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Preface

This volume contains the papers presented at AI 2007: The 20th Australian
Joint Conference on Artificial Intelligence held during December 2—6, 2007 on
the Gold Coast, Queensland, Australia.

AT 2007 attracted 194 submissions (full papers) from 34 countries. The review
process was held in two stages. In the first stage, the submissions were assessed
for their relevance and readability by the Senior Program Committee members.
Those submissions that passed the first stage were then reviewed by at least three
Program Committee members and independent reviewers. After extensive discus-
sions, the Committee decided to accept 60 regular papers (acceptance rate of 31%)
and 44 short papers (acceptance rate of 22.7%). Two regular papers and four short
papers were subsequently withdrawn and are not included in the proceedings.

AT 2007 featured invited talks from four internationally distinguished re-
searchers, namely, Patrick Doherty, Norman Foo, Richard Hartley and Robert
Hecht-Nielsen. They shared their insights and work with us and their contribu-
tions to Al 2007 were greatly appreciated. Al 2007 also featured workshops on
integrating Al and data-mining, semantic biomedicine and ontology. The short
papers were presented in an interactive poster session and contributed to a stim-
ulating conference.

It was a great pleasure for us to serve as the Program Co-chairs of AT 2007.
We would like to thank all the Senior Program Committee members for their
extremely hard work in the two-stage review process and the Program Com-
mittee members and the reviewers for the timely return of their comprehensive
reviews. Without their help and contributions, it would have been impossible
to make decisions and produce such high-quality proceedings. We also would
like to acknowledge the contributions of all the authors of 194 submissions. The
EasyChair conference management system was used (www.easychair.org) in all
stages of the review process and in the generation of the proceedings; it made
our life much easier.

We would like to thank the Conference Co-chairs, Abdul Sattar and Vladimir
Estivill-Castro of Griffith University for their guidance, and the local Organizing
Co-chairs Michael Blumenstein and Guido Governatori for making sure that
the conference ran smoothly. Special thanks go to Natalie Dunstan and Vicky
Wheeler for supporting the Committees so effectively.

We also would like to thank the following organizations for their generous
sponsorship of Al 2007: Griffith University, National ICT Australia, the Univer-
sity of Queensland, Queensland University of Technology, Bond University, the
Australian Computer Society and the Gold Coast City Council.

December 2007 Mehmet A. Orgun
John Thornton
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A UAYV Search and Rescue Scenario with
Human Body Detection and Geolocalization™

Patrick Doherty and Piotr Rudol

Department of Computer and Information Science
Linkoping University, SE-58183 Linkoping, Sweden
{patdo,pioru}@ida.liu.se

Abstract. The use of Unmanned Aerial Vehicles (UAVs) which can op-
erate autonomously in dynamic and complex operational environments
is becoming increasingly more common. The UAVTech Lab E, is pursu-
ing a long term research endeavour related to the development of future
aviation systems which try and push the envelope in terms of using and
integrating high-level deliberative or AI functionality with traditional
reactive and control components in autonomous UAV systems. In or-
der to carry on such research, one requires challenging mission scenarios
which force such integration and development. In this paper, one of these
challenging emergency services mission scenarios is presented. It involves
search and rescue for injured civilians by UAVs. In leg I of the mission,
UAVs scan designated areas and try to identify injured civilians. In leg IT
of the mission, an attempt is made to deliver medical and other supplies
to identified victims. We show how far we have come in implementing
and executing such a challenging mission in realistic urban scenarios.

1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously
in dynamic and complex operational environments is becoming increasingly more
common. While the application domains in which they are currently used are
still predominantly military in nature, we can expect to see widespread usage in
the civil and commercial sectors in the future as guidelines and regulations are
developed by aeronautics authorities for insertion of UAVs in civil airspace.
One particularly important application domain where UAVs could be of great
help in the future is in the area of catastrophe assistance. Such scenarios include
natural disasters such as earthquakes or tsunamis or man-made disasters caused
by terrorist activity. In such cases, civil authorities often require a means of
acquiring an awareness of any situation at hand in real-time and the ability to
monitor the progression of events in catastrophe situations. Unmanned aerial

* This work is supported in part by the National Aeronautics Research Program
NFFP04 S4202 and the Swedish Foundation for Strategic Research (SSF) Strate-
gic Research Center MOVIII and a Swedish Research Council grant.

1 Autonomous Unmanned Aerial Vehicle Technologies Lab, Linképing University, Swe-
den, http://www.ida.liu.se/ patdo/auttek/

M.A. Orgun and J. Thornton (Eds.): AT 2007, LNAI 4830, pp. 1 2007.
© Springer-Verlag Berlin Heidelberg 2007
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vehicles offer an ideal platform for acquiring the necessary situation awareness
to proceed with rescue and relief in many such situations. It is also often the
case that there is no alternative in acquiring the necessary information because
one would like to avoid placing emergency services personal in the line of danger
as much as possible.

For a number of years, The Autonomous Unmanned Aerial Vehicle Technolo-
gies Lab (UAVTech Lab) at Linkoping University, Sweden, has pursued a long
term research endeavour related to the development of future aviation systems
in the form of autonomous unmanned aerial vehicles [T2]. The focus has been on
both high autonomy (AI related functionality), low level autonomy (traditional
control and avionics systems), and their integration in distributed software archi-
tectural frameworks [3] which support robust autonomous operation in complex
operational environments such as those one would face in catastrophe situations.

More recently, our research has moved from single platform scenarios to multi-
platform scenarios where a combination of UAV platforms with different capa-
bilities are used together with human operators in a mixed-initiative context
with adjustable platform autonomy. The application domain we have chosen to
pursue is emergency services assistance. Such scenarios require a great deal of
cooperation among the UAV platforms and between the UAV platforms and
human operators.

The paper is structured in the following manner. In section 2] we introduce
the emergency services scenario. In section Bl we describe the UAV platforms
used in the scenario. In section Fl we consider the body identification and geo-
location phase of the mission in more detail and in section [l we consider the
supply delivery phase of the mission in more detail.

2 An Emergency Service Scenario

On December 26, 2004, a devastating earthquake of high magnitude occured off
the west coast off Sumatra. This resulted in a tsunami which hit the coasts of
India, Sri Lanka, Thailand, Indonesia and many other islands. Both the earth-
quake and the tsunami caused great devastation. During the initial stages of the
catastrophe, there was a great deal of confusion and chaos in setting into motion
rescue operations in such wide geographic areas. The problem was exacerbated
by shortage of manpower, supplies and machinery. Highest priorities in the ini-
tial stages of the disaster were search for survivors in many isolated areas where
road systems had become inaccessible and providing relief in the form of delivery
of food, water and medical supplies.

Let’s assume for a particular geographic area, one had a shortage of trained he-
licopter and fixed-wing pilots and/or a shortage of helicopters and other aircraft.
Let’s also assume that one did have access to a fleet of autonomous unmanned
helicopter systems with ground operation facilities. How could such a resource
be used in the real-life scenario described?
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A pre-requisite for the successful operation of this fleet would be the existence
of a multi-agent (UAV platforms, ground operators, etc.) software infrastructure
for assisting emergency services in such a catastrophe situation. At the very least,
one would require the system to allow mixed initiative interaction with multiple
platforms and ground operators in a robust, safe and dependable manner. As
far as the individual platforms are concerned, one would require a number of
different capabilities, not necessarily shared by each individual platform, but by
the fleet in total. These capabilities would include:

— the ability to scan and search for salient entities such as injured humans,
building structures or vehicles;

— the ability to monitor or surveil these salient points of interest and contin-
ually collect and communicate information back to ground operators and
other platforms to keep them situationally aware of current conditions;

— the ability to deliver supplies or resources to these salient points of interest if
required. For example, identified injured persons should immediately receive
a relief package containing food, medical and water supplies.

Although quite an ambitious set of capabilities, several of them have already been
achieved to some extent using our experimental helicopter platforms, although
one has a long way to go in terms of an integrated, safe and robust system of
systems.

To be more specific in terms of the scenario, we can assume there are two
separate legs or parts to the emergency relief scenario in the context sketched
previously.

Leg I. In the first part of the scenario, it is essential that for specific geo-
graphic areas, the UAV platforms should cooperatively scan large regions in
an attempt to identify injured persons. The result of such a cooperative scan
would be a saliency map pinpointing potential victims, their geographical
coordinates and sensory output such as high resolution photos and thermal
images of potential victims. The resulting saliency map would be generated
as the output of such a cooperative UAV mission and could be used directly
by emergency services or passed on to other UAVs as a basis for additional
tasks.

Leg II. In the second part of the scenario, the saliency map generated in Leg
I would be used as a basis for generating a logistics plan for several of the
UAVS with the appropriate capabilities to deliver food, water and medical
supplies to the injured identified in Leg I. This of course would also be done
in a cooperative manner among the platforms.

3 Hardware Platform

The UAVTech UAV platform [I] is a slightly modified Yamaha RMAX helicopter
(Fig. ). It has a total length of 3.6 m (including main rotor) and is powered by
a 21hp two-stroke engine with a maximum takeoff weight of 95 kg. The on-board
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Fig.1. The UAVTech UAV and the on-board camera system mounted on a pan-tilt
unit

system contains three PC104 embedded computers. The primary flight control
(PFC) system includes a Pentium IIT 700Mhz, a wireless Ethernet bridge, a GPS
receiver, and several additional sensors including a barometric altitude sensor.
The PFC is connected to the RMAX helicopter through the Yamaha Attitude
Sensor (YAS) and Yamaha Attitude Control System (YACS), an image pro-
cessing computer and a computer responsible for deliberative capabilities. The
deliberative/reactive system (DRC) runs on the second PC104 embedded com-
puter (Pentium-M 1.4GHz) and executes all high-end autonomous functionalities
such as mission or path planning. Network communication between computers
is physically realized with serial lines RS232C and Ethernet.

The image processing system (IPC) runs on the third PC104 embedded Pen-
tium IIT 700MHz computer. The camera platform suspended under the UAV
fuselage is vibration isolated by a system of springs. The platform consists of
a Sony CCD block camera FCB-780P and a ThermalEye-3600AS miniature in-
frared camera mounted rigidly on a Pan-Tilt Unit (PTU) as presented in Fig.[Il
The video footage from both cameras is recorded at a full frame rate by two
miniDV recorders to allow processing after a flight.

4 Mission Leg I: Body Identification

The task of the 1st leg of the mission is to scan a large region with one or more
UAVs, identify injured civilians and output a saliency map which can be used
by emergency services or other UAVs. The technique presented uses two video
sources (thermal and color) and allows for high rate human detection at larger
distances then in the case of using the video sources separately with standard
techniques. The high processing rate is essential in case of video collected on-
board a UAV in order not to miss potential objects as a UAV flies over it. A ther-
mal image is analyzed first to find human body sized silhouettes. Corresponding
regions in a color image are subjected to a human body classifier which is config-
ured to allow weak classifications. This focus of attention allows for maintaining
a body classification at a rate up to 25Hz. This high processing rate allows for
collecting statistics about classified humans and to prune false classifications
of the "weak” human body classifier. Detected human bodies are geolocalized
on a map which can be used to plan supply delivery. The technique presented
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has been tested on-board the UAVTech helicopter platform and is an important
component in our research with autonomous search and rescue missions.

4.1 Image Processing

Video footage collected by a UAV differs substantially from images acquired
on the ground and the use of standard techniques is not straight forward. For
instance, both maximum and minimum speeds are determined by an aircraft’s
properties. Nevertheless, high flight speed is preferred in case of search and
rescue applications. Therefore it is essential for the image processing algorithm
to perform close to the full frame rate to process all frames of the video.

The algorithm we use takes as input two images (camera planes are assumed
to be close to parallel to the earth plane) and the processing starts by analyzing
the thermal image. The image is first thresholded to find regions of human
body temperature. The shape of the regions is analyzed and those which do not
resemble a human body (i.e. wrong ratio of minor and major axes of the fitted
ellipse and incorrect area) are rejected. Additionally, regions which lie on the
image border are rejected as they may belong to a bigger warm object. Once
human body candidates are found in the thermal image, corresponding regions
in the color image are calculated.

Computation of the corresponding region in the color image could be achieved
by performing image registration or feature matching in both images. The former
technique is too time consuming and the latter is infeasible because of mostly
different appearance of features in color and thermal images. Here, a closed form
solution is used which takes into account information about the UAV’s state.

Computation of the corresponding region in the color image starts with calcu-
lating coordinates of a point T (vr) whose projection is the pixel in the thermal
image u; i.e.

i, = Pop U, € P vp e P? (1)

where P, represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in Figure[2 A line equation with
the direction vector Ucq,;, which goes through camera center through pixel u;
and intersects the ground plane in point T is:

bp — 0 =t Voam tER (2)

The ground plane is defined by the point G(9) and the normal vector 7 which
is the down component of the NED (North, East, Down) frame:

(0r — ) - =0 3)

Finally, the vector o which describes the point of intersection of a ray of light
going through the camera center and the pixel of the target can be calculated
according to:

U = Vo + - ~ * Veam (4)
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Fig. 2. Calculation of a target coordinates

In order to calculate U4, the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can be
expressed as:
. T
cham - Phelipptupp (]- 0 0) (5)

where P, describes the transformation depending on the undistorted pixel po-
sition ;. Matrix Py, is built to represent a transformation introduced by the
pan-tilt unit. Pye;; represents the attitude of the UAV and is built up from roll,
pitch and yaw angles delivered by the YAS system.

The method presented can be extended to relax the flat world assumption.
The point T can be found by performing ray-tracing along the line described by
equation Eq. 2l to find the intersection with the ground elevation map.

Calculated world position can additionally be checked against the on-board
geographic information database to verify whether the calculated point is valid.
Depending on the situation, certain positions can be excluded from the map. If
the world position is accepted, its projection is calculated for the color camera
using the following formula:

U = Py 1. €P? 0€P3 (6)

where P, constitutes the matrix encoding intrinsic and extrinsic parameters of
the color camera.

4.2 The Classifier

Once the corresponding pixel in the color image is identified, a sub-window with
the pixel . in the center is selected and it is subjected to an object detector
first suggested by [I1]. The work was a basis for several improvements, one of
which was presented in [J]. One of these included extending the original feature
set which is presented in Fig.

The classifier which is in fact a cascade of boosted classifiers working with
Haar-like features requires training with a few hundred positive and negative
examples. During learning the structure of a classifier is learned using boosting.
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[

[

Fig. 3. Leinhart’s extended set of available features

The use of a cascade of classifiers allows for dramatic speed up of computations
by skipping negative instances and only computing features with high probability
for positive classification. The speed up comes from the fact that the classifier,
as it slides a window at all scales, works in stages and is applied to a region of
interest until at some stage the candidate is rejected or all the stages are passed.
This way, the classifier quickly rejects subregions which most probably do not
include features needed for positive classification (i.e. background processing
is quickly terminated). The classifier works with features which can be quickly
extracted using intermediate image representations - integral images. The reason
for working with features instead of pixel intensities is that features encode
knowledge about the domain, which is difficult to learn from raw input data.
The features encode the existence of oriented contrasts between regions of an
image. The Haar-like features used here can be calculated at any position and
any scale in constant time using only eight look-ups in the integral image.

The classifier used in this work is a part of the Open Source Computer Vision
Library [I0] and the trained classifier for upper-, lower- and full human body
is a result of [§]. The trained classifier is best suited for pedestrian detection in
frontal and backside views which is exactly the type of views a UAV has when
flying above the bodies lying on the ground.

Since the body classifier is configured to be "relaxed” it delivers sporadic false
positive classifications. To counter for most of them the following method is used
to prune the results. Every salient point in the map has two parameters which
are used to calculate certainty of a location being a human body: T't,qme which
describes the amount of time a certain location was in the camera view and T304y
which describes the amount of time a certain location was classified as a human
body. The certainty factor is calculated as follows:

Tyo
Prody(loc;) = be W (7)

A location is considered a body if pyody(loc;) is larger than a certain threshold
(e.g. 0.5 during the flight tests) and T'¢rqme is larger than a desired minimal ob-

servation time. Locations are considered equal if geographical distance between
them is smaller then a certain threshold (depending on the geolocation accuracy)
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and the final value of a geolocalized position is an average of the observations

(c.f. Section ).

4.3 Experimental Setup

A series of flight tests were performed in southern Sweden at an emergency
services training center used by the Swedish Rescue Services Agency to train fire,
police and medical personnel. Flight tests were performed over varied terrain
such as asphalt and gravel roads, grass, trees, water and building roof tops
which resulted in a variety of textures in the images. Two UAVs were used over
a search area of 290x185 meters. A total of eleven bodies (both human and
dummies with close to human temperature) were placed in the area. The goal of
the mission was to generate a saliency map. The general mission plan is shown
in Fig. @l Before take-off, one of the UAVs was given an area to scan (dashed

Fig. 4. Mission overview

line polygon). It then delegated part of the scanning task to another platform,
generating sub-plans for itself and the other platform. The mission started with a
simultaneous autonomous take-off at positions H; and Hs and the UAVs flew to
starting positions S7 and Ss for scanning. Throughout the flights, saliency maps
were incrementally constructed until the UAVs reached their ending positions
E4 and E5. The UAVs then returned to their respective take-off positions for a
simultaneous landing. The mission took approximately ten minutes to complete
and each UAV traveled a distance of around 1km.

4.4 Experimental Results

The algorithm found all eleven bodies placed in the area. The saliency map
generated by one of the helicopters is shown in Fig. [fl The images of identified
objects are presented in Fig. [6l Several positions were rejected as they were not
observed long enough (i.e. 5 seconds). Images 7, 9, and 14 present three falsely
identified objects.

The accuracy of the body geolocation calculation was performed by measuring
GPS (without differential correction) positions of bodies after an experimental
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Fig. 5. Flight path and geolocated body positions

Fig. 6. Images of classified bodies. Corresponding thermal images are placed under
color images.

Eastm

4
-1 4 * object 1
= object 2
+ object 3
x object 4
* object 5

34 + object 6
North m - object 7

Fig. 7. Geolocation error for multiple objects

flight. The accuracy of the system is sufficient for the application of delivering
supplies to the detected humans. Figure [ presents the error measurement for
seven geolocated objects. The measurement has a bias of approximately two
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meters in both east and north directions. It is a sum of errors in GPS mea-
surement, accuracy of the camera platform mounting, PTU measurement, and
camera calibration inaccuracies. The spread of measurement samples of approx-
imately 2.5 meters in both east and north directions is caused by the error of
attitude measurement, the system of springs in the camera platform, the flat
ground assumption, and time differences between UAV state estimate, PTU
angle measurement and image processing result acquisition. A large geolocation
error of object 7 is caused by erroneous GPS measurement. Object 7 was located
on a metal foot-bridge and the GPS antenna during static measurement was ad-
ditionally partially occluded by metal railings. The noise on the measurement
however is consistent with the rest of the objects.

5 Mission Leg II: Package Delivery

After successful completion of leg I of the mission scenario, we can assume that
a saliency map has been generated with geo-located positions of the injured
civilians. In the next phase of the mission, the goal is to deliver configurations
of medical, food and water supplies to the injured. In order to achieve this leg
of the mission, one would require a task planner to plan for logistics, a motion
planner to get one or more UAVS to supply and delivery points and an execution
monitor to monitor the execution of highly complex plan operators. Each of these
functionalities would also have to be tightly integrated in the system. These
components are described in section [B.1]

Currently, we have developed this mission leg primarily in simulation with
hardware-in-the-loop. Our avionics boxes are coupled directly to a simulator
and execute all functionalities necessary for completion of the mission in the
actual hardware we fly missions with. A physical winch system for picking up
and putting down packages is currently under development.

For these logistics missions, we assume the use of one or more UAVs with
diverse roles and capabilities. Initially, we assume there are n injured body lo-
cations, several supply depots and several supply carrier depots (see figure [).

5.1 Planning, Execution and Monitoring

Figure[@ shows part of our UAV system architecture, with an emphasis on those
components that are the most relevant for planning, execution, and execution
monitoring.

At the top of the center column is the plan executor which given a mission
request, calls DyKnow [6l7], a knowledge processing middleware, to acquire es-
sential information about the current contextual state of the world or the UAV’s
own internal states. Together with a domain specification and a goal specifica-
tion related to the logistics scenario, this information is fed to TALplanner [4lJ5],
a logic-based task planner which outputs a plan that will achieve the designated
goals, under the assumption that all actions succeed and no failures occur. Such
a plan can also be automatically annotated with global and/or operator-specific
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Fig. 8. A Supply Depot (left) and a Carrier Depot (right)
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Fig. 9. System Architecture Overview

conditions to be monitored during execution of the plan by an execution moni-
tor in order to relax the assumption that no failures can occur. Such conditions
are expressed as temporal logical formulas and evaluated on-line using formula
progression techniques. This execution monitor notifies the plan executor when
actions do not achieve their desired results and one can then move into a plan

repair phase.

The plan executor translates operators in the high-level plan returned by
TALplanner into lower level command sequences which are given to the command
executor. The command executor is responsible for controlling the UAV, either
by directly calling the functionality exposed by its lowest level Flight Command
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Language (FCL) interface or by using so called task procedures (TPs) through
the TP Executor subsystem. The TP Executor is part of the Modular Task
Architecture (MTA) [3], which is a reactive system designed in the procedure-
based paradigm and developed for loosely coupled heterogeneous systems. A
task is a behavior intended to achieve a goal in a limited set of circumstances.
A task procedure is the computational mechanism that achieves this behavior.
The TPs have the ability to use deliberative services, such as the task planner
described above or motion planners [I2/T3], in a reactive or contingent manner
and to use traditional control services in a reactive or contingent manner and
thereby integrate deliberation and reaction.

During plan execution, the command executor adds formulas to be monitored
to the execution monitor. DyKnow continuously sends information about the
development of the world in terms of state sequences to the monitor, which uses
a progression algorithm to partially evaluate monitor formulas. If a violation is
detected, this is immediately signaled as an event to the command executor,
which can suspend the execution of the current plan, invoke an emergency brake
command, optionally execute an initial recovery action, and finally signal new
status to the plan executor. The plan executor is then responsible for completing
the recovery procedure.

The fully integrated system is implemented on our UAVs and can be used
onboard for different configurations of the logistics mission described in Leg II
of the larger mission. The simulated environments used are in urban areas and
quite complex. Plans are generated in the millisecond to seconds range using
TALplanner and empirical testing shows that this approache is promising in
terms of integrating high-level deliberative capability with lower-level reactive
and control functionality.

6 Conclusions

We have described a realistic emergency services scenario and shown how far
we have come in the deployment of autonomous UAV systems which require the
use of deliberative, reactive and control capabilities in a highly integrated and
time-constrained context. Currently, we are developing a winch system for the
RMAX which will be used to deliver supplies of the type described in leg IT of the
scenario. We are also refining the body identification algorithms and developing
a framework for cooperation based on the use of delegation of goals and action
sequences.
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Abstract. Social agents are computational cognitive agents that have
epistemic abilities besides the traditional ones of action, communication
and other forms of interaction. There is increasing interest in the mod-
elling of such agents. This talk will first outline selected aspects of social
agents and potential applications. Then we proceed to an example of
how a couple of aspects may be investigated, viz., agent trust based on
experience.

Extended Summary

Traditionally agents in artificial intelligence are imbued with abilities to act
on environments, interacting with other agents from time to time. Multiagent
systems are configured within such a framework. These agents use reasoning to
enhance reactive scripts triggered by sensing. The reasoning is typically confined
that about distributing tasks, failure planning, etc. Beliefs are often part of an
agent’s attributes, and an essential component of any epistemic ability. The
nature of these beliefs determines the cognitive power of the agent. In certain
applications it may be necessary for an agent A to maintain beliefs not only
about another agent B but also about B’s beliefs about A, and B’s beliefs about
A’s beliefs about B, etc. Social agents are those that ideally have such complex
beliefs. However, as infinite nesting is not feasible there is the question about
how any working system (as in the “real world”) can get away with less. Some
suggestions will be reviewed.

In social agent interactions within a stable society many conventions are taken
for granted. These are the social norms. For social norms to prevail agents
must trust one another. The second part of the talk will outline recent work
|[Eoo an nz 07-1] on how trust can be modelled as “condensed experience”,
revealing the kind of mathematical structures needed and some logic questions
that naturally arise.
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Abstract. Vision Geometry is the are of Computer Vision that deals
with computing the geometry of the 3D world from sequences of images.
It grew out of Photogrammetry, a field that goes back at least to the
start of the 20th century. In the 1990s this field was transformed by the
application of methods of Projective Geometry, leading to many new
algorithms and deployment of the new methods in a wide variety of
applications.

The algorithmic basis for Vision Geometry still ultimately relied on a
technique called ”bundle adjustment”, involving iterative refinement of
initial solutions by Newton or Gauss-Newton methods. These had the
disadvantage of often finding local rather than global minima.

Recent work has focussed on applying different optimization tech-
niques, particularly Convex Optimization techniques to attempt to find
guaranteed global solutions to these problems. I will talk about progress
in this area, through the use of methods such as Second Order Cone Pro-
gramming, branch-and-bound fractional programming and semi-definite
programming.
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Abstract. We introduce a Bayesian network classifier less restrictive
than Naive Bayes (NB) and Tree Augmented Naive Bayes (TAN) clas-
sifiers. Considering that learning an unrestricted network is unfeasible
the proposed classifier is confined to be consistent with the breadth-
first search order of an optimal TAN. We propose an efficient algorithm
to learn such classifiers for any score that decompose over the network
structure, including the well known scores based on information theory
and Bayesian scoring functions. We show that the induced classifier al-
ways scores better than or the same as the NB and TAN classifiers.
Experiments on modeling transcription factor binding sites show that,
in many cases, the improved scores translate into increased classification
accuracy.

1 Introduction

Learning Bayesian networks has been a hot and fruitful research topic [23}15]
[BI7]. The goal of learning a Bayesian network is to find both the structure
and the parameters of the network that best fit the data, according to a given
scoring function. The inference of a general Bayesian network has been shown
to be an NP-hard problem [5], even for approximate solutions [7]. As a conse-
quence, heuristic algorithms became the standard methodology for addressing
this problem [23]. A common approach is to impose restrictions over the net-
work structure. In this context, two results set the border between efficient and
non-efficient structure learning. In one hand, Chow and Liu showed that trees
can be learned in polynomial time [4], on the other hand, Dasgupta proved that
learning 2-polytrees is NP-hard [§].

Bayesian networks have been widely used in the context of classification [21],
[I614]. The simplicity and high accuracy of the Naive Bayes (NB) classifier [I1]
have led to its extensive use, and to several attempts to extends it. In this line of
research Friedman et al [I4] proposed the Tree Augmented Naive Bayes (TAN)
classifier in order to overcome the strong independence assumptions imposed by
the NB network. The TAN is an extension of NB which allows additional edges

M.A. Orgun and J. Thornton (Eds.): AI 2007, LNAI 4830, pp. 16 2007.
© Springer-Verlag Berlin Heidelberg 2007
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between the attributes of the network in order to capture correlations among
them. Such correlations are however restricted to a tree structure. Friedman et
al showed that TAN was indeed more accurate than NB on benchmark datasets.

Herein, we introduce a Bayesian network classifier less restrictive than NB and
TAN classifiers. Considering that learning an unrestricted network is unfeasible,
the underlying graph of the proposed classifier is confined to be consistent with
the breadth-first search (BFS) order of an optimal TAN and to have a bounded
in-degree, henceforward called BFS-consistent k-graph (BCkG). We show that
learning BCEG’s can be done efficiently and for any scoring functions that decom-
poses over the network structure. Well known scores with this property are those
based on information theory, such as log likelihood (LL), Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), minimum description length
(MDL); and Bayesian scoring function such as K2, Bayesian Dirichlet (BD) and
its variants (BDe, BDeu), and mutual information test (MIT). We show that
the classifiers induced from BCEG’s score always better than or the same as the
NB and TAN classifiers, and moreover that the search space of the learning al-
gorithm is exponentially larger than the TAN learning algorithm. We check the
quality of our approach with biological data. Experiments show that, in many
cases, the improved scores translate into increased classification accuracy.

The paper is organized as follows. In Section 2, we briefly revise Bayesian
networks, Bayesian network classifiers and their learning algorithms. In Section
3, we introduce the main contribution of this paper, the learning algorithm for
BCEG classifiers. In Section 4, we apply our approach in the realm of computa-
tional biology, namely to model transcription factor binding sites, and present
some experimental results. Finally, in Section 5 we draw some conclusions and
discuss future work.

2 Basic Concepts and Results

In this section we introduce some notation, while recalling relevant concepts
and results concerning Bayesian networks which are directly related with the
contribution of this paper.

2.1 Bayesian Networks

A Bayesian network is a triple B = (X,G,0). The first component X =
(X4,...,X,) is afinite random vector where each random variable X; ranges over
a finite domain D;. We denote the joint domain D = II* ; D,. The second com-
ponent G = (N, E) is a directed acyclic graph with nodes N = {X1,..., X,,} and
edges E representing direct dependencies between the variables. The third com-
ponent © encodes the parameters {6, ., }xep of the network, where 6, ., =
Pg(z;|11,,) for each possible value x; of X;, and II,, of ITx,, where IIx, de-
notes the set of parents of X; in G. A Bayesian network defines a unique joint
probability distribution over X given by
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P(X1,.... Xn) = [[ 0x.1115, - (1)
i=1

We denote the set of all Bayesian networks with n variables by B,,.

Informally, a Bayesian network encodes the independence assumptions over
the component random variables of X. An edge (i,j) in E represents a direct
dependency of X; to X;. Moreover X; is independent of its non descendants
given its parents IIx, in G.

The problem of learning a Bayesian network given data 7' consists on finding
the Bayesian network that best fits the data 7. In order to quantify the fitting
of a Bayesian network a scoring function ¢ : B, x D™ — R is considered.
In this context, the problem of learning a Bayesian network can be recasted
to the following optimization problem. Given a dataset T = {x1,...,X,,} and
a scoring function ¢, the problem of learning a Bayesian network is to find a
Bayesian network B € B,, that maximizes the value ¢ for T'.

Several scoring functions have been proposed in the literature [6]17,[18]22].
The discussion of the advantages and disadvantages of each of these functions is
outside the scope of this paper.

2.2 Bayesian Network Classifiers

A Bayesian network classifier is a Bayesian network where X = (X1, ..., X, C).
The variables X1, ..., X, are called attributes and C'is called the class variable.
Moreover, the graph structure G is such that the class variable has no parents,
that is, IIc = 0, and all attributes have at least the class variable as parent,
that is, C' € IIx,. The corresponding classifier is defined as

argm(:;yuxPB(C|X17 coy Xp).

We therefore reformulate the model to make it more tractable. Using the defini-
tion of conditional probability and Equation () leads to the following classifier:

arg mgx Pg(C) lj[l 9X1~|Hxi .

Informally, the problem of learning a Bayesian network classifier can be re-
casted as the problem of learning a Bayesian network where all attributes have
the class variable as parent.

Naive Bayesian Network Classifier. A naive Bayesian network (NB) [11]
is a Bayesian network classifier where each attribute has the class variable as
its unique parent, that is, ITx, = {C} for all 1 < i < n. Since the NB has a
fixed graph structure, learning the network reduces to computing the empirical
distribution.

The NB classifier is one of the most effective classifiers, in the sense that,
in many cases, its predictive performance is competitive with state-of-the-art
classifiers [T0L@]. In fact, the NB classifier is computationally undemanding and
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shows an unexpected accuracy in many applications. However, the independence
assumption is too strict and relaxing this assumption may lead to more accurate
classification.

Tree Augmented Naive Bayesian Network Classifier. A tree augmented
naive Bayesian network (TAN) [14] is a Bayesian network classifier where there
exists an r € {1,...,n} such that IIx, = {C} and IIx, = {C,X;} for all
1 < i < n with ¢ # r. The TAN was first proposed by Friedman et al [T4] to
overcome the strong independence assumptions imposed by the NB network. In
fact, the TAN is an extension of NB which allows additional edges between the
attributes of the network in order to capture correlations among them. Such
correlations are however restricted to a tree structure.

In [14] an algorithm to find an optimal TAN that maximizes the LL is given.
The main idea is to consider a complete weighted undirected graph, where each
edge between X; and X; is weighted with the conditional mutual information
between X; and X given the class variable C'. Given this, the problem reduces
to determining a maximal weighted spanning tree, using the algorithm by Chow
and Liu [4]. After computing such spanning tree, a direction has to be assigned
to each edge of the tree. This is done by choosing an arbitrary attribute as the
tree root and then setting the direction of all edges to be outward from it.

Extending TAN Classifier to Deal with Decomposable Scores. The TAN
was originally proposed for maximizing the LL score but it can be easily adapted
to deal with any scoring function that is decomposable and score equivalent. We
recall that a scoring function ¢ is decomposable if it can be written as

¢(B,T)=> ¢:i(llx,,T). (2)
=1

Moreover, a scoring function is said to be score equivalent if it assigns the same
value to all directed acyclic graphs that are represented by the same essential
graph. All interesting scoring functions in the literature are decomposable, since
it is unfeasible to learn undecomposable scores. LL, AIC, BIC and MDL are
decomposable and score equivalent, whereas K2, BD, BDe, BDeu and MIT are
decomposable but not score equivalent.

According to Heckerman et al [I7], finding an optimal TAN classifier for de-
composable and score equivalent scoring functions reduces to weighting each
undirected edge between X; and X; by ¢; {X;,C},T) — ¢;({C},T), which is
equal to ¢;({X;,C},T) — ¢:({C},T) by score equivalence of ¢, and to find a
maximal weighted (undirected) spanning tree. Moreover, learning an optimal
TAN classifier for scoring functions that are only decomposable, but not score
equivalent, can also be done in polynomial time. In this case, however, an edge
between X; and X; may score differently depending on its direction, and so a
directed spanning tree must be found (instead of an undirected one). The idea is
to weight each directed edge from X; and X; with ¢;({X;,C},T) —¢;({C},T)
and then, for each node X, find an optimal directed spanning tree rooted at X,
with Edmonds’ algorithm [12]
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3 BFS-Consistent Bayesian Network Classifiers

We now introduce the main contribution of this paper, a simple and effective
heuristic for a causality order between the attributes based on a breadth-first
search (BFS) over an optimal TAN. The main idea is to take the total order
induced by the BFS over an optimal TAN and then search for an optimal network
(of bounded in-degree) consistent with it. It is easy to show that the score of
the resulting network is always greater than or equal to the score of TAN and
NB. The foremost benefit of this approach is that learning such an optimal
network can be done efficiently, that is, in polynomial time over the number of
attributes. Moreover, the class of the networks consistent with the BFS order
is exponentially larger, in the number of variables, when compared to TAN
networks.

We start by introducing some auxiliary concepts. A k-graph is a graph where
each node has in-degree at most k. Trees and forests are 1-graphs.

Definition 1 (BFS-consistent k-graph). Given a TAN R with a set of at-
tributes N, a graph G = (N, E) is said to be a BFS-consistent k-graph (BCkG)
w.r.t R if it is a k-graph and for any edge in £ from X; to X; the node X; is
visited in breadth-first search (BFS) of R before X ;. Henceforward, we denote
by B, the set of all BCkG’s w.r.t. R.

The above definition of consistency imposes that there can only exist an edge
from X; to X in G € Bf, if X is less than or as deep as X in R. We assume that
if i < j and X; and X; are at the same level, then the BFS over R reaches X;
before X ;. Other approaches to order attributes at the same level are discussed
in the conclusions.

Ezample 1. Given the underlying graph for the attributes of @ TAN R in (a), its
BFS is represented by a dashed line in (b). A BC2G w.r.t R is presented in (c).

< o ‘

() (b) ()

The core idea of the BCkG learning algorithm is to compute an optimal TAN R
and improve it by adding/removing dependencies which were omitted/present
because of the TAN structure restrictions. For efficiency purposes, the modified
model must be a BFS-consistent k-graph w.r.t. R. In this context, the total order
induced by the BFS over R might add dependencies from higher nodes to deeper
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nodes. In detail, the algorithm starts by computing an optimal TAN as described
in Section Then it performs a BFS over the optimal TAN to construct a
total order. Finally, it ranges over each attribute X;, generates the set «; of all
attributes less than X;, and takes as parents of X; the set S C «; such that
¢;(SU{C},T) is maximal over all subsets of a; with at most k attributes. The
pseudocode of the algorithm is presented in Algorithm [

Algorithm 1. Learning BCkG network classifiers
1. Run a (deterministic) algorithm that outputs an optimal TAN R according to ¢.
2. Compute the total order C induced by the BFS over R (ignoring the class variable).
3. For each attribute X; in R do:
(a) Compute the set a; = {X; € R: X; C X; and X; # X;}.
(b) For each subset S of a; with at most k attributes:
i. Compute ¢;(SU{C},T).
ii. If ¢;(SU{C},T) is the maximal score for X;, set IT; = S U{C}.
4. Output the directed graph G such that the parents of an attribute X; are II;.

Theorem 1 (Soundness). Algorithm [ constructs a BCkG Bayesian network
classifier that maximizes the ¢-score given data T'.

Proof. Since all potential parents for each node are checked, the algorithm re-
turns the k-graph G BSF-consistent w.r.t R with the highest score. Moreover,
this graph is acyclic since the parents of a node X; must be in «ay, that is, must
belong to the path in R from its root to X; (excluding X;). Moreover, it is easy to
see that for any path X;,, Xi,,... X;, in G we have that X, € o, for 1 < j <k.
If there existed a cycle X;,, X;,,... X;, it would imply that X;, € «;, which is
absurd. O

Proposition 1. Algorithm [ constructs a BCkG Bayesian network classifier
whose ¢-score is always greater than, or equal to, the ¢-score of the optimal
TAN.

Proof. Start by noticing that the soundness of Algorithm [ assures that the
resulting BCkG w.r.t R is the maximal among all BCkKG’s in B%. Moreover,
observe that the underlying graph Gz of the TAN R (without the class variable)
is BFS-consistent w.r.t R, that is, Gg € B}% for all k£ > 1. Hence, the soundness
of Algorithm [I] guarantees that the BN classifier Bg, constructed by adding an
edge from the class variable C' to all attributes in the output k-graph G, is such
that ¢(Bg,T) > ¢(R,T). O

Theorem 2 (Complexity). Algorithm[I]constructs a BCkG Bayesian network
classifier in O(n**1v(k,T)) time where v(k, T) is an upper bound for computing
o (SU{C}HT).

Proof. Step 2 takes O(n) time. Step 3a) takes O(n) time, while step 3b) takes
O(n*y(S,T)) time because it ranges over all subsets S with at most k elements
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(which takes O(n*) time) and for each of this sets it computes ¢;(S U {C},T)
(which takes O(~(S,T)) time. Thus, the overall complexity of the algorithm is
O(nF+1v(S,T)) time. ]

The theorems above assert the soundness and polynomial-time bound of the
BCEkG learning algorithm. At this point it remains to show that, despite consid-
ering an optimal TAN to confine the search space, the number of graphs searched
increases exponentially, in the number of attributes, when compared to TAN’s.

Proposition 2. Let R be a TAN with n attributes, then the number of non-

. . k2 _k_
trees in BY is at least 2%~ 2 ~2 7! when n > k.

Proof. We denote by (N,C) the total order induced by BFS over R (ignoring
the class variable). Since, this order is total (also called a linear), for any pair of
nodes X; and X; in N, with ¢ # j, we can say that a node X; is lower than X;
if and only if X; & Xj;. Given this, notice that the i-th node of R has precisely
(i — 1) lower nodes. We conclude that, when i > k(< n), there are at least 2%
subsets of N with at most k lower nodes. Moreover, when (1 <)i < k, only 2¢~1
subsets of N with at most k lower nodes exist. Thus,

n k

. .2 .

A ( I1 2‘“) x <H2”> =2
i=1

i=k+1

give us a lower bound for the total number of possible BCAG w.r.t R (recall that
a BC1G is also a BC2G, both a BC1G and a BC2G are also a BC3G, and so
on). Now, consider that X; is the root, and X is the child of the root in R. The
only two subsets of N with at most k lower elements than X, are () and {X,}.
This choice splits in two all BCkG’s in BY. Those for which the set of parents

of X is () cannot be trees since X; has no parents as well. Therefore, there are

k 2 .,
at lest |BQR| > onk=" —5-1 iy B% that are non trees. O

4 Experimental Methodology and Results

We compared the BC2G classifier with TAN and NB classifiers. We only con-
sidered discrete attributes and removed instances with missing values from the
datasets. As suggested by Friedman et al [I4] we improved the performance of
both TAN and BCkG classifiers by introducing an additional smoothing opera-
tion. This is particularly important in small datasets where the estimation of the
conditional probabilities, given the parent attributes plus the class variable, is
unreliable. NB classifiers are almost not affected by this problem since the data
is partitioned according to the class variable and, usually, the class variables are
adequately represented in the training set. The parameters of TAN and BCkG
networks were smoothed using Dirichlet priors [I7]. This amounts to adding 5
pseudo instances with conditional probabilities, given the parent attributes plus
the class variable, distributed according to the frequency of the corresponding
attribute in the training set.
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Modeling Transcription Factor Binding Sites

We wanted to evaluate our method in the context of computational biology.
There is a straightforward application of the BCkG model in the representation
of transcription factor binding sites.

An important part of gene regulation is mediated by specific proteins, called
the transcription factors, which influence the transcription of a particular gene
by binding to specific sites on DNA sequences, called transcription factor binding
sites (TFBS). Such binding sites are relatively short stretches of DNA, normally
5 to 25 nucleotides long. A commonly used representation of TFBS is a position
specific scoring matrices (PSSM). This representation assumes independence of
nucleotides in the binding sites, and so can be modeled by a Naive Bayes network.
Some works appeared that argued in the direction of non-additivity in protein-
DNA interactions [19] making a way for more complex models to appear which
account for nucleotide interactions. Barash et al had already obtained good re-
sults modeling TFBS with trees and mixtures of trees [I]. Recently, Sharon and
Segal also contributed in this direction [20]. Herein, we do preliminary evalua-
tion of the extent to which the richer BC2G models are beneficial in representing
TFBS.

The TRANSFAC database [13] contains hundreds of biologically validated
TFEFBS. We extracted 14 data sets of aligned binding sites from the TRANSFAC
database for which there were 20 or more sites. For each binding site we evaluated
the ability of NB, TAN and BC2G to describe the distribution underlying the
TFEFBS. We performed a 10 fold cross-validation test in each data set and the
results of the evaluation are presented in Figure [Il
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Fig. 1. Scatter plot comparing NB, TAN, and BC2G networks when modeling tran-
scription factor binding sites. Points above the diagonal line corresponds to data sets
on which the model in the z axis performs better than the model in the y axis.

5 Conclusions

This paper introduced a new heuristic to learn Bayesian network classifiers. The
proposed heuristic consists of improving an optimal TAN classifier by adding
important dependencies and removing irrelevant ones, guiding this process with
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the total order induced by the BFS over the optimal TAN. The advantage of
this restriction is twofold. First, the learning algorithm is polynomial. Second, as
Friedmann et al observed [I4], unrestricted learning does not necessarily outper-
forms TAN and NB due to overﬁttingﬂ and for this reason structure restriction
helps avoiding this problem. The proposed heuristic is an improvement over the
partial order based heuristic introduced in [2], adapted for classification. The
proposed classifier scores always better than both TAN and NB classifiers. More-
over, experiments on modeling transcription factor binding sites show that, in
many cases, the improved scores translate into increased classification accuracy.

Direction of future work include: instead of fixing an order for attributes
at the same level in the BFS (c.f. Section Bl comment after Definition [I), (i)
consider a random order over attributes at the same level or (ii) apply the TAN
algorithm solely to attributes at the same level and order them with a BFS over
the resulting TAN; combine and compare exhaustively our approach with other
state-of-the-art Bayesian network learning methods; extending BCkG to deal
with missing values and non discretized continuous variables; applying BCEG to
a wider variety of datasets.
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Abstract. Recently a robust probabilistic L1-PCA model was intro-
duced in [I] by replacing the conventional Gaussian noise model with
the Laplacian .1 model. Due to the heavy tail characteristics of the L1
distribution, the proposed model is more robust against data outliers. In
this paper, we generalized the L1-PCA into a mixture of L1-distributions
so that the model can be used for possible multiclustering data. For the
model learning we use the property that the L1 density can be expanded
as a superposition of infinite number of Gaussian densities to include a
tractable Bayesian learning and inference based on the variational EM-
type algorithm.

1 Introduction

In many applications, multivariate observations have frequently been represented
using a mixture of Gaussian models [2]. These are convenient in many respects,
they have a closed-form probability density function and the parameter can
easily be obtained using the EM algorithm [3]. The Gaussian mixture model is
a generative model and it is useful to consider the process of generating samples
from the density it represents.

To extract intrinsic structures in a data set, the mixture of PPCA (proba-
bilistic PCA) [] was proposed to enable one to model non-linear relationships
by aligning a collection of such local models. J. Verbeek’s work [5] on variational
model for the mixture of PPCA provided inner sight to the global alignment of
local linear models. However, PPCA, FA (Factor Analyzer) and their mixture
counterparts have severe limitations in practice. They all are based on Gaussian
density assumptions, particularly for the likelihood or noise process. It is clear
that not all real-world data sets can be modelled well by Gaussian distributions.
In particular, constraining a model to Gaussian assumption whose tails rapidly
decay is a well-characterized disadvantage when the true underlying distribution
is heavy-tailed (has high kurtosis) or when there exist outliers in the data set.
In such cases, it is obviously more appropriate to assume a heavy-tailed distri-
bution within the analysis, but this assumption raises significant difficulties in
tractability.

Generally speaking a general mixture distribution comprises a finite or even
infinite number of components, possibly of different distributional types, that can
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describe different features of data. There are lots of attempts to use non-Gaussian
components in a mixture model to facilitate much more careful description of
complex systems, as evidenced by the enthusiasm with which they have been
adopted in such diverse areas as astronomy, ecology, bioinformatics, computer
science, ecology, economics, engineering, robotics and biostatistics. For example,
in bioinformatics, a two components mixture model [6] was introduced, one of
which is the Laplace distribution as a long-tailed alternative to the Gaussian
distribution, to identify differentially expressed genes in microarray experiments.
And, in computer science, spam filters and web context analysis [7] start from a
mixture assumption to distinguish spams from regular emails and group pages
by topic, respectively.

Among non-Gaussian components, the Student-¢ component is a very inter-
esting one. It is one of heavy-tailed distributions. In fact, the Student-¢ distri-
bution is a heavy-tailed generalization of the Gaussian distribution. Compared
with Gaussian distributions, using Student-t¢ distributions for the model signif-
icantly increases the robustness of the model. Such kind of work has already
been done by a number of researchers under different assumptions and different
algorithm implementations. Under the assumption of the Student-¢ distribution,
the related research includes mixture of Student-¢ models [§], and more recent
work such as robust subspace mixture model [9], in which both the likelihood
and the latent variables were supposed to be the Student-t distribution and the
EM algorithm was applied to the model. Most recently [T0] discussed the robust
models in the context of finite mixture models.

Compared to the Gaussian distribution, the so-called centered Laplacian dis-
tribution (or L1 distribution or the least absolute deviance) is much less sensitive
to outliers. The approach of using the L1 distribution originates from LASSO
[11], and has caught some interest in machine learning [T2] and statistics. Besides
the robustness against outliers context, the L1 distribution assumption is also
used as a penalty /regularization term on model parameters to enforce sparsity,
or parameter/feature selection, such as sparse PCA [13[14], and logistic regres-
sion [I2]. To the author’s best knowledge the first work towards building a L1
mixture model was proposed by [I5] to capture nonlinear dependencies in images
of natural scene in an unsupervised manner.

This paper is concerned with the generative modelling for the L1 mixture
model by using Bayesian learning and inference approaches. In our approach, we
expand the Laplacian distribution as a superposition of infinite number of Gaus-
sian distributions so that the underlying generative modelling can be handled
by variational EM-type algorithms. The same approach was firstly used in solv-
ing the support vector regression problem, see [16]. The approach is also closely
related to the work [I7] regarding the Student-¢ distribution models. In the next
section, we introduce the probabilistic L1 mixture model. Then, in Section 3,
we show how the proposed L1 mixture model can be solved by the variational
Bayesian technique and derive the variational EM-type algorithm. In Section 4,
we present the experimental results to evaluate the presented methods. Finally,
in Section 5, we present our conclusions.
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2 L1 Mixture Model

Let Y = {y;:i=1,2,...,N} be N independently identical random variables
with values in R%. The model we consider assumes that each y;=(yi1, Yi2, .., Yid) -
is generated independently from a mixture model given by

plyil{mi, o)1) = mipr, (vilpy, 05), with Y " m; =1 (1)
j=1 j=1

where the mixing weights denoted by m; are nonnegative and add up to one, and
1 = (ft51, - ptja) is the parameter for the mean of the j-th mixture component
and o; = diag(oj1,...,0;4) the covariance. Each component pr, is defined by
the so-called L1 Laplacian distribution

d

1 1
puaileg ) =TT o o= L o=} )
J J

k=1

We collect all the hyperparameters in the above model in © = {7y, ..., Tm; p1q,
weey By }- The number of parameters depends on the number of components m
and the number of data dimension d. For the variance o; in (I, we specify a
Gamma priori on pjr =1/ 0']2~k given by

a]k

p(pjklajk, bjk) = F(]ak )P]zc L exp{—bjkpjr} (3)

For the given dataset Y = {y; : ¢ = 1,2,..., N}, the maximum likelihood
(ML) estimate of the parameter values is

N
o= argmaxg log Hp(yi |©)

i=1

To handle with the above ML problem for the mixture model (), a usual way
is to introduce a hidden indicator variable z; = (zi1, 2i2, ..., 2im) for each data
yi such that if z;; = 1, we say the j-th component generates the i-th data y;,
where z;;s are 0-1 variables and }_; z;; = 1 and p(z;; = 1) = ;.

Then based on () the joint distribution of the data and the indicator variables
can be represented as

N m

p(Y,Z|0) = H H mipL, (Yilp, o)) (4)

There are still several difficulties when applying the Bayesian variational opti-
mization to the mixture of L1 model ). In the model, the Laplacian likelihood
makes it hard to find or define a good approximation to the posterior of Z.
Fortunately the Laplacian likelihood (2]) can be expanded as a superposition of
infinite number of Gaussian distribution given by the following relation [18]
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d oo
le(Yi§Nj70'j) = H /0 N(Yi‘ﬂjvzij)p(ﬁij)d,@ij
k=1

where N(yl\uﬁﬂu) is a Gaussian with the mean p; and covariance Y;; =
diag(o ;1/ﬂw17~-~ gd/ﬂwd) and

d 1 1
= I | —2 ox —
Ps) kel 2ﬂijke p{ 25ijk} )

Thus the joint distribution of the data set Y, the indicator Z, the precision
B and p =1/02 is given by

N m
p(Y,Z,B,plO) = H H YZ“J’]7 ij )p(ﬁij)]Zij p(Pj) (6)

where p(p;) = HZ:1 p(pjx) and p(p;x) is a Gamma prior given by (B]).

Unfortunately marginalization of all the latent variables is intractable, i.e.,
no analytical forms available for p(Y'|©). If we wish to proceed, we need to turn
to an approximate method. We are going to look at the variational Bayesian
inference method.

3 Variational Approximation for L1 Mixture Model

In order to introduce the variational learning method, the following notation is
used: Let (Z, 3, p) be the model latent variables, © is the hyperparameters in
([6). For the given observation Y, the ML algorithm aims to maximize the log
likelihood:

£(0) =logp(Y10) =1og 3 [ p(Y,Z,6.p0)dpdp
7z “B.p

Using any distribution Q(Z, 3, p) over the latent variables, called variational
distributions, we can obtain a lower bound on L:

0) =1 Y, Z, 3, p|©)dBd
) ogEZj/B/pp( B, pl©)dBdp

oY, Z, B, pl6)
zzzj /ﬂ /,, az.p.oos” 100 s (7)

Denote by F(Q(Z, 3, p),O) the right hand side of the above inequality. F
is referred to as the negative free energy. When Q(Z, 3, p) is equal to the
true joint posterior of (Z, 3, p) given the data set Y, viz. p(Z, 3, p|Y, ©), then
F(Q,0) = L(O). The difference between this lower bound F(Q, ©) and L(O) is
the KL-divergence between the true and approximating posteriors. The Bayesian
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variational learning is to maximise F with respect to the distribution ) and the
parameters 6 alternatively.

These steps are iterated as necessary and are analogous to the Expectation (E)
and Maximization (M) steps of the EM algorithm. In implementation, a basic
strategy is to separate the dependence between the hidden variables (Z, 3, p),
that is, to assume that Q(Z, 3, p) = Q(Z)Q(B)Q(p). In this case, substituting
[@)) into the right hand side of (@) results in

F(Q,0) = H(Q(2)) + H(Q(B)) + H(Q(p) + ) _ ; Q(Z)Q(B)A(p)
P
N m d 1 d ’ 1 d
[Z Z Zij <log Ty log(2m) + 9 kZ:l log pji + 9 glog Bijk

1
Bk (in — i) — log 2682, — ) 8
PikBijk (Yik — 1K) 8 2055k 26,k (®)

m d
+> > ajelog(bye) + (azk — 1) log pjx — bjrpji — log F(a;‘k)] dBdp

where @ is any density function with respect to the corresponding random vari-
ables and H(Q) is the entropy of the Q.

In order to simplify the notation in the variational algorithm, denote u the
mean of u and u the expection of i with respect to the approximate posterior
Q(u). For the L1 mixture model maximizing the variational functional F with
respect to Q(3), Q(p), and Q(Z) results in the following approximate distribu-
tions:

The optimal Q(p):

Q(pjr) x exp {—Ejkpjk + (ajr — 1) logpjk} with the mean p,; = Ejk/gjk,

where Q(p;) actually is a Gamma density with parameters

N N
N 1 ~ 1 )
jk = ajk + ;,1 i and bk =bjk + ;,1 @i (Yik — Hik) Bijr

The optimal Q(3)

Q(Bijk) ox exp {—;

3 1
2
@5 Yire = pi)”pklBigr = 4ij 108(Bijk) = dij Biik }

Denote A = 1 — 3qij, Xij = @ij and ¥ie = qij (Yix — 155)> P> then Q(Bijk)
follows the Generalized Inverse Gaussian (GIG) distribution

(i /xi) 7

G(Biji| Nijs Xijs Vijk) =
ATy 2K, (V/Xi%ige)

Aij—1 L, Xij
Bijk  exp {_2<ﬂijk + ¢z‘jkﬂiy‘k)}
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where K is the modified Bessel function of the second kind. Thus we have

K1 (VX ¥ige)
Bijn = Eq(Bije) =, "~ VXt
xo B (V/Xiijn)
Yijk
ﬁ :EQ( 1 ): Xi]ij)‘ij_l(\/Xijwijk)
ijk Bijk K, (V/Xij i)

For the optimal discrete distribution Q(z;; = 1) = ¢;;, substituting the opti-
mal Q(p) and Q(B) into (§) and maximizing F with respect to g;; result in

4ii = exp{&j}
TN exp{&y)
where

d

d
1 1
&ij =logm; — 9 Z’Bijk Ty Z(yik - Njk)zﬁijkpj}g
k=1 k=1

U
U

432" Bollog(om) — 5 O Fallog(ie)

k=1 k=1

In the M-step, we can work out the optimal hyperparameters
1N N N
T = N Dy and py =g M)t My
i=1 i=1 i=1

where M;; = diag(8;;1051, - BijaPja)-

The above procedure has an intuitive interpretation: in the E-step we update
one of Q-distributions when keeping others fixed; in M-step we fix all the distri-
butions over the hidden variables and update both 7 and p by maximizing F.

4 Experiments

In our experiments, for the Laplacian noise process, we choose a, = 100 and
b, = 5, so as to specify a mean of 4.8 for the prior over the standard derivation.
We then cycled through the Q-distribution updates, starting with Q(p). The
initial value for both the centers g and ¢ was set up by using the result from
the K-mean algorithm with only 5 cycles. The initial value for 5 was set to the
covariance determined by the K-mean algorithm.

When we calculate &;;, we need to calculate both Eg(log(p;i)) and Eg(log
(Bijk))- As each pjj follows a Gamma distribution, so it can be determined by

Eq(log(pjr)) = ¥ (@) — logbjx
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where ¥ is the Digamma function. Regarding Eq(log(5;jx)) we used the GIG
sampler from the matlab function Randraw.m] for an approximated estimate.
We chose to terminate the iterative procedure when there is only little change
occuring at each update to the Q-distribution with a tolerance 10~6.

4.1 Synthetic Data

We first demonstrate the performance of the algorithm on bivariate synthetic
data. The data set consists of 200 data, 150 of which were sampled from a
three-component Gaussian mixture model, and other 50 data from a uniform
distribution over the 120% range determined by the first 150 data points. The
parameters of the mixture model were

H = (0a3)7 M = (3a0)7 M3 = (_370)
2 0.5 10 2 —05
21 = (0.5 0.5) 2= (0 0.1> 23S (—0.5 0.5 >

with mixing coefficients m = m = m3 = 1/3. The data are shown in each plot
of Figure 1 in which the noised points are marked as +.

Ideally we hope the extra 50 data won’t do much impact on the model as
the majority data come from a Gaussian mixture model. However it is clear
from Figure 1(2% that the standard Gaussian mixture model attempts to model
the noised datad. However the L1 mixture model has easily revealed the true
component patterns without much impact from the noised data, see Figure 1(b).
In the experiment, we also noted that the § value associated with the extra
outliers is significantly smaller than the [ values for the other points. Taking 3
as an indicator we may drop any possible outliers in the procedure.

4.2 Handwritten Digits

Experiments were also conducted on MNIST handwritten digits databasd to
demonstrate the effectiveness of the L1 mixture model in assisting dimensional-
ity reduction algorithm for the purpose of clustering. Recently several unsuper-
vised dimensionality reduction algorithms based on kernel similarity have been
introduced, e.g. KLE (Kernel Laplacian Embedding) [19] and TKE (Twin Ker-
nel Embedding) [20] algorithms. The algorithms are implemented based on the
similarity measure provided by a kernel function. We can preprocess the data
set with the L1 mixture model to give rough clustering based on the learned
information like g;; and to update the kernel measure for example by setting

! Seehttp://www.mathworks.com/matlabcentral /fileexchange/loadFile.do?objectId=
7309&o0bject Type=file

2 To compare with the approach proposed in this paper, we deliberately model the
data with a diagonal Gaussian mixture model.

3 MNIST handwritten digits database is available at http://yann.lecun.com/
exdb/mnist.
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Fig. 1. The comparison of standard Gaussian and L1 Mixtures Models: (a) The es-
timated three components by using diagonal Gaussian mixture model; (b) Obviously
the L1 mixture model revealed the component structures

kernel values to zero (or a small value) for the data pair who are not in the same
“cluster” revealed by the L1 mixture model.

We chose 50 images for each digit as the training data. All images are in
grayscale and have a uniform size of 28 x 28 pixels. So the input data are in a
very high dimensional space, i.e., D = 784.

To test the stability of the L1 mixture model we also added 5 additional
corrupted images from each digit. The noise added is generated from a uniform
distribution on the interval [10,600] and then the corrupted images are scaled
to the standard gray levels from 0 to 255.

In the implementation of the L1 mixture model for this database, we took the
number of component m = 12 although actually there are only 10 clusters. The
initial values for all the parameters were chosen in the same way as that in the
experiment for the 2-D synthetic dataset. However for the number of iteration
k, we tested a range of values between 200 to 500 and found that k = 279 gave
a better visual result. In fact, after 279 iterations, most of the parameter values
in @ distributions do not change much.

The comparison between the KLE algorithm with and without the L1 mixture
preprocessing is shown in Figure Pl It can be seen that the visual effect from the
KLE with the L1 mixture preprocessing is not significantly improved due the
complexity of the dataset, however it is very clear that the clusters for both digit
7 (triangle marker) and 5 (diamond marker) in (b) are much more packed than
that in (a). In the experiment, the kernel values were shrunk by le~® when the
data pairs are not in the same cluster revealed by the L1 mixture preprocessing.

We conducted another test on only 5 selected digit groups: digits 3, 4, 5, 6 and
7. Figure Bl(a) shows the result from the KLE algorithm without any L1 mixture
preprocessing while (b) shows the result of KLE algorithm with a simple L1
mixture preprocessing. The result in (b) has a significant improvement from (a).
It can be seen that digits 3 and 4 are clearly separated while digit 7 has been
compressed into a single point (blue square in (b)).
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Fig. 2. The comparison of the KLE algorithm with 10 digits: (a) the result without
L1 mixture model, (b) the result with L1 mixture model
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Fig. 3. The comparison of the KLE algorithm with five digits: (a) the result without
L1 mixture model, (b) the result with L1 mixture model

5 Conclusions

Many probabilistic models largely rely on a Gaussian assumption. In practice,
however, this crude assumption may seem unrealistic as the resulting models
are very sensitive to non-Gaussian noise processes. A possible approach is to
employ kinds of non-Gaussian distribution especially heavy-tailed distributions
such as L1 Laplacian densities. In this paper, we have shown that the L1 mixture
model can be constructed and solved under the framework of general variational
Bayesian learning and inference. In order to find tractable solutions for the model
parameter in L1 mixture model, we express the L1 Laplacian distribution as
a superposition of infinite number of Gaussian with precisions controlled by
another distribution. Doing so enables us to employ the variational approximate
to posterior density of all the uncertainty involved with the model. The algorithm
has been designed based on the variational version of EM scheme. The approach
works well on several illustrative examples and practical examples.
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Abstract. Recent trends in Al attempt to solve difficult NP-hard prob-
lems using intelligent techniques so as to obtain approximately-optimal
solutions. In this paper, we consider a family of such problems which
fall under the general umbrella of “knapsack-like” problems, and demon-
strate how we can solve all of them fast and accurately using a hierarchy
of Learning Automata (LA). In a multitude of real-world situations, re-
sources must be allocated based on incomplete and noisy information,
which often renders traditional resource allocation techniques ineffec-
tive. This paper addresses one such class of problems, namely, Stochastic
Non-linear Fractional Knapsack Problems. We first present a completely
new on-line LA system — the Hierarchy of Twofold Resource Allocation
Automata (H-TRAA). The primitive component of the H-TRAA is a
Twofold Resource Allocation Automaton (TRAA), which in itself pos-
sesses novelty in the field of LA. For both the TRAA and H-TRAA, we
then provide formal convergence results. Finally, we demonstrate empir-
ically that the H-TRAA provides orders of magnitude faster convergence
compared to state-of-the-art. Indeed, in contrast to state-of-the-art, the
H-TRAA scales sub-linearly. As a result, we believe that the H-TRAA
opens avenues for handling demanding real-world applications, such as
the allocation of resources in large-scale web monitoring.

1 Introduction

Although the field of Artificial Intelligence (AI) has matured over the past five
decades, there are still a myriad of problems yet to be solved. It is true that the
literature reports numerous strategies such as the benchmark graph-searching
and theorem proving principles (which have proven to be generic methods for
numerous problems). More recently, though, a lot of research has gone into find-
ing approximately-optimal solutions for intractable NP-hard problems. This pa-
per demonstrates how we can solve a family of “knapsack-like” problems - all of
which are related to resource allocation - using the general LA paradigm.

To present the problem studied in its most general perspective, consider the
following scenario: Imagine that you have to allocate a limited amount of time

* Chancellor’s Professor; Fellow : IEEE and Fellow : IAPR. The Author also holds
an Adjunct Professorship with the Dept. of ICT, University of Agder, Norway.
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among n different activities. The problem is such that spending a time instant
on an activity randomly produces one of two possible outcomes — the time in-
stant is either spent “fruitfully” or “unfruitfully”. In this generic setting, your
goal is to mazximize the expected amount of fruitfully spent time. Unfortunately,
you are only given the following information regarding the activities: (1) Each
instant of time spent on an activity has a certain probability of being fruitful,
and (2) this probability decreases with the amount of time spent on the activ-
ity. To render the problem even more realistic, you do not have access to the
probabilities themselves. Instead, you must rely on solving the problem by means
of trial-and-failure, i.e., by attempting different allocations, and observing the
resulting random outcomes.

To permit an analytically rigorous treatment, as in [I], the above problem
is formulated as a Stochastic Non-linear Equality Fractional Knapsack (NEFK)
Problem, which is a generalization of the classical linear Fractional Knapsack
(FK) Problem (explained below), and which has direct applications to resource
allocation in web polling, and to the problem of determining the optimal sample
size required for estimation purposes.

The Linear Fractional Knapsack (FK) Problem: The linear FK problem is
a classical continuous optimization problem which also has applications within
the field of resource allocation. The problem involves n materials of different
value v; per unit volume, 1 < i < n, where each material is available in a certain
amount x; < b;. Let f;(z;) denote the value of the amount z; of material i,
i.e., fi(z;) = v;z;. The problem is to fill a knapsack of fixed volume ¢ with the
material mix @ = [z1,..., z,] of maximal value >} f;(z;) [2].

The Nonlinear Equality FK (NEFK) Problem: One important extension
of the above classical problem is the Nonlinear Equality FK problem with a sep-
arable and concave objective function. The problem can be stated as follows [3]:

maximize f(xz) =17 fi(z;)
subject to > ) x; =cand Vi € {1,...,n},2; > 0.

Note that since the objective function is considered to be concave, the value
function f;(z;) of each material is also concave. This means that the derivatives
of the material value functions f;(x;) with respect to z;, (hereafter denoted f/),
are non-increasing.

The Stochastic NEFK Problem: In this paper we generalize the above NEFK
problem. First of all, we let the material value per unit volume for any x; be a
probability function p,(x;). Furthermore, we consider the distribution of p;(x;)
to be unknown. That is, each time an amount x; of material ¢ is placed in
the knapsack, we are only allowed to observe an instantiation of p;(z;) at x;,
and not p;(z;) itself. As an additional complication, p;(z;) is nonlinear in the
sense that it decreases monotonically with x;, i.e., z;;, < 2, < pi(ziy) > pi(xsy,).
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Given this stochastic environment, we intend to devise an on-line incremental
scheme that learns the mix of materials of maximal expected value, through a
series of informed guesses.

Stochastic Knapsack Problems — State-of-the-Art: The first reported
generic treatment of the stochastic NEFK problem itself can be found in [I].
Various instantiations of the problem have, however, appeared sporadically, par-
ticularly within the web monitoring domain. In these latter instantiations, the
unknown parameters are estimated by means of a tracking phase where web
pages are polled mainly for estimation purposes [4]. One major disadvantage
of such an approach is that the parameter estimation phase significantly delays
the implementation of an optimal solution. This disadvantage is further aggra-
vated in dynamic environments where the optimal solution changes over time,
introducing the need for parameter re-estimation [T].

Learning Automata (LA): In contrast to the above approaches, we base our
work on the principles of LA [5]. LA have been used to model biological sys-
tems [6], and have attracted considerable interest in the last decade because
they can learn the optimal actions when operating in (or interacting with) un-
known stochastic environments. Furthermore, they combine rapid and accurate
convergence with low computational complexity.

The novel Learning Automata Knapsack Game (LAKG) scheme that we pro-
posed in [I] does not rely on estimating parameters, and can be used to solve
the stochastic NEFK problem in both static and dynamic settings. Indeed, em-
pirical results verify that the LAKG finds the optimal solution with arbitrary
accuracy, guided by the principle of Lagrange Multipliers. Furthermore, the em-
pirical results show that the performance of the LAKG is superior to that of
parameter-estimation-based schemes, both in static and dynamic environments.
Accordingly, we believe that the LAKG can be considered to represent the state-
of-the-art when it concerns the stochastic NEFK problem. This landmark is now
extended to develop the TRAA, (which, in itself is the first reported LA which
is artificially ergodic), and its hierarchical version, the H-TRAA.

Contributions of This Paper: The contributions of this paper are the fol-
lowing: (1) We report the first analytical results for schemes that solve the
Stochastic NEFK Problem. (2) We propose a novel scheme for the two-material
resource allocation problem, namely, the Twofold Resource Allocation Automa-
ton (TRAA). As mentioned, from the perspective of LA, the TRAA, in itself,
is the first reported LA which is artificially rendered ergodic. (3) We provide
convergence results for the TRAA. (4) We report the first hierarchical solu-
tion to the Stochastic NEFK Problem, based on a hierarchy of TRAAs, namely,
the H-TRAA, which also is asymptotically optimal. (5) We verify empirically
that the H-TRAA provides orders of magnitude faster convergence than the
LAKG.
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2 A Hierarchy of Twofold Resource Allocation Automata

2.1 Overview of the H-TRAA Solution

In order to put our work in the right perspective, we start this section by pro-
viding a brief review of the concepts found in [I] - which are also relevant for
more “primitive” variants of the knapsack problem.

As indicated in the introduction, solving the classical linear FK problem in-
volves finding the most valuable mix x* = [z}, ...,2z%] of n materials that fits
within a knapsack of fixed capacity ¢. The material value per unit volume for
each material ¢ is given as a constant v;, and each material is available in a
certain amount x; < b;, 1 < i < n. Accordingly, the value of the amount x; of
material 4, f;(z;) = v;x;, is linear with respect to z;. In other words, the deriva-
tive of f;(x;) — i.e., the material value per unit volume — is fixed: f/(z;) = v;.
Because a fraction of each material can be placed in the knapsack, the following
greedy algorithm from [2] finds the most valuable mix: Take as much as possi-
ble of the material that is most valuable per unit volume. If there is still room,
take as much as possible of the next most valuable material. Continue until the
knapsack is full.

Let us now generalize this and assume that the material unit volume values
are random variables with constant and known distributions. Furthermore, for
the sake of conceptual clarity, let us only consider binary variables that either
instantiate to the values of 0 or 1. Since the unit volume values are random, let p;
denote the probability of the unit volume value v; = 1 for material 7, 1 < i < n,
which means that the probability of the unit volume value v; = 0 becomes
1 — p;. With some insight, it becomes evident that under such conditions, the
above greedy strategy can again be used to maximize the expected value of the
knapsack, simply by selecting material based on the expected unit volume values,
E[v;] =0 x (1 —p;) + 1 X p;, rather than actual unit volume values.

The above indicated solution is, of course, inadequate when the p;’s are un-
known. Furthermore, the problem becomes even more challenging when the p;’s
are no longer constant, but rather depend on their respective material amounts
x;, 1 < i < n. Let p;(z;) denote the probability that the current unit volume
value of material 7 is v; = 1, given that the amount x; has already been placed in
the knapsack. Then, the expected value per unit volume of material 7, 1 < i < n,
becomes E[v;] = 0 X [1 — p;(x;)] +1 X pz(ml) = pi(2:), and accordingly7 the ex-
pected value of the amount x; becomes f;(x;) fo pi(u

Our aim, then, is to find a scheme that moves towards optlmlzing the following
NEFK problem on-line:

maximize f(x) = Y7 fi(z;), vvherefZ z;) = [ pi(u)du, and pi(z;) = fl(z:),
subject to > 7 x; = cand Vi € {1,...,n},z; > 0.

Note that we allow only instantiations of the material values per unit volume
to be observed. That is, each time an amount x; of material i is placed in the
knapsack, an instantiation v; at z; is observed.
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Twofold Resource
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Fig. 1. The Twofold Resource Allocation Automaton (TRAA)

Because of the above intricacies, we approach the problem by relying on in-
formed material mix guesses, i.e., by experimenting with different material mixes
and learning from the resulting random unit volume value outcomes. We shall
assume that z; is any number in the interval (0, 1). The question of generalizing
this will be considered later. The crucial issue that we have to address, then, is
that of determining how to change our current guesses on z;, 1 < i < n. We
shall attempt to do this in a discretized manner by subdividing the unit interval
into N points {N}H’ Ni_l, e NIL}, where N is the resolution of the learning
scheme. It turns out that a larger value of N ultimately implies a more accurate
solution to the knapsack problem.

2.2 Details of the TRAA Solution

We first present our LA based solution to two-material Stochastic NEFK Prob-
lems. The two-material solution forms a critical part of the hierarchic scheme for
multiple materials that is presented subsequently. As illustrated in Fig. [l our
solution to two-material problems constitutes of the following three modules:

Stochastic Environment: The Stochastic Environment for the two-material
case can be characterized by: (1) The capacity ¢ of the knapsack; (2) Two ma-
terial unit volume value probability functions p;(x1) and p2(x2). In brief, if the
amount x; of material ¢ is suggested to the Stochastic Environment, the En-
vironment replies with a unit volume value v; = 1 with probability p;(z;) and
a unit volume value v; = 0 with probability 1 — p;(z;), i € {1,2}. It should
be emphasized that to render the problem both interesting and non-trivial, we
assume that p;(z;) is unknown to the TRAA.

Twofold Resource Allocation Automaton: The scheme which attempts to
learn the optimal allocation &* = [z}, 23] can be described as follows. A finite
fixed structure automaton with the states s(¢t) € {1,2,..., N} is used to decide
the allocation of resources among the two materials. Let the current state of
the automaton be s(t). Furthermore, let g, refer to the fraction Jf,(j_)p and
let ry refer to the fraction: 1 — g(). Then the automaton’s current guess is

xr = [qs(t) , rs(t)}. If the Stochastic Environment tells the automaton that the unit
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volume value of material 7 is v;(¢) at time ¢, the automaton updates its state as
follows:

s(t+1):=s(t)+1 If rand() <7y and vi(t) =1 (1)
and 1 <s;(t) < Nandi=1

s(t+1):=s(t)—1 If rand() < gy and v;(t) =1 (2)
and 1 < s;(t) < Nandi=2

s(t+1):=s(t) Otherwise (3).

Notice how the stochastic state transitions are designed to offset the learning
bias introduced by accessing the materials with frequencies proportional to =
[@s(t)> Ts(+)]- Also observe that the overall learning scheme does not produce any
absorbing states, and is, accordingly, ergodic supporting dynamic environments.

Finally, after the automaton has had the opportunity to change its state, it
provides output an EDF Scheduler. That is, it outputs the material amounts
® = [qs(t+1), Ts(t+1)) that have been changed.

Earliest Deadline First (EDF) Scheduler: The EDF Scheduler takes ma-
terial amounts @ = [z1, ..., x,] as its input (for the two-material case the input
is @ = [z1,x2]). The purpose of the Scheduler is to: (1) provide accesses to the
Stochastic Environment in a sequential manner, and (2) make sure that the unit
volume value functions are accessed with frequencies proportional to .

The reader should note that our scheme does not rely on accessing the unit
volume value functions sequentially with frequencies proportional to @ for solving
the knapsack problem. However, this restriction is obviously essential for solving
the problem incrementally and on-line (or rather in a “real-time” manner).

Lemma 1. The material miz x = [x1,...,zy] is a solution to a given Stochastic
NEFK Problem if (1) the derivatives of the expected material amount values are
all equal at x, (2) the miz fills the knapsack, and (3) every material amount is
positive, 1.e.:

fixy) == fo(zn)

Z?wz =candVie{l,...,n},x; >0.

The above lemma is based on the well-known principle of Lagrange Multipliers
[]], and its proof is therefore omitted here for the sake of brevity. We will instead
provide our main result for the two-material problem and the TRAA. For the
two-material problem, let * = [z7, 23] denote a solution, as defined above. Note
that since 3 can be obtained from z7, we will concentrate on finding x7.

Theorem 1. The TRAA solution scheme specified by (1)—(3) is asymptotically

optimal. Le., as the resolution, N, is increased indefinitely, the expected value

of the TRAA output, x1(t), converges towards the solution of the problem, x7:
JimJim Bl ()] = 27

Proof. The proof is quite involved and is found in [7]. It is omitted here in the
interest of brevity. O
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2.3 Details of the H-TRAA Solution

In this section we propose a hierarchical scheme for solving n-material prob-
lems. The scheme takes advantage of the TRAA’s ability to solve two-material
problems asymptotically, by organizing them hierarchically.

2.3.1 H-TRAA Construction

The hierarchy of TRAAs, which we hereafter will refer to as H-TRAA, is con-
structed as followd]. First of all, the hierarchy is organized as a balanced binary
tree with depth D = log,(n). Each node in the hierarchy can be related to three
entities: (1) a set of materials, (2) a partitioning of the material set into two
subsets of equal size, and (3) a dedicated TRAA that allocates a given amount
of resources among the two subsets.

Root Node: The hierarchy root (at depth 1) is assigned the complete set of ma-
terials S1,1 = {1,...,n}. These n materials are partitioned into two disjoint
and exhaustive subsets of equal size: Sp ;1 and S 2. An associated TRAA,
T} 1, decides how to divide the full knapsack capacity ¢ (which, for the sake
of notational correctness will be referred to as ¢;,1) among the two subsets.
That is, subset Sy ; receives the capacity cp 1 and subset Sa o receives the
capacity cg 2, with ca1 + c2,2 = ¢1,1. Accordingly, this TRAA is given the
power to prioritize one subset of the materials at the expense of the other.

Nodes at Depth d: Node j € {1,...,2¢71} at depth d (where 1 < d < D)
refers to: (1) the material subset Sy ;, (2) a partitioning of Sg; into the
subsets Sqt1,2j—1 and Sq41,25, and (3) a dedicated TRAA, T, ;. Observe
that since level D + 1 of the H-TRAA is non-existent, we use the convention
that Spy1,2j—1 and Sp41,2; refer to the primitive materials being processed
by the leaf TRAA, Tp ;. Assume that the materials in Sy ; has, as a set,
been assigned the capacity cq j. The dedicated TRAA, then, decides how to
allocate the assigned capacity ¢4 ; among the subsets Sqi1.25—1 and Sg11,2;.
That is, subset Sgy1,2j—1 receives the capacity cq+1,2j—1 and subset Sqy1,2;
receives the capacity cq11,25, With cq4 2j—1 + Cat1,2; = cq,;-

At depth D, then, each individual material can be separately assigned a fraction
of the overall capacity by way of recursion, using the above allocation scheme.

2.3.2 Interaction of H-TRAA with EDF Scheduler and Environment

As in the single TRAA case, H-TRAA interacts with an EDF Scheduler, which
suggests which unit volume value function p;(z;) to access next. A response is
then generated from the Stochastic Environment using p;(z;). This response is
given to all the TRAAs that were involved in determining the material amount
x;, that is, the TRAAs in the hierarchy that have allocated capacacity to a
material subset that contains material ¢. Finally, a new candidate material mix
x = [r1,...,x,] is suggested by the H-TRAA to the EDF Scheduler.

! We assume that n = 27,y € NT, for the sake of clarity.
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2.3.3 Analysis of the H-TRAA Solution

In the previous section we stated the asymptotic optimality of the individual
TRAA. We will now consider the H-TRAA and its optimality. In brief, it turns
out that when each individual TRAA in the hierarchy has solved its own two-
material problem, a solution to the complete n-material Knapsack Problem has
also been produced.

Theorem 2. Let Ty ; be an arbitrary TRAA at level d of the H-TRAA asso-
ciated with the node whose index is j. Then, if every single TRAA, Ty ;, in
the H-TRAA has found a local solution with proportions cqyi1,2j—1 and cd4+1,2;
satisfying fi. 1 05 1(cat1,2j-1) = fi1105(cat1,25), the overall Knapsack Problem
involving n materials that are hierarchically placed in logyn levels of TRAAs,
also attains the global optimum solution.

Proof. The proof of this theorem is also quite deep. It is included in [7], and
omitted here due to space limitations. a

3 Experimental Results

The H-TRAA solution has been rigorously tested for numerous cases and the
solutions obtained have been, in our opinion, categorically remarkable. Its perfor-
mance in terms of speed, convergence accuracy and scalability have consistently
been far more than we initially anticipated.

In order to achieve a comprehensive test suite, we have conducted our ex-
periments for two classes of objective functions (hereafter referred to as E;
and L;): Ej(z;) = %7(1 — e7™) and Ly(z;) = 0.7 a; — yi - a? for z; < 7,
with L;(z;) = O'Zz for z; > 0;7. The two corresponding probability func-
tions are given presently for a material with index i: E!(z;) = 0.7 - e "% and
L, =Max [0.7 — i - 24, 0].

Given the above considerations, our aim is to find x*, the amounts of the
materials that have to be included in the knapsack so as to maximize its value.
In the first instance we aim to:

maximize E(x) =Y.} Ei(x;), where E;(z;) = [ El(u)du,
subject to Y ) #; =cand Vi € {1,...,n},xz; > 0.

The second optimization problem is identical, expect that the E; and E! func-
tions are replaced with L; and L, respectively.

3.1 H-TRAA Solution

In order to find a H-TRAA Solution to the above problem we must define the
Stochastic Environment that the LA are to interact with. As seen in Sect. 2]
the Stochastic Environment consists of the unit volume value functions F' =
{fi(x1), fo(x2), ..., f} (z,)}, which are unknown to H-TRAA. We identify the
nature of these functions by applying the principle of Lagrange multipliers to
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the above maximization problems. In short, after some simplification, it can
be seen that the following conditions characterize the optimal solution for the
exponential functions:

Ei(21) = Ey(ag) = -+ = E}(wn)
Slxi=cand Vi€ {1,...,n},x; > 0.

The conditions for the linear functions can be obtained by replacing F; and E!
in the equations above with L; and L, respectively.

3.2 Empirical Results

In this section we evaluate our learning scheme by comparing it with three clas-
sical policies using synthetic data. We have implemented the following classical
policies:

Uniform: The uniform policy allocates resources uniformly. This is the only
classical policy that can be applied directly in an unknown environment.
Optimal: The optimal policy finds the optimal solution based on the principle
of Lagrange multipliers.

LAKG: The state-of-the-art solution for the nonlinear knapsack problem which
is based on the so-called LAKG described in [I].

As we will see in the following, it turns that one of the strengths of the H-
TRAA is its ability to take advantage of so-called spatial dependencies among
materials. In the above experimental setup, materials are spatially related in the
sense that the updating probabilities decreases with the rank-index k. In order
to starve the H-TRAA from this information, we opted to perturb this spatial
structure. Each perturbation swapped the updating probabilities of a randomly
selected material and the material succeeding it in the ranking.

3.2.1 Configuring H-TRAA

The H-TRAA can be configured by various means. First of all, the material
amount space (0, 1) need not be discretized uniformly. Instead, a nonlinear ma-
terial amount space can be formed, as done for the LAKG in [I]. Furthermore,
the discretization resolution, N, must also be set for each TRAA, possibly vary-
ing from TRAA to TRAA in the hierarchy. In short, the performance achieved
for a particular problem can be optimized using these different means of config-
uring the H-TRAA. In this section, however, our goal is to evaluate the overall
performance of the H-TRAA, without resorting to fine tuning. Therefore, we will
only use a linear material amount space, as specified in Sect. 2l Furthermore,
in the experiments reported here, we have chosen to use the same resolution,
N = 2,000, for all the TRAAs in the hierarchy, independent of the specific
knapsack problem at hand. Thus, our aim is to ensure a fair comparison with
the present state of the art, namely, the LAKG scheme [

2 Since we in this paper emphasize speed of learning, we will presently utilize material
unit values of both 0 and 1 (the state transitions for unit value 0 is obtained by
inverting the state transitions of the individual TRAAs from Sect. [2).
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Fig. 2. Convergence for the Exponential (left) and Linear functions (right)

3.2.2 Static Environments

In this section we present the results of the H-TRAA, LAKG and the other
schemes for static environments. We see from Fig. 2 that the optimal policy pro-
vides a solution superior to the uniform policy solution. The figure also shows
that the performance of the H-TRAA increases significantly quicker than the
LAKG. However, when the number of perturbations is increased, the perfor-
mance of the H-TRAA tends to fall. Note that even with 10 perturbations,
the H-TRAA provides a performance equal to the LAKG if each TRAA in the
hierarchy is given a resolution N that is twice as large as the resolution ap-
plied by any of its children. Furthermore, the H-TRAA is more flexible than the
LAKG, performing either better or similar to LAKG, when it is optimized for the
problem at hand. Observe too that the performance of both the H-TRAA and
LAKG improve online without invoking any parameter estimation phase. Both
the LAKG and H-TRAA approach the performance boundary set by the opti-
mal policy, and converge towards near-optimal solutions. However, the H-TRAA
converges faster than the LAKG.
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Fig. 3. Convergence as the number of materials is increased significantly
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3.2.3 Scalability

One of the motivations for designing the H-TRAA was the improved scalability
obtained by means of hierarchical learning. As reported in [7], extending the
number of materials significantly increases the convergence time of LAKG. An
increased initial learning phase may be unproblematic in cases where the sys-
tem will run correspondingly longer, adapting to less dramatic changes as they
occur. Fig. B displays the performance of the H-TRAA under identical settings.
The reader should observe that increasing the number of materials does not
significantly increase its convergence time. It is not unfair to assert that under
identical settings, the H-TRAA scheme is far superior to the LAKG. Indeed, the
H-TRAA scales sub-linearly with the number of materials.

4 Conclusions and Further Work

In this paper we have considered the fractional knapsack problem and extended
the non-LA state-of-the-art in two ways. First of all, we have treated the unit
volume values of each material as a stochastic variable whose distribution is
unknown. Secondly, we have worked with the model that the expected value
of a material may decrease after each addition to the knapsack. The learning
scheme we proposed for solving this knapsack problem was based on a hierar-
chy of so-called Twofold Resource Allocation Automata (TRAA). Each TRAA
works with two materials and moves along the probability space discretized by
a resolution parameter, N, with a random walk whose coefficients are not con-
stant. The asymptotic optimality of the TRAA has been stated. We have then
presented a formal theory by which an ensemble of TRAAs (the H-TRAA) can
be structured in a hierarchical manner to deal with a very large number of ma-
terials. Comprehensive experimental results demonstrated that performance of
the H-TRAA is superior to previous state-of-the-art schemes.

In our further work, we intend to utilize the H-TRAA solution to resolve the
web polling problem, and the problem of determining the optimal sample size
required for estimation purposes. We are also currently investigating how other
classes of LA can form the basis for solving knapsack-type problems.
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Abstract. Pre-processing is an important part of machine learning, and
has been shown to significantly improve the performance of classifiers.
In this paper, we take a selection of pre-processing methods—focusing
specifically on discretization and feature selection—and empirically ex-
amine their combined effect on classifier performance. In our experi-
ments, we take 11 standard datasets and a selection of standard machine
learning algorithms, namely one-R, ID3, naive Bayes, and IB1, and ex-
plore the impact of different forms of preprocessing on each combination
of dataset and algorithm. We find that in general the combination of
wrapper-based forward selection and naive supervised methods of dis-
cretization yield consistently above-baseline results.

1 Introduction

Machine learning is an experimental science encompassing the areas of proba-
bility theory, statistics, information theory and theoretical computer science. It
deals with the automatic extraction of useful and comprehensible knowledge from
data. Much of machine learning is focused on classification and other predictive
tasks, where the value of an attribute is predicted based on prior knowledge.

In classification, a model is built based on known data which is then used to
predict the discrete values of new data, in the form of a class label. The input to a
classifier is called the training data, while the unseen data to which results of the
learning process are applied is called the test data. The classification process can
be modelled as a pipeline of one or more components, obligatorily containing a
classifier module, and optionally including a pre-processor module. When a pre-
processor is present it precedes the classifier and transforms the input data into
a form that (ideally) enhances classifier performance.

Data is the crux of all classification tasks. The way in which data is presented
to a learning algorithm often has a significant impact on its performance. In clas-
sification tasks, data is usually represented in the form of instances, i.e. single
data records characterised by one or more attributes (also known as features)
and a unique class label. For our purposes, we assume that there are two types
of attributes: discrete attributes, where there is a finite set of values with no
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explicit or implicit order (e.g. HIGH, MEDIUM or LOW as values for a TEMPERA-
TURE feature); and continuous attributes, which take real numeric values (e.g.
a temperature value in degrees Celcius).

There are many ways to pre-process data when building a classifier, but in
this paper we focus exclusively on discretization and feature selection. The aim
of discretization is to convert continuous attributes into meaningful discrete at-
tributes. Feature selection is the process of pre-selecting a subset of features
to train the classifier over, generally with the intention of removing redundant
and/or irrelevant attributes from the dataset.

1.1 Case Study

Due to the importance of pre-processing in machine learning, there is a con-
siderable volume of literature proposing new methods or comparing existing
ones. Examples of such studies include [5], [3], [9] and [I0] where the effects of
discretization and feature selection on classifier performance were studied in-
dependently. As many learners prefer to operate over discrete attributes, it is
important to select the best discretization method for a given dataset. Things
are complicated further when feature selection is included as a second form of
preprocessing.

The task of finding the best combination of feature selection and discretization
has largely been based on heuristics or prior knowledge with similar datasets and
exhaustive experimentation. Our study attempts to unearth general trends in
the interaction between feature selection and discretization by applying various
combinations of methods to a range of datasets and evaluating their output
relative to a sample of learner algorithms.

1.2 A New Framework for Machine Learning Experimentation

While the machine learning community has generally been good at sharing
datasets and toolkits, and developing fully automated evaluation methodolo-
gies, it would be a stretch to say that full reproducibility is the norm in machine
learning research. This is due to effects such as a lack of documentation of
data splits/sampling, variability in the preprocessing of data, unpublished pa-
rameter settings and scope for interpretation in the implementation of learning
algorithms. As part of this research, we have developed an open-source ma-
chine learning toolkit from scratch which includes all code used to perform
these experiments, all datasets in exactly the form used to carry out our exper-
imentation, and a script to automatically run all experiments in their entirety,
for maximum transparency. All the above features were built into a new ma-
chine learning component of the NLTK-Lite toolkit [2], which is available from
nltk.sourceforge.net.

An object-oriented modular implementation of the algorithms targeted in this
research enhances the readability and understandability of the implemented al-
gorithms. Additionally, the choice of python as the programming language makes
the implementations much closer to pseudocode than is the case with existing
machine learning toolkits. It also has a fair coverage of algorithms required for
experimentation, bundled with 11 datasets from the UCI machine learning repos-
itory. It provides tools and utilities which enhance productivity and experimental
reproducibility like the presence of a batch testing utility.
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2 Methodology

This section outlines the algorithms used in our case study, then goes on to
describe the discretization and feature selection techniques. A brief description
of the datasets used in our experiments is then followed by findings from past
research.

2.1 Classification Algorithms

Our toolkit currently implements five classification algorithms: (1) zero-R, as
a baseline classifier; (2) the one-R decision stump induction algorithm; (3) the
ID3 decision tree induction algorithm; (4) the naive Bayes algorithm; and (5) the
IB1 instance-based learning algorithm. For full descriptions of these algorithms,
see [7], [6] and [I]. Note that of these algorithms, naive Bayes and IB1 have an
in-built handling of continuous attributes (in the form of a Gaussian PDF, and
continuous distance metric, respectively). The remainder of the algorithms are
implemented to ignore all continuous attributes, i.e. to operate only over the
discrete attributes in a given dataset.

2.2 Discretization Methods

Discretization is the process of converting continuous attributes into discrete
ones. Some classification algorithms like C4.5 [6] have the facility to perform
localized discretization at a given node in a decision tree. For our purposes,
however, we focus exclusively on global discretization, in discretizing the training
dataset once to produce discrete intervals for each attribute. The intervals are
then used to map continuous values to discrete values for both the training and
test datasets.

Discretizers can be categorised into supervised and unsupervised methods,
based on whether they take the labels of the training instances into account in
determining the breakpoints between discrete intervals. We focus on two unsu-
pervised discretization algorithms, namely unsupervised equal width and unsu-
pervised equal frequency, and two supervised methods of discretization, the first
of which has two modified variants.

Unsupervised Equal Width (UEW). The unsupervised equal width method
is the simplest of all discretization algorithms. In this algorithm, the lowest and
highest continuous attributes are used to define the input range. This range is
then divided into a fixed number of intervals of equal width. If the attribute
values range from i, t0 ;e and the number of intervals is given by k, the
width of each interval ¢ is given by ¢ = “me=  #min L intervals are created with
the first interval starting from x,,;, by adding ¢ to the end of each previous
interval. In our experiments, k was set to 10.

The main disadvantage of equal width discretization is that it is severely
affected by outliers. The intervals are created solely based on the extreme values,
which may be erroneous data.

Unsupervised Equal Frequency (UEF). The unsupervised equal frequency
discretization (a.k.a. histogram equalization) method attempts to improve on
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equal width discretization by focussing on individual continuous values, rather
than on extreme values in an attribute. A breakpoint is inserted in the ordered
sequence of continuous values after every &' instance in the sequence (k = 10
in all our experiments). If the values on either side of a breakpoint are the same
the breakpoint is shifted until it separates two distinct values. This process thus
creates unevenly sized intervals and gives a closer representation to the actual
distribution of continuous values.

Despite its simplicity, this method has been shown to give excellent results
when combined with some algorithms, e.g. with & set to the square root of the
number of instances [§]. K-means clustering can also be used to find the value
of k, but, in general, the task of calculating and specifying k still rests with the
user, which is a disadvantage of this method.

Naive Supervised Discretization (NS). The naive supervised discretiza-
tion method is supervised. When discretizing using this algorithm, continuous
attribute values are evaluated along with their corresponding class labels. The
list of continuous values is sorted to form an ordered sequence and breakpoints
are placed at all positions where the class membership changes. The breakpoints
are then used to form intervals, where each interval represents a discrete value.
This algorithm is simple to implement and guarantees that the classes of
instances within an interval are the same in almost all cases. As breakpoints are
placed on the basis of change in class membership, it lacks any sense of ordering.
In the worst scenario, if the class membership changes for every instance there
will be as many discrete values as there are instances. The other disadvantage
of this algorithm is that it can lead to overfitting. Two modified versions of
this algorithm are discussed in the following subsections, which change the way
breakpoints are inserted in order to overcome the issue of overfitting.

Naive Supervised Modified Version 1 (NS1). In this modified version of
naive supervised discretization, the breakpoints are not inserted every time the
class membership changes. Instead, they are inserted only after a minimum of
N instances of the majority class are contained in each interval. The threshold
number of instances is a user defined value, and should be computed based on
the type of data. For our experiments, we set N to one-fifteenth the number of
training instances.

Naive Supervised Modified Version 2 (NS2). The second modified version
tries to avoid overfitting by merging two previously formed intervals until they
contain at least IV instances of the majority class. This can lead to results which
are quite different from the first version, depending on how frequently the class
membership changes and the value of N. Once again, we set N to one-fifteenth
the number of training instances in our experiments.

Entropy-based Supervised Discretization (ES). In the final form of super-
vised discretization, we identify the interval with the highest entropy and select
the binary breakpoint which minimizes the mean information of the two gener-
ated intervals. This is carried out recursively until N partitions are produced.
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2.3 Feature Selection

The task of feature selection is to remove low-utility attributes such that the
resulting attribute set generates a simpler classifier without compromising the
classifier’s performance. To be completely sure of the attribute selection, we
would ideally have to test all the enumerations of attribute subsets, which is
infeasible in most cases as it will result in 2" subsets of n attributes. The two
main types of feature selection methods are filter and wrapper methods, each of
which use greedy search strategies to reduce the search space.

Filter feature selection methods evaluate attributes prior to the learning pro-
cess, and without specific reference to the classification algorithm that will be
used to generate the final classifier. The filtered dataset may then be used by
any classification algorithms. Rank-based feature selection is a commonly-used
filter method and is discussed in the following section.

Wrapper methods use a controlled enumeration strategy and apply the clas-
sification algorithm that will be used to generate the final classifier to test the
performance of each attribute subset. The ways in which the attribute sets are
incrementally updated results in two types of wrapper models: forward selection
and backward elimination, as detailed below.

Rank based Feature Selection (Rank). Rank based feature selection is one
of the simplest and most efficient means of filter-based feature selection. In this
process each feature is evaluated in turn to assign a relative figure of merit, based
on which the features are ranked. The rank can be calculated using information
gain (Rank-IG) or gain ratio (Rank-GR)), for example. Once the attributes are
ranked, the top N ranked attributes are selected. In our experiments, we set IV
to two-thirds the number of attributes for datasets with less than 10 attributes,
half the number of attributes for datasets with between 10 and 20 attributes,
and 20 attributes for larger datasets (up to 100 attributes).

A disadvantage of this algorithm is that it does not capture the interaction
of features or detect feature redundancy. The algorithm used to rank attributes
also tends to have biases, and requires that the user specifies a value for N.

Forward Selection (FS). In forward selection, we start with a seed set of zero
attributes and add in one attribute at a time to the seed set [4]. Each feature
subset thus formed is evaluated using stratified cross validation, and a greedy
selection strategy is used to select the attribute set which results in the highest
performance at each level. This attribute is then added to the seed set, and each
of the remaining attributes is experimentally added to the expanded feature set
on the next iteration of the algorithm. This process continues until all attributes
are included, or the increment in classifier performance falls below a ¢ value.

Backward Elimination (BE). Backward elimination is similar to forward se-
lection in operation, except that the starting state is all attributes, from which
one attribute is removed at a time until the increment in classifier performance
from one iteration to the next fails to grow. The backward elimination algo-
rithm tends to favour a higher number of attributes as compared to forward
selection.
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Table 1. Outline of the UCI datasets used in this research

Dataset No. of No. of discrete No. of continuous No. of

name instances attributes attributes classes
annealing 798 32 6 6
australian 690 8 6 2
breast-cancer 286 9 0 2
diabetes 768 0 8 2
german 1000 13 7 2
glass 214 0 10 7
heart 270 8 5 2
iris 150 0 4 3
monks-1 124 7 0 2
monks-2 169 7 0 2
monks-3 122 7 0 2
vehicle 846 0 18 4
votes 435 16 0 2

2.4 Datasets

Datasets from the UCI machine learning repository are commonly used to bench-
mark machine learning research. The data used in our experiment was imported
into NLTK-Lite (including establishing canonical data splits where they weren’t
predefined) to facilitate full reproducibility when conducting future experiments
using our toolkit. Table [I] lists the datasets imported along with instance, at-
tribute and class composition.

3 Past Research

Effect of discretization. Dougherty et al. [3] compared the effects of unsu-
pervised and supervised methods of discretization. They identified the charac-
teristics of individual methods and performed an empirical evaluation by exper-
imenting with different discretization methods and classifiers.

The results obtained from their study show that the performance of clas-
sifiers almost always improves with global discretization. It is also found that
the discretized version of the naive Bayes algorithm slightly outperforms the
C4.5 algorithm on these datasets. A combination of naive Bayes with entropy
based supervised discretization is said to have resulted in marked improvements,
although even the binning method of discretization improved results for the
naive Bayes classifiers. The supervised version of discretization is claimed to be
generally better than the unsupervised method. The relatively small effects of
supervised methods on C4.5 in general was attributed to either the induction al-
gorithm not being able to fully utilize the local discretization options or the local
discretization not helping with the induction algorithm on the given algorithms.

These general results were independently verified by Yang and Webb [10] with
respect to the naive Bayes algorithm, at the same time as looking at a wider
variety of supervised discretization methods and proposing a novel method.
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Effect of feature selection. John et al. [0] conducted experiments with the
ID3 and C4.5 algorithms on 6 artificial and real datasets, and combinations
of filter and wrapper methods of feature selection, to identify general trends.
They observed that the wrapper method of feature selection does not generally
improve the performance of classifiers significantly. The size of decision trees
constructed using these datasets was smaller than ones built using other data
sets, although there was an increase in accuracy in a few cases.

4 Experiments

To analyse the effects of pre-processing on classifier performance, we take a range
of datasets and classification algorithms, and apply a selection of combinations of
pre-processing methods to each. In this, we first discretize each dataset using one
of 6 different discretization algorithms (see above). We then optionally perform
feature selection (including on non-discretized data) based on one of four meth-
ods (see above). In sum, pre-processing results in 4 different types of dataset:
unchanged datasets (without discretization or feature selection), datasets with
discretized features, datasets with a subset of attributes based on feature se-
lection, and discretized, feature-selected datasets. We evaluate the performance
of each classification algorithm over the different pre-processed versions of a
given dataset. In all cases, we use simple classification accuracy to evaluate our
classifiers.

For all our experiments, we use a zero-R classifier without any preprocessing
as our baseline classifier. All results are presented in terms of error rate reduction
(e.r.r.) relative to the classification accuracy for this baseline.

In the experiments related to wrapper based methods, 25-fold stratified cross
validation is used internally to find the accuracy at each level, and a delta value
of 0.1 on classification accuracy is used as the stopping criterion.

Classification is performed based on 5-fold stratified cross validation on each
data set and the reported accuracies are the average of results obtained in each
trial.

As mentioned above, the complete code and suite of datasets used to run these
experiments is contained in the NLTK-Lite distribution.

5 Results

For easier analysis, the classification accuracy of each classifier is calculated
with respect to the baseline performance. Averages and variations of accuracy
improvements (or degradations) over all datasets are given in Table

5.1 Observations

From Table B, we observe that wrapper-based feature selection almost always
results in improved or equal performance relative to no feature selection, for a
given discretization method. Of the two wrapper-based methods, forward selec-
tion (F'S) is in most cases superior to backward elimination (BE). There are some
interesting incompatibilities with the wrapper-based feature selection methods:
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Table 2. Mean error rate reduction and standard deviation (in parentheses) over the
11 datasets, relative to a Zero-R baseline (the highest mean e.r.r. for each algorithm is
presented in bold face)

Feature Discretization
Selection None UEW UEF NS NS1 NS2 ES

1130 .3024 .3042 .3029 .2980 .3038 .2765

Nome | 1088) (£.2506) (+.2548) (+£.2428) (+.2578) (+.2617) (+.2541)

hale 1303024 3042 3029 2080 3038 2765
(£.1088) (£.2506) (£.2548) (£.2428) (£.2578) (£.2617) (£.2541)

LR Rank-GR .1130 .3024 .3042 .3029 .2980 .3038 2765
(£.1988) (£.2506) (£.2548) (£.2428) (£.2578) (£.2617) (£.2541)

FS 2033 .3083 3101 .3209 .3106 .3148 2908
(£.1827) (£.2461) (£.2504) (£.2469) (£.2518) (£.2538) (£.2511)

Lp 2083 3024 3042 3020 2080 3038 2765
(£.1827) (£.2506) (£.2548) (£.2428) (£.2578) (£.2617) (£.2541)

None 1041 3134 .3149 .2750 .3098 .3078 .2946
(£.2050) (£.2502) (£.2519) (£.2568) (£.2475) (£.2460) (£.2389)

Rank-I1C 1014 .3169 3117 2776 .3160 .3046 .2956
(£.1972) (£.2493) (£.2511) (£.2620) (£.2492) (£.2520) (£.2399)

1038 3100 .3037 2847 3054 3036 .2868
D3 Rank-GR- | 1950) (+.2538) (4.2581) (+.2564) (+£.2551) (+.2516) (+.2450)

FS .2552 .3083 .3222 .3209 .3106 .3148 2908
(£.2280) (£.2461) (£.2654) (£.2469) (£.2518) (£.2538) (£.2511)

BE 2244 3134 .3149 .3065 .3098 .3078 .2946
(£.2188) (£.2502) (£.2519) (£.2344) (£.2475) (£.2460) (+.2389)

None .2756 .2662 2743 .2902 2758 2753 12283
(£.2366) (£.2678) (£.2687) (£.2646) (£.2673) (£.2660) (£.2399)

Rank-IG 2411 2841 2848 .3120 .2909 .2990 .2596
(£.2187) (£.2682) (£.2580) (£.2684) (£.2647) (£.2706) (+.2423)

2411 2880 2859 .3084 .2856 .2920 2587
NB Rank-GR | 5107y (4.2680) (+£.2573) (4.2619) (.2609) (+.2649) (+.2423)

ps 275 3031 3055 3157 2001 3081 2855
(£.2325) (£.2530) (£.2555) (£.2515) (£.2531) (£.2610) (£.2564)

BE .2756 .2662 2743 .2902 2758 2753 2283
(£.2366) (£.2678) (£.2687) (£.2646) (£.2673) (£.2660) (+.2399)

None .2444 3225 .3249 .3439 .3252 .3388 .3081
(£.2895) (£.2649) (£.2626) (£.2598) (£.2611) (£.2604) (£.2341)

bl 2297 3288 351 3487 3270 3436 3004
(£.2382) (£.2632) (£.2657) (£.2472) (£.2549) (£.2490) (£.2325)

2448 3250 3183 .3509 3176 3330 3011
IBL Rank-GR | 9354) (+.2706) (+.2673) (+£.2556) (+.2500) (+.2585) (+.2378)

FS .2939 .3083 3227 .3209 .3106 .3148 2908
(£.2397) (£.2461) (£.2660) (£.2469) (£.2518) (£.2538) (£.2511)

BE .2444 3225 .3249 .3439 .3252 .3388 2785

(£.2895) (£.2649) (£.2626) (£.2598) (+.2611) (4.2604) (+.2362)
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forward selection is the worst of the feature selection methods (including no fea-
ture selection) in the majority of cases when combined with the IB1 algorithm;
backward selection, on the other hand, has almost no impact when combined
with each of the supervised discretization methods, and has no impact what-
soever in combination with naive Bayes (NB) and IB1 in all but one case. In
general, forward selection tends to select a very small number of attributes (of-
ten just a single attribute!), whereas backward selection eliminates a relatively
small number of attributes.

There is little separating the two rank-based filter feature selection methods
(Rank-IG and Rank-GR), perhaps unsurprisingly given that they are both based
on mean information. Both have absolutely no impact on the performance of
one-R, as it uses largely the same means of selecting a single attribute to form
a decision stump as the rank-based feature selection methods, meaning that
the preferred attribute for one-R is always included in the selected subset of
attributes.

It is interesting to note that both one-R and ID3 carry out implicit feature
selection in the process of generating a decision stump and decision tree, re-
spectively, and yet both benefit from explicit feature selection in pre-processing.
That is, it appears to be the case that feature selection optimizes classifier per-
formance even in cases where the classification algorithm carries out its own
feature selection.

Supervised discretization generally outperforms unsupervised discretization.
Naive supervised discretization (NS) is the pick of the supervised methods, sur-
prisingly given its inherent naivety, and the two modified variants of the basic
method generate a marked improvement in results only in combination with ID3.
Entropy based supervised discretization (ES) is the weakest of the supervised
methods. Of the two unsupervised discretization methods, unsupervised equal
frequency (UEF) performs the best, and in fact consistently outperforms the
supervised discretization methods in combination with ID3.

Recall that naive Bayes and IB1 both have in-built mechanisms for handling
continuous attributes, such that it is meaningful to compare the results of the
different discretization methods with the native algorithms. There is a remark-
able increment in discretizing the data and effectively bypassing this facility in
both cases, with naive supervised discretization being the pick of the discretiza-
tion methods in almost all cases. That is, despite the ability of these algorithms
to deal natively with continuous attributes, better results are achieved through
explicit pre-discretization of the data.

Importantly, feature selection tends to complement discretization, i.e. any
gains in performance tend to be additive when the two forms of pre-processing
are combined.

To summarise, from Table [2] we can conclude that the combination of naive
supervised discretization and forward selection wrapper based feature selection
is optimal across different datasets and classification algorithms.

6 Conclusions

We have surveyed a range of pre-existing discretization and feature selection
methods, and investigated their performance in combination with a selection of
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classification algorithms when used to preprocess a range of datasets. The re-
sults of our experiments show that the forward selection wrapper based method
is the pick of the feature selection algorithms, and complements even classifica-
tion algorithms which include implicit feature selection of their own. Among the
discretization methods, the naive supervised method was found to perform best
in most cases, and that explicitly discretizing the data is superior to relying on
native handling of continuous attributes within naive Bayes and IB1. Addition-
ally, these two forms of preprocessing complement each other to often improve
the overall performance of a given classification algorithm over a given dataset.
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Abstract. Hierarchical reinforcement learning methods have not been
able to simultaneously abstract and reuse subtasks with discounted value
functions. The contribution of this paper is to introduce two comple-
tion functions that jointly decompose the value function hierarchically
to solve this problem. The significance of this result is that the bene-
fits of hierarchical reinforcement learning can be extended to discounted
value functions and to continuing (infinite horizon) reinforcement learn-
ing problems. This paper demonstrates the method with the an algorithm
that discovers subtasks automatically. An example is given where the op-
timum policy requires a subtask never to terminate.

Keywords: hierarchical reinforcement learning, state abstraction, task
hierarchies, decomposition.

1 Introduction

Reinforcement learning (RL) and Markov Decision Problems(MDP)[I] are ap-
propriate machine learning techniques when rational agents need to learn to
act with delayed reward in unknown stochastic environments. It is well known
that the state space in RL generally grows exponentially with the number of
state variables. Approaches to contain the state space explosion include func-
tion approximation and state abstraction in hierarchical reinforcement learning
(HRL). More recent approaches to HRL include include HAMQ [2], Options [3]
and MAXQ []. This paper solves an important but specialised problem in HRL,
namely, that simple hierarchical decomposition of the value function is incom-
patible with discounting. Given space limitations, we will assume that the reader
is somewhat familiar with both RL and MAXQ.

We use a simple maze to motivate the problem and to demonstrate the solu-
tion. The maze on the left in figure [l depicts nine interconnected 25 grid position
rooms. One-step agent actions are North, South, East or West with reward —1
per step. The task is to find the minimum cost policy from anywhere in the maze
to the exit marked “goal”. A state is defined by a room variable and a position-
in-room variable. Thus we have a total of 225 states. Reinforcement learning can
find the shortest route out of the maze. 900 table entries are required to store
the action-value function with Q-learning [I].

M.A. Orgun and J. Thornton (Eds.): AT 2007, LNAI 4830, pp. 58 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A simple room maze problem (left) and its decomposed task hierarchy (right)

HRL can decompose the problem into a task hierarchy of smaller subproblems.
A task hierarchy for the maze is shown on the right in figure[Il As all the rooms
are assumed to be internally equivalent, it is only necessary to learn how to leave
a typical room. This room-leaving skill can then be transferred and reused in
any room without the need to relearn it. The compass bearing action description
means that four room-leaving skills are required, one to leave a room by the
North, South, East or West doorway. It is now possible to represent the maze
problem more abstractly with just 9 abstract room states and 4 abstract room-
leaving actions. The abstract problem is represented by the top level in the task
hierarchy in figure [ (right). This is a small semi-MDP. The 4 room-leaving
skills are the policies learnt at the lower level. Subtask policies are interpreted
as abstract (or temporally extended) actions from the perspective of the level
above.

State abstraction refers to the aggregation of base level states to capture
some invariant structure of the problem. For example the same position in each
room of the original problem may be aggregated into one abstract position-in-
room state. This type of state abstraction is related to eliminating irrelevant
variables [4] and model minimization [5]. The room identity is irrelevant to the
navigation policies inside rooms. Another type of abstraction is to aggregate all
the positions in a room into one abstract state. Each room becomes a state. Using
both types of state abstraction it is possible to reduce the storage requirements
to represent the value function for the simple maze problem by more than 50%
to 436 @ values. At the top level in figure [ (right) there are 9 abstract states
and 4 abstract actions requiring 36 values. At the bottom level, the four subtasks
require 25 x 4 Q values each. State abstraction has been shown to be important
for scaling in HRL [GI7/41g].

Reinforcement learning uses an optimality criterion such as maximising the
sum of future rewards from any state. In HRL this state value function may be
decomposed over the task hierarchy. To reconstitute the overall value of a state,
the rewards accumulated inside a subtask are added to the sum of rewards after
leaving the subtask. The latter sum is called the completion value in MAXQ [4].
In this way a state value is calculated by summing the completion values of all
the subtasks in a path to the leaf node for any hierarchical policy.
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For example, consider an agent that is in position A in figure [l with reward
—1 per step. The nine room states at the top level, only store the completion
value following a transition into a new room. The distance to reach the goal
after leaving the room from A to the south (the “south” completion value) is
the same as the distance to reach the goal after leaving the room to the east (the
“east” completion value). The top level completion values in this instance are
not sufficient to determine the shortest path to the goal. It is necessary to take
into consideration the local distance to each doorway. From A it is better to try
to exit the room via the East doorway. To determine the overall value function
therefore, the distance to each doorway is added to the completion values at the
top level and the overall shortest path found. In general determining the optimal
value for any state requires a search by branching down the task hierarchy for
that state (a best first search).

The property that makes subtask abstraction possible, is that the comple-
tion values at higher levels are independent of the value of the current state of
subtasks.

To ensure that components of the decomposed value function are additive
when state abstraction is introduced, MAXQ must use undiscounted rewards [4].
Unfortunately, when the value function is defined as the sum of future discounted
rewards, the simple additive property breaks down. The reason is that parent
task completion values for a child subtask depend on the number of steps to
terminate the subtask. Discounting means that they will differ in general for
each state in the subtask. In other words, discounting does not permit subtask
abstraction with a single decomposed value function. Dietterich identified this
problem in his discussion of result distribution irrelevance [], concluding that
subtask abstractions are only possible in an undiscounted setting for MAXQ.
Attempting reusable subtask state abstraction with Options, HAMQ or ALisp
is similarly problematical.

This is a serious issue for HRL and affects the large class of infinite horizon
MDPs. An infinite horizon MDP is one that may continue forever and never
terminate, for example, pole-balancing. It is an issue because any infinite horizon
MDP whose value function is based on the infinite sum of future rewards must
discount them to ensure the value function remains bounded.

The main contribution of this paper is the formulation of a set of decompo-
sition equations that allow both discounting and state abstraction. The method
combines both a value and action discount function recursively to decompose
a discounted value function. MAXQ uses two value functions, one that stores
the real values and a pseudo value function that is used to ensure that subtasks
terminate in goal termination states. The introduction of a third decomposed
function will increase the storage requirements, but only by a factor of 1.5. The
scaling potential of HRL is retained and HRL can be extended to include infinite
horizon problems.

The rest of this paper is organised as follows. The next substantial section
will derive the system of state abstracted decomposition equations for a dis-
counted value function over a multi-level task hierarchy. We then introduce an
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infinite-horizon variant of the taxi task to illustrate the benefit of the foregoing
decomposition. Results show that even for this simple task learning is faster and
the value function can converge to the same value found by a ‘flat’ learner.

2 State Abstraction and Discounting

The objective in this section is to derive a system of equations to decompose
and compact a value function representing the sum of discounted future rewards.
In the process decomposition constraints will be stated that provide a method
to design task hierarchies that are guaranteed to enable state abstraction of
subtasks. The decomposition was inspired by Dietterich [4] but differs in the
way termination rewards are handled. Importantly it extends the decomposition
with an additional decomposed discount function.

Given a well defined reinforcement learning problem, m, with a finite set of
states and actions, the value function of discounted future rewards for state s
can be written as:

Vir(s) = E{ri +yr2 ++°r3...} (1)

where E is the expectation operator, m a stationary policy, r, the primitive
rewards received at each time step n and - the discount factor.

If a subtask, m — 1 is invoked in state s and takes a random number of time
steps, N, to terminate, the above value function can be written as the expected
sum of rewards accumulated inside the subtask plus the expected sum of rewards
following termination of the subtask.

N-1 oo
Vi) =E{Y 7" 'ra} +E{Y_ 4" lra} (2)
n=1 n=N

The first series is just the local discounted value function for subtask m — 1
where the termination is defined by a zero reward exit to an absorbing state.
Isolating the primitive reward on termination in the second series we have

Vi(s) = V() + BN ew + Y 4" ) 3)
n=N-+1

If s’ is the state reached after terminating subtask m — 1, R the expected
primitive reward on termination to s’ after N steps and defining P7. (s', N|s, 7(s))
as the joint probability of reaching state s’ in N steps starting in state s and
following policy 7, then equation [l becomes

Vin(s) = Vin_i(s) + Y PT(s', Ns,m(s)y" T R+ 4V ()] (4)
s’ N

It is desirable to design the subtasks in the task hierarchy in such a way
that the state reached on subtask termination is independent of the number of
steps to termination. This can be achieved if all the subtasks can be defined to



62 B. Hengst

terminate from just one of their states for some policy. In other words, if it is
possible to find a policy for each subtask that can reach the termination state
with probability one. This type of decomposition will be referred to as subtask
termination independent. We will assume from here on, that the task hierarchy
has been designed to comply with the subtask termination independence condi-
tion. This condition is related to MAXQ “funnel actions” that permit subtask
abstraction [4] and is a feature of HEXQ [§].

While it may appear restrictive to terminate each subtask from just one state,
it must be remembered that it is of course possible to define multiple tasks to
terminate in a region of state space in all the possible ways allowed in the
underlying MDP. The restriction is not on the number of exits, but rather that
each termination can be reliably reached and executed from within each subtask.
The final transition out of a subtask is always Markov and stationary as the
overall problem is assumed to be a well defined reinforcement learning problem.
The next state s’ reached after termination of a subtask is only dependent on the
final state inside the subtask not on any other state in the subtask. This is the
key property that makes it possible to safely abstract subtasks. Independence
means that

P7(s',N|s,a) = P™(s'|s,a)P™(N|s,a) (5)

Equation [l using abbreviation a = 7(s) becomes

Vin(s) = Vin_i(s) + ) PT(Nls,a)y™ 1 x Y7 P(s']s,a)[R + 7V (s")] (6)
N s’

The probability of the next state s’ is now independent of any particular state
s in the subtask for policy 7. If g represents the set of states in the subtask then
P7(s'|s,a) = P™(s'|g, a) for all s € g. Importantly, the final sum in equation [@ is
therefore independent of the state s and the number of steps N to termination
from s.

We define the completion value function, E, as the expected value of future
rewards after termination of the subtask associated with abstract action a and
define the discount function, D, as the expected discount to be applied to the
completion value. That is:

Elg.0) = 3 P71 )R + V() (7)

and

=Y PT(Nls,m(s)yV ! (3)
N
Equation 6] can be succinctly written as

Vils) = Vin_1(s) + D1 (s) E7, (9, @) (9)

The discount function D is the multi-time model for the termination of the
subtask interpreted as an Option [3]. It can itself be recursively represented as
follows:

m—1(8) =vDp,_o(s)I5,_1(g,a) (10)
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where the completion discount function, I', for all states s € g is the expected
value of discount that is applied to state s’ reached after terminating the subtask
associated with abstract action a and following the policy 7 thereafter. I is
constructed as a discounted value function with the termination value of subtask
m — 1 set to 1 and all internal rewards set to zero.

m 1 g7 ZPTF /|g7 ( ) (11)

Equations [7 [ and [[1] are the recursive decompositions equations for a
discounted value function following policy w for a task hierarchy. At the leaf
nodes in the task hierarchy there are no child subtasks. For leaf subtasks, child
subtask values, V,7_, in the above equations are defined to be zero and discount
values, D] _,, set to 1. The recursively optimal value and discount functions,
where abstract action a invokes subtask m — 1 are:

Vin(s) = max[Viy_(s) + Dy, _1(5)-Ey, (g, a)]
Dr1(s) = ymax[Dy, _5(s)-Ir—1 (9, @)] (12)

This formulation requires only one action-value to be stored for each of the
functions E and I" for states in a reusable subtask. In other words safe abstrac-
tion of the subtask states can be retained as for the non-discounted case.

To illustrate, figure 2l shows the decomposed value and discount functions,
and the compaction achieved for the simple maze task hierarchy in figure [
The discount factor « is 0.9. The reward is -1 per step and 20 for problem
termination. Part (a) illustrates the optimal value function for the subtask of
leaving a room to the East. This corresponds to VX _;(s) in equation [[21 Part
(b) shows the on-policy discount function for the same task, i.e. D} _;(s) in
equation [[2 Part (c) shows the exit value E? (g,a) for each room for each of
the room leaving abstract actions. To compose the optimal value of location A
in figure [I] using equation [I2] we find that leaving the room via the East gives
the maximum value Substituting the position A values from figure 2] (shaded)
in Vi(s) = 1(8) + DX, _1(s).E¥,(g,a) evaluates to —1.9 + 0.81 x —6.35 =
—7.05. It can be verified that —7.05 is the discounted value of location A in
the “flat” problem. The sum of the 22 discounted rewards to termination is
—1-.9-.92-.9%...—.9% +20x.9% = —7.05.

The completion discount function and the action-value function tables for each
subtask have different purposes. The former stores discount values by which to
discount subtask completion values. The latter stores local discounted rewards
accumulated inside a subtask. Together they allow an overall discounted value
function to be losslessly compacted. The values within a subtask need to be
stored only once and can be reused for each occurrence of the subtask. Subtask
themselves can be represented by an aggregate state at a higher level as the com-
pletion value associated with a specific instance of the subtask is now adjusted
by the action discount function.

In this way the value of any state of the original problem is exactly and
compactly represented for any policy that can be implemented over the task
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Fig. 2. The decomposed discounted value function for the simple maze in figure [l (a)
shows the optimal value function and (b) the on-policy discount function for the room
leaving subtask to the East. (c¢) shows the completion values, E, for each room and
each of the room leaving abstract actions, e.g. E(top-right-room,leave-to-east) = 20.

hierarchy. This means that reusable subtask abstraction and hence scaling of
RL problems can be achieved in the face of discounting. Importantly, subtask
abstraction can now be used for infinite horizon problems for which discounting
the sum of future rewards is mandatory. We now show how infinite horizon
problems can be tackled using HRL.

3 Hierarchical Decomposition of Infinite Horizon MDPs

To allow a recursively optima solution to be found for an infinite horizon MDP
task hierarchy we need to guarantee termination of subtask MDPs in the presence
of positive and negative rewards. Even when all the rewards are negative an
optimal policy does not guarantee that the subtasks will terminate when using
a discounted value function. A barrier of high negative rewards may dissuade an
agent from reaching a termination state, particularly for higher discount factors.

We therefore define a pseudo value function, F, that sets a large enough
positive termination value for the subtask so that the subtask will terminate
starting in any of its statedd.

In total, therefore, there are three decomposed value functions that are re-
quired for each subtask. The pseudo reward completion value function, F, that
determines the policies available as abstract actions at the next level up in the
hierarchy, the function, I", which holds discount values to be applied to the real
completion value function at the next level up, and the real completion value
function, E, which holds (in Ditterich’s words) the “uncontaminated” exit values
for each subtask. E is updated on-line and I" and E are simultaneously updated
following E’s policy.

L A recursively optimal policy is one that finds the optimal policy for a (reusable)
subtask without reference to its context.
2 In contrast, MAXQ uses a pseudo value function that sets large negative values on

undesirable terminations.
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Discounting and positive rewards mean that an optimal policy may now re-
quire that the learner never leaves a subtask! For infinite horizon problems each
region of state space associated with a subtasks will therefore need a separate
subtask to be defined that does not terminate. A non-terminating subtask will
not return control to its parent and a means of interrupting the execution of
the subtask is required. To accommodate this non-terminating subtasks during
learning, a subtask timeout is required. Currently we count the number of steps
that a subtask executes and if it exceeds a manually set threshold value the
execution is interrupted and control is passed back up the task hierarchy to the
top level without updating value functions along the way.

MAXQ, HEXQ, ALisp and other HRL programs that use decomposed value
functions can be augmented with the dual discounted value function decomposi-
tion equations presented in this paper to allow safe state abstraction of subtasks
when subtasks are termination independent. HRL can now be applied to infinite
horizon problems that can be decomposed by an appropriate task hierarchy.

4 Results

We will use a modified version of Dietterich’s familiar taxi problem to demon-
strate the decomposition of a discounted value function. For our implementation
we chose the HRL algorithm HEXQ [§] and modified it to: (1) include the new
completion discount function to decompose a discounted value function and (2)
automatically generate one non-terminating subtask per region.

The taxi task is shown in figure[3l A taxi trans-navigates a grid world to pick
up and drop off a passenger at four possible locations, designated R, G, Y and
B. Actions move the taxi one square to the north, south, east or west, pickup
or putdown the passenger. Navigation actions have a 20% chance of slipping to
either the right or left of the intended direction. The default cost for each action
is -1. If the taxi executes a pickup action at a location without the passenger or
a putdown action at the wrong destination it receives a reward of -10.

To make the task continuing, a passenger location and destination are created
at random after the passenger is delivered and the taxi is teleported to a random
grid location. The reward for delivering the passenger is 200. The taxi domain
is augmented with another source of income for the taxi. If the taxi transitions

Top Level
Pagssenger pickup
and destination

| Ll IJIJB_I|

Fig. 3. The taxi task
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from below to the grid location marked with the $ sign in figure Bl the reward is
a positive number. This may be interpreted as a local pizza delivery task with
guaranteed work but at a different rate of pay.

The taxi problem is modelled as an infinite horizon MDP with a two dimen-
sional state vector s = (taxi location, passenger source/destination). There are
25 possible taxi locations (grid points) and 20 possible pickup-destination com-
binations (5 passenger locations, including in the taxi x 4 drop-off locations).

This problem has two type of optimal solutions depending on the value of the
$ reward. If the $ reward is low, the taxi will maximise its income by continuing
to pick up and deliver passengers as per the original taxi problem. For larger $
values the taxi will prefer to make local delivery runs and visit the $ location as
frequently as possible, ignoring the passenger.

The problem is hierarchically decomposed into a two level hierarchy as shown
in figure Bl The top level task represents a semi-MDP where the abstract states
describe the source and destination of the passenger. The bottom level subtasks
are the four navigation MDPs that allow the taxi to navigate to one of the four
pickup or drop-off locations and either pickup or drop-off the passenger. A fifth
non-terminating subtask is now also generated as an available option.

As the infinite horizon taxi problem is solvable as a “flat” problem, it is
possible to confirm that that the decomposition method developed in this paper
does indeed converge to the “flat” value function. We test this by observing the
convergence of both the “flat” and hierarchically decomposed value function for
an arbitrary state when rewards at the $ location are varied.

Both the flat and HRL use a discount rate of 0.9, a learning rate of 0.1 and
an e-greedy exploration strategy with € set to 0.8. We arbitrarily track the value
(discounted sum of future reward) of the state where the taxi is at location “R”,
the passenger is at “Y” with destination “B”. Figure[d] (a) shows the convergence
of the value for this state when the reward at location $ = —1 meaning that there
is no special advantage for visiting this location repeatedly. The three solid lines

T r T T T T T T 1
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
(b) Time Steps (a) Time Steps

Fig. 4. (a) Tracking the convergence for an arbitrary Q value with § = —1. The three
solid lines show the mean and the 95% confidence interval for HEXQ. The dashed lines
show the same for a “flat” learner. (b) Convergence results as for (a) but with $§ = 40.
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show the convergence with HEXQ. They show the mean over 10 runs together
with its 95% confidence interval. The dashed lines show the same information
for the “flat” learner. The overlapping confidence intervals indicate that there is
no significant difference between the value functions learnt by the two learners.
HEXQ converges faster even thought it first must uncover and construct the
task hierarchy.

Figuredl (b) shows a similar result when the $ reward is set to 40. At this value
it is more profitable to remain in the non-terminating subtask and for the taxi
to continue to deliver pizzas locally rather than pick up and deliver passengers.

5 Conclusion

The value function decomposition technique introduced in this paper has been
applied to other infinite horizon problems involving more than two levels of
hierarchy and for which the “flat” problem is intractable. Some of these prob-
lems were able to be solved in seconds with orders of magnitude of savings in
storage for the value function. Space limitations do not permit a more detailed
exposition.

The main contribution of this paper has been to show how a system of value
function decomposition equations can resolve the issue of reusable subtask ab-
straction in the face of discounting. This now allows the benefits of subtask
abstraction in HRL to be applied to infinite horizon Markov decision problems.

Acknowledgments. National ICT Australia is funded by the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the Australian
Research Council.
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Abstract. Learning of Markov blanket can be regarded as an optimal solution
to the feature selection problem. In this paper, we propose a local learning
algorithm, called Breadth-First search of MB (BFMB), to induce Markov
blanket (MB) without having to learn a Bayesian network first. It is
demonstrated as (1) easy to understand and prove to be sound in theory; (2) data
efficient by making full use of the knowledge of underlying topology of MB;
(3) fast by relying on fewer data passes and conditional independent test than
other approaches; (4) scalable to thousands of variables due local learning.
Empirical results on BFMB, along with known Iterative Association Markov
blanket (IAMB) and Parents and Children based Markov boundary (PCMB),
show that (i) BFMB significantly outperforms IAMB in measures of data
efficiency and accuracy of discovery given the same amount of instances
available (ii) BFMB inherits all the merits of PCMB, but reaches higher
accuracy level using only around 20% and 60% of the number of data passes
and conditional tests, respectively, used by PCMB.

Keywords: Markov blanket, local learning, feature selection.

1 Introduction

Classification is a fundamental task in data mining that requires learning a classifier
from a data sample. Basically, a classifier is a function that maps instances described
by a set of attributes to a class label. How to identify the minimal, or close to
minimal, subset of variables that best predicts the target variable of interest is known
as feature (or variable) subset selection (FSS). In the past three decades, FSS for
classification has been given considerable attention, and it is even more critical today
in many applications, like biomedicine, where high dimensionality but few
observations are challenging traditional FSS algorithms.

A principle solution to the feature selection problem is to determine a subset of
attributes that can render the rest of all attributes independent of the variable of
interest [8,9,16]. Koller and Sahami (KS)[9] first recognized that the Markov blanket
(see its definition below) of a given target attribute is the theoretically optimal set of
attributes to predict the target’s value, though the Markov blanket itself is not a new
concept that can be traced back to 1988[11].

* This work was done during the author’s time in SPSS.

M.A. Orgun and J. Thornton (Eds.): Al 2007, LNAI 4830, pp. 684-79,[2007.
© Springer-Verlag Berlin Heidelberg 2007
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A Markov blanket of a target attribute 7' renders it statistically independent from
all the remaining attributes, that is, given the values of the attributes in the Markov
blanket, the probability distribution of T is completely determined and knowledge of
any other variable(s) becomes superfluous [11].

Definition 1 (Conditional independent). Variable X and T are conditionally inde-
pendent given the set of variables Z (bold symbol is used for set), iff.
PTIX,Z)=P(T|Z),denotedas T L X | Z .

Similarly, T 4 X |Z is used to denote that X and T are NOT conditionally
independent given Z .

Definition 2 (Markov blanket, MB ). Given all attributes U of a problem domain, a
Markov blanket of an attribute T € U is any subset MB < U\{T'} for which

VXeU\T}\MB, T LX|MB
A set is called Markov boundary of 7T if it is a minimal Markov blanket of T .

Definition 3 (Faithfulness). A Bayesian network G and a joint distribution P are
faithful to one another, if and only if every conditional independence encoded by the
graph of Gisalsopresentin P,ie, T 1. X1Z T 1, XI|Z[12].

Pearl [11] points out that if the probability distribution over U can be faithfully
represented by a Bayesian network (BN), which is one kind of graphical model that
compactly represent a joint probability distribution among U using a directed acyclic
graph, then the Markov blanket of an attribute 7 is unique, composing of the T ’s
parents, children and spouses (sharing common children with 7). So, given the
faithfulness assumption, learning an attribute’s Markov blanket actually corresponds
to the discovery of its Markov boundary, and therefore can be viewed as selecting the
optimal minimum set of feature to predict a given T . In the remaining text, unless
explicitly mentioned, Markov blanket of 7" will refer to its Markov boundary under
the faithfulness assumption, and it is denoted as MB(T') .

MB(T) can be easily obtained if we can learn a BN over the U first, but the BN’s

structure learning is known as NP-complete, and readily becomes non-tractable in
large scale applications where thousands of attributes are involved. Until now, none
of existing known BN learning algorithms claims to scale correctly over more than a
few hundred variables. For example, the publicly available versions of the PC [12]
and the TPDA (also known as PowerConstructor)[2] algorithms accept datasets with
only 100 and 255 variables respectively.

The goal of this paper is to develop an efficient algorithm for the discovery of
Markov blanket from data without having to learn a BN first.

2 Related Work

A reasonable compromise to learning the full BN is to discover only the local
structure around an attribute 7 of interest. We refer to the conventional BN learning
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as global learning and the latter as local learning. Local learning of MB(T) is
expected to remain a viable solution in domains with thousands of attributes.

Local learning of MB began to attract attention after the work of KS [9].
However, the KS algorithm is heuristic, and provides no theoretical guarantee of
success. Grow-Shrink (GS) algorithm [10] is the first provably correct one, and, as
indicated by its name, it contains two sequential phases, growing first and shrinking
secondly. To improve the speed and reliability, several variants of GS, like IAMB,
InterlAMB [15,16] and Fast-IAMB[17], were proposed. They are proved correct
given the faithfulness assumption, and indeed make the MB discovery more time
efficient, but none of them are data efficient. In practice, to ensure reliable
independence test tests, which is the basis for this family of algorithm, IAMB and its
variants decide a test is reliable when the number of instances available is at least five
times the number of degree of freedom in the test. This means that the number of
instances required by IAMB to identify MB(T) is at least exponential in the size of
MB(T) , because the number of degrees of freedom in a test is exponential in the size
of conditioning set and the test to add a new node in MB(T') will be conditioned on at
least the current nodes in MB(T) (Line 4, Table 1) [8].

Several trials were made to overcome this limitation, including MMPC/MB[14],
HITON-PC/MB[1] and PCMBI8]. All of them have the same two assumptions as
IAMB, i.e. faithfulness and correct independence test, but they differ from IAMB by
taking into account the graph topology, which helps to improve data efficiency
through conditioning over a smaller set instead of the whole MB(T) as done by
IAMB. However, MMPC/MB and HITON-PC/MB are shown not always correct by
the authors of PCMB since false positives will be wrongly learned due to their inner
defect [8]. So, based on our knowledge, PCMB is the only one proved correct,
scalable and truly data-efficient means to induce the MB when this paper is prepared.

In this paper, we propose a novel MB local learning algorithm, called Breadth First
search of Markov Blanket (BFMB). It is built on the same two assumptions of IAMB
and PCMB. BFMB algorithm is compared with two of the algorithms discussed
above: JAMB and PCMB. IAMB is a well known algorithm and referred to as MB
local discovery. PCMB is the most successful break over IAMB to our knowledge
and our own work is based on this algorithm. To allow for convenient reference and
comparison, we include the complete IAMB and partial PCMB algorithms here in
Table 1.

Akin to PCMB, BFMB is designed to execute an efficient search by taking the
topology into account to ensure a data efficient algorithm. We believe this approach is
an effective means to conquer the data inefficiency problem occurring in GS, IABM
and their variants. As its name implies, BFMB starts the search of MB(T) from its

neighbors first, which actually are the parents and children of 7', denoted as PC(T).
Then, given each X € PC(T) , it further searches for PC(X) and checks each
Y e PC(X) to determine if it is the spouse of T or not. So, our algorithm is quite

similar to PCMB, but it finds the PC of an attribute in a much more efficient manner.
More detail about the algorithm can be found in Section 3. Considering that the
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discovery of PC(X) is a common basic operation for PCMB and BFMB, its

efficiency will directly influence the overall performance of algorithm. Experiment
results of algorithms comparison are reported and discussed in Section 4.

Table 1. IAMB and partial PCMB algorithms

IAMB

PCMB (cont.)

IAMB (
D . pataset,
€ .threshold

~

// Grow phase.
U = {attributes in D} ;
do
X;e argminxieU\MB Ip(T,X;IMB) ;
if (I(T,X;IMB)<¢ ) then
MB=MBU X;

while ( MB has change )
// Shrink phase
7 for (eachX,e MB )do

8 A1f(Ip(T,X;IMB\{X;})<e) then
9 MB=MB\{X;} ;

o Ul W N

10 return MB ;
}

PCMB

GetPCD (T )
{
1 PCD=¢ ;
2 CanPCD=U\{T} ;
3 do
/*remove false positives*/
4 for(each X,e CanPCD )do

5 Sep[X;]= argming_pep Ip(T,X;1Z)

6 for(each X,e CanPCD )do

8 CanPCD =CanPCD\{X,} ;

/*add the best candidate */
9

Y = arg min y. cunpep 1@ X;1Sep[ X))

10 PCD=PCDuU{Y} ;

11 CanPCD =CanPCD\{Y} ;

12 for( each X,e PCD )do

13

Sep[X;]1= argminzgpcp\{xi] Ip(T,X;1Z) ;

14 for(each X,e PCD )do

15 if (Ip(T,X;|Sep[X;])<e )then

16 PCD =PCD\{X;} ;

17 while ( PCD has change &&
CanPCD # ¢ )

18 return PCD ;

}

GetPC(T)
{
1 PC=¢;

2 for(each X,eGetPCD(T )) do
3 if (Te€ GetPCD(X;)) then
4 PC=PCuU{X;}

3 Local Learning Algorithm of Markov Blanket: BFMB

3.1 Overall Design

As discussed in Section 1 and 2, the BFMB algorithm is based on two assumptions,
faithfulness and correct conditional test, based on which the introduction and proof of

this algorithm will be given.
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Table 2. BEMB algorithm

RecognizePC ( 17returnADJ, ;
T : target, }
ADJy :Adjacency set to
search RecognizeMB (
D : Dataset, ¢ :threshold D : Dataset,
) ¢ :threshold
{ )
1 NonPC=¢ ; {
2 cutSetSize = 1; // Recognize T’parents/children
3 do 1 CanADJ,=U\{T} ;
4 for(each X,e ADJ, )do 2
5 for(each § C ADJ,\{X,) PC =RecognizePC(T ,CanADJy ,D , € )
with ISI =7
cutSetSize)do 3 MB =PC ;,
P LF(1 (X.TIS)<e )th // Recognize the spouses of T.
. p(X,TIS)se en 4 for(eachX,e PC )do
7 NonPC = NonPC L{X,} . . CanADJ, =U\(X,}
8 break; . !
9  if(INonPCI>0 ) then 6 LA =

Lo ADJ, = ADJ, \NonPC | RecognizePC(X;, CanADJX’, ,D,e);

1 Sepsety, =S . 7 for(eachY;e CanSP andY;¢ MB ) do

12 cutSetSize +=1;: 8 if(1,(T.Y,|Sepset;, UX,) >¢)then
13 NomPC=¢ . 9 MB=MBU{Y) ;

14 else 10 return MB ;

15 break; }

l6while(lADJ, > cutSetSize)

On a BN over U , the MB(T) contains parents and children of T , i.e. those nodes
directly connected to T, and its spouses, i.e. parents of T ’s children. We denote
these two sets as PC(T) and SP(T) respectively. With considerations in mind,
learning MB(T) amounts to deciding which nodes are directly connected to 7T and

which directly connect to those nodes adjacent to 7' (connect to 7 with an arc by
ignoring the orientation).

Given a Bayesian network, it is trivial to extract a specific MB(T) given
attribute 7 . However, learning the topology of a Bayesian network involves a global
search that can prove intractable. Actually, we can avoid obstacle by following what
we discussed above on the underlying topology information. We need only decide (1)
which are adjacent to 7 among U \{T}, i.e. PC(T)here, and (2) which are adjacent

to PC(T) and point to children of T in the remaining attributes U \{T'}\ PC , i.e.

SP(T) . Since it is actually a breadth-first search procedure, we name our algorithm
as BFMB.



Local Learning Algorithm for Markov Blanket Discovery 73

We need not care about the relations among PC(T'), SP(T) and between PC(T)
and SP(T) , considering that we are only interested in which attributes belong
to MB(T) . Therefore, this strategy will allow us to learn MB(T') solely through local
learning, reducing the search space greatly.

3.2 Theoretical Basis

In this section, we provide theoretical background for the correctness of our
algorithm.

Theorem 1. If a Bayesian network G is faithful to a probability distribution P, then
for each pair of nodes X and Y in G, X and Y are adjacent in G iff. X X Y |Z for
all Z suchthat Xand Y ¢ Z . [12]

Lemma 1. If a Bayesian network G is faithful to a probability distribution P, then
for each pair of nodes X and Y in G, if there exists Z such that X and Y ¢ Z |,
X 1LY IZ ,then X and Y are NOT adjacentin G .

We get Lemma 1 from Theorem 1, and its proof is trivial. The first phase of BFMB,
RecognizePC (Table 2), relies upon this basis. In fact, the classical structure learning
algorithm PC [12, 13] is the first one designed on this basis.

Theorem 2. If a Bayesian network G is faithful to a probability distribution P, then
for each triplet of nodes X ,Y and Z in G such that X andY are adjacent to Z , but
X and Y are not adjacent, X — Z « Y is a subgraph of G iff X X Y|Z for all
Z suchthat Xand Y¢ Z ,and Z ¢ Z . [12]

Theorem 2 plus Theorem 1 form the basis of BEFMB’s second phase, the discovery
of T ’s spouses (Table 2). Given X € PC(T), which is the output of phase 1 in
BFMB, we can learn PC(X) as we learn PC(T) . For each Y€ PC(X), if we known
T X YIZforall Zsuchthat T,Y ¢ Z and Xe Z, T — X « Y is a subgraph

of G ; thereforeY is a parent of X ; since X is the common child between Y and 7T,
Y is known as one spouse of I . This inference brings us Lemma 2.

Lemma 2. In a Bayesian network G faithful to a probability distribution P, given
Xe PC(T), and Ye PC(X),if T X Y| Z for all Z such that T, Y ¢ Z and
X e Z ,thenY is a spouse of T .

3.3 Breadth-First Search of Markov Blanket
Learn Parents/Children

The following table is the algorithm to find which variables should be joined by arcs
to, i.e. dependent on, target7 . We name it RecognizePC, and its output contains the
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complete and only set of parents and children of 7 .The soundness of RecognizePC is
based on the DAG-faithfull and correct independence test assumptions.

RecognizePC procedure (Table 2) is quite similar to the conventional PC structure
learning algorithm, but it limits the search to the neighbors of the target we are
studying, which means that local, instead of global, learning is required by this MB
learning algorithm.

Theorem 3. Each X, € PC(T') returned by RecognizePC is a parent or child ofT", and
PC (T) contains all the parents and children of T.

Proof.(i)For each X, € PC(T), we scan each possible subset S < ADJ,. \{X,}, and only
those X, satisfying 1, (T, X, 1S) > &, where 1,(P) is conditional independence test and € is
pre-defined threshold value, can finally be included into PC . With Theorem 1, we can infer
that T and X, should be adjacent. (ii) Since we start with ADJ, =U\{T}, and check

all X, € ADJ,, and given the correctness of statement (i), we cannot miss any X, adjacent

toT .
The extraction of the orientation between T and X, e PC(T) is not the goal of

this paper since we won’t distinguish which ones are parents and which are children
of T . With the example shown in Figure 1, RecognizePC correctly finds its
PC(T) ={2,4,6,7} .

Learn Spouses

Our search of MB(T) consists in finding parents/children first, and then the spouses.

During implementation, we take the strategy of breadth first by looking for those
neighbors of T in its first round, and secondly further check the neighbors of those
variables found in its first step, enrolling them into MB(T) if they are found to share

common children with 7 . The outcome of this second step, as shown soon, will be the
remaining part of MB(T) , i.e., its spouse nodes.

The following RecognizeMB is designed by this idea. It takes dataset as the input,
and output MB(T') .

Theorem 4. The result given by RecognizeMB is the complete Markov blanket of 7" .

Proof.(i) Based on Theorem 3, we know that PC (T) will contain all and only the parents
and children of T . (ii) Once again, with Theorem 3, we know that CanSP contains all and
only the parents and children of each X, € PC . (iii) During our decision of whether or not to

enroll oneY; returned by RecognizePC( X;) (line 6 in RecognizeMB, X, PC(T)), we

L

need refer the Sepsetr y (got when we call RecognizePC(T ) ) conditioned on which
T and Y; are independent. If Y, and T are conditionally dependent given Sepset, , UX,,
that is I,(T,Y, | Sepset,, WX,) >&. Since both Y; and T are adjacent to X, and Y,

is not adjacent to T , we can infer the existence of topologyY;, — X <= Z , based on Theorem
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2. (iv) Because we look into each parent and child set of X, € PC, our algorithm will

not miss any of the spouses of T . Therefore, it is correct and complete.

3.4 Expected Merits over IAMB and PCMB

BFMB algorithm is introduced and proved correct in the preceding sections. Before
we go ahead to report the experimental results, we discuss the expected merits of
BFMB over IAMB and PCMB, and confirm them with empirical results in the
following section.

BFMB is more complex than IAMB since knowledge of the underlying topology is
used here. It is designed with the divide-and-conquer idea as IAMB, but a different
strategy is followed. IAMB is composed with growing and shrinking, which is sound
as well as simple by ignoring the underlying graph topology. BFMB divides the
learning into looking for parents/children first, then spouses. Besides, it always tests
by conditioning on the minimum set. These two aspects enhance the data efficiency of
BFMB greatly over IAMB, but without scarifying correctness and scalability.

BFMB’s overall framework is quite similar to PCMB by taking account of the
graph topology, but BFMB learns the PC(T)in a more efficient manner. In PCMB,

before a new PC(T)’s candidate is determined, it first needs to find a series of
Sep[ X ](line 5 in GetPCD), which will cost one data pass to scan the data to collect

necessary statistics required by the CI test in practice. After a best candidate is added
to PCD , PCMB needs another search for Sep[X] (line 13 in GetPCD), which

requires additional data pass. Noticing the GetPCD on line 3 in GetPC, we find that
many data passes are required in the algorithm. Normally, in each data pass, we only
collect those information obviously demanded in the current round. These data passes
cannot be avoided by PCMB. By opposition, BFMB starts from the conditioning set
with size 1, and all possible conditioning sets are expected at the beginning of each
new round, so we need only one data pass to collect all statistics and remove as many
variables as possible that are conditionally independent of T given someone
conditioning set with the current cutSetSize(line 5-6 in RecognizePC). This approach

also ensures that BFMB will find the minimum conditioning set, SepsetT‘ . » during

the first pass, without having to scan all possible conditioning sets to find the
minimum one to ensure maximum data efficiency as does in PCMB. Considering that
PCMB is expected to perform a greater number of data passes and CI tests, it will lose
to BFMB in terms of time efficiency.

4 Experiment and Analysis

4.1 Experiment Design

We only compare our algorithm with IAMB and PCMB. In the experiment, we use
synthetic data sampled from known Alarm BN[7] which is composed of 37 nodes.
The Alarm network is well-known as it has been used in a large number of studies on
probabilistic reasoning. The network modeling situations arise from the medicine
world. We run TAMB, PCMB and BFMB with each node in the BN as the target
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variable T iteratively and, then, report the average performance when different size of
data is given, including accuracy, data efficiency, time efficiency, scalability, and
usefulness of information found.

4.2 Evaluation and Analysis

One of the basic assumptions of these three algorithms is that the independence tests
are valid. To make them three, IAMB, PCMB and BFMB, feasible in practice, we
perform a test to check if the conditional test to do is reliable, and skip the result if
not, which can ensue the learning outcome trustable. As indicated in [15], JAMB
considers a test to be reliable when the number of instances in D is at least five times
the number of degrees of freedom in the test. PCMB follows this standard in [8], and
so does our algorithm BFMB to maintain a comparable experiment result.

Accuracy and Data Efficiency

We measure the accuracy of induction through the precision and recall over all the
nodes for the BN. Precision is the number of true positives in the returned output
divided by the number of nodes in the output. Recall is the number of true positives in
the output divided by the number of true positives known in the true BN model. We
also combine precision and recall as

\/(1 — precision)” + (1-recall)*

to measure the Euclidean distance from precision and recall[8].

Table 3. Accuracy comparison of IAMB, PCMB and BFMB over Alarm network

Instances Algorithm Precision Recall Distance
1000 IAMB .81+.03 .78+.01 .29+.03
1000 PCMB .76+.04 .83+.07 .30+.06
1000 BFMB .92+.03 .84+.03 18+.04
2000 IAMB .79+.03 .83+.02 27+.03
2000 PCMB 79+.04 91+.04 .23+.05
2000 BFMB .94+.02 91+.03 11£.02
5000 IAMB 77+.03 .88+.00 .26+.02
5000 PCMB .80+.05 .95+.01 21+.04
5000 BFMB .94+.03 .95+.01 .08+.02
10000 IAMB .76+.03 .92+.00 .26+.03
10000 PCMB .81+.03 95+.01 .20+.03
10000 BFMB .93+.02 .96+.00 .08+.02
20000 IAMB 73+.04 .93+.00 .28+.04
20000 PCMB .81+.02 .96+.00 .20+.01
20000 BFMB .93+.03 .96+.00 .08+.02

Table 3 shows the average precision, recall and distance performance about ITAMB,
PCMB and BFMB given different size of data sampled from Alarm network. From
which, as expected, we observe that IJAMB has the poorest performance, which
actually reflects its data inefficiency due to its possible large conditioning set. Indeed,
we know that given the same about of data, requirement on larger conditioning set
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will result with less precise decision. PCMB is better than IAMB, which is consistent
with the result shown in [8]. However, it is worse than BFMB, which can be
explained by its search strategy of minimum conditioning set. It needs to go through
conditioning sets with size ranging from small to large, so PCMB has the similar
problem like ITAMB when conditioned on large set. However, BFMB’s strategy
prevents it from this weakness, so it has the highest score on this measure.

Time Efficiency

To measure time efficiency, we refer to the number of data pass and CI test occuring
in TAMB, PCMB and BFMB. One data pass corresponds to the scanning of the
whole data for one time. To make memory usage efficient, we only collect all the
related statistics information (consumed by CI tests) that can be expected currently. In
Table 4, “# rounds” refers to the total number of data passes we need to finish the MB
induction on all the 37 nodes of Alarm BN. “# CI test” is defined similarly. Generally,
the larger are these two numbers, the slower is the algorithm.

Table 4. Comparison of time complexity required by different MB induction algorithms, in
terms of number of data pass and CI test

Instances Algorithms # rounds # Cl test

5000 TIAMB 21145 5603+126
5000 PCMB 46702+6875 11429528401
5000 BFMB 5558+169 57893+3037
10000 IAMB 222+4 6044+119
10000 PCMB 46891+3123 108622+13182
10000 BFMB 5625+121 62565+2038
20000 IAMB 238+10 6550236
20000 PCMB 48173+2167 11110049345
20000 BFMB 5707+71 66121+1655

As Table 4 shows, IAMB requires the fewest number of data pass and CI tests.
Though it wins this point over the other two algorithms, its accuracy performance is
quite poor (refer Table 3). PCMB and BFMB outperform IAMB in learning accuracy,
but at a much higher cost of time; comparing with BFMB, PCMB is even worse. In
this study, BFMB requires less than 20% and 60% of the total amount of data passes
and CI tests done by PCMB respectively. Though some optimization techniques can
probably be designed, it reflects the implementation complexity of this algorithm in
practice.

Scalability

IAMB and its variants are proposed to do feature selection in microarray research [14,
15]. From our study, it is indeed a fast algorithm even when the number of features
and number of cases become large. Reliable results are expected when there are
enough data. PCMB is also shown scalable by its author in [8], where it is applied to a
KDD-Cup’2001 competition problem with 139351 features. Due to the short of such
large scale observation, we haven’t tried BEMB in the similar scenario yet. However,
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our empirical study, though there are only 37 variables, have shown that BFMB runs
faster than PCMB. Therefore, we have confidence to do this inference that BFMB can
also scale to thousands of features as IAMB and PCMB claim. Besides, due to the
relative advantage on data efficiency among the three algorithms, BFMB is supposed
to work with best results in challenging applications where there is large number of
features but small amount of samples.

Usefulness of Information Found

Markov blanket contains the target’s parents, children and spouses. IJAMB and its
variants only recognize that variables of MB render the rest of variables on the BN
independent of target, which can be a solution to the feature subset selection.
Therefore, IAMB only discovers which variables should fall into the Markov blanket,
without further distinguishing among spouse/parents/children.PCMB and BFMB goes
further by discovering more topology knowledge. They not only learn MB, but also
distinguish the parents/children from the spouses of target. Among parents/children,
those children shared by found spouses and target are also separated (Fig. 1).

@ @ e v e
\®

IAMB PCMB and BFMB

Fig. 1. Output of IAMB (left) vs. that of PCMB and BFMB(right)

5 Conclusion

In this paper, we propose a new Markov blanket discovery algorithm, called BFMB.
It is based on two assumptions, DAG-faithful distribution and correct independence
test. Like TAMB and PCMB, BFMB belongs to the family of local learning of MB, so
it is scalable to applications with thousands of variables but few instances. It is proved
correct, and much more data-efficient than TAMB, which allows it perform much
better in learning accuracy than TAMB given the same amount of instances in
practice. Compared with PCMB, BFMB provides a more efficient approach for
learning, requiring much fewer number of CI tests and data passes than PCMB.
Therefore, we can state that BFMB shows a high potential for practical MB discovery
algorithm, and is a good tradeoff between IAMB and PCMB.

Future work includes the quantiative analysis of the algorithm’s complexity, and
how well it works with existing known classifiers as a feature selection pre-
processing step.
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Abstract. Existing algorithms for learning Bayesian network (BN) re-
quire a lot of computation on high dimensional itemsets, which affects ac-
curacy especially on limited datasets and takes up a large amount of time.
To alleviate the above problem, we propose a novel BN learning algo-
rithm OMRMRG, Ordering-based Max Relevance and Min Redundancy
Greedy algorithm. OMRMRG presents an ordering-based greedy search
method with a greedy pruning procedure, applies Max-Relevance and
Min-Redundancy feature selection method, and proposes Local Bayesian
Increment function according to Bayesian Information Criterion (BIC)
formula and the likelihood property of overfitting. Experimental results
show that OMRMRG algorithm has much better efficiency and accuracy
than most of existing BN learning algorithms on limited datasets.

1 Introduction

During the last two decades, many BN learning algorithms have been proposed.
But, the recent explosion of high dimensional and limited datasets in the biomed-
ical realm and other domains has induced a serious challenge to these BN learning
algorithms. The existing algorithms must face higher dimensional and smaller
datasets.

In general, BN learning algorithms take one of the two approaches: the
constraint-based method and the search & score method. The constraint-based
approach [I],[2] estimates from the data whether certain conditional indepen-
dences hold between variables. The search & score approach [3],[4],[5],[8],[11]
attempts to find a graph that maximizes the selected score. Score function is
usually defined as a measure of fitness between the graph and the data.

Although encouraging results have been reported, the two approaches both
suffer some difficulties in accuracy on limited datasets. A high order statistical
or information theoretical measure may become unreliable on limited datasets.
At the same time, the result of selected score function may also be unreliable on
limited datasets.

M.A. Orgun and J. Thornton (Eds.): AT 2007, LNAI 4830, pp. 80-[89:]2007.
© Springer-Verlag Berlin Heidelberg 2007
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To further enhance learning efficiency and accuracy, this paper proposes
Ordering-based Max-Relevance and Min-Redundancy Greedy (OMRMRG) BN
learning algorithm. This paper is organized as follows. Section 2 provides a brief
review of Max-Relevance and Min-Redundancy feature selection technology. Sec-
tion 3 introduces ordering-based greedy search method. Section 4 proposes Local
Bayesian Increment function. Section 5 presents OMRMRG algorithm. Section
6 shows an experimental comparison among OMRMRG, OK2, OR and TPDA.
Finally, we conclude our work.

2 Max-Dependence and MRMR

Definition 1. In feature selection, Max-Dependence scheme [G] is to find
a feature set S* with m features, which jointly have the largest dependency on
the target class C; S* = arg mS@XI(S; C). Note: I(S;C) represents the mutual

information between the feature set S and the target class C' which is a convenient
way to measure the largest dependency between S and C,

:C) = s,¢)lo p(s,¢) sdc
1(5:0) = [ [ ts.ctog 500 i

where p(.) is the probabilistic density function.

Definition 2. In feature selection, Maz-Relevance criterion [0] is to select a
feature set S* with m features satisfying S* = arg mélx( Iél > I(X;;()), which
X; eS8

approzimates I(S*;C) with the mean value of all mutual information values
between individual features X;,i =1,...,m and class C'.

Definition 3. In feature selection, Min-Redundancy criterion [0]] is to select
a feature set S* with m features such that they are mutually minimally similar
(mutually mazimally dissimilar): S* = arg msin( ISll2 Z I(XZ, X;)).

X, X

Definition 4. In feature selection, Max-Relevance and Min-Redundancy
criterion [0] is to find a feature set S* with m features obtained by optimizing
the Mazx-Relevance criterion and the Min-Redundancy criterion simultaneously.
Assume that the two conditions are equally important, and use the following
formula:

S* —argmax Z I1(X;;C) — Z I(X5; X5)) (1)
X, €S XL,X]eS

We select the feature set S, = {X1,..., X;n}, the classification variable C.
Using the standard multivariate mutual information

p(x1, . )
MI(Xy,...,Xn) = T1,---,Tm)l10 dxy ...dxy,,
%1 )= [ [ronamios BTV
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we can get the following formula:

SN s Ao P(8m,c) o e — B
I(Sm,C)—//p( €)1 gp(sm)p(c)d mdc = MI(Sp,C) — MI(S,,).

S* = arg max I(Sy,; C) = argmax(MI(Sy,,C) — MI(Sp)). (2)
Equation (2) is similar to MRMR feature selection criterion (1): The second
term requires that the features S, are maximally independent of each other(that
is, minimum redundant), while the first term requires every feature to be max-
imally dependent on C'. In practice, the authors Peng & Ding have shown that
if one feature is selected at one time, then MRMR criterion is a nearly optimal
implementation of Max-Dependence scheme on limited datasets. [7]

3 Ordering-Based Greedy Search Method

The search & score approach for BN learning is to perform heuristic search over
some space. The ordering-based greedy search method proposed by Teyssier &
Koller [§] conducts the search over the space of orderings <. The method defines
the score of an ordering as the score of the best network consistent with it, defines
a local search operator—{flipping a pair of adjacent variables in the ordering—
that traverses the space of orderings, and uses greedy hill-climbing search, with
a tabu list and random restarts, to find an ordering that maximizes the score.

For a given ordering <, the candidate parents set ¥; . for variable X; is
defined ¥; o = {¢ | ¥ < X;}. The optimal parents set is simply Pa~(X;) =
arg max score(X;;U).

UCY; -

So, given an ordering, we can find the optimal parents set for each variable
and construct the optimal network G, consistent with <.

In the unconstrained case, the optimal network with no ordering constraint is

the network G%., for <*= arg max score(G*%,).

So, we can find the optimal network by finding the optimal ordering, where
the score of an ordering is the score of the best network consistent with it.

The search operator over the orderings space defined in [§] is called neighbor-
swapping operator: (X, ,..., X, Xy, ,...) — (Xip, ..., Xi 0, Xiy, .00,

The method performs the search by considering all n — 1 candidate successors
of the current ordering, compares the delta-scores of the successor orderings
obtained by these swaps — the difference between their score and the current
one, and takes the one that gives the highest delta-score. The tabu list is used
to prevent the algorithm from reversing a swap that was executed recently in

the search. The process is continued until a local maximum is reached. [§]

4 Local Bayesian Increment Function

Let X and Y be two discrete variables, Z be a set of discrete variables, and z
be an instantiation for Z. X, Y ¢ Z.
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Definition 5. According to Moore’s recommendation [9] about the chi-squared
test, the dataset D satisfying the following condition is sufficiently large for
{XUY} : Al cells of {XUY} in the contingency table have expected value greater
than 1, and at least 80% of the cells in the contingency table about {X UY '} have
expected value greater than 5.

Definition 6. According to Moore’s recommendation [9] about the chi-squared
test, the sub-dataset D z_  satisfying the following condition is locally suffi-
ciently large for {XUY} given Z = z : All cells of {X UY'} in the contingency
table conditioned on Z = z have expected value greater than 1, and at least 80%
of the cells in the contingency table about {X UY } on Z = z have expected value
greater than 5.

Learning on limited datasets, we relax the “locally sufficiently large” condition:
If the number of cases in Dy __ is much larger than the number of values for
{X UY}, for example |[Dy__ || > 4 x (|| X|[| x [|Y]]); then we assume that the
sub-dataset Dy__ is “locally sufficiently large” for {X UY'} given Z = 2.

Let D be a dataset of m cases. Let V be a set of n discrete variables, where X;
in V has r; possible values (z;1, zi2, - . ., Ti, ). Bp and Bg denote BN structures
containing just the variables in V. Bg exactly has one edge Y — X, more than
Bp. X; has the parents set II; in Bp and the parents set II; UY in Bg. Ny
is the number of cases in D, which variable X; is instantiated as x;, and II; is

T4 ~ ~
instantiated as (;52[]] Let Nijk = ZNi,{jUy},kaNij = Z Nijk- ©;, 0 denote the
y k=1
maximum likelihoods of ©;, 6. 7rf denotes the instantiation of I7; in the [th case.
Cases occur independently. The prior distribution of possible Bayesian net-

works is uniform. Given a Bayesian network model, there exist two properties:
Parameter Independence and Parameter Modularity. [4]

We apply the BIC formula also used by Steck in [I0] : BIC(Bg) = log L (é) —

5 log(m)dim (é) ~ log(P(D | Bg)) to control the complexity of BN model. BIC
adds the penalty of structure complexity to LBI function to avoid overfitting.

Definition 7 (Local Bayesian Increment Function).
Lbi(Y, i, IT;) = log (P(Bs, D)/ P(Bp, D)) ~ BIC(Bs) — BIC(Bp)
= log (L (éBS) /L (éBP)) ; log(m) [dim (éBS) — dim (éBP)}
log (L (éBS) /L (éBP)) — log (P (D | éBS)) “log (P (D | éBP))
= > tog (P (st 1677t Uy) /P (4 677 1))

On the sub-dataset Dpy,—g,[«) Which are not “locally sufficiently large” for { X U
Y}, we assume that there is overfitting between X and the parents set I7; UY on
the Dy,—g, - In general, the likelihood of overfitting on some dataset is usually
no less than the likelihood of non-overfitting on this dataset. So, we assume that
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the log-likelihood does not change on the sub-dataset Dy, _4,,) which are not
“locally sufficiently large” for {X UY}.

Z log P (axl | 6P m Uy) = Z log P (ml | éBP,m> . (3)

di€D ;=[x di€D 1, =4,[+]

According to (3), we infer the following results:

o (1 (6)) (1)

= Z Nij x I;(X,Y),for j, Dpg,—g,[;1 is “locally sufficiently large”
J

dim (éBS> — dim (QBP) =(ry —1)(ri —1)g;

1
Lbi(Y,i, 1) = Y Nig x L;(X,Y) = (ry = 1)(r; — 1)g; log(m),
J
for j, Di7,—¢,[j 1s “locally sufficiently large”.

Note: I;(X,Y) is the mutual information between X and Y on D7, —g,(;1-

5 OMRMRG Algorithm

In this section, we divide Ordering-based Max-Relevance and Min-Redundancy
Greedy (OMRMRG) algorithm into 2 parts. The first part is to learn Bayesian
network given an ordering on the variables. The second part is to learn Bayesian
network without the constraint of an ordering on the variables.

5.1 MRMRG Algorithm

MRMRG algorithm initializes the current parents set II; of the variable X; to
NULL, and then adds the variables one by one, which acquire the maximal
value for Local Bayesian Increment (LBI) function, into the parents set II; from
Pre; — II;, until the result of LBI function is no more than 0. Repeating the
above steps for every variable, we can obtain an approximately optimal Bayesian
network. The pseudo-code of MRMRG algorithm is shown in Fig.1.

Pre; denotes the set of variables that precede X;. II; denotes the current
parents set of the variable X;. (k < 5).

Given an ordering on the variables, MRMRG algorithm improves greedy BN
learning algorithms (such as K2 algorithm [3]) in the following two ways in order
to learn more accurately and efficiently on limited datasets.

Firstly, on limited datasets, the results of traditional scoring functions (such
as K2 score [3],MDL score [5],BDe score [], etc) score(C, II; UX;) have less and
less reliability and robustness with the dimension increase of II; U X}, so that the

formulaY = arg  max  score(C, II;UX;) cannot obtain the variable Y with
Xj €Pre;—1I1;

the maximal score, even cannot acquire a variable with approximately maximal
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Input: A set V of n variables, an ordering on the variables, a dataset D containing m cases.
Output: for each variable X; (i=1, . .., n), a printout of the parents set IT,.
Procedure MRMRG()
For every variable X, call the procedure GSParentsSet (X;, Pre;) and obtainIT, ;
For every variable X;, output the parents set I, of the variable X;
Endproc
Procedure GSParentsSet(C, Pre;)
Initialize IT, to NULL and OK to TRUE;
while OK

For every variable X€ Pre; -T1,, compute the formula {I(X;C)—ﬁ Z I(X;XI)} (1);
i + Xjell;

Sort the variables in Pre; - T, by descending order according to the value of (1);

Obtain the top k& variables {Y}, Y5, ..., ¥} from the sorted variables set Pre; -IT, ;
Y, .« = argmax [Lbi(Y/,i,H,)] ;
Y el Yt}

If Lbi(Y,,..i,I1,)>0 then
I, =11 O{Y,. 35
Else
OK=FALSE;
Endif
Endwhile
Return IT,;
Endproc

Fig. 1. Max-Relevance and Min-Redundancy Greedy BN Learning

score sometimes. Since MRMR technology only uses 2-dimensional computa-
tion, it has much higher reliability and robustness than traditional scoring func-
tions on limited datasets. Furthermore, according to the discussion in section
2, we know that if one feature is selected at one time (that is Greedy search),
MRMR technology is nearly optimal implementation scheme of Max-Dependence
scheme, which is equivalent to the maximal score method, on limited datasets.
We consider that for some variable X; € Pre; — II;, if the value of {I(X;;C) —
|H1~1|+1 X%:Hi I(X;; X)} is the largest, then it is the most probable that the value

of the formula score(C, II; UXj) is the largest. Thus, MRMRG algorithm applies

Max-Relevance and Min-Redundancy (MRMR) feature selection technology and

replaces score(C, II;UX ;) with the formula {I(X;; C)— IH-1|+1 > I(X;;X)} to
‘ Xell;

obtain the variable Y which gets the maximal score. Firstly, MRMRG algorithm
selects the top k variables from the variables set Pre; — II; sorted according to
the value of the formula {I(X;;C)— |H7:1|+1 X%:H‘ I(X;; X)} by descendant order.

Then, it take the variable Y with the largest value of LBI function among the k
variables as the variable with the maximal score.

Secondly, MRMRG algorithm proposes LBI function to replace traditional
score increment functions (such as K2 [3[,MDL [5],BDe [4]) to control the com-
plexity of Bayesian network and to avoid overfitting. When the dataset D is
“sufficiently large” for {X UY U II;}, LBI function is equivalent to K2 increment
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function. When the dataset D is not ”sufficiently large” for {X UY U II;}, but
there exist sub-datasets D7,—4, [+ that are "locally sufficiently large” for { XUY'}
given IT; = ¢;[*], MRMRG algorithm can also apply LBI function to improve
accuracy and avoid overfitting (see section 4).

5.2 OMRMRG Algorithm

We apply the neighbor-swapping operator (discussed in section 3) and iterative
greedy search method over the space of orderings in OMRMRG algorithm. In
each iteration, OMRMRG algorithm firstly performs the search by considering
all the n — 1 candidate successors of the current ordering, then compares the
scores of the current ordering and the successor orderings, finally takes the one
that gives the highest score. The process is continued until a local maximum is
reached. OMRMRG algorithm restarts a new iteration by selecting a new current
ordering at random, and try the process MAX times to avoid local maximum.
The pseudo-code of OMRMRG algorithm is shown in Fig.2.

currOrd denotes the current ordering. curr BN denotes the Bayesian network
with maximal score given the current ordering. currScore denotes the maximal
score given the current ordering. succOrdg(k = 1,...,n — 1) denotes the suc-
cessor ordering of the current ordering currOrd. succB Ny denotes the Bayesian
network with maximal score given the ordering succOrdy,. succScorey denotes
the maximal score given the ordering succOrdy. C'Parents(X;)(i = 1,...,n)
denotes the candidate parents set of the variable X;(i = 1,...,n). MAX denotes
the maximal iteration number.

There are two differences between OMRMRG algorithm and other ordering-
based greedy learning algorithms (such as the algorithm proposed by T&K [§]).

Firstly, given an ordering on the variables, OMRMRG algorithm replaces
traditional greedy BN learning algorithms with the procedure MRMRG() in
order to learn more accurately and efficiently on limited datasets.

Secondly, OMRMRG algorithm uses a greedy pruning procedure based on
Max Relevance and Min Redundancy technology, which preselects a more ac-
curate set of candidate parents for each variable X; than the current candidate
parents set selection methods described in [12] on limited datasets.

In OMRMRG, we firstly uses the greedy search procedure GSParentsSet
(Xi, Pre;) in Fig.1 given Pre; = V' \ X, to get initial candidate parents set IT;
for each variable X;. Then, according to the symmetry property of neighbor
relation, if (X; € II;) or (X; € II;), then OMRMRG algorithm adds X; into
the candidate parents set C'Parents(X;) of the variable X; and adds X; into
the candidate parents set C'Parents(X;) of the variable X;. This step further
improves the accuracy of our method GetCParentsSet() on limited datasets.

When we consider swapping a pair of adjacent variables (X;,, X; ), if X;,,
€ CParents(X;,), then we call MRMRG () to compute the score of the succes-
sor ordering, else the score of the current ordering is assigned to the successor
ordering. The possible parent sets for a variable X; other than X;, and X, _,
remain unchanged, as the set of variables preceding them is the same in the two
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Input: A set V of n variables, a dataset D containing m cases;
Output: the result Bayesian network.
Procedure OMRMRG()
t=0; bestscore=0; GetCParentsSet();
Repeat
local = FALSE; Initialize randomly currOrd as an ordering {X .
currBN = MRMRG(currOrd);  currScore=Score(currBN);
Repeat
For each succOrd,; {XH <LRX <X <X } J=1,...,n-1
If X, eCParents(X,) then succBN;=MRMRG(succOrd;); succScore; =Score(succBN,);

iy

‘ <...<X" <X1,,‘ <..4-<X,”};

Else succScore; = currScore; Endif
Endfor
k= jr}rzt’)fl(succScore/ ) ;
If (succScorey > currScore) then currScore = succScorey ; currOrd = succOrd,; currBN = succBNy;
Else local=TRUE; Endif
Until local,;
t=1t+l;
If (currOrd > bestscore) then bestscore = currOrd;  resultBN = currBN; Endif
Until 1= MAX;
Return the result BN resultBN;
Endproc
Procedure GetCParentsSet()
For every variable .X;
Initialize Pre;to V\ X; ; IT, =GSParentsSet(X;, Pre;); Endfor
Initialize CParents(X;), i=1, ..., nto NULL;
For X, €V
ForX,€V
If (X,eTT,) OR (X, €Il,) then
CParents(X;)=CParents(X;) UX;; CParents(X;))=CParents(X;) U X;; Endif
Endfor
Return CParents(X;), i=1,...,n;

Endproc

Fig.2. OMRMRG Algorithm

orderings < and <’. Thus, when calling the procedure MRMRG(), we need

only recompute the optimal parent sets for the 2 variables X;, and X;,_,.

6 Experimental Results

We implemented OMRMRG algorithm, OK2 algorithm, OR algorithm [IT],
TPDA algorithm [2] and presented the comparison of the experimental results
for 4 implementations. OK2 algorithm incorporates the ordering-based iterative
greedy search method into K2 algorithm [3].

Tests were run on a PC with Pentium4 1.5GHz and 1GB RAM. The operating
system was Windows 2000. These algorithms were implemented using Matlab
7.0. 3 Bayesian networks were used. Table 1 shows the characteristics of these
networks. The characteristics include the number of nodes, the number of arcs,
the maximal number of node parents/children(Max In/Out-Degree), and the
minimal /maximal number of node values(Domain Range).
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Table 1. Bayesian networks

BN  Nodes Num Arcs Num Max In/Out-Degree Domain Range

Alarm 37 46 4/5 2-4
Barley 48 84 4/5 267
Munin 189 282 3/15 1-21

From these networks, we performed these experiments with 200, 500, 1000
training cases each. For each network and sample size, we sampled 20 original
datasets and recorded the average results by each algorithm. Let £ = 3 in Fig.1
and MAX=5 in Fig.2.

6.1 Comparison of Runtime

A summary of the time results of the execution of all the 4 algorithms is in
Table 2. We normalized the times reported by dividing by the corresponding
running time of OMRMRG on the same datasets and reported the averages over
sample sizes. Thus, a normalized running time of greater than 1 implies a slower
algorithm than OMRMRG on the same learning task. A normalized running
time of lower than 1 implies a faster algorithm than OMRMRG.

From the results, we can see that MRMRG has better efficiency than other
3 algorithms OK2, OR and TPDA. In particular, for smaller sample sizes (200,
500), OMRMRG runs several times faster than OK2, OR and TPDA. For larger
sample sizes (1000), OMRMRG performs nearly one magnitude faster than OK2.

6.2 Comparison of Accuracy

We compared the accuracy of Bayesian networks learned by these 4 algorithms
according to the BDeu score[d]. The BDeu scores of which Equivalent Sample
Size (ESS) is 10 in our experiments were calculated on a separate test set sampled
from the true Bayesian network containing 20000 samples. Table 3-5 reports the
results.

Table 2. Normalized Runtime Table 3. Average BDeu(Alarm)
Size OMRMRG OK2 OR TPDA Size OMRMRG OK2 OR TPDA
200 1.0 3.93 224 7.78 200  -14.503 -15.169 -15.832 -21.474
500 1.0 6.46 2.18 6.91 500  -13.882 -14.390 -15.100 -18.097
1000 1.0 8.36 2.02 4.62 1000 -13.561 -13.653 -14.819 -15.429

Table 4. Average BDeu(Barley) Table 5. Average BDeu(Munin)

Size OMRMRG OK2 OR TPDA Size OMRMRG OK2 OR TPDA
200  -82.047 -83.922 -85.153 -102.287 200  -64.560 -66.803 -90.121 -123.103
500  -80.836 -82.044 -82.345-103.783 500  -63.819 -65.533 -88.604 -125.625
1000 -77.064 -77.865-78.966 -111.069 1000 -61.651 -62.247 -87.237 -140.476
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From the results, we can see that OMRMRG can learn more accurately than
OR and TPDA on limited datasets. In particular, OMRMRG has better accuracy
than OK2 on small datasets (200, 500). The accuracy of OMRMRG is almost
the same as OK2 on larger datasets relative to the true Bayesian network, such
as Insur(1000), Alarm(1000).

7 Conclusions

Efficiency and accuracy are two main indices in evaluating algorithms for learning
Bayesian network. OMRMRG algorithm greatly reduces the number of high di-
mensional computations and improves scalability of learning on limited datasets.
The experimental results indicate that OMRMRG has better performance on ef-
ficiency and accuracy than most of existing algorithms on limited datasets.
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Abstract. Hoeffding trees are state-of-the-art for processing high-speed
data streams. Their ingenuity stems from updating sufficient statistics,
only addressing growth when decisions can be made that are guaranteed
to be almost identical to those that would be made by conventional batch
learning methods. Despite this guarantee, decisions are still subject to
limited lookahead and stability issues. In this paper we explore Hoeffd-
ing Option Trees, a regular Hoeffding tree containing additional option
nodes that allow several tests to be applied, leading to multiple Hoeffd-
ing trees as separate paths. We show how to control tree growth in order
to generate a mixture of paths, and empirically determine a reasonable
number of paths. We then empirically evaluate a spectrum of Hoeffding
tree variations: single trees, option trees and bagged trees. Finally, we
investigate pruning. We show that on some datasets a pruned option tree
can be smaller and more accurate than a single tree.

1 Introduction

When training a model on a data stream it is important to be conservative with
memory and to make a single scan of the data as quickly as possible. Hoeffding
trees [6] achieve this by accumulating sufficient statistics from examples in a
node to the point where they can be used to make a sensible split decision. A
decision, in fact, that is guaranteed to be almost as reliable as the one that would
be made by an algorithm that could see all of the data.

The sufficient statistics turn out to be beneficial for both tree growth and
prediction as they can be used to build Naive Bayes models at the leaves of
the tree that are more accurate than majority class estimates [7]. There remain
situations where Naive Bayes leaves are not always superior to majority class,
and [8] shows that adaptively deciding when their use is beneficial per leaf of
the tree can further enhance classification performance.

Given this sequence of improvements to the basic algorithm, is it possible to
improve predictive performance further? Contemporary machine learning would
suggest that the next logical step is to employ ensembles of Hoeffding trees using
a framework such as bagging or boosting.

In part, ensemble methods seek to overcome problems inherent in all greedy
tree learners. Tree learners have limited lookahead ability (the best scoring single

M.A. Orgun and J. Thornton (Eds.): AI 2007, LNAI 4830, pp. 90 2007.
© Springer-Verlag Berlin Heidelberg 2007
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test based on the children that test would generate) and they are not stable.
Stability [2] relates to the selection of a particular attribute split when the scores
of other attribute splits are close. The examples processed just prior to the split
decision could have an undue influence over this decision and it may not be the
best decision in the longer term. Breiman [4] demonstrates just how unstable
this influence can be, especially when marginal decisions are taken near the root
of the tree. Even though decisions are made with more data in a Hoeffding tree,
they are still prone to these two issues.

The use of classifier ensembles for data streams has been explored before, most
notably in the work on online bagging and boosting by Oza and Russell [10]. Of
these though, only bagging appears to work successfully in practice. In addition
to the important issue of ensemble model size, ensemble methods produce models
that are not interpretable.

In the context of batch learning, these issues led several authors to develop
option trees [5l9]. In a sense, option trees represent a middle ground between sin-
gle trees and ensembles. They are capable of producing useful, and interpretable,
additional model structure without consuming too many resources.

Option trees consist of a single structure that efficiently represents multiple
trees. A particular example can travel down multiple paths of the tree, con-
tributing, in different ways, to different options. The class of a test example is
determined by a committee made up of the predictions of all leaf nodes reached.
In the context of a data stream, the idea is to grow multiple options in the same
manner as a single Hoeffding tree. By doing so the effects of limited lookahead
and instability are mitigated, leading to a more accurate model.

2 Option Trees

Figure [[l is an example of what the top few levels of an option tree can look
like. The tree is a regular decision tree in form except for the presence of option
nodes, depicted in the figure as rectangles. At these nodes multiple tests will be
applied, implying that an example can travel down multiple paths of the decision
tree, and arrive at multiple leaves.

Algorithm [I] describes the Hoeffding option tree induction process. This pro-
cess is a modification of the most recent and more robust version of the original

~ >=70

optionl

option2 option3

A A

Fig. 1. An option tree
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Hoeffding tree induction algorithm [§] to allow exploration of multiple options.
Lines 19-34 enable introduction of options into the tree, removing these lines
results in the standard Hoeffding tree algorithm, as will setting maxOptions to
1. The other differences between this algorithm and the standard one occur in
lines 3 and 4, where an example updates multiple option nodes down multiple
paths—in the original algorithm only a single leaf will be influenced by each
particular example. As is common with standard Hoeffding trees, the evaluation
criterion, G, for all test nodes is information gain. The implementation of this
algorithm is referred to as HOT in subsequent discussions (see Section HJ).

Predictions by the Hoeffding option tree are made by combining the predic-
tions of all leaves applying to an example. Kohavi and Kunz [9] used major-
ity voting, but like [5] we used weighted voting—experiments suggested that
a weighted vote, where the individual probability predictions of each class are
summed, performs better than unweighted voting.

2.1 Managing Tree Growth

Option trees have a tendency to grow very rapidly if not controlled. In [9] the
authors employ several strategies to alleviate this problem, including limiting the
number of options allowed locally per node. Our primary strategy for controlling
growth limits the number of options allowed per example, placing a global limit
that is less trivial to enforce but more effective at regulating growth. Every op-
tion node in the tree has a counter (optionCount) that is initialized to 1. As the
tree grows the counters are updated to reflect the number of leaves reachable
by an example at each node. This is not trivial—the number of nodes reachable
at a particular node is determined by options found in both its ancestors and
descendants. Tree growth is controlled by only allowing an option to be intro-
duced where the counter has not reached the maximum allowable value, which
guarantees a maximum number of paths that an example can follow down the
tree. Equally this limits the number of leaves that will be involved in an update
or prediction.

A range of option limits were tested and averaged across all datasets to de-
termine the optimal number of paths. Figure[2 shows the result. As can be seen,
prior to five paths, significant gains in accuracy are apparent, but after that
point the accuracy gains diminish. Interestingly, this is exactly the same number
of options used by [9] although they arrived at this figure by chance.

2.2 Restricting Additional Splits

In order to generate new structure at an option node we only consider options
for attributes that have not already been split at that node. This further cuts
down the eagerness of the tree to grow, and overcomes the problem of the same
split being repeatedly chosen, resulting in multiple redundant paths.

The final element of tree growth management involves deciding when ad-
ditional options look sufficiently competitive with existing splits in the tree to
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Algorithm 1 Hoeffding option tree induction algorithm, where n,,;, is the
grace period, G is the split criterion function, R is the range of G, 7 is the tie-
breaking threshold, ¢ is the confidence for the initial splits, 8’ is the confidence for
additional splits and maxOptions is the maximum number of options reachable
by a single example

1: Let HOT be an option tree with a single leaf (the root)

2: for all training examples do
Sort example into option nodes L using HOT
4 for all option nodes [ of the set L do
5 Update sufficient statistics in [
6: Increment n;, the number of examples seen at [

7
8

if n; mod nmin = 0 and examples seen at [ not all of same class then
if [ has no children then

9: Compute G;(X;) for each attribute
10: Let X, be attribute with highest G,
11: Let X, be attribute with second-highest G;
12: Compute Hoeffding bound € = \/321;511/5)
13: if Gi(Xa) — Gi(Xp) > €or e < 7 then
14: Add a node below [ that splits on X,
15: for all branches of the split do
16: Add a new option leaf with initialized sufficient statistics
17: end for
18: end if
19: else
20: if l.optionCount < maxOptions then
21: Compute G;(X;) for existing splits and (non-used) attributes
22: Let S be existing child split with highest G|
23: Let X be (non-used) attribute with highest G|
24: Compute Hoeffding bound € = \/RZZ;&/M
25: if Gi(X) — Gi(S) > € then
26: Add an additional child option to [ that splits on X
27: for all branches of the split do
28: Add a new option leaf with initialized sufficient statistics
29: end for
30: end if
31: else
32: Remove attribute statistics stored at [
33: end if
34: end if
35: end if
36: end for
37: end for

warrant their introduction. The § parameter controls the allowable error in de-
cisions that occur during Hoeffding tree induction. The smaller this value, the
longer the tree will wait before committing to a decision to split.
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1 2 3 4 5 6 7 8 9 10 11 12 183 14 15
option limit
Fig. 2. The average accuracy achieved over all datasets by HOT varying the per-example

option limit. Accuracies were estimated using an interleaved test-then-train evaluation
over one million examples.

We introduce a second parameter, ¢, for deciding when to add another split
option beneath a node that already has been split. A new option can be intro-
duced if the best unused attribute looks better than the current best existing
option according to the G criterion and a Hoeffding bound with confidence §’.
Tie-breaking is not employed for secondary split decisions, so new options will
only be possible when a positive difference is detected. 8’ can be expressed in
terms of a multiplication factor «, specifying a fraction of the original Hoeffding
bound:

§ — eoﬂln(é) (1)

For example, with our default parameter settings of § = 1E~8 and a = 0.05
(that is, decisions are 20 times more eager), then from () 6’ ~ 0.955.

3 Pruning

Option trees improve accuracy at a cost: they consume more memory, as they can
grow more rapidly than a standard Hoeffding tree. Not all that additional growth
is necessarily beneficial, some subparts of the tree may be redundant, others can
negatively impact accuracies. Pruning needs mechanisms for estimating the merit
of subtrees and ways of selecting candidates for pruning. In a stream setting an
additional issue is choosing an appropriate frequency for pruning as making
decisions after every single example might be too time-consuming.

We implemented a pruning method modeled after reduced error pruning,
where accuracies of subtrees were estimated by recording accuracy for every
example seen at each node, and then periodically subtrees would be removed
when their estimated accuracy appeared worse than their parents’ accuracy.
This method did not distinguish between standard splits and option nodes in
the tree. It did not fare well, which we conjecture is due to its local nature,
which cannot take into account the global effect averaging multiple options has:
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on average a node may look worse than its parent, but it might be less correlated
with other options and therefore help achieve the correct global prediction more
often than the parent node.

Another approach tried to estimate the global contribution of each option.
Every node in the tree with multiple options records accuracy estimates for each
option for two settings: accuracy when including this option in global voting,
and accuracy when excluding this option from global voting. Once estimated
“exclusion” accuracy of an option exceeds the “inclusion” estimate, it (as well as
all the substructure rooted at that option) becomes a candidate for pruning. The
HOTP algorithm evaluated later in this paper implements this strategy. Every
training example is used to update these accuracy estimates, and periodically
(after every 100,000 examples) any option that appears to reduce accuracy is
removed. Note that this pruning method is specialized and limited to options.

Unfortunately the results in Section [ highlight that this way of pruning is
not often very effective, either. Even though it is often able to reduce the size of
the Hoeflding option trees, sometimes back to the size of the baseline Hoeffding
tree, this reduction in size at times also causes a loss in accuracy. We have also,
unsuccessfully, tried to base the pruning decision on a Hoeffding bound as well
to make pruning more reliable.

We conclude that automatic pruning of Hoeffding option trees is very unlikely
to produce satisfactory results, but also that pruning can improve performance
on selected problems, given careful selection of the right method and parameter
settings.

4 Empirical Evaluation
We use a variety of datasets for evaluation, most of which are artificially gen-

erated to make up for the lack of large publicly available real-world datasets.
Table [ lists the properties of the datasets.

Table 1. Dataset characteristics

name nominal numeric classes name  nominal numeric classes
GENF1-F10 6 3 2 WAVE21 0 21 3
RTS 10 10 2 WAVE40 0 40 3
RTC 50 50 2 RRBFS 0 10 2
LED 24 0 10  RRBFC 0 50 2
COVERTYPE 44 10 7

The class functions and the generation processes for GENF1 through to
GENF10 are described in [I]. RTS and RTC are simple and complex random tree
concepts, based on the generation method described in [6], with 10% added noise.
RTS has a maximum depth of 5, with leaves starting at level 3 and a 0.15 chance
of leaves thereafter; the final tree had 741 nodes, 509 of which were leaves. RTC
has a depth of 10 with leaves starting a level 5; the final tree had 127,837 nodes,
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90,259 of which were leaves. Each nominal attribute has 5 possible values. LED,
WAVE21 and WAVE40 (waveform without/with noise), and COVERTYPE(CTYPE)
are from the UCI [3] collection of datasets. RRBFS refers to a simple random
RBF (Radial Basis Function) dataset comprising 100 centers, 10 attributes and
2 classes. RRBFC is more a complex version comprising 1000 centers, 50 attributes
and 2 classes.

Table 2. Comparison of algorithms. Accuracy is measured as the final percentage of
examples correctly classified over the 10 million test/train interleaved evaluation. Size
for HT is measured in terms of the number of tracking nodes, and sizes for HOT, HOTP
and BAG10 are measured relative to this. Time is measured as the time per prediction
of the final tree relative to HT. The best individual accuracies are indicated in boldface.

HT HOT HOTS HOTP Bac10
dataset acc size acc size time acc time  acc size time  acc size time
GENF1 95.03 2031 95.03 1.73 1.10 95.04 1.06 95.03 1.09 0.99 95.03 9.57 5.76
GENF2 83.53 3205 93.06 2.73 1.84 93.07 1.61 93.18 0.91 0.91 94.02 8.0 6.36
GENF3 97.51 604 97.51 1.19 1.01 97.51 1.00 97.51 1.12 1.01 97.51 10.08 6.5
GENF4 94.37 2823 94.37 2.56 1.42 94.39 1.28 94.27 1.18 1.04 94.49 10.32 8.29
GENF5 89.73 3131 92.15 4.80 2.40 92.06 2.10 92.01 1.26 1.04 92.56 12.07 8.15
GENF6 92.31 3390 92.85 3.06 1.68 92.87 1.36 92.26 0.94 1.01 93.13 9.37 7.84
GENF7 96.62 2417 96.65 4.05 2.39 96.71 1.88 96.15 0.40 1.50 96.77 8.12 8.56
GENF8 99.39 563 99.39 2.90 1.61 99.40 1.25 99.38 1.61 1.06 99.40 5.41 6.15
GENF9 96.41 3270 96.46 3.81 2.35 96.50 1.79 95.47 0.55 0.92 96.67 6.18 8.46
GENF10 99.87 242 99.87 1.95 1.09 99.87 1.10 99.87 0.98 1.00 99.87 4.14 6.91

RTS 76.81 5013 77.09 2.05 1.14 77.09 1.14 76.91 1.16 1.03 77.32 10.31 3.47
RTC 58.84 3881 61.51 4.44 1.25 61.50 1.46 57.20 0.07 0.97 59.05 10.44 2.08
LED 73.99 302 73.99 4.71 2.97 73.98 1.75 73.99 0.38 2.04 74.01 10.03 6.16
WAVE21 84.90 1451 85.79 4.90 3.00 85.76 2.91 85.56 0.68 2.48 85.86 10.13 6.49
WAVE4(0 84.74 1463 85.68 4.88 2.55 85.69 2.73 85.44 0.53 1.98 85.85 9.98 4.95
RRBFS 90.50 2596 91.64 4.78 3.67 90.73 2.31 88.05 0.19 1.34 92.89 10.05 9.56
RRBFC 95.73 3101 97.84 4.86 3.21 97.13 2.37 93.64 0.08 3.11 98.98 9.68 7.0
CTYPE 70.92 41 7153 3.39 1.83 71.11 1.92 71.50 3.24 1.83 72.70 9.63 4.69
average 87.84 2196 89.02 3.49 2.03 88.91 1.72 88.19 0.91 1.40 89.23 9.48 6.52

The evaluation methodology used every example for testing the model before
using it to train. This interleaved test followed by train procedure was carried
out on 10 million examplesﬂ. Table 2] reports the final accuracy, size and speed
of the classification models induced. Additionally, the learning curves and model
growth curves for selected datasets are plotted (Figure[B]). For some datasets the
differences in accuracy, as seen in Table 2] are marginal.

Sizes of the tree models are measured by counting the number of tracker
nodes, i.e. nodes which store sufficient statistics. This measure is proportional
to the actual size of the tree in memory, as the sizes of other data structures are
insignificant compared to these nodes. In Table 2] the sizes of HOTS (see below)

! For COVERTYPE, evaluation was limited to the 581,012 examples available.
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are omitted as they are equivalent, by definition, to the size of the corresponding
single Hoeffding tree. Prediction speeds of the final models were measured by
timing how long it took the model to classify an additional 1 million examples
after training was complete. The prediction time figures in Table [2] are relative
to the speed of a1,

The first, and baseline, algorithm (HT) is a single Hoeffding tree, enhanced
with adaptive Naive Bayes leaf predictions. Parameter settings are n.,;, = 1000,
6 = 1E7% and 7 = 0.05. The second algorithm, HOT, is the Hoeffding option
tree algorithm, restricted to a maximum of five option paths. Decisions to add
more options to the tree were twenty times more eager than the initial decisions,
s0, as explained in Section 2] the parameter 8§’ was set to 0.955. HOTS is a
modified version of HOT that halts growth once it reaches the same size as the
final HT model on the same problem. The statistics in the leaves of the tree
continue to be updated, but no additional nodes are added to the tree. This
tests whether the accuracy advantages of option trees are solely due to higher
memory consumption. HOTP tests one of the more successful attempts at pruning
HOT. Every 100,000 examples, option paths are removed if it is estimated that
they reduce the overall accuracy of the tree. BAG10 is online bagging [I0] using
ten Hoeffding trees.

Bagging is clearly the best method in terms of accuracy. This superior position
is, however, achieved at high cost in terms of memory (almost ten times more
memory is used on average) and prediction speed (six times slower on average).
All option tree variants give superior accuracy performance over HT on average,
with the options slowing down the prediction speed by at most a factor of two.
HOT is more accurate than HT in all cases except LE]ﬂ, and sometimes the
differences are substantial. This shows the potential of options to overcome issues
seen in single trees due to instability and limited lookahead.

Options do not need additional memory to be useful: both HOTS and HOTP use
essentially as much memory as a single tree, but still outperform it on average.
Of the two, HOTS is the more impressive, performing at the level of the full
option tree. It’s prediction times are often close to the single tree and at most
three times worse. Although HOTP returns good average performance, there are
occasions where it does poorly. Its prediction times can be up to three times
as high as HT, even though tree sizes are much smaller. This is caused by the
presence of multiple options very close to the root of the HOTP tree.

Figure [3 shows the graphs where the option methods gain substantially over
the single tree, except for HOTP on RTC, WAVE40, and RRBFS where vigorous
pruning prevents the tree from reaching a reasonable size. On the RTC dataset
both HOT and HOTS are superior to BAG10. HOTS uses only a little more memory
than the single tree and approximately 10% of the ensemble memory.

2 The actual speed for HT varied from around 4,000 predictions/second (for RTC) to
129,000 predictions/second (for GENF'3).

3 On LED, due to rounding this difference is not apparent in Table[2l All five algorithms
are very close to the optimal Bayes error of 26%.
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5 Conclusions

We have demonstrated the efficacy of incorporating multiple paths via option
nodes in Hoeffding trees. We described a method for controlling tree growth,
and determined a reasonable number of options to explore. In all but one of
our datasets the additional structure improved the performance of the classifier.
Option trees represent a useful middle ground between single trees and ensem-
bles. At a fraction of the memory cost an option tree can provide comparable
accuracy performance and superior prediction speed which are important factors
in data stream processing. The results for pruning unnecessary structure were
mixed. Indeed pruning may not be a viable option in a stream setting. Processor
time is consumed and the potential accuracy improvements may not outweigh
the cost. The idea of simply capping options, to the size of a single tree or to the
memory limit of the processor is an attractive and effective low-cost alternative
solution.
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Abstract. Feedforward neural networks are particularly useful in learning a
training dataset without prior knowledge. However, weight adjusting with a
gradient descent may result in the local minimum problem. Repeated training
with random starting weights is among the popular methods to avoid this
problem, but it requires extensive computational time. This paper proposes a
simultaneous training method with removal criteria to eliminate less promising
neural networks, which can decrease the probability of achieving a local
minimum while efficiently utilizing resources. The experimental results
demonstrate the effectiveness and efficiency of the proposed training method in
comparison with conventional training.

Keywords: Local Minima, Simultaneous Learning, Removal Criteria,
Feedforward Neural Networks.

1 Introduction

Artificial neural networks (ANNs) are widely used in various applications such as
classification, approximation [1], signal processing, and pattern recognition [2]. One
of the interesting properties of neural networks is the ability to learn from its
environment in order to improve its performance. When learning takes place, the
connection weights of a network are adjusted using a training dataset without any
prior knowledge. The most common learning method used for supervised learning
with feedforward neural networks (FNNs) is backpropagation (BP) algorithm. The BP
algorithm calculates the gradient of the network’s error with respect to the network's
modifiable weights. However, the BP algorithm may result in a movement toward the
local minimum.

To overcome the local minimum problems, many methods have been proposed. A
widely used one is to train a neural network more than once, starting with a random
set of weights [3,4]. An advantage of this approach lies in the simplicity of using and
applying to other learning algorithms. Nevertheless, this approach requires more time
to train the networks. Therefore, this paper proposes simultaneous training along with
certain removal criteria. By randomizing starting weights of multiple neural networks,
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© Springer-Verlag Berlin Heidelberg 2007
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a local minimum is probabilistically avoided. Elimination of less promising neural
networks then help save on computational resources. In the experiments, the proposed
method is applied with Resilient Backpropagation (RPROP) [5], which is a fast and
computationally economical variant of BP algorithm, for comparison of effectiveness
and efficiency with conventional neural networks.

This paper is organized as follows: Section 2 describes the local minimum problem
in neural networks. Section 3 explains our proposed algorithm, which consists of the
training method and removal criteria. Section 4 discusses the experimental procedure.
Section 5 compares and analyzes the results. Section 6 involves a comparison with
evolving artificial neural networks (EANNS). Finally, section 7 concludes the paper.

2 Local Minima in Neural Networks

Supervised learning of multilayered neural networks with conventional learning
algorithms faces the local minimum problems. Gradient descent-type learning
algorithms including BP changes the connection weights of a network using a training
set of input-output pairs without any prior knowledge. Using a gradient descent to
adjust the weights involves following a local slope of the error surface which may
lead toward some undesirable points, or the local minima.

In this situation, conventional training of neural networks often gets stuck in the
local minima. There are several studies [6]-[11] that investigate this problem, by
exploring the appearance of the architecture and the learning environment for the
local minima-free condition. Different types of local minima are studied in [12] in
order to understand the behavior of an error surface in the neighborhood of a local
minimum and to explain the global behavior of the error surface. In fact, the local
minima are mainly associated with two factors: the learning style and the network
structure. The methods handling the problem can be based on a deterministic
approach or a probabilistic approach.

In a deterministic approach, a new learning algorithm, Global descent [13], was
proposed in place of primary gradient descent rules. Optimization algorithms are
applied in the learning process to avoid local minima in [14] and [15]. These methods
can assist in finding the global optimum; however, they are rather time-consuming.

Another alternative, a probabilistic approach, often focuses on a set of weights
such as the weight initialization method [16], which can decrease the probability of
achieving local minima. Neural networks learning, in which training occurs more than
once by starting with a random set of weights is another interesting method. The best
neural network is often selected as the one with the lowest error. For example, Park et
al. [3] proposed a procedure to determine a structure of the neural network model for
predicting sun spots. Their best network was selected from among ten networks of the
same architecture, each of which was initiated with a different random set of weights.
But the number of random starts can not be specified for certain. To avoid restarting
too many times, Iyer and Rhinehart [4] took a probabilistic approach to determine the
number of random starts needed in the neural network training. Although this
approach is easy to implement, it requires extensive time for training.

Another interesting learning paradigm of ANNs which have been widely studied is
the evolving artificial neural networks (EANNSs). This model is a combination of
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ANNs and evolutionary algorithms (EAs), which have been applied at three major
levels: connection weights, architecture, and learning rules. For instance, EPNet [17]
is an automatic system for EANNSs that uses mutation operators to modify architecture
and weights. A survey of EANNs can be found in Yao [18] and the comparison
results are demonstrated in [19] and [20]. This method is effective in discovering a
global minimum; however, it still requires substantial resources.

3 The Proposed Simultaneous Learning Method

The proposed method involves learning of multiple neural networks similar to the
concept of repeated training with a random set of weights that help avoiding local
minima. However, in this approach, neural networks learn simultaneously in parallel
using multiple initial weights. The method also incorporates removal criteria in order
to gradually stop running some neural networks to achieve efficient resource
utilization. The following subsections describe the method in more details in two
parts: simultaneous learning and removal criteria.

3.1 Simultaneous Learning

The proposed approach applies parallel computing to neural network training, which
offers a different training order than the conventional way. The conventional training
starts from creating a neural network with a set of initial weights and then trains by
adjusting the weights. When the number of epochs reaches the max epoch size, in the
case of repeated training, a new network will be recreated with a different set of initial
weights and trained as before (Fig. 1(a) shows an example procedure).

In the proposed training method, neural networks are trained simultaneously. In
order to train a number of neural networks in parallel, all networks will be created
each with a random set of weights and trained simultaneously, all starting from the
first epoch and continuing to the max epoch. When training with multiple core

Epoch
NN #1 2131415 +61FT85 19116 f
NN #2 F2—+3—141+5» 6 | 7| 8|9 |10 n
1234|5678 |9]10 n
NN #m 1234|567 ]|8|9]10 n
(a)
Epoch
NN #1 112134 |5(6|7]|8|9]10 n
NN #2 112(3|4[5|6]7(8]9]10 n
1| 2 4516781910 n
NN #m 1123|4567 ]|8|9]10 n
(b)

Fig. 1. (a) The conventional training procedure. (b) The simultaneous training procedure. Each
slot represents a training epoch. The arrows show the order of training.
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processors, all networks may be trained at the same time. Fig. 1(b) illustrates the
procedure. The proposed training order allows us to perceive an error trend, as more
networks provide better information of the error. Observing a set of errors can assist
in determining the max epoch more appropriately. The error trend is then used for
comparison among networks in order to stop training of a poor network. The removal
criteria are introduced in the next subsection.

3.2 Removal Criteria

In order to reduce the resource consumption in learning, evaluation criteria for neural
network removal are incorporated in the simultaneous training in order to stop the
neural networks with poor tendency. Specifically, we utilize certain comparative
parameter as a predictor of future error behavior. The network with the worst value will
be stopped. The comparative parameters under consideration include the followings.

MinimumError The smallest error from all previous training epochs
LastGenError The error of the last training epoch
ErrorSlope The slope computed by linear regression on the last 50 errors
MixedError The approximate error estimated from the last generation error
scaled down by its error tendency, as shown in equation (1)
and Fig. 2
MixedError = LastGenError (1 — (arctan( ErrorSlope) /(7 / 2))) (D

In the experiment, we set the maximum epoch to be the number of epochs that the
error begins to converge, specifically the error decreases by less than € or the error

1000
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400
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0 ‘ ‘ ‘
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Fig. 2. An example of using the mixed error criterion to evaluate two networks at 200" epoch.

Black line and gray line show the error of each network. Solid lines represent the past error, and

dotted lines represent the future error. The error slope of each network is computed using linear

regression (dashed line) as an input into equation (1). The mixed errors of the black line and the
gray line are plotted with a circle dot and a square dot, respectively. Even though the error of

the black network at the present epoch is higher than the error of the gray network, this mixed
error criterion can predict the future error behavior correctly.

Error
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starts to increase indicating that overfitting occurs in the problem. We simultaneously
train ten networks and begin choosing the network to stop when the number of
training epochs reaches 10% of the max epoch and subsequently at the interval of 5%
of the max epoch. Therefore, nine networks will be eliminated after 50% of the max
epoch, and the last network is trained until the max epoch for complete convergence.
Fig. 3 shows an example of applying the approach with ten networks.

0.202
0.182
0.162
0.142
0.122
0.102
0.082
0.062 N'M
0.042
0.022
0.002

Error

-

=

0 50 1000 15p0
Epoch

10% 50% 100%

Fig. 3. An example of applying the method to ten neural networks that are trained
simultaneously. The vertical lines indicate the epochs at which one network is stopped. The
max epoch (100%) is set where error seems to converge.

4 Experimental Details

In our experiment, we apply the proposed method to eight problems. The datasets
were obtained from Probenl [21], which can be categorized into two types:
approximation and classification problems. Approximation problems include three

Table 1. Neural network architecture and dataset for testing problems, which include data size,
network architecture (input, neurons in hidden layers, output), and the max epoch size

Problem Dataset Network Architecture ~ Max epoch
size Input Hidden Output size

Approximation Problem

Building 4208 14 16 3 800

Flare 1066 24 32 3 200

Heart 920 35 32 1 160
Classification Problem

Card 690 51 32 2 200

Mushroom 8124 125 32 2

Gene 3175 120 442 3 500

Soybean 683 82 16+8 19 1000

Thyroid 7200 21 16+8 3 1500
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testing problems: Building, Flare, and Heart. Classification problems include five
testing problems: Card, Mushroom, Gene, Soybean, and Thyroid. Numeric data used
in the simulations are shown in Table 1.

5 Results and Discussions

The results from all testing problems are used for comparison between the
conventional method and the proposed method using various removal criteria. The
network architecture is adjusted for each problem. The performances of the two
methods are compared using two measures: effectiveness and efficiency.

5.1 Effectiveness

The effectiveness measure compares the solution quality between the two methods
using the validation errors from training after the same number of epochs. The
number of epochs is equal to the sum of epochs used by all networks in the
simultaneous training. This amount limits the number of epochs used in the
conventional training, which repeatedly initializes weights when each network
reaches the max epoch. The experimental results show an average minimum error
after 20 simulations of each method in Table 2.

Table 2. The effectiveness (solution quality) comparison. The table compares conventional
training with simultaneous training using various removal criteria. The numbers show a
validation error (x 10-3) followed by a percentage improvement from conventional training as
shown in parentheses. The best result for each test problem is highlighted in bold.

Problem Conventional Simultaneous training
training Minimum Last Gen. Slope Mix

Approximation

Building 8.154 7.809(4.2%) 7.796(4.4%) 8.094(0.7%) 17.796(4.4%)

Flare 3.897 3.801(2.5%) 3.816(2.1%) 3.807(2.3%) 3.821(2.0%)

Heart 43.47 42.212.9%) 42.242.8%) 42.33(2.6%) 42.44(2.4%)
Classification

Card 410.1 382.7(6.7%) 382.7(6.7%) 404.6 (1.3%) 382.7(6.7%)

Mushroom 9.872 6.204(37.2%) 6.179(37.4%) 8.198(17.0%) 6.155(37.7%)

Gene 201.1 181.2 (9.9%) 180.3(10.3%) 197.1(2.0%) 181.3(9.8%)

Soybean 450.3 434.53.5%) 435.4(3.3%) 445.6(1.0%) 436.0(3.2%)

Thyroid 27.36 25.75(5.9%)  26.14(4.5%) 27.47 (-0.4%) 26.31(3.9%)

From Table 2, simultaneous training outperforms conventional training for all test
problems. There is no single removal criterion that is best for all problems.
Minimum error, last error, and mixed error are effective error predictors in different
cases, while error slope is never the best choice. An average error over all removal
criteria shows an improvement of the proposed approach over conventional training
by 2.2-32.3%.
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5.2 Efficiency

The efficiency measure compares the training time or the number of epochs used in
order to obtain a specified error. Table 3 shows the results, which are the sum of the
number of training epochs for each problem. For conventional training, the number of
epochs is counted from the start of the first network until an error of the training is
less than a specified error for a particular problem, but not more than ten networks.
Each neural network training has a limitation on the number of epochs at the max
epoch size. For simultaneous training, the number of epochs is calculated from the
sum of ten networks’ training using various removal criteria. The results are an
average over 20 simulations.

From Table 3, the proposed approach outperforms the conventional approach in
most cases and could lead to a decrease in computational time of up to 53.9%.

Table 3. The efficiency (computation time) comparison. The table presents an average number
of epochs used followed by a percentage improvement from conventional training as shown in
parentheses. The best result for each test problem is highlighted in bold.

Problem  Conventional Simultaneous training
training Minimum Last Gen. Slope Mix

Approximation

Building 3695.85  2386.3(35.4%) 2361.6(36.1%) 2723.6(26.3%) 2361.6(36.1%)

Flare 540.55 402.5(25.6%) 427.3(21.0%) 406.6(24.8%) 436.2(19.3%)

Heart 784.00 361.7(53.9%) 376.1(52.0%) 370.6(52.7%) 387.0(50.6%)
Classification

Card 782.05 417.1(46.7%) 417.1(46.7%) 612.3(21.7%) 417.2(46.7%)

Mushroom  2632.70  3034.0(-15.2%) 3034.0(-15.2%) 3034.0(-15.2%) 3034.0(-15.2%)

Gene 2862.90  1627.7(43.2%) 1627.7(43.2%) 1682.2(41.2%) 1635.6(42.9%)

Soybean 4465.25  2825.5(36.7%) 2922.0(34.6%) 3176.6(28.9%) 2922.0(34.6%)

Thyroid 4677.00 4578.3(2.1%) 4598.0(1.7%) 5026.9(-7.5%) 4598.0(1.7%)
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Fig. 4. Comparison results of the learning process on the Building dataset. (a) The conventional
training procedure. (b) The simultaneous training procedure with the mixed error removal
criteria.
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Fig. 5. Comparison results of the learning process on the Card dataset. (a) The conventional
training procedure. (b) The simultaneous training procedure with the minimum error removal
criteria.

Fig. 4 and 5 show the error behaviors of the two methods on Building and Card
problems respectively. In Fig. 4(a), errors from different initial weights converge to
different values in conventional training. In simultaneous training, a network with
poor error tendency is cut off at each epoch as shown in Fig. 4(b). Fig. 5 displays
error behavior when overfitting problem occurs but a good solution is finally found.

Note that among all removal criteria, the minimum error seems to be the best
indicator, as it performs best five out of eight in the effectiveness comparison and six
out of eight in the efficiency comparison. In most problems, the proposed method
improves resource utilization and performance in neural network training.

6 Comparison with EANNs

EPNet is an automatic system for EANNs that uses mutation operators to modify
architectures and weights [17]. The experimental results showed that this method
could improve the generalization ability. The numerical result for the thyroid problem
is shown in the last row of Table 4. We apply the conventional approach and our
proposed approach to the thyroid problem for comparison with the EANNs approach,
and the results are shown in Table 4.

Table 4. Comparison results on the number of epochs, error and standard deviation of various
training methods on the thyroid problem. The total time used by each training method is the
maximum number of epochs. The average testing error and standard deviation are also
presented in the table.

Method Number of epochs Error SD
Conventional training 2000 0.03033 0.00213
Simultaneous training 7400 0.02575 0.00312

EPNet 109000 0.02115 0.00220
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From comparisons in Table 4, EPNet outperforms in achieving the lowest error and
reduces the conventional training’s error by nearly one third. However, this approach
and its accuracy come at the cost of additional computation time in order to perform
search. Our proposed simultaneous training uses about four times the number of
epochs more than the conventional training but much fewer than EPNet to achieve a
reasonable improvement in accuracy.

7 Conclusions

This paper proposes a simultaneous training method with removal criteria for neural
network training to avoid local minima which is common in many problems.
Experiments are carried out on multiple testing problems for comparison. Results
demonstrate that the proposed method can decrease the probability of achieving local
minima while utilizing resources efficiently. For time-critical application, the
proposed method may help achieving better results using limited computation time,
and it can be practicable in the parallel computing environment.
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Abstract. There are numerous families of Neural Networks (NN) used
in the study and development of the field of Artificial Intelligence (AI).
One of the more recent NNs involves the Bursting neuron, pioneered by
Rulkov. The latter has the desirable property that it can also be used
to model a system (for example, the “brain”) which switches between
modes in which the activity is excessive (“bursty”), to the alternate case
when the system is “dormant”. This paper, which we believe is a of
pioneering sort, derives some of the analytic properties of the Bursting
neuron, and the associated NN.

To be more specific, the model proposed by Rulkov [I1] explains the
so-called “bursting” phenomenon in the system (brain), in which a low
frequency pulse output serves as an envelope of high frequency spikes. Al-
though various models for bursting have been proposed, Rulkov’s model
seems to be the one that is both analytically tractable and experimen-
tally meaningful. In this paper, we show that a “small” scale network
consisting of Bursting neurons rapidly converges to a synchronized be-
havior implying that increasing the number of neurons does not con-
tribute significantly to the synchronization of the individual Bursting
neurons. The consequences of such a conclusion lead to a phenomenon
that we call “behavioral synchronization”.

1 Introduction

Although the field of Neural Networks (NN) in Artificial Intelligence (AI) has
matured, the theoretical aspects of many of these NNs are now at varying lev-
els of development. The primary results currently available involve the conver-
gence, rate of convergence, asymptotic distributions and the structural inter-
connectivity of the neurons in the NN. As far as we know, the entire concept
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of synchronization/desynchronization of the neurons has not been studied for
most families because such a study not only involves the asymptotic behavior,
but also an analysis of transient/periodic phenomena of the individual neurons.
In this paper, we shall analyze the synchronization behavior of one such NN,
namely the network with Bursting neurons. We believe that this is an open area
that can generate theoretical and applied results in Artificial Intelligence (AI).
By way of motivation, we suggest a real life rationale for such a study.

One of the fundamental tasks of perception is to extract sensory features from
a perceived scene and to group them into coherent clusters. The process of ex-
tracting and grouping is essential for resolving segregation, object segmentation
and pattern recognition. The sensory segmentation can be explained as the corre-
lation of local qualities within a pattern. The processing of different features (like
orientation or color) occurs in different cortical areas, but there are no explana-
tions regarding how these features are integrated/grouped. One hypothesis for
perceptual grouping could be the temporal correlations. Schneider and von der
Malsburg [I2] proposed a correlation theory where features are linked through
temporal correlations in the firing patterns of different neurons. A biological im-
plementation of temporal correlation consists of using networks of neural oscilla-
tors (for example Bursting neurons), where each neuron represents features of an
object. In this architecture, each segment is represented by a cluster of Bursting
neurons that are synchronized. To extrapolate this construction, different ob-
jects are represented by different clusters whose oscillations are desynchronized
from each other. This is essentially the problem alluded to, namely the study
of the synchronization/desynchronization in a network of bursting neurons. We
study this problem, and an artificial NN which achieves this.

Bursting is a process in which a neuron alternates between a quiescent behav-
ior (i.e., a salient non-spiking phase) and a rapidly varying spiking state where
the latter is a fast repetitive spiking phase. A typical explanation for the bursting
phenomenon is based on the dynamics of a system of nonlinear equations con-
taining both fast and slow variables. The fast variables generate a firing activity
and exhibit multistability between a resting state and the regular firing state.
The slow variables, on the other hand, can be considered as control parameters
for the fast variables.

Many mathematical complex models of bursting neurons, inspired from the
behavior of biological systems, have been developed. But these models are an-
alytically intractable when the individual neurons are connected in networks

JUzERATUR

1.1 Contribution of This Paper

As we stated before, the study of synchronization/desynchronization of arbi-
trary NNs is a relatively open area for most NN families. The contribution of
this paper pertains to novel results related to synchronization of one such NN,
namely the Bursting neural network as motivated by Rulkov’s model [IT]. Such
a model permits an explanation for the so-called bursting phenomenon in which
a low frequency pulse output appears as an envelope of high frequency spikes.
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Without being apologetic, we mention that the paper is fairly theoretical. But
al over the results are supported by rigorous simulations. This paper shows that
increasing the number of neurons in the network does not significantly increase
the synchronization of the bursting. Indeed, we show that (with respect to the
number of neurons) the network rapidly converges to a synchronized behavior.
This is demonstrated by the inclusion and computation of two newly-proposed
measures. These results are, to the best of our knowledge, novel, and of a pio-
neering sort.

2 Overview of the Field

The problem of describing the synchronization of nonlinear oscillators has been
studied extensively. In particular, Winfree [I3] and Kuramoto [7] have con-
tributed with strong analytic results. Indeed, many kinds of synchronization
(i.e., coordination with respect to time) were reported including those described
as Amplitude synchronization or Phase synchronization [9].

In this paper, we propose a new category of synchronization analyzed in a
network of Bursting neurons. Instead of describing this phenomenon in terms of
two signals, we propose a synchronization that is based on behavior, which we
call “Behavioral Synchmnization’.

Consider two systems which are in their two functional modes called A and
B, respectively. If both of them are in the same mode, either A or B, then they
are said to be in a synchronized behavioral state, even though the outputs of
the systems may be uncorrelated. In the model we proposed for investigation,
the two output signals are chaotic and uncorrelated, and yet the systems can be
behaviorally synchronized.

We investigate, in this paper, a network of neurons that can generate the
so-called bursting (firing) behavior. The individual neuron displays characteris-
tic firing patterns determined by the number and kind of ion channels in their
membranes. The firing process of any neuronal circuit depends on the interac-
tion between the intrinsic properties of the individual neurons and the synaptic
interactions that connect them into functional ensembles. One of the related
neuroscience problems is to explain how the system’s dynamics depend on the
properties of the individual neurons, the synaptic architecture by which they are
connected, and the strength and time duration of the synaptic connections.

2.1 The Model of Bursting Neuron
In this Section, we present a particular model of a Bursting neuron proposed by
Rulkov [T1], which is formally described by two dimensional maps as:

+y(n), (1)

«
zn+1)=
N R
! We believe that the entire concept of synchronizing/desynchronizing the neurons
in a NN is a relatively open area. Indeed, the available results concerning this are
scanty.
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y(n+1) =y(n) —ox(n) - 5, (2)

where z(n) and y(n) are the fast and slow dynamical variables of the “oscilla-
tor” neuron, respectively. The slow evolution of y(n) is due to the small values
of the positive parameters § and o, which are of the order of 0.001 [I1I]. The
value of the parameter « is selected to be in the region o > 4, where the map
produces chaotic oscillations in z(n). Depending on the parameter «, the neu-
ron demonstrates two qualitatively different regimes of chaotic behavior, namely,
continuous chaotic oscillations and chaotic bursts. This bursting dynamics was
confirmed in experiments done with biological neurons [0].

The slow evolution of y(n) for the next m steps [I1] is given by: y(n 4+ m) =
y(n) —m(B + oy*(n,m)) where y*(n,m) = Z;H::_l x(j) is the mean value of
x(n) computed for m consecutive iteratlons

From the previous relation that describes y(n+m), we see that the value y(n)
increases very slowly during the next m steps if oy*(n,m) < —3, and decreases
very slowly if oy*(n, m) > — 3. From this behavior, we can approximate y(n) to
be a constant of value «y. With this observation, Equation ({l) becomes:

@

For a specific value of ~, the system leads to a bifurcation which corresponds
to the beginning of the burst in the system. The end of the chaotic burst is
due to the external crisis of the chaotic attractor in the system. The duration
of the chaotic burst is determined by the time interval that is required for the
slow variable y(n) to move from value 71 to 72. The complete mathematical
explanation of these two bifurcations can be found in [I], and is omitted here
as it is not required for the rest of this paper.

3 The Network of Neurons

Having now introduced individual Bursting neurons, we consider a network built
with N such “oscillating” neurons [I1]], which are coupled electrically to each
other through the variable z(n). In this case, the variables X;(n) and Y;(n)
obey:

N
Xi(n+1) = [1+;-(n)2} FYi(n) + Y X(n), (4)
7 ]:1
with
Yi(n+1) = Yi(n) —0Xi(n) = § ()

where X;(n) and Y;(n) are, respectively, the fast and slow dynamical variables
of the i*" neuron and ¢ is the coefficient that describes the coupling between the
neurons.

The coupling between neurons influences the fast dynamics of each neuron by
adding the value A7 ~N Z X (n) to the almost constant term +y, in Equation

@). When the i** neuron approaches the first bifurcation, its increased value of
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v+ A~ pushes the neuron over the bifurcation value and triggers the burst. The
greater the value of N, the number of neurons which are involved, the greater
A~ will be, and the triggering impact that is experienced by the remaining cell
will be correspondingly larger. Such a switching phenomenon is also observed at
the end of each burst. The condition for this is formalized below. The proof is
essentially taken from [T1], but we have filled in the missing details and modified
the result for the scenario of a network.

Lemma 1. Consider a system of N neurons described by Equations ([@H0]). When
A~y is greater than a threshold, denoted Av,,q., the system generates synchro-
nized bursts.

The proof for this Lemma can be found in the unabridged version of this paper
[3] and in [2].

During this process of generating bursts, we observe that the bursts themselves
get synchronized and that the fast chaotic oscillations corresponding to each
neuron tend to become asynchronous. Thus, the oscillations are asynchronous
and only the behavior of the neurons is the same. We shall refer to this process
as “behavioral synchronization” which is defined below:

Definition 1. Consider a Bursting neuron that can be in one of the two states:
(i) A rapidly varying spiking state described by min(X;(t)) > Threshold; for all
t € [T, T+ 61] or (ii) A quiescent state described by maxz(X1(t)) < Thresholds
for all t € [T+01,T + 6], where X is the fast variable, and T is the beginning of
the rapidly varying spiking state. These two states are characterized by the time
delays 6, and 65, and two thresholds, T hreshold,, and T hresholds.Two neurons
in the network are behaviorally synchronized if there exist 611, 012, and d22 which
are small, for which the fast variable X5 of the second Bursting neuron satisfies
one of following conditions: (iii) min(X2(¢)) > Threshold; for allt € [T'+611, T+
01 £ 612] or (iv) max(X2(t)) < Thresholdy for t € [T + 01 + 612, T + 02 %+ 622].

This definition shows that if the first neuron has started to burst, the second
neuron will burst too, after a short delay of 617. In such a case the neurons
exhibit behavioral synchronization. The bursting process will disappear after a
time, and we permit a small delay 612 between the end of bursting of the first
neuron and the end of the bursting of the second. The quiescent state which
comes after the bursting states also permits a time difference of do5.

An example of such a “behavioral synchronization” for a network of two cou-
pled neurons is presented in Figure [II The reader should compare this process
with the behavior of the uncoupled network, as presented in Figure

3.1 The Problems

In order to characterize the “behavioral synchronization” phenomenon, we pro-
pose two new measures that resemble frequencies: (i) High Pseudo-frequency
measure : This measure, denoted by F'1, is computed as the ratio between the
average number of zero crossings and the length of the chaotic part of the sig-
nal. and (ii) Low Pseudo-frequency measure : This measure, denoted by F2,
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is computed as the average of the inverse of the time between the ends of two
consecutive bursts.

The problems to be studied and the respective modus operandi of the solutions
we propose are: (i) We formally prove that the network of coupled bursting is
unstable, and that it permits a chaotic behavior for a range of the control param-
eter, a. This problem is studied by resorting to the stability of the equilibrium
points of the network. (ii) Finally, we explore the variation of these two new
measures, namely F'1 and F2, along with the cross correlation between each
pair of neurons as a function of the size of the coupled network.
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Fig. 1. The variations of X1(n) and X2(n) (on the left) and Y1(n) and Y2(n) (on the
right) for a network of two neurons which are coupled
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Fig. 2. The variations of X1(n) and X2(n) (on the left) and Y1(n) and Y2(n) (on the
right) for a network of two neurons which are not coupled

4 Simulations Results for Computing New Measures

In Section 3, we showed the chaotic properties of an individual Bursting neuron,
and of a network of such neurons. We now address the question whether a coupled
network results in synchronization. In other words, if we are given a network
with thousands of neurons would it be possible to describe the synchronization
by computing the earlier mentioned measures, namely the pseudo-frequencies
F'1 and F2, and the Cross Correlation Coefficient C'C'.

The problem we face is of a computational sort. Indeed, computing these mea-
sures when the number of neurons is large is almost prohibitively expensive. But
it turns out that the F'1, F2 and C'C tend to converge (and that, rather quickly)
with the number of neurons. In other words, it happens that the synchronization
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behavior for relatively small N (say 4 or 5) actually approximates the behavior
for large values of N with a negligible error. To demonstrate this we numerically
compute these indices for networks of various sizes.

We numerically analyze the Bursting model of the neuron for a few cases,
namely for networks in which N = 2 (when the pair is coupled/uncoupled)
and when N = 3,4. Of course, these experiments were done for an ensemble of
parameter setting&ﬁ but in the interest of brevity we merely mention a single
case when the parameters were set as is typical in a real-life setting. Thus, for
all the experiments reported here, we have set the parameters to be as realistic
as possible: « = 4.3, ¢ = 0.001, 8 = 0.001. The coupling coefficient for the
experiments with networks involving coupled neurons was € = 0.1.

The notation we use is: (i) E, = The iteration index of the termination of
the previous burst (i.e, the “Previous End”), (ii) S = The iteration index of
the start of the Bursting period, (iii) £ = The iteration index of the end of the
Bursting period, (iv) Z = The number of zero crossings during the length of the
burst. Note that as a result of these terms, the length of the burst is £ — .5, and
the length of the “periodic signal” is the difference £/ — E,,.

4.1 A Network with Two Neurons

Consider the case of a network with two neurons (characterized by their fast
and slow variable, namely (Xi(n),Y1(n)) and (X2(n),Y2(n)). The behavior of
the coupled neurons is presented in Figure [Il The behavior of the uncoupled
neurons is presented in Figure

For the case of the coupled neurons, we compute the Largest Lyapunov Ex-
ponentﬁ (LLE) for each signal, by evaluating it for the firsts 5 bursts of each
signals. We find that: (i) For the first neuron, the LLEs are {0.43011, 0.3612,
0.2298, 0.2251, 0.3053} and the average LLE is 0.3103. (ii) For the second neu-
ron, the LLEs are {0.3242, 0.3484, 0.2089, 0.2860, 0.2962} and the average LLE
is 0.2927. In all the situations, the positive values for the LLE correspond to a
chaotic behavior.

Observe also the appearance of behavioral synchronization. From Table[I}F top
part, we see that for the network without coupling, the S iteration indiced for
the X7 and X5 values are: X7 = 3201 vs. Xo = 3211 for a specific burst, and
X7 = 3606 vs. Xo = 3633 for the following burst.

As opposed to this, from Table [I] - bottom part, the difference between the
corresponding S indices after coupling is: X7 = 1631 vs. Xy = 1632 for a specific
burst and X; = 2136 vs. Xy = 2137 for the following burst, which represents

2 These parameters will be the same as the number of neurons is increased.

3 The Largest Lyapunov Exponent is a quantitative measure that describes the sen-
sitive dependence of the dynamical system on the initial conditions. It defines the
average rate of divergence of two neighboring trajectories. The existence of a positive
LLE is a widely-used definition of deterministic chaos.

4 All the interpretations are made using only the phenomenon displayed by the fast
variable. The behavior of the slow variable mimics the former.
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Table 1. The values of the pertinent indices F,, S, F, and Z etc. (see Section FT])
for a network involving two wuncoupled neurons (top table) and a network involving
two coupled neurons (bottom table). The top table shows the corresponding indices
and computed frequencies for the first signal (left) and for the second signal (right).
Correspondingly, the bottom table shows the corresponding indices and computed fre-
quencies for the first signal (left) and for the second signal (right).

1t E, S E Z Z/(E-S)2" E, S E ZZ/(E-S)
sig. 2849 2932 3094 62  0.3827  sig. 2734 2821 2957 34 0.25

3004 3201 3325 41  0.3306 2957 3033 3124 38  0.4175
3325 3404 3523 47  0.3949 3124 3211 3371 46 0.2875
3523 3606 3742 41  0.3014 3371 3460 3557 32 0.3298
3742 3832 3951 35  0.2941 3557 3633 3813 60  0.3333

Avg. 45.2  0.34074 Avg. 42 0.32362

1t E, S E Z Z/(E-S)2“ E, S E Z Z/(E-S)
sig. 1478 1632 1915 145  0.5123  sig. 1447 1631 1927 150  0.5067

1915 2136 2472 160  0.4567 1927 2137 2453 155  0.4905
2472 2704 2940 98 0.4025 2453 2701 2945 127  0.5204
2940 3112 3331 115  0.5159 2945 3112 3347 122 0.5191
3331 3522 3826 143  0.4703 3347 3524 3801 130  0.4693

Avg. 132.2  0.4801 Avg. 136.8 0.5012

a difference of only a single iteration unit. It is thus clear that, in the case of
coupled neurons, the beginning of the bursting behavior is almost synchronized.

The reader should observe from Table [l - top part that the values of F'1 are
approximately equal for both the neurons. The same observation is also true for
F2. When a coupling occurs, F'1, the high pseudo-frequency that describes the
chaotic oscillations, is larger, and F2, the low pseudo-frequency that describes
the overall signal, is smaller (see Table [Tl - bottom part). The variation of F2
can be seen as an envelope of signals X; and Xo.

To further illustrate the synchronic behavior, we also compute the cross corre-
lation between the two signals. In Table 2] we present the values for the C'C' for
the case of the uncoupled and coupled signals, respectively. The average values
for CC are 0.2528 and 0.2015 for these cases. It is thus clear that although the
behavior is the same, namely that, both are of a bursting nature, the signals
themselves are marginally correlated, and that the coupling doesn’t increase the
relationship between them.

We did also simulations for networks of 3 and 4 coupled neurons. The corre-
sponding results can be found in [2] and [3].

4.2 The Variation of F'1, F2 and CC

We explore in this section the variation of these two new measures, namely
F'1 and F2, along with the cross correlation between each pair of neurons as a
function of the size of the coupled network.
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Table 2. The Cross Correlations between the pairs of signals: without coupling (left
table) and with coupling (right table)

S(1) E(1) S(2) E(@2) ©C S(1)EQ1)S(2) E@2) CC

2032 3068 2821 2057 0.2432 1632 1915 1632 1915  0.2384
3201 3292 3033 3124  0.2481 2137 2453 2137 2453  0.1557
3404 3523 3211 3430 0.2849 2704 2940 2704 2940 0.2504
3606 3703 3460 3557 0.2093 3112 3331 3112 3331 0.1725
3832 3951 3633 3752 0.2789 3524 3801 3524 3801 0.1906

Averages 0.2528 Averages 0.2015
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Fig. 3. The relative variations (in percents) for F1, F2 and CC, for the case of 2
coupled neurons (point 2), 3 coupled neurons (point 3) and 4 coupled neurons (point
4) compared with the case of two uncoupled neurons (point 1)

The pseudo-frequencies F'2 have a value of 0.0045 and 0.0046 in the case of a
network of two uncoupled neurons, a smaller value of 0.0021 when we encounter
a network of two coupled neurons, and a much smaller value of 0.0016 for the
case of a network of three coupled neurons.

We present in FigureBlthe evolutions of F'1, F2 and CC. The graph represents
the relative variations (in percentages) of the measures for the case of having
2, 3 and 4 coupled neurons, as opposed to the scenarios of having uncoupled
neurons. The computed relative variation is compared to the measures obtained
for two uncoupled neurons.

To conclude this section we can state that if one increases the size of the
network N, the measures F'1, F2 and C'C' will have an asymptotic behavior as
depicted in Figure

5 Conclusions

The Bursting neuron (modelled with Rulkov’s settings) permits an explanation
for the so-called bursting phenomenon in which a low frequency pulse output
serves as an envelope of high frequency spikes. In this paper, we showed that the



Some Analysis on the Network of Bursting Neurons 119

network rapidly converges to a synchronized behavior implying that increasing
the number of neurons does not contribute significantly to the synchronization
of the individual Bursting neurons.
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Abstract. This paper sumarises a comparative study of multiple neu-
ral networks as applied for the identification of the dynamics of an Un-
manned Aerial Vehicle (UAV). Each of the networks are based on non-
linear autoregressive technique and are trained online. Variations in the
architecture, batch size and the initial weights of the multi-network are
analysed. A dynamic selection mechanism optimally chooses the most
suitable output from the host of networks based on a selection criteria.

1 Introduction

UAVs have gained importance due to their reduced operating costs, and re-
peated operations without human intervention. The interdisciplinary nature of
the UAV control systems is attracting researchers from all the fields of engineer-
ing. Currently, there are a few universities working towards the development and
implementation of different algorithms on UAVs in real-time [I1I5I2]. One such
fixed-wing platform is under development at the School of Aerospace, Civil and
Mechanical Engineering in UNSWQ@QADFA.

The UAV can be modeled as a Multi-Input Multi-Output (MIMO) system.
The conventional physical model of aircrafts may not be applicable for UAVs
because of the difference in aerodynamics, low altitude and low speed flights of
the UAVs. As an alternative, identification of the UAV using flight data can be
utilized. The Flight Control System (FCS) for the UAV performs tasks similar to
a pilot for a manned aircraft and is considered as the brain of the UAV. Robust
control techniques, capable of adapting themselves to the changes in dynamics
of the platform are necessary for the autonomous flight. Such controllers can be
developed with the aid of suitable system identification (ID) techniques. Realistic
system identification developed using flight data is required for understanding
the system behavior and dynamics of the UAV and to facilitate the controller
design.

Offline trained neural network models are robust to environmental noise but
the application is restricted to a range of flight. When the dynamics of the UAV
changes beyond this range the prediction error is significant. As an alternative
simpler neural networks can be trained online during the UAV’s flight. Online
networks adapt to the changes in dynamics of the nonlinear system by training
when necessary. The accuracy of prediction depends on various factors including

M.A. Orgun and J. Thornton (Eds.): AT 2007, LNAI 4830, pp. 120-[129] 2007.
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the initial weights of the network. Even though most neural network training
techniques have the ability to converge to the target response, with the change in
initial random weights the quality of convergence changes. Since the behaviour of
the UAV varies with flight condition, having a single online network with random
weights for modeling the UAV for all the flight conditions may not be possible.
By having multiple networks with different initial weights and architectures and
a dynamic switching technique to choose outputs from the different networks,
robust prediction can be achieved.

The concept of multiple neural network models for adaptive control was in-
troduced by Narendra in []]. In the past, multi-networks have been used for
linear systems or offline modeling that are mainly based on numerical simula-
tions [T231]. In this work a comparative study of multi-networks with variations
in the network architecture and training parameters is performed. The switch-
ing between the online models is carried out based upon suitable error criterion.
Each of the networks use a Multi-Input Multi-Output architecture. The models
are based on Autoregressive technique with Exogenous inputs (ARX) introduced
by Ljung in [6]. A novel training method is adapted for the online models where
the network is trained with small batches of data and the weights from the previ-
ous training are retained in memory [9]. The retraining of the network is carried
out only when the error in prediction is beyond a certain threshold.

The online training scheme for the ARX networks is explained in section
Different architectures for multi-networks are explained and compared in section
The results from the simulation of different networks are presented in section
[l The results to show the superiority of the proposed architecture are presented
for a particular subset of the identification and the results are compared using
the Mean Square Error (MSE). Some concluding remarks are presented in the
section

2 System Identification Based on Neural Networks

Neural networks for system identification is a well explored area in the study
of control systems. Various types of networks have been developed and adapted
for different applications. It has been shown in the past that recursive network
structures outperform the non-recursive structures in modeling and control of
non-linear systems [6]. In the autoregressive neural network model the network
retains information about the previous outputs and inputs to predict the next
output. This provides equivalent retention capabilities of the dynamics of the
UAV by the network. The predicted output of a Nonlinear ARX (NARX) model
can be obtained as [6Gl9]

y(t10) = g(ary(t = 1) + azy(t - 2) +
+anqy(t — na) + byu(t — 1) + .. + bppu(t — nb)) (1)

where 6 is the coefficient matrix which gives the influence of past outputs
(a1y..,anq) and influence of past inputs (b1, ..,bn,) on each of the subsequent
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outputs. The nonlinear function is defined by g, the y and u terms correspond
to past outputs and past inputs respectively.
The above equation can be simplified as

y(t) = g(0,9(t)) (2)
where,

0= (a17a27 °"anaub17b27 "'7bnb)
o(t) = (y(t —1),..y(t —na),u(t — nk), ..., u(t —nk —nb+ 1))

Here ¢ is the matrix of past inputs and outputs called the regressor and
is available from memory. To obtain the coefficients 6, many assumptions and
detailed knowledge of the plant are necessary [4]. Hence for a dynamic nonlinear
system such as the UAV it may not be feasible. This can be avoided by using
black-box methods such as the neural networks. The output of a two layered
neural network is given as

11 12
5i(t) = Fi(>_ Waiy G5 (O Wagkan(t) + Wijo) + Waio) (3)
j=0 k=1

In the above equation F' and G are the activation functions, [1 and [2 are
the number of neurons in the two layers, W7o and Wa;o are the bias to the two
layers and xj is the network input. In most of the cases the nonlinearities are
best represented by the hyperbolic tangent function as the activation function
G and a linear relation F. Wy and W5 are the weights from the hidden layer
and the output layer respectively. These weights correspond to the # matrix in
equation 21 Hence the problem of obtaining the best prediction depends on the
adapted network structure and the training method.

Iterative training is performed to minimize an error function using the Lev-
enberg Marquardt (LM) technique [7]. The LM training is a gradient based
technique allowing fast error minimisation. The goal of the training is to obtain
the most suitable values of the weights for closest possible prediction through
repetitive iterations. Conventionally, LM method works on the principle of min-
imizing the mean squared error between the actual output of the system and the
predicted output of the network given by [6]

(t)? (4)

The updated value for @ after each iteration is given by
Oi41 =0; — R G, (5)

where p is the step length, R is a matrix responsible for the search direction and
G is the gradient given by

,

Gi=Vn(b;) =

] =

_let 1(y(t) — (10:) (t, 0;) (6)
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where 1 is the derivative of the predicted output with respect to co-efficient
matrix 6. The search direction is given by R 1@, which is used to update the
weights. For the LM method R; is given as

R; = NZ t@))+u[ (7)

In this equation the first part is the Hessian matrix which is a square matrix
with second order partial derivatives of a function. p is the step size and I is the
identity matrix. For zero value of the step size the LM algorithm changes to the
Gauss-Newton method.

The network is trained online with small batches of data formed by retaining
the past values. The batch is formed by sliding the oldest data set out and
allowing the present data set in. The weights from the trained network is retained
in memory and is used for future predictions. The network is retrained only
when the error in prediction exceeds a predefined bound. The performance of an
online network largely depends on the hidden layer size, the batch length and
the initial weights chosen for training. The effect of any one of these parameters
can be observed by varying it and maintaining the others constant. For a given
flight condition the network displays enhanced performance for a range of values
in each of these parameters. To combine the best of each of these parameters
separately a multi-network architecture is adapted.

3 Multiple Networks Architecture

The design of a reasonable offline model involves the availability of suitable flight
data encompassing all possible regimes. This requires a large network with the
ability to learn the changes in dynamics of the system at all the flight conditions
[10]. Since this is not practical, smaller networks can be trained online to predict
the behaviour of the UAV. It may not be possible to train a single online network
to capture the UAV dynamics for the entire course of the flight. In a multi-
network architecture, networks with different structures and training parameters
are used to obtain accurate prediction. Another reason posing a necessity for
using multiple online networks for prediction is related to the effect of initial
weights on the response of the system. The online networks start with a random
set of weights and the weights are updated iteratively for convergence using LM
method explained in the previous section. Even though for all sets of random
weights the network converges to the desired response the transients observed
during the initial training phase is different for each set of weights. Such networks
used to aid the control process may lead to instability in the system. The peak
performance of a network for a given set of initial weights is restricted to a bound
of input output data. Multiple networks with different initial random weights
and a dynamic switching technique provide better prediction than any of the
individual networks tested for different flight conditions.

The online models are compared and dynamically selected based on a particu-
lar selection criterion. This ensures a better performance compared to any of the
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Fig. 1. Multi-network architecture with 3 online networks of different number of hidden
neurons

individual networks. Two different criteria are tested for the dynamic selection
between networks. The first type compared the instantaneous error between the
present system output and the predicted network output. The output from the
network with the smallest instantaneous error is selected. With this selection
criterion the steady state error is small but the switching between networks is
very high. This may lead to large switching transients when used in combination
with a controller. In the second type of selection, not only the present but also
the past performances of the networks are considered. In this method a weighted
average of the instantaneous error and the past mean square error is used as the
criterion as shown in equation [§l This provides more consistency in the output
leading to lesser switching between them.

Err =wy x MSE + wsg * Eipst (8)

Here Err is the weighted sum of the errors used for the dynamic selection, w,
and wy are the weights assigned to the M SE and the instantaneous error (E;p,st)-
The values of the weights are decided based on the noise level in the network
inputs and experimental conclusion. The network output with a smaller value of
Err is used as the output of the multi-network. The errors are checked at every
instant of time and the outputs are switched suitably.

Table 1. Mean square error values of the Multi-network model and individual networks
with different hidden neurons (h)

Outputs NN1 (h=3) NN2 (h=4) NN3 (h=5) Multi-net
0 0.1991 0.1895 0.1392 0.0476
U 0.0142 0.0228 0.0105 0.0048
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Table 2. Mean square error values of the Multi-network model and individual networks
with different batch sizes (b)

Outputs NN1 (b=3) NN2 (b=4) NN3 (b=5) Multi-net

0 0.1267 0.3304 0.6622 0.0819
U 0.0392 0.0814 0.2379 0.0363
9 in degrees
~oNN1(h=3)
—NN2 (h=4)
-=-NN3 (h=5)
—MultiNet op| |
---Actual op
15
30 uinm/s
22 | 1
0 5 time t (seo) 10 15

Fig. 2. Comparison of Multi-network output with fixed batch size 5 against the system
output

As a comparative case study, different network and training parameters are
altered to compare the response. It is observed that variations in number of
neurons in the hidden layer and variations in the batch size has significant effect
on the response. In the first case networks with different number of hidden
neurons (h) are taken as a part of the multi-net architecture. Three networks
with 3, 4 and 5 hidden neurons are considered as shown in figure [[I All the
three networks are trained with a constant batch size of 5. Figure 2] shows the
multi-network output plotted against outputs of the individual networks. In the
second case the hidden neurons in three networks are maintained constant as 4.
The batch sizes of data for training are different in each of the three networks.
Batch sizes greater than 10 seemed to take large time to train and are not
capable of predicting the system response in real-time. Batch sizes of 3, 4 and 5
are considered for analysis. The outputs from the individual networks and the
dynamic selection block of the multi-net is shown in figure
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Fig. 3. Comparison of Multi-network output with 4 hidden neurons against the system
output

4 Experiments and Results

The online training is performed using small fixed batches of input and output
data. Larger batch sizes tend to take longer time to train and hence seize the
purpose of online implementation. The available training period is less than or
equal to the sampling period due to one step prediction provided by the network.
In this study a MIMO longitudinal model of the UAV is considered. The forward
velocity (u) and pitch angle () are considered as outputs and elevator and
throttle as inputs.

The MSE values for two different types of multi-network models are presented
in tables[Mland 2 It can be seen in both the cases the multi-network models have
lower MSE values as compared to any of the individual networks. The results
from individual networks plotted with the multi-nets are shown in figures[2 and
The outputs from the ARX model considered depends on a single past input
and output. The variation in the dynamics is measured in terms of the error
between the previous output and predicted output obtained from the trained
network. As long as the dynamics does not vary beyond a threshold the weights
of this trained network are retained in memory. The network is retrained only
when the error from the new batch is greater than the predefined threshold.

As a typical case study 20 different sets of initial random weights are con-
sidered for a single network with 4 hidden neurons and a batch size 5. The
standard deviations, variance and mean square errors in the prediction of the
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Fig. 4. Comparison of outputs obtained from different random initial weights

Table 3. Comparison of performance of a single network with different initial weights

Test Std Dev u Std Dev 0 Variance u Variance § MSE « MSE 0

1 0.1502 0.4351 0.0226 0.1893 0.0228 0.1895
2 0.2409 0.2349 0.058 0.0552 0.0584 0.0552
3 0.1120 0.1569 0.0126 0.0246 0.0127 0.0246
4 0.564 0.3129 0.3181 0.0979 0.3201 0.0982
5 0.4132 1.0525 0.1707 1.1078 0.1718 1.1087
6 0.0638 0.0938 0.0041 0.0088 0.0042 0.0088
7 0.1243 0.3026 0.0155 0.0915 0.0162 0.0918
8 0.1463 0.4348 0.0214 0.189 0.022  0.1892
9 0.1501 0.4353 0.0225 0.1895 0.0227 0.1897
10 0.1502 0.4351 0.0226 0.1894 0.0227 0.1895
11 0.3169 0.8069 0.1004 0.6511 0.1012 0.6451
12 0.1267 0.4344 0.0161 0.1887 0.0162 0.1892
13 0.1277 0.2695 0.0163 0.0726 0.0173 0.0731
14 0.2926 0.6241 0.0856 0.3896 0.087  0.3903
15 0.3259 0.8011 1.7581 0.6418 1.7696 0.6464
16 0.4847 1.5965 0.235 2.549 0.2355 2.5755
17 0.1504 0.4351 0.0226 0.1894 0.0228 0.1895
18 0.1503 0.4353 0.0226 0.1895 0.0228 0.1896
19 0.1496 0.4352 0.0224 0.1894 0.0226 0.1895
20 0.1504 0.4351 0.0226 0.1893 0.0228 0.1895
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Fig. 5. Comparison of switching for two selection criteria

forward velocity and the pitch angle for each of the simulation is tabulated in
table Bl Figure @l shows the response of this network for some of these weights
superimposed on each other. It can be seen that the output response is different
each time the initial weights are changed. The test run 6 shows least errors as
compared to the other tests.

Two different selection criteria are tested in the dynamic selection block of
the multi-network with fixed batch size. In the first case the instantaneous error
between the present output and the predicted output is used for switching. The
resultant output from the multi-network continuously switches between the three
networks. As an improvement in the second case a weighted average between the
instantaneous error and past MSE for each of the networks is considered as the
selection criteria for the switching. This technique allows the selection of network
with the most consistent past and present performance. A comparison of the two
switching is shown in figure Bl The figure indicates one of the three networks
active for each of the outputs. It can be seen that the switching is reduced to
a large extent when the past performance is considered. The past performance
of each of the networks can be monitored and the training of networks with
consistent poor performance can be suspended and hence providing scope for
better training of the other networks.

5 Conclusions

The identification of the MIMO UAV is presented using a 'Black-box’ technique
based on autoregressive models and neural networks. An adaptive multi-neural
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network architecture with online training and dynamic selection was proposed.
The results from variations in the hidden layer size and the batch length were
compared. It was observed that in each case the multi-network outputs are more
accurate compared to any of the individual networks. The effect of changes in
the initial weights on the performance was also compared. It was seen that
even though the networks with different initial weights had similar steady state
response, their response during the initial training phase differed. At present,
research to design and implement robust controllers for autonomous flight of the
UAV using the multi-net architecture is being undertaken.
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Abstract. During polysomnography, multivariate physiological measure-
ments are recorded, and analysed to identify episodes of breathing disorders
occur during patients sleep for the diagnosis of sleep disordered breathing
disorders. Measurement distortions, such as signal losses that may oc-
cur due to loosening of a sensor, are often present in these measure-
ments. Reliability and accuracy of automated diagnostic procedures us-
ing polysomnographic data can be improved through automated identi-
fication and recovery of such measurement distortions. In this study is
an attempt towards that focusing on the respiratory measurements. Res-
piratory measurements are a main criterion in assessing sleep disordered
breathing episodes. Treating respiratory system as a deterministic dy-
namic system, functional mapping that exists between two state space
embeddings are approximated using artificial neural networks. Perfor-
mance of the trained neural networks in identification of measurement
distortions and measurement recovery are reported.

1 Introduction

Sleep Disordered Breathing Diseases (SDBD) are highly prevalent through out
the world. Study conducted in the US reported 9% of the female and 24% of the
male adult population aged between 30 to 60 show at least mild sleep disordered
breathing (SDB) conditions [I]. Another study conducted in India showed 19.5%
of asymptomatic males coming for routine health checks suffer from mild SDB
conditions [2]. Untreated SDBD can cause serious health complications including
cardiovascular disease such as Hypertension, cognitive dysfunctions [3]. SDBD
patients often suffers from un-refreshed sleep and fatigue, which can lead to
accidents [4].

The gold standard test for diagnosing SDBD is Polysomnography (PSG).
During a typical PSG session over 15 physiological measurements are recorded
during period of 6 to 8 hours of patients sleep. Measurements recorded during
PSG are analysed to determine performance of breathing, brain, cardiovascular
system, and muscle movements during sleep. PSG is a high resource consuming
test which requires both specialised technicians and set up. Screening meth-
ods [Bl6] and automatic SDBD diagnosis methods [A5] have been investigated
to reduce both the demand for PSG and the human labour associated with
PSG. However, PSG can over estimate SDB event as shown in an study by Villa

et al [9].
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Presences of measurement distortions in physiological measurements can lead
incorrect classifications of SDB episodes. Signal loss, which can occur due to loos-
ening of the sensor, and a sleep apnea episode, which causes complete cessation
of air flow over 10 seconds, show identical recording on a respiratory measure-
ment channel. During manual analysis of SDB events, measurement distortion
in one channel can be identified using simultaneously observed measurements of
undistorted measurements. For accurate automated analysis of PSG data, such
distortions needs to be detected and recovered.

Our main focus in this study is on distortions in respiratory measurements.
Measurements on respiratory function observed during PSG are used in diagno-
sis [7] of the highest prevalent SDBD, named Obstructive Sleep Apnea-Hypopnea
Syndrome. The physiological measurements commonly used in assessing SDB
events are respiratory flow measurements; usually the Nasal Airflow measure-
ment or Nasal Pressure measurement [7J§]. Thus we study predictions between
Nasal Pressure measurement (NPM) and Nasal Airflow measurement (NAM) in
this study.

Regulation of breathing is mainly done by the Central Nervous System and
chemoreceptors. During inspiration Central Nervous System sends a rhythmic
signal to the diaphragm and the intercostal muscles to contract. This causes neg-
ative pressure inside the lungs forcing air in. As the signal sent from the Central
Nervous System ceases, contracted mucels relaxes causing air to exit from the
lungs. Peripheral chemoreceptors regulates breathing based on concentration of
COg2 and Og in the blood, and mechanical events in heart, lungs or anywhere
in the body [10]. Central chemoreceptors, reside in the brain stem, respond to
changes in the Hydrogen ions or CO2 concentrations of cerebral spinal fluid or
blood. Chemoreceptors also modulates the heart rate depending on the CO,
concentration [T0]. When the environmental aspects that can affect breathing
does not change during the period of PSG recordings, we can treat that the res-
piratory dynamics are coming from an autonomous system. We further assume,
considering the dynamics of breathing, breathing is governed by a deterministic
dynamic system.

Takens [T1] embedding theorem states that, under certain smoothing condi-
tions, it is possible to embed the state space of a deterministic dynamic system
using a scalar measurement time series. Thus when multivariate measurements are
obtained from a dynamic system, each time series separately can be used to em-
bed state space. The functional mapping between thus obtained state spaces exists,
which can be used in predicting one measurement from another. Thus, in this study
we investigate on the prediction of one respiratory flow measurement from another
as a time series prediction task in order to identify measurement redundancies.

2 Theory

2.1 Embedding and Re-embedding Respiratory Dynamics

In modeling the human biological sub-system that generates breathing as con-
tinuous deterministic dynamic system, we assume that the state space of the of
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the dynamics is in a sooth manifod M of d dimensional space. Transition from
state s(t1) at time t; to its state at time t5 of a dynamic system is governed
by a the flow function ¢ such that s(t2) = @(ta — t1,s(t1)). Flow function is
differentiable with respect to time and obeys properties of group and identity.
Thus knowledge of the state at one time and the flow will give information to
determine the state of the system at anytime.

An arbitrary PSG measurement x;(t;) recorded at time ¢; of the state variable
s1 is related by,z;(t;) = hi(s(t;)). With {t;]i = 1, 2,...N} for some integer N, we
can obtain a time series {x;}. Provided we know & and ¢;, we can reconstruct
the state space of the respiratory system. In this case, we are not aware of ¢ and
hy, thus our intention is to obtain a state space reconstruction for the purpose
of predicting future measurements.

Using time delayed samples of measurements obtained, we construct delay
vector x;(t) as,z;(t) = (z(t), z(t — 7),...,z(t — 7(my — 1))). The delay vector,
x;(t) is a mapping of d dimensional dynamic system into m; dimension. It
contains information of both present and the past of the system. This mapping
is equivalent to ¢;(s) where,

Pu(s) = (hu(s(t)), (@i (7, 5(1))); - - -, ha(pr (=T, (s(2)))))- (1)

Takens [ITJ12] showed that ¢; is an embedding when m; > 2d +1, under
general conditions on the dynamic system and the & be a C? differentiable
observation function. Embedding is a smooth one to one and onto mapping with
smooth inverse. Smooth dynamics F is induced on the space of reconstructed
vectors, as (from Equation [I]),

F(r,2;) = dipu(r, ¢y (2))- (2)

Thus we can predict the time evolution of the measurements, as x;(t +7) =
Fi (Tv le).

If (2, is the reconstructed state space from {x;}, then the mapping ¢;:M —
£2; is a diffeomorphism with properties of both one to one and onto mapping.
Using another measurement function hy, measurements time series {x;} can be
obtained by measuring the same or another state variable of the respiratory dy-
namic system. With the time series {xj} we can embed the respiratory dynamics
in £2; induced by mapping a ¢ up to diffeomorphism.

When both §2; and (2, are diffeomorphic to M, thus there exists mappings
@1, which maps from (2; to {2, and its inverse. Thus the measurements of both
{x;} and {x;} can be predicted from each other, such that

ﬁk(Ta xl) = d)k((pk(Ta d)fl(xl)) fOT l7 k= 172' (3)

Thus the prediction of measurement zy, (t+7) = Fi,(7,2,(t)).

The ability to obtain one step (step size 7) prediction implies that the possi-
bility of obtaining multi-step predictions. In summery our aim is to obtain the
model of functional relationship G;; which can be defined as,

Zrn+ ) = Gu(x(n),z(n —7), ...,z (n — (my — 1)7y)) (4)
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The model G is used here to estimate xx(\) as Xx(A) where A is an integer multiple
of ;. If | = k, we expect to reconstruct the state space of dynamic system using
a measurement for the purpose predictions of future measurements. For the case
where [ # k , G is a mapping function from the reconstructed state spaces by {x;}
to the reconstructed state space from {xj}. The non-zero positive integers my,
and 7y are termed as the embedding dimension, and delay time of measurement
time series {xx}. If I =k then A > 0 or A\ < -(m;-1)7; is necessary for practical
modelling.

2.2 Embedding Parameters m and T

Diffeomorphism implies preservation of topological properties with one to one
mapping between two spaces. If the state space reconstruction is done with
m > mg , where mg is the minimum embedding dimension required for dif-
feomorphism, then neighbouring points in the original state space will map to
neighbouring points in the reconstructed state space. Thus if z(%,,m) and z(,,m)
where z(t,,m) = (z(t.),x(t.-7), ..., ©(t,-T(m-1))) are neighbours when embed-
ded in the dimension m and m > myg , both z(t.,m+1) and z(,,m+1) will also
be neighbours in m+1 embedded dimension. However, if m < mqg , z(t.,m+1)
and z(p,m+1) will not necessary be neighbours in m+1. This method known as
false nearest neighbour method proposed by Kennel et al [I6] is used to estimate
embedding dimension.

In order to identify the distiance between two neighbour when embedded in
high dimensio, the ratio (NRD) is computed as,

z(tr,m~+1) —z(t,,m+ 1)

NRD =
z(t., m) — z(ts, m)

(5)

The neighbors whose NRD exceeds a given heuristic threshold are taken as a false
nearest neighbors. The minimum m for which fraction of false nearest neighbors
are close to zero is taken as the minimum embedding dimension of the time
series.

Takens theorem does not provide nor specifies conditions of 7. If the mea-
surements are noiseless, any value of 7 is suitable for the reconstruction of the
state space. However, due to presence of noise a number of methods are used
to obtain a optimal time delay. If a small delay time is used, the reconstructed
state space will be densely populated close to each other. If a higher 7, over a
certain limit may again can cause successive elements in the delay vector to get
correlated [T5]. Thus aiming to de-correlate the delay vector, for selection of T
is Autocovariance Function (ACF) and Mutual Information Criteria (MIC) can
be used. ACF is zero when there is no correlation is present, thus the duration
for the first zero crossing is taken as the delay time when ACF is used. MIC,
unlike ACF it takes non-liner correlations also into account. When MIC is used,
the delay time is taken as the duration for first significant minimum where the
information correlations is negligible.
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ACEF of a time series {x} with Z and var(x) as the mean and the variance can
be given as,

Now T —w)—=

MIC is calculated from the relation,
pw( )
MIC(w ZZ pzy w)log Dipi ) (7)
iDj

where for some W partition on the real numbers p; is probability that a time
series value falls into the i** partition, and the probability that two observation
made w apart falls in to both i'* partition and j** partition is given as p;;(w).

2.3 Modeling Gz,

For the prediction, the continuous mapping function G;; needs to be identified
from the relationship between i (n + A) and (z;(n), z;(n —7),...,zi(n — (my; —
1)7;)). Hornik et al [I3] has showed that in approximating an arbitrary mapping
from one finite dimensional space to another, single hidden layer with arbitrary
sigmoidal hidden layer activation functions is sufficient when a feedforward neu-
ral network are used. In this study, multi-layer fully connected Neural Networks
(NNs) with hidden units having hyperbolic tangent sigmoidal transfer functions
are used to model Gy, the mapping function that predicts a measurement {x;(n)}
from {x;(n)}.

Long-term prediction of deterministic dynamic systems are discussed using
neural networks with time delays in studies such as [I4]. In this study, long
term predictions are of no immediate interest. Thus easy to implement, fully
connected Multilayer Perceptron neural networks are selected. During training,
Levenberg-Marquardt backpropagation technique was used to update the bias
terms and weights of the neurons. This algorithm converges rapidly with prop-
erties of Taylor series, and can reach to solutions outside of the initial conditions
with properties of gradient decent algorithm.

However, in order for an NNs to be able to approximate a functional relation-
ship, the structure of the NN should be capable of handling such relationship,
and also the data provided for training the NN should contain the relationship.
If the architecture of the NN is very large, it may learn high dimensional noise
components present in the data.

We have used the sliding window method shown in Fig[llto provide the input
vector z;(n) to the neural network training for the target zj(n+7). Output layer
of the ANN consisted of a single neuron, while the number of neuron in the
input layer, first hidden layer and second hidden layers are H0, H1 and H2.
All input layer neurons and output layer neuron are assigned bias of unity. The
activation functions for the output layer is a linear function and for the hidden
layers hyperbolic tangent sigmoid transfer functions was used.
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Fig. 1. Neural network for 7-step ahead prediction of {x2} from {x:}. The sliding
windows are used to present inputs to the neural network to obtain an estimate x2(n+k)
as X2(n+k).

2.4 Performance of Predictions

Performance of prediction errors were calculating using the Normalised Root
Mean Squared Error (NRMSE) on N+1 data samples.

SN {aln+1) = i(n + 1))
S {z(n+1) — )2

where, & is the signal predicted and = = an:1 z(n + 1) is the mean of test
sample z. Very low NRMSE implies that neural network has modeled the signal
both in time and space. Higher value of NRMSE does not necessarily imply that
the predictions are erroneous. It could be time or space shift in the predicted
signal. Prediction error at peaks can also increase NRMSE.

NRMSE = (8)

3 Data Acquisition

The data used for this study was obtained from tests conducted for SDB using
PSG. These tests were conducted at The Department of Respiratory and Sleep
Medicine at the Princess Alexandra hospital, Brisbane, Australia. The routine
PSG data were obtained from a clinical system (Model Siesta, Compumedic-
sTM, Sydney, Australia). Signals acquired included EEG, EOG, ECG, EMG,
leg movements, nasal airflow, nasal pressure, respiratory movements, blood oxy-
gen saturation, breathing sounds and the body position. The routine PSG data
are accompanied by an expert-edited annotation file with an event-by-event de-
scription of SDB and sleep stages. For this study, 5 PSG recordings of patients
undergone for SDBD diagnosis are used. The Nasal Airflow and Nasal Pressure
measurements are recorded 64 samples per second.

Nasal Pressure Measurement (NPM) is obtained by placing nasal prongs near
the nasal openings of the patients to guide the airflow to a pressure transducer.
The measurement provides the pressure variation at the nostrils with respect
to the atmospheric pressure. Nasal Airflow Measurement (NAM) is obtained
using a thermal sensor placed between nasal and mouth openings, such that
respiratory flow contacts the sensor. Expired breathing flow of a human is at
the body temperature while the temperature of the inspired airflow is at that of
the room. Sleep laboratories record both the measurements in SDB diagnostic
studies, which can be used to obtain accurate classifications of events.
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4 Results and Discussion

4.1 Calculation of Embedding Parameters

For each patient, 30 second data segment prior to sleep on set is used for cal-
culation of embedding parameters. Both ACF and MIC are used to calculate
the delay time. Fig. Zh) shows ACF curves and Fig. [2b) shows MIC curves ob-
tained for both NAM and NPM measurements for a one recording. We observed
that for most of the patients 7 is approximately 50 for both NAP and NPM
measurements. Embedding dimensions m for the signals were calculated using
FNNR routine implemented in the TISEAN [I5] package. Fig.[2k) shows fraction
of false nearest neighbours Vs embedding dimension for both NPM and NAM
of one patient for minimum FNNR = 3. The curves are close to zero when em-
bedding dimension used is greater than 5. In presence of noise, we find use of
higher embedding dimension can introduce noise terms. Thus we select for both
NAM and NPM m as 5.

050\
0 0.5
-0.5
~lo 50 100 50 % 50 100 50 % 5 0
(a) ACF (b) MIC (¢) FNN

Fig. 2. Autocorrelation function, Mutual Information Criteria, function Fraction of
false nearest neighbors for the PSG recording C on both Nasal Airflow and Nasal
Pressure Measurements are shown in the figure from left to right respectively.

4.2 Training NNs

We have used m of 5 and tau 50 for both NAM and NPM cross prediction
tasks. All HO, H1 and H2 selected to be equal to the embedding dimension of
the input time series (measurement) of each configuration of the NN. A data
segment of 30 seconds duration recorded just before the sleep onset was selected
from each PSG recordings to train the NNs. Fraction 3/4 of this data used to
train the ANN, and the rest is used to measure the generalisation of the NNs
while training. Though the fraction used in measuring the generalisaion of NNs
are lower, we expect considerable amount of data is used. Mean Squared error is
used to obtain training both training error and generalisation errors after each
epoch of training. Once these error measures are calculated, a copy of the ANN
is again trained.

NNs were trained for Maximum epoch number of 100, with early stopping
criteria of mean squared training error is less than le-10 or gradient in the
errors is less than le-5. However, we have observed that after around 10 epochs
of training, both validation errors and training errors converge. In order to avoid
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over training, we have selected an NN trained to 10 epochs. None of the early
stopping criteria we have set were not met before this.

4.3 Predictions

The prediction error NRMSE calculated for 30 second epoch during all 5 sleep
stages ( Stage 1 to 4 and REM) and a wakefulness is shown in the Fig. B in
predicting NAM.

b)

W

N

-

Wake stagel stage2 stage3 stage4 REM Wake stagel stage2 stage3 stage4 REM

(a) NPM from NAM (b) NAM from NPM

Fig. 3. The frame a) shows performance error in predicting Nasal Pressure measure-
ment from the Nasal Airflow Measurement, vise verse in the frame b) for 5 PSG
recordings. The recordings used for prediction in both figures are each patient were
done simultaneously.

Fig. @ shows an episodes of actual and predicted NAM with sudden large
drop in measurement. In the actual NPM a sudden drop in is visible around
20 seconds, which we assume due to an artifact. Identification of the presence
of artifacts can be done using the high NRMSE of prediction with low numebr
of data point in calculating the NRMSE. Once identified, the contaminations
can be eliminated by using the predicted measurement as a substitute of the
contaminated segment.

When at least one measurement is distorted we expect high NRMSE values
at prediction. However, variance of low amplitude measurements are small, thus
prediction errors (NMSE) of low amplitude measurements get amplified. We
believe its the reason for high NMSE during the prediction of PR from AF at
stage 4 sleep.

....... Actual
Predicted

—0.01
(o]

s 10 15 20 25 30

Fig. 4. Prediction of Nasal Pressure measurements from the Nasal Airflow measure-
ment
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Fig.[Blshow that the signal loss in one channel can be detected using high pre-
diction errors present in predictions. Once identified, lost measurement can be
reconstructed from the un-distorted measurement. When a signal loss is present
in a measurement say in x;, the variance of that segment is small when com-
pared with undistorted simultaneous measurement of another channel, unless an
Sleep Apnea event is experienced during this time. Recording at a signal loss
is close to the mean value of an measurement. Thus when a measurement loss
is present, such as in Fig. [}l and measurements are predicted from each other,
high NRMSE and a low NRMSE ( around 1 ) will be obtained. This can be used
to automatically identify measurement distortions such as signal loss. The high
NRMSE ( in predicting x; from xj ) implies that the predicted measurement
(z;) may contain a signal loss.

o.0af

----- — Actual
Predicted

0.02

Fig. 5. The frame a) shows actual Nasal Airflow Measurement and the measurement
predicted from Nasal Pressure measurement, and vise verse in the frame b). Prediction
error NRMSE for Nasal Pressure measurement is 1.0 while for the Nasal Pressure
measurement is 5.1.

5 Conclusion and Future Work

By treating the respiratory system to an autonomous dynamic system, we have
modeled the functional relationship between the Nasal Pressure Measurement
and Nasal Airflow Measurements. Multilayer Peceptron type neural networks
are used to approximate the mapping function between them. We have used 5
polysomnography recordings of patients undergone for sleep disordered breathing
diseases. We find results are very much encouraging toward automated classifi-
cation of polysomnography data. In future studies, we expect to investigate on
optimum neural network architecture and selections of training data for reliable
respiratory signal predictions.
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Abstract. Web service composition is the process of integrating existing web
services. It is a prospective method to build an application system. The current
approaches, however, only take service function aspect into consideration. With
the rapid growth of web service applications and the abundance of service
providers, the consumer is facing the inevitability of selecting the “maximum
satisfied” service providers due to the dynamic nature of web services. This
requirement brings us some research challenges including web service quality
model, the design of web service framework monitoring service real time
quality. The further challenge is to find the algorithm which can handle
customized service quality parameters and has good performance to solve NP-
hard web services global selection problem. In this paper, we propose an
adaptive web service framework using an extensible service quality model.
Evolutionary algorithms are adopted to accelerate service global selection. We
report on the comparison between Cultural Algorithms with Genetic Algorithms
and random service selection.

Keywords: cultural algorithms, genetic algorithms, web service composition,
quality of service (QoS).

1 Introduction

A web service pulls the web functionality from document oriented to application
oriented and forms a new standard of distributed computing known as Service
Oriented Architecture (SOA). Business service developers are just to assemble a set
of appropriate web services to implement the business tasks. Business applications are
no longer written manually. For example [1], a client requirement can be described as
a workflow like a sequence diagram in UML. The workflow is composed of several
sub-functional modules or abstract services. Each abstract service is associated with a
web service community which contains several concrete web services with the same
functionality. The process of selecting a concrete service from a web service
community for an abstract service by QoS attributes is called local selection.
Obviously, a task presented by the service composition can be solved by a significant
number of combinations. The process of selection from the numerous combinations
according to the non-functional requirement is called global selection which is a NP-
hard problem. Consequently, client requirements can be presented as web services
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global selection problem. In order to give a general approach for web service
composition, we need a general quality model to present the quality of each available
service. We also require the web service framework that has the functionality of real-
time monitoring of the quality parameters. Moreover, we should have an efficient
algorithm to globally select web services. In our work we employ evolutionary
algorithms, namely Genetic Algorithms (GA) and Cultural Algorithms (CA), where
the latter is used in population evolution models [2].

This paper is organized as follow. Section 2 reviews major challenges and
mainstreams in QoS-aware web service composition. Section 3 presents our proposed
approach. Section 4 gives the comparison results among different algorithms. The last
section summarizes conclusions and identifies directions for future work.

2 Related Work: Quality Models and Related Algorithms

With the growing number of service providers and consumers, there are different
interests and concerns with respect to different service quality attributes. It is common
practice to use a simple approach to model and represent QoS, such as availability,
accessibility, integrity, performance, reliability and price [3, 4, 5]. Another practice
suggests mapping the objective system quality to the users’ subjective perception of
quality [6]. This introduces a new web service quality attribute termed objectively and
proposes an approach to quantify it. The extensibility is endorsed as more important
than the parameters used in the given quality model [7].

Many approaches have been investigated to implement service composition, such
as, integer programming [8], Pinsinger’s Algorithm, and Reduction Algorithm [9].
However, they can only deal with limited number of generic quality parameters.
Studies [1] have adapted a Genetic Algorithm (GA) to globally select web services
and analyze web service quality parameters, but, unfortunately a slow process.
Therefore, based on that work, a GA alone is not suitable for use as an all purpose
approach to compose web services.

Cultural Algorithms (CA) are population based evolutionary algorithms that use a
global belief space with an influence function to accelerate the convergence of the
population solution [2].

3 Proposed QoS Model

3.1 Proposed QoS Model for Component Services

Since the meaning of QoS attributes is different by a variety of end-user factors,
contextual circumstances as well as the perspective of interest, each provider must
unambiguously define its QoS model before delivering its QoS aware service. In this
paper, we use four typical quality attributes execution cost, response time, reliability
and availability to model the extendable quality of web services. The brief
explanation of each attribute is as follows:

Execution cost: The execution cost of an operation of a service is the amount of
money that a service requester has to pay for executing the operation. Web service
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providers either directly advertise the execution cost of their operations, or they
provide means to enquire about it.

Execution duration: The execution duration measures the maximum delay in
seconds between the moment when a request is sent and the moment when the results
are received by client-side view. The execution duration wraps the complex
transmission factor into account. It includes service response time and network
transmission latency. Service response time is the maximum seconds that elapses
from the moment that a web service receives a legitimate SOAP request until it
produces the corresponding legitimate SOAP reply. The execution duration

is qduration = trep (S, Op) + ttrans (S, Op)

expression i , meaning that the execution

0 (S,0D)

duration is the sum of the response time and the transmission

. t S,0 . . . . .
time ’m’”( »OP ) . Services advertise their response time or provide methods to
enquire about it. The transmission time is estimated based on past executions of the

n
tyuns (8,0D) = Zti (s,op)/n
. . p= 1,(s,0p)
service operations, e.g. , where the past
observation of the transmission time, and n is the number of execution times observed
in the past.

Reliability: the reliability of a service is the probability that a request is correctly
responded within a maximum expected time frame (which is published in the web
service description). In the thesis, reliability measures the degree of compliance
between providers claimed value with the actual value. Reliability is a technical
measure related to hardware and/or software configuration of web services and
network connections between the service consumers and providers. The value of
reliability is computed from historical data about past invocations using the

. s)=N (s)/k N (s) . .

expression Drei ( ) ‘( ) , Where ¢ ( ) is the number of times that the
service s has been successfully delivered within the maximum expected time frame,
and k is the total number of invocations.

Availability: Availability is the quality aspect of whether the web service is present or

ready for immediate use. The availability an(S) of a service is the probability that
the service is accessible. In the thesis, the value of the availability of a service is
computed using the following expression q"v(s)_t" (5)/k , where a (s) is the
total amount of time (in seconds) in which service is available during the last k
seconds (k is a constant). The value of k may vary depending on a particular
application. In applications where services are more frequently accessed, a small
value of k gives a more accurate approximation for the availability of services. If the
service is less frequently accessed, using a larger k value is more appropriate. In the
thesis, we give a set of constants corresponding to the invocation times in a month.
E.g. invocation times < 1000 k=1000; invocation times >= 1000 k=800; etc.
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In conclusion, the quality vector Q(S) = (qCOS’ (S) ’qdumtion(s) > qrel(s)’qav (S) ) is

used to represent the quality of a service in the thesis. This proposed QoS model also
supports extended custom QoS attribute as long as customers give its unambiguous
definition and computing approach.

3.2 Proposed QoS Model for Composite Service

The same quality attributes described in 3.1 are also applied to evaluate the quality of
composite services. In order to simplify the computation, a composite service, first of
all, will be unfolded and only composed of a set of sequential component services, no
loops and conditions. Namely, we can consider a composite web service containing
several concretized abstract services with sequential structure. For example, a
composite service can be defined as S = {AS1, AS2, ASi ...} and each component ASi
must be concretized. For brevity, the explanation of the approach to unfold a complex
composition workflow is omitted from this paper, but the reader may refer to [10] and
[8] for further details.

3.3 Computation of the QoS of Composite Service

Table 1 provides the aggregation functions of computing the QoS of a composite
service. A brief explanat