].
The specification language proposed in [8] also uses abstraction but is much
more complex and often leads to lengthier policies. In addition, the approach
uses databases to store and share information among wrappers.

Substantial amount of research has been done on run-time enforcement of
security policies. In [9], authors provide a theoretical classification of security
policies that can be enforced by different mechanisms (e.g., static analysis, ex-
ecution monitoring and program re-writing). The authors show that the class
of properties that can be monitored at run-time is co-RE (i.e., a policy viola-
tion can be detected in finite amount of time but execution that conforms to
policy goes on forever). In [16], Schneider presents a theoretical study of ex-
ecution monitors (mechanisms that monitor program execution and terminate
the program before it can violate a security policy) and shows that they can
only enforce safety policies. Schneider also presents a security automata model
of an execution monitor (and also shows that the same can be coded in guarded
command language).

Many tools provide system call interception (e.g., [1] and [3]). In [15], author
proposes an interactive policy generation tool for monitoring system calls. The
specification language is very simple and not as expressive as the guarded com-
mand language. A policy in their framework just states whether a particular
system call (with specific arguments) should be allowed. The system allows for
interactive policy generation through training runs. If a particular system call is
not covered by the policy, then the tool asks the user to make a decision (which
can be added to the policy). The tool does not allow specification of policies
that restrict the order in which system calls are made. Also, the tool cannot
constrain the amount of resources used by a process as shown in example 1 in
section 2. Another tool called “syscalltrack”1 allows monitoring of system calls
through a simple specification language. On observing a monitored system call
(with appropriate arguments), it either allows the call (with logging) or returns
an error. Both the tools mentioned above cannot specify policies for a set of
processes.

In [13] different models of monitors were proposed which were more powerful
than execution monitor in that they could suppress or insert program actions
or could truncate execution. It was also shown that edit automata (which can
truncate, suppress and insert actions) could enforce any property on execution
(even if it were not a safety property). A specification language and a run-time
monitoring system called Polymer [2] was also provided for monitoring of Java
programs. In this framework, every policy extends an abstract policy class. One
has to define security relevant actions (method invocations) and then the policy
provides various suggestions (e.g., skip, insert actions, replace action, etc.) when
these actions are performed. Different mechanisms for composing policies are also

1 available at http://syscalltrack.sourceforge.net/index.html

http://syscalltrack.sourceforge.net/index.html

280 H. Shah and R.K. Shyamasundar

provided in [2]. Instead of writing complex policies directly in Java, one could
use GCPSL to specify an edit automaton and then compile it into a Polymer
policy. By including actions in the instruction part of the guarded commands,
one can easily specify an edit automata policy. For example, the specification
can be changed as follows:

(Guard)→ terminate;
OR
(Guard)→ {action}∗;

update state | skip;
Thus, whenever a guard is true, either the execution is terminated or sequence

of actions is performed and is followed by a possible change of state.
In [7], authors propose a model for run-time monitoring (called Shallow History

Automata) that tracks only the execution history and does not remember the order
of events. Although less powerful than security automata, SHA can enforce some
important security policies. In [5], security automata implementation of Software
based Fault Isolation (SFI) was discussed and prototypes for x86 and JVML were
provided in SAL (Security Automata Language). The language is just a text based
representation of security automata with macro definitions in the beginning. The
author also presents PSLang (Policy Specification Language) and PoET (Policy
Enforcement Toolkit) for in-line monitoring of Java code. In this approach, the
untrusted program is instrumented with proper checks so that the modified pro-
gram does not violate security policy. In [6], author presents Naccio framework for
policy enforcement through in-line monitoring. Naccio allows user to specify poli-
cies in a platform independent way by providing abstract system interface (the
interface, however, is not very easy to use).

All specification languages mentioned so far are platform specific (except Nac-
cio). GCPSL can be seen as a simple way for specifying monitoring algorithm
in a platform independent way. Other approaches for run-time monitoring of
Java code have been proposed in [11,10] (these approaches were mainly aimed
at checking program correctness). In [20], a tool for sand-boxing of untrusted
applications is presented.

8 Conclusion

We have described how GCPSL can be used for easy specification of policies.
Through a simple extension, GCPSL can enforce a policy collectively on a set of
processes. Validation of GCPSL policies is achieved through security automata
semantics. The most important objective was to provide a simple specification
language that allows a rich set of policies to be formulated and validated. A
separation of concerns can be achieved by specifying policy in terms of pure
past temporal logic and then automatically producing monitoring instructions
(guarded commands). A robust system call monitoring architecture for enforcing
GCPSL policies was described. GCPSL can be easily modified to incorporate
other models of enforcement like suppression, insertion or edit automata (by
allowing corresponding actions in the statement part of the guarded command).

On Run-Time Enforcement of Policies 281

References

1. Acharya, A., Raje, M.: MAPbox: using parameterized behavior classes to con-
fine untrusted applications. In: SSYM 2000. Proceedings of the 9th conference
on USENIX Security Symposium, Denver, Colorado, p. 1. USENIX Association,
Berkeley, CA, USA (2000)

2. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (2005)

3. Chari, S.N., Cheng, P.-C.: Bluebox: A policy-driven, host-based intrusion detection
system. ACM Trans. Inf. Syst. Secur. 6(2), 173–200 (2003)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

5. Erlingsson, U.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University (2003)

6. Evans, D.: Policy-Directed Code Safety. PhD thesis, Dept. of Electrical Engg. amd
Computer Science, Massachusetts Institute of Technology (February 2000)

7. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceed-
ings, IEEE Symposium on Security and Privacy, 2004, pp. 43–55 (May 2004)

8. Fraser, T., Badger, L., Feldman, M.: Hardening COTS software with generic soft-
ware wrappers. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 1999, pp. 2–16 (1999)

9. Hamlen, K., Morrisett, G., Schneider, F.: Computability classes for enforcement
mechanisms. Technical Report 2003-1908, Department of Computer Science, Cor-
nell University (2003)

10. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. International
Journal on Software Tools for Technology Transfer 6(2), 158–173 (2004)

11. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: a run-time assurance tool
for java. In: 1st International Workshop on Run-time Verification, vol. 55 (2001)

12. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.)
Logics of Programs. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

13. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security 4(5), 2–16
(2005)

14. McGraw, G., Morrisett, G.: Attacking malicous code: a report to the infosec re-
search council. Software, IEEE 17(5), 33–41 (2000)

15. Provos, N.: Improving host security with system call policies. In: SSYM 2003.
Proceedings of the 12th conference on USENIX Security Symposium, Washington,
DC, p. 18. USENIX Association, Berkeley, CA, USA (2003)

16. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

17. Shah, H., Shyamasundar, R.K.: Efficient automata generation for pure past LTL.
Technical report, School of Technology and Computer Science, TIFR (2007)

18. Thomson, K.: Reflections on trusting trust. Communication of the ACM 27(8),
761–763 (1984)

19. Uppuluri, P., Sekar, R.: Experiences with specification-based intrusion detection.
In: RAID 2000. Proceedings of the 4th International Symposium on Recent Ad-
vances in Intrusion Detection, pp. 172–189. Springer, Heidelberg (2001)

20. Wagner, D.: Janus: an approach for confinement of untrusted applications. Tech-
nical Report CSD-99-1056, University of California, Berkeley (1999)

Static vs Dynamic Typing
for Access Control in Pi-Calculus�

Michele Bugliesi, Damiano Macedonio, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari, Venice
{michele,mace,srossi}@dsi.unive.it

Abstract. Traditional static typing systems for the pi-calculus are built around
capability types that control the read/write access rights on channels and describe
the type of the channels’ payload. While static typing has proved adequate for
reasoning on process behavior in typed contexts, dynamic techniques have of-
ten been advocated as more effective for access control in distributed/untyped
contexts.

We study the relationships between the two approaches – static versus dy-
namic – by contrasting two versions of the asynchronous pi-calculus. The former,
aPi, comes with an entirely standard static typing system. The latter, aPi@, com-
bines static and dynamic typing: a static type system associates channels with
flat types that only express read/write capabilities and disregard the payload type,
while a dynamically typed synchronization complements the static type system
to guarantee type soundness.

We show that aPi@ can be encoded into aPi in a fully abstract manner, preserv-
ing the respective behavioral equivalences of the two calculi. Besides yielding an
interesting expressivity result, the encoding also sheds light on the effectiveness
of dynamic typing as a mechanism for access control.

1 Introduction

Static typing systems have long been established as an effective device to control the
interaction among processes in the pi-calculus and related calculi [8,9,13,14]. In these
systems the communication channels are viewed as resources, and their types define
the capabilities needed to use them. Thus, for instance rw〈S ; T 〉 is the type of a channel
where one can output at type T and input at type S (provided that T is a subtype of S).
The nested structure of the types makes it possible to control the way that capabilities
are delivered and made available. To illustrate, a process knowing the name (or channel)
a at the type rw〈r〈S 〉; rw〈S ; S 〉〉 may output on a a full-fledged channel (with payload
type S) and be guaranteed that any (well-typed) process inputing on a will only be
reading on the channel received. This form of type-based control yields powerful tech-
niques to reason on the behavior of processes in typed contexts: in fact, by putting
enough structure on the types of the shared channels, one may gain strong control on
the interaction of a process with any typed context. Unfortunately, these techniques do
not scale well to general, potentially untyped, contexts.

� Work partially supported by M.I.U.R (Italian Ministry of Education, University and Research)
under contract n. 2005015785.

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 282–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Static vs Dynamic Typing for Access Control in Pi-Calculus 283

To address this shortcoming, [2] introduces a variant of the (asynchronous) pi-calculus,
named aPi@, in which the ability to control the use of channels relies on a combination of
static and dynamic typing. The types of channels are still formed around capabilities, but
in aPi@ they only exhibit the “top-level” read/write capabilities, disregarding the types
of the values transmitted. Given this simple type structure, the type system is much less
effective in providing control on the use of channels. To compensate for that, aPi@ in-
cludes a new form of output construct, noted a〈v@B〉, that relies on a type coercion to
enforce the delivery of v at type B. A static typing system guarantees that v may indeed be
assigned the coercion type B, while a mechanism of dynamically typed synchronization
guarantees that v is received only at supertypes of B, so as to guarantee the type soundness
of the exchange.

As argued in [2], the new typing system succeeds in its goal to provide reasoning me-
thods for typed processes in arbitrary contexts. Indeed, [3] shows that the processes of
aPi@ may be implemented as low-level principals of a cryptographic process calculus
based on the applied pi-calculus [1], while preserving their behavioral invariants. The
present paper complements the work in [2,3] by investigating how the combination of
static and dynamic typing in aPi@ impacts on the ability to control the behavior of
processes with respect to traditional systems relying solely on static typing, as in aPi.

In particular, we show that there exists a sub-type preserving encoding of aPi@ into
aPiwhich is fully abstract, i.e., preserves the dynamically typed equivalences of aPi@ in
all aPi contexts. The encoding is interesting in two respects. First, it yields a non-trivial,
and in some respects surprising, expressivity result connecting dynamic to static typing.
Secondly, it establishes a connection between aPi and the fully abstract implementation
developed in [3]. In particular, it allows us to isolate the fragment of aPi for which the
implementation of [3] is fully abstract.

Plan of the paper. Section 2 reviews the two calculi involved in the encoding. Sections
3 and 4 detail the encodings and outline the proof of full abstraction. Section 5 con-
cludes with final remarks. An extended version of the paper, with more details on the
proofs, is available as a technical report [4].

2 Static and Dynamic Typing in the Pi-Calculus

We presuppose two countable sets of names and variables, ranged over by a, b, . . . , n,m
and x, y, . . . , respectively; u, v range collectively over names and variables whenever
the distinction does not matter; ũ, T̃ , Ã denote (possibly empty) tuples of values, and
static and dynamic types, respectively; the notation ṽ@Ã is a shorthand for the tuple
v1@A1, . . . , vn@An; a corresponding convention applies to ṽ : Ã. Syntactically, aPi and
aPi@ differ only in the form of the communication primitives, and in the structure of
the types. The productions are as follows:

aPi − Static Typing
Processes P,Q ::= 0 | P|Q | (νn :S)P | ! P | [u=v]P; Q | u〈ṽ〉 | u(x̃).P

Types S , T ::= � | r〈T̃ 〉 | w〈T̃ 〉 | rw〈S̃ ; T̃ 〉 | X | μX.T

aPi@ − Dynamic Typing
Processes P,Q ::= 0 | P|Q | (νn : A)P | ! P | [u=v]P; Q | u〈ṽ@Ã〉 | u(x̃@B̃).P

Types A, B ::= � | r | w | rw

284 M. Bugliesi, D. Macedonio, and S. Rossi

Table 1. Typing and subtyping rules
Subtyping in aPi (we write S <: T if ∅ � S <: T).

Σ � Ũw <: T̃w <: T̃r

Σ � rw〈T̃r; T̃w〉 <: w〈Ũw〉

Σ � Ũw <: T̃w <: T̃r <: Ũr

Σ � rw〈T̃r; T̃w〉 <: rw〈Ũr; Ũw〉

Σ � T̃w <: T̃r <: Ũr

Σ � rw〈T̃r; T̃w〉 <: r〈Ũr〉

Σ, μX.T1 <: T2 � T1 {μX.T1/X } <: T2

Σ � T1 <: T2

Σ,T1 <: μX.T2 � T1 <: T2 {μX.T2/X }

Σ � T1 <: T2

Typing of communication in aPi and aPi@

(aPi-in)

Γ � u : r〈T̃ 〉 Γ, 〈x̃ : T̃ 〉 � P

Γ � u(x̃).P

(aPi-out)

Γ � u : w〈T̃ 〉 Γ � ṽ : T̃

Γ � u〈ṽ〉

(aPi@-in)

Γ � u : r Γ, 〈x̃ : Ã〉 � P

Γ � u(x̃@Ã).P

(aPi@-out)

Γ � u : w Γ � ṽ : B̃

Γ � u〈ṽ@B̃〉

aPi is a standard version of the asynchronous pi-calculus with matching, denoted by the
construct [u = v]P; Q, and recursive capability types á la [8,9]1. We use the shorthand
rw〈T̃ 〉 to mean rw〈T̃ ; T̃〉. aPi@ replaces the input and output forms from aPi with new
constructs that make explicit the types at which values should be exchanged. As antici-
pated, the types are reduced to the simplest structure that only exhibits the capabilities
for reading and writing.

Typing and Subtyping. In both calculi, the subtype relations <: are partially complete
pre-orders with a meet operator � and top type �. In aPi the subtype relation is defined
as in [8,9], with the standard extensions needed to handle the presence of recursive
types, cf. Table 1. In aPi@ subtyping is generated by the axioms rw <: {r,w} <: �. Type
environments, ranged over by Γ, Γ′ . . ., are finite mappings from names and variables to
types. We write Γ � P to mean that P is well typed in Γ. The type environmentΓ, 〈u : T 〉
is Γ, u : T if u � dom(Γ); otherwise it is the type environment Γ′ such that Γ′(v) = Γ(v)
for v � u and Γ′(u) = Γ(u) � T if Γ(u) � T is defined. Subtyping is extended to type
environments as expected: Γ <: Γ′ whenever dom(Γ) = dom(Γ′) and for all v ∈ dom(Γ)
it holds Γ(v) <: Γ′(v).

Operational Semantics. The dynamics of aPi is expressed by the usual labeled tran-
sition system of the asynchronous pi-calculus. On the other hand, in order to express
the dynamics for aPi@, the input/output labels of pi-calculus are extended with a type
capability in order to force the synchronization at the desired type. In Table 2 we report
the rules for synchronization: the remaining rules are standard, and common to the

1 In fact, in [8,9] the types are not recursive; however, as far as we see, the generalization is
harmless for the results relevant to our present endeavor.

Static vs Dynamic Typing for Access Control in Pi-Calculus 285

Table 2. Labeled Transitions
(aPi-in)

a(x̃).P
a(ṽ)
−−→ P {ṽ/x̃ }

(aPi-out)

a〈ṽ〉
a〈ṽ〉
−−→ 0

(aPi-open)

P
(c̃:T̃)a〈ṽ〉
−−−−−−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb :S)P
(b:S ·c̃:T̃)a〈ṽ〉
−−−−−−−−−→ P′

(aPi-comm)

P
(c̃:T̃)a〈ṽ〉
−−−−−−→ P′ Q

a(ṽ)
−−→ Q′ c̃ ∩ fn(Q) = ∅

P |Q
τ
−−→ (νc̃ : T̃)(P′ |Q′)

(aPi@-in)

a(x̃@Ã).P
a(ṽ@Ã)
−−−−−→ P {ṽ/x̃ }

(aPi@-out)

a〈ṽ@Ã〉
a〈ṽ@Ã〉
−−−−−→ 0

(aPi@-open)

P
(c̃:C̃)a〈Ã@ṽ〉
−−−−−−−−−→ P′ b ∈ {ṽ} \ {a, c̃}

(νb : B)P
(b:B·c̃:C̃)a〈ṽ@Ã〉
−−−−−−−−−−−−→ P′

(aPi@-comm)

P
(c̃:C̃)a〈ṽ@Ã〉
−−−−−−−−−→ P′ Q

a(ṽ@B̃)
−−−−−→ Q′ Ã <: B̃ c̃ ∩ fn(Q) = ∅

P |Q
τ
−−→ (νc̃ :C̃)(P′ |Q′)

two calculi, we omit them for the lack of space. Notice how in aPi@ the labels carry
extra information about the types at which names are exchanged. More interestingly,
however, these rules show the fundamentally different nature of the interaction between
processes: in aPi the receiver acquires the names emitted at the read type of the transmis-
sion channel, while in aPi@ the type B̃ is decided by the sender. In addition, processes
of both calculi may synchronize with a τ transition when exhibiting complementary la-
bels that, in the case of aPi@, are required to agree on the type of the values exchanged,
as in a(ṽ@Ã) and a〈ṽ@Ã〉.

The notion of observational equivalence is based on the usual notion of reduction
barbed congruence and is mediated by the type capabilities that the contexts possess on
the names shared with the processes. It relies on the notion of configuration: a configu-
ration is a pair of the form I � P, where I represents what contexts know of the names
shared with P: remarkably, P may know those names at more precise types than I, as
I � P is a well-defined configuration only if there exists Γ <: I such that Γ � P.

Definition 1 (Type-indexed Relation). A type-indexed relation R is a family of binary
relations between processes indexed by type environments. We write I |= P R Q to mean
(i) that P and Q are related by R and (ii) that I � P and I � Q are configurations.

Definition 2 (Contextuality). A type-indexed relation R is contextual when:

1. I, a : A |= P R Q implies I |= (νa : A)P R (νa : A)Q
2. I |= P R Q implies I, a : A |= P R Q for a � dom(I)

286 M. Bugliesi, D. Macedonio, and S. Rossi

3. I |= P R Q and I � R imply I |= P |R R Q |R

The definition of barbs is based on the actual capability of the context I to see barbs.
The notation Ir(a) ↓ indicates that I (hence the context) has a read capability on the
name a, i.e., I(a) <: r, only in that case the output action performed by the process
is observable by the context. Moreover we denote by =⇒ the reflexive and transitive

closure of
τ
−−→ .

Definition 3 (Barbs). Given a configuration I � P, we say that

1. I � P↓a if and only if Ir(a) ↓ and P
(c̃:C̃)a〈ṽ@Ã〉
−−−−−−−−−−→ .

2. I � P⇓a if and only if P =⇒ P′ and I � P′ ↓a.

The definition above is given for aPi@; the corresponding definition for aPi is just as
expected.

Definition 4 (Typed Behavioral Congruence). Typed behavioral congruence is the
largest symmetric, contextual and type-indexed relation R such that I |= P R Q implies

1. if I |= P↓a then I |= Q⇓a

2. if Q
τ−→ Q then there exists Q′ such that Q =⇒ Q′ and I |= P′ R Q′.

The typed behavioral congruence is denoted as ≈ in aPi and as ≈@ in aPi@.

3 A Correct Encoding

We define our encoding in terms of two related, but independent mappings, for type en-
vironments and processes, respectively. The encoding of processes maps typing judge-
ments in aPi@ to processes of aPi: indeed, in our first formulation of the encoding,
we define it directly by induction on the structure of processes, as the syntax of aPi@
contains enough information to guide the generation of target code. In the final formu-
lation, however, it is technically more convenient to refer to typing judgements to ease
the definition. The encoding of type environments, in turn, maps the capabilities (types)
of the observing aPi@ contexts into the corresponding capabilities of aPi contexts. This
allows us to establish our full abstraction theorem in terms of the type-indexed relations
of behavioral congruences in the two calculi.

In this and the next sections we give the encoding for the monadic fragment ofaPi@. In
Section 5, we briefly discuss how the approach can be generalized to thepolyadic calculus.

First attempt. We start with a relatively simple approach, which almost work, but
not quite. The idea is to represent each name n in aPi@ as a 4-tuple of names n =
(nrw, nr, nw, n�), where each component of the tuple corresponds to one of the four types
at which a synchronization may take place on n. Thus, an aPi@ synchronization on n
at, say, the type w, will correspond in aPi to a synchronization on nw. Clearly, this idea
must be applied systematically, hence exchanging a name in aPi@ will correspond to
exchanging a tuple in aPi. Thus the output u〈v@A〉 is translated into the output uA〈v〉
that emits the 4-tuple of names that represent v. The input prefix requires a little more

Static vs Dynamic Typing for Access Control in Pi-Calculus 287

Table 3. Encoding functions (with Q = u(x̃).P)

Readl 〈Q〉 def
= u(x̃).Testl 〈Q〉

Testl 〈Q〉 def
= l(z).[z=t]Commitl 〈Q〉 ⊕ Undol 〈Q〉 ; Abortl 〈Q〉 z fresh

Undol 〈Q〉 def
= l〈t〉 |u〈x̃〉

Commitl 〈Q〉 def
= l〈f〉 |P

Abortl 〈Q〉 def
= l〈f〉 |u〈x̃〉

R1 ⊕ R2
def
= (νi : rw〈 〉)(i〈 〉 | i().R1 | i().R2) i fresh

care, as in aPi@ the process u(x@A).P may synchronize with any output on u at a
type B <: A. In fact, given the translation of the output construct we just outlined, it is
easily seen that the behavior of the input form u(x@A).P corresponds precisely to the
input guarded choice2 ΣB<:AuB(x).P. Combining these intuitions with the encoding of
guarded choice from [11] yields the following definition.

〈| u〈v@A〉 |〉 def
= uA〈v〉

〈| u(x@A).P |〉 def
= (νl : rw〈�〉)

(
l〈t〉 |
∏

B<:A !Readl

〈
uB(x).〈| P |〉

〉)

〈| (ν n)P |〉 def
= (ν n)〈| P |〉

〈| [u=v]P; Q |〉 def
= [u�=v�]〈| P |〉; 〈|Q |〉

Just as in [11], the encoding of input runs a mutual exclusion protocol, installing a
local lock on a parallel composition of its branches. The protocol is implemented by
the processes in Table 3, which we inherit, essentially unchanged, from [11] (as in that
case, ⊕ denotes internal choice).The branches Readl 〈−〉 concurrently try to test the lock
after reading messages from the environment. Every branch can ‘black out’ and return
to its initial state after it has taken the lock, just by resending the message. Just one
branch will proceed with its continuation and thereby commit the input. Every other
branch will then be forced to resend its message and abort its continuation.

Unfortunately, the re-sending of messages is problematic for type preservation. To
see why, notice that a aPi@ process may have just the read capability on a channel in
order to perform an input, while its encoding must also be granted a write capability
in order to run the mutual exclusion protocol. The typing failure would not arise if we
dropped the type r, and worked with just three types: indeed, for this fragment of aPi@
the encoding we just illustrated may be shown to be type-preserving and fully abstract.
In the general case, we need to move the responsibility of running the mutual exclusion
protocol from the (encoding of the) input process to some other process possessing the
required capabilities. We discuss how that can be accomplished below.

Fixing the typing problem. The solution is inspired by [3] and based on represent-
ing channels as processes that serve the input and output requests by a client willing
to synchronize: given a name n, we write Chan(n) for the server associated with n.

2 For uniformity with the notation adopted for names, we write x to note a quadruple of variables
used to store name representations.

288 M. Bugliesi, D. Macedonio, and S. Rossi

Table 4. A correct encoding of processes

Channel Servers

Chan(n) def
=
∏

A∈{rw,r,w,�} !nr@A(h).Choose(n, A, h)
Choose(n, A, h) def

= (νl : rw〈�〉)
(

l〈t〉 |
∏

B<:A !Readl

〈
nw@B(z).h〈z〉

〉)

Clients
{| 0 |} def
= 0

{|u〈v@A〉 |} def
= uw@A〈v〉

{|u(x@A).P |} def
= (νh : rw〈TA〉)

(
ur@A〈h〉 |h(x).{|P |}

)
where the name h is fresh

{|P |Q |} def
= {|P |} | {|Q |}

{| (νa : A)P |} def
= (νa :S) ({|P |} |Chan(a))

{| [u=v]P; Q |} def
= [ur@r=vr@r]{|P |}; {|Q |}

{| !P |} def
= ! {| P |}

Complete Systems

{|P|}I def
= {|P |} |

∏
a∈dom(I)Chan(a)

Each exchange on n in the source calculus corresponds to running two separate pro-
tocols. For input, a client willing to input on n at type, say A, sends a read request
(in the form of a private name) on the name nr@A. In the write protocol, a process
willing to output on n and type B <: A sends its output on nw@B. Collectively, each
name n from aPi@ is thus translated into the 8-tuple n = (nR, nW), where the com-
ponents nR = nr@rw, nr@r, nr@w, nr@� are the names employed in the input protocol
to communicate the input requests at the corresponding types, while the components
nW = nw@rw, nw@r, nw@w, nw@� serve the same purpose for the output protocol. Thus,
for instance, the output n〈v@rw〉 corresponds to the output nw@rw〈v〉 and synchronizes
only with nw@rw(x). The input n(x@rw).P, in turn, sends a request nr@rw〈l〉, where l is a
private channel on which the client waits for Chan(n) to reply back a (tuple of) value(s).
The server Chan(n) is granted read and write access to all the names nW and nR, so that
it may safely run the mutual exclusion protocol that mimics the synchronizations in the
source calculus. Indeed, Chan(n) is the only process with read capabilities on nW and
nR while clients will, at their best, have write capabilities on these names: as a result,
no client may interfere with the protocols that other clients run with the channel server.

The definitions in Table 4 formalize these intuitions: each aPi@ process corresponds,
via the encoding, to a set of clients of the protocols described above: the relevant clauses
are those for the input and output forms, while the remaining cases are defined homo-
morphically. Two remarks are in order, however. For the case of matching, it is enough
to compare just one of the components of the tuple representing the source-level names,
as long as the components are chosen consistently. For the case of restriction, notice that
creating a new name corresponds to allocating a channel server associated to the name,
so that the translated processes may synchronize via the name created, using the server.
In fact, to mimic all the synchronizations of the source processes, we must allocate
channels for all the free names that occur in the source process and that the source
process may share with the environment. That is accomplished by the final clause in the
definition of the encoding.

Static vs Dynamic Typing for Access Control in Pi-Calculus 289

Table 5. Encoding of types

Client types

Trw
def
= (R,W) Tr

def
= (R,�) Tw

def
= (�,W) T�

def
= (�,�)

R
def
= (Tr@rw,Tr@r,Tr@rw,Tr@�) W

def
= (Tw@rw,Tw@r,Tw@rw,Tw@�)

Tr@rw
def
= w〈w〈R,W〉〉 Tw@rw

def
= w〈R,W〉

Tr@r
def
= w〈w〈R,�〉〉 Tw@r

def
= w〈R,�〉

Tr@w
def
= w〈w〈�,W〉〉 Tw@w

def
= w〈�,W〉

Tr@�
def
= w〈w〈�,�〉〉 Tw@�

def
= w〈�,�〉

Server types
S

def
= (RS,WS)

RS
def
= (Sr@rw,Sr@r,Sr@w, Sr@�) WS

def
= (Sw@rw,Sw@r,Sw@w,Sw@�)

Sr@rw
def
= rw〈w〈R,W〉〉 Sw@rw

def
= rw〈R,W〉

Sr@r
def
= rw〈w〈R,�〉〉 Sw@r

def
= rw〈R,�〉

Sr@w
def
= rw〈w〈�,W〉〉 Sw@w

def
= rw〈�,W〉

Sr@�
def
= rw〈w〈�,�〉〉 Sw@�

def
= rw〈�,�〉

Type Environments

{| ∅ |} def
= t : �, f : � {|Γ, v : A |} def

= {|Γ |}, (v) : TA

The new version of the encoding solves the typing problem of our initial attempt.
Table 5, details the encoding of types. Typewise, a read capability on n in aPi@ corre-
sponds in aPi to a write capability on all the names in nR, while a write capability on
n corresponds to a write capability on the names nW. With each type A in aPi@ we as-
sociate a corresponding tuple of types TA, as in Trw = (R,W) or Tw = (�,W) where R
andW are the client types associated to the names employed in the read/write protocols
(according to the convention that nr@A : Tr@A and nw@A : Tw@A) and � is the represen-
tation of the top type in aPi@. Notice that clients are only granted write capabilities on
the channels involved in the protocols, while the channel servers know the same names
at the lower types RS andWS which grant them full access to those names.

Based on these definition, we may now prove that the encoding preserves the ex-
pected properties about typing:

Theorem 1 (Typing and subtyping preservation). For all types A, B in aPi@, A <: B
implies TA <: TB in aPi. Furthermore, whenever Γ � P in aPi@, then there exists
Γ′ <: {|Γ |} such thatΓ′ � {|P|}Γ in aPi.

Also, we can show that the encoding is sound, in the sense made precise below.

Theorem 2 (Soundness). Let Γ <: I and Γ′ <: I be two type environments such that
Γ � P and Γ′ � Q in aPi@. Then {| I |} |= {|P|}Γ ≈ {|Q|}Γ′ implies I |= P ≈@ Q.

The converse direction of Theorem 2 does not hold. The problem is that the properties
of the communication protocols are based on certain invariants that are verified by the
names and the channel servers allocated by the encoding, but may fail for the names cre-
ated dynamically by the context. Below, we show that this failure breaks full abstraction
(i.e., the converse of Theorem 2).

290 M. Bugliesi, D. Macedonio, and S. Rossi

Failure of full abstraction. Take the following two aPi@ processes

P def
= a(x@rw).x(y@rw).x〈y@rw〉

Q def
= a(x@rw).0

As shown in [2], one has I |= n(y@rw).n〈y@rw〉 ≈@ 0 for all I such that n:rw ∈
I. From this, one easily derives a : w |= P ≈@ Q. Now take the encoding of the
two processes (we omit the type for readability, as they are irrelevant to the present
purposes):

{| P |} = (νh)(ar@rw〈h〉 |h(x).(νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉))
{|Q |} = (νh)(ar@rw〈h〉 |h(x).0)

We show that the equivalence we just established for P and Q does not carry over
to their encodings. In particular, let I = a : w, so that {| I |} = a : Tw, and assume
a : Tw |= {| P |}I ≈ {|Q |}I. Let also S be the server type defined in Table 5. Then, by
contextuality, one would have:

a : Tw, b : S |= {| P |}I |aw@rw〈b〉 ≈ {|Q |}I |aw@rw〈b〉

On the other hand, this equivalence is easily disproved. In fact, on the one hand we
have:

{| P |}I |aw@rw〈b〉 =⇒≈ (νk)(br@rw〈k〉 |k(y).bw@rw〈y〉)

with
a : Tw, b : S � (νk)(br@rw〈k〉 |k(y).bw@rw〈y〉)↓br@rw .

This is because b : S implies that br@rw : rw〈w〈Trw〉〉, hence the context has visibility of
the output action by the process. On the other hand, clearly,

a : Tw, b : S � {|Q |}I |aw@rw〈b〉 �⇓br@rw

as Q never attempts to output on b, and correspondingly its encoding makes no requests
on any of the components in b. Thus, it follows that a : Tw �|= {| P |}I ≈ {|Q |}I as we
anticipated.

4 A Fully Abstract Encoding

To recover full abstraction, we need to protect the clients generated by the encoding
from direct interactions on context-generated names such as the one illustrated above.
To accomplish that, we adopt a solution inspired by [3], which relies on a proxy service
to filter the interactions between channel servers, clients and the context. The proxy
introduces a separation between client names, used by the context and the translated
processes to communicate, and the corresponding proxy names, generated within the
system and associated with system generated channels which are employed in the actual
protocols for communication.

The proxy server is a process, noted Proxy, that maintains an association map be-
tween client and server names in order to preserve the expected interactions among

Static vs Dynamic Typing for Access Control in Pi-Calculus 291

Table 6. Fully Abstract Encoding of aPi@ into aPi

Proxy

Proxy def
= (νt :TBL[�,S]) (Server(t) | TABLE(t, []))

Server(t) def
=
∏

A ! pA(h, z).(νr : rw〈�,S〉)
(
LOOKUP(z, t, r) |r(x, y)[x=t]h〈y〉; (h〈y〉 |Chan(y))

)

Clients

([0])Γ
def
= 0

([u〈v@A〉])Γ def
= LinkΓ (u, x) in xw@A〈v〉

([u(y@A).P])Γ
def
= LinkΓ (u, x) in (νh : rw〈TA〉)

(
xr@A〈h〉 |h(y).([P])Γ,y:A

)
with h fresh

([P |Q])Γ
def
= ([P])Γ | ([Q])Γ

([(νa : A)P])Γ
def
= (νa :TA)([P])Γ,a:A

([[u=v]P; Q])Γ
def
= [ur@r=vr@r]([P])Γ,〈u:Γ(u)〉,〈v:Γ(v)〉; ([Q])Γ

([! P])Γ
def
= ! ([P])Γ

Complete Systems

([P])∗Γ
def
= ([P])Γ | Proxy

clients. The read and write protocols follow the same rationale as in the previous en-
coding, with the difference that in the new version of the encoding a client must obtain
the access to the system channel with a request to Proxy before being able to start the
input/output protocols. The interaction between clients and Proxy is now as follows:
the client presents a name to the proxy, and the proxy replies with the corresponding
server name. When Proxy receives a client name for the first time, it maps it to a fresh
name, and allocates a channel server for the new proxy name.

The definition of the proxy server is reported in Table 6. Server is a process al-
ways ready to serve client requests along the four channels pA, one for each A ∈
{rw, r,w,�}. These channels are known to the clients and to the context at the type
pA : w〈w〈TA〉,TA〉, while the Server is granted full access rights on them. After re-
ceiving an input on pA, the Server starts a search on the association table and replies
with the requested system name. If the client name was not known to the proxy, a fresh
proxy name is created, the association table extended with the new pair, and a channel
server for the newly created proxy name allocated. We omit most of the largely obvious
details of the implementation of the association table, and describe it in terms of the
following macros.

– TABLE(t,T) is a process parameterized over a structure T representing the table,
and t : TBL[�, S] is the reference to the table, i.e., a name providing access to the
table’s entries. We organize T as a list of pairs that map channel names to server
names: we write (n, k) ∈ T when n is associated to the tuple k, and n ∈ dom(T) to
say that there exists k with (n, k) ∈ T . Initially, the list T is empty (cf. Table 6).

– LOOKUP(n, t, r) is a process employed by the proxy to access the table referenced to
by t : TBL[�, S]. Here, n : � is the (client) name to be looked up in the table, and
r : w〈�, S〉 is the reply channel where to report back the result of the search. The
result, in turn, comes as a pair that comprises the proxy names associated with the
client name together with a boolean flag that says whether a new entry was created

292 M. Bugliesi, D. Macedonio, and S. Rossi

in the table as a result of the search. Thus, LOOKUP(n, t, r) replies on r the pair (x, k)
where k is the tuple associated with n, and x is t iff k was created freshly for n. This
information is used by the remaining component of the proxy to allocate a new
channel server for newly created proxy names, and to forward the proxy names to
the requesting clients.

Operationally, we define the behavior of the macro processes by means of the following
two ad-hoc internal reductions:

(Table-Lookup-Found)
(n, k) ∈ T

LOOKUP(n, t, r) | TABLE(t,T)
τ
−−→ r〈t, k〉 | TABLE(t,T)

(Table-Lookup-NotFound)
n � dom(T), k fresh in T

LOOKUP(n, t, r) | TABLE(t,T)
τ
−−→ (νk :S)

(
r〈f, k〉 | TABLE(t, [(n, k) :: T])

)

On the client side, the interaction with the proxy server requires a new initializa-
tion step to link the name available to the client with the corresponding proxy name
associated with it. This init step is accomplished as follows:

LinkΓ (u, x) in P def
= (νh : rw〈TA〉)(pA〈h, ur@r〉 |h(x).P) with A = Γ(u)

To link the client name u (in fact, the component names in u) with a corresponding
proxy name, the client selects the first component in u on the proxy channel dedicated
to serve the link requests, and waits for the proxy to reply on the channel h. Notice
that the definition of the link process is parameterized on the context Γ, which helps
recover the type that then guides the selection of the appropriate channel pA used in the
interaction with the proxy. To make this parametrization meaningful, the new encoding
is given by induction on typing judgements. The other important difference with respect
to the original definition in Table 4 is that the case of restriction is now defined purely
homomorphically, as the allocation of the channel server is delegated to the proxy. For
the same reason, the encoding of complete system does not need to allocate any channel
for the free names shared with the context. It does, instead, require the presence of the
proxy server to filter the synchronizations between clients.

Typewise, there are only few differences with respect to the original definitions
in Table 5. Indeed, the exact same types work with the new translation of clients,
while a two remarks are in order for the types employed in the definition of the proxy.
First, the channels pA are made available to the clients (and the context) at the types
w〈w〈TA〉,TA〉, with A ∈ {rw, r,w,�}, that only grant write access. Correspondingly, we
have a new encoding of type environments:

([Γ]) def
= {|Γ |} ∪ {pA : w〈w〈TA〉,TA〉}A∈{rw,r,w,�}

with {|Γ |} as in Table 5. Lower types, preciselythe types rw〈w〈TA〉,TA〉, are instead
available for type checking the proxy definition.

Static vs Dynamic Typing for Access Control in Pi-Calculus 293

As for the type TBL[�, S] employed in the definition of the TABLE macro, � and S
are the types of the entries in the table, while we assume the following ad-hoc typing
rules for the LOOKUP and TABLEmacro processes:

(T-Lookup)
Γ � t : TBL[�, S], n : �, r : rw〈�, S〉

Γ � LOOKUP(n, t, r)

(T-Table)
Γ � t : TBL[�, S], n1 : �, k1 : S, . . . nl : �, kl : S

Γ � TABLE(t, [(n1, k1) :: · · · (nl, kl)])

Based on these definitions, we can show that the encoding has the desired properties of
type and subtype preservation.

Theorem 3 (Typing and subtyping preservation). For all types A, B in aPi@, A <: B
implies TA <: TB in aPi. Furthermore, whenever Γ � P in aPi@, then there exists
Γ′ <: ([Γ]) such thatΓ′ � ([P])∗Γ in aPi.

Furthermore, the presence of the proxy now makes the encoding fully abstract.

Theorem 4 (Full Abstraction). Let Γ <: I and Γ′ <: I be two type environments such
that Γ � P and Γ′ � Q. Then I |= P ≈@ Q if and only if ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Below we outline the full abstraction proof. Before doing that, it is instructive to look
at how the new encoding solves the problem with the example discussed in Section 3.
In that case, the encodings of the two processes

P def
= a(x@rw).x(y@rw).x〈y@rw〉

Q def
= a(x@rw).0

are distinguished by any context that sends a fresh name on a and retains full access to
the components of that name, because any such context may observe the read request
made by the encoding of P.

The presence of the proxy solves the problem as now the encoding of P makes its
request not on the name received by the context, but rather on the proxy name that is
associated with the context name. Thus, if b is the name send over the channel a, we
have:

([P])Γ |aw@rw〈b〉 =⇒≈ LinkΓ (b, x) in (νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉)

where now

a : Tw, b : S � LinkΓ (b, x) in (νk)(xr@rw〈k〉 |k(y).xw@rw〈y〉) �⇓br@rw

as the context has no read access on the components of the proxy name x associated
with b.

Proof of Theorem 4 (outline). The proof is difficult and rather elaborate, especially
in the “if” direction (soundness), which as usual requires the following properties of
operational correspondence:

– If P =⇒ P′ then ([P])∗Γ =⇒ K with ([I]) |= K ≈ ([P′])∗Γ.
– If ([P])∗Γ =⇒ K then there exists P′ such that P =⇒ P′ and ([I]) |= K ≈ ([P′])∗Γ.

294 M. Bugliesi, D. Macedonio, and S. Rossi

The “reflection” direction, stated by the second item above, is subtle, because our en-
coding is not “prompt” [11]. Note, in fact, that it takes several steps for the encoding
of a process to be ready for the commit action that corresponds to the aPi@ synchro-
nization on the channel. As it turns out, however, these steps are not observable and
can be factored out in the proof by resorting to a suitable notion of (term-indexed) ad-
ministrative equivalence, noted ≈A and included in ≈. The definition of ≈A draws on a
classification for the reductions of the translated processes into commitment steps, cor-
responding to synchronizations in the aPi@ processes, and administrative reductions,
corresponding to the steps that precede and follow the commitment steps. Then two
processes are equated by ≈A only if they are behaviorally equivalent and, in addition,
they can simulate each other’s commitment transitions in a ‘strong’ way. The relation
≈A can be used to prove the following variant of operational correspondence:

Lemma 1 (Operational Correspondence). Let I � P be a configuration in aPi@ and
Γ <: I such that Γ � P. Then:

1. If P
τ−→ P′ then ([P])∗Γ =⇒ H with ([I]) |= H ≈A ([P′])∗Γ.

2. If ([I]) |= H ≈A ([P])∗Γ and H
τ−→ K, then either ([I]) |= H ≈A K or there exists P′

such that P
τ−→ P′ and ([I]) |= K ≈A ([P′])∗Γ.

Proof. (Sketch). The first item (i.e., the “preservation” direction) follows routinely. For
the second item, the first case occurs when the move from H is an administrative step,
while the second corresponds to the case when H is finally prompt to commit on a
synchronization reduction that reflects a source-level synchronization. ��

The proof of soundness requires a further preliminary lemma:

Lemma 2 (Barb Correspondence). Let I � P a configuration in aPi@ and Γ <: I
such that Γ � P. Then there exists I′, h ∈ dom(I′) and C[·] such that

1. If I � P↓a then ([I]),I′ � C[([P])∗Γ]⇓h

2. If ([I]),I′ � C[([P])∗Γ]⇓h then I � P↓a.

Proof. Choose I′ = h : rw〈T�〉 and C[−] = LinkΓ (a, x) in xr@A〈h〉 | − ��

Relying on Lemmas 1 and 2, we have:

Theorem 5 (Soundness). Let Γ <: I and Γ′ <: I be such that Γ � P and Γ′ � Q. Then
([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ implies I |= P ≈@ Q.

Proof. Let R be the type indexed relation defined as follows: I |= P R Q whenever
([I]) |= ([P])∗Γ ≈@ ([Q])∗Γ′ . Show that R is barb preserving, reduction closed and con-
textual. ��
In the “only if” direction (completeness), the proof follows, more directly, by coinduc-
tion. However, the definition of the candidate relation requires some care, as we need to
keep track of the states reached by Proxy as a result of the interactions with its clients.
We note ET [−] a context representing that state, for an arbitrary list T , and define:

ET [−] def
= − |

∏

(n,k) ∈T
Chan(k) | (νt :TBL[�, S]) (Server(t) | TABLE(t,T)).

Thus ET [([P])Γ] = ([P])∗Γ at the initial state when T = []. Then we have:

Static vs Dynamic Typing for Access Control in Pi-Calculus 295

Theorem 6 (Completeness). Let Γ <: I and Γ′ <: I be two type environments such
that Γ � P and Γ′ � Q. Then I |= P ≈@ Q implies ([I]) |= ([P])∗Γ ≈ ([Q])∗Γ′ .

Proof. (Sketch). Let R be the type indexed relation such that

([I]), a1 : T1, . . . an : Tn |= C[ET [([P])Γ]] R C[ET [([Q])Γ′]]

whenever (i) I |= P ≈@ Q, (ii) Γ <: I and Γ � P, (iii) Γ′ <: I and Γ′ � Q (iv)
ai � dom(([I])), and (v) C[−] is an evaluation context that binds the k in T and such
that ([I]), a1 : T1, . . . an : Tn � C[−]. The proof follows by showing that R satisfies the
properties of the administrative equivalence. The most difficult part is the proof thatR is
reduction closed, as the processes reached by C[ET [([P])Γ]] after an arbitrary number
of reductions will, in general, have the form C′[ET ′ [K]] with K a derivative of ([P′])Γ,
for some P′, rather than ([P′])Γ as required by R. We rely on an up-to technique to
factor out the administrative steps required to close the relation on two terms with the
required format. ��

5 Conclusions

We have given a fully abstract encoding of aPi@ into aPi. In its present form, the en-
coding only applies to the monadic fragment of aPi@, and requires the presence of
recursive types in aPi. In fact, the same technique would work for the polyadic calcu-
lus, as long as we can count on a finite bound on the maximal arity. In that case, every
aPi@ channel may be associated to different tuples of names, one for each possible
arity. Similarly, we could do without recursive types in aPi, as in the original formula-
tion of [8,9] by assuming a finite bound on the number of cascading re-transmission via
other names. In fact, the dynamic types of aPi@ allow any channel to communicate its
own name: in the general case, this requires (or at least it appears to require) types with
arbitrarily deep nesting, viz, recursive types.

The encoding is interesting as it shows how the dynamically typed synchronization
of aPi@ may be simulated by a combination of untyped synchronizations on suitably
designed channels, and it allows us to identify precisely the subclass of the static types
of aPi that correspond to the dynamic types of aPi@. On the one hand, the recursive
structure of the static types that emerges from the encoding shows that the dynamic
types of aPi@ offer limited access control mechanisms, as they only provide ways to
control the use of the top-level capabilities associated with names. On the other hand,
it is precisely because of its limited expressive power, that the dynamic typing system
may be used effectively in arbitrary, untyped contexts, as shown by their secure imple-
mentation described in [3].

Types and advanced techniques for behavioral observation have been used extensively
in the analysis of distributed computations and open systems. Types have been employed
to describe resources and their usage [5,6,7,10,12] and typed equational theories have
been studied to characterize the observational properties of processes [2,8,9,14]. In par-
ticular, the type systems introduced in [5,6], for Ambient calculus, and in [7], for KLAIM
calculus, guarantee the delivery of resources at the expected type by resorting to type co-
ercion on outputs. As in aPi@, the soundness of these systems is given by a combination

296 M. Bugliesi, D. Macedonio, and S. Rossi

of static and dynamic typing. Future work may include extending our present results to
other calculi such as Ambients and KLAIM.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL,
pp. 104–115. ACM Press, New York (2001)

2. Bugliesi, M., Giunti, M.: Typed processes in untyped contexts. In: De Nicola, R., Sangiorgi,
D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 19–32. Springer, Heidelberg (2005)

3. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions. In: POPL,
pp. 251–262. ACM Press, New York (2007)

4. Bugliesi, M., Macedonio, D., Rossi, S.: Static vs dynamic typing for access control in
pi-calculus (extended version). Technical Report CS-2007-5, Dipartimento di informatica,
Università Ca’ Foscari di Venezia (2007), Also available at: http://www.dsi.unive.it/
∼mace/ASIAN07.pdf

5. Coppo, M., Cozzi, F., Dezani-Ciancaglini, M., Giovannetti, E., Pugliese, R.: A mobility cal-
culus with local and dependent types. In: Middeldorp, A., van Oostrom, V., van Raamsdonk,
F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS,
vol. 3838, Springer, Heidelberg (2005)

6. Coppo, M., Dezani-Ciancaglini, M., Giovannetti, E., Pugliese, R.: Dynamic and local typing
for mobile ambients. In: IFIP TCS, pp. 577–590. Kluwer Academic Publishers, Dordrecht
(2004)

7. Gorla, D., Pugliese, R.: Resource access and mobility control with dynamic privileges ac-
quisition. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 119–132. Springer, Heidelberg (2003)

8. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge (2007)
9. Hennessy, M., Rathke, J.: Typed behavioural equivalences for processes in the presence of

subtyping. Mathematical Structures in Computer Science 14(5), 651–684 (2004)
10. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information

and Computation 173(1), 82–120 (2002)
11. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Information and Computa-

tion 163(1), 1–59 (2000)
12. Nicola, R.D., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control. Theoretical

Computer Science 240(1), 215–254 (2000)
13. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Struc-

tures in Computer Science 6(5), 409–453 (1996)
14. Pierce, B.C., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus. Journal

of the ACM 47(3), 531–584 (2000)

http://www.dsi.unive.it/~mace/ASIAN07.pdf
http://www.dsi.unive.it/~mace/ASIAN07.pdf

A Sandbox with a Dynamic Policy Based on

Execution Contexts of Applications

Tomohiro Shioya, Yoshihiro Oyama, and Hideya Iwasaki

The University of Electro-Communications
shioya@ipl.cs.uec.ac.jp, {oyama, iwasaki}@cs.uec.ac.jp

Abstract. We propose a sandbox system that dynamically changes its
behavior according to the application’s execution context. Our system
allows users to give different policies, each of which specifies permitted
system calls, depending on the user functions in which the target ap-
plication is executing. The target application can be given less privilege
than would be possible with other single-policy sandbox systems. We
implemented the sandbox by using LKM (Loadable Kernel Module) of
Linux that intercepts the system call issued by the application process.
We experimentally demonstrated the effectiveness of the sandbox.

1 Introduction

A sandbox system is a security system that securely executes applications by
confining them in a special environment called a sandbox. Much literature has
been devoted to showing the usefulness of such systems [5,9]. Sandbox systems
monitor the behavior of applications and prevent operations that are against the
intention of users. Usually, users of a sandbox specify the privileges of programs
for operating each resource, and give specifications to the sandbox system. A
set of specifications is called a policy. When an application in a sandbox at-
tempts to access a resource, the sandbox system checks its privilege regarding
the operation in the policy. If the policy allows the operation, the sandbox lets
the application execute the operation. Otherwise, it causes the operation to fail.
Although sandbox systems do not prevent malicious code exploiting vulnerabil-
ities in an application, they can minimize the range of harmful effects caused
by attacks. Although there are various sandbox systems, this study focuses on
sandbox systems based on system call interception.

Unfortunately, most sandbox systems, e.g., Janus [5] and Systrace [9], have
a limitation that prevents them from providing sufficiently secure confinement;
only a single policy is applied to an application from the start to the end of the
execution. For example, let us consider sandboxing a server program. Suppose
that the server reads the password file in the user authentication part of the
program and does not need the password file in other parts. Suppose also that
the authentication part is very small and is not frequently executed. Users who
attempt to protect the server with an existing sandbox must choose one of two
extreme alternatives: allowing or denying the operation to read the password

I. Cervesato (Ed.): ASIAN 2007, LNCS 4846, pp. 297–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 T. Shioya, Y. Oyama, and H. Iwasaki

file throughout the execution of the server. Thus, users are obliged to allow
the operation. Consequently, malicious code that has taken over a part of the
server would be able to read the password, in spite of the sandbox protection.
This kind of always-or-never execution control is too coarse-grained to guarantee
highly secure sandboxing.

In this paper, we propose a sandbox system that enables users to switch be-
tween different policies dynamically so that an adequate policy can be applied
to each execution context. Here, an execution context means a chain of user-
defined function calls which lead to the current execution point. The proposed
sandbox decides whether a resource access is allowed according to the policy
associated with the current execution context. Because resources are generally
accessed through system calls provided by the operating system, “resource ac-
cess” can be restated as “execution of a system call” or “issue of a system call”.
The sandbox controls the behavior of the target application by monitoring and,
if necessary, denying the execution of system calls. This work is a step towards
a highly secure sandbox system that conforms well to the principle of the least
privilege [10]. We implemented the system on Linux and conducted experiments
including detection of attacks against a modified version of the Qpopper POP
server.

The proposed system has the following advantages:

– It provides finer-grain access control than many existing sandbox systems
based on system call interception. Moreover, it makes mimicry attacks [12]
harder because an attacker must create a fake execution context, i.e., stack
frames, to evade the detection by the sandbox.

– It does not incur a large runtime overhead. The overhead of our system
observed from the client side was almost 4% in the Qpopper experiment,
which is a permissible level.

The contributions of this study are as follows:

– It describes a design and implementation of a sandbox system that enables
users to associate different access control policies with different execution
contexts.

– It shows experimental results including detection of an exploit against a
realistic server and a measurement of runtime overhead.

This paper is organized as follows. Section 2 shows a motivating example.
We describe the design of the system in Section 3. Section 4 explains how to
describe a dynamic policy that depends on execution contexts. We describe our
implementations in Section 5. Section 6 discusses the experimental results. This
work is compared with related work in Section 7. Section 8 concludes this paper.

2 Motivating Example

We explain the basic idea through an example of a POP server. A POP server
executes various operations including creating sockets, establishing connections,

A Sandbox with a Dynamic Policy 299

Fig. 1. Execution contexts, resource accesses, and policies of POP server

reading the password file, and reading and writing mail spool files. The entire
execution of a POP server can be partitioned straightforwardly according to
its execution contexts (or states). Figure 1 shows an example of partitioning.
Our key observation is that the set of operations to be executed and the set
of resources to be accessed are closely related to the execution context. For
example, configuration files are accessed only in the initialization context and a
mail spool file is updated only in the update context. Hence, resource accesses can
be controlled in a fine-grain manner by associating a different set of privileges
with each execution context.

Let us consider protecting a POP server with a sandbox system that allows
only a single policy from the start to the end of the execution. A problem is
that the policy must allow all resource accesses that may be performed at least
once during the entire execution, as illustrated in Fig. 1. The policy is so coarse-
grained that a set of excessive privileges is given for each execution context.
For example, in the partitioning in Fig. 1, the POP server reads the password
file only in the user-information context. However, the sandbox system always
allows the read operation. If malicious code were to penetrate any part of the
server, it would obtain access to the password file. How to address this problem
is crucial design point. An effective approach is to apply different policies to
different execution contexts.

Another design is the handling of dynamically provided information. The ac-
cessed resource often depends on such information provided at runtime as user
input via a network. In the POP server example, the mail spool directory is dynam-
ically determined on the basis of the user name sent in the user-information context
(i.e., /var/spool/user name is accessed). Suppose that a user attempts to protect
the POP server with a sandbox system in which all accessed resources must be
statically specified. The sandbox will allow the server, whether or not it supports
dynamic policy switching, to read and update all spool files under /var/spool
during transaction and update contexts. Thus, an attacker who takes the control
of the server can modify or delete a spool file of any user, irrespective of the user
being served at the time of the attack. While the server is in the update context for
user name, the privilege for updating /var/spool/user name is sufficient.

300 T. Shioya, Y. Oyama, and H. Iwasaki

We solve these problems with an enhanced sandbox system that supports
dynamic policy switching and the inclusion of dynamically provided information
into policies. The enhancement goes well with the principle of the least privilege.

3 Sandbox Design

The proposed sandbox system dynamically applies different policies to the tar-
get application process on the basis of its execution contexts. We use a chain
of user-defined function calls which lead to the current execution point as an
approximation of a context of the point. Let us consider the following example
where main calls f and then g, f calls h, and both g and h call k.

main() { ... f(); ... g(); ... }
f() { ... h(); ... }
g() { ... k(); ... }
h() { ... k();}
k() { ... }

The context during the execution of h’s code is h–f–main, and that of the
execution of g’s code is g–main. For the execution of k, if it is called from h, its
context is k–h–f–main, while if it is called from g, its context is k–g–main.

As a practical example, let us consider Qpopper 4.0.4, a widely used imple-
mentation of a POP server. Qpopper 4.0.4 defines such functions as pop_init,
pop_user, pop_pass, pop_list, and pop_updt. Each of these functions imple-
ments an execution context of the POP server. For instance, pop_init and
pop_updt respectively implement the initialization and update contexts of the
server. Thus, a chain of function calls that leads to one of these functions can
be regarded as an execution context of the function.

There are two reasons why we adopted a chain of user-defined function calls as
an approximation of a context. First, since an application program is generally

proposed sandbox

analyze the context

apply policy for

the context

system call routine

application process

system call

deny

allow

policy

policy

policy

.

.

.

switch and refer

Fig. 2. Basic design of the proposed system

A Sandbox with a Dynamic Policy 301

coded using many functions, each of which implements some related parts within
the application, it is quite natural to use these user-defined functions in the
approximation of a context. Second, this approximation makes it easy to write
context-dependent policies, as will be described in Sect. 4.

Figure 2 shows the basic design of the sandbox. The user is required to give
the policy of the target application in advance. The sandbox system intercepts
each system call issued by a target application process to analyse the current
execution context, i.e., the chain of user-defined function calls, at the moment
of the system call and to determine whether it is allowed or not according to
the policy of the context. If the sandbox judges that this system call is allowed,
it lets the process proceed to the service routine of the system call in the OS
kernel; otherwise it denies execution of the system call by returning an error to
the application process.

4 Description of Dynamic Policy

In the proposed system, each sandboxed application has its own policy that is
dynamically applied on the basis of the execution context of each system call.
The policy is expected to be prepared by the application developers, because they
would surely understand the internal structure, i.e., which functions are defined
and which system calls or library functions are called from these functions. Thus,
they should have no trouble in describing the application’s policy.

The policy must give a list of allowed system calls or library functions with
their argument patterns for every function of interest defined in the source code
of the application. To begin with, we focus on system calls in the list; library
functions in the list will be explained in Sect. 4.4. By default, system calls that do
not appear in the list are denied at the execution points within the corresponding
user-defined function. Conversely, those in the list are allowed to execute in the
function. The rest of this section explains how to describe policies for a concrete
policy definition for Qpopper 4.0.4, part of which is shown in Fig. 3.

4.1 Basics of Policy Description

A policy file has two sections divided by the %% line. The first section contains
#include and #define directives as is often seen in a normal C file, whose
meanings are the same as C’s pre-processor. The second section contains the
body of the policy definition. The objective of the first section is to define macros
and types that are used in the policy definitions in the second section. For
example, the first line of Fig. 3 states that <fcntl.h> has to be included, because
this file has definitions of O_RDONLY on line 11, and O_RDWR and O_CREAT on the
29-th line. Similarly, <sys/socket.h> defines AF_INET and SOCK_STREAM, and
<netinet/in.h>have definitions of INADDR_ANY and the structure sockaddr_in.
Line 5 includes "popper.h", a header file in the source code of Qpopper. This
file is also necessary because it defines the type named POP used in the body of
the policy definition.

302 T. Shioya, Y. Oyama, and H. Iwasaki

1 #include <sys/fcntl.h>
2 #include <netinet/in.h>
3 #include <sys/socket.h>
4 ...
5 #include "popper.h"
6 #define SERV_TCP_PORT 110
7
8 %%
9
10 main() {
11 open("/dev/null", O_RDONLY, 0);
12 socket(AF_INET, SOCK_STREAM, 0);
13 bind(_,
14 *(struct sockaddr_in *){sin_family: AF_INET,
15 sin_port: htons(SERV_TCP_PORT),
16 sin_addr.s_addr: htonl(INADDR_ANY)},
17 sizeof(struct sockaddr_in));
18 fopen("/dev/null", "w+");
19 ...
20 }
21
22 pop_init(POP *p) {
23 gethostbyname(p->myhost);
24 ...
25 }
26
27 pop_pass(POP *p) {
28 >sleep(_);
29 >open(concat("/var/spool", p->name), O_RDWR | O_CREAT, 0666);
30 ...
31 }

Fig. 3. Part of a policy file for Qpopper

The first line of the second section (line 10 in Fig. 3) starts a policy defini-
tion of a user-defined function named main. Lines 11–17 list the allowed system
calls during the execution of main. By default, each system call in this list is
allowed to execute only when it is called directly from main. This means that
its execution within a descendant function called from main is blocked by the
sandbox system Conversely, each system call with the “>” mark in front of its
name is allowed to be called directly or indirectly from the user-defined func-
tion that lists allowed system calls. In other words, callee functions inherit the
permission of the system calls with the “>” mark from their caller functions.
This mechanism is called policy inheritance. Examples of the usage of “>” can
be seen in the definition of pop_pass on lines 28 and 29. The policy inheritance
mechanism enables us to choose a restricted number of user-defined functions
that most approximate execution contexts and to specify allowed system calls
and library functions for each of them. Since it is not necessary to give the policy
of every user-defined function, time and effort for describing policy definitions
can be saved.

The description of allowed system calls can include an argument pattern. The
special pattern “_” means that any actual parameter is accepted. A literal like
0 or "/dev/null" means that the actual parameter has to exactly match the
literal. Macros that are defined in the first section of the policy file can be used
as literals. Also we can use special built-in macros like htons and inet_addr,
whose meanings are the same as those defined in the standard C library (libc).

A Sandbox with a Dynamic Policy 303

4.2 Specifying a Structure

Some system calls accept as their arguments complex structures. For example,
the second argument of the bind system call is a pointer to struct sockaddr_in
for assigning an Internet address to a socket. To specify a pattern for such struc-
tures, we can use a special notation using “{...}”, as shown on lines 14–16.
This notation means a structure body, in which pairs of member name and asso-
ciated value (literal) are listed. In the example of bind, its second argument has
to be a pointer to a sockaddr_in structure whose sin_family, sin_port, and
sin_addr.s_addr members are AF_INET, htons(SERV_TCP_PORT), and htonl
(INADDR_ANY), respectively.

4.3 Getting Runtime Information

As described in Sect. 2, an application often wants to dynamically decide the
resources to access by using runtime information. For the POP server example,
the server must be able to access the spool directory of an authenticated user,
e.g., "/var/mail/shioya" if the user is shioya, but it is unnecessary to access
to other users’ spools, e.g., "/var/mail/iwasaki". Thus, a mechanism that
restricts the access of the sandboxed POP server to only the authenticated user’s
spool directory is required.

In the policy description, runtime information can be obtained by using a
formal parameter of a user-defined function. For example, the policy of pop_pass
(lines 27–31) states that the open system call is allowed only when all of the
following conditions are satisfied.

– The first argument is "/var/spool" concatenated with the string in the
name member of p, where p is the pop_pass’es actual parameter of the type
POP, and

– The second argument is 0.

Note that concat means a string concatenation operator which can be used
in the policy file.

4.4 Listing Library Functions

Many application programs use such library functions as gethostbyname and
fopen instead of directly using system calls. These library functions provide their
respective facilities, but their implementations are within a black-box. Thus, it is
too severe a task for the application developers to list all system calls that could
be (directly or indirectly) called from the library functions they use. For example,
gethostbyname could open /etc/hosts, consult the NIS server, or consult the
DNS server on the basis of the configuration file /etc/nsswitch.conf.

To cope with this problem, library functions can be included in the list of
allowed functions for a user-defined function. Examples can be seen on lines 18
and 23 in Fig. 3.

To do so, the sandbox system needs policies for library functions that include
lists of system calls used by them. Figure 4 shows an example of the policy

304 T. Shioya, Y. Oyama, and H. Iwasaki

1 #include <sys/fcntl.h>
2 #include <netinet/in.h>
3 #include <sys/socket.h>
4
5 %%
6
7 gethostbyname(char* name) {
8 open("/etc/nsswitch.conf", O_RDONLY, _);
9 open("/etc/hosts", O_RDONLY, _);
10 socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
11 connect(_,
12 *(struct sockaddr_in){sin_family: AF_INET,
13 sim_port: htons(53),
14 sin_addr.s_addr: inet_addr("192.168.65.8"),
15 sizeof(struct sockaddr_in));
16 ...
17 }
18
19 fopen(char* path, "r") {
20 open(path, O_RDONLY, _);
21 }
22
23 fopen(char* path, "w") {
24 open(path, O_CREAT | O_WRONLY | O_TRANC);
25 }

Fig. 4. Part of the policy file for gethostbyname and fopen

of gethostbyname and fopen. Similar to the case of the policies of sandboxed
applications, they are expected to be prepared by the developers of the library
and provided together with the library code itself.

5 Implementation

We implemented the sandbox system on Linux 2.6.8. The following four ap-
proaches were considered for this implementation.

1. User-level implementation
(a) A method that rewrites the source code of the target application.
(b) A method that uses the ptrace system call.

2. Kernel-level implementation
(a) A method that rewrites the kernel code.
(b) A method that uses loadable kernel module (LKM).

Method 1-(a) inserts check codes just before each invocation of a system call.
The codes check the policy of this execution context and determine whether the
system call is allowed or not. Although this method can be implemented only at
the user level, doing so is still complicated and difficult.

Method 1-(b) uses ptrace to intercept a system call issued by the application
process. When the sandbox process intercepts a system call, it checks the context-
dependent policy. Although it is easy to implement, it imposes significant overhead
because of the use of ptrace, and this lowers the efficiency of the target application.

Method 2-(a) directly rewrites the kernel codes so as to monitor the issues of
system calls by the target application process. Although its efficiency is high, it
depends on the kernel version too much.

A Sandbox with a Dynamic Policy 305

p
o
lic
y
 a
p
p
lic
a
tio
n
 m
o
d
u
le

Intercept system calls

Is it a target process

Get return addresses

Check on each functions

System call routines

user stack
u
s
e
r p
ro
c
e
s
s

c
o
n
te
x
t a
n
a
ly
s
is
 m
o
d
u
le

Check procedures

on each functions

against policies

user space

kernel space

Loadable Kernel Module

policy

file
policy application

module generator

Generate

and install

Fig. 5. Implementation of the proposed system

Method 2-(b) dynamically inserts kernel modules (codes) into the kernel after
Linux starts up. Though this method also depends on the kernel version, it is
easier than method 2-(a) to follow version updates, because it does not rewrite
the kernel code itself. Thus, we chose this approach.

Figure 5 shows the overall structure of the implementation of the sandbox
system. The system consists of two LKMs. One is a context analysis module that
is independent of the target application, and the other is a policy application
module that depends on a target application. The policy application module
rewrites the system call entry table in the kernel space, which is used in the
dispatch of a system call request, to intercept the system calls of the target
application process. Because the behaviour of the policy application module
depends on the policy of the target application, we automatically generate this
module as an LKM from the description of the policy.

As shown in Fig. 6 (a), each entry of the table contains a pointer to the
corresponding service routine of the system call. __NR_open is the identifier of
the open system call, so the __NR_open-th element of the table is a pointer to
the default service routine of open in the kernel, namely sys_open(). Suppose
that the policy of some target application allows the call open in user-defined
functions f, g, and h and the module for this policy is loaded into the kernel.
Then the entry for open is rewritten to the just-loaded function that checks the
context and determines whether it is allowed or not.

The sandbox system works as follows.

Before startup of the system:

1. A policy application module is generated from the policy file of the target
process.

2. The policy application module that has been just generated and the context
analysis module are loaded within the Linux kernel. As a result, the system
call entry table is updated.

3. The sandbox system starts.

306 T. Shioya, Y. Oyama, and H. Iwasaki

sys_open()

{

normal system

call routine

}

system call

entry table

.

.

.

.

.

.

__NR_open

(a) Default system call table.

new_sys_open()

{

if (should apply policies) {

get a chain of user-defined

function calls

if (in function f) {

check permissions on f

} else if (in function g) {

check permissions on g

} else if (in function h) {

check permissions on h

} else

sys_open()

}

.

.

.

system call

entry table

.

.

.

.

.

.

__NR_open

(b) After the system installed.

Fig. 6. Flow of the proposed system after it intercepts system calls

After startup:

1. When a process of the target application issues a system call, it goes into
the kernel and executes the processing function of the system call that is
registered in the system call entry table.

2. The processing function checks whether the process that issued the system
call is one of the targets of the sandbox or not. If not, the process proceeds to
the default service routine of the system call, e.g., sys_open(), and returns
from the kernel.

3. The processing function then investigates the chain of user-defined function
calls by using the context analysis module.

4. For each user-defined function in the chain (from the top of the stack to the
bottom), the processing function checks whether the system call with the
current actual parameter is allowed to execute in the user-defined function.
If so, the process proceeds to the default service routine of the system call;
if not, it checks the next user-defined function.

5. If none of the user-defined functions in the chain allows an execution of the
system call, the process returns from the kernel with an error.

To obtain the chain of user-defined functions, the context analysis module
investigates the stack frame in the user space of the target process (Fig. 7 (a)).
A stack frame contains its return address and the link to the caller’s stack frame.
By consulting the application’s symbol table (Fig. 7 (b)) that contains symbol
names and their start addresses, the module can know the function name of
the return address in a stack frame. Thus, it is possible to obtain the chain by
successively following the links in a stack frame.

Attackers may try to modify return addresses and force target applications to
execute malicious codes in stack or heap spaces. The sandbox can refuse system
calls by malicious code because the stack frames are rewritten with unknown
return addresses.

A Sandbox with a Dynamic Policy 307

return addr3

0x080484FF

old_ebp2

return addr1

0x08048496

old_ebp1

return addr2

0x080484D4

old_ebp3

return addr3

0x080484FF

old_ebp2

return addr1

0x08048496

old_ebp1

return addr2

0x080484D4

old_ebp3

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

stack frame main

stack frame f

stack frame g

stack top

(a) User stack and stack frames.

start address symbol name

... ...

0x08048464 g

0x080484cf f

0x080484df main

0x080485b0 –

... ...

(b) Symbol table.

Fig. 7. Obtaining the chain of user-defined functions

6 Experimental Results

We conducted the following experiments.

– Two experiments using Qpopper 4.0.4: one was to verify that the sandbox
could detect an attack and the other was to check the overhead of the sand-
box.

– An experiment using a micro benchmark.

The experiments were done on a PC with 3.0-GHz Pentium 4 and 1-GB of
main memory running Linux kernel 2.6.8.

6.1 Detection of Attacks

We inserted an intentional vulnerability into the transaction state of Qpopper.
In this state, Qpopper accepts a LIST command. If an argument, a message
number, is given, Qpopper issues a response with a line containing information
for that message. If a negative value is given as the argument, the server returns
a “no such message” error. For the experiments, we rewrote the code of Qpopper
and inserted a vulnerability that opened the password file if a negative argument
is given to a LIST command.

We ran the Qpopper server in the sandbox system with a policy in which
accessing the password file is restricted only in the user-information state. We
attacked Qpopper by giving a negative argument to a LIST command and made
sure that the sandbox system could block the attack with a permission error.
Of course, Qpopper could open the password file in the user-information state.
Through this experiment, we confirmed that the system could apply dynamic
policies based on execution contexts.

308 T. Shioya, Y. Oyama, and H. Iwasaki

6.2 Overhead

First, we measured the execution times of a micro benchmark. The micro bench-
mark repeated the same operation 10,000 times and we calculated the time for
executing the operation once. The operation consisted of opening a file and im-
mediately closing it. We gave a policy of main in which both opening and closing
the file would be allowed in any execution context by putting the ”>” mark in
front of open and close.

main() {
>open(_, _, _);
>close(_);

}

If open or close are called in the context of fn— · · ·— f1— main, i.e., the
length of the chain of user-defined functions is n, the sandbox system will analyze
n + 1 stack frames. We measured execution times for n = 0, 1,. . . , 5. Note that
the case n = 0 roughly approximates the behaviour of a sandbox with a single
policy, because the system need not investigate successive stack frames.

Next, we measured the client-side response time, time between client’s sending
a request and receiving the first reply message of the request, for USER, LIST,
and RETR commands to the Qpopper server. In this experiment, client PC and
server PC were interconnected by a single switch through 1000 Base-T Ethernet.
The client PC was equipped with a Pentium III 930-MHz CPU, 256-MB memory,
and its operating system was Linux 2.4.27.

We repeated the same operation 1,000 times and calculated the averages.
The dynamic policy for the Qpopper application contained a list of user-defined
functions whose abstraction levels were sufficiently high, and hence the policy
was very compact. We did not give a policy to user-defined functions whose
abstraction levels were low. We used policy inheritance to specify system calls
that the functions needed for their execution.

These experiments were done on the following three configurations:

1. Applications run on the normal kernel without the proposed LKMs.
2. Applications run on the normal kernel loaded with the proposed LKMs.

However, the applications do not run in a sandbox.
3. Applications run in a sandbox on the normal kernel loaded with the proposed

LKMs.

The un-sandboxed applications and the sandboxed applications have an over-
head to check the necessity of applying a policy. In addition, the sandboxed
applications have extra overheads to analyze the execution context and apply
the policy associated with the context.

Table 1 shows the results of the micro benchmark. The extra overhead of
the sandboxed program (n = 5) was 180% compared with the case without
the proposed system. Although this overhead was not small, the extra overhead
compared with the case n = 0, an approximation of a single-policy sandbox, was
44%. We regard that this overhead are permissible by the following two reasons.

A Sandbox with a Dynamic Policy 309

Table 1. Results of micro benchmark (μsec)

without with proposed system
proposed un- sandboxed
system sandboxed n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

1.75 1.88 3.40 3.79 4.04 4.26 4.57 4.91

Table 2. Results of client-side response time of Qpopper (μsec)

command without with proposed system
proposed system un-sandboxed sandboxed

USER 24.0 24.3 25.0

LIST 11.0 11.2 11.3

RETR 21.8 21.9 22.6

– In exchange for this overhead, a sandboxed application by the proposed
system has higher security.

– As will be seen in the results of the client-side response time of Qpopper,
this overhead is small enough compared with the network latency between
a client and a server.

Table 2 shows the results of the Qpopper. The overhead of the un-sandboxed
Qpopper was within 2 %, and that of the sandboxed Qpopper was almost 4%,
compared with the normal Qpopper. These results show that the overhead of
the proposed sandbox is not a serious problem because of the network latency.

7 Related Work

Many studies have been devoted to sandbox systems based on system call in-
terception. Unlike our system, many do not support dynamic policy switch-
ing [1,5,8,9].

Several sandbox systems or sandboxing mechanisms that can dynamically
switch policies exist. SubDomain [2] is a sandbox system that can switch poli-
cies when a target process calls an exec system call or a special system call
change hat that is inserted in the source code of a target application. Thus,
the application code must be modified to switch policies at program points ex-
cept the invocation of exec. Kurchuk et al. [7] extends a single-policy sandbox
system Systrace [9] to support dynamic policy switches. Their application code
must be modified. To switch policies, an application must call a special func-
tion systrace setpolicy. Moreover, an application must call a special func-
tion systrace setstate to tell the state of the application to the sandbox. In
contrast to these systems, our system does not require the user to modify the
application code.

There are several researches on intrusion detection systems using system call
information and stack information. VtPath [3] is an intrusion detection method

310 T. Shioya, Y. Oyama, and H. Iwasaki

that checks the list of the current stack frames when a system call is invoked.
The system judges that an anomaly has occurred if the transition between the
current list and the previous list does not conform to the normal behavior pat-
tern learned in advance. An intrusion detection system based on finite-state
automaton (FSA) [11] is also a learning-based system that detects intrusions by
using the information on system calls and stack frames at the time of system
call invocation. VtPath and FSA-based systems focus on detecting malicious
manipulation of a control flow, and they ignore system call arguments. On the
other hand, our system focuses on preventing malicious resource accesses that
often occur after control flow manipulation. In addition, our system inspects
more information than their systems do, including system call arguments.

Wagner et al. [12] studied mimicry attacks that disguise themselves as normal
programs and circumvent detection by security systems. Mimicry attacks can
deceive security systems that are straightforwardly implemented using system
call interception [4]. Attackers against our system have difficulty succeeding with
mimicry attacks, because they must create mimic stack frames (execution con-
texts) before invoking the system calls. As described in Kruegel et al.’s paper [6],
an elaborate analysis is needed to create a successful mimicry attack.

Java Stack Inspection [13] enables dynamic policy switches in Java sandboxes.
In this framework, a resource access policy is determined according to the content
of the stack. A resource can be accessed if the stack contains a frame for a code
part permitted to access the resource. Since a Java application runs on a virtual
machine, it is not difficult for a security mechanism to obtain the state of a target
application and control resource accesses. Our work differs from Java in that it
achieves dynamic policy switches in the context of sandboxing native code.

8 Conclusion

We proposed and implemented a sandbox system that can apply dynamic policies
in accordance with the execution contexts of the target application processes.
This sandbox system can give privileges to a target application that are more in
keeping with the principle of the least privilege, compared with existing sandbox
systems with a single policy. It uses a chain of user-defined function calls as an
approximation of an execution context and switches the policy on the basis of
its execution context. Thus, it provides fine-grained control to guarantee highly
secure sandboxes. One of our future tasks is to develop an automatic policy
generation system from source codes of target applications.

References

1. Acharya, A., Raje, M.: MAPbox: Using Parameterized Behavior Classes to Confine
Untrusted Applications. In: Proc. 9th USENIX Security Symposium, pp. 1–17
(2000)

2. Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle, P., Gligor, V.: SubDo-
main: Parsimonious Server Security. In: Proc. 14th Systems Administration Con-
ference (LISA 2000) (2000)

A Sandbox with a Dynamic Policy 311

3. Hanping Feng, H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly De-
tection Using Call Stack Information. In: Proc. 2003 IEEE Symposium on Security
and Privacy, pp. 62–75 (2003)

4. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in
a Computer. In: Proc. 1994 IEEE Symposium on Research in Security and Privacy,
pp. 202–212 (1994)

5. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A Secure Environment for
Untrusted Helper Applications. In: Proc. 6th USENIX Security Symposium, pp.
1–14 (1996)

6. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating Mimicry
Attacks Using Static Binary Analysis. In: Proc. 14th Conference on USENIX Se-
curity Symposium, pp. 161–176 (2005)

7. Kurchuk, A., Keromytis, A.: Recursive Sandboxes: Extending Systrace to Empower
Applications. In: Proc. 19th IFIP International Information Security Conference,
pp. 473–487 (2004)

8. Peterson, D.S., Bishop, M., Pandey, R.: A Flexible Containment Mechanism for
Executing Untrusted Code. In: Proc. 11th USENIX Security Symposium, pp. 207–
225 (2002)

9. Provos, N.: Improving Host Security with System Call Policies. In: Proc. 12th
USENIX Security Symposium, pp. 257–272 (2003)

10. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-
tems. Proceedings of the IEEE 63(9), 1278–1308 (1975)

11. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method
for Detecting Anomalous Program Behaviors. In: Proc. 2001 IEEE Symposium on
Security and Privacy, pp. 144–155 (2001)

12. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems.
In: Proc. 9th ACM Conference on Computer and communications security, pp.
255–264 (2002)

13. Wallach, D.S., Balfanz, D., Dean, D., Felten, E.W.: Extensible Security Architec-
tures for Java. In: Proc. 16th ACM Symposium on Operating Systems Principles,
pp. 116–128 (1997)

Author Index

Abbadi, Imad M. 126
Ayed, Samiha 111

Bana, Gergei 86
Belsis, Petros 261
Bhukya, Wilson Naik 228
Blott, Stephen 48
Bodei, Chiara 150
Borji, Ali 254
Bugliesi, Michele 282
Bursztein, Elie 212

Chen, HuoWang 166
Choi, Seokwoo 2
Cuppens, Frédéric 111
Cuppens-Boulahia, Nora 111

Dacier, M. 198
Degano, Pierpaolo 150

Fathian, Mohammad 95

Gao, Han 150
Goubault-Larrecq, Jean 212
Gritzalis, Stefanos 261
Guttman, Joshua D. 142

Han, Taisook 2
Hasebe, Koji 86

Iwasaki, Hideya 297

Jafari, Mohammad 95

Kato, Kazuhiko 196
Kim, Hyoungshick 78
Kommuru, Suneel Kumar 228
Kosakai, Takahiro 17
Kwon, Yongjin 247

Le Guernic, Gurvan 33
Li, MengJun 166
Li, ZhouJun 166
Lim, Hyun-il 2

Macedonio, Damiano 282
Maeda, Toshiyuki 17
Minohara, Takashi 240
Mizutani, Keisuke 240

Nakazato, Junji 55
Negi, Atul 228

O’Gorman, Gavin 48
Ohba, Hayato 247
Ohira, Kenji 247
Okabe, Yasuo 247
Okada, Mitsuhiro 86
Oyama, Yoshihiro 297

Park, Heewan 2

Ramirez-Silva, E. 198
Riis Nielson, Hanne 150
Rossi, Sabina 282

Sabelfeld, Andrei 1
Sakurai, Atsushi 240
Sato, Ryota 240
Shah, Harshit 268
Shioya, Tomohiro 297
Shmatikov, Vitaly 181
Shyamasundar, R.K. 268
Simhalu, Sriperumbuduru Kandala 62
Skourlas, Christos 261
Song, Jungsuk 247

Takakura, Hiroki 247
Takeda, Keiji 62
Torabi Dashti, Mohammad 70
Tsoukalas, Vassilis 261

Wang, Lihua 55
Wang, Ming-Hsiu 181
Wang, Yanjing 70

Yamamura, Akihiro 55
Yonezawa, Akinori 17

Zhou, Ti 166

	Title Page
	Preface
	Organization
	Table of Contents
	Dimensions of Declassification in Theory and Practice
	A Static Birthmark of Binary Executables Based on API Call Structure
	Introduction
	Related Work
	Static API Call Structure Birthmark
	Software Birthmarks
	Proposed Birthmark
	Calculating Similarity

	Implementation
	Evaluation
	Credibility
	Resilience
	Limitations

	Conclusion

	Compiling C Programs into a Strongly Typed Assembly Language
	Introduction
	Overview of CTAL_0
	Untyped Array Types
	Dependent Types
	Guarded Types
	Byte Addressing

	Proposed Language: CTAL_0
	Program States
	Types
	Typing Rules

	Implementations
	Type-Checker and Translator
	Experimental C Compiler

	Extension for Function Pointers
	Related Work
	Source-Level Certification for C
	Strongly Typed Assembly Languages

	Conclusion

	Information Flow Testing The Third Path Towards Confidentiality Guarantee
	Introduction
	Presentation of the Approach
	Overview of the Noninterference Analysis
	Noninterference Testing
	The Language: Syntax and Standard Semantics

	The Analyzing Semantics
	A Semantics Making Use of Static Analysis Results
	Hypotheses on the Static Analysis Used
	Another Characterization of $Usable$ Static Analyses
	Properties of the Analyzing Semantics

	Conclusion
	References

	Large Scale Simulation of Tor: Modelling a Global Passive Adversary
	Introduction
	Our Implementation
	Protocol
	Topology

	Attacks and Results
	Connection Start Tracking Attack
	Packet Counting Attack
	Stream Correlation Attack

	Related Work
	Future Work
	Conclusion

	Privacy Enhancing Credentials
	Introduction
	Proposed Scheme
	Description of Proposed Scheme
	Security Requirements
	Bilinear Pairings and Complexity Assumption
	Privacy Enhancing Designated Credentials
	Basic Protocol

	Security
	Discussion

	Browser Based Agile E-Voting System
	Introduction
	Browser-Based E-Voting System
	Existing Browser-Based Open-Source E-Voting Systems
	An Overview of the Proposed System

	$Agile$ E-Voting
	Comparison Matrix
	Conclusion
	References

	Risk Balance in Exchange Protocols
	Introduction
	Game Abstraction of Exchange Protocols
	Risk Balance
	A Fair Risk-Balanced Exchange Protocol
	Discussions

	Scalable DRM System for Media Portability
	Introduction
	Problems
	Secrecy of Protected Content
	Verifying License

	DRM System for Multiple AV Profiles
	Content Translation
	License Translation

	Conclusion
	References

	Computational Semantics for Basic Protocol Logic – A Stochastic Approach
	Introduction
	Basic Protocol Logic
	Computational Semantics
	Conclusions

	Management Advantages of Object Classification in Role-Based Access Control (RBAC)
	Introduction
	RBAC Review
	Absence of Object Classification in P-RBAC

	Proposed Object Classification Scheme
	Formal Definition

	Discussion
	Number and Complexity of Decisions
	Change Management Cost
	Risk of Errors
	Policy Portability
	Enforcement and Compliance
	Support for Traditional Information Classification Policies
	Object Management and Grouping Support

	Conclusion
	References

	An Integrated Model for Access Control and Information Flow Requirements
	Introduction
	Related Works
	Motivation
	DTE: Domain Type Enforcement
	DTE Principles
	Our DTE Formalism

	OrBAC in Brief
	Access and Information Flow Control Convergence
	Access Control Policy
	Information Flow Control Policy
	Example

	Conclusion
	References

	Digital Rights Management Using a Master Control Device
	Introduction
	Authorised Domain
	The Novel Solution
	Related Work
	Organisation of the Paper

	Proposed Model
	Domain Devices
	Master Control Device

	Process Workflow
	Domain Establishment
	Adding a Device to a Domain
	Removing a Device from a Domain
	Exchanging Content
	Backup and Recovery Procedure

	Discussion and Analysis
	Controlling Content Sharing
	Controlling Domain Membership

	Methods of Authentication and Possible Countermeasures
	Conclusion

	How to do Things with Cryptographic Protocols
	Goal of This Talk
	An Example: EPMO
	Protocol Mechanics of EPMO
	Trust Management in EPMO
	State: Effects of EPMO

	A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols
	Introduction
	A Reduction Semantics for the L[2]YS[2]A Calculus
	Syntax
	Operational Semantics
	Example

	Static Analysis
	Domain of the Analysis
	Analysis of Terms and Processes
	Semantic Properties
	Example

	Modelling the Attackers
	Constructing Attacker Process

	Main Results
	Implementation and Complexity
	Validation of Needham-Schroeder Symmetric Key Protocol

	Conclusion

	An Abstraction and Refinement Framework for Verifying Security Protocols Based on Logic Programming
	Introduction
	Security Protocols’ Logic Program Model
	The Honest Roles’ Model
	The Intruder’s Model
	Security Property

	Verification Approach
	Fixpoint Abstraction and Refinement
	Fixpoint Abstraction
	Fixpoint Refinement

	Example
	Conclusions
	References

	Secure Verification of Location Claims with Simultaneous Distance Modification
	Introduction
	Simultaneous Distance Modification (SDM)
	Preventing False Location Claims
	Protocols with the SDM Property
	Challenge-Response with Hash Chains
	Time Difference of Arrival
	Signal Strength

	Preventing False Location Claims When Beacons Can Be Malicious
	Challenge-Response
	Time Difference of Arrival

	Attacks on the SDM Property
	Conclusions

	Modeling and Virtualization for Secure Computing Environments
	References

	Empirical Study of the Impact of Metasploit-Related Attacks in 4 Years of Attack Traces
	Introduction
	Data Collection Environment
	The Leurr\'{e}.com Project
	The Leurr\'{e}.com Notion of ``Cluster''
	Metasploit Framework

	Experimental Setup
	Introduction
	Launching All Possible Attacks
	Data Processing: Labeling Clusters with Attack Signatures
	Preliminary Results

	Analysis Results
	Logic of the Experiment
	Selection on the Basis of the Original Date
	Selection on the Basis of All Release Dates
	Clusters Without Activity Before Day -2 Filter
	Discussion

	Conclusion

	A Logical Framework for Evaluating Network Resilience Against Faults and Attacks
	Introduction
	Example: A Simple Redundant Web Server
	Lower Layer: Dependency Graphs
	Upper Layer: Anticipation Games
	An Anticipation Game for the Redundant Server Example
	Conclusion

	Masquerade Detection Based Upon GUI User Profiling in Linux Systems
	Introduction
	Background and Related Work
	Detection Mechanisms Based on Command Line Data
	Masquerade Detection Based on GUI Data
	Masquerade Detection Based on GUI Usage Analysis

	Proposed Method
	KDE Application Structure and Event Capturing
	Experimental Setup

	Applying One-Class Masquerade Detection
	Experimental Setup

	Results and Discussion
	One-Class SVM Results
	Comparing with Two-Class SVM Approach
	ROC Scores for Different Users

	Conclusions

	One-Time Receiver Address in IPv6 for Protecting Unlinkability
	Introduction
	One-Time Receiver Address in IPv6
	Secret Address Sequence for a Pair of Sender and Receiver
	Generation of Address Sequence

	Implementation of One-Time Receiver Address
	Implementation of One-Time Addresses on Receiver Side
	Implementation of One-Time Addresses on Sender Side

	Experimental Evaluations
	Conclusion

	A Comprehensive Approach to Detect Unknown Attacks Via Intrusion Detection Alerts
	Introduction
	Related Work
	Extraction of Unknown Activities
	Data Preparation
	Feature Extraction
	Extracting Representative Points
	 Scoring

	Experimental Results and Their Analysis
	Conclusion

	Combining Heterogeneous Classifiers for Network Intrusion Detection
	Introduction
	Intrusion Detection
	Intrusion Detection Using Single Classifiers
	Dataset
	Single Classifier Recognition

	Combing Classifiers for Intrusion Detection
	Conclusions
	References

	Managing Uncertainty in Access Control Decisions in Distributed Autonomous Collaborative Environments
	Introduction
	Related Work
	Access Control Solutions for Multi-domain Environments
	Determining Fuzzy Relations for the Access Control Model
	Access Control Enforcement Architecture
	Conclusions
	References

	On Run-Time Enforcement of Policies
	Introduction
	Guarded Command Policy Specification Language
	Syntax of GCPSL
	Semantics of GCPSL

	A Sample Monitoring Architecture: Monitoring System Calls Without Program Instrumentation
	Enforcing Constraints on a Set of Processes
	Semantics

	From Pure Past Temporal Logic to GCPSL
	Implementation
	Related Work
	Conclusion

	Static vs Dynamic Typing for Access Control in Pi-Calculus
	Introduction
	Static and Dynamic Typing in the Pi-Calculus
	A Correct Encoding
	A Fully Abstract Encoding
	Conclusions

	A Sandbox with a Dynamic Policy Based on Execution Contexts of Applications
	Introduction
	Motivating Example
	Sandbox Design
	Description of Dynamic Policy
	Basics of Policy Description
	Specifying a Structure
	Getting Runtime Information
	Listing Library Functions

	Implementation
	Experimental Results
	Detection of Attacks
	Overhead

	Related Work
	Conclusion

	Author Index

