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Abstract. In this paper we describe a fuzzy Description Logic reasoner
which implements resolution in order to provide reasoning services for
expressive fuzzy DLs. The main innovation of this implementation is the
ability to reason over assertions with abstract (unspecified) fuzzy degrees.
The answer to queries is, consequently, an algebraic expression involving
the (unknown) fuzzy degrees and the degree of the query. We describe
the implementation and discuss a use case in the domain of semantic
meta-extraction where conventional DL reasoning is not applicable.

1 Introduction

One of the most active areas of research around the construction of the Semantic
Web is the bridging of the semantic gap, the difference between the automatically
extracted, concrete features of web objects and the abstract, semantic features
necessary for semantic browsing and querying.

In the domain of multimedia analysis, conceptual modelling technologies are
used to bridge this gap, by defining abstract concepts like ‘interview’ in terms
of concrete features, e.g., the recognition of two human figures and speech in
a video. Such definitions are made in the context of ontologies, representation
technologies that capture conceptual knowledge about a domain.

There are two sources of error in this scenario: the video analysis tools used
to extract the concrete features (e.g., the appearance of human figures or of
a microphone in the video) and the logic rules used to infer abstract features
from concrete ones. Since neither of these two levels performs perfectly, erroneous
features are going to be assigned at some point; negative feedback from the users
of the system is invaluable for improving the system, but it is neither reasonable
nor reliable to expect that users accurately identify the source of the error, so
that feedback is directed to the party responsible.

In our example, requiring that users giving feedback know about the system-
internal definition of the concept ‘interview’ and are able to tell if the definition
is not applicable (e.g., a video showing a conversation between a shopkeeper and
a customer) or the recognition was faulty (the video was, in fact, a documentary
where a single person describes a statue) is only going to result in sparser and
less reliable feedback due to the increased complexity of user input required.
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The problem we are tackling in the work described here is exactly this: given
that a user has flagged an abstract feature as wrong, decide whether it is more
appropriate to direct this feedback to the video analysis tools or to the ontological
definitions. The problem is further convoluted by the fact that it is often desired
that such definitions are not absolute, but vague. In our example, consider an
ontological rule that states that a video of two people talking looks like an
interview to a degree of 80%.

This paper is organized as follows: we first provide an overview of vague on-
tological reasoning, and then proceed to describe a methodology for utilizing
negative user feedback in the context of semantic meta-data extraction. Subse-
quently, we concentrate on our proposed reasoning system, which supports the
requirements of this methodology. Finally we draw conclusion and outline future
research directions.

2 Reasoning over Vague Knowledge

Ontologies are representation technologies that capture conceptual knowledge
about a domain by defining a hierarchy of concepts, where more general concepts
subsume more specific ones. Concepts are sets of instances, or individual objects
of the domain. Instances have properties, which relate them either to other instan-
ces of the domain or to concrete values (e.g. numbers or strings). Properties of the
former kind are called relations and of the latter data properties.

One of the most prominent formalisms for representing ontological knowledge
is OWL [1]. OWL is closely coupled to Description Logics (DLs) [2], a fragment
of first-order predicate logic. DLs give up expressivity in favour of lower com-
putational complexity, but care is taken that their expressivity is sufficient to
reason over OWL ontologies [3].

In order to be able to capture ‘vague’ knowledge—note the ‘looks like’ in
our example above—multi-valued logics replace the binary yes-no valuation of
logical formulae with a numerical one, denoting the degree to which the formula
holds. Multi-valued DLs have been successfully used in multimedia information
extraction [4] and the ability to model vague concepts has been explicitly stated
as a desideratum by the Semantic Web community [5].

Logical formalisms like Description Logics are typically interpreted with set-
theoretic semantics which define logical connectives and operators in terms of set
theory. We shall not here re-iterate these formal foundations, but refer to hand-
books of Description Logics [2, Chapter 2]. Informally, unary predicates (concepts)
are interpreted as sets of individuals, binary predicates (relations) as sets of pairs of
individuals, and the logical connectives as set operations; i.e., concept disjunction
is interpreted as set union, concept conjunction as set intersection, and so on.

Binary logics base their interpretations on crisp set theory, where an indi-
vidual’s membership in a set gets a binary (true-false) valuation. Multi-valued
logics, on the other hand, base their interpretations on vague set-theoretic se-
mantics, where an individual’s membership in a set gets associated with one of
many (instead of two) possible values, typically real values between 0 and 1.
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Fuzzy set theory [6] is such a multi-valued set theory, where the valuation
denotes the degree to which an individual is a member of the set, or, in other
words, the degree to which an individual is a typical member of a set. Fuzzy
interpretations are based on algebraic norms that provide multi-valued seman-
tics for the logical connectives; the norm that applies to conjunction is called
triangular norm or t-norm and the one for implication is the implication norm
or i-norm. In the work described here we use �Lukasziewicz semantics, where the
t-norm of the expression X ∧ Y is given by max(0, X + Y − 1) and the i-norm
of X → Y by max(1, 1 − X + Y )

The most common approach to implementing multi-valued reasoners is to
combine proof algorithms, like resolution or tableaux, with numerical methods
[7,8]. It should noted, however, that all existing reasoning algorithms and im-
plementations require that the degrees of all assertions in the knowledge base
are numerical constants, a restriction which renders them unsuitable for our
back-propagation methodology described in Section 3 below.

3 Error Back-Propagation

As mentioned in the introduction, we are addressing the issue of analysing er-
roneous results by a blame assignment system, in order to provide corrective
feedback to the level that would be more likely to have introduced the error.

We do this by providing a simple cost measure for the desired changes in the
degrees of the concrete features, so that the new system correctly tags the video
instance. Given the current system parameters and a new instance of erroneous
feature assignment, we need to identify the first-level feature fuzzy degrees that
(a) would have yielded ‘acceptable’ output; and (b) are as close as possible to
the degrees calculated by the first-level (video analysis) tools, with respect to
Euclidean distance.

User feedback does not give any information for the intermediate level of the
system, neither does it include any specific fuzzy degree. Instead it is a binary
correct/incorrect opinion, or, at most, a qualitative estimate like ‘clearly incor-
rect’, ‘almost incorrect’, etc. Either way, the system has prior thresholds for
translating quantitative membership (fuzzy degrees) to such qualitative descrip-
tions of membership to a concept. In this context, we define as ‘acceptable’ in
point (a) above, a value that satisfies such thresholds for the user’s qualitative
estimation.

We refer to this scheme as back-propagation, since it propagates the error ob-
served at the results of the second level (logic rules) back to the intermediate
results of the first level (video analysis). We shall here only briefly outline this
method, as it is discussed in detail elsewhere [9]. The goal is to find the concrete
feature degree values (first level output) that result in abstract feature degrees
(second level output) that satisfy points (a) and (b) above. The method selects
a first-level feature and makes its degree an unknown variable, then uses the
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reasoner to calculate the algebraic relation between this degree and the degree
of the abstract feature that was found to be erroneous; this relation has the form
of inequalities constraining the possible value assignments. Given the thresholds
corresponding to the qualitative description provided by the user, these inequa-
lities are used to calculate thresholds for the concrete feature degrees.

This procedure is repeated for all concrete features, but it should be noted
that not all features contribute overall constraints since some proofs might not
involve unknown degree values. The goal is now to find the vector of first-level
feature degrees that yields an acceptable output and at the same time has the
smallest Euclidean distance from the original first-level features. This is achieved
by employing an iterative method. An initial acceptable first-level feature vector
is found using a coarse search in the feature vector space. Afterwards, the algo-
rithm iterates through the elements in the vector searching for alternate vectors
with higher proximity to the original first-level feature vector. The procedure
terminates when no more optimization is possible.

4 Reasoning over Unknown Fuzzy Degrees

In order to overcome the limitation of existing fuzzy DL reasoners that all as-
sertions in the knowledge base (KB) are numerical constants, we have designed
a novel reasoning methodology which can reason over KBs where some of the
degrees as left as variables.

yadlr is a prototype implementation of this methodology, written in Prolog.
Its architecture specifies three modules, for all of which multiple implementati-
ons are possible. The central module is the inference engine, which implements
a deduction method like resolution or tableaux. The inference engine relies on
an algebraic norm module, which provides semantics for the logical operators.
Finally, the clause representation module acts as a front-end which translates
assertions and queries into yadlr’s internal representation, and utilises the in-
ference engine in order to calculate the answer to the query posed.

In its current state of development1 yadlr implements an SLG Resolution
inference engine, the �Lukasziewicz set of norms, and a Prolog-term front-end.
This last module accepts logical statements in the form of nested Prolog terms,
optionally coupled with a fuzzy degree. If the fuzzy degree is omitted it is assu-
med that its value is unknown and should treated as a variable when calculating
derivative fuzzy degrees.

The front end provides reasoning services by converting calls to the service
to equivalent logic queries. The three services provided are checking if a given
instance is a member of a given concept, retrieving all members of a concept,
and calculating all concepts an instance is a member of. All services admit two
calling modes, one where the fuzzy degree of the answer to the query is returned,
and one which accepts as input a minimum degree and checks whether the query
can be answered at a smaller or equal degree of vagueness.

1 See http://sourceforge.net/projects/yadlr

http://sourceforge.net/projects/yadlr
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4.1 Fuzzy SLG Resolution

Many common resolution calculi and algorithms are based on the resolution rule
[10]. The resolution rule specifies the conditions under which a clause R can
be deduced from two clauses C1 and C2. Resolution is a sound and complete
deduction rule for first-order logic, which is to say that it identifies all and only
the cases where two clauses semantically support a third clause.

Selection Linear resolution for General Logic Programming (SLG Resolution,
[11]) is a deduction algorithm based on the resolution rule. Given a query or
goal G to prove, SLG resolution makes a left-to-right pass on the literals li of
G, identifying which (if any) clause in the Knowledge Base (KB) can resolve
against li. Effectively, each li is replaced by the premises of a clause that has
li as its conclusion. The repeated application of this process takes G through
a series of transformations G′, G′′, etc. until a clause is reached that is either
obviously true, i.e., a known logical tautology or a (set of) ground fact(s)—or
obviously false, i.e., a logical contradiction.

Literals that, at a given step, can be neither proven nor disproven are placed
in a delay list. If further down the proof a delayed literal is proven, it is removed
from the list; if contradicted the proof fails. A successful proof with an empty
delay list means that the formula is satisfied by the background. If, on the other
hand, the delay list cannot be closed, a conditional answer is returned which
means that the formula is satisfiable (subject to the items remaining in the
delay list) but not necessarily satisfied by this particular KB.

Crisp SLG Resolution is the inference apparatus behind deductive database
systems like DATALOG and disjunctive DATALOG. In the domain of Descrip-
tion Logics, the KAON2 system2 reasons by reducing DL programs to their
disjunctive DATALOG equivalents and then using resolution-based reasoning
services originally designed for disjunctive DATALOG [12].

In yadlr a fuzzy variation of the SLG algorithm is implemented, where each
transformation checks whether the fuzzy degree of the result is above a threshold,
and only admits transformation steps that pass this threshold; a successful proof
is one that proves that the degree at which the goal is supported by the knowledge
base, is above a user-specified threshold. A further refinement of this algorithm,
discussed in the following section, also handles unknown fuzzy degrees (in the
knowledge base as well as in the goal) and proves algebraic relations between
these unknown values.

4.2 Handling Unknown Fuzzy Degrees

When fuzzy values are left as variables in either the knowledge base or the goal
G, yadlr effectively restricts the range of fuzzy values that the original clause G
admits. More specifically, when ground facts are used in some transformation, the
degree of the derivative of G cannot assume certain values if the transformation
is to be valid, as specified by the set of norms in use.

2 See also http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/
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If all fuzzy degrees are known in advance, this restriction can be immediately
checked and the transformation can, accordingly, be accepted of rejected, as
shown in the first approximation of the yadlr algorithm in the preceding section.
If unknown fuzzy degrees are involved, then each application of the t-norm builds
up an ever more restrictive set of inequalities that must be satisfied. At each
application of the basic resolution step, the inference module uses the i-norm
found in the algebraic norms module, and the latter returns this new set of
restrictions.

As seen above, the inference engine defers to the norms module the calculation
of the degree of each derivation of G. The i-norm implementation should be able
to handle KB assertions where the degree is not specified, but left as a free
variable.

In fact, such degrees are not completely unspecified, but possibly restricted by
previous iterations, in the same way that the degree of the goal gets restricted. As
the proof proceeds, the degree of each node gets calculated using the algebraic
norms; whenever assertions with unbound fuzzy degrees are encountered, the
admissible values for these variables get restricted within the range that would
yield the required valuation for the overall expression, which builds up to a
system of linear constraints that is solved using the clp(Q, R) constraint linear
programming library [13].

At the end of this process, and if there are any open branches, one collects at
the leaves of the open branches a system of inequations. This system specifies
the admissible values for the unbound degrees, so that the original formula at
the root of the tree is satisfiable.

It should be noted that some transformations might be invalid even when
unknown values are involved, as we might, for example, end up requiring that
x < 0.3 and x > 0.5 simultaneously, but in general a lot more (conditional)
solutions will be admitted than in a situation where all values are known.

The answer to the logical query is a disjunction of sets of inequalities, involving
the unknown fuzzy degrees in the KB and the query.

5 Conclusions and Future Work

In this work we have proposed a novel method for reasoning over fuzzy Descrip-
tion Logics and demonstrated how it can be useful in improving the accuracy
of meta-data extraction from multimedia content. More particularly, we have
discussed how to reason over knowledge bases that include assertions of an un-
known fuzzy degree, and how this is useful to error back-propagation in a fuzzy
DL system.

At its current state of development, the system implements the general SLG
resolution algorithm with the �Lukasziewicz norms for multi-valued semantics.
Planned future development includes designing and implementing a resolution
methodology that is optimized for reasoning over Description Logic knowledge
bases, as well as implementing more of the various algebraic norms proposed.
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We are also planning to look for further use cases for our methodology be-
sides error back-propagation for correcting meta-data extraction systems. Such
use cases might include decision support systems where not all the parameters
of the problem are known, but discovering the relation between the unknown
parameters can provide important information.
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