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Abstract. Anti-unification has often be used as a tool for analogy mak-
ing. But while first-order anti-unification is too simple for many applica-
tions, general higher-order anti-unification is too complex and leads into
theoretical difficulties. In this paper we present a restricted framework for
higher-order substitutions and show that anti-unification is well-defined
in this setting. A complexity measure for generalizations can be intro-
duced in a quite natural way, which allows for selecting preferred gener-
alizations. An algorithm for computing such generalizations is presented
and the utility of complexity for anti-unifying sets of terms is discussed
by an extended example.

1 Introduction

Analogies are a central construct of human thinking [1,2,3] and are considered
to be an indispensable tool for scientific progress [4]. Analogical reasoning is
a high-level cognitive process in which two conceptualizations from a source
and a target domain are compared and analyzed for common patterns. The
purpose of analogies is to use old information (typically from the source domain)
to explain new situations in the target domain. Experimental research supply
evidence that structural commonalities between domains are the main driver for
the construction of analogies. There exist many approaches for analogy models
which apply different mechanisms to analyze and extract commonalities between
two domains [5,6]. When the domains are specified formally, the theory of anti-
unification can be used for a structural comparison and for representing the
commonalities at a general level. Heuristic-Driven Theory Projection (HDTP) is
such a symbolic analogy model using anti-unification to detect analogies between
different domains.

This paper discusses anti-unification in the context of analogies and presents
a spelled-out approach for computing analogies between domain theories. The
remainder of the paper is structured as follows: Section 2 explains the theory
of anti-unification in the context of analogies. After examining the related work
(section 3), we present our approach for restricted higher-order anti-unification
to compute structural commonalities (section 4). Section 5 shows how HDTP
uses our approach and illustrates the results using the heat-flow example: the
analogy between fluid dynamics (water flow) and thermodynamics (heat flow).
Section 6 summarizes the paper and gives directions for future work.
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2 Anti-Unification for Analogies

Anti-unification, originally introduced in the context of induction [7], is a formal
counterpart of unification. While a unifier for a given set of terms T is a term
u that is an instance1 of every term of T , an anti-unifier (or generalization) is a
term g that is an anti-instance of every term of T . While unification aims to find
the most general unifier (mgu), anti-unification searches for the most specific
anti-unifier, normally referred to as least general generalization (lgg).
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Fig. 1. Anti-Unification of terms

Fig. 1 gives several examples for anti-unification. Terms are generalized to an
anti-instance where differing constants are replaced by a variable. The terms in
(c) and (d) differ w.r.t. the function symbols. While first-order anti-unification
fails to detect commonalities when function symbols differ, higher-order anti-
unification generalizes the function symbols to a variable F and retains the struc-
tural commonality. Example (d) is formally of higher-order, but can be reified
into first-order introducing a ”meta” function eval with eval(f, (a, b)) = f(a, b).
Example (e), however, affects the argument number and therefore cannot be
reified: the left/right term F is substituted by f/g, X →x/a and Y →h(a, b)/b.
Higher-order anti-unification is necessary to anti-unify complex structures, but
we loose the uniqueness of lgg and they are in general not well-defined. How-
ever, in the context of analogies, anti-instances have to meet several restrictions:
generalized terms shall not be more complex than the domain terms and they
shall contain elements that are present in both domains. This paper presents
a solution for computing anti-instances with these restrictions for analogies. In
section 4 we explain the role of anti-unification in analogy-making with HDTP.

Fig. 2. Analogy between fluid dynamics (water flow) and thermodynamics (heat flow)

Heuristic-Driven Theory Projection (HDTP) is an analogy model using the
theory of anti-unification to detect structural commonalities. Due to limited
1 In this paper a term s is called an instance of t, and t an anti-instance of s if there

is a substitution σ such that σ applied to t produces s. In this case we write t
σ−→ s

or simply t → s.



Restricted Higher-Order Anti-Unification for Analogy Making 275

space we refer to [8] for the specification of the syntactic, semantic, and algorith-
mic properties of HDTP. Here we explain its functionality only with an example:
The analogy between fluid dynamics and thermodynamics (Fig. 2). There are
different possibilities of associating concepts of the target domain with concepts
of the source domain. E.g. the bar and the pipe play equivalent roles as bearers
of ”flowing things” (water resp. heat). The task is to find plausible assignments
to roles having some explanatory power. In the source domain one can observe
water flowing. Although there cannot be observed anything flowing in the target
domain, one can infer by analogy that there must exist something like ”heat”
that ”flows” from the hot coffee to the beryllium cube.

Fluid dynamics (ThS) Thermodynamics (ThT )
sorts
real, massterm,object, time

entities
vial :object,beaker:object,water :massterm, pipe :object

functions
height : object × time → real × {cm}
footprint : object × time → real × {cm2}
in : object × massterm → object
vol : object × time → real × {cm3}

facts
connected(beaker, vial, pipe)
∀t1 : time, t2 : time :
footprint(beaker, t1) > footprint(vial, t1) ∧
footprint(beaker, t1) = footprint(beaker, t2) ∧
footprint(vial, t1) > footprint(vial, t2)

laws
∀t1 : time,t2 : time : t2 > t1∧
height(in(water, beaker), t1)>height(in(water, vial), t1)
→ height(in(water, beaker), t1) >
height(in(water, beaker), t2)∧
vol(in(water, beaker), t1) − vol(in(water, beaker), t2)
= vol(in(water, vial), t2) − vol(in(water, vial), t1)

sorts
real, massterm, object, time

entities
coffee:massterm, b cube :object,
cup :object, bar :object

functions
temp : object × time → real × {C}
in : object × massterm → object

facts
connected(in(coffee, cup), b cube, bar)

laws
∀t1 : time, t2 : time : t2 > t1
temp(in(coffee, cup), t1) >
temp(b cube, t1)
→
temp(in(coffee, cup), t2) <
temp(in(coffee, cup), t1) ∧
temp(b cube, t2) >
temp(b cube, t1)

The source and target domain are specified by a set of formulas represented in
many-sorted first-order logic. Given two theories ThS and ThT modeling source
and target as input, the HDTP algorithm computes the analogy by selecting
successively a formula from ThS and ThT (according to a heuristic) and con-
structing a generalization together with the corresponding substitutions.

source domain ThS target domain ThT generalization ThG

connected(beaker, vial, pipe) connected(in(coffe, cup), b cube, bar) connected(A, B, C)
height(in(water, beaker), t1) > temp(in(coffee, cup), t1) > T (A, t1) >
height(in(water, vial), t1) temp(b cube, t1) T (B, t1)
height(in(water, beaker), t1) > temp(in(coffee, cup), t1) > T (A, t1) >
height(in(water, beaker), t2) temp(in(coffee, cup), t2) T (A, t2)
height(in(water, vial), t2) > temp(b cube, t2) > T (B, t2) >
height(in(water, vial), t1) temp(b cube, t1) T (B, t1)

ThG contains four variables: A and B play the role of the container for the flowing
”thing”; C connects A and B. The function symbol T stands for the function
measuring the energy (height of the water in the container/temperature of the
heat). The resulting substitutions describe the analogical relation:

A → beaker/in(coffee, cup) B → vial/b cube
C → pipe/bar T → λx, t : height(in(water, x), t)/temp(x, t)
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3 Related Work

Compared to unification, there is few work especially dedicated to anti-unification.
However, many results on unification apparently have a counterpart in anti-
unification. First of all, it should be noticed that higher-order anti-unification suf-
fers from similar problems as higher-order unification: the lgg is no longer unique
and without restrictions the notion is not even well-defined as demonstrated by [9]:
one can construct infinite chains of ever more and more general generalizations.
Therefore different strategies to restrict anti-unification have been proposed.

[10] uses higher-order patterns to restrict the possible generalizations. A λ-
term (in β-normal form) is called a higher-order pattern if every free occurrence
of a (higher-order) variable F appears as F (X1, . . . , Xn) with bound variables
Xi all being distinct. It is shown that the substitution ordering on higher-order
patterns gives a preorder with unique maximally specific generalization for any
pair of terms. Thus the pattern restriction leads to well-defined generalizations.
A well-known problem of higher-order patterns is overgeneralization. Given f(a)
and g(a), the least generalization would be X instead of F (a) or F (X), since
the latter ones are no higher-order patterns.

[9] claims that a major problem of λ-terms is the missing control of how func-
tion arguments are used in terms: they can be discarded or doubled. He therefore
proposes to use combinator terms instead of λ-terms. Combinator terms are built
as composition of basic functions, called combinators, that allow to control how
arguments are passed from one function to the next. By restricting the valid
combinators to so called relevant combinators, it is shown that a useful notion
of generalization can be developed and an algorithm to compute such generaliza-
tions is presented. This formalism is also used by [11] in the context of analogical
programming.

4 Restricted Higher-Order Anti-Unification

In the context of analogies we aim at computing generalizations that preserve
as much of the structure of both domain terms as possible. However, the gener-
alization must not be structurally more complex than the original terms. In this
section we define a formal framework that is guided by this requirements.

4.1 Extended Substitutions

We will extend classical first-order terms by introducing variables that can take
arguments: for every natural number n we assume an infinite set Vn of variables
with arity n and a finite sets of n-ary function symbols Cn.2 Here we explicitly
allow the case n = 0 with V0 being the set of first-order variables and C0 being
0-ary function symbols (constants). Variables will be written as uppercase letters

2 One could, of course, use a more elaborated system for typing, but for the sake of
simplicity we will limit to arity here, as this suffices to support the arguments of the
paper.
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while function symbols are lowercase. A term is either a first-order or a higher-
order term, i.e. an expression of the form F (t1, . . . , tn) with F ∈ Vn and terms
t1, . . . , tn. In this setting we will redefine the notion of substitution.

Definition 1 (Basic Substitutions). We define the following set of basic sub-
stitutions:

1. A renaming ρF,F ′
replaces a variable F ∈ Vn by another variable F ′ ∈ Vn of

the same arity:

F (t1, . . . , tn)
ρF,F ′

−−−→ F ′(t1, . . . , tn).

2. A fixation φV
c replaces a variable F ∈ Vn by a function symbol f ∈ Cn of the

same arity:

F (t1, . . . , tn)
φF

f−−→ f(t1, . . . , tn).

3. An argument insertion ιF,F ′

V,i with 0 ≤ i ≤ n, F ∈ Vn, V ∈ Vk with k ≤ n− i,
and F ′ ∈ Vn−k+1 is defined by

F (t1, . . . , tn)
ιF,F ′
V,i−−−→ F ′(t1, . . . , ti−1, V (ti, . . . , ti+k−1), ti+k, . . . , tn).

4. A permutation πF,F ′

α with F, F ′ ∈ Vn and α : {1, . . . , n} → {1, . . . , n} bijec-
tive, rearanges the arguments of a term:

F (t1, . . . , tn)
πF,F ′

α−−−→ F ′(tα(1), . . . , tα(n)).

Argument fixation can be used to replace a variable by a symbol of the same arity,

e.g. f(X)
φX

a−−→ f(a) with X ∈ V0 and F (a)
φF

f−−→ f(a) with F ∈ V1. Argument
insertion is a bit more complicated: inserting a 0-ary variable V increases the

arity of the embedding term by 1, e.g. F (a)
ιF,F ′
V,1−−−→ F ′(a, V ). But inserting a

variable G ∈ Vn with n ≥ 2 reduces the arity: F (a, b, c, d)
ιF,F ′
G,1−−−→ F ′(a, G(b, c), d).

Notice that we allow argument insertion to be applied to first-order (i.e. 0-ary)

variables, e.g. X
ιX,X′
c,0−−−→ X ′(c).

In what follows a substitution is always meant to be a composition of basic
substitutions. We will write s → t if there exists a substitution that transforms
s into t, and s

σ−→ t if σ is such a substitution. Notice that every first-order
substitution is indeed a substitution, since it can be described as a composition
of renaming, argument insertion and fixation, e.g.

X
ιX,X′
V,0−−−→ X ′(V )

φV
a−−→ X ′(a)

φX′
f−−→ f(a)

Hence this framework is a real extension of the first-order case. We will now
show that it is still sufficiently restricted to be of practical use. To make this
more precise, we define a measure for the structural complexity of terms. This
is achieved by counting the number of symbols the term is composed of.
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Definition 2 (Information Load). A term t is assigned the information load
il(t) recursively defined as follows:

1. il(F (t1, . . . , tn)) = n + il(t1) + . . . + il(tn) for a n-ary variable F ∈ Vn and
terms t1, . . . , tn.

2. il(f(t1, . . . , tn)) = 1 + n + il(t1) + . . . + il(tn) for a function symbol f ∈ Cn

and terms t1, . . . , tn.

Here we also allow the case n=0, i.e. 0-ary variables and constants, e. g. il(X)=0
for X ∈V0, il(c)=1 for c∈C0, and il(f(c, X))=4 with f ∈ C2. Therefore applying
substitutions will never reduce the information load of a term:

Lemma 1. Let s and t be terms. If s → t, then il(s) ≤ il(t).

Proof. This can be proven by inductive decomposition of the substitution: re-
naming and permutation do not change the information load. Fixation increases
the information load by 1 and so does argument insertion: applying ιG,i to
F (tn, . . . , tn) with G ∈ Vk leads to F ′(t1, . . . , ti−1, G(ti, . . . , ti+k−1), ti+k, . . . , tn)
with information load n−k +1+

∑i−1
j=1 il(tj)+ il(G(ti, . . . , ti+k))+

∑n
j=i+k il(tj)

and il(G(ti, . . . , ti+k))=k+
∑i+k−1

j=i il(tj), summing up to n+1+
∑n

j=1 il(tj). q.e.d.

As the information load of terms is always finite and there are only finitely many
permutations of arguments for a given arity, it follows:

Corollary 1. For a given term t there are only finitely many (up to renaming)
anti-instances (i.e. terms s with s → t).

4.2 Preferred Generalizations

Based on our extended notions of terms and substitutions, generalization can be
defined as usual:

Definition 3 (Generalization). A generalization for a pair of terms 〈s, t〉 is
a triple 〈g, σ, τ〉 with a term g and substitutions σ, τ such that s

σ←− g
τ−→ t.

Since for every term t there is a substitution X → t, generalizations are guaran-
teed to exist. As a direct consequence of lemma 1 we get:

Proposition 1. A pair of terms 〈s, t〉 has only finitely many (up to renaming)
generalizations. For every generalization 〈g, σ, τ〉 it holds il(g) ≤ il(s) and il(g) ≤
il(t).

This means that least general generalizations are well-defined in this setting.
However, they do not have to be unique:

Having multiple possible generalizations is not necessarily bad, especially in
the context of analogies, where normally several mappings with different degree
of plausibility may coexist. Nevertheless, it would be useful to have a criterion to
rank the alternatives. A plausible approach could be based on the information
load of the generalization. However, since we are aiming at anti-unifying sets
of terms and want to promote the reuse of substitutions, we will introduce a
ordering that is based on their complexity:
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f(g(a, b, c), d) f(d, φ(a))
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f(g(a, b, c), d) f(d, φ(a))

Fig. 3. Example with multiple least general generalizations

Definition 4 (Complexity of Substitution). The complexity of a basic sub-
stitution σ is defined as

C(σ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if σ = ρ

1 if σ = φc

k + 1 if σ = ιV,i and V ∈ Vk

1 if σ = πα

For a composition of basic substitutions we define C(σ1 · · ·σm) =
∑

C(σi) and
for an arbitrary substitution σ is C(σ) = min{C(σ1 · · · σm) | σ1 · · ·σm = σ}.3

The complexity of a substitution is meant to reflect its processing effort. There-
fore permutations have a non-zero complexity even though they do not change
the information load of a term. The argument insertion restructures the term,
and the higher the arity of the inserted variable, the more arguments are moved
and therefore the more complexity is assigned to that operation.4

Based on complexity of substitutions, complexity of generalizations can be
defined straight forward:

Definition 5 (Complexity of Generalization). Let 〈g, σ, τ〉 be a generaliza-
tion for a pair of terms 〈s, t〉. Define the complexity of the generalization by
C(〈g, σ, τ〉) = C(σ) + C(τ).

With this complexity measure we can select preferred generalization by min-
imizing their complexity. Obviously, preferred generalizations are always least
general, while the contrary is not always the case as demonstrated by Fig. 3.

4.3 Computing Preferred Generalizations

A simple algorithm to compute preferred generalizations is given in Fig. 4. It
uses a bottom-up breadth-first strategy. A priority queue of anti-instances is
initialized with the left and right terms that shall be anti-unified. Now the first
element of that queue is taken. If there is a compatible anti-instance for that term

3 The minimum construction is needed, as there exist multiple decompositions of σ
with different complexity. With a bit more effort one can define a normal decompo-
sition which can be shown to have minimal complexity. This is left out in this paper
due to space limitation.

4 The complexity values for basic substitutions have proven to be useful in practice.
Here, the analysis of different values is subject of future work.
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function anti unify(left term, right term) returns generalization
variables:

Open: priority queue of anti instance
Closed : set of anti instance
// anti instance is a quadruple 〈complexity,substitution,generalized term,index〉
// with index ∈ {“left”, “right”} and op(“left”) = “right”,op(“right”) = “left”

initialize:
Open={〈0, id, left term, “left”〉, 〈0, id, right term, “right”〉}
Closed = {}

while Open �= {} do
〈c, σ, g, i〉 = first(Open);Open = rest(Open)
if 〈 , θ, g, op(i)〉 ∈ Open ∪ Closed return 〈g, σ, θ〉
G = {〈c′, σ′, g′, i〉 | ∃τ ∈ basic substitutions : g′ τ−→ g, c′ = c + C(τ ), σ′ = σ ◦ τ}
Open = merge(Open, G)
Closed = Closed ∪ {〈c, σ, t, i〉}

end while
end function

Fig. 4. Algorithm for computing preferred generalizations

from the other domain, a preferred generalization has been found. Otherwise all
anti-instances are computed that can be reached by a single (inverse) application
of a basic substitution. These anti-instances are annotated with their complexity
and merged back into queue and the whole process starts again.

The anti-instances produced have a decreasing information load and therefore
the algorithm is guaranteed to terminate. However, the preferred generalization
that is computed may depend on the complexity measure C that is chosen.

5 Example

This section explains our approach step-by-step with the heat flow analogy.
Fig. 5 shows the anti-unification of the terms connects(beaker, vial, pipe) from
ThS and connected(in(coffee, cup), b cube, bar) from ThT with required substi-
tutions. The remaining generalizations are analogous to the anti-unification
of height(in(water,beaker),t1)>height(in(water,vial),t1) and temp(in(coffee,cup),
t1)> temp(b cube, t1).

Three basic substitutions are needed to transform connected(A, B, C) to the
domain-specific term in the source: the fixation φA

beaker substitutes the variable
A to the constant beaker (the same for B and C). The substitution the target
side is more complex, because A maps on the complex structure in(coffee, cup).
ιA,A′

X,0 replaces variable A by the complex structure A′(X) and ιA
′,A′′

Y,0 inserts the
second variable Y. Afterwards the variables are fixated to the required constants.
The substitutions have the complexity C = 3 on the source and C = 7 on the
target side. To transform T (A, t1) > T (B, t2) in domain specific terms, 7 basic
substitutions are required on the source and 7 on the target side. However, many
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θS = {φA
beaker,

φB
vial, φC

pipe}

connected(A, B, C) il = 4
connected(A′(X), B, C)
connected(A′′(X, Y ), B, C)
connected(A′′(coffee, Y ), B, C)
connected(A′′(coffee, cup), B, C)
connected(in(coffee, cup), B, C)
connected(in(coffee, cup), b cube, C)���

��
��

��
��

�

connected(beaker, B, C)
connected(beaker, vial, C)

����
��
��
��
��

θT = {ιA,A′
X,0 , ιA′,A′′

Y,1 , θX
coffee,

φY
cup, φA′′

in , φB
b cube, θC

bar}

il = 7 connected(beaker, vial, pipe) connected(in(coffee, cup), b cube, bar) il = 11

θS ={ιT,T′
X,0,

ιT,T′′
Y,0 ,φY

in ,

φX
water, φA

beaker,

φB
vial, φT ′′

height}

T (A, t1) > T (B, t1) il = 9

T(A′(X), t1)>T(B, t1)

T(A′′(X, Y ), t1)>T(B, t1)

T(A′′(coffee, Y ), t1)>T(B, t1)

T(A′′(coffee, cup), t1)>T(B, t1)
T(in(coffee, cup), t1)>T(B, t1)

T(in(coffee, cup), t1)>T(b cube, t1)���
��
��
��
��
��T ′(X, A,t1)>T ′(X, B, t1)

T ′′(Y (X, A),t1)>T ′′(Y (X, B), t1)
T ′′(in(X, A),t1)>T ′′(in(X, B), t1)

T ′′(in(water, A),t1)>T ′′(in(water, B), t1)
T ′′(in(water, beaker),t1)>T ′′(in(water, B), t1)

T ′′(in(water, beaker),t1)>T ′′(in(water, vial), t1)

����
��
��
��
��
�

θT={ιA,A′
X,0 ,ιA′,A′′

Y,1 ,

φX
coffee,φ

Y
cup,φ

A′′
in ,

φB
b cube,φ

T
temp}

height(in(water, beaker),t1)>height(in(water, vial),t1)
il = 21

temp(in(coffee, cup),t1)>temp(b cube,t1)
il = 17

Fig. 5. Computing the generalizations for the heat flow analogy

T (A, t1) > T (B, t1) il = 9

θS ={ιA,A′
D,0 , ιA′,A′′

E,1 , ιA′′
in , ρF,B}

T(A′(D), t1) < T (F, t1)

T(A′′(D, E), t1) < T(F, t1)

T(in(D, E), t1) > T(F, t1)

T(in(D, E, t1)) > T(B, t1)��
θS ={ιT,T ′

X,0 ,ιT,T ′′
Y,2 ,

φY
in ,φX

water,φ
A
beaker,

φB
vial,φ

T ′′
height}

>T (in(D, E, t1)) T (F, t1) il = 12

T(A′(X), t1)> T (B, t1)

T (A′′(X, Y ), t1)> T (B, t1)

T (A′′(coffee, Y ), t1)> T(B, t1)

T (A′′(coffee, cup), t1)> T (B, t1)

T (in(coffee, cup), t1)> T(B, t1)

T (in(coffee, cup), t1)> T(b cube, t1)���
��
��
��
��
��
��

T′(X, A, t1)> T ′(X, B, t1)

T′′(Y (X, A), t1)> T′′(Y (X, B), t1)

T′′(in(X, A), t1)> T′′(in(X, B), t1)

T′′(in(water, A), t1)> T′′(in(water, B), t1)

T′′(in(water, beaker), t1)> T′′(in(water, B), t1)

T′′(in(water, beaker), t1)>T′′(in(water, vial), t1)

����
��
��
��
��
��
� θT={ιA′,A′′

Y,1 ,φX
coffee,

φY
cup,φA′′

in ,

φB
b cube,φ

T
temp}

height(in(water, beaker), t1)>height(in(water, vial), t1)
il = 21

temp(in(coffee, cup), t1)>temp(b cube, t1)
il = 17

Fig. 6. Different generalizations with different information load and complexity of sub-
stitutions

substitutions are already available from the anti-unification of connects: only 5
new substitutions are required for the source and 1 new for the target.

The generalized term T (A, t1) > T (B, t2) has the information load il = 9
and is actually not the lgg of the domain specific terms. Fig. 6 shows that
the generalization T (in(D, E), t1) > T (F, t1) with the il = 12 is more spe-
cific and an anti-instance of the domain-specific terms. However, none of the
analogical mappings received by the anti-unification of connects is reused and
therefore also none of the substitutions. The complexity of the required substi-
tutions on the source side is C = 8 and on the target side C = 4. Since HDTP
aims to anti-unify whole theories and reduce the complexity of substitutions
across the whole domain-specific substitution, the solution presented in Fig. 5 is
preferred.
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6 Conclusion and Future Work

We have presented a restricted version of higher-order anti-unification and have
proven that in this framework least general generalizations can be defined and
are indeed more specific than in the first-order case. We proposed a measure
for the complexity of substitutions and presented an algorithm that allows for
computing preferred generalizations with respect to this complexity. We further
showed that complexity can be useful in the context of analogy making, when
not only pairs of terms, but sets of terms shall be anti-unified, as it can be a
means to encourage the reuse of substitutions.

The complexity measure for substitutions has been successfully applied in
practice. However, alternative definitions are possible and the impact of dif-
ferent modification is the subject of current investigations. The application of
complexity to anti-unification of sets of formulas as sketched in section 5 will be
further examined and an algorithmic framework will be developed.
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