
An Evaluation of Triple-Store Technologies for Large
Data Stores

Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder, and John Sumner

BBN Technologies
10 Moulton St.,

Cambridge, MA 02138, USA
{krohloff,mdean,iemmons,dryder,jsumner}@bbn.com

Abstract. This paper presents a comparison of performance of various triple-
store technologies currently in either production release or beta test. Our compar-
ison of triple-store technologies is biased toward a deployment scenario where the
triple-store needs to load data and respond to queries over a very large knowledge
base (on the order of hundreds of millions of triples.) The comparisons in this
paper are based on the Lehigh University Benchmark (LUBM) software tools.
We used the LUBM university ontology, datasets, and standard queries to per-
form our comparisons. We find that over our test regimen, the triple-stores based
on the DAML DB and BigOWLIM technologies exhibit the best performance
among the triple-stores tested.

1 Introduction

There has been an explosion recently in the development of new technologies for var-
ious areas of the Semantic Web. Some of these manifold new developments include
query processing, protocols and triple-store technologies among many others. In this
paper we evaluate the most promising new Semantic Web triple-store technologies.

This evaluation was motivated by a client with an existing Semantic Web application
who wanted to evaluate other storage alternatives. Therefore this study focused on the
particular concerns of the client’s application, such as the sheer volume of data, funda-
mental performance measures (load time and query speed), and very basic inference.

This study leverages the Lehigh University Benchmark (LUBM) [1,2], a widely ac-
cepted methodology for evaluating triple-stores that is relevant to the context of this
evaluation. The metrics in the LUBM evaluation methodology include load time, repos-
itory size, and the response time of 14 different queries. The 14 queries are also designed
to assess the soundness and completeness of the reasoning performed.

To date there have only been a handful of attempts at formal evaluations, studies or
benchmarking efforts that characterize key aspects of triple-stores. While these stud-
ies provide valuable insight into many of the challenges associated with benchmarking
triple-stores, most of these studies address specific ranges of performance metrics mea-
sured under targeted test conditions. We focus on evaluating what we have identified as
the most promising currently available and beta-test triple-store technologies that can
handle very large data-sets (on the order of 1 billion triples.)

The most relevant studies to this evaluation include the MIT Scalability Report, the
RDF Scalable Storage report, and the 2003 Semantic Web Tools Assessment. The MIT

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM 2007 Ws, Part II, LNCS 4806, pp. 1105–1114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

1106 K. Rohloff et al.

report [3] was primarily focused on the storage and query response capabilities of triple-
stores, and queries with large expected results in particular. The RDF Scalable Storage
Report [4] provides an overview of a number of open source/free triple-store implemen-
tations that are available and does not include any benchmarks or performance mea-
surements. The Semantic Web Tools Assessment1, a part of the DARPA Agent Markup
Language (DAML) program, documented a qualitative survey of available OWL tools.

The triple-stores we evaluated in this study (coupled with their appropriate query
framework) are:

– Sesame 1.2.6 + MySQL 5.0
– Sesame 1.2.6 + DAML DB 2.2.1.2
– Sesame 1.2.6 + SwiftOWLIM 2.8.3
– Sesame 1.2.6 + BigOWLIM 0.9.2
– Jena 2.5.2 + MySQL 5.0
– Jena 2.5.2 + DAML DB 2.2.1.2
– AllegroGraph 1 (Free Java Edition)
– AllegroGraph 2.0.1 (Free Java Edition)

The remainder of the paper is organized as follows: Section 2 presents the methodol-
ogy and metrics we use to evaluate the triple-store technologies. Section 3 presents the
study results, and Section 4 analyzes the results and discusses areas for future work.

2 Evaluation Methodology and Metrics

2.1 Framework

We performed our evaluation in a Java environment using a modified version of the
LUBM test harness [1,2]. The modified test harness incrementally loads test data in ten
blocks and a full set of queries are run after each incremental load. This allowed us to
collect data on how the data load times and query response times vary with the number
of triples loaded into the triple-store. The triple stores tested here supported different
query languages, and so the LUBM queries were ported into their appropriate query
languages (SeRQL and SPARQL.)

Data for our evaluation was generated by the UBA (Univ-Bench Artificial data gen-
erator) tool developed by the LUBM authors. The LUBM test data are extensible data
created over the Univ-Bench ontology. LUBM datasets represent multiple universities,
each with multiple professors, students, graduate students, courses, and departments.
The courses, students, graduate students, and professors belong to departments, and
students, graduate students, and professors can be assigned to courses.

Most of the triple-stores (MySQL2, DAML DB3, SwiftOWLIM, and BigOWLIM4)
require a query framework. We used Sesame5 and Jena6 as query frameworks due to

1 http://www.daml.org/2003/10/tool-assessment/Repository.html
2 http://www.mysql.com/
3 http://www.daml.org/2001/09/damldb/
4 http://www.ontotext.com/owlim/
5 http://openrdf.org/
6 http://www.hpl.hp.com/semweb/

An Evaluation of Triple-Store Technologies for Large Data Stores 1107

their wide acceptance and maturity. Both versions of AllegroGraph7 came with their
own query framework. A brief overview of the features and the capabilities of the paired
triple-store technologies and query frameworks is presented in Table 1. Note that an
enhanced version of DAML DB called “Parliament”, has been released as a part of
BBN’s Asio tool suite for the Semantic Web8.

Table 1. Triple-Store Feature Matrix

S
es

am
e

+
M

yS
Q

L

S
es

am
e

+
D

A
M

L
D

B

S
es

am
e

+
S

w
if

tO
W

L
IM

Je
na

+
M

yS
Q

L

Je
na

+
D

A
M

L
D

B

A
ll

eg
ro

G
ra

ph
1 S

es
am

e
+

B
ig

O
W

L
IM

A
ll

eg
ro

G
ra

ph
2.

0.
1

Query
language

SeRQL SeRQL SeRQL SPARQL SPARQL SPARQL SeRQL SPARQL

Rule
support

RDFS Limited
RDFS

RDFS +
most of
OWL
Lite

RDFS +
most of
OWL
Lite

Limited
RDFS

RDFS +
a bit of
OWL
Lite

RDFS +
most of
OWL
Lite

RDFS +
a bit of
OWL
Lite

owl:sameAs No Using
Layered
SAIL

Yes Yes No Yes Yes Yes

owl:Inverse
Functional
Property

No Yes Yes Yes Yes No Yes No

API Exten-
sibility

Yes,
SAIL

Yes,
SAIL

Yes,
SAIL

Yes, Jena Yes, Jena No Yes,
SAIL

No

Maturity Mature Mature Mature Mature Mature Mature Beta Beta
Price Free Free Free Free Free Not free Unknown Not free

We initially generated a data set consisting of 1500 universities written to indepen-
dent OWL data files, which corresponds to roughly 200 million triples. We found that
a number of the triple-store technologies (Sesame + BigOWLIM, Sesame + DAML
DB and Jena + DAML DB) performed very well over this range of data, so we gen-
erated a second, larger data set to further test the performance of these triple-stores.
The data-set used in this second round of testing consisted of 8000 universities written
to independent OWL data files, which corresponds to roughly 1 billion triples. Due to
time constraints, we were not able to evaluate the triple-stores over the entire larger
data-set, but we were able to evaluate the selected triple-stores over most of this data.
The developers of AllegroGraph 2.0.1 were unable to provide us a beta-test version of
their technology during the first round of testing, but we included this triple-store in our
second round of testing with the 8000-university dataset.

7 http://www.franz.com/products/allegrograph/
8 http://asio.bbn.com/parliament.html

1108 K. Rohloff et al.

2.2 Test Environment and Hardware

Our evaluation focused on centralized data-stores with a single user making queries.
For this reason, we assumed that the test dataset, triple-store, and client software all
reside on the same host and that queries are processed serially.

The test hardware used in the study was a Dell PowerEdge 2950 with two (2) Quad
Core Intel Xeon E5345 Processors running at 2.33Ghz, a 1333MHz FSB, 16GB of
RAM running at 533MHz and 6TB of storage disk storage. The test harness was written
in Java and the tests were run using the Sun Java virtual machine, version 1.6.

We found that all of the triple-stores except Sesame + DAML DB required additional
heap space to operate on datasets with more than a million triples. We tested multiple
settings of the Java VM -Xmx and -Xms options to allocate additional heap space.
Setting the virtual machine options of “-Xms 13000m -Xmx13000m”, which allocates
13GB of heap to the virtual machine, provided all around good performance for the
triple-stores. This large allocation of heap space could potentially be a hindrance to
DAML DB which accesses RAM outside of the Java heap.

During initial testing we observed the Java virtual machine halting test execution
due to the garbage collection operation exceeding its overhead limit. Through both
testing rounds we turned off the garbage collection overhead limit using the “-XX:-
UseGCOverheadLimit” JVM option. All triple-stores were then able to run without
halting due to memory errors except for Sesame + SwiftOWLIM and AllegroGraphv1,
which were able to run at least as long before halting due to an out-of-memory error.

2.3 Metrics

The individual metrics initially used by the LUBM were used as a starting point for the
data collection in this evaluation study. Specifically, we collected data on:

– Cumulative Load Time: the time, measured in hours, to load the OWL files describ-
ing university departments into the triple-store for a given number of triples. This
includes any time spent processing the ontology and source files.

– Query Response Time: query response time is calculated as the mean of the execu-
tion time for each of four identical queries.

– Query Completeness and Soundness: a triple-store is complete if it returns all of the
correct responses to a query, while a triple-store is sound if it only returns correct
responses to a query.

– Disk-Space Requirements: the amount of disk-space required to load the evaluation
data. This data was collected only during the second round of testing for the triple-
stores that were able to load and perform query operations on the large dataset.

The LUBM queries we used to measure the query response time were a low-volume,
low-complexity query (LUBM Query 1), a high-volume, low-complexity query (LUBM
Query 2), and a high complexity query (LUBM Query 9). Our descriptions of volume
and complexity with respect to query types is taken from the LUBM documentation. A
low-volume query is one where the number of query results is very small relative to the
number of triples in the triple-store. Conversely, a high-volume query is one that returns
a large portion of the stored triples in response to a query. A low-complexity query is

An Evaluation of Triple-Store Technologies for Large Data Stores 1109

one that requires very little processing power to complete, while a high-complexity
query is one that requires substantial computing power to complete.

LUBM Query 1 asks for the number of GraduateStudents at a particular university
that take a particular course. The correct response for this query over our test data
is always 4. LUBM Query 14 requests the number of UndergraduateStudents in the
knowledge base. A correct response for this query is a large fraction of the number
of triples stored in the triple-store (on the order of 15%). LUBM Query 9 requests all
students who take a course taught by their adviser. This query contains 5 atomic clauses
that need to be addressed by the triple-stores’ query engines. The correct response to
this query is on the order of several thousand. Performance issues associated with low-
and high-volume queries did not affect Query 9.

During initial testing, we noticed that the ordering of query clauses has a potentially
large impact on the performance of the triple-stores. By ordering the queries such that
fewer items in a data-set satisfy the initial clauses the query response time of queries
can be improved upon otherwise identical queries with query clause reordered so that
more elements of a data-set satisfy the reordered initial query clauses.

We attempted to optimize our query orderings as much as possible to minimize query
response times during the test process while using the same query orderings for all
triple-store evaluations. This was not necessary when using DAML DB because it re-
orders queries automatically, but for the sake of consistency we used the manually re-
ordered queries for all triple stores.

Queries commonly contain explicit restrictions that can be inferred from the ontol-
ogy. In such cases, a clever query optimizer may be able to eliminate the redundant
statement from the query, thereby reducing the level of processing required to answer
it. We suspect that none of the triple-stores in this study perform this query optimiza-
tion. We did not attempt to remove these statements manually, but this might be an
avenue for future study.

3 Study Results

During our operations of the triple-stores, we found that not all of the triple-stores we
tested were complete. AllegroGraph 2.0.1 was able to correctly respond to all queries.
Sesame + SwiftOWLIM, Sesame + BigOWLIM and all combinations of MySQL and
DAML DB with Sesame and Jena were able to respond correctly to all queries except
for Queries 10-13. The triple-stores were unable to infer the consequences of inverseOf
and sameAs relationships. Two of the triple-stores (AllegroGraph 1 and Sesame +
BigOWLIM) returned errors with Queries 14 and 13, respectively. Rather than demon-
strating incompleteness, this most likely demonstrates that these triple-stores have bugs
in their implementations that should be addressed.

During the first round of testing, Sesame + BigOWLIM appeared to be unsound for
a large portion of the LUBM queries. During the second round of testing, we found
that we could correct these errors by exclusively using SELECT DISTINCT clauses in
the queries and not using WHERE clauses in the queries. Interestingly, SwiftOWLIM
did not have these difficulties, so they were most likely due to BigOWLIM’s beta-
test status. These alterations in the queries used for Sesame + BigOWLIM were the

1110 K. Rohloff et al.

0 100 200 300 400 500 600 700 800 900
10

−1

10
0

10
1

10
2

Millions of Triples Loaded

C
um

ul
at

iv
e

Lo
ad

 T
im

e
(H

ou
rs

)
Cumulative Load Time vs. Number of Triples Loaded

AllegroGraph v1, Initial Data Set
Sesame + BigOWLIM, Initial Data Set
Sesame + SwiftOWLIM, Initial Data Set
Sesame + DAMLDB, Initial Data Set
Jena + DAMLDB, Initial Data Set
Sesame + mySQL, Initial Data Set
Jena + mySQL, Initial Data Set
Sesame+DAMLDB, Second Data Set
Jena+DAMLDB, Second Data Set
Sesame + BigOWLIM, Second Data Set

Fig. 1. Cumulative Load Time for Various Triple-Stores for Two Data Sets

only differences between queries in the triple-stores evaluations (except for translations
between the SeRQL and SPARQL languages.)

During the first round of testing, Jena + DAML DB was incorrectly configured so
that the full inferencing power of DAML DB was unused. This error was corrected
during the second round of testing.

A graph of the cumulative load times vs. the number of triples loaded for the various
triple-stores is shown in Figure 1. In the graph in Figure 1 and all other graphs in later
figures, the results from operations with the initial 1500 university dataset during the
first test round is plotted using solid lines and results from operations with the larger
8000 university dataset during the second test round is plotted using dashed lines.

Ideally, the cumulative load time of a triple-sore for this performance metric is linear
in the number of triples loaded. (Note that a linear relationship appears to be sub-linear
on a semi-log plot, which is what we used in all figures.) All of the triple-stores we
tested had cumulative load times that grew linearly with the number of triples loaded.

As can be seen from the graph Jena + DAML DB and Sesame + DAML DB had the
best cumulative load time performance from the triple-stores that we evaluated using the
larger dataset. Over the initial dataset, Jena + MySQL and Sesame + MySQL exhibited
substantially worse performance than the other triple-stores. Due to time constraints as-
sociated with their load times, we terminated the test runs of the Jena + MySQL and
Sesame + MySQL triple-stores before completion. When provided 13 GB of heap space
with 64-bit addressing, AllegroGraph 1 and Sesame + SwiftOWLIM were unable to load
all of the triples used in the test run due to insufficient memory errors. AllegroGraph 1

An Evaluation of Triple-Store Technologies for Large Data Stores 1111

0 100 200 300 400 500 600 700 800 900
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Millions of Triples Loaded

Q
ue

ry
 1

 R
es

po
ns

e
T

im
e

(H
ou

rs
)

Query 1 Response Time vs. Number of Triples Loaded

AllegroGraph v1, Initial Data Set
Sesame + BigOWLIM, Initial Data Set
Sesame + DAMLDB, Initial Data Set
Jena + DAMLDB, Initial Data Set
Sesame + mySQL, Initial Data Set
Jena + mySQL, Initial Data Set
Sesame+BigOWLIM, Second Data Set
Sesame+DAMLDB, Second Data Set
Jena + DAMLDB, Second Data Set

Fig. 2. Query 1 Response Times for Various Triple-Stores for Two Data Sets

was able to load 25 million triples, while Sesame + SwiftOWLIM was able to load just
over 80 million triples. In order to achieve reasonable query performance in Allegro-
Graph 2.0.1, an indexAll operation needs to be performed after large sets of data are
loaded but before query operations are issued. We found that after loading a large dataset,
the indexAll operation was unable to complete (most likely due to a bug), so we were
unable to obtain any meaningful performance results for AllegroGraph 2.0.1.

We also measured the amount of disk space the various triple stores required during
the second testing round (see Table 2). In our evaluation, Sesame + BigOWLIM made
more efficient use of disk space than Sesame + DAML DB and Jena + DAML DB.

Table 2. Disk Space Required per Million Triples Loaded

Triple-Store Disk Space Required per Million Triples Loaded

Sesame + DAML DB 175 MB
Jena + DAML DB 167 MB

Sesame + BigOWLIM 53 MB

Figure 2 shows the Query 1 response performance of the triple-stores. Jena + DAML
DB had very good performance and was able to return responses in a nearly trivial
amount of time (in less than a second.) The accuracy of our measurements of query

1112 K. Rohloff et al.

0 100 200 300 400 500 600 700 800 900
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Millions of Triples Loaded

Q
ue

ry
 1

4
R

es
po

ns
e

T
im

e
(H

ou
rs

)
Query 14 Response Time vs. Number of Triples Loaded

Sesame + BigOWLIM, Initial Data Set
Sesame + DAMLDB, Initial Data Set
Jena + DAMLDB, Initial Data Set
Sesame + mySQL, Initial Data Set
Jena + mySQL, Initial Data Set
Sesame + BigOWLIM, Second Data Set
Sesame + DAMLDB, Second Data Set
Jena + DAMLDB, Second Data Set

Fig. 3. Query 14 Response Times for Various Triple-Stores for Two Data Sets

response times was limited to 15ms due to the limitations of the system clock. This
caused the query response times of Jena + DAML DB to appear to fluctuate wildly on
the semi-log plot for the data collected during from the initial dataset. Out of the other
triple-stores, Sesame + DAML DB and Sesame + BigOWLIM exhibited performance
worse than Jena + DAML DB but comparable to one another.

Ideally, a triple-store should have a response time that does not increase, or increases
very little as the number of triples loaded increases. We found that only Jena + DAML
DB, Sesame + DAML DB and Sesame + BigOWLIM exhibit this behavior. The jump
in Query 1 response time for Jena + DAML DB between rounds is most likely due to
the increase in inferencing power for Jena + DAML DB between rounds.

Figure 3 shows the Query 14 response performance of the triple-stores. Sesame +
BigOWLIM exhibited the best performers for this metric over both rounds of testing.
The performance degradation of Jena + DAML DB between rounds is most likely due
to the increase in inferencing power for Jena + DAML DB between rounds. Increased
query response times for Jena + DAML DB and Sesame + DAML DB is most likely
due to the limits of caching in DAML DB.

Figure 4 shows the Query 9 response performance of the triple-stores. Sesame +
BigOWLIM had the best performance, and Sesame + DAML DB and Jena + DAML
DB performed roughly an order of magnitude worse than Sesame + BigOWLIM. All of
the triple-stores in this study had performance that degraded super-linearly with respect
to the data repository size.

An Evaluation of Triple-Store Technologies for Large Data Stores 1113

0 100 200 300 400 500 600 700 800 900
10

−3

10
−2

10
−1

10
0

10
1

Millions of Triples Loaded

Q
ue

ry
 9

 R
es

po
ns

e
T

im
e

(H
ou

rs
)

Query 9 Response Time vs. Number of Triples Loaded

Sesame + BigOWLIM, Initial Data Set
Sesame + DAMLDB, Initial Data Set
Sesame + mySQL, Initial Data Set
Sesame + BigOWLIM Phase 2, Second Data Set
Sesame + DAMLDB Phase 2, Second Data Set
Jena + DAMLDB Phase 2, Second Data Set

Fig. 4. Query 9 Response Times for Various Triple-Stores for Two Data Sets

4 Analysis and Areas for Future Work

Due to the observed limitations in the ability of Sesame + SwiftOWLIM to load very
large datasets, we feel that this triple-store would not be a good performer as compared
to the other triple-store technologies when evaluated over large datasets. Admittedly,
this is a design limitation of SwiftOWLIM as it was designed to operate over smaller
datasets. Due to the observed very long load times, we feel that AllegroGraph 1, Sesame
+ MySQL, and Jena + MySQL would not be appropriate for use with large datasets,
even if load time were a secondary consideration for evaluation. If the indexAll op-
eration in AllegroGraph 2.0.1 could be fixed, this technology could exhibit very good
performance, but we were unable to adequately evaluate the query response times of
this triple-store due to the non-termination of the indexAll operation.

We feel that the triple-stores that offered the best all-around performance for opera-
tions with a large dataset were Sesame + DAML DB, Jena + DAML DB, and Sesame +
BigOWLIM. Each of these triple-stores has their own relative merits. Most importantly,
all three of them provide adequate query response time performance for various queries,
but no one triple-store is clearly better than the other triple-stores in all cases under the
conditions evaluated in this study. For instance, Sesame + BigOWLIM provides better
response time than the other triple-stores when responding to complex queries. Addi-
tionally, Jena + DAML DB provides the best performance for low-complexity queries,
at least on the low-complexity queries that we tested. Sesame + DAML DB performs

1114 K. Rohloff et al.

reasonably well, but not demonstrably the best in response to all queries. Additionally,
these three triple-stores load data adequately fast.

One could expand this study by examining more advanced features such as reifica-
tion and the effects of concurrent users on performance. Several of the triple-stores in
this study support reification, but we did not make any measures of reified query per-
formance. For similar reasons, it would be of interest to investigate how the actions
of multiple concurrent users affect the performance of the triple-stores in a distributed
deployment scenario. Finally, after this study concluded, the authors became aware of
the University Ontology Benchmark (UOBM) [5], which studies triple-store inference
capabilities in greater depth. This would be another useful direction for future work.

References

1. Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large OWL datasets.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 274–288. Springer, Heidelberg (2004)

2. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal
of Web Semantics 3(2), 158–182 (2005)

3. Lee, R.: Scalability report on triple store applications. Technical report, Massachusetts Insti-
tute of Technology (July 2004), http://simile.mit.edu/reports/stores/

4. Beckett, D.: SWAD-Europe deliverable 10.1: Scalability and storage: Survey of free software
/ open source RDF storage systems. Technical Report IST-2001-34732, EU (July 2002),
http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage
report

5. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology bench-
mark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer,
Heidelberg (2006)

http://simile.mit.edu/reports/stores/
http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report
http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report

	An Evaluation of Triple-Store Technologies for Large Data Stores
	Introduction
	Evaluation Methodology and Metrics
	Framework
	Test Environment and Hardware
	Metrics

	Study Results
	Analysis and Areas for Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

